core/array/
mod.rs

1//! Utilities for the array primitive type.
2//!
3//! *[See also the array primitive type](array).*
4
5#![stable(feature = "core_array", since = "1.35.0")]
6
7use crate::borrow::{Borrow, BorrowMut};
8use crate::clone::TrivialClone;
9use crate::cmp::Ordering;
10use crate::convert::Infallible;
11use crate::error::Error;
12use crate::hash::{self, Hash};
13use crate::intrinsics::transmute_unchecked;
14use crate::iter::{UncheckedIterator, repeat_n};
15use crate::marker::Destruct;
16use crate::mem::{self, ManuallyDrop, MaybeUninit};
17use crate::ops::{
18    ChangeOutputType, ControlFlow, FromResidual, Index, IndexMut, NeverShortCircuit, Residual, Try,
19};
20use crate::ptr::{null, null_mut};
21use crate::slice::{Iter, IterMut};
22use crate::{fmt, ptr};
23
24mod ascii;
25mod drain;
26mod equality;
27mod iter;
28
29#[stable(feature = "array_value_iter", since = "1.51.0")]
30pub use iter::IntoIter;
31
32/// Creates an array of type `[T; N]` by repeatedly cloning a value.
33///
34/// This is the same as `[val; N]`, but it also works for types that do not
35/// implement [`Copy`].
36///
37/// The provided value will be used as an element of the resulting array and
38/// will be cloned N - 1 times to fill up the rest. If N is zero, the value
39/// will be dropped.
40///
41/// # Example
42///
43/// Creating multiple copies of a `String`:
44/// ```rust
45/// use std::array;
46///
47/// let string = "Hello there!".to_string();
48/// let strings = array::repeat(string);
49/// assert_eq!(strings, ["Hello there!", "Hello there!"]);
50/// ```
51#[inline]
52#[must_use = "cloning is often expensive and is not expected to have side effects"]
53#[stable(feature = "array_repeat", since = "1.91.0")]
54pub fn repeat<T: Clone, const N: usize>(val: T) -> [T; N] {
55    from_trusted_iterator(repeat_n(val, N))
56}
57
58/// Creates an array where each element is produced by calling `f` with
59/// that element's index while walking forward through the array.
60///
61/// This is essentially the same as writing
62/// ```text
63/// [f(0), f(1), f(2), …, f(N - 2), f(N - 1)]
64/// ```
65/// and is similar to `(0..i).map(f)`, just for arrays not iterators.
66///
67/// If `N == 0`, this produces an empty array without ever calling `f`.
68///
69/// # Example
70///
71/// ```rust
72/// // type inference is helping us here, the way `from_fn` knows how many
73/// // elements to produce is the length of array down there: only arrays of
74/// // equal lengths can be compared, so the const generic parameter `N` is
75/// // inferred to be 5, thus creating array of 5 elements.
76///
77/// let array = core::array::from_fn(|i| i);
78/// // indexes are:    0  1  2  3  4
79/// assert_eq!(array, [0, 1, 2, 3, 4]);
80///
81/// let array2: [usize; 8] = core::array::from_fn(|i| i * 2);
82/// // indexes are:     0  1  2  3  4  5   6   7
83/// assert_eq!(array2, [0, 2, 4, 6, 8, 10, 12, 14]);
84///
85/// let bool_arr = core::array::from_fn::<_, 5, _>(|i| i % 2 == 0);
86/// // indexes are:       0     1      2     3      4
87/// assert_eq!(bool_arr, [true, false, true, false, true]);
88/// ```
89///
90/// You can also capture things, for example to create an array full of clones
91/// where you can't just use `[item; N]` because it's not `Copy`:
92/// ```
93/// # // TBH `array::repeat` would be better for this, but it's not stable yet.
94/// let my_string = String::from("Hello");
95/// let clones: [String; 42] = std::array::from_fn(|_| my_string.clone());
96/// assert!(clones.iter().all(|x| *x == my_string));
97/// ```
98///
99/// The array is generated in ascending index order, starting from the front
100/// and going towards the back, so you can use closures with mutable state:
101/// ```
102/// let mut state = 1;
103/// let a = std::array::from_fn(|_| { let x = state; state *= 2; x });
104/// assert_eq!(a, [1, 2, 4, 8, 16, 32]);
105/// ```
106#[inline]
107#[stable(feature = "array_from_fn", since = "1.63.0")]
108#[rustc_const_unstable(feature = "const_array", issue = "147606")]
109pub const fn from_fn<T: [const] Destruct, const N: usize, F>(f: F) -> [T; N]
110where
111    F: [const] FnMut(usize) -> T + [const] Destruct,
112{
113    try_from_fn(NeverShortCircuit::wrap_mut_1(f)).0
114}
115
116/// Creates an array `[T; N]` where each fallible array element `T` is returned by the `cb` call.
117/// Unlike [`from_fn`], where the element creation can't fail, this version will return an error
118/// if any element creation was unsuccessful.
119///
120/// The return type of this function depends on the return type of the closure.
121/// If you return `Result<T, E>` from the closure, you'll get a `Result<[T; N], E>`.
122/// If you return `Option<T>` from the closure, you'll get an `Option<[T; N]>`.
123///
124/// # Arguments
125///
126/// * `cb`: Callback where the passed argument is the current array index.
127///
128/// # Example
129///
130/// ```rust
131/// #![feature(array_try_from_fn)]
132///
133/// let array: Result<[u8; 5], _> = std::array::try_from_fn(|i| i.try_into());
134/// assert_eq!(array, Ok([0, 1, 2, 3, 4]));
135///
136/// let array: Result<[i8; 200], _> = std::array::try_from_fn(|i| i.try_into());
137/// assert!(array.is_err());
138///
139/// let array: Option<[_; 4]> = std::array::try_from_fn(|i| i.checked_add(100));
140/// assert_eq!(array, Some([100, 101, 102, 103]));
141///
142/// let array: Option<[_; 4]> = std::array::try_from_fn(|i| i.checked_sub(100));
143/// assert_eq!(array, None);
144/// ```
145#[inline]
146#[unstable(feature = "array_try_from_fn", issue = "89379")]
147#[rustc_const_unstable(feature = "array_try_from_fn", issue = "89379")]
148pub const fn try_from_fn<R, const N: usize, F>(cb: F) -> ChangeOutputType<R, [R::Output; N]>
149where
150    R: [const] Try<Residual: [const] Residual<[R::Output; N]>, Output: [const] Destruct>,
151    F: [const] FnMut(usize) -> R + [const] Destruct,
152{
153    let mut array = [const { MaybeUninit::uninit() }; N];
154    match try_from_fn_erased(&mut array, cb) {
155        ControlFlow::Break(r) => FromResidual::from_residual(r),
156        ControlFlow::Continue(()) => {
157            // SAFETY: All elements of the array were populated.
158            try { unsafe { MaybeUninit::array_assume_init(array) } }
159        }
160    }
161}
162
163/// Converts a reference to `T` into a reference to an array of length 1 (without copying).
164#[stable(feature = "array_from_ref", since = "1.53.0")]
165#[rustc_const_stable(feature = "const_array_from_ref_shared", since = "1.63.0")]
166pub const fn from_ref<T>(s: &T) -> &[T; 1] {
167    // SAFETY: Converting `&T` to `&[T; 1]` is sound.
168    unsafe { &*(s as *const T).cast::<[T; 1]>() }
169}
170
171/// Converts a mutable reference to `T` into a mutable reference to an array of length 1 (without copying).
172#[stable(feature = "array_from_ref", since = "1.53.0")]
173#[rustc_const_stable(feature = "const_array_from_ref", since = "1.83.0")]
174pub const fn from_mut<T>(s: &mut T) -> &mut [T; 1] {
175    // SAFETY: Converting `&mut T` to `&mut [T; 1]` is sound.
176    unsafe { &mut *(s as *mut T).cast::<[T; 1]>() }
177}
178
179/// The error type returned when a conversion from a slice to an array fails.
180#[stable(feature = "try_from", since = "1.34.0")]
181#[derive(Debug, Copy, Clone)]
182pub struct TryFromSliceError(());
183
184#[stable(feature = "core_array", since = "1.35.0")]
185impl fmt::Display for TryFromSliceError {
186    #[inline]
187    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
188        "could not convert slice to array".fmt(f)
189    }
190}
191
192#[stable(feature = "try_from", since = "1.34.0")]
193impl Error for TryFromSliceError {}
194
195#[stable(feature = "try_from_slice_error", since = "1.36.0")]
196#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
197impl const From<Infallible> for TryFromSliceError {
198    fn from(x: Infallible) -> TryFromSliceError {
199        match x {}
200    }
201}
202
203#[stable(feature = "rust1", since = "1.0.0")]
204#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
205impl<T, const N: usize> const AsRef<[T]> for [T; N] {
206    #[inline]
207    fn as_ref(&self) -> &[T] {
208        &self[..]
209    }
210}
211
212#[stable(feature = "rust1", since = "1.0.0")]
213#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
214impl<T, const N: usize> const AsMut<[T]> for [T; N] {
215    #[inline]
216    fn as_mut(&mut self) -> &mut [T] {
217        &mut self[..]
218    }
219}
220
221#[stable(feature = "array_borrow", since = "1.4.0")]
222#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
223impl<T, const N: usize> const Borrow<[T]> for [T; N] {
224    fn borrow(&self) -> &[T] {
225        self
226    }
227}
228
229#[stable(feature = "array_borrow", since = "1.4.0")]
230#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
231impl<T, const N: usize> const BorrowMut<[T]> for [T; N] {
232    fn borrow_mut(&mut self) -> &mut [T] {
233        self
234    }
235}
236
237/// Tries to create an array `[T; N]` by copying from a slice `&[T]`.
238/// Succeeds if `slice.len() == N`.
239///
240/// ```
241/// let bytes: [u8; 3] = [1, 0, 2];
242///
243/// let bytes_head: [u8; 2] = <[u8; 2]>::try_from(&bytes[0..2]).unwrap();
244/// assert_eq!(1, u16::from_le_bytes(bytes_head));
245///
246/// let bytes_tail: [u8; 2] = bytes[1..3].try_into().unwrap();
247/// assert_eq!(512, u16::from_le_bytes(bytes_tail));
248/// ```
249#[stable(feature = "try_from", since = "1.34.0")]
250#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
251impl<T, const N: usize> const TryFrom<&[T]> for [T; N]
252where
253    T: Copy,
254{
255    type Error = TryFromSliceError;
256
257    #[inline]
258    fn try_from(slice: &[T]) -> Result<[T; N], TryFromSliceError> {
259        <&Self>::try_from(slice).copied()
260    }
261}
262
263/// Tries to create an array `[T; N]` by copying from a mutable slice `&mut [T]`.
264/// Succeeds if `slice.len() == N`.
265///
266/// ```
267/// let mut bytes: [u8; 3] = [1, 0, 2];
268///
269/// let bytes_head: [u8; 2] = <[u8; 2]>::try_from(&mut bytes[0..2]).unwrap();
270/// assert_eq!(1, u16::from_le_bytes(bytes_head));
271///
272/// let bytes_tail: [u8; 2] = (&mut bytes[1..3]).try_into().unwrap();
273/// assert_eq!(512, u16::from_le_bytes(bytes_tail));
274/// ```
275#[stable(feature = "try_from_mut_slice_to_array", since = "1.59.0")]
276#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
277impl<T, const N: usize> const TryFrom<&mut [T]> for [T; N]
278where
279    T: Copy,
280{
281    type Error = TryFromSliceError;
282
283    #[inline]
284    fn try_from(slice: &mut [T]) -> Result<[T; N], TryFromSliceError> {
285        <Self>::try_from(&*slice)
286    }
287}
288
289/// Tries to create an array ref `&[T; N]` from a slice ref `&[T]`. Succeeds if
290/// `slice.len() == N`.
291///
292/// ```
293/// let bytes: [u8; 3] = [1, 0, 2];
294///
295/// let bytes_head: &[u8; 2] = <&[u8; 2]>::try_from(&bytes[0..2]).unwrap();
296/// assert_eq!(1, u16::from_le_bytes(*bytes_head));
297///
298/// let bytes_tail: &[u8; 2] = bytes[1..3].try_into().unwrap();
299/// assert_eq!(512, u16::from_le_bytes(*bytes_tail));
300/// ```
301#[stable(feature = "try_from", since = "1.34.0")]
302#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
303impl<'a, T, const N: usize> const TryFrom<&'a [T]> for &'a [T; N] {
304    type Error = TryFromSliceError;
305
306    #[inline]
307    fn try_from(slice: &'a [T]) -> Result<&'a [T; N], TryFromSliceError> {
308        slice.as_array().ok_or(TryFromSliceError(()))
309    }
310}
311
312/// Tries to create a mutable array ref `&mut [T; N]` from a mutable slice ref
313/// `&mut [T]`. Succeeds if `slice.len() == N`.
314///
315/// ```
316/// let mut bytes: [u8; 3] = [1, 0, 2];
317///
318/// let bytes_head: &mut [u8; 2] = <&mut [u8; 2]>::try_from(&mut bytes[0..2]).unwrap();
319/// assert_eq!(1, u16::from_le_bytes(*bytes_head));
320///
321/// let bytes_tail: &mut [u8; 2] = (&mut bytes[1..3]).try_into().unwrap();
322/// assert_eq!(512, u16::from_le_bytes(*bytes_tail));
323/// ```
324#[stable(feature = "try_from", since = "1.34.0")]
325#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
326impl<'a, T, const N: usize> const TryFrom<&'a mut [T]> for &'a mut [T; N] {
327    type Error = TryFromSliceError;
328
329    #[inline]
330    fn try_from(slice: &'a mut [T]) -> Result<&'a mut [T; N], TryFromSliceError> {
331        slice.as_mut_array().ok_or(TryFromSliceError(()))
332    }
333}
334
335/// The hash of an array is the same as that of the corresponding slice,
336/// as required by the `Borrow` implementation.
337///
338/// ```
339/// use std::hash::BuildHasher;
340///
341/// let b = std::hash::RandomState::new();
342/// let a: [u8; 3] = [0xa8, 0x3c, 0x09];
343/// let s: &[u8] = &[0xa8, 0x3c, 0x09];
344/// assert_eq!(b.hash_one(a), b.hash_one(s));
345/// ```
346#[stable(feature = "rust1", since = "1.0.0")]
347impl<T: Hash, const N: usize> Hash for [T; N] {
348    fn hash<H: hash::Hasher>(&self, state: &mut H) {
349        Hash::hash(&self[..], state)
350    }
351}
352
353#[stable(feature = "rust1", since = "1.0.0")]
354impl<T: fmt::Debug, const N: usize> fmt::Debug for [T; N] {
355    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
356        fmt::Debug::fmt(&&self[..], f)
357    }
358}
359
360#[stable(feature = "rust1", since = "1.0.0")]
361impl<'a, T, const N: usize> IntoIterator for &'a [T; N] {
362    type Item = &'a T;
363    type IntoIter = Iter<'a, T>;
364
365    fn into_iter(self) -> Iter<'a, T> {
366        self.iter()
367    }
368}
369
370#[stable(feature = "rust1", since = "1.0.0")]
371impl<'a, T, const N: usize> IntoIterator for &'a mut [T; N] {
372    type Item = &'a mut T;
373    type IntoIter = IterMut<'a, T>;
374
375    fn into_iter(self) -> IterMut<'a, T> {
376        self.iter_mut()
377    }
378}
379
380#[stable(feature = "index_trait_on_arrays", since = "1.50.0")]
381#[rustc_const_unstable(feature = "const_index", issue = "143775")]
382impl<T, I, const N: usize> const Index<I> for [T; N]
383where
384    [T]: [const] Index<I>,
385{
386    type Output = <[T] as Index<I>>::Output;
387
388    #[inline]
389    fn index(&self, index: I) -> &Self::Output {
390        Index::index(self as &[T], index)
391    }
392}
393
394#[stable(feature = "index_trait_on_arrays", since = "1.50.0")]
395#[rustc_const_unstable(feature = "const_index", issue = "143775")]
396impl<T, I, const N: usize> const IndexMut<I> for [T; N]
397where
398    [T]: [const] IndexMut<I>,
399{
400    #[inline]
401    fn index_mut(&mut self, index: I) -> &mut Self::Output {
402        IndexMut::index_mut(self as &mut [T], index)
403    }
404}
405
406/// Implements comparison of arrays [lexicographically](Ord#lexicographical-comparison).
407#[stable(feature = "rust1", since = "1.0.0")]
408impl<T: PartialOrd, const N: usize> PartialOrd for [T; N] {
409    #[inline]
410    fn partial_cmp(&self, other: &[T; N]) -> Option<Ordering> {
411        PartialOrd::partial_cmp(&&self[..], &&other[..])
412    }
413    #[inline]
414    fn lt(&self, other: &[T; N]) -> bool {
415        PartialOrd::lt(&&self[..], &&other[..])
416    }
417    #[inline]
418    fn le(&self, other: &[T; N]) -> bool {
419        PartialOrd::le(&&self[..], &&other[..])
420    }
421    #[inline]
422    fn ge(&self, other: &[T; N]) -> bool {
423        PartialOrd::ge(&&self[..], &&other[..])
424    }
425    #[inline]
426    fn gt(&self, other: &[T; N]) -> bool {
427        PartialOrd::gt(&&self[..], &&other[..])
428    }
429}
430
431/// Implements comparison of arrays [lexicographically](Ord#lexicographical-comparison).
432#[stable(feature = "rust1", since = "1.0.0")]
433impl<T: Ord, const N: usize> Ord for [T; N] {
434    #[inline]
435    fn cmp(&self, other: &[T; N]) -> Ordering {
436        Ord::cmp(&&self[..], &&other[..])
437    }
438}
439
440#[stable(feature = "copy_clone_array_lib", since = "1.58.0")]
441impl<T: Copy, const N: usize> Copy for [T; N] {}
442
443#[stable(feature = "copy_clone_array_lib", since = "1.58.0")]
444impl<T: Clone, const N: usize> Clone for [T; N] {
445    #[inline]
446    fn clone(&self) -> Self {
447        SpecArrayClone::clone(self)
448    }
449
450    #[inline]
451    fn clone_from(&mut self, other: &Self) {
452        self.clone_from_slice(other);
453    }
454}
455
456#[doc(hidden)]
457#[unstable(feature = "trivial_clone", issue = "none")]
458unsafe impl<T: TrivialClone, const N: usize> TrivialClone for [T; N] {}
459
460trait SpecArrayClone: Clone {
461    fn clone<const N: usize>(array: &[Self; N]) -> [Self; N];
462}
463
464impl<T: Clone> SpecArrayClone for T {
465    #[inline]
466    default fn clone<const N: usize>(array: &[T; N]) -> [T; N] {
467        from_trusted_iterator(array.iter().cloned())
468    }
469}
470
471impl<T: TrivialClone> SpecArrayClone for T {
472    #[inline]
473    fn clone<const N: usize>(array: &[T; N]) -> [T; N] {
474        // SAFETY: `TrivialClone` implies that this is equivalent to calling
475        // `Clone` on every element.
476        unsafe { ptr::read(array) }
477    }
478}
479
480// The Default impls cannot be done with const generics because `[T; 0]` doesn't
481// require Default to be implemented, and having different impl blocks for
482// different numbers isn't supported yet.
483//
484// Trying to improve the `[T; 0]` situation has proven to be difficult.
485// Please see these issues for more context on past attempts and crater runs:
486// - https://github.com/rust-lang/rust/issues/61415
487// - https://github.com/rust-lang/rust/pull/145457
488
489macro_rules! array_impl_default {
490    {$n:expr, $t:ident $($ts:ident)*} => {
491        #[stable(since = "1.4.0", feature = "array_default")]
492        impl<T> Default for [T; $n] where T: Default {
493            fn default() -> [T; $n] {
494                [$t::default(), $($ts::default()),*]
495            }
496        }
497        array_impl_default!{($n - 1), $($ts)*}
498    };
499    {$n:expr,} => {
500        #[stable(since = "1.4.0", feature = "array_default")]
501        impl<T> Default for [T; $n] {
502            fn default() -> [T; $n] { [] }
503        }
504    };
505}
506
507array_impl_default! {32, T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T}
508
509impl<T, const N: usize> [T; N] {
510    /// Returns an array of the same size as `self`, with function `f` applied to each element
511    /// in order.
512    ///
513    /// If you don't necessarily need a new fixed-size array, consider using
514    /// [`Iterator::map`] instead.
515    ///
516    ///
517    /// # Note on performance and stack usage
518    ///
519    /// Unfortunately, usages of this method are currently not always optimized
520    /// as well as they could be. This mainly concerns large arrays, as mapping
521    /// over small arrays seem to be optimized just fine. Also note that in
522    /// debug mode (i.e. without any optimizations), this method can use a lot
523    /// of stack space (a few times the size of the array or more).
524    ///
525    /// Therefore, in performance-critical code, try to avoid using this method
526    /// on large arrays or check the emitted code. Also try to avoid chained
527    /// maps (e.g. `arr.map(...).map(...)`).
528    ///
529    /// In many cases, you can instead use [`Iterator::map`] by calling `.iter()`
530    /// or `.into_iter()` on your array. `[T; N]::map` is only necessary if you
531    /// really need a new array of the same size as the result. Rust's lazy
532    /// iterators tend to get optimized very well.
533    ///
534    ///
535    /// # Examples
536    ///
537    /// ```
538    /// let x = [1, 2, 3];
539    /// let y = x.map(|v| v + 1);
540    /// assert_eq!(y, [2, 3, 4]);
541    ///
542    /// let x = [1, 2, 3];
543    /// let mut temp = 0;
544    /// let y = x.map(|v| { temp += 1; v * temp });
545    /// assert_eq!(y, [1, 4, 9]);
546    ///
547    /// let x = ["Ferris", "Bueller's", "Day", "Off"];
548    /// let y = x.map(|v| v.len());
549    /// assert_eq!(y, [6, 9, 3, 3]);
550    /// ```
551    #[must_use]
552    #[stable(feature = "array_map", since = "1.55.0")]
553    #[rustc_const_unstable(feature = "const_array", issue = "147606")]
554    pub const fn map<F, U>(self, f: F) -> [U; N]
555    where
556        F: [const] FnMut(T) -> U + [const] Destruct,
557        U: [const] Destruct,
558        T: [const] Destruct,
559    {
560        self.try_map(NeverShortCircuit::wrap_mut_1(f)).0
561    }
562
563    /// A fallible function `f` applied to each element on array `self` in order to
564    /// return an array the same size as `self` or the first error encountered.
565    ///
566    /// The return type of this function depends on the return type of the closure.
567    /// If you return `Result<T, E>` from the closure, you'll get a `Result<[T; N], E>`.
568    /// If you return `Option<T>` from the closure, you'll get an `Option<[T; N]>`.
569    ///
570    /// # Examples
571    ///
572    /// ```
573    /// #![feature(array_try_map)]
574    ///
575    /// let a = ["1", "2", "3"];
576    /// let b = a.try_map(|v| v.parse::<u32>()).unwrap().map(|v| v + 1);
577    /// assert_eq!(b, [2, 3, 4]);
578    ///
579    /// let a = ["1", "2a", "3"];
580    /// let b = a.try_map(|v| v.parse::<u32>());
581    /// assert!(b.is_err());
582    ///
583    /// use std::num::NonZero;
584    ///
585    /// let z = [1, 2, 0, 3, 4];
586    /// assert_eq!(z.try_map(NonZero::new), None);
587    ///
588    /// let a = [1, 2, 3];
589    /// let b = a.try_map(NonZero::new);
590    /// let c = b.map(|x| x.map(NonZero::get));
591    /// assert_eq!(c, Some(a));
592    /// ```
593    #[unstable(feature = "array_try_map", issue = "79711")]
594    #[rustc_const_unstable(feature = "array_try_map", issue = "79711")]
595    pub const fn try_map<R>(
596        self,
597        mut f: impl [const] FnMut(T) -> R + [const] Destruct,
598    ) -> ChangeOutputType<R, [R::Output; N]>
599    where
600        R: [const] Try<Residual: [const] Residual<[R::Output; N]>, Output: [const] Destruct>,
601        T: [const] Destruct,
602    {
603        let mut me = ManuallyDrop::new(self);
604        // SAFETY: try_from_fn calls `f` N times.
605        let mut f = unsafe { drain::Drain::new(&mut me, &mut f) };
606        try_from_fn(&mut f)
607    }
608
609    /// Returns a slice containing the entire array. Equivalent to `&s[..]`.
610    #[stable(feature = "array_as_slice", since = "1.57.0")]
611    #[rustc_const_stable(feature = "array_as_slice", since = "1.57.0")]
612    pub const fn as_slice(&self) -> &[T] {
613        self
614    }
615
616    /// Returns a mutable slice containing the entire array. Equivalent to
617    /// `&mut s[..]`.
618    #[stable(feature = "array_as_slice", since = "1.57.0")]
619    #[rustc_const_stable(feature = "const_array_as_mut_slice", since = "1.89.0")]
620    pub const fn as_mut_slice(&mut self) -> &mut [T] {
621        self
622    }
623
624    /// Borrows each element and returns an array of references with the same
625    /// size as `self`.
626    ///
627    ///
628    /// # Example
629    ///
630    /// ```
631    /// let floats = [3.1, 2.7, -1.0];
632    /// let float_refs: [&f64; 3] = floats.each_ref();
633    /// assert_eq!(float_refs, [&3.1, &2.7, &-1.0]);
634    /// ```
635    ///
636    /// This method is particularly useful if combined with other methods, like
637    /// [`map`](#method.map). This way, you can avoid moving the original
638    /// array if its elements are not [`Copy`].
639    ///
640    /// ```
641    /// let strings = ["Ferris".to_string(), "♥".to_string(), "Rust".to_string()];
642    /// let is_ascii = strings.each_ref().map(|s| s.is_ascii());
643    /// assert_eq!(is_ascii, [true, false, true]);
644    ///
645    /// // We can still access the original array: it has not been moved.
646    /// assert_eq!(strings.len(), 3);
647    /// ```
648    #[stable(feature = "array_methods", since = "1.77.0")]
649    #[rustc_const_stable(feature = "const_array_each_ref", since = "1.91.0")]
650    pub const fn each_ref(&self) -> [&T; N] {
651        let mut buf = [null::<T>(); N];
652
653        // FIXME(const_trait_impl): We would like to simply use iterators for this (as in the original implementation), but this is not allowed in constant expressions.
654        let mut i = 0;
655        while i < N {
656            buf[i] = &raw const self[i];
657
658            i += 1;
659        }
660
661        // SAFETY: `*const T` has the same layout as `&T`, and we've also initialised each pointer as a valid reference.
662        unsafe { transmute_unchecked(buf) }
663    }
664
665    /// Borrows each element mutably and returns an array of mutable references
666    /// with the same size as `self`.
667    ///
668    ///
669    /// # Example
670    ///
671    /// ```
672    ///
673    /// let mut floats = [3.1, 2.7, -1.0];
674    /// let float_refs: [&mut f64; 3] = floats.each_mut();
675    /// *float_refs[0] = 0.0;
676    /// assert_eq!(float_refs, [&mut 0.0, &mut 2.7, &mut -1.0]);
677    /// assert_eq!(floats, [0.0, 2.7, -1.0]);
678    /// ```
679    #[stable(feature = "array_methods", since = "1.77.0")]
680    #[rustc_const_stable(feature = "const_array_each_ref", since = "1.91.0")]
681    pub const fn each_mut(&mut self) -> [&mut T; N] {
682        let mut buf = [null_mut::<T>(); N];
683
684        // FIXME(const_trait_impl): We would like to simply use iterators for this (as in the original implementation), but this is not allowed in constant expressions.
685        let mut i = 0;
686        while i < N {
687            buf[i] = &raw mut self[i];
688
689            i += 1;
690        }
691
692        // SAFETY: `*mut T` has the same layout as `&mut T`, and we've also initialised each pointer as a valid reference.
693        unsafe { transmute_unchecked(buf) }
694    }
695
696    /// Divides one array reference into two at an index.
697    ///
698    /// The first will contain all indices from `[0, M)` (excluding
699    /// the index `M` itself) and the second will contain all
700    /// indices from `[M, N)` (excluding the index `N` itself).
701    ///
702    /// # Panics
703    ///
704    /// Panics if `M > N`.
705    ///
706    /// # Examples
707    ///
708    /// ```
709    /// #![feature(split_array)]
710    ///
711    /// let v = [1, 2, 3, 4, 5, 6];
712    ///
713    /// {
714    ///    let (left, right) = v.split_array_ref::<0>();
715    ///    assert_eq!(left, &[]);
716    ///    assert_eq!(right, &[1, 2, 3, 4, 5, 6]);
717    /// }
718    ///
719    /// {
720    ///     let (left, right) = v.split_array_ref::<2>();
721    ///     assert_eq!(left, &[1, 2]);
722    ///     assert_eq!(right, &[3, 4, 5, 6]);
723    /// }
724    ///
725    /// {
726    ///     let (left, right) = v.split_array_ref::<6>();
727    ///     assert_eq!(left, &[1, 2, 3, 4, 5, 6]);
728    ///     assert_eq!(right, &[]);
729    /// }
730    /// ```
731    #[unstable(
732        feature = "split_array",
733        reason = "return type should have array as 2nd element",
734        issue = "90091"
735    )]
736    #[inline]
737    pub fn split_array_ref<const M: usize>(&self) -> (&[T; M], &[T]) {
738        self.split_first_chunk::<M>().unwrap()
739    }
740
741    /// Divides one mutable array reference into two at an index.
742    ///
743    /// The first will contain all indices from `[0, M)` (excluding
744    /// the index `M` itself) and the second will contain all
745    /// indices from `[M, N)` (excluding the index `N` itself).
746    ///
747    /// # Panics
748    ///
749    /// Panics if `M > N`.
750    ///
751    /// # Examples
752    ///
753    /// ```
754    /// #![feature(split_array)]
755    ///
756    /// let mut v = [1, 0, 3, 0, 5, 6];
757    /// let (left, right) = v.split_array_mut::<2>();
758    /// assert_eq!(left, &mut [1, 0][..]);
759    /// assert_eq!(right, &mut [3, 0, 5, 6]);
760    /// left[1] = 2;
761    /// right[1] = 4;
762    /// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
763    /// ```
764    #[unstable(
765        feature = "split_array",
766        reason = "return type should have array as 2nd element",
767        issue = "90091"
768    )]
769    #[inline]
770    pub fn split_array_mut<const M: usize>(&mut self) -> (&mut [T; M], &mut [T]) {
771        self.split_first_chunk_mut::<M>().unwrap()
772    }
773
774    /// Divides one array reference into two at an index from the end.
775    ///
776    /// The first will contain all indices from `[0, N - M)` (excluding
777    /// the index `N - M` itself) and the second will contain all
778    /// indices from `[N - M, N)` (excluding the index `N` itself).
779    ///
780    /// # Panics
781    ///
782    /// Panics if `M > N`.
783    ///
784    /// # Examples
785    ///
786    /// ```
787    /// #![feature(split_array)]
788    ///
789    /// let v = [1, 2, 3, 4, 5, 6];
790    ///
791    /// {
792    ///    let (left, right) = v.rsplit_array_ref::<0>();
793    ///    assert_eq!(left, &[1, 2, 3, 4, 5, 6]);
794    ///    assert_eq!(right, &[]);
795    /// }
796    ///
797    /// {
798    ///     let (left, right) = v.rsplit_array_ref::<2>();
799    ///     assert_eq!(left, &[1, 2, 3, 4]);
800    ///     assert_eq!(right, &[5, 6]);
801    /// }
802    ///
803    /// {
804    ///     let (left, right) = v.rsplit_array_ref::<6>();
805    ///     assert_eq!(left, &[]);
806    ///     assert_eq!(right, &[1, 2, 3, 4, 5, 6]);
807    /// }
808    /// ```
809    #[unstable(
810        feature = "split_array",
811        reason = "return type should have array as 2nd element",
812        issue = "90091"
813    )]
814    #[inline]
815    pub fn rsplit_array_ref<const M: usize>(&self) -> (&[T], &[T; M]) {
816        self.split_last_chunk::<M>().unwrap()
817    }
818
819    /// Divides one mutable array reference into two at an index from the end.
820    ///
821    /// The first will contain all indices from `[0, N - M)` (excluding
822    /// the index `N - M` itself) and the second will contain all
823    /// indices from `[N - M, N)` (excluding the index `N` itself).
824    ///
825    /// # Panics
826    ///
827    /// Panics if `M > N`.
828    ///
829    /// # Examples
830    ///
831    /// ```
832    /// #![feature(split_array)]
833    ///
834    /// let mut v = [1, 0, 3, 0, 5, 6];
835    /// let (left, right) = v.rsplit_array_mut::<4>();
836    /// assert_eq!(left, &mut [1, 0]);
837    /// assert_eq!(right, &mut [3, 0, 5, 6][..]);
838    /// left[1] = 2;
839    /// right[1] = 4;
840    /// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
841    /// ```
842    #[unstable(
843        feature = "split_array",
844        reason = "return type should have array as 2nd element",
845        issue = "90091"
846    )]
847    #[inline]
848    pub fn rsplit_array_mut<const M: usize>(&mut self) -> (&mut [T], &mut [T; M]) {
849        self.split_last_chunk_mut::<M>().unwrap()
850    }
851}
852
853/// Populate an array from the first `N` elements of `iter`
854///
855/// # Panics
856///
857/// If the iterator doesn't actually have enough items.
858///
859/// By depending on `TrustedLen`, however, we can do that check up-front (where
860/// it easily optimizes away) so it doesn't impact the loop that fills the array.
861#[inline]
862fn from_trusted_iterator<T, const N: usize>(iter: impl UncheckedIterator<Item = T>) -> [T; N] {
863    try_from_trusted_iterator(iter.map(NeverShortCircuit)).0
864}
865
866#[inline]
867fn try_from_trusted_iterator<T, R, const N: usize>(
868    iter: impl UncheckedIterator<Item = R>,
869) -> ChangeOutputType<R, [T; N]>
870where
871    R: Try<Output = T>,
872    R::Residual: Residual<[T; N]>,
873{
874    assert!(iter.size_hint().0 >= N);
875    fn next<T>(mut iter: impl UncheckedIterator<Item = T>) -> impl FnMut(usize) -> T {
876        move |_| {
877            // SAFETY: We know that `from_fn` will call this at most N times,
878            // and we checked to ensure that we have at least that many items.
879            unsafe { iter.next_unchecked() }
880        }
881    }
882
883    try_from_fn(next(iter))
884}
885
886/// Version of [`try_from_fn`] using a passed-in slice in order to avoid
887/// needing to monomorphize for every array length.
888///
889/// This takes a generator rather than an iterator so that *at the type level*
890/// it never needs to worry about running out of items.  When combined with
891/// an infallible `Try` type, that means the loop canonicalizes easily, allowing
892/// it to optimize well.
893///
894/// It would be *possible* to unify this and [`iter_next_chunk_erased`] into one
895/// function that does the union of both things, but last time it was that way
896/// it resulted in poor codegen from the "are there enough source items?" checks
897/// not optimizing away.  So if you give it a shot, make sure to watch what
898/// happens in the codegen tests.
899#[inline]
900#[rustc_const_unstable(feature = "array_try_from_fn", issue = "89379")]
901const fn try_from_fn_erased<R: [const] Try<Output: [const] Destruct>>(
902    buffer: &mut [MaybeUninit<R::Output>],
903    mut generator: impl [const] FnMut(usize) -> R + [const] Destruct,
904) -> ControlFlow<R::Residual> {
905    let mut guard = Guard { array_mut: buffer, initialized: 0 };
906
907    while guard.initialized < guard.array_mut.len() {
908        let item = generator(guard.initialized).branch()?;
909
910        // SAFETY: The loop condition ensures we have space to push the item
911        unsafe { guard.push_unchecked(item) };
912    }
913
914    mem::forget(guard);
915    ControlFlow::Continue(())
916}
917
918/// Panic guard for incremental initialization of arrays.
919///
920/// Disarm the guard with `mem::forget` once the array has been initialized.
921///
922/// # Safety
923///
924/// All write accesses to this structure are unsafe and must maintain a correct
925/// count of `initialized` elements.
926///
927/// To minimize indirection fields are still pub but callers should at least use
928/// `push_unchecked` to signal that something unsafe is going on.
929struct Guard<'a, T> {
930    /// The array to be initialized.
931    pub array_mut: &'a mut [MaybeUninit<T>],
932    /// The number of items that have been initialized so far.
933    pub initialized: usize,
934}
935
936impl<T> Guard<'_, T> {
937    /// Adds an item to the array and updates the initialized item counter.
938    ///
939    /// # Safety
940    ///
941    /// No more than N elements must be initialized.
942    #[inline]
943    #[rustc_const_unstable(feature = "array_try_from_fn", issue = "89379")]
944    pub(crate) const unsafe fn push_unchecked(&mut self, item: T) {
945        // SAFETY: If `initialized` was correct before and the caller does not
946        // invoke this method more than N times then writes will be in-bounds
947        // and slots will not be initialized more than once.
948        unsafe {
949            self.array_mut.get_unchecked_mut(self.initialized).write(item);
950            self.initialized = self.initialized.unchecked_add(1);
951        }
952    }
953}
954
955#[rustc_const_unstable(feature = "array_try_from_fn", issue = "89379")]
956impl<T: [const] Destruct> const Drop for Guard<'_, T> {
957    #[inline]
958    fn drop(&mut self) {
959        debug_assert!(self.initialized <= self.array_mut.len());
960        // SAFETY: this slice will contain only initialized objects.
961        unsafe {
962            self.array_mut.get_unchecked_mut(..self.initialized).assume_init_drop();
963        }
964    }
965}
966
967/// Pulls `N` items from `iter` and returns them as an array. If the iterator
968/// yields fewer than `N` items, `Err` is returned containing an iterator over
969/// the already yielded items.
970///
971/// Since the iterator is passed as a mutable reference and this function calls
972/// `next` at most `N` times, the iterator can still be used afterwards to
973/// retrieve the remaining items.
974///
975/// If `iter.next()` panicks, all items already yielded by the iterator are
976/// dropped.
977///
978/// Used for [`Iterator::next_chunk`].
979#[inline]
980pub(crate) fn iter_next_chunk<T, const N: usize>(
981    iter: &mut impl Iterator<Item = T>,
982) -> Result<[T; N], IntoIter<T, N>> {
983    let mut array = [const { MaybeUninit::uninit() }; N];
984    let r = iter_next_chunk_erased(&mut array, iter);
985    match r {
986        Ok(()) => {
987            // SAFETY: All elements of `array` were populated.
988            Ok(unsafe { MaybeUninit::array_assume_init(array) })
989        }
990        Err(initialized) => {
991            // SAFETY: Only the first `initialized` elements were populated
992            Err(unsafe { IntoIter::new_unchecked(array, 0..initialized) })
993        }
994    }
995}
996
997/// Version of [`iter_next_chunk`] using a passed-in slice in order to avoid
998/// needing to monomorphize for every array length.
999///
1000/// Unfortunately this loop has two exit conditions, the buffer filling up
1001/// or the iterator running out of items, making it tend to optimize poorly.
1002#[inline]
1003fn iter_next_chunk_erased<T>(
1004    buffer: &mut [MaybeUninit<T>],
1005    iter: &mut impl Iterator<Item = T>,
1006) -> Result<(), usize> {
1007    let mut guard = Guard { array_mut: buffer, initialized: 0 };
1008    while guard.initialized < guard.array_mut.len() {
1009        let Some(item) = iter.next() else {
1010            // Unlike `try_from_fn_erased`, we want to keep the partial results,
1011            // so we need to defuse the guard instead of using `?`.
1012            let initialized = guard.initialized;
1013            mem::forget(guard);
1014            return Err(initialized);
1015        };
1016
1017        // SAFETY: The loop condition ensures we have space to push the item
1018        unsafe { guard.push_unchecked(item) };
1019    }
1020
1021    mem::forget(guard);
1022    Ok(())
1023}