std/sync/mpmc/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
//! Multi-producer, multi-consumer FIFO queue communication primitives.
//!
//! This module provides message-based communication over channels, concretely
//! defined by two types:
//!
//! * [`Sender`]
//! * [`Receiver`]
//!
//! [`Sender`]s are used to send data to a set of [`Receiver`]s. Both
//! sender and receiver are cloneable (multi-producer) such that many threads can send
//! simultaneously to receivers (multi-consumer).
//!
//! These channels come in two flavors:
//!
//! 1. An asynchronous, infinitely buffered channel. The [`channel`] function
//! will return a `(Sender, Receiver)` tuple where all sends will be
//! **asynchronous** (they never block). The channel conceptually has an
//! infinite buffer.
//!
//! 2. A synchronous, bounded channel. The [`sync_channel`] function will
//! return a `(SyncSender, Receiver)` tuple where the storage for pending
//! messages is a pre-allocated buffer of a fixed size. All sends will be
//! **synchronous** by blocking until there is buffer space available. Note
//! that a bound of 0 is allowed, causing the channel to become a "rendezvous"
//! channel where each sender atomically hands off a message to a receiver.
//!
//! [`send`]: Sender::send
//!
//! ## Disconnection
//!
//! The send and receive operations on channels will all return a [`Result`]
//! indicating whether the operation succeeded or not. An unsuccessful operation
//! is normally indicative of the other half of a channel having "hung up" by
//! being dropped in its corresponding thread.
//!
//! Once half of a channel has been deallocated, most operations can no longer
//! continue to make progress, so [`Err`] will be returned. Many applications
//! will continue to [`unwrap`] the results returned from this module,
//! instigating a propagation of failure among threads if one unexpectedly dies.
//!
//! [`unwrap`]: Result::unwrap
//!
//! # Examples
//!
//! Simple usage:
//!
//! ```
//! #![feature(mpmc_channel)]
//!
//! use std::thread;
//! use std::sync::mpmc::channel;
//!
//! // Create a simple streaming channel
//! let (tx, rx) = channel();
//! thread::spawn(move || {
//! tx.send(10).unwrap();
//! });
//! assert_eq!(rx.recv().unwrap(), 10);
//! ```
//!
//! Shared usage:
//!
//! ```
//! #![feature(mpmc_channel)]
//!
//! use std::thread;
//! use std::sync::mpmc::channel;
//!
//! thread::scope(|s| {
//! // Create a shared channel that can be sent along from many threads
//! // where tx is the sending half (tx for transmission), and rx is the receiving
//! // half (rx for receiving).
//! let (tx, rx) = channel();
//! for i in 0..10 {
//! let tx = tx.clone();
//! s.spawn(move || {
//! tx.send(i).unwrap();
//! });
//! }
//!
//! for _ in 0..5 {
//! let rx1 = rx.clone();
//! let rx2 = rx.clone();
//! s.spawn(move || {
//! let j = rx1.recv().unwrap();
//! assert!(0 <= j && j < 10);
//! });
//! s.spawn(move || {
//! let j = rx2.recv().unwrap();
//! assert!(0 <= j && j < 10);
//! });
//! }
//! })
//! ```
//!
//! Propagating panics:
//!
//! ```
//! #![feature(mpmc_channel)]
//!
//! use std::sync::mpmc::channel;
//!
//! // The call to recv() will return an error because the channel has already
//! // hung up (or been deallocated)
//! let (tx, rx) = channel::<i32>();
//! drop(tx);
//! assert!(rx.recv().is_err());
//! ```
// This module is used as the implementation for the channels in `sync::mpsc`.
// The implementation comes from the crossbeam-channel crate:
//
// Copyright (c) 2019 The Crossbeam Project Developers
//
// Permission is hereby granted, free of charge, to any
// person obtaining a copy of this software and associated
// documentation files (the "Software"), to deal in the
// Software without restriction, including without
// limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice
// shall be included in all copies or substantial portions
// of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
// ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
// TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
// PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
// SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
// CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
// IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
mod array;
mod context;
mod counter;
mod error;
mod list;
mod select;
mod utils;
mod waker;
mod zero;
pub use error::*;
use crate::fmt;
use crate::panic::{RefUnwindSafe, UnwindSafe};
use crate::time::{Duration, Instant};
/// Creates a new asynchronous channel, returning the sender/receiver halves.
///
/// All data sent on the [`Sender`] will become available on the [`Receiver`] in
/// the same order as it was sent, and no [`send`] will block the calling thread
/// (this channel has an "infinite buffer", unlike [`sync_channel`], which will
/// block after its buffer limit is reached). [`recv`] will block until a message
/// is available while there is at least one [`Sender`] alive (including clones).
///
/// The [`Sender`] can be cloned to [`send`] to the same channel multiple times.
/// The [`Receiver`] also can be cloned to have multi receivers.
///
/// If the [`Receiver`] is disconnected while trying to [`send`] with the
/// [`Sender`], the [`send`] method will return a [`SendError`]. Similarly, if the
/// [`Sender`] is disconnected while trying to [`recv`], the [`recv`] method will
/// return a [`RecvError`].
///
/// [`send`]: Sender::send
/// [`recv`]: Receiver::recv
///
/// # Examples
///
/// ```
/// #![feature(mpmc_channel)]
///
/// use std::sync::mpmc::channel;
/// use std::thread;
///
/// let (sender, receiver) = channel();
///
/// // Spawn off an expensive computation
/// thread::spawn(move || {
/// # fn expensive_computation() {}
/// sender.send(expensive_computation()).unwrap();
/// });
///
/// // Do some useful work for awhile
///
/// // Let's see what that answer was
/// println!("{:?}", receiver.recv().unwrap());
/// ```
#[must_use]
#[unstable(feature = "mpmc_channel", issue = "126840")]
pub fn channel<T>() -> (Sender<T>, Receiver<T>) {
let (s, r) = counter::new(list::Channel::new());
let s = Sender { flavor: SenderFlavor::List(s) };
let r = Receiver { flavor: ReceiverFlavor::List(r) };
(s, r)
}
/// Creates a new synchronous, bounded channel.
///
/// All data sent on the [`Sender`] will become available on the [`Receiver`]
/// in the same order as it was sent. Like asynchronous [`channel`]s, the
/// [`Receiver`] will block until a message becomes available. `sync_channel`
/// differs greatly in the semantics of the sender, however.
///
/// This channel has an internal buffer on which messages will be queued.
/// `bound` specifies the buffer size. When the internal buffer becomes full,
/// future sends will *block* waiting for the buffer to open up. Note that a
/// buffer size of 0 is valid, in which case this becomes "rendezvous channel"
/// where each [`send`] will not return until a [`recv`] is paired with it.
///
/// The [`Sender`] can be cloned to [`send`] to the same channel multiple
/// times. The [`Receiver`] also can be cloned to have multi receivers.
///
/// Like asynchronous channels, if the [`Receiver`] is disconnected while trying
/// to [`send`] with the [`Sender`], the [`send`] method will return a
/// [`SendError`]. Similarly, If the [`Sender`] is disconnected while trying
/// to [`recv`], the [`recv`] method will return a [`RecvError`].
///
/// [`send`]: Sender::send
/// [`recv`]: Receiver::recv
///
/// # Examples
///
/// ```
/// use std::sync::mpsc::sync_channel;
/// use std::thread;
///
/// let (sender, receiver) = sync_channel(1);
///
/// // this returns immediately
/// sender.send(1).unwrap();
///
/// thread::spawn(move || {
/// // this will block until the previous message has been received
/// sender.send(2).unwrap();
/// });
///
/// assert_eq!(receiver.recv().unwrap(), 1);
/// assert_eq!(receiver.recv().unwrap(), 2);
/// ```
#[must_use]
#[unstable(feature = "mpmc_channel", issue = "126840")]
pub fn sync_channel<T>(cap: usize) -> (Sender<T>, Receiver<T>) {
if cap == 0 {
let (s, r) = counter::new(zero::Channel::new());
let s = Sender { flavor: SenderFlavor::Zero(s) };
let r = Receiver { flavor: ReceiverFlavor::Zero(r) };
(s, r)
} else {
let (s, r) = counter::new(array::Channel::with_capacity(cap));
let s = Sender { flavor: SenderFlavor::Array(s) };
let r = Receiver { flavor: ReceiverFlavor::Array(r) };
(s, r)
}
}
/// The sending-half of Rust's synchronous [`channel`] type.
///
/// Messages can be sent through this channel with [`send`].
///
/// Note: all senders (the original and its clones) need to be dropped for the receiver
/// to stop blocking to receive messages with [`Receiver::recv`].
///
/// [`send`]: Sender::send
///
/// # Examples
///
/// ```rust
/// #![feature(mpmc_channel)]
///
/// use std::sync::mpmc::channel;
/// use std::thread;
///
/// let (sender, receiver) = channel();
/// let sender2 = sender.clone();
///
/// // First thread owns sender
/// thread::spawn(move || {
/// sender.send(1).unwrap();
/// });
///
/// // Second thread owns sender2
/// thread::spawn(move || {
/// sender2.send(2).unwrap();
/// });
///
/// let msg = receiver.recv().unwrap();
/// let msg2 = receiver.recv().unwrap();
///
/// assert_eq!(3, msg + msg2);
/// ```
#[unstable(feature = "mpmc_channel", issue = "126840")]
pub struct Sender<T> {
flavor: SenderFlavor<T>,
}
/// Sender flavors.
enum SenderFlavor<T> {
/// Bounded channel based on a preallocated array.
Array(counter::Sender<array::Channel<T>>),
/// Unbounded channel implemented as a linked list.
List(counter::Sender<list::Channel<T>>),
/// Zero-capacity channel.
Zero(counter::Sender<zero::Channel<T>>),
}
#[unstable(feature = "mpmc_channel", issue = "126840")]
unsafe impl<T: Send> Send for Sender<T> {}
#[unstable(feature = "mpmc_channel", issue = "126840")]
unsafe impl<T: Send> Sync for Sender<T> {}
#[unstable(feature = "mpmc_channel", issue = "126840")]
impl<T> UnwindSafe for Sender<T> {}
#[unstable(feature = "mpmc_channel", issue = "126840")]
impl<T> RefUnwindSafe for Sender<T> {}
impl<T> Sender<T> {
/// Attempts to send a message into the channel without blocking.
///
/// This method will either send a message into the channel immediately or return an error if
/// the channel is full or disconnected. The returned error contains the original message.
///
/// If called on a zero-capacity channel, this method will send the message only if there
/// happens to be a receive operation on the other side of the channel at the same time.
///
/// # Examples
///
/// ```rust
/// #![feature(mpmc_channel)]
///
/// use std::sync::mpmc::{channel, Receiver, Sender};
///
/// let (sender, _receiver): (Sender<i32>, Receiver<i32>) = channel();
///
/// assert!(sender.try_send(1).is_ok());
/// ```
#[unstable(feature = "mpmc_channel", issue = "126840")]
pub fn try_send(&self, msg: T) -> Result<(), TrySendError<T>> {
match &self.flavor {
SenderFlavor::Array(chan) => chan.try_send(msg),
SenderFlavor::List(chan) => chan.try_send(msg),
SenderFlavor::Zero(chan) => chan.try_send(msg),
}
}
/// Attempts to send a value on this channel, returning it back if it could
/// not be sent.
///
/// A successful send occurs when it is determined that the other end of
/// the channel has not hung up already. An unsuccessful send would be one
/// where the corresponding receiver has already been deallocated. Note
/// that a return value of [`Err`] means that the data will never be
/// received, but a return value of [`Ok`] does *not* mean that the data
/// will be received. It is possible for the corresponding receiver to
/// hang up immediately after this function returns [`Ok`].
///
/// This method will never block the current thread.
///
/// # Examples
///
/// ```
/// #![feature(mpmc_channel)]
///
/// use std::sync::mpmc::channel;
///
/// let (tx, rx) = channel();
///
/// // This send is always successful
/// tx.send(1).unwrap();
///
/// // This send will fail because the receiver is gone
/// drop(rx);
/// assert!(tx.send(1).is_err());
/// ```
#[unstable(feature = "mpmc_channel", issue = "126840")]
pub fn send(&self, msg: T) -> Result<(), SendError<T>> {
match &self.flavor {
SenderFlavor::Array(chan) => chan.send(msg, None),
SenderFlavor::List(chan) => chan.send(msg, None),
SenderFlavor::Zero(chan) => chan.send(msg, None),
}
.map_err(|err| match err {
SendTimeoutError::Disconnected(msg) => SendError(msg),
SendTimeoutError::Timeout(_) => unreachable!(),
})
}
}
impl<T> Sender<T> {
/// Waits for a message to be sent into the channel, but only for a limited time.
///
/// If the channel is full and not disconnected, this call will block until the send operation
/// can proceed or the operation times out. If the channel becomes disconnected, this call will
/// wake up and return an error. The returned error contains the original message.
///
/// If called on a zero-capacity channel, this method will wait for a receive operation to
/// appear on the other side of the channel.
///
/// # Examples
///
/// ```
/// #![feature(mpmc_channel)]
///
/// use std::sync::mpmc::channel;
/// use std::time::Duration;
///
/// let (tx, rx) = channel();
///
/// tx.send_timeout(1, Duration::from_millis(400)).unwrap();
/// ```
#[unstable(feature = "mpmc_channel", issue = "126840")]
pub fn send_timeout(&self, msg: T, timeout: Duration) -> Result<(), SendTimeoutError<T>> {
match Instant::now().checked_add(timeout) {
Some(deadline) => self.send_deadline(msg, deadline),
// So far in the future that it's practically the same as waiting indefinitely.
None => self.send(msg).map_err(SendTimeoutError::from),
}
}
/// Waits for a message to be sent into the channel, but only until a given deadline.
///
/// If the channel is full and not disconnected, this call will block until the send operation
/// can proceed or the operation times out. If the channel becomes disconnected, this call will
/// wake up and return an error. The returned error contains the original message.
///
/// If called on a zero-capacity channel, this method will wait for a receive operation to
/// appear on the other side of the channel.
///
/// # Examples
///
/// ```
/// #![feature(mpmc_channel)]
///
/// use std::sync::mpmc::channel;
/// use std::time::{Duration, Instant};
///
/// let (tx, rx) = channel();
///
/// let t = Instant::now() + Duration::from_millis(400);
/// tx.send_deadline(1, t).unwrap();
/// ```
#[unstable(feature = "mpmc_channel", issue = "126840")]
pub fn send_deadline(&self, msg: T, deadline: Instant) -> Result<(), SendTimeoutError<T>> {
match &self.flavor {
SenderFlavor::Array(chan) => chan.send(msg, Some(deadline)),
SenderFlavor::List(chan) => chan.send(msg, Some(deadline)),
SenderFlavor::Zero(chan) => chan.send(msg, Some(deadline)),
}
}
/// Returns `true` if the channel is empty.
///
/// Note: Zero-capacity channels are always empty.
///
/// # Examples
///
/// ```
/// #![feature(mpmc_channel)]
///
/// use std::sync::mpmc;
/// use std::thread;
///
/// let (send, _recv) = mpmc::channel();
///
/// let tx1 = send.clone();
/// let tx2 = send.clone();
///
/// assert!(tx1.is_empty());
///
/// let handle = thread::spawn(move || {
/// tx2.send(1u8).unwrap();
/// });
///
/// handle.join().unwrap();
///
/// assert!(!tx1.is_empty());
/// ```
#[unstable(feature = "mpmc_channel", issue = "126840")]
pub fn is_empty(&self) -> bool {
match &self.flavor {
SenderFlavor::Array(chan) => chan.is_empty(),
SenderFlavor::List(chan) => chan.is_empty(),
SenderFlavor::Zero(chan) => chan.is_empty(),
}
}
/// Returns `true` if the channel is full.
///
/// Note: Zero-capacity channels are always full.
///
/// # Examples
///
/// ```
/// #![feature(mpmc_channel)]
///
/// use std::sync::mpmc;
/// use std::thread;
///
/// let (send, _recv) = mpmc::sync_channel(1);
///
/// let (tx1, tx2) = (send.clone(), send.clone());
/// assert!(!tx1.is_full());
///
/// let handle = thread::spawn(move || {
/// tx2.send(1u8).unwrap();
/// });
///
/// handle.join().unwrap();
///
/// assert!(tx1.is_full());
/// ```
#[unstable(feature = "mpmc_channel", issue = "126840")]
pub fn is_full(&self) -> bool {
match &self.flavor {
SenderFlavor::Array(chan) => chan.is_full(),
SenderFlavor::List(chan) => chan.is_full(),
SenderFlavor::Zero(chan) => chan.is_full(),
}
}
/// Returns the number of messages in the channel.
///
/// # Examples
///
/// ```
/// #![feature(mpmc_channel)]
///
/// use std::sync::mpmc;
/// use std::thread;
///
/// let (send, _recv) = mpmc::channel();
/// let (tx1, tx2) = (send.clone(), send.clone());
///
/// assert_eq!(tx1.len(), 0);
///
/// let handle = thread::spawn(move || {
/// tx2.send(1u8).unwrap();
/// });
///
/// handle.join().unwrap();
///
/// assert_eq!(tx1.len(), 1);
/// ```
#[unstable(feature = "mpmc_channel", issue = "126840")]
pub fn len(&self) -> usize {
match &self.flavor {
SenderFlavor::Array(chan) => chan.len(),
SenderFlavor::List(chan) => chan.len(),
SenderFlavor::Zero(chan) => chan.len(),
}
}
/// If the channel is bounded, returns its capacity.
///
/// # Examples
///
/// ```
/// #![feature(mpmc_channel)]
///
/// use std::sync::mpmc;
/// use std::thread;
///
/// let (send, _recv) = mpmc::sync_channel(3);
/// let (tx1, tx2) = (send.clone(), send.clone());
///
/// assert_eq!(tx1.capacity(), Some(3));
///
/// let handle = thread::spawn(move || {
/// tx2.send(1u8).unwrap();
/// });
///
/// handle.join().unwrap();
///
/// assert_eq!(tx1.capacity(), Some(3));
/// ```
#[unstable(feature = "mpmc_channel", issue = "126840")]
pub fn capacity(&self) -> Option<usize> {
match &self.flavor {
SenderFlavor::Array(chan) => chan.capacity(),
SenderFlavor::List(chan) => chan.capacity(),
SenderFlavor::Zero(chan) => chan.capacity(),
}
}
/// Returns `true` if senders belong to the same channel.
///
/// # Examples
///
/// ```
/// #![feature(mpmc_channel)]
///
/// use std::sync::mpmc;
///
/// let (tx1, _) = mpmc::channel::<i32>();
/// let (tx2, _) = mpmc::channel::<i32>();
///
/// assert!(tx1.same_channel(&tx1));
/// assert!(!tx1.same_channel(&tx2));
/// ```
#[unstable(feature = "mpmc_channel", issue = "126840")]
pub fn same_channel(&self, other: &Sender<T>) -> bool {
match (&self.flavor, &other.flavor) {
(SenderFlavor::Array(ref a), SenderFlavor::Array(ref b)) => a == b,
(SenderFlavor::List(ref a), SenderFlavor::List(ref b)) => a == b,
(SenderFlavor::Zero(ref a), SenderFlavor::Zero(ref b)) => a == b,
_ => false,
}
}
}
#[unstable(feature = "mpmc_channel", issue = "126840")]
impl<T> Drop for Sender<T> {
fn drop(&mut self) {
unsafe {
match &self.flavor {
SenderFlavor::Array(chan) => chan.release(|c| c.disconnect_senders()),
SenderFlavor::List(chan) => chan.release(|c| c.disconnect_senders()),
SenderFlavor::Zero(chan) => chan.release(|c| c.disconnect()),
}
}
}
}
#[unstable(feature = "mpmc_channel", issue = "126840")]
impl<T> Clone for Sender<T> {
fn clone(&self) -> Self {
let flavor = match &self.flavor {
SenderFlavor::Array(chan) => SenderFlavor::Array(chan.acquire()),
SenderFlavor::List(chan) => SenderFlavor::List(chan.acquire()),
SenderFlavor::Zero(chan) => SenderFlavor::Zero(chan.acquire()),
};
Sender { flavor }
}
}
#[unstable(feature = "mpmc_channel", issue = "126840")]
impl<T> fmt::Debug for Sender<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.pad("Sender { .. }")
}
}
/// The receiving half of Rust's [`channel`] (or [`sync_channel`]) type.
/// Different threads can share this [`Sender`] by cloning it.
///
/// Messages sent to the channel can be retrieved using [`recv`].
///
/// [`recv`]: Receiver::recv
///
/// # Examples
///
/// ```rust
/// #![feature(mpmc_channel)]
///
/// use std::sync::mpmc::channel;
/// use std::thread;
/// use std::time::Duration;
///
/// let (send, recv) = channel();
///
/// let tx_thread = thread::spawn(move || {
/// send.send("Hello world!").unwrap();
/// thread::sleep(Duration::from_secs(2)); // block for two seconds
/// send.send("Delayed for 2 seconds").unwrap();
/// });
///
/// let (rx1, rx2) = (recv.clone(), recv.clone());
/// let rx_thread_1 = thread::spawn(move || {
/// println!("{}", rx1.recv().unwrap()); // Received immediately
/// });
/// let rx_thread_2 = thread::spawn(move || {
/// println!("{}", rx2.recv().unwrap()); // Received after 2 seconds
/// });
///
/// tx_thread.join().unwrap();
/// rx_thread_1.join().unwrap();
/// rx_thread_2.join().unwrap();
/// ```
#[unstable(feature = "mpmc_channel", issue = "126840")]
pub struct Receiver<T> {
flavor: ReceiverFlavor<T>,
}
/// An iterator over messages on a [`Receiver`], created by [`iter`].
///
/// This iterator will block whenever [`next`] is called,
/// waiting for a new message, and [`None`] will be returned
/// when the corresponding channel has hung up.
///
/// [`iter`]: Receiver::iter
/// [`next`]: Iterator::next
///
/// # Examples
///
/// ```rust
/// #![feature(mpmc_channel)]
///
/// use std::sync::mpmc::channel;
/// use std::thread;
///
/// let (send, recv) = channel();
///
/// thread::spawn(move || {
/// send.send(1u8).unwrap();
/// send.send(2u8).unwrap();
/// send.send(3u8).unwrap();
/// });
///
/// for x in recv.iter() {
/// println!("Got: {x}");
/// }
/// ```
#[unstable(feature = "mpmc_channel", issue = "126840")]
#[derive(Debug)]
pub struct Iter<'a, T: 'a> {
rx: &'a Receiver<T>,
}
/// An iterator that attempts to yield all pending values for a [`Receiver`],
/// created by [`try_iter`].
///
/// [`None`] will be returned when there are no pending values remaining or
/// if the corresponding channel has hung up.
///
/// This iterator will never block the caller in order to wait for data to
/// become available. Instead, it will return [`None`].
///
/// [`try_iter`]: Receiver::try_iter
///
/// # Examples
///
/// ```rust
/// #![feature(mpmc_channel)]
///
/// use std::sync::mpmc::channel;
/// use std::thread;
/// use std::time::Duration;
///
/// let (sender, receiver) = channel();
///
/// // Nothing is in the buffer yet
/// assert!(receiver.try_iter().next().is_none());
/// println!("Nothing in the buffer...");
///
/// thread::spawn(move || {
/// sender.send(1).unwrap();
/// sender.send(2).unwrap();
/// sender.send(3).unwrap();
/// });
///
/// println!("Going to sleep...");
/// thread::sleep(Duration::from_secs(2)); // block for two seconds
///
/// for x in receiver.try_iter() {
/// println!("Got: {x}");
/// }
/// ```
#[unstable(feature = "mpmc_channel", issue = "126840")]
#[derive(Debug)]
pub struct TryIter<'a, T: 'a> {
rx: &'a Receiver<T>,
}
/// An owning iterator over messages on a [`Receiver`],
/// created by [`into_iter`].
///
/// This iterator will block whenever [`next`]
/// is called, waiting for a new message, and [`None`] will be
/// returned if the corresponding channel has hung up.
///
/// [`into_iter`]: Receiver::into_iter
/// [`next`]: Iterator::next
///
/// # Examples
///
/// ```rust
/// #![feature(mpmc_channel)]
///
/// use std::sync::mpmc::channel;
/// use std::thread;
///
/// let (send, recv) = channel();
///
/// thread::spawn(move || {
/// send.send(1u8).unwrap();
/// send.send(2u8).unwrap();
/// send.send(3u8).unwrap();
/// });
///
/// for x in recv.into_iter() {
/// println!("Got: {x}");
/// }
/// ```
#[unstable(feature = "mpmc_channel", issue = "126840")]
#[derive(Debug)]
pub struct IntoIter<T> {
rx: Receiver<T>,
}
#[unstable(feature = "mpmc_channel", issue = "126840")]
impl<'a, T> Iterator for Iter<'a, T> {
type Item = T;
fn next(&mut self) -> Option<T> {
self.rx.recv().ok()
}
}
#[unstable(feature = "mpmc_channel", issue = "126840")]
impl<'a, T> Iterator for TryIter<'a, T> {
type Item = T;
fn next(&mut self) -> Option<T> {
self.rx.try_recv().ok()
}
}
#[unstable(feature = "mpmc_channel", issue = "126840")]
impl<'a, T> IntoIterator for &'a Receiver<T> {
type Item = T;
type IntoIter = Iter<'a, T>;
fn into_iter(self) -> Iter<'a, T> {
self.iter()
}
}
#[unstable(feature = "mpmc_channel", issue = "126840")]
impl<T> Iterator for IntoIter<T> {
type Item = T;
fn next(&mut self) -> Option<T> {
self.rx.recv().ok()
}
}
#[unstable(feature = "mpmc_channel", issue = "126840")]
impl<T> IntoIterator for Receiver<T> {
type Item = T;
type IntoIter = IntoIter<T>;
fn into_iter(self) -> IntoIter<T> {
IntoIter { rx: self }
}
}
/// Receiver flavors.
enum ReceiverFlavor<T> {
/// Bounded channel based on a preallocated array.
Array(counter::Receiver<array::Channel<T>>),
/// Unbounded channel implemented as a linked list.
List(counter::Receiver<list::Channel<T>>),
/// Zero-capacity channel.
Zero(counter::Receiver<zero::Channel<T>>),
}
#[unstable(feature = "mpmc_channel", issue = "126840")]
unsafe impl<T: Send> Send for Receiver<T> {}
#[unstable(feature = "mpmc_channel", issue = "126840")]
unsafe impl<T: Send> Sync for Receiver<T> {}
#[unstable(feature = "mpmc_channel", issue = "126840")]
impl<T> UnwindSafe for Receiver<T> {}
#[unstable(feature = "mpmc_channel", issue = "126840")]
impl<T> RefUnwindSafe for Receiver<T> {}
impl<T> Receiver<T> {
/// Attempts to receive a message from the channel without blocking.
///
/// This method will never block the caller in order to wait for data to
/// become available. Instead, this will always return immediately with a
/// possible option of pending data on the channel.
///
/// If called on a zero-capacity channel, this method will receive a message only if there
/// happens to be a send operation on the other side of the channel at the same time.
///
/// This is useful for a flavor of "optimistic check" before deciding to
/// block on a receiver.
///
/// Compared with [`recv`], this function has two failure cases instead of one
/// (one for disconnection, one for an empty buffer).
///
/// [`recv`]: Self::recv
///
/// # Examples
///
/// ```rust
/// #![feature(mpmc_channel)]
///
/// use std::sync::mpmc::{Receiver, channel};
///
/// let (_, receiver): (_, Receiver<i32>) = channel();
///
/// assert!(receiver.try_recv().is_err());
/// ```
#[unstable(feature = "mpmc_channel", issue = "126840")]
pub fn try_recv(&self) -> Result<T, TryRecvError> {
match &self.flavor {
ReceiverFlavor::Array(chan) => chan.try_recv(),
ReceiverFlavor::List(chan) => chan.try_recv(),
ReceiverFlavor::Zero(chan) => chan.try_recv(),
}
}
/// Attempts to wait for a value on this receiver, returning an error if the
/// corresponding channel has hung up.
///
/// This function will always block the current thread if there is no data
/// available and it's possible for more data to be sent (at least one sender
/// still exists). Once a message is sent to the corresponding [`Sender`],
/// this receiver will wake up and return that message.
///
/// If the corresponding [`Sender`] has disconnected, or it disconnects while
/// this call is blocking, this call will wake up and return [`Err`] to
/// indicate that no more messages can ever be received on this channel.
/// However, since channels are buffered, messages sent before the disconnect
/// will still be properly received.
///
/// # Examples
///
/// ```
/// #![feature(mpmc_channel)]
///
/// use std::sync::mpmc;
/// use std::thread;
///
/// let (send, recv) = mpmc::channel();
/// let handle = thread::spawn(move || {
/// send.send(1u8).unwrap();
/// });
///
/// handle.join().unwrap();
///
/// assert_eq!(Ok(1), recv.recv());
/// ```
///
/// Buffering behavior:
///
/// ```
/// #![feature(mpmc_channel)]
///
/// use std::sync::mpmc;
/// use std::thread;
/// use std::sync::mpmc::RecvError;
///
/// let (send, recv) = mpmc::channel();
/// let handle = thread::spawn(move || {
/// send.send(1u8).unwrap();
/// send.send(2).unwrap();
/// send.send(3).unwrap();
/// drop(send);
/// });
///
/// // wait for the thread to join so we ensure the sender is dropped
/// handle.join().unwrap();
///
/// assert_eq!(Ok(1), recv.recv());
/// assert_eq!(Ok(2), recv.recv());
/// assert_eq!(Ok(3), recv.recv());
/// assert_eq!(Err(RecvError), recv.recv());
/// ```
#[unstable(feature = "mpmc_channel", issue = "126840")]
pub fn recv(&self) -> Result<T, RecvError> {
match &self.flavor {
ReceiverFlavor::Array(chan) => chan.recv(None),
ReceiverFlavor::List(chan) => chan.recv(None),
ReceiverFlavor::Zero(chan) => chan.recv(None),
}
.map_err(|_| RecvError)
}
/// Attempts to wait for a value on this receiver, returning an error if the
/// corresponding channel has hung up, or if it waits more than `timeout`.
///
/// This function will always block the current thread if there is no data
/// available and it's possible for more data to be sent (at least one sender
/// still exists). Once a message is sent to the corresponding [`Sender`],
/// this receiver will wake up and return that message.
///
/// If the corresponding [`Sender`] has disconnected, or it disconnects while
/// this call is blocking, this call will wake up and return [`Err`] to
/// indicate that no more messages can ever be received on this channel.
/// However, since channels are buffered, messages sent before the disconnect
/// will still be properly received.
///
/// # Examples
///
/// Successfully receiving value before encountering timeout:
///
/// ```no_run
/// #![feature(mpmc_channel)]
///
/// use std::thread;
/// use std::time::Duration;
/// use std::sync::mpmc;
///
/// let (send, recv) = mpmc::channel();
///
/// thread::spawn(move || {
/// send.send('a').unwrap();
/// });
///
/// assert_eq!(
/// recv.recv_timeout(Duration::from_millis(400)),
/// Ok('a')
/// );
/// ```
///
/// Receiving an error upon reaching timeout:
///
/// ```no_run
/// #![feature(mpmc_channel)]
///
/// use std::thread;
/// use std::time::Duration;
/// use std::sync::mpmc;
///
/// let (send, recv) = mpmc::channel();
///
/// thread::spawn(move || {
/// thread::sleep(Duration::from_millis(800));
/// send.send('a').unwrap();
/// });
///
/// assert_eq!(
/// recv.recv_timeout(Duration::from_millis(400)),
/// Err(mpmc::RecvTimeoutError::Timeout)
/// );
/// ```
#[unstable(feature = "mpmc_channel", issue = "126840")]
pub fn recv_timeout(&self, timeout: Duration) -> Result<T, RecvTimeoutError> {
match Instant::now().checked_add(timeout) {
Some(deadline) => self.recv_deadline(deadline),
// So far in the future that it's practically the same as waiting indefinitely.
None => self.recv().map_err(RecvTimeoutError::from),
}
}
/// Attempts to wait for a value on this receiver, returning an error if the
/// corresponding channel has hung up, or if `deadline` is reached.
///
/// This function will always block the current thread if there is no data
/// available and it's possible for more data to be sent. Once a message is
/// sent to the corresponding [`Sender`], then this receiver will wake up
/// and return that message.
///
/// If the corresponding [`Sender`] has disconnected, or it disconnects while
/// this call is blocking, this call will wake up and return [`Err`] to
/// indicate that no more messages can ever be received on this channel.
/// However, since channels are buffered, messages sent before the disconnect
/// will still be properly received.
///
/// # Examples
///
/// Successfully receiving value before reaching deadline:
///
/// ```no_run
/// #![feature(mpmc_channel)]
///
/// use std::thread;
/// use std::time::{Duration, Instant};
/// use std::sync::mpmc;
///
/// let (send, recv) = mpmc::channel();
///
/// thread::spawn(move || {
/// send.send('a').unwrap();
/// });
///
/// assert_eq!(
/// recv.recv_deadline(Instant::now() + Duration::from_millis(400)),
/// Ok('a')
/// );
/// ```
///
/// Receiving an error upon reaching deadline:
///
/// ```no_run
/// #![feature(mpmc_channel)]
///
/// use std::thread;
/// use std::time::{Duration, Instant};
/// use std::sync::mpmc;
///
/// let (send, recv) = mpmc::channel();
///
/// thread::spawn(move || {
/// thread::sleep(Duration::from_millis(800));
/// send.send('a').unwrap();
/// });
///
/// assert_eq!(
/// recv.recv_deadline(Instant::now() + Duration::from_millis(400)),
/// Err(mpmc::RecvTimeoutError::Timeout)
/// );
/// ```
#[unstable(feature = "mpmc_channel", issue = "126840")]
pub fn recv_deadline(&self, deadline: Instant) -> Result<T, RecvTimeoutError> {
match &self.flavor {
ReceiverFlavor::Array(chan) => chan.recv(Some(deadline)),
ReceiverFlavor::List(chan) => chan.recv(Some(deadline)),
ReceiverFlavor::Zero(chan) => chan.recv(Some(deadline)),
}
}
/// Returns an iterator that will attempt to yield all pending values.
/// It will return `None` if there are no more pending values or if the
/// channel has hung up. The iterator will never [`panic!`] or block the
/// user by waiting for values.
///
/// # Examples
///
/// ```no_run
/// #![feature(mpmc_channel)]
///
/// use std::sync::mpmc::channel;
/// use std::thread;
/// use std::time::Duration;
///
/// let (sender, receiver) = channel();
///
/// // nothing is in the buffer yet
/// assert!(receiver.try_iter().next().is_none());
///
/// thread::spawn(move || {
/// thread::sleep(Duration::from_secs(1));
/// sender.send(1).unwrap();
/// sender.send(2).unwrap();
/// sender.send(3).unwrap();
/// });
///
/// // nothing is in the buffer yet
/// assert!(receiver.try_iter().next().is_none());
///
/// // block for two seconds
/// thread::sleep(Duration::from_secs(2));
///
/// let mut iter = receiver.try_iter();
/// assert_eq!(iter.next(), Some(1));
/// assert_eq!(iter.next(), Some(2));
/// assert_eq!(iter.next(), Some(3));
/// assert_eq!(iter.next(), None);
/// ```
#[unstable(feature = "mpmc_channel", issue = "126840")]
pub fn try_iter(&self) -> TryIter<'_, T> {
TryIter { rx: self }
}
}
impl<T> Receiver<T> {
/// Returns `true` if the channel is empty.
///
/// Note: Zero-capacity channels are always empty.
///
/// # Examples
///
/// ```
/// #![feature(mpmc_channel)]
///
/// use std::sync::mpmc;
/// use std::thread;
///
/// let (send, recv) = mpmc::channel();
///
/// assert!(recv.is_empty());
///
/// let handle = thread::spawn(move || {
/// send.send(1u8).unwrap();
/// });
///
/// handle.join().unwrap();
///
/// assert!(!recv.is_empty());
/// ```
#[unstable(feature = "mpmc_channel", issue = "126840")]
pub fn is_empty(&self) -> bool {
match &self.flavor {
ReceiverFlavor::Array(chan) => chan.is_empty(),
ReceiverFlavor::List(chan) => chan.is_empty(),
ReceiverFlavor::Zero(chan) => chan.is_empty(),
}
}
/// Returns `true` if the channel is full.
///
/// Note: Zero-capacity channels are always full.
///
/// # Examples
///
/// ```
/// #![feature(mpmc_channel)]
///
/// use std::sync::mpmc;
/// use std::thread;
///
/// let (send, recv) = mpmc::sync_channel(1);
///
/// assert!(!recv.is_full());
///
/// let handle = thread::spawn(move || {
/// send.send(1u8).unwrap();
/// });
///
/// handle.join().unwrap();
///
/// assert!(recv.is_full());
/// ```
#[unstable(feature = "mpmc_channel", issue = "126840")]
pub fn is_full(&self) -> bool {
match &self.flavor {
ReceiverFlavor::Array(chan) => chan.is_full(),
ReceiverFlavor::List(chan) => chan.is_full(),
ReceiverFlavor::Zero(chan) => chan.is_full(),
}
}
/// Returns the number of messages in the channel.
///
/// # Examples
///
/// ```
/// #![feature(mpmc_channel)]
///
/// use std::sync::mpmc;
/// use std::thread;
///
/// let (send, recv) = mpmc::channel();
///
/// assert_eq!(recv.len(), 0);
///
/// let handle = thread::spawn(move || {
/// send.send(1u8).unwrap();
/// });
///
/// handle.join().unwrap();
///
/// assert_eq!(recv.len(), 1);
/// ```
#[unstable(feature = "mpmc_channel", issue = "126840")]
pub fn len(&self) -> usize {
match &self.flavor {
ReceiverFlavor::Array(chan) => chan.len(),
ReceiverFlavor::List(chan) => chan.len(),
ReceiverFlavor::Zero(chan) => chan.len(),
}
}
/// If the channel is bounded, returns its capacity.
///
/// # Examples
///
/// ```
/// #![feature(mpmc_channel)]
///
/// use std::sync::mpmc;
/// use std::thread;
///
/// let (send, recv) = mpmc::sync_channel(3);
///
/// assert_eq!(recv.capacity(), Some(3));
///
/// let handle = thread::spawn(move || {
/// send.send(1u8).unwrap();
/// });
///
/// handle.join().unwrap();
///
/// assert_eq!(recv.capacity(), Some(3));
/// ```
#[unstable(feature = "mpmc_channel", issue = "126840")]
pub fn capacity(&self) -> Option<usize> {
match &self.flavor {
ReceiverFlavor::Array(chan) => chan.capacity(),
ReceiverFlavor::List(chan) => chan.capacity(),
ReceiverFlavor::Zero(chan) => chan.capacity(),
}
}
/// Returns `true` if receivers belong to the same channel.
///
/// # Examples
///
/// ```
/// #![feature(mpmc_channel)]
///
/// use std::sync::mpmc;
///
/// let (_, rx1) = mpmc::channel::<i32>();
/// let (_, rx2) = mpmc::channel::<i32>();
///
/// assert!(rx1.same_channel(&rx1));
/// assert!(!rx1.same_channel(&rx2));
/// ```
#[unstable(feature = "mpmc_channel", issue = "126840")]
pub fn same_channel(&self, other: &Receiver<T>) -> bool {
match (&self.flavor, &other.flavor) {
(ReceiverFlavor::Array(a), ReceiverFlavor::Array(b)) => a == b,
(ReceiverFlavor::List(a), ReceiverFlavor::List(b)) => a == b,
(ReceiverFlavor::Zero(a), ReceiverFlavor::Zero(b)) => a == b,
_ => false,
}
}
/// Returns an iterator that will block waiting for messages, but never
/// [`panic!`]. It will return [`None`] when the channel has hung up.
///
/// # Examples
///
/// ```rust
/// #![feature(mpmc_channel)]
///
/// use std::sync::mpmc::channel;
/// use std::thread;
///
/// let (send, recv) = channel();
///
/// thread::spawn(move || {
/// send.send(1).unwrap();
/// send.send(2).unwrap();
/// send.send(3).unwrap();
/// });
///
/// let mut iter = recv.iter();
/// assert_eq!(iter.next(), Some(1));
/// assert_eq!(iter.next(), Some(2));
/// assert_eq!(iter.next(), Some(3));
/// assert_eq!(iter.next(), None);
/// ```
#[unstable(feature = "mpmc_channel", issue = "126840")]
pub fn iter(&self) -> Iter<'_, T> {
Iter { rx: self }
}
}
#[unstable(feature = "mpmc_channel", issue = "126840")]
impl<T> Drop for Receiver<T> {
fn drop(&mut self) {
unsafe {
match &self.flavor {
ReceiverFlavor::Array(chan) => chan.release(|c| c.disconnect_receivers()),
ReceiverFlavor::List(chan) => chan.release(|c| c.disconnect_receivers()),
ReceiverFlavor::Zero(chan) => chan.release(|c| c.disconnect()),
}
}
}
}
#[unstable(feature = "mpmc_channel", issue = "126840")]
impl<T> Clone for Receiver<T> {
fn clone(&self) -> Self {
let flavor = match &self.flavor {
ReceiverFlavor::Array(chan) => ReceiverFlavor::Array(chan.acquire()),
ReceiverFlavor::List(chan) => ReceiverFlavor::List(chan.acquire()),
ReceiverFlavor::Zero(chan) => ReceiverFlavor::Zero(chan.acquire()),
};
Receiver { flavor }
}
}
#[unstable(feature = "mpmc_channel", issue = "126840")]
impl<T> fmt::Debug for Receiver<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.pad("Receiver { .. }")
}
}