core/cell.rs
1//! Shareable mutable containers.
2//!
3//! Rust memory safety is based on this rule: Given an object `T`, it is only possible to
4//! have one of the following:
5//!
6//! - Several immutable references (`&T`) to the object (also known as **aliasing**).
7//! - One mutable reference (`&mut T`) to the object (also known as **mutability**).
8//!
9//! This is enforced by the Rust compiler. However, there are situations where this rule is not
10//! flexible enough. Sometimes it is required to have multiple references to an object and yet
11//! mutate it.
12//!
13//! Shareable mutable containers exist to permit mutability in a controlled manner, even in the
14//! presence of aliasing. [`Cell<T>`], [`RefCell<T>`], and [`OnceCell<T>`] allow doing this in
15//! a single-threaded way—they do not implement [`Sync`]. (If you need to do aliasing and
16//! mutation among multiple threads, [`Mutex<T>`], [`RwLock<T>`], [`OnceLock<T>`] or [`atomic`]
17//! types are the correct data structures to do so).
18//!
19//! Values of the `Cell<T>`, `RefCell<T>`, and `OnceCell<T>` types may be mutated through shared
20//! references (i.e. the common `&T` type), whereas most Rust types can only be mutated through
21//! unique (`&mut T`) references. We say these cell types provide 'interior mutability'
22//! (mutable via `&T`), in contrast with typical Rust types that exhibit 'inherited mutability'
23//! (mutable only via `&mut T`).
24//!
25//! Cell types come in four flavors: `Cell<T>`, `RefCell<T>`, `OnceCell<T>`, and `LazyCell<T>`.
26//! Each provides a different way of providing safe interior mutability.
27//!
28//! ## `Cell<T>`
29//!
30//! [`Cell<T>`] implements interior mutability by moving values in and out of the cell. That is, a
31//! `&T` to the inner value can never be obtained, and the value itself cannot be directly
32//! obtained without replacing it with something else. This type provides the following
33//! methods:
34//!
35//! - For types that implement [`Copy`], the [`get`](Cell::get) method retrieves the current
36//! interior value by duplicating it.
37//! - For types that implement [`Default`], the [`take`](Cell::take) method replaces the current
38//! interior value with [`Default::default()`] and returns the replaced value.
39//! - All types have:
40//! - [`replace`](Cell::replace): replaces the current interior value and returns the replaced
41//! value.
42//! - [`into_inner`](Cell::into_inner): this method consumes the `Cell<T>` and returns the
43//! interior value.
44//! - [`set`](Cell::set): this method replaces the interior value, dropping the replaced value.
45//!
46//! `Cell<T>` is typically used for more simple types where copying or moving values isn't too
47//! resource intensive (e.g. numbers), and should usually be preferred over other cell types when
48//! possible. For larger and non-copy types, `RefCell` provides some advantages.
49//!
50//! ## `RefCell<T>`
51//!
52//! [`RefCell<T>`] uses Rust's lifetimes to implement "dynamic borrowing", a process whereby one can
53//! claim temporary, exclusive, mutable access to the inner value. Borrows for `RefCell<T>`s are
54//! tracked at _runtime_, unlike Rust's native reference types which are entirely tracked
55//! statically, at compile time.
56//!
57//! An immutable reference to a `RefCell`'s inner value (`&T`) can be obtained with
58//! [`borrow`](`RefCell::borrow`), and a mutable borrow (`&mut T`) can be obtained with
59//! [`borrow_mut`](`RefCell::borrow_mut`). When these functions are called, they first verify that
60//! Rust's borrow rules will be satisfied: any number of immutable borrows are allowed or a
61//! single mutable borrow is allowed, but never both. If a borrow is attempted that would violate
62//! these rules, the thread will panic.
63//!
64//! The corresponding [`Sync`] version of `RefCell<T>` is [`RwLock<T>`].
65//!
66//! ## `OnceCell<T>`
67//!
68//! [`OnceCell<T>`] is somewhat of a hybrid of `Cell` and `RefCell` that works for values that
69//! typically only need to be set once. This means that a reference `&T` can be obtained without
70//! moving or copying the inner value (unlike `Cell`) but also without runtime checks (unlike
71//! `RefCell`). However, its value can also not be updated once set unless you have a mutable
72//! reference to the `OnceCell`.
73//!
74//! `OnceCell` provides the following methods:
75//!
76//! - [`get`](OnceCell::get): obtain a reference to the inner value
77//! - [`set`](OnceCell::set): set the inner value if it is unset (returns a `Result`)
78//! - [`get_or_init`](OnceCell::get_or_init): return the inner value, initializing it if needed
79//! - [`get_mut`](OnceCell::get_mut): provide a mutable reference to the inner value, only available
80//! if you have a mutable reference to the cell itself.
81//!
82//! The corresponding [`Sync`] version of `OnceCell<T>` is [`OnceLock<T>`].
83//!
84//! ## `LazyCell<T, F>`
85//!
86//! A common pattern with OnceCell is, for a given OnceCell, to use the same function on every
87//! call to [`OnceCell::get_or_init`] with that cell. This is what is offered by [`LazyCell`],
88//! which pairs cells of `T` with functions of `F`, and always calls `F` before it yields `&T`.
89//! This happens implicitly by simply attempting to dereference the LazyCell to get its contents,
90//! so its use is much more transparent with a place which has been initialized by a constant.
91//!
92//! More complicated patterns that don't fit this description can be built on `OnceCell<T>` instead.
93//!
94//! `LazyCell` works by providing an implementation of `impl Deref` that calls the function,
95//! so you can just use it by dereference (e.g. `*lazy_cell` or `lazy_cell.deref()`).
96//!
97//! The corresponding [`Sync`] version of `LazyCell<T, F>` is [`LazyLock<T, F>`].
98//!
99//! # When to choose interior mutability
100//!
101//! The more common inherited mutability, where one must have unique access to mutate a value, is
102//! one of the key language elements that enables Rust to reason strongly about pointer aliasing,
103//! statically preventing crash bugs. Because of that, inherited mutability is preferred, and
104//! interior mutability is something of a last resort. Since cell types enable mutation where it
105//! would otherwise be disallowed though, there are occasions when interior mutability might be
106//! appropriate, or even *must* be used, e.g.
107//!
108//! * Introducing mutability 'inside' of something immutable
109//! * Implementation details of logically-immutable methods.
110//! * Mutating implementations of [`Clone`].
111//!
112//! ## Introducing mutability 'inside' of something immutable
113//!
114//! Many shared smart pointer types, including [`Rc<T>`] and [`Arc<T>`], provide containers that can
115//! be cloned and shared between multiple parties. Because the contained values may be
116//! multiply-aliased, they can only be borrowed with `&`, not `&mut`. Without cells it would be
117//! impossible to mutate data inside of these smart pointers at all.
118//!
119//! It's very common then to put a `RefCell<T>` inside shared pointer types to reintroduce
120//! mutability:
121//!
122//! ```
123//! use std::cell::{RefCell, RefMut};
124//! use std::collections::HashMap;
125//! use std::rc::Rc;
126//!
127//! fn main() {
128//! let shared_map: Rc<RefCell<_>> = Rc::new(RefCell::new(HashMap::new()));
129//! // Create a new block to limit the scope of the dynamic borrow
130//! {
131//! let mut map: RefMut<'_, _> = shared_map.borrow_mut();
132//! map.insert("africa", 92388);
133//! map.insert("kyoto", 11837);
134//! map.insert("piccadilly", 11826);
135//! map.insert("marbles", 38);
136//! }
137//!
138//! // Note that if we had not let the previous borrow of the cache fall out
139//! // of scope then the subsequent borrow would cause a dynamic thread panic.
140//! // This is the major hazard of using `RefCell`.
141//! let total: i32 = shared_map.borrow().values().sum();
142//! println!("{total}");
143//! }
144//! ```
145//!
146//! Note that this example uses `Rc<T>` and not `Arc<T>`. `RefCell<T>`s are for single-threaded
147//! scenarios. Consider using [`RwLock<T>`] or [`Mutex<T>`] if you need shared mutability in a
148//! multi-threaded situation.
149//!
150//! ## Implementation details of logically-immutable methods
151//!
152//! Occasionally it may be desirable not to expose in an API that there is mutation happening
153//! "under the hood". This may be because logically the operation is immutable, but e.g., caching
154//! forces the implementation to perform mutation; or because you must employ mutation to implement
155//! a trait method that was originally defined to take `&self`.
156//!
157//! ```
158//! # #![allow(dead_code)]
159//! use std::cell::OnceCell;
160//!
161//! struct Graph {
162//! edges: Vec<(i32, i32)>,
163//! span_tree_cache: OnceCell<Vec<(i32, i32)>>
164//! }
165//!
166//! impl Graph {
167//! fn minimum_spanning_tree(&self) -> Vec<(i32, i32)> {
168//! self.span_tree_cache
169//! .get_or_init(|| self.calc_span_tree())
170//! .clone()
171//! }
172//!
173//! fn calc_span_tree(&self) -> Vec<(i32, i32)> {
174//! // Expensive computation goes here
175//! vec![]
176//! }
177//! }
178//! ```
179//!
180//! ## Mutating implementations of `Clone`
181//!
182//! This is simply a special - but common - case of the previous: hiding mutability for operations
183//! that appear to be immutable. The [`clone`](Clone::clone) method is expected to not change the
184//! source value, and is declared to take `&self`, not `&mut self`. Therefore, any mutation that
185//! happens in the `clone` method must use cell types. For example, [`Rc<T>`] maintains its
186//! reference counts within a `Cell<T>`.
187//!
188//! ```
189//! use std::cell::Cell;
190//! use std::ptr::NonNull;
191//! use std::process::abort;
192//! use std::marker::PhantomData;
193//!
194//! struct Rc<T: ?Sized> {
195//! ptr: NonNull<RcInner<T>>,
196//! phantom: PhantomData<RcInner<T>>,
197//! }
198//!
199//! struct RcInner<T: ?Sized> {
200//! strong: Cell<usize>,
201//! refcount: Cell<usize>,
202//! value: T,
203//! }
204//!
205//! impl<T: ?Sized> Clone for Rc<T> {
206//! fn clone(&self) -> Rc<T> {
207//! self.inc_strong();
208//! Rc {
209//! ptr: self.ptr,
210//! phantom: PhantomData,
211//! }
212//! }
213//! }
214//!
215//! trait RcInnerPtr<T: ?Sized> {
216//!
217//! fn inner(&self) -> &RcInner<T>;
218//!
219//! fn strong(&self) -> usize {
220//! self.inner().strong.get()
221//! }
222//!
223//! fn inc_strong(&self) {
224//! self.inner()
225//! .strong
226//! .set(self.strong()
227//! .checked_add(1)
228//! .unwrap_or_else(|| abort() ));
229//! }
230//! }
231//!
232//! impl<T: ?Sized> RcInnerPtr<T> for Rc<T> {
233//! fn inner(&self) -> &RcInner<T> {
234//! unsafe {
235//! self.ptr.as_ref()
236//! }
237//! }
238//! }
239//! ```
240//!
241//! [`Arc<T>`]: ../../std/sync/struct.Arc.html
242//! [`Rc<T>`]: ../../std/rc/struct.Rc.html
243//! [`RwLock<T>`]: ../../std/sync/struct.RwLock.html
244//! [`Mutex<T>`]: ../../std/sync/struct.Mutex.html
245//! [`OnceLock<T>`]: ../../std/sync/struct.OnceLock.html
246//! [`LazyLock<T, F>`]: ../../std/sync/struct.LazyLock.html
247//! [`Sync`]: ../../std/marker/trait.Sync.html
248//! [`atomic`]: crate::sync::atomic
249
250#![stable(feature = "rust1", since = "1.0.0")]
251
252use crate::cmp::Ordering;
253use crate::fmt::{self, Debug, Display};
254use crate::marker::{Destruct, PhantomData, Unsize};
255use crate::mem::{self, ManuallyDrop};
256use crate::ops::{self, CoerceUnsized, Deref, DerefMut, DerefPure, DispatchFromDyn};
257use crate::panic::const_panic;
258use crate::pin::PinCoerceUnsized;
259use crate::ptr::{self, NonNull};
260use crate::range;
261
262mod lazy;
263mod once;
264
265#[stable(feature = "lazy_cell", since = "1.80.0")]
266pub use lazy::LazyCell;
267#[stable(feature = "once_cell", since = "1.70.0")]
268pub use once::OnceCell;
269
270/// A mutable memory location.
271///
272/// # Memory layout
273///
274/// `Cell<T>` has the same [memory layout and caveats as
275/// `UnsafeCell<T>`](UnsafeCell#memory-layout). In particular, this means that
276/// `Cell<T>` has the same in-memory representation as its inner type `T`.
277///
278/// # Examples
279///
280/// In this example, you can see that `Cell<T>` enables mutation inside an
281/// immutable struct. In other words, it enables "interior mutability".
282///
283/// ```
284/// use std::cell::Cell;
285///
286/// struct SomeStruct {
287/// regular_field: u8,
288/// special_field: Cell<u8>,
289/// }
290///
291/// let my_struct = SomeStruct {
292/// regular_field: 0,
293/// special_field: Cell::new(1),
294/// };
295///
296/// let new_value = 100;
297///
298/// // ERROR: `my_struct` is immutable
299/// // my_struct.regular_field = new_value;
300///
301/// // WORKS: although `my_struct` is immutable, `special_field` is a `Cell`,
302/// // which can always be mutated
303/// my_struct.special_field.set(new_value);
304/// assert_eq!(my_struct.special_field.get(), new_value);
305/// ```
306///
307/// See the [module-level documentation](self) for more.
308#[rustc_diagnostic_item = "Cell"]
309#[stable(feature = "rust1", since = "1.0.0")]
310#[repr(transparent)]
311#[rustc_pub_transparent]
312pub struct Cell<T: ?Sized> {
313 value: UnsafeCell<T>,
314}
315
316#[stable(feature = "rust1", since = "1.0.0")]
317unsafe impl<T: ?Sized> Send for Cell<T> where T: Send {}
318
319// Note that this negative impl isn't strictly necessary for correctness,
320// as `Cell` wraps `UnsafeCell`, which is itself `!Sync`.
321// However, given how important `Cell`'s `!Sync`-ness is,
322// having an explicit negative impl is nice for documentation purposes
323// and results in nicer error messages.
324#[stable(feature = "rust1", since = "1.0.0")]
325impl<T: ?Sized> !Sync for Cell<T> {}
326
327#[stable(feature = "rust1", since = "1.0.0")]
328impl<T: Copy> Clone for Cell<T> {
329 #[inline]
330 fn clone(&self) -> Cell<T> {
331 Cell::new(self.get())
332 }
333}
334
335#[stable(feature = "rust1", since = "1.0.0")]
336#[rustc_const_unstable(feature = "const_default", issue = "143894")]
337impl<T: [const] Default> const Default for Cell<T> {
338 /// Creates a `Cell<T>`, with the `Default` value for T.
339 #[inline]
340 fn default() -> Cell<T> {
341 Cell::new(Default::default())
342 }
343}
344
345#[stable(feature = "rust1", since = "1.0.0")]
346impl<T: PartialEq + Copy> PartialEq for Cell<T> {
347 #[inline]
348 fn eq(&self, other: &Cell<T>) -> bool {
349 self.get() == other.get()
350 }
351}
352
353#[stable(feature = "cell_eq", since = "1.2.0")]
354impl<T: Eq + Copy> Eq for Cell<T> {}
355
356#[stable(feature = "cell_ord", since = "1.10.0")]
357impl<T: PartialOrd + Copy> PartialOrd for Cell<T> {
358 #[inline]
359 fn partial_cmp(&self, other: &Cell<T>) -> Option<Ordering> {
360 self.get().partial_cmp(&other.get())
361 }
362
363 #[inline]
364 fn lt(&self, other: &Cell<T>) -> bool {
365 self.get() < other.get()
366 }
367
368 #[inline]
369 fn le(&self, other: &Cell<T>) -> bool {
370 self.get() <= other.get()
371 }
372
373 #[inline]
374 fn gt(&self, other: &Cell<T>) -> bool {
375 self.get() > other.get()
376 }
377
378 #[inline]
379 fn ge(&self, other: &Cell<T>) -> bool {
380 self.get() >= other.get()
381 }
382}
383
384#[stable(feature = "cell_ord", since = "1.10.0")]
385impl<T: Ord + Copy> Ord for Cell<T> {
386 #[inline]
387 fn cmp(&self, other: &Cell<T>) -> Ordering {
388 self.get().cmp(&other.get())
389 }
390}
391
392#[stable(feature = "cell_from", since = "1.12.0")]
393#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
394impl<T> const From<T> for Cell<T> {
395 /// Creates a new `Cell<T>` containing the given value.
396 fn from(t: T) -> Cell<T> {
397 Cell::new(t)
398 }
399}
400
401impl<T> Cell<T> {
402 /// Creates a new `Cell` containing the given value.
403 ///
404 /// # Examples
405 ///
406 /// ```
407 /// use std::cell::Cell;
408 ///
409 /// let c = Cell::new(5);
410 /// ```
411 #[stable(feature = "rust1", since = "1.0.0")]
412 #[rustc_const_stable(feature = "const_cell_new", since = "1.24.0")]
413 #[inline]
414 pub const fn new(value: T) -> Cell<T> {
415 Cell { value: UnsafeCell::new(value) }
416 }
417
418 /// Sets the contained value.
419 ///
420 /// # Examples
421 ///
422 /// ```
423 /// use std::cell::Cell;
424 ///
425 /// let c = Cell::new(5);
426 ///
427 /// c.set(10);
428 /// ```
429 #[inline]
430 #[stable(feature = "rust1", since = "1.0.0")]
431 #[rustc_const_unstable(feature = "const_cell_traits", issue = "147787")]
432 #[rustc_should_not_be_called_on_const_items]
433 pub const fn set(&self, val: T)
434 where
435 T: [const] Destruct,
436 {
437 self.replace(val);
438 }
439
440 /// Swaps the values of two `Cell`s.
441 ///
442 /// The difference with `std::mem::swap` is that this function doesn't
443 /// require a `&mut` reference.
444 ///
445 /// # Panics
446 ///
447 /// This function will panic if `self` and `other` are different `Cell`s that partially overlap.
448 /// (Using just standard library methods, it is impossible to create such partially overlapping `Cell`s.
449 /// However, unsafe code is allowed to e.g. create two `&Cell<[i32; 2]>` that partially overlap.)
450 ///
451 /// # Examples
452 ///
453 /// ```
454 /// use std::cell::Cell;
455 ///
456 /// let c1 = Cell::new(5i32);
457 /// let c2 = Cell::new(10i32);
458 /// c1.swap(&c2);
459 /// assert_eq!(10, c1.get());
460 /// assert_eq!(5, c2.get());
461 /// ```
462 #[inline]
463 #[stable(feature = "move_cell", since = "1.17.0")]
464 #[rustc_should_not_be_called_on_const_items]
465 pub fn swap(&self, other: &Self) {
466 // This function documents that it *will* panic, and intrinsics::is_nonoverlapping doesn't
467 // do the check in const, so trying to use it here would be inviting unnecessary fragility.
468 fn is_nonoverlapping<T>(src: *const T, dst: *const T) -> bool {
469 let src_usize = src.addr();
470 let dst_usize = dst.addr();
471 let diff = src_usize.abs_diff(dst_usize);
472 diff >= size_of::<T>()
473 }
474
475 if ptr::eq(self, other) {
476 // Swapping wouldn't change anything.
477 return;
478 }
479 if !is_nonoverlapping(self, other) {
480 // See <https://github.com/rust-lang/rust/issues/80778> for why we need to stop here.
481 panic!("`Cell::swap` on overlapping non-identical `Cell`s");
482 }
483 // SAFETY: This can be risky if called from separate threads, but `Cell`
484 // is `!Sync` so this won't happen. This also won't invalidate any
485 // pointers since `Cell` makes sure nothing else will be pointing into
486 // either of these `Cell`s. We also excluded shenanigans like partially overlapping `Cell`s,
487 // so `swap` will just properly copy two full values of type `T` back and forth.
488 unsafe {
489 mem::swap(&mut *self.value.get(), &mut *other.value.get());
490 }
491 }
492
493 /// Replaces the contained value with `val`, and returns the old contained value.
494 ///
495 /// # Examples
496 ///
497 /// ```
498 /// use std::cell::Cell;
499 ///
500 /// let cell = Cell::new(5);
501 /// assert_eq!(cell.get(), 5);
502 /// assert_eq!(cell.replace(10), 5);
503 /// assert_eq!(cell.get(), 10);
504 /// ```
505 #[inline]
506 #[stable(feature = "move_cell", since = "1.17.0")]
507 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
508 #[rustc_confusables("swap")]
509 #[rustc_should_not_be_called_on_const_items]
510 pub const fn replace(&self, val: T) -> T {
511 // SAFETY: This can cause data races if called from a separate thread,
512 // but `Cell` is `!Sync` so this won't happen.
513 mem::replace(unsafe { &mut *self.value.get() }, val)
514 }
515
516 /// Unwraps the value, consuming the cell.
517 ///
518 /// # Examples
519 ///
520 /// ```
521 /// use std::cell::Cell;
522 ///
523 /// let c = Cell::new(5);
524 /// let five = c.into_inner();
525 ///
526 /// assert_eq!(five, 5);
527 /// ```
528 #[stable(feature = "move_cell", since = "1.17.0")]
529 #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
530 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
531 pub const fn into_inner(self) -> T {
532 self.value.into_inner()
533 }
534}
535
536impl<T: Copy> Cell<T> {
537 /// Returns a copy of the contained value.
538 ///
539 /// # Examples
540 ///
541 /// ```
542 /// use std::cell::Cell;
543 ///
544 /// let c = Cell::new(5);
545 ///
546 /// let five = c.get();
547 /// ```
548 #[inline]
549 #[stable(feature = "rust1", since = "1.0.0")]
550 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
551 #[rustc_should_not_be_called_on_const_items]
552 pub const fn get(&self) -> T {
553 // SAFETY: This can cause data races if called from a separate thread,
554 // but `Cell` is `!Sync` so this won't happen.
555 unsafe { *self.value.get() }
556 }
557
558 /// Updates the contained value using a function.
559 ///
560 /// # Examples
561 ///
562 /// ```
563 /// use std::cell::Cell;
564 ///
565 /// let c = Cell::new(5);
566 /// c.update(|x| x + 1);
567 /// assert_eq!(c.get(), 6);
568 /// ```
569 #[inline]
570 #[stable(feature = "cell_update", since = "1.88.0")]
571 #[rustc_const_unstable(feature = "const_cell_traits", issue = "147787")]
572 #[rustc_should_not_be_called_on_const_items]
573 pub const fn update(&self, f: impl [const] FnOnce(T) -> T)
574 where
575 // FIXME(const-hack): `Copy` should imply `const Destruct`
576 T: [const] Destruct,
577 {
578 let old = self.get();
579 self.set(f(old));
580 }
581}
582
583impl<T: ?Sized> Cell<T> {
584 /// Returns a raw pointer to the underlying data in this cell.
585 ///
586 /// # Examples
587 ///
588 /// ```
589 /// use std::cell::Cell;
590 ///
591 /// let c = Cell::new(5);
592 ///
593 /// let ptr = c.as_ptr();
594 /// ```
595 #[inline]
596 #[stable(feature = "cell_as_ptr", since = "1.12.0")]
597 #[rustc_const_stable(feature = "const_cell_as_ptr", since = "1.32.0")]
598 #[rustc_as_ptr]
599 #[rustc_never_returns_null_ptr]
600 pub const fn as_ptr(&self) -> *mut T {
601 self.value.get()
602 }
603
604 /// Returns a mutable reference to the underlying data.
605 ///
606 /// This call borrows `Cell` mutably (at compile-time) which guarantees
607 /// that we possess the only reference.
608 ///
609 /// However be cautious: this method expects `self` to be mutable, which is
610 /// generally not the case when using a `Cell`. If you require interior
611 /// mutability by reference, consider using `RefCell` which provides
612 /// run-time checked mutable borrows through its [`borrow_mut`] method.
613 ///
614 /// [`borrow_mut`]: RefCell::borrow_mut()
615 ///
616 /// # Examples
617 ///
618 /// ```
619 /// use std::cell::Cell;
620 ///
621 /// let mut c = Cell::new(5);
622 /// *c.get_mut() += 1;
623 ///
624 /// assert_eq!(c.get(), 6);
625 /// ```
626 #[inline]
627 #[stable(feature = "cell_get_mut", since = "1.11.0")]
628 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
629 pub const fn get_mut(&mut self) -> &mut T {
630 self.value.get_mut()
631 }
632
633 /// Returns a `&Cell<T>` from a `&mut T`
634 ///
635 /// # Examples
636 ///
637 /// ```
638 /// use std::cell::Cell;
639 ///
640 /// let slice: &mut [i32] = &mut [1, 2, 3];
641 /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
642 /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
643 ///
644 /// assert_eq!(slice_cell.len(), 3);
645 /// ```
646 #[inline]
647 #[stable(feature = "as_cell", since = "1.37.0")]
648 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
649 pub const fn from_mut(t: &mut T) -> &Cell<T> {
650 // SAFETY: `&mut` ensures unique access.
651 unsafe { &*(t as *mut T as *const Cell<T>) }
652 }
653}
654
655impl<T: Default> Cell<T> {
656 /// Takes the value of the cell, leaving `Default::default()` in its place.
657 ///
658 /// # Examples
659 ///
660 /// ```
661 /// use std::cell::Cell;
662 ///
663 /// let c = Cell::new(5);
664 /// let five = c.take();
665 ///
666 /// assert_eq!(five, 5);
667 /// assert_eq!(c.into_inner(), 0);
668 /// ```
669 #[stable(feature = "move_cell", since = "1.17.0")]
670 #[rustc_const_unstable(feature = "const_cell_traits", issue = "147787")]
671 pub const fn take(&self) -> T
672 where
673 T: [const] Default,
674 {
675 self.replace(Default::default())
676 }
677}
678
679#[unstable(feature = "coerce_unsized", issue = "18598")]
680impl<T: CoerceUnsized<U>, U> CoerceUnsized<Cell<U>> for Cell<T> {}
681
682// Allow types that wrap `Cell` to also implement `DispatchFromDyn`
683// and become dyn-compatible method receivers.
684// Note that currently `Cell` itself cannot be a method receiver
685// because it does not implement Deref.
686// In other words:
687// `self: Cell<&Self>` won't work
688// `self: CellWrapper<Self>` becomes possible
689#[unstable(feature = "dispatch_from_dyn", issue = "none")]
690impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<Cell<U>> for Cell<T> {}
691
692impl<T> Cell<[T]> {
693 /// Returns a `&[Cell<T>]` from a `&Cell<[T]>`
694 ///
695 /// # Examples
696 ///
697 /// ```
698 /// use std::cell::Cell;
699 ///
700 /// let slice: &mut [i32] = &mut [1, 2, 3];
701 /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
702 /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
703 ///
704 /// assert_eq!(slice_cell.len(), 3);
705 /// ```
706 #[stable(feature = "as_cell", since = "1.37.0")]
707 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
708 pub const fn as_slice_of_cells(&self) -> &[Cell<T>] {
709 // SAFETY: `Cell<T>` has the same memory layout as `T`.
710 unsafe { &*(self as *const Cell<[T]> as *const [Cell<T>]) }
711 }
712}
713
714impl<T, const N: usize> Cell<[T; N]> {
715 /// Returns a `&[Cell<T>; N]` from a `&Cell<[T; N]>`
716 ///
717 /// # Examples
718 ///
719 /// ```
720 /// use std::cell::Cell;
721 ///
722 /// let mut array: [i32; 3] = [1, 2, 3];
723 /// let cell_array: &Cell<[i32; 3]> = Cell::from_mut(&mut array);
724 /// let array_cell: &[Cell<i32>; 3] = cell_array.as_array_of_cells();
725 /// ```
726 #[stable(feature = "as_array_of_cells", since = "1.91.0")]
727 #[rustc_const_stable(feature = "as_array_of_cells", since = "1.91.0")]
728 pub const fn as_array_of_cells(&self) -> &[Cell<T>; N] {
729 // SAFETY: `Cell<T>` has the same memory layout as `T`.
730 unsafe { &*(self as *const Cell<[T; N]> as *const [Cell<T>; N]) }
731 }
732}
733
734/// Types for which cloning `Cell<Self>` is sound.
735///
736/// # Safety
737///
738/// Implementing this trait for a type is sound if and only if the following code is sound for T =
739/// that type.
740///
741/// ```
742/// #![feature(cell_get_cloned)]
743/// # use std::cell::{CloneFromCell, Cell};
744/// fn clone_from_cell<T: CloneFromCell>(cell: &Cell<T>) -> T {
745/// unsafe { T::clone(&*cell.as_ptr()) }
746/// }
747/// ```
748///
749/// Importantly, you can't just implement `CloneFromCell` for any arbitrary `Copy` type, e.g. the
750/// following is unsound:
751///
752/// ```rust
753/// #![feature(cell_get_cloned)]
754/// # use std::cell::Cell;
755///
756/// #[derive(Copy, Debug)]
757/// pub struct Bad<'a>(Option<&'a Cell<Bad<'a>>>, u8);
758///
759/// impl Clone for Bad<'_> {
760/// fn clone(&self) -> Self {
761/// let a: &u8 = &self.1;
762/// // when self.0 points to self, we write to self.1 while we have a live `&u8` pointing to
763/// // it -- this is UB
764/// self.0.unwrap().set(Self(None, 1));
765/// dbg!((a, self));
766/// Self(None, 0)
767/// }
768/// }
769///
770/// // this is not sound
771/// // unsafe impl CloneFromCell for Bad<'_> {}
772/// ```
773#[unstable(feature = "cell_get_cloned", issue = "145329")]
774// Allow potential overlapping implementations in user code
775#[marker]
776pub unsafe trait CloneFromCell: Clone {}
777
778// `CloneFromCell` can be implemented for types that don't have indirection and which don't access
779// `Cell`s in their `Clone` implementation. A commonly-used subset is covered here.
780#[unstable(feature = "cell_get_cloned", issue = "145329")]
781unsafe impl<T: CloneFromCell, const N: usize> CloneFromCell for [T; N] {}
782#[unstable(feature = "cell_get_cloned", issue = "145329")]
783unsafe impl<T: CloneFromCell> CloneFromCell for Option<T> {}
784#[unstable(feature = "cell_get_cloned", issue = "145329")]
785unsafe impl<T: CloneFromCell, E: CloneFromCell> CloneFromCell for Result<T, E> {}
786#[unstable(feature = "cell_get_cloned", issue = "145329")]
787unsafe impl<T: ?Sized> CloneFromCell for PhantomData<T> {}
788#[unstable(feature = "cell_get_cloned", issue = "145329")]
789unsafe impl<T: CloneFromCell> CloneFromCell for ManuallyDrop<T> {}
790#[unstable(feature = "cell_get_cloned", issue = "145329")]
791unsafe impl<T: CloneFromCell> CloneFromCell for ops::Range<T> {}
792#[unstable(feature = "cell_get_cloned", issue = "145329")]
793unsafe impl<T: CloneFromCell> CloneFromCell for range::Range<T> {}
794
795#[unstable(feature = "cell_get_cloned", issue = "145329")]
796impl<T: CloneFromCell> Cell<T> {
797 /// Get a clone of the `Cell` that contains a copy of the original value.
798 ///
799 /// This allows a cheaply `Clone`-able type like an `Rc` to be stored in a `Cell`, exposing the
800 /// cheaper `clone()` method.
801 ///
802 /// # Examples
803 ///
804 /// ```
805 /// #![feature(cell_get_cloned)]
806 ///
807 /// use core::cell::Cell;
808 /// use std::rc::Rc;
809 ///
810 /// let rc = Rc::new(1usize);
811 /// let c1 = Cell::new(rc);
812 /// let c2 = c1.get_cloned();
813 /// assert_eq!(*c2.into_inner(), 1);
814 /// ```
815 pub fn get_cloned(&self) -> Self {
816 // SAFETY: T is CloneFromCell, which guarantees that this is sound.
817 Cell::new(T::clone(unsafe { &*self.as_ptr() }))
818 }
819}
820
821/// A mutable memory location with dynamically checked borrow rules
822///
823/// See the [module-level documentation](self) for more.
824#[rustc_diagnostic_item = "RefCell"]
825#[stable(feature = "rust1", since = "1.0.0")]
826pub struct RefCell<T: ?Sized> {
827 borrow: Cell<BorrowCounter>,
828 // Stores the location of the earliest currently active borrow.
829 // This gets updated whenever we go from having zero borrows
830 // to having a single borrow. When a borrow occurs, this gets included
831 // in the generated `BorrowError`/`BorrowMutError`
832 #[cfg(feature = "debug_refcell")]
833 borrowed_at: Cell<Option<&'static crate::panic::Location<'static>>>,
834 value: UnsafeCell<T>,
835}
836
837/// An error returned by [`RefCell::try_borrow`].
838#[stable(feature = "try_borrow", since = "1.13.0")]
839#[non_exhaustive]
840#[derive(Debug)]
841pub struct BorrowError {
842 #[cfg(feature = "debug_refcell")]
843 location: &'static crate::panic::Location<'static>,
844}
845
846#[stable(feature = "try_borrow", since = "1.13.0")]
847impl Display for BorrowError {
848 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
849 #[cfg(feature = "debug_refcell")]
850 let res = write!(
851 f,
852 "RefCell already mutably borrowed; a previous borrow was at {}",
853 self.location
854 );
855
856 #[cfg(not(feature = "debug_refcell"))]
857 let res = Display::fmt("RefCell already mutably borrowed", f);
858
859 res
860 }
861}
862
863/// An error returned by [`RefCell::try_borrow_mut`].
864#[stable(feature = "try_borrow", since = "1.13.0")]
865#[non_exhaustive]
866#[derive(Debug)]
867pub struct BorrowMutError {
868 #[cfg(feature = "debug_refcell")]
869 location: &'static crate::panic::Location<'static>,
870}
871
872#[stable(feature = "try_borrow", since = "1.13.0")]
873impl Display for BorrowMutError {
874 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
875 #[cfg(feature = "debug_refcell")]
876 let res = write!(f, "RefCell already borrowed; a previous borrow was at {}", self.location);
877
878 #[cfg(not(feature = "debug_refcell"))]
879 let res = Display::fmt("RefCell already borrowed", f);
880
881 res
882 }
883}
884
885// This ensures the panicking code is outlined from `borrow_mut` for `RefCell`.
886#[cfg_attr(not(panic = "immediate-abort"), inline(never))]
887#[track_caller]
888#[cold]
889const fn panic_already_borrowed(err: BorrowMutError) -> ! {
890 const_panic!(
891 "RefCell already borrowed",
892 "{err}",
893 err: BorrowMutError = err,
894 )
895}
896
897// This ensures the panicking code is outlined from `borrow` for `RefCell`.
898#[cfg_attr(not(panic = "immediate-abort"), inline(never))]
899#[track_caller]
900#[cold]
901const fn panic_already_mutably_borrowed(err: BorrowError) -> ! {
902 const_panic!(
903 "RefCell already mutably borrowed",
904 "{err}",
905 err: BorrowError = err,
906 )
907}
908
909// Positive values represent the number of `Ref` active. Negative values
910// represent the number of `RefMut` active. Multiple `RefMut`s can only be
911// active at a time if they refer to distinct, nonoverlapping components of a
912// `RefCell` (e.g., different ranges of a slice).
913//
914// `Ref` and `RefMut` are both two words in size, and so there will likely never
915// be enough `Ref`s or `RefMut`s in existence to overflow half of the `usize`
916// range. Thus, a `BorrowCounter` will probably never overflow or underflow.
917// However, this is not a guarantee, as a pathological program could repeatedly
918// create and then mem::forget `Ref`s or `RefMut`s. Thus, all code must
919// explicitly check for overflow and underflow in order to avoid unsafety, or at
920// least behave correctly in the event that overflow or underflow happens (e.g.,
921// see BorrowRef::new).
922type BorrowCounter = isize;
923const UNUSED: BorrowCounter = 0;
924
925#[inline(always)]
926const fn is_writing(x: BorrowCounter) -> bool {
927 x < UNUSED
928}
929
930#[inline(always)]
931const fn is_reading(x: BorrowCounter) -> bool {
932 x > UNUSED
933}
934
935impl<T> RefCell<T> {
936 /// Creates a new `RefCell` containing `value`.
937 ///
938 /// # Examples
939 ///
940 /// ```
941 /// use std::cell::RefCell;
942 ///
943 /// let c = RefCell::new(5);
944 /// ```
945 #[stable(feature = "rust1", since = "1.0.0")]
946 #[rustc_const_stable(feature = "const_refcell_new", since = "1.24.0")]
947 #[inline]
948 pub const fn new(value: T) -> RefCell<T> {
949 RefCell {
950 value: UnsafeCell::new(value),
951 borrow: Cell::new(UNUSED),
952 #[cfg(feature = "debug_refcell")]
953 borrowed_at: Cell::new(None),
954 }
955 }
956
957 /// Consumes the `RefCell`, returning the wrapped value.
958 ///
959 /// # Examples
960 ///
961 /// ```
962 /// use std::cell::RefCell;
963 ///
964 /// let c = RefCell::new(5);
965 ///
966 /// let five = c.into_inner();
967 /// ```
968 #[stable(feature = "rust1", since = "1.0.0")]
969 #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
970 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
971 #[inline]
972 pub const fn into_inner(self) -> T {
973 // Since this function takes `self` (the `RefCell`) by value, the
974 // compiler statically verifies that it is not currently borrowed.
975 self.value.into_inner()
976 }
977
978 /// Replaces the wrapped value with a new one, returning the old value,
979 /// without deinitializing either one.
980 ///
981 /// This function corresponds to [`std::mem::replace`](../mem/fn.replace.html).
982 ///
983 /// # Panics
984 ///
985 /// Panics if the value is currently borrowed.
986 ///
987 /// # Examples
988 ///
989 /// ```
990 /// use std::cell::RefCell;
991 /// let cell = RefCell::new(5);
992 /// let old_value = cell.replace(6);
993 /// assert_eq!(old_value, 5);
994 /// assert_eq!(cell, RefCell::new(6));
995 /// ```
996 #[inline]
997 #[stable(feature = "refcell_replace", since = "1.24.0")]
998 #[track_caller]
999 #[rustc_confusables("swap")]
1000 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1001 #[rustc_should_not_be_called_on_const_items]
1002 pub const fn replace(&self, t: T) -> T {
1003 mem::replace(&mut self.borrow_mut(), t)
1004 }
1005
1006 /// Replaces the wrapped value with a new one computed from `f`, returning
1007 /// the old value, without deinitializing either one.
1008 ///
1009 /// # Panics
1010 ///
1011 /// Panics if the value is currently borrowed.
1012 ///
1013 /// # Examples
1014 ///
1015 /// ```
1016 /// use std::cell::RefCell;
1017 /// let cell = RefCell::new(5);
1018 /// let old_value = cell.replace_with(|&mut old| old + 1);
1019 /// assert_eq!(old_value, 5);
1020 /// assert_eq!(cell, RefCell::new(6));
1021 /// ```
1022 #[inline]
1023 #[stable(feature = "refcell_replace_swap", since = "1.35.0")]
1024 #[track_caller]
1025 #[rustc_should_not_be_called_on_const_items]
1026 pub fn replace_with<F: FnOnce(&mut T) -> T>(&self, f: F) -> T {
1027 let mut_borrow = &mut *self.borrow_mut();
1028 let replacement = f(mut_borrow);
1029 mem::replace(mut_borrow, replacement)
1030 }
1031
1032 /// Swaps the wrapped value of `self` with the wrapped value of `other`,
1033 /// without deinitializing either one.
1034 ///
1035 /// This function corresponds to [`std::mem::swap`](../mem/fn.swap.html).
1036 ///
1037 /// # Panics
1038 ///
1039 /// Panics if the value in either `RefCell` is currently borrowed, or
1040 /// if `self` and `other` point to the same `RefCell`.
1041 ///
1042 /// # Examples
1043 ///
1044 /// ```
1045 /// use std::cell::RefCell;
1046 /// let c = RefCell::new(5);
1047 /// let d = RefCell::new(6);
1048 /// c.swap(&d);
1049 /// assert_eq!(c, RefCell::new(6));
1050 /// assert_eq!(d, RefCell::new(5));
1051 /// ```
1052 #[inline]
1053 #[stable(feature = "refcell_swap", since = "1.24.0")]
1054 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1055 #[rustc_should_not_be_called_on_const_items]
1056 pub const fn swap(&self, other: &Self) {
1057 mem::swap(&mut *self.borrow_mut(), &mut *other.borrow_mut())
1058 }
1059}
1060
1061impl<T: ?Sized> RefCell<T> {
1062 /// Immutably borrows the wrapped value.
1063 ///
1064 /// The borrow lasts until the returned `Ref` exits scope. Multiple
1065 /// immutable borrows can be taken out at the same time.
1066 ///
1067 /// # Panics
1068 ///
1069 /// Panics if the value is currently mutably borrowed. For a non-panicking variant, use
1070 /// [`try_borrow`](#method.try_borrow).
1071 ///
1072 /// # Examples
1073 ///
1074 /// ```
1075 /// use std::cell::RefCell;
1076 ///
1077 /// let c = RefCell::new(5);
1078 ///
1079 /// let borrowed_five = c.borrow();
1080 /// let borrowed_five2 = c.borrow();
1081 /// ```
1082 ///
1083 /// An example of panic:
1084 ///
1085 /// ```should_panic
1086 /// use std::cell::RefCell;
1087 ///
1088 /// let c = RefCell::new(5);
1089 ///
1090 /// let m = c.borrow_mut();
1091 /// let b = c.borrow(); // this causes a panic
1092 /// ```
1093 #[stable(feature = "rust1", since = "1.0.0")]
1094 #[inline]
1095 #[track_caller]
1096 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1097 #[rustc_should_not_be_called_on_const_items]
1098 pub const fn borrow(&self) -> Ref<'_, T> {
1099 match self.try_borrow() {
1100 Ok(b) => b,
1101 Err(err) => panic_already_mutably_borrowed(err),
1102 }
1103 }
1104
1105 /// Immutably borrows the wrapped value, returning an error if the value is currently mutably
1106 /// borrowed.
1107 ///
1108 /// The borrow lasts until the returned `Ref` exits scope. Multiple immutable borrows can be
1109 /// taken out at the same time.
1110 ///
1111 /// This is the non-panicking variant of [`borrow`](#method.borrow).
1112 ///
1113 /// # Examples
1114 ///
1115 /// ```
1116 /// use std::cell::RefCell;
1117 ///
1118 /// let c = RefCell::new(5);
1119 ///
1120 /// {
1121 /// let m = c.borrow_mut();
1122 /// assert!(c.try_borrow().is_err());
1123 /// }
1124 ///
1125 /// {
1126 /// let m = c.borrow();
1127 /// assert!(c.try_borrow().is_ok());
1128 /// }
1129 /// ```
1130 #[stable(feature = "try_borrow", since = "1.13.0")]
1131 #[inline]
1132 #[cfg_attr(feature = "debug_refcell", track_caller)]
1133 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1134 #[rustc_should_not_be_called_on_const_items]
1135 pub const fn try_borrow(&self) -> Result<Ref<'_, T>, BorrowError> {
1136 match BorrowRef::new(&self.borrow) {
1137 Some(b) => {
1138 #[cfg(feature = "debug_refcell")]
1139 {
1140 // `borrowed_at` is always the *first* active borrow
1141 if b.borrow.get() == 1 {
1142 self.borrowed_at.replace(Some(crate::panic::Location::caller()));
1143 }
1144 }
1145
1146 // SAFETY: `BorrowRef` ensures that there is only immutable access
1147 // to the value while borrowed.
1148 let value = unsafe { NonNull::new_unchecked(self.value.get()) };
1149 Ok(Ref { value, borrow: b })
1150 }
1151 None => Err(BorrowError {
1152 // If a borrow occurred, then we must already have an outstanding borrow,
1153 // so `borrowed_at` will be `Some`
1154 #[cfg(feature = "debug_refcell")]
1155 location: self.borrowed_at.get().unwrap(),
1156 }),
1157 }
1158 }
1159
1160 /// Mutably borrows the wrapped value.
1161 ///
1162 /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
1163 /// from it exit scope. The value cannot be borrowed while this borrow is
1164 /// active.
1165 ///
1166 /// # Panics
1167 ///
1168 /// Panics if the value is currently borrowed. For a non-panicking variant, use
1169 /// [`try_borrow_mut`](#method.try_borrow_mut).
1170 ///
1171 /// # Examples
1172 ///
1173 /// ```
1174 /// use std::cell::RefCell;
1175 ///
1176 /// let c = RefCell::new("hello".to_owned());
1177 ///
1178 /// *c.borrow_mut() = "bonjour".to_owned();
1179 ///
1180 /// assert_eq!(&*c.borrow(), "bonjour");
1181 /// ```
1182 ///
1183 /// An example of panic:
1184 ///
1185 /// ```should_panic
1186 /// use std::cell::RefCell;
1187 ///
1188 /// let c = RefCell::new(5);
1189 /// let m = c.borrow();
1190 ///
1191 /// let b = c.borrow_mut(); // this causes a panic
1192 /// ```
1193 #[stable(feature = "rust1", since = "1.0.0")]
1194 #[inline]
1195 #[track_caller]
1196 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1197 #[rustc_should_not_be_called_on_const_items]
1198 pub const fn borrow_mut(&self) -> RefMut<'_, T> {
1199 match self.try_borrow_mut() {
1200 Ok(b) => b,
1201 Err(err) => panic_already_borrowed(err),
1202 }
1203 }
1204
1205 /// Mutably borrows the wrapped value, returning an error if the value is currently borrowed.
1206 ///
1207 /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
1208 /// from it exit scope. The value cannot be borrowed while this borrow is
1209 /// active.
1210 ///
1211 /// This is the non-panicking variant of [`borrow_mut`](#method.borrow_mut).
1212 ///
1213 /// # Examples
1214 ///
1215 /// ```
1216 /// use std::cell::RefCell;
1217 ///
1218 /// let c = RefCell::new(5);
1219 ///
1220 /// {
1221 /// let m = c.borrow();
1222 /// assert!(c.try_borrow_mut().is_err());
1223 /// }
1224 ///
1225 /// assert!(c.try_borrow_mut().is_ok());
1226 /// ```
1227 #[stable(feature = "try_borrow", since = "1.13.0")]
1228 #[inline]
1229 #[cfg_attr(feature = "debug_refcell", track_caller)]
1230 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1231 #[rustc_should_not_be_called_on_const_items]
1232 pub const fn try_borrow_mut(&self) -> Result<RefMut<'_, T>, BorrowMutError> {
1233 match BorrowRefMut::new(&self.borrow) {
1234 Some(b) => {
1235 #[cfg(feature = "debug_refcell")]
1236 {
1237 self.borrowed_at.replace(Some(crate::panic::Location::caller()));
1238 }
1239
1240 // SAFETY: `BorrowRefMut` guarantees unique access.
1241 let value = unsafe { NonNull::new_unchecked(self.value.get()) };
1242 Ok(RefMut { value, borrow: b, marker: PhantomData })
1243 }
1244 None => Err(BorrowMutError {
1245 // If a borrow occurred, then we must already have an outstanding borrow,
1246 // so `borrowed_at` will be `Some`
1247 #[cfg(feature = "debug_refcell")]
1248 location: self.borrowed_at.get().unwrap(),
1249 }),
1250 }
1251 }
1252
1253 /// Returns a raw pointer to the underlying data in this cell.
1254 ///
1255 /// # Examples
1256 ///
1257 /// ```
1258 /// use std::cell::RefCell;
1259 ///
1260 /// let c = RefCell::new(5);
1261 ///
1262 /// let ptr = c.as_ptr();
1263 /// ```
1264 #[inline]
1265 #[stable(feature = "cell_as_ptr", since = "1.12.0")]
1266 #[rustc_as_ptr]
1267 #[rustc_never_returns_null_ptr]
1268 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1269 pub const fn as_ptr(&self) -> *mut T {
1270 self.value.get()
1271 }
1272
1273 /// Returns a mutable reference to the underlying data.
1274 ///
1275 /// Since this method borrows `RefCell` mutably, it is statically guaranteed
1276 /// that no borrows to the underlying data exist. The dynamic checks inherent
1277 /// in [`borrow_mut`] and most other methods of `RefCell` are therefore
1278 /// unnecessary. Note that this method does not reset the borrowing state if borrows were previously leaked
1279 /// (e.g., via [`forget()`] on a [`Ref`] or [`RefMut`]). For that purpose,
1280 /// consider using the unstable [`undo_leak`] method.
1281 ///
1282 /// This method can only be called if `RefCell` can be mutably borrowed,
1283 /// which in general is only the case directly after the `RefCell` has
1284 /// been created. In these situations, skipping the aforementioned dynamic
1285 /// borrowing checks may yield better ergonomics and runtime-performance.
1286 ///
1287 /// In most situations where `RefCell` is used, it can't be borrowed mutably.
1288 /// Use [`borrow_mut`] to get mutable access to the underlying data then.
1289 ///
1290 /// [`borrow_mut`]: RefCell::borrow_mut()
1291 /// [`forget()`]: mem::forget
1292 /// [`undo_leak`]: RefCell::undo_leak()
1293 ///
1294 /// # Examples
1295 ///
1296 /// ```
1297 /// use std::cell::RefCell;
1298 ///
1299 /// let mut c = RefCell::new(5);
1300 /// *c.get_mut() += 1;
1301 ///
1302 /// assert_eq!(c, RefCell::new(6));
1303 /// ```
1304 #[inline]
1305 #[stable(feature = "cell_get_mut", since = "1.11.0")]
1306 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1307 pub const fn get_mut(&mut self) -> &mut T {
1308 self.value.get_mut()
1309 }
1310
1311 /// Undo the effect of leaked guards on the borrow state of the `RefCell`.
1312 ///
1313 /// This call is similar to [`get_mut`] but more specialized. It borrows `RefCell` mutably to
1314 /// ensure no borrows exist and then resets the state tracking shared borrows. This is relevant
1315 /// if some `Ref` or `RefMut` borrows have been leaked.
1316 ///
1317 /// [`get_mut`]: RefCell::get_mut()
1318 ///
1319 /// # Examples
1320 ///
1321 /// ```
1322 /// #![feature(cell_leak)]
1323 /// use std::cell::RefCell;
1324 ///
1325 /// let mut c = RefCell::new(0);
1326 /// std::mem::forget(c.borrow_mut());
1327 ///
1328 /// assert!(c.try_borrow().is_err());
1329 /// c.undo_leak();
1330 /// assert!(c.try_borrow().is_ok());
1331 /// ```
1332 #[unstable(feature = "cell_leak", issue = "69099")]
1333 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1334 pub const fn undo_leak(&mut self) -> &mut T {
1335 *self.borrow.get_mut() = UNUSED;
1336 self.get_mut()
1337 }
1338
1339 /// Immutably borrows the wrapped value, returning an error if the value is
1340 /// currently mutably borrowed.
1341 ///
1342 /// # Safety
1343 ///
1344 /// Unlike `RefCell::borrow`, this method is unsafe because it does not
1345 /// return a `Ref`, thus leaving the borrow flag untouched. Mutably
1346 /// borrowing the `RefCell` while the reference returned by this method
1347 /// is alive is undefined behavior.
1348 ///
1349 /// # Examples
1350 ///
1351 /// ```
1352 /// use std::cell::RefCell;
1353 ///
1354 /// let c = RefCell::new(5);
1355 ///
1356 /// {
1357 /// let m = c.borrow_mut();
1358 /// assert!(unsafe { c.try_borrow_unguarded() }.is_err());
1359 /// }
1360 ///
1361 /// {
1362 /// let m = c.borrow();
1363 /// assert!(unsafe { c.try_borrow_unguarded() }.is_ok());
1364 /// }
1365 /// ```
1366 #[stable(feature = "borrow_state", since = "1.37.0")]
1367 #[inline]
1368 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1369 pub const unsafe fn try_borrow_unguarded(&self) -> Result<&T, BorrowError> {
1370 if !is_writing(self.borrow.get()) {
1371 // SAFETY: We check that nobody is actively writing now, but it is
1372 // the caller's responsibility to ensure that nobody writes until
1373 // the returned reference is no longer in use.
1374 // Also, `self.value.get()` refers to the value owned by `self`
1375 // and is thus guaranteed to be valid for the lifetime of `self`.
1376 Ok(unsafe { &*self.value.get() })
1377 } else {
1378 Err(BorrowError {
1379 // If a borrow occurred, then we must already have an outstanding borrow,
1380 // so `borrowed_at` will be `Some`
1381 #[cfg(feature = "debug_refcell")]
1382 location: self.borrowed_at.get().unwrap(),
1383 })
1384 }
1385 }
1386}
1387
1388impl<T: Default> RefCell<T> {
1389 /// Takes the wrapped value, leaving `Default::default()` in its place.
1390 ///
1391 /// # Panics
1392 ///
1393 /// Panics if the value is currently borrowed.
1394 ///
1395 /// # Examples
1396 ///
1397 /// ```
1398 /// use std::cell::RefCell;
1399 ///
1400 /// let c = RefCell::new(5);
1401 /// let five = c.take();
1402 ///
1403 /// assert_eq!(five, 5);
1404 /// assert_eq!(c.into_inner(), 0);
1405 /// ```
1406 #[stable(feature = "refcell_take", since = "1.50.0")]
1407 pub fn take(&self) -> T {
1408 self.replace(Default::default())
1409 }
1410}
1411
1412#[stable(feature = "rust1", since = "1.0.0")]
1413unsafe impl<T: ?Sized> Send for RefCell<T> where T: Send {}
1414
1415#[stable(feature = "rust1", since = "1.0.0")]
1416impl<T: ?Sized> !Sync for RefCell<T> {}
1417
1418#[stable(feature = "rust1", since = "1.0.0")]
1419impl<T: Clone> Clone for RefCell<T> {
1420 /// # Panics
1421 ///
1422 /// Panics if the value is currently mutably borrowed.
1423 #[inline]
1424 #[track_caller]
1425 fn clone(&self) -> RefCell<T> {
1426 RefCell::new(self.borrow().clone())
1427 }
1428
1429 /// # Panics
1430 ///
1431 /// Panics if `source` is currently mutably borrowed.
1432 #[inline]
1433 #[track_caller]
1434 fn clone_from(&mut self, source: &Self) {
1435 self.get_mut().clone_from(&source.borrow())
1436 }
1437}
1438
1439#[stable(feature = "rust1", since = "1.0.0")]
1440#[rustc_const_unstable(feature = "const_default", issue = "143894")]
1441impl<T: [const] Default> const Default for RefCell<T> {
1442 /// Creates a `RefCell<T>`, with the `Default` value for T.
1443 #[inline]
1444 fn default() -> RefCell<T> {
1445 RefCell::new(Default::default())
1446 }
1447}
1448
1449#[stable(feature = "rust1", since = "1.0.0")]
1450impl<T: ?Sized + PartialEq> PartialEq for RefCell<T> {
1451 /// # Panics
1452 ///
1453 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1454 #[inline]
1455 fn eq(&self, other: &RefCell<T>) -> bool {
1456 *self.borrow() == *other.borrow()
1457 }
1458}
1459
1460#[stable(feature = "cell_eq", since = "1.2.0")]
1461impl<T: ?Sized + Eq> Eq for RefCell<T> {}
1462
1463#[stable(feature = "cell_ord", since = "1.10.0")]
1464impl<T: ?Sized + PartialOrd> PartialOrd for RefCell<T> {
1465 /// # Panics
1466 ///
1467 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1468 #[inline]
1469 fn partial_cmp(&self, other: &RefCell<T>) -> Option<Ordering> {
1470 self.borrow().partial_cmp(&*other.borrow())
1471 }
1472
1473 /// # Panics
1474 ///
1475 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1476 #[inline]
1477 fn lt(&self, other: &RefCell<T>) -> bool {
1478 *self.borrow() < *other.borrow()
1479 }
1480
1481 /// # Panics
1482 ///
1483 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1484 #[inline]
1485 fn le(&self, other: &RefCell<T>) -> bool {
1486 *self.borrow() <= *other.borrow()
1487 }
1488
1489 /// # Panics
1490 ///
1491 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1492 #[inline]
1493 fn gt(&self, other: &RefCell<T>) -> bool {
1494 *self.borrow() > *other.borrow()
1495 }
1496
1497 /// # Panics
1498 ///
1499 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1500 #[inline]
1501 fn ge(&self, other: &RefCell<T>) -> bool {
1502 *self.borrow() >= *other.borrow()
1503 }
1504}
1505
1506#[stable(feature = "cell_ord", since = "1.10.0")]
1507impl<T: ?Sized + Ord> Ord for RefCell<T> {
1508 /// # Panics
1509 ///
1510 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1511 #[inline]
1512 fn cmp(&self, other: &RefCell<T>) -> Ordering {
1513 self.borrow().cmp(&*other.borrow())
1514 }
1515}
1516
1517#[stable(feature = "cell_from", since = "1.12.0")]
1518#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1519impl<T> const From<T> for RefCell<T> {
1520 /// Creates a new `RefCell<T>` containing the given value.
1521 fn from(t: T) -> RefCell<T> {
1522 RefCell::new(t)
1523 }
1524}
1525
1526#[unstable(feature = "coerce_unsized", issue = "18598")]
1527impl<T: CoerceUnsized<U>, U> CoerceUnsized<RefCell<U>> for RefCell<T> {}
1528
1529struct BorrowRef<'b> {
1530 borrow: &'b Cell<BorrowCounter>,
1531}
1532
1533impl<'b> BorrowRef<'b> {
1534 #[inline]
1535 const fn new(borrow: &'b Cell<BorrowCounter>) -> Option<BorrowRef<'b>> {
1536 let b = borrow.get().wrapping_add(1);
1537 if !is_reading(b) {
1538 // Incrementing borrow can result in a non-reading value (<= 0) in these cases:
1539 // 1. It was < 0, i.e. there are writing borrows, so we can't allow a read borrow
1540 // due to Rust's reference aliasing rules
1541 // 2. It was isize::MAX (the max amount of reading borrows) and it overflowed
1542 // into isize::MIN (the max amount of writing borrows) so we can't allow
1543 // an additional read borrow because isize can't represent so many read borrows
1544 // (this can only happen if you mem::forget more than a small constant amount of
1545 // `Ref`s, which is not good practice)
1546 None
1547 } else {
1548 // Incrementing borrow can result in a reading value (> 0) in these cases:
1549 // 1. It was = 0, i.e. it wasn't borrowed, and we are taking the first read borrow
1550 // 2. It was > 0 and < isize::MAX, i.e. there were read borrows, and isize
1551 // is large enough to represent having one more read borrow
1552 borrow.replace(b);
1553 Some(BorrowRef { borrow })
1554 }
1555 }
1556}
1557
1558#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1559impl const Drop for BorrowRef<'_> {
1560 #[inline]
1561 fn drop(&mut self) {
1562 let borrow = self.borrow.get();
1563 debug_assert!(is_reading(borrow));
1564 self.borrow.replace(borrow - 1);
1565 }
1566}
1567
1568#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1569impl const Clone for BorrowRef<'_> {
1570 #[inline]
1571 fn clone(&self) -> Self {
1572 // Since this Ref exists, we know the borrow flag
1573 // is a reading borrow.
1574 let borrow = self.borrow.get();
1575 debug_assert!(is_reading(borrow));
1576 // Prevent the borrow counter from overflowing into
1577 // a writing borrow.
1578 assert!(borrow != BorrowCounter::MAX);
1579 self.borrow.replace(borrow + 1);
1580 BorrowRef { borrow: self.borrow }
1581 }
1582}
1583
1584/// Wraps a borrowed reference to a value in a `RefCell` box.
1585/// A wrapper type for an immutably borrowed value from a `RefCell<T>`.
1586///
1587/// See the [module-level documentation](self) for more.
1588#[stable(feature = "rust1", since = "1.0.0")]
1589#[must_not_suspend = "holding a Ref across suspend points can cause BorrowErrors"]
1590#[rustc_diagnostic_item = "RefCellRef"]
1591pub struct Ref<'b, T: ?Sized + 'b> {
1592 // NB: we use a pointer instead of `&'b T` to avoid `noalias` violations, because a
1593 // `Ref` argument doesn't hold immutability for its whole scope, only until it drops.
1594 // `NonNull` is also covariant over `T`, just like we would have with `&T`.
1595 value: NonNull<T>,
1596 borrow: BorrowRef<'b>,
1597}
1598
1599#[stable(feature = "rust1", since = "1.0.0")]
1600#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1601impl<T: ?Sized> const Deref for Ref<'_, T> {
1602 type Target = T;
1603
1604 #[inline]
1605 fn deref(&self) -> &T {
1606 // SAFETY: the value is accessible as long as we hold our borrow.
1607 unsafe { self.value.as_ref() }
1608 }
1609}
1610
1611#[unstable(feature = "deref_pure_trait", issue = "87121")]
1612unsafe impl<T: ?Sized> DerefPure for Ref<'_, T> {}
1613
1614impl<'b, T: ?Sized> Ref<'b, T> {
1615 /// Copies a `Ref`.
1616 ///
1617 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1618 ///
1619 /// This is an associated function that needs to be used as
1620 /// `Ref::clone(...)`. A `Clone` implementation or a method would interfere
1621 /// with the widespread use of `r.borrow().clone()` to clone the contents of
1622 /// a `RefCell`.
1623 #[stable(feature = "cell_extras", since = "1.15.0")]
1624 #[must_use]
1625 #[inline]
1626 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1627 pub const fn clone(orig: &Ref<'b, T>) -> Ref<'b, T> {
1628 Ref { value: orig.value, borrow: orig.borrow.clone() }
1629 }
1630
1631 /// Makes a new `Ref` for a component of the borrowed data.
1632 ///
1633 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1634 ///
1635 /// This is an associated function that needs to be used as `Ref::map(...)`.
1636 /// A method would interfere with methods of the same name on the contents
1637 /// of a `RefCell` used through `Deref`.
1638 ///
1639 /// # Examples
1640 ///
1641 /// ```
1642 /// use std::cell::{RefCell, Ref};
1643 ///
1644 /// let c = RefCell::new((5, 'b'));
1645 /// let b1: Ref<'_, (u32, char)> = c.borrow();
1646 /// let b2: Ref<'_, u32> = Ref::map(b1, |t| &t.0);
1647 /// assert_eq!(*b2, 5)
1648 /// ```
1649 #[stable(feature = "cell_map", since = "1.8.0")]
1650 #[inline]
1651 pub fn map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Ref<'b, U>
1652 where
1653 F: FnOnce(&T) -> &U,
1654 {
1655 Ref { value: NonNull::from(f(&*orig)), borrow: orig.borrow }
1656 }
1657
1658 /// Makes a new `Ref` for an optional component of the borrowed data. The
1659 /// original guard is returned as an `Err(..)` if the closure returns
1660 /// `None`.
1661 ///
1662 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1663 ///
1664 /// This is an associated function that needs to be used as
1665 /// `Ref::filter_map(...)`. A method would interfere with methods of the same
1666 /// name on the contents of a `RefCell` used through `Deref`.
1667 ///
1668 /// # Examples
1669 ///
1670 /// ```
1671 /// use std::cell::{RefCell, Ref};
1672 ///
1673 /// let c = RefCell::new(vec![1, 2, 3]);
1674 /// let b1: Ref<'_, Vec<u32>> = c.borrow();
1675 /// let b2: Result<Ref<'_, u32>, _> = Ref::filter_map(b1, |v| v.get(1));
1676 /// assert_eq!(*b2.unwrap(), 2);
1677 /// ```
1678 #[stable(feature = "cell_filter_map", since = "1.63.0")]
1679 #[inline]
1680 pub fn filter_map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Result<Ref<'b, U>, Self>
1681 where
1682 F: FnOnce(&T) -> Option<&U>,
1683 {
1684 match f(&*orig) {
1685 Some(value) => Ok(Ref { value: NonNull::from(value), borrow: orig.borrow }),
1686 None => Err(orig),
1687 }
1688 }
1689
1690 /// Tries to makes a new `Ref` for a component of the borrowed data.
1691 /// On failure, the original guard is returned alongside with the error
1692 /// returned by the closure.
1693 ///
1694 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1695 ///
1696 /// This is an associated function that needs to be used as
1697 /// `Ref::try_map(...)`. A method would interfere with methods of the same
1698 /// name on the contents of a `RefCell` used through `Deref`.
1699 ///
1700 /// # Examples
1701 ///
1702 /// ```
1703 /// #![feature(refcell_try_map)]
1704 /// use std::cell::{RefCell, Ref};
1705 /// use std::str::{from_utf8, Utf8Error};
1706 ///
1707 /// let c = RefCell::new(vec![0xF0, 0x9F, 0xA6 ,0x80]);
1708 /// let b1: Ref<'_, Vec<u8>> = c.borrow();
1709 /// let b2: Result<Ref<'_, str>, _> = Ref::try_map(b1, |v| from_utf8(v));
1710 /// assert_eq!(&*b2.unwrap(), "🦀");
1711 ///
1712 /// let c = RefCell::new(vec![0xF0, 0x9F, 0xA6]);
1713 /// let b1: Ref<'_, Vec<u8>> = c.borrow();
1714 /// let b2: Result<_, (Ref<'_, Vec<u8>>, Utf8Error)> = Ref::try_map(b1, |v| from_utf8(v));
1715 /// let (b3, e) = b2.unwrap_err();
1716 /// assert_eq!(*b3, vec![0xF0, 0x9F, 0xA6]);
1717 /// assert_eq!(e.valid_up_to(), 0);
1718 /// ```
1719 #[unstable(feature = "refcell_try_map", issue = "143801")]
1720 #[inline]
1721 pub fn try_map<U: ?Sized, E>(
1722 orig: Ref<'b, T>,
1723 f: impl FnOnce(&T) -> Result<&U, E>,
1724 ) -> Result<Ref<'b, U>, (Self, E)> {
1725 match f(&*orig) {
1726 Ok(value) => Ok(Ref { value: NonNull::from(value), borrow: orig.borrow }),
1727 Err(e) => Err((orig, e)),
1728 }
1729 }
1730
1731 /// Splits a `Ref` into multiple `Ref`s for different components of the
1732 /// borrowed data.
1733 ///
1734 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1735 ///
1736 /// This is an associated function that needs to be used as
1737 /// `Ref::map_split(...)`. A method would interfere with methods of the same
1738 /// name on the contents of a `RefCell` used through `Deref`.
1739 ///
1740 /// # Examples
1741 ///
1742 /// ```
1743 /// use std::cell::{Ref, RefCell};
1744 ///
1745 /// let cell = RefCell::new([1, 2, 3, 4]);
1746 /// let borrow = cell.borrow();
1747 /// let (begin, end) = Ref::map_split(borrow, |slice| slice.split_at(2));
1748 /// assert_eq!(*begin, [1, 2]);
1749 /// assert_eq!(*end, [3, 4]);
1750 /// ```
1751 #[stable(feature = "refcell_map_split", since = "1.35.0")]
1752 #[inline]
1753 pub fn map_split<U: ?Sized, V: ?Sized, F>(orig: Ref<'b, T>, f: F) -> (Ref<'b, U>, Ref<'b, V>)
1754 where
1755 F: FnOnce(&T) -> (&U, &V),
1756 {
1757 let (a, b) = f(&*orig);
1758 let borrow = orig.borrow.clone();
1759 (
1760 Ref { value: NonNull::from(a), borrow },
1761 Ref { value: NonNull::from(b), borrow: orig.borrow },
1762 )
1763 }
1764
1765 /// Converts into a reference to the underlying data.
1766 ///
1767 /// The underlying `RefCell` can never be mutably borrowed from again and will always appear
1768 /// already immutably borrowed. It is not a good idea to leak more than a constant number of
1769 /// references. The `RefCell` can be immutably borrowed again if only a smaller number of leaks
1770 /// have occurred in total.
1771 ///
1772 /// This is an associated function that needs to be used as
1773 /// `Ref::leak(...)`. A method would interfere with methods of the
1774 /// same name on the contents of a `RefCell` used through `Deref`.
1775 ///
1776 /// # Examples
1777 ///
1778 /// ```
1779 /// #![feature(cell_leak)]
1780 /// use std::cell::{RefCell, Ref};
1781 /// let cell = RefCell::new(0);
1782 ///
1783 /// let value = Ref::leak(cell.borrow());
1784 /// assert_eq!(*value, 0);
1785 ///
1786 /// assert!(cell.try_borrow().is_ok());
1787 /// assert!(cell.try_borrow_mut().is_err());
1788 /// ```
1789 #[unstable(feature = "cell_leak", issue = "69099")]
1790 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1791 pub const fn leak(orig: Ref<'b, T>) -> &'b T {
1792 // By forgetting this Ref we ensure that the borrow counter in the RefCell can't go back to
1793 // UNUSED within the lifetime `'b`. Resetting the reference tracking state would require a
1794 // unique reference to the borrowed RefCell. No further mutable references can be created
1795 // from the original cell.
1796 mem::forget(orig.borrow);
1797 // SAFETY: after forgetting, we can form a reference for the rest of lifetime `'b`.
1798 unsafe { orig.value.as_ref() }
1799 }
1800}
1801
1802#[unstable(feature = "coerce_unsized", issue = "18598")]
1803impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Ref<'b, U>> for Ref<'b, T> {}
1804
1805#[stable(feature = "std_guard_impls", since = "1.20.0")]
1806impl<T: ?Sized + fmt::Display> fmt::Display for Ref<'_, T> {
1807 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1808 (**self).fmt(f)
1809 }
1810}
1811
1812impl<'b, T: ?Sized> RefMut<'b, T> {
1813 /// Makes a new `RefMut` for a component of the borrowed data, e.g., an enum
1814 /// variant.
1815 ///
1816 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1817 ///
1818 /// This is an associated function that needs to be used as
1819 /// `RefMut::map(...)`. A method would interfere with methods of the same
1820 /// name on the contents of a `RefCell` used through `Deref`.
1821 ///
1822 /// # Examples
1823 ///
1824 /// ```
1825 /// use std::cell::{RefCell, RefMut};
1826 ///
1827 /// let c = RefCell::new((5, 'b'));
1828 /// {
1829 /// let b1: RefMut<'_, (u32, char)> = c.borrow_mut();
1830 /// let mut b2: RefMut<'_, u32> = RefMut::map(b1, |t| &mut t.0);
1831 /// assert_eq!(*b2, 5);
1832 /// *b2 = 42;
1833 /// }
1834 /// assert_eq!(*c.borrow(), (42, 'b'));
1835 /// ```
1836 #[stable(feature = "cell_map", since = "1.8.0")]
1837 #[inline]
1838 pub fn map<U: ?Sized, F>(mut orig: RefMut<'b, T>, f: F) -> RefMut<'b, U>
1839 where
1840 F: FnOnce(&mut T) -> &mut U,
1841 {
1842 let value = NonNull::from(f(&mut *orig));
1843 RefMut { value, borrow: orig.borrow, marker: PhantomData }
1844 }
1845
1846 /// Makes a new `RefMut` for an optional component of the borrowed data. The
1847 /// original guard is returned as an `Err(..)` if the closure returns
1848 /// `None`.
1849 ///
1850 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1851 ///
1852 /// This is an associated function that needs to be used as
1853 /// `RefMut::filter_map(...)`. A method would interfere with methods of the
1854 /// same name on the contents of a `RefCell` used through `Deref`.
1855 ///
1856 /// # Examples
1857 ///
1858 /// ```
1859 /// use std::cell::{RefCell, RefMut};
1860 ///
1861 /// let c = RefCell::new(vec![1, 2, 3]);
1862 ///
1863 /// {
1864 /// let b1: RefMut<'_, Vec<u32>> = c.borrow_mut();
1865 /// let mut b2: Result<RefMut<'_, u32>, _> = RefMut::filter_map(b1, |v| v.get_mut(1));
1866 ///
1867 /// if let Ok(mut b2) = b2 {
1868 /// *b2 += 2;
1869 /// }
1870 /// }
1871 ///
1872 /// assert_eq!(*c.borrow(), vec![1, 4, 3]);
1873 /// ```
1874 #[stable(feature = "cell_filter_map", since = "1.63.0")]
1875 #[inline]
1876 pub fn filter_map<U: ?Sized, F>(mut orig: RefMut<'b, T>, f: F) -> Result<RefMut<'b, U>, Self>
1877 where
1878 F: FnOnce(&mut T) -> Option<&mut U>,
1879 {
1880 // SAFETY: function holds onto an exclusive reference for the duration
1881 // of its call through `orig`, and the pointer is only de-referenced
1882 // inside of the function call never allowing the exclusive reference to
1883 // escape.
1884 match f(&mut *orig) {
1885 Some(value) => {
1886 Ok(RefMut { value: NonNull::from(value), borrow: orig.borrow, marker: PhantomData })
1887 }
1888 None => Err(orig),
1889 }
1890 }
1891
1892 /// Tries to makes a new `RefMut` for a component of the borrowed data.
1893 /// On failure, the original guard is returned alongside with the error
1894 /// returned by the closure.
1895 ///
1896 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1897 ///
1898 /// This is an associated function that needs to be used as
1899 /// `RefMut::try_map(...)`. A method would interfere with methods of the same
1900 /// name on the contents of a `RefCell` used through `Deref`.
1901 ///
1902 /// # Examples
1903 ///
1904 /// ```
1905 /// #![feature(refcell_try_map)]
1906 /// use std::cell::{RefCell, RefMut};
1907 /// use std::str::{from_utf8_mut, Utf8Error};
1908 ///
1909 /// let c = RefCell::new(vec![0x68, 0x65, 0x6C, 0x6C, 0x6F]);
1910 /// {
1911 /// let b1: RefMut<'_, Vec<u8>> = c.borrow_mut();
1912 /// let b2: Result<RefMut<'_, str>, _> = RefMut::try_map(b1, |v| from_utf8_mut(v));
1913 /// let mut b2 = b2.unwrap();
1914 /// assert_eq!(&*b2, "hello");
1915 /// b2.make_ascii_uppercase();
1916 /// }
1917 /// assert_eq!(*c.borrow(), "HELLO".as_bytes());
1918 ///
1919 /// let c = RefCell::new(vec![0xFF]);
1920 /// let b1: RefMut<'_, Vec<u8>> = c.borrow_mut();
1921 /// let b2: Result<_, (RefMut<'_, Vec<u8>>, Utf8Error)> = RefMut::try_map(b1, |v| from_utf8_mut(v));
1922 /// let (b3, e) = b2.unwrap_err();
1923 /// assert_eq!(*b3, vec![0xFF]);
1924 /// assert_eq!(e.valid_up_to(), 0);
1925 /// ```
1926 #[unstable(feature = "refcell_try_map", issue = "143801")]
1927 #[inline]
1928 pub fn try_map<U: ?Sized, E>(
1929 mut orig: RefMut<'b, T>,
1930 f: impl FnOnce(&mut T) -> Result<&mut U, E>,
1931 ) -> Result<RefMut<'b, U>, (Self, E)> {
1932 // SAFETY: function holds onto an exclusive reference for the duration
1933 // of its call through `orig`, and the pointer is only de-referenced
1934 // inside of the function call never allowing the exclusive reference to
1935 // escape.
1936 match f(&mut *orig) {
1937 Ok(value) => {
1938 Ok(RefMut { value: NonNull::from(value), borrow: orig.borrow, marker: PhantomData })
1939 }
1940 Err(e) => Err((orig, e)),
1941 }
1942 }
1943
1944 /// Splits a `RefMut` into multiple `RefMut`s for different components of the
1945 /// borrowed data.
1946 ///
1947 /// The underlying `RefCell` will remain mutably borrowed until both
1948 /// returned `RefMut`s go out of scope.
1949 ///
1950 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1951 ///
1952 /// This is an associated function that needs to be used as
1953 /// `RefMut::map_split(...)`. A method would interfere with methods of the
1954 /// same name on the contents of a `RefCell` used through `Deref`.
1955 ///
1956 /// # Examples
1957 ///
1958 /// ```
1959 /// use std::cell::{RefCell, RefMut};
1960 ///
1961 /// let cell = RefCell::new([1, 2, 3, 4]);
1962 /// let borrow = cell.borrow_mut();
1963 /// let (mut begin, mut end) = RefMut::map_split(borrow, |slice| slice.split_at_mut(2));
1964 /// assert_eq!(*begin, [1, 2]);
1965 /// assert_eq!(*end, [3, 4]);
1966 /// begin.copy_from_slice(&[4, 3]);
1967 /// end.copy_from_slice(&[2, 1]);
1968 /// ```
1969 #[stable(feature = "refcell_map_split", since = "1.35.0")]
1970 #[inline]
1971 pub fn map_split<U: ?Sized, V: ?Sized, F>(
1972 mut orig: RefMut<'b, T>,
1973 f: F,
1974 ) -> (RefMut<'b, U>, RefMut<'b, V>)
1975 where
1976 F: FnOnce(&mut T) -> (&mut U, &mut V),
1977 {
1978 let borrow = orig.borrow.clone();
1979 let (a, b) = f(&mut *orig);
1980 (
1981 RefMut { value: NonNull::from(a), borrow, marker: PhantomData },
1982 RefMut { value: NonNull::from(b), borrow: orig.borrow, marker: PhantomData },
1983 )
1984 }
1985
1986 /// Converts into a mutable reference to the underlying data.
1987 ///
1988 /// The underlying `RefCell` can not be borrowed from again and will always appear already
1989 /// mutably borrowed, making the returned reference the only to the interior.
1990 ///
1991 /// This is an associated function that needs to be used as
1992 /// `RefMut::leak(...)`. A method would interfere with methods of the
1993 /// same name on the contents of a `RefCell` used through `Deref`.
1994 ///
1995 /// # Examples
1996 ///
1997 /// ```
1998 /// #![feature(cell_leak)]
1999 /// use std::cell::{RefCell, RefMut};
2000 /// let cell = RefCell::new(0);
2001 ///
2002 /// let value = RefMut::leak(cell.borrow_mut());
2003 /// assert_eq!(*value, 0);
2004 /// *value = 1;
2005 ///
2006 /// assert!(cell.try_borrow_mut().is_err());
2007 /// ```
2008 #[unstable(feature = "cell_leak", issue = "69099")]
2009 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
2010 pub const fn leak(mut orig: RefMut<'b, T>) -> &'b mut T {
2011 // By forgetting this BorrowRefMut we ensure that the borrow counter in the RefCell can't
2012 // go back to UNUSED within the lifetime `'b`. Resetting the reference tracking state would
2013 // require a unique reference to the borrowed RefCell. No further references can be created
2014 // from the original cell within that lifetime, making the current borrow the only
2015 // reference for the remaining lifetime.
2016 mem::forget(orig.borrow);
2017 // SAFETY: after forgetting, we can form a reference for the rest of lifetime `'b`.
2018 unsafe { orig.value.as_mut() }
2019 }
2020}
2021
2022struct BorrowRefMut<'b> {
2023 borrow: &'b Cell<BorrowCounter>,
2024}
2025
2026#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
2027impl const Drop for BorrowRefMut<'_> {
2028 #[inline]
2029 fn drop(&mut self) {
2030 let borrow = self.borrow.get();
2031 debug_assert!(is_writing(borrow));
2032 self.borrow.replace(borrow + 1);
2033 }
2034}
2035
2036impl<'b> BorrowRefMut<'b> {
2037 #[inline]
2038 const fn new(borrow: &'b Cell<BorrowCounter>) -> Option<BorrowRefMut<'b>> {
2039 // NOTE: Unlike BorrowRefMut::clone, new is called to create the initial
2040 // mutable reference, and so there must currently be no existing
2041 // references. Thus, while clone increments the mutable refcount, here
2042 // we explicitly only allow going from UNUSED to UNUSED - 1.
2043 match borrow.get() {
2044 UNUSED => {
2045 borrow.replace(UNUSED - 1);
2046 Some(BorrowRefMut { borrow })
2047 }
2048 _ => None,
2049 }
2050 }
2051
2052 // Clones a `BorrowRefMut`.
2053 //
2054 // This is only valid if each `BorrowRefMut` is used to track a mutable
2055 // reference to a distinct, nonoverlapping range of the original object.
2056 // This isn't in a Clone impl so that code doesn't call this implicitly.
2057 #[inline]
2058 fn clone(&self) -> BorrowRefMut<'b> {
2059 let borrow = self.borrow.get();
2060 debug_assert!(is_writing(borrow));
2061 // Prevent the borrow counter from underflowing.
2062 assert!(borrow != BorrowCounter::MIN);
2063 self.borrow.set(borrow - 1);
2064 BorrowRefMut { borrow: self.borrow }
2065 }
2066}
2067
2068/// A wrapper type for a mutably borrowed value from a `RefCell<T>`.
2069///
2070/// See the [module-level documentation](self) for more.
2071#[stable(feature = "rust1", since = "1.0.0")]
2072#[must_not_suspend = "holding a RefMut across suspend points can cause BorrowErrors"]
2073#[rustc_diagnostic_item = "RefCellRefMut"]
2074pub struct RefMut<'b, T: ?Sized + 'b> {
2075 // NB: we use a pointer instead of `&'b mut T` to avoid `noalias` violations, because a
2076 // `RefMut` argument doesn't hold exclusivity for its whole scope, only until it drops.
2077 value: NonNull<T>,
2078 borrow: BorrowRefMut<'b>,
2079 // `NonNull` is covariant over `T`, so we need to reintroduce invariance.
2080 marker: PhantomData<&'b mut T>,
2081}
2082
2083#[stable(feature = "rust1", since = "1.0.0")]
2084#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2085impl<T: ?Sized> const Deref for RefMut<'_, T> {
2086 type Target = T;
2087
2088 #[inline]
2089 fn deref(&self) -> &T {
2090 // SAFETY: the value is accessible as long as we hold our borrow.
2091 unsafe { self.value.as_ref() }
2092 }
2093}
2094
2095#[stable(feature = "rust1", since = "1.0.0")]
2096#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2097impl<T: ?Sized> const DerefMut for RefMut<'_, T> {
2098 #[inline]
2099 fn deref_mut(&mut self) -> &mut T {
2100 // SAFETY: the value is accessible as long as we hold our borrow.
2101 unsafe { self.value.as_mut() }
2102 }
2103}
2104
2105#[unstable(feature = "deref_pure_trait", issue = "87121")]
2106unsafe impl<T: ?Sized> DerefPure for RefMut<'_, T> {}
2107
2108#[unstable(feature = "coerce_unsized", issue = "18598")]
2109impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<RefMut<'b, U>> for RefMut<'b, T> {}
2110
2111#[stable(feature = "std_guard_impls", since = "1.20.0")]
2112impl<T: ?Sized + fmt::Display> fmt::Display for RefMut<'_, T> {
2113 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2114 (**self).fmt(f)
2115 }
2116}
2117
2118/// The core primitive for interior mutability in Rust.
2119///
2120/// If you have a reference `&T`, then normally in Rust the compiler performs optimizations based on
2121/// the knowledge that `&T` points to immutable data. Mutating that data, for example through an
2122/// alias or by transmuting a `&T` into a `&mut T`, is considered undefined behavior.
2123/// `UnsafeCell<T>` opts-out of the immutability guarantee for `&T`: a shared reference
2124/// `&UnsafeCell<T>` may point to data that is being mutated. This is called "interior mutability".
2125///
2126/// All other types that allow internal mutability, such as [`Cell<T>`] and [`RefCell<T>`], internally
2127/// use `UnsafeCell` to wrap their data.
2128///
2129/// Note that only the immutability guarantee for shared references is affected by `UnsafeCell`. The
2130/// uniqueness guarantee for mutable references is unaffected. There is *no* legal way to obtain
2131/// aliasing `&mut`, not even with `UnsafeCell<T>`.
2132///
2133/// `UnsafeCell` does nothing to avoid data races; they are still undefined behavior. If multiple
2134/// threads have access to the same `UnsafeCell`, they must follow the usual rules of the
2135/// [concurrent memory model]: conflicting non-synchronized accesses must be done via the APIs in
2136/// [`core::sync::atomic`].
2137///
2138/// The `UnsafeCell` API itself is technically very simple: [`.get()`] gives you a raw pointer
2139/// `*mut T` to its contents. It is up to _you_ as the abstraction designer to use that raw pointer
2140/// correctly.
2141///
2142/// [`.get()`]: `UnsafeCell::get`
2143/// [concurrent memory model]: ../sync/atomic/index.html#memory-model-for-atomic-accesses
2144///
2145/// # Aliasing rules
2146///
2147/// The precise Rust aliasing rules are somewhat in flux, but the main points are not contentious:
2148///
2149/// - If you create a safe reference with lifetime `'a` (either a `&T` or `&mut T` reference), then
2150/// you must not access the data in any way that contradicts that reference for the remainder of
2151/// `'a`. For example, this means that if you take the `*mut T` from an `UnsafeCell<T>` and cast it
2152/// to an `&T`, then the data in `T` must remain immutable (modulo any `UnsafeCell` data found
2153/// within `T`, of course) until that reference's lifetime expires. Similarly, if you create a
2154/// `&mut T` reference that is released to safe code, then you must not access the data within the
2155/// `UnsafeCell` until that reference expires.
2156///
2157/// - For both `&T` without `UnsafeCell<_>` and `&mut T`, you must also not deallocate the data
2158/// until the reference expires. As a special exception, given an `&T`, any part of it that is
2159/// inside an `UnsafeCell<_>` may be deallocated during the lifetime of the reference, after the
2160/// last time the reference is used (dereferenced or reborrowed). Since you cannot deallocate a part
2161/// of what a reference points to, this means the memory an `&T` points to can be deallocated only if
2162/// *every part of it* (including padding) is inside an `UnsafeCell`.
2163///
2164/// However, whenever a `&UnsafeCell<T>` is constructed or dereferenced, it must still point to
2165/// live memory and the compiler is allowed to insert spurious reads if it can prove that this
2166/// memory has not yet been deallocated.
2167///
2168/// To assist with proper design, the following scenarios are explicitly declared legal
2169/// for single-threaded code:
2170///
2171/// 1. A `&T` reference can be released to safe code and there it can co-exist with other `&T`
2172/// references, but not with a `&mut T`
2173///
2174/// 2. A `&mut T` reference may be released to safe code provided neither other `&mut T` nor `&T`
2175/// co-exist with it. A `&mut T` must always be unique.
2176///
2177/// Note that whilst mutating the contents of an `&UnsafeCell<T>` (even while other
2178/// `&UnsafeCell<T>` references alias the cell) is
2179/// ok (provided you enforce the above invariants some other way), it is still undefined behavior
2180/// to have multiple `&mut UnsafeCell<T>` aliases. That is, `UnsafeCell` is a wrapper
2181/// designed to have a special interaction with _shared_ accesses (_i.e._, through an
2182/// `&UnsafeCell<_>` reference); there is no magic whatsoever when dealing with _exclusive_
2183/// accesses (_e.g._, through a `&mut UnsafeCell<_>`): neither the cell nor the wrapped value
2184/// may be aliased for the duration of that `&mut` borrow.
2185/// This is showcased by the [`.get_mut()`] accessor, which is a _safe_ getter that yields
2186/// a `&mut T`.
2187///
2188/// [`.get_mut()`]: `UnsafeCell::get_mut`
2189///
2190/// # Memory layout
2191///
2192/// `UnsafeCell<T>` has the same in-memory representation as its inner type `T`. A consequence
2193/// of this guarantee is that it is possible to convert between `T` and `UnsafeCell<T>`.
2194/// Special care has to be taken when converting a nested `T` inside of an `Outer<T>` type
2195/// to an `Outer<UnsafeCell<T>>` type: this is not sound when the `Outer<T>` type enables [niche]
2196/// optimizations. For example, the type `Option<NonNull<u8>>` is typically 8 bytes large on
2197/// 64-bit platforms, but the type `Option<UnsafeCell<NonNull<u8>>>` takes up 16 bytes of space.
2198/// Therefore this is not a valid conversion, despite `NonNull<u8>` and `UnsafeCell<NonNull<u8>>>`
2199/// having the same memory layout. This is because `UnsafeCell` disables niche optimizations in
2200/// order to avoid its interior mutability property from spreading from `T` into the `Outer` type,
2201/// thus this can cause distortions in the type size in these cases.
2202///
2203/// Note that the only valid way to obtain a `*mut T` pointer to the contents of a
2204/// _shared_ `UnsafeCell<T>` is through [`.get()`] or [`.raw_get()`]. A `&mut T` reference
2205/// can be obtained by either dereferencing this pointer or by calling [`.get_mut()`]
2206/// on an _exclusive_ `UnsafeCell<T>`. Even though `T` and `UnsafeCell<T>` have the
2207/// same memory layout, the following is not allowed and undefined behavior:
2208///
2209/// ```rust,compile_fail
2210/// # use std::cell::UnsafeCell;
2211/// unsafe fn not_allowed<T>(ptr: &UnsafeCell<T>) -> &mut T {
2212/// let t = ptr as *const UnsafeCell<T> as *mut T;
2213/// // This is undefined behavior, because the `*mut T` pointer
2214/// // was not obtained through `.get()` nor `.raw_get()`:
2215/// unsafe { &mut *t }
2216/// }
2217/// ```
2218///
2219/// Instead, do this:
2220///
2221/// ```rust
2222/// # use std::cell::UnsafeCell;
2223/// // Safety: the caller must ensure that there are no references that
2224/// // point to the *contents* of the `UnsafeCell`.
2225/// unsafe fn get_mut<T>(ptr: &UnsafeCell<T>) -> &mut T {
2226/// unsafe { &mut *ptr.get() }
2227/// }
2228/// ```
2229///
2230/// Converting in the other direction from a `&mut T`
2231/// to an `&UnsafeCell<T>` is allowed:
2232///
2233/// ```rust
2234/// # use std::cell::UnsafeCell;
2235/// fn get_shared<T>(ptr: &mut T) -> &UnsafeCell<T> {
2236/// let t = ptr as *mut T as *const UnsafeCell<T>;
2237/// // SAFETY: `T` and `UnsafeCell<T>` have the same memory layout
2238/// unsafe { &*t }
2239/// }
2240/// ```
2241///
2242/// [niche]: https://rust-lang.github.io/unsafe-code-guidelines/glossary.html#niche
2243/// [`.raw_get()`]: `UnsafeCell::raw_get`
2244///
2245/// # Examples
2246///
2247/// Here is an example showcasing how to soundly mutate the contents of an `UnsafeCell<_>` despite
2248/// there being multiple references aliasing the cell:
2249///
2250/// ```
2251/// use std::cell::UnsafeCell;
2252///
2253/// let x: UnsafeCell<i32> = 42.into();
2254/// // Get multiple / concurrent / shared references to the same `x`.
2255/// let (p1, p2): (&UnsafeCell<i32>, &UnsafeCell<i32>) = (&x, &x);
2256///
2257/// unsafe {
2258/// // SAFETY: within this scope there are no other references to `x`'s contents,
2259/// // so ours is effectively unique.
2260/// let p1_exclusive: &mut i32 = &mut *p1.get(); // -- borrow --+
2261/// *p1_exclusive += 27; // |
2262/// } // <---------- cannot go beyond this point -------------------+
2263///
2264/// unsafe {
2265/// // SAFETY: within this scope nobody expects to have exclusive access to `x`'s contents,
2266/// // so we can have multiple shared accesses concurrently.
2267/// let p2_shared: &i32 = &*p2.get();
2268/// assert_eq!(*p2_shared, 42 + 27);
2269/// let p1_shared: &i32 = &*p1.get();
2270/// assert_eq!(*p1_shared, *p2_shared);
2271/// }
2272/// ```
2273///
2274/// The following example showcases the fact that exclusive access to an `UnsafeCell<T>`
2275/// implies exclusive access to its `T`:
2276///
2277/// ```rust
2278/// #![forbid(unsafe_code)]
2279/// // with exclusive accesses, `UnsafeCell` is a transparent no-op wrapper, so no need for
2280/// // `unsafe` here.
2281/// use std::cell::UnsafeCell;
2282///
2283/// let mut x: UnsafeCell<i32> = 42.into();
2284///
2285/// // Get a compile-time-checked unique reference to `x`.
2286/// let p_unique: &mut UnsafeCell<i32> = &mut x;
2287/// // With an exclusive reference, we can mutate the contents for free.
2288/// *p_unique.get_mut() = 0;
2289/// // Or, equivalently:
2290/// x = UnsafeCell::new(0);
2291///
2292/// // When we own the value, we can extract the contents for free.
2293/// let contents: i32 = x.into_inner();
2294/// assert_eq!(contents, 0);
2295/// ```
2296#[lang = "unsafe_cell"]
2297#[stable(feature = "rust1", since = "1.0.0")]
2298#[repr(transparent)]
2299#[rustc_pub_transparent]
2300pub struct UnsafeCell<T: ?Sized> {
2301 value: T,
2302}
2303
2304#[stable(feature = "rust1", since = "1.0.0")]
2305impl<T: ?Sized> !Sync for UnsafeCell<T> {}
2306
2307impl<T> UnsafeCell<T> {
2308 /// Constructs a new instance of `UnsafeCell` which will wrap the specified
2309 /// value.
2310 ///
2311 /// All access to the inner value through `&UnsafeCell<T>` requires `unsafe` code.
2312 ///
2313 /// # Examples
2314 ///
2315 /// ```
2316 /// use std::cell::UnsafeCell;
2317 ///
2318 /// let uc = UnsafeCell::new(5);
2319 /// ```
2320 #[stable(feature = "rust1", since = "1.0.0")]
2321 #[rustc_const_stable(feature = "const_unsafe_cell_new", since = "1.32.0")]
2322 #[inline(always)]
2323 pub const fn new(value: T) -> UnsafeCell<T> {
2324 UnsafeCell { value }
2325 }
2326
2327 /// Unwraps the value, consuming the cell.
2328 ///
2329 /// # Examples
2330 ///
2331 /// ```
2332 /// use std::cell::UnsafeCell;
2333 ///
2334 /// let uc = UnsafeCell::new(5);
2335 ///
2336 /// let five = uc.into_inner();
2337 /// ```
2338 #[inline(always)]
2339 #[stable(feature = "rust1", since = "1.0.0")]
2340 #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
2341 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2342 pub const fn into_inner(self) -> T {
2343 self.value
2344 }
2345
2346 /// Replace the value in this `UnsafeCell` and return the old value.
2347 ///
2348 /// # Safety
2349 ///
2350 /// The caller must take care to avoid aliasing and data races.
2351 ///
2352 /// - It is Undefined Behavior to allow calls to race with
2353 /// any other access to the wrapped value.
2354 /// - It is Undefined Behavior to call this while any other
2355 /// reference(s) to the wrapped value are alive.
2356 ///
2357 /// # Examples
2358 ///
2359 /// ```
2360 /// #![feature(unsafe_cell_access)]
2361 /// use std::cell::UnsafeCell;
2362 ///
2363 /// let uc = UnsafeCell::new(5);
2364 ///
2365 /// let old = unsafe { uc.replace(10) };
2366 /// assert_eq!(old, 5);
2367 /// ```
2368 #[inline]
2369 #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2370 #[rustc_should_not_be_called_on_const_items]
2371 pub const unsafe fn replace(&self, value: T) -> T {
2372 // SAFETY: pointer comes from `&self` so naturally satisfies invariants.
2373 unsafe { ptr::replace(self.get(), value) }
2374 }
2375}
2376
2377impl<T: ?Sized> UnsafeCell<T> {
2378 /// Converts from `&mut T` to `&mut UnsafeCell<T>`.
2379 ///
2380 /// # Examples
2381 ///
2382 /// ```
2383 /// use std::cell::UnsafeCell;
2384 ///
2385 /// let mut val = 42;
2386 /// let uc = UnsafeCell::from_mut(&mut val);
2387 ///
2388 /// *uc.get_mut() -= 1;
2389 /// assert_eq!(*uc.get_mut(), 41);
2390 /// ```
2391 #[inline(always)]
2392 #[stable(feature = "unsafe_cell_from_mut", since = "1.84.0")]
2393 #[rustc_const_stable(feature = "unsafe_cell_from_mut", since = "1.84.0")]
2394 pub const fn from_mut(value: &mut T) -> &mut UnsafeCell<T> {
2395 // SAFETY: `UnsafeCell<T>` has the same memory layout as `T` due to #[repr(transparent)].
2396 unsafe { &mut *(value as *mut T as *mut UnsafeCell<T>) }
2397 }
2398
2399 /// Gets a mutable pointer to the wrapped value.
2400 ///
2401 /// This can be cast to a pointer of any kind. When creating references, you must uphold the
2402 /// aliasing rules; see [the type-level docs][UnsafeCell#aliasing-rules] for more discussion and
2403 /// caveats.
2404 ///
2405 /// # Examples
2406 ///
2407 /// ```
2408 /// use std::cell::UnsafeCell;
2409 ///
2410 /// let uc = UnsafeCell::new(5);
2411 ///
2412 /// let five = uc.get();
2413 /// ```
2414 #[inline(always)]
2415 #[stable(feature = "rust1", since = "1.0.0")]
2416 #[rustc_const_stable(feature = "const_unsafecell_get", since = "1.32.0")]
2417 #[rustc_as_ptr]
2418 #[rustc_never_returns_null_ptr]
2419 #[rustc_should_not_be_called_on_const_items]
2420 pub const fn get(&self) -> *mut T {
2421 // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
2422 // #[repr(transparent)]. This exploits std's special status, there is
2423 // no guarantee for user code that this will work in future versions of the compiler!
2424 self as *const UnsafeCell<T> as *const T as *mut T
2425 }
2426
2427 /// Returns a mutable reference to the underlying data.
2428 ///
2429 /// This call borrows the `UnsafeCell` mutably (at compile-time) which
2430 /// guarantees that we possess the only reference.
2431 ///
2432 /// # Examples
2433 ///
2434 /// ```
2435 /// use std::cell::UnsafeCell;
2436 ///
2437 /// let mut c = UnsafeCell::new(5);
2438 /// *c.get_mut() += 1;
2439 ///
2440 /// assert_eq!(*c.get_mut(), 6);
2441 /// ```
2442 #[inline(always)]
2443 #[stable(feature = "unsafe_cell_get_mut", since = "1.50.0")]
2444 #[rustc_const_stable(feature = "const_unsafecell_get_mut", since = "1.83.0")]
2445 pub const fn get_mut(&mut self) -> &mut T {
2446 &mut self.value
2447 }
2448
2449 /// Gets a mutable pointer to the wrapped value.
2450 /// The difference from [`get`] is that this function accepts a raw pointer,
2451 /// which is useful to avoid the creation of temporary references.
2452 ///
2453 /// This can be cast to a pointer of any kind. When creating references, you must uphold the
2454 /// aliasing rules; see [the type-level docs][UnsafeCell#aliasing-rules] for more discussion and
2455 /// caveats.
2456 ///
2457 /// [`get`]: UnsafeCell::get()
2458 ///
2459 /// # Examples
2460 ///
2461 /// Gradual initialization of an `UnsafeCell` requires `raw_get`, as
2462 /// calling `get` would require creating a reference to uninitialized data:
2463 ///
2464 /// ```
2465 /// use std::cell::UnsafeCell;
2466 /// use std::mem::MaybeUninit;
2467 ///
2468 /// let m = MaybeUninit::<UnsafeCell<i32>>::uninit();
2469 /// unsafe { UnsafeCell::raw_get(m.as_ptr()).write(5); }
2470 /// // avoid below which references to uninitialized data
2471 /// // unsafe { UnsafeCell::get(&*m.as_ptr()).write(5); }
2472 /// let uc = unsafe { m.assume_init() };
2473 ///
2474 /// assert_eq!(uc.into_inner(), 5);
2475 /// ```
2476 #[inline(always)]
2477 #[stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
2478 #[rustc_const_stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
2479 #[rustc_diagnostic_item = "unsafe_cell_raw_get"]
2480 pub const fn raw_get(this: *const Self) -> *mut T {
2481 // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
2482 // #[repr(transparent)]. This exploits std's special status, there is
2483 // no guarantee for user code that this will work in future versions of the compiler!
2484 this as *const T as *mut T
2485 }
2486
2487 /// Get a shared reference to the value within the `UnsafeCell`.
2488 ///
2489 /// # Safety
2490 ///
2491 /// - It is Undefined Behavior to call this while any mutable
2492 /// reference to the wrapped value is alive.
2493 /// - Mutating the wrapped value while the returned
2494 /// reference is alive is Undefined Behavior.
2495 ///
2496 /// # Examples
2497 ///
2498 /// ```
2499 /// #![feature(unsafe_cell_access)]
2500 /// use std::cell::UnsafeCell;
2501 ///
2502 /// let uc = UnsafeCell::new(5);
2503 ///
2504 /// let val = unsafe { uc.as_ref_unchecked() };
2505 /// assert_eq!(val, &5);
2506 /// ```
2507 #[inline]
2508 #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2509 #[rustc_should_not_be_called_on_const_items]
2510 pub const unsafe fn as_ref_unchecked(&self) -> &T {
2511 // SAFETY: pointer comes from `&self` so naturally satisfies ptr-to-ref invariants.
2512 unsafe { self.get().as_ref_unchecked() }
2513 }
2514
2515 /// Get an exclusive reference to the value within the `UnsafeCell`.
2516 ///
2517 /// # Safety
2518 ///
2519 /// - It is Undefined Behavior to call this while any other
2520 /// reference(s) to the wrapped value are alive.
2521 /// - Mutating the wrapped value through other means while the
2522 /// returned reference is alive is Undefined Behavior.
2523 ///
2524 /// # Examples
2525 ///
2526 /// ```
2527 /// #![feature(unsafe_cell_access)]
2528 /// use std::cell::UnsafeCell;
2529 ///
2530 /// let uc = UnsafeCell::new(5);
2531 ///
2532 /// unsafe { *uc.as_mut_unchecked() += 1; }
2533 /// assert_eq!(uc.into_inner(), 6);
2534 /// ```
2535 #[inline]
2536 #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2537 #[allow(clippy::mut_from_ref)]
2538 #[rustc_should_not_be_called_on_const_items]
2539 pub const unsafe fn as_mut_unchecked(&self) -> &mut T {
2540 // SAFETY: pointer comes from `&self` so naturally satisfies ptr-to-ref invariants.
2541 unsafe { self.get().as_mut_unchecked() }
2542 }
2543}
2544
2545#[stable(feature = "unsafe_cell_default", since = "1.10.0")]
2546#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2547impl<T: [const] Default> const Default for UnsafeCell<T> {
2548 /// Creates an `UnsafeCell`, with the `Default` value for T.
2549 fn default() -> UnsafeCell<T> {
2550 UnsafeCell::new(Default::default())
2551 }
2552}
2553
2554#[stable(feature = "cell_from", since = "1.12.0")]
2555#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2556impl<T> const From<T> for UnsafeCell<T> {
2557 /// Creates a new `UnsafeCell<T>` containing the given value.
2558 fn from(t: T) -> UnsafeCell<T> {
2559 UnsafeCell::new(t)
2560 }
2561}
2562
2563#[unstable(feature = "coerce_unsized", issue = "18598")]
2564impl<T: CoerceUnsized<U>, U> CoerceUnsized<UnsafeCell<U>> for UnsafeCell<T> {}
2565
2566// Allow types that wrap `UnsafeCell` to also implement `DispatchFromDyn`
2567// and become dyn-compatible method receivers.
2568// Note that currently `UnsafeCell` itself cannot be a method receiver
2569// because it does not implement Deref.
2570// In other words:
2571// `self: UnsafeCell<&Self>` won't work
2572// `self: UnsafeCellWrapper<Self>` becomes possible
2573#[unstable(feature = "dispatch_from_dyn", issue = "none")]
2574impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<UnsafeCell<U>> for UnsafeCell<T> {}
2575
2576/// [`UnsafeCell`], but [`Sync`].
2577///
2578/// This is just an `UnsafeCell`, except it implements `Sync`
2579/// if `T` implements `Sync`.
2580///
2581/// `UnsafeCell` doesn't implement `Sync`, to prevent accidental mis-use.
2582/// You can use `SyncUnsafeCell` instead of `UnsafeCell` to allow it to be
2583/// shared between threads, if that's intentional.
2584/// Providing proper synchronization is still the task of the user,
2585/// making this type just as unsafe to use.
2586///
2587/// See [`UnsafeCell`] for details.
2588#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2589#[repr(transparent)]
2590#[rustc_diagnostic_item = "SyncUnsafeCell"]
2591#[rustc_pub_transparent]
2592pub struct SyncUnsafeCell<T: ?Sized> {
2593 value: UnsafeCell<T>,
2594}
2595
2596#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2597unsafe impl<T: ?Sized + Sync> Sync for SyncUnsafeCell<T> {}
2598
2599#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2600impl<T> SyncUnsafeCell<T> {
2601 /// Constructs a new instance of `SyncUnsafeCell` which will wrap the specified value.
2602 #[inline]
2603 pub const fn new(value: T) -> Self {
2604 Self { value: UnsafeCell { value } }
2605 }
2606
2607 /// Unwraps the value, consuming the cell.
2608 #[inline]
2609 #[rustc_const_unstable(feature = "sync_unsafe_cell", issue = "95439")]
2610 pub const fn into_inner(self) -> T {
2611 self.value.into_inner()
2612 }
2613}
2614
2615#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2616impl<T: ?Sized> SyncUnsafeCell<T> {
2617 /// Gets a mutable pointer to the wrapped value.
2618 ///
2619 /// This can be cast to a pointer of any kind.
2620 /// Ensure that the access is unique (no active references, mutable or not)
2621 /// when casting to `&mut T`, and ensure that there are no mutations
2622 /// or mutable aliases going on when casting to `&T`
2623 #[inline]
2624 #[rustc_as_ptr]
2625 #[rustc_never_returns_null_ptr]
2626 #[rustc_should_not_be_called_on_const_items]
2627 pub const fn get(&self) -> *mut T {
2628 self.value.get()
2629 }
2630
2631 /// Returns a mutable reference to the underlying data.
2632 ///
2633 /// This call borrows the `SyncUnsafeCell` mutably (at compile-time) which
2634 /// guarantees that we possess the only reference.
2635 #[inline]
2636 pub const fn get_mut(&mut self) -> &mut T {
2637 self.value.get_mut()
2638 }
2639
2640 /// Gets a mutable pointer to the wrapped value.
2641 ///
2642 /// See [`UnsafeCell::get`] for details.
2643 #[inline]
2644 pub const fn raw_get(this: *const Self) -> *mut T {
2645 // We can just cast the pointer from `SyncUnsafeCell<T>` to `T` because
2646 // of #[repr(transparent)] on both SyncUnsafeCell and UnsafeCell.
2647 // See UnsafeCell::raw_get.
2648 this as *const T as *mut T
2649 }
2650}
2651
2652#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2653#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2654impl<T: [const] Default> const Default for SyncUnsafeCell<T> {
2655 /// Creates an `SyncUnsafeCell`, with the `Default` value for T.
2656 fn default() -> SyncUnsafeCell<T> {
2657 SyncUnsafeCell::new(Default::default())
2658 }
2659}
2660
2661#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2662#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2663impl<T> const From<T> for SyncUnsafeCell<T> {
2664 /// Creates a new `SyncUnsafeCell<T>` containing the given value.
2665 fn from(t: T) -> SyncUnsafeCell<T> {
2666 SyncUnsafeCell::new(t)
2667 }
2668}
2669
2670#[unstable(feature = "coerce_unsized", issue = "18598")]
2671//#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2672impl<T: CoerceUnsized<U>, U> CoerceUnsized<SyncUnsafeCell<U>> for SyncUnsafeCell<T> {}
2673
2674// Allow types that wrap `SyncUnsafeCell` to also implement `DispatchFromDyn`
2675// and become dyn-compatible method receivers.
2676// Note that currently `SyncUnsafeCell` itself cannot be a method receiver
2677// because it does not implement Deref.
2678// In other words:
2679// `self: SyncUnsafeCell<&Self>` won't work
2680// `self: SyncUnsafeCellWrapper<Self>` becomes possible
2681#[unstable(feature = "dispatch_from_dyn", issue = "none")]
2682//#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2683impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<SyncUnsafeCell<U>> for SyncUnsafeCell<T> {}
2684
2685#[allow(unused)]
2686fn assert_coerce_unsized(
2687 a: UnsafeCell<&i32>,
2688 b: SyncUnsafeCell<&i32>,
2689 c: Cell<&i32>,
2690 d: RefCell<&i32>,
2691) {
2692 let _: UnsafeCell<&dyn Send> = a;
2693 let _: SyncUnsafeCell<&dyn Send> = b;
2694 let _: Cell<&dyn Send> = c;
2695 let _: RefCell<&dyn Send> = d;
2696}
2697
2698#[unstable(feature = "pin_coerce_unsized_trait", issue = "150112")]
2699unsafe impl<T: ?Sized> PinCoerceUnsized for UnsafeCell<T> {}
2700
2701#[unstable(feature = "pin_coerce_unsized_trait", issue = "150112")]
2702unsafe impl<T: ?Sized> PinCoerceUnsized for SyncUnsafeCell<T> {}
2703
2704#[unstable(feature = "pin_coerce_unsized_trait", issue = "150112")]
2705unsafe impl<T: ?Sized> PinCoerceUnsized for Cell<T> {}
2706
2707#[unstable(feature = "pin_coerce_unsized_trait", issue = "150112")]
2708unsafe impl<T: ?Sized> PinCoerceUnsized for RefCell<T> {}
2709
2710#[unstable(feature = "pin_coerce_unsized_trait", issue = "150112")]
2711unsafe impl<'b, T: ?Sized> PinCoerceUnsized for Ref<'b, T> {}
2712
2713#[unstable(feature = "pin_coerce_unsized_trait", issue = "150112")]
2714unsafe impl<'b, T: ?Sized> PinCoerceUnsized for RefMut<'b, T> {}