core/ptr/
non_null.rs

1use crate::cmp::Ordering;
2use crate::marker::{Destruct, PointeeSized, Unsize};
3use crate::mem::{MaybeUninit, SizedTypeProperties};
4use crate::num::NonZero;
5use crate::ops::{CoerceUnsized, DispatchFromDyn};
6use crate::pin::PinCoerceUnsized;
7use crate::ptr::Unique;
8use crate::slice::{self, SliceIndex};
9use crate::ub_checks::assert_unsafe_precondition;
10use crate::{fmt, hash, intrinsics, mem, ptr};
11
12/// `*mut T` but non-zero and [covariant].
13///
14/// This is often the correct thing to use when building data structures using
15/// raw pointers, but is ultimately more dangerous to use because of its additional
16/// properties. If you're not sure if you should use `NonNull<T>`, just use `*mut T`!
17///
18/// Unlike `*mut T`, the pointer must always be non-null, even if the pointer
19/// is never dereferenced. This is so that enums may use this forbidden value
20/// as a discriminant -- `Option<NonNull<T>>` has the same size as `*mut T`.
21/// However the pointer may still dangle if it isn't dereferenced.
22///
23/// Unlike `*mut T`, `NonNull<T>` is covariant over `T`. This is usually the correct
24/// choice for most data structures and safe abstractions, such as `Box`, `Rc`, `Arc`, `Vec`,
25/// and `LinkedList`.
26///
27/// In rare cases, if your type exposes a way to mutate the value of `T` through a `NonNull<T>`,
28/// and you need to prevent unsoundness from variance (for example, if `T` could be a reference
29/// with a shorter lifetime), you should add a field to make your type invariant, such as
30/// `PhantomData<Cell<T>>` or `PhantomData<&'a mut T>`.
31///
32/// Example of a type that must be invariant:
33/// ```rust
34/// use std::cell::Cell;
35/// use std::marker::PhantomData;
36/// struct Invariant<T> {
37///     ptr: std::ptr::NonNull<T>,
38///     _invariant: PhantomData<Cell<T>>,
39/// }
40/// ```
41///
42/// Notice that `NonNull<T>` has a `From` instance for `&T`. However, this does
43/// not change the fact that mutating through a (pointer derived from a) shared
44/// reference is undefined behavior unless the mutation happens inside an
45/// [`UnsafeCell<T>`]. The same goes for creating a mutable reference from a shared
46/// reference. When using this `From` instance without an `UnsafeCell<T>`,
47/// it is your responsibility to ensure that `as_mut` is never called, and `as_ptr`
48/// is never used for mutation.
49///
50/// # Representation
51///
52/// Thanks to the [null pointer optimization],
53/// `NonNull<T>` and `Option<NonNull<T>>`
54/// are guaranteed to have the same size and alignment:
55///
56/// ```
57/// use std::ptr::NonNull;
58///
59/// assert_eq!(size_of::<NonNull<i16>>(), size_of::<Option<NonNull<i16>>>());
60/// assert_eq!(align_of::<NonNull<i16>>(), align_of::<Option<NonNull<i16>>>());
61///
62/// assert_eq!(size_of::<NonNull<str>>(), size_of::<Option<NonNull<str>>>());
63/// assert_eq!(align_of::<NonNull<str>>(), align_of::<Option<NonNull<str>>>());
64/// ```
65///
66/// [covariant]: https://doc.rust-lang.org/reference/subtyping.html
67/// [`PhantomData`]: crate::marker::PhantomData
68/// [`UnsafeCell<T>`]: crate::cell::UnsafeCell
69/// [null pointer optimization]: crate::option#representation
70#[stable(feature = "nonnull", since = "1.25.0")]
71#[repr(transparent)]
72#[rustc_layout_scalar_valid_range_start(1)]
73#[rustc_nonnull_optimization_guaranteed]
74#[rustc_diagnostic_item = "NonNull"]
75pub struct NonNull<T: PointeeSized> {
76    // Remember to use `.as_ptr()` instead of `.pointer`, as field projecting to
77    // this is banned by <https://github.com/rust-lang/compiler-team/issues/807>.
78    pointer: *const T,
79}
80
81/// `NonNull` pointers are not `Send` because the data they reference may be aliased.
82// N.B., this impl is unnecessary, but should provide better error messages.
83#[stable(feature = "nonnull", since = "1.25.0")]
84impl<T: PointeeSized> !Send for NonNull<T> {}
85
86/// `NonNull` pointers are not `Sync` because the data they reference may be aliased.
87// N.B., this impl is unnecessary, but should provide better error messages.
88#[stable(feature = "nonnull", since = "1.25.0")]
89impl<T: PointeeSized> !Sync for NonNull<T> {}
90
91impl<T: Sized> NonNull<T> {
92    /// Creates a pointer with the given address and no [provenance][crate::ptr#provenance].
93    ///
94    /// For more details, see the equivalent method on a raw pointer, [`ptr::without_provenance_mut`].
95    ///
96    /// This is a [Strict Provenance][crate::ptr#strict-provenance] API.
97    #[stable(feature = "nonnull_provenance", since = "1.89.0")]
98    #[rustc_const_stable(feature = "nonnull_provenance", since = "1.89.0")]
99    #[must_use]
100    #[inline]
101    pub const fn without_provenance(addr: NonZero<usize>) -> Self {
102        let pointer = crate::ptr::without_provenance(addr.get());
103        // SAFETY: we know `addr` is non-zero.
104        unsafe { NonNull { pointer } }
105    }
106
107    /// Creates a new `NonNull` that is dangling, but well-aligned.
108    ///
109    /// This is useful for initializing types which lazily allocate, like
110    /// `Vec::new` does.
111    ///
112    /// Note that the address of the returned pointer may potentially
113    /// be that of a valid pointer, which means this must not be used
114    /// as a "not yet initialized" sentinel value.
115    /// Types that lazily allocate must track initialization by some other means.
116    ///
117    /// # Examples
118    ///
119    /// ```
120    /// use std::ptr::NonNull;
121    ///
122    /// let ptr = NonNull::<u32>::dangling();
123    /// // Important: don't try to access the value of `ptr` without
124    /// // initializing it first! The pointer is not null but isn't valid either!
125    /// ```
126    #[stable(feature = "nonnull", since = "1.25.0")]
127    #[rustc_const_stable(feature = "const_nonnull_dangling", since = "1.36.0")]
128    #[must_use]
129    #[inline]
130    pub const fn dangling() -> Self {
131        let align = crate::ptr::Alignment::of::<T>();
132        NonNull::without_provenance(align.as_nonzero())
133    }
134
135    /// Converts an address back to a mutable pointer, picking up some previously 'exposed'
136    /// [provenance][crate::ptr#provenance].
137    ///
138    /// For more details, see the equivalent method on a raw pointer, [`ptr::with_exposed_provenance_mut`].
139    ///
140    /// This is an [Exposed Provenance][crate::ptr#exposed-provenance] API.
141    #[stable(feature = "nonnull_provenance", since = "1.89.0")]
142    #[inline]
143    pub fn with_exposed_provenance(addr: NonZero<usize>) -> Self {
144        // SAFETY: we know `addr` is non-zero.
145        unsafe {
146            let ptr = crate::ptr::with_exposed_provenance_mut(addr.get());
147            NonNull::new_unchecked(ptr)
148        }
149    }
150
151    /// Returns a shared references to the value. In contrast to [`as_ref`], this does not require
152    /// that the value has to be initialized.
153    ///
154    /// For the mutable counterpart see [`as_uninit_mut`].
155    ///
156    /// [`as_ref`]: NonNull::as_ref
157    /// [`as_uninit_mut`]: NonNull::as_uninit_mut
158    ///
159    /// # Safety
160    ///
161    /// When calling this method, you have to ensure that
162    /// the pointer is [convertible to a reference](crate::ptr#pointer-to-reference-conversion).
163    /// Note that because the created reference is to `MaybeUninit<T>`, the
164    /// source pointer can point to uninitialized memory.
165    #[inline]
166    #[must_use]
167    #[unstable(feature = "ptr_as_uninit", issue = "75402")]
168    pub const unsafe fn as_uninit_ref<'a>(self) -> &'a MaybeUninit<T> {
169        // SAFETY: the caller must guarantee that `self` meets all the
170        // requirements for a reference.
171        unsafe { &*self.cast().as_ptr() }
172    }
173
174    /// Returns a unique references to the value. In contrast to [`as_mut`], this does not require
175    /// that the value has to be initialized.
176    ///
177    /// For the shared counterpart see [`as_uninit_ref`].
178    ///
179    /// [`as_mut`]: NonNull::as_mut
180    /// [`as_uninit_ref`]: NonNull::as_uninit_ref
181    ///
182    /// # Safety
183    ///
184    /// When calling this method, you have to ensure that
185    /// the pointer is [convertible to a reference](crate::ptr#pointer-to-reference-conversion).
186    /// Note that because the created reference is to `MaybeUninit<T>`, the
187    /// source pointer can point to uninitialized memory.
188    #[inline]
189    #[must_use]
190    #[unstable(feature = "ptr_as_uninit", issue = "75402")]
191    pub const unsafe fn as_uninit_mut<'a>(self) -> &'a mut MaybeUninit<T> {
192        // SAFETY: the caller must guarantee that `self` meets all the
193        // requirements for a reference.
194        unsafe { &mut *self.cast().as_ptr() }
195    }
196
197    /// Casts from a pointer-to-`T` to a pointer-to-`[T; N]`.
198    #[inline]
199    #[unstable(feature = "ptr_cast_array", issue = "144514")]
200    pub const fn cast_array<const N: usize>(self) -> NonNull<[T; N]> {
201        self.cast()
202    }
203}
204
205impl<T: PointeeSized> NonNull<T> {
206    /// Creates a new `NonNull`.
207    ///
208    /// # Safety
209    ///
210    /// `ptr` must be non-null.
211    ///
212    /// # Examples
213    ///
214    /// ```
215    /// use std::ptr::NonNull;
216    ///
217    /// let mut x = 0u32;
218    /// let ptr = unsafe { NonNull::new_unchecked(&mut x as *mut _) };
219    /// ```
220    ///
221    /// *Incorrect* usage of this function:
222    ///
223    /// ```rust,no_run
224    /// use std::ptr::NonNull;
225    ///
226    /// // NEVER DO THAT!!! This is undefined behavior. ⚠️
227    /// let ptr = unsafe { NonNull::<u32>::new_unchecked(std::ptr::null_mut()) };
228    /// ```
229    #[stable(feature = "nonnull", since = "1.25.0")]
230    #[rustc_const_stable(feature = "const_nonnull_new_unchecked", since = "1.25.0")]
231    #[inline]
232    #[track_caller]
233    pub const unsafe fn new_unchecked(ptr: *mut T) -> Self {
234        // SAFETY: the caller must guarantee that `ptr` is non-null.
235        unsafe {
236            assert_unsafe_precondition!(
237                check_language_ub,
238                "NonNull::new_unchecked requires that the pointer is non-null",
239                (ptr: *mut () = ptr as *mut ()) => !ptr.is_null()
240            );
241            NonNull { pointer: ptr as _ }
242        }
243    }
244
245    /// Creates a new `NonNull` if `ptr` is non-null.
246    ///
247    /// # Panics during const evaluation
248    ///
249    /// This method will panic during const evaluation if the pointer cannot be
250    /// determined to be null or not. See [`is_null`] for more information.
251    ///
252    /// [`is_null`]: ../primitive.pointer.html#method.is_null-1
253    ///
254    /// # Examples
255    ///
256    /// ```
257    /// use std::ptr::NonNull;
258    ///
259    /// let mut x = 0u32;
260    /// let ptr = NonNull::<u32>::new(&mut x as *mut _).expect("ptr is null!");
261    ///
262    /// if let Some(ptr) = NonNull::<u32>::new(std::ptr::null_mut()) {
263    ///     unreachable!();
264    /// }
265    /// ```
266    #[stable(feature = "nonnull", since = "1.25.0")]
267    #[rustc_const_stable(feature = "const_nonnull_new", since = "1.85.0")]
268    #[inline]
269    pub const fn new(ptr: *mut T) -> Option<Self> {
270        if !ptr.is_null() {
271            // SAFETY: The pointer is already checked and is not null
272            Some(unsafe { Self::new_unchecked(ptr) })
273        } else {
274            None
275        }
276    }
277
278    /// Converts a reference to a `NonNull` pointer.
279    #[stable(feature = "non_null_from_ref", since = "1.89.0")]
280    #[rustc_const_stable(feature = "non_null_from_ref", since = "1.89.0")]
281    #[inline]
282    pub const fn from_ref(r: &T) -> Self {
283        // SAFETY: A reference cannot be null.
284        unsafe { NonNull { pointer: r as *const T } }
285    }
286
287    /// Converts a mutable reference to a `NonNull` pointer.
288    #[stable(feature = "non_null_from_ref", since = "1.89.0")]
289    #[rustc_const_stable(feature = "non_null_from_ref", since = "1.89.0")]
290    #[inline]
291    pub const fn from_mut(r: &mut T) -> Self {
292        // SAFETY: A mutable reference cannot be null.
293        unsafe { NonNull { pointer: r as *mut T } }
294    }
295
296    /// Performs the same functionality as [`std::ptr::from_raw_parts`], except that a
297    /// `NonNull` pointer is returned, as opposed to a raw `*const` pointer.
298    ///
299    /// See the documentation of [`std::ptr::from_raw_parts`] for more details.
300    ///
301    /// [`std::ptr::from_raw_parts`]: crate::ptr::from_raw_parts
302    #[unstable(feature = "ptr_metadata", issue = "81513")]
303    #[inline]
304    pub const fn from_raw_parts(
305        data_pointer: NonNull<impl super::Thin>,
306        metadata: <T as super::Pointee>::Metadata,
307    ) -> NonNull<T> {
308        // SAFETY: The result of `ptr::from::raw_parts_mut` is non-null because `data_pointer` is.
309        unsafe {
310            NonNull::new_unchecked(super::from_raw_parts_mut(data_pointer.as_ptr(), metadata))
311        }
312    }
313
314    /// Decompose a (possibly wide) pointer into its data pointer and metadata components.
315    ///
316    /// The pointer can be later reconstructed with [`NonNull::from_raw_parts`].
317    #[unstable(feature = "ptr_metadata", issue = "81513")]
318    #[must_use = "this returns the result of the operation, \
319                  without modifying the original"]
320    #[inline]
321    pub const fn to_raw_parts(self) -> (NonNull<()>, <T as super::Pointee>::Metadata) {
322        (self.cast(), super::metadata(self.as_ptr()))
323    }
324
325    /// Gets the "address" portion of the pointer.
326    ///
327    /// For more details, see the equivalent method on a raw pointer, [`pointer::addr`].
328    ///
329    /// This is a [Strict Provenance][crate::ptr#strict-provenance] API.
330    #[must_use]
331    #[inline]
332    #[stable(feature = "strict_provenance", since = "1.84.0")]
333    pub fn addr(self) -> NonZero<usize> {
334        // SAFETY: The pointer is guaranteed by the type to be non-null,
335        // meaning that the address will be non-zero.
336        unsafe { NonZero::new_unchecked(self.as_ptr().addr()) }
337    }
338
339    /// Exposes the ["provenance"][crate::ptr#provenance] part of the pointer for future use in
340    /// [`with_exposed_provenance`][NonNull::with_exposed_provenance] and returns the "address" portion.
341    ///
342    /// For more details, see the equivalent method on a raw pointer, [`pointer::expose_provenance`].
343    ///
344    /// This is an [Exposed Provenance][crate::ptr#exposed-provenance] API.
345    #[stable(feature = "nonnull_provenance", since = "1.89.0")]
346    pub fn expose_provenance(self) -> NonZero<usize> {
347        // SAFETY: The pointer is guaranteed by the type to be non-null,
348        // meaning that the address will be non-zero.
349        unsafe { NonZero::new_unchecked(self.as_ptr().expose_provenance()) }
350    }
351
352    /// Creates a new pointer with the given address and the [provenance][crate::ptr#provenance] of
353    /// `self`.
354    ///
355    /// For more details, see the equivalent method on a raw pointer, [`pointer::with_addr`].
356    ///
357    /// This is a [Strict Provenance][crate::ptr#strict-provenance] API.
358    #[must_use]
359    #[inline]
360    #[stable(feature = "strict_provenance", since = "1.84.0")]
361    pub fn with_addr(self, addr: NonZero<usize>) -> Self {
362        // SAFETY: The result of `ptr::from::with_addr` is non-null because `addr` is guaranteed to be non-zero.
363        unsafe { NonNull::new_unchecked(self.as_ptr().with_addr(addr.get()) as *mut _) }
364    }
365
366    /// Creates a new pointer by mapping `self`'s address to a new one, preserving the
367    /// [provenance][crate::ptr#provenance] of `self`.
368    ///
369    /// For more details, see the equivalent method on a raw pointer, [`pointer::map_addr`].
370    ///
371    /// This is a [Strict Provenance][crate::ptr#strict-provenance] API.
372    #[must_use]
373    #[inline]
374    #[stable(feature = "strict_provenance", since = "1.84.0")]
375    pub fn map_addr(self, f: impl FnOnce(NonZero<usize>) -> NonZero<usize>) -> Self {
376        self.with_addr(f(self.addr()))
377    }
378
379    /// Acquires the underlying `*mut` pointer.
380    ///
381    /// # Examples
382    ///
383    /// ```
384    /// use std::ptr::NonNull;
385    ///
386    /// let mut x = 0u32;
387    /// let ptr = NonNull::new(&mut x).expect("ptr is null!");
388    ///
389    /// let x_value = unsafe { *ptr.as_ptr() };
390    /// assert_eq!(x_value, 0);
391    ///
392    /// unsafe { *ptr.as_ptr() += 2; }
393    /// let x_value = unsafe { *ptr.as_ptr() };
394    /// assert_eq!(x_value, 2);
395    /// ```
396    #[stable(feature = "nonnull", since = "1.25.0")]
397    #[rustc_const_stable(feature = "const_nonnull_as_ptr", since = "1.32.0")]
398    #[rustc_never_returns_null_ptr]
399    #[must_use]
400    #[inline(always)]
401    pub const fn as_ptr(self) -> *mut T {
402        // This is a transmute for the same reasons as `NonZero::get`.
403
404        // SAFETY: `NonNull` is `transparent` over a `*const T`, and `*const T`
405        // and `*mut T` have the same layout, so transitively we can transmute
406        // our `NonNull` to a `*mut T` directly.
407        unsafe { mem::transmute::<Self, *mut T>(self) }
408    }
409
410    /// Returns a shared reference to the value. If the value may be uninitialized, [`as_uninit_ref`]
411    /// must be used instead.
412    ///
413    /// For the mutable counterpart see [`as_mut`].
414    ///
415    /// [`as_uninit_ref`]: NonNull::as_uninit_ref
416    /// [`as_mut`]: NonNull::as_mut
417    ///
418    /// # Safety
419    ///
420    /// When calling this method, you have to ensure that
421    /// the pointer is [convertible to a reference](crate::ptr#pointer-to-reference-conversion).
422    ///
423    /// # Examples
424    ///
425    /// ```
426    /// use std::ptr::NonNull;
427    ///
428    /// let mut x = 0u32;
429    /// let ptr = NonNull::new(&mut x as *mut _).expect("ptr is null!");
430    ///
431    /// let ref_x = unsafe { ptr.as_ref() };
432    /// println!("{ref_x}");
433    /// ```
434    ///
435    /// [the module documentation]: crate::ptr#safety
436    #[stable(feature = "nonnull", since = "1.25.0")]
437    #[rustc_const_stable(feature = "const_nonnull_as_ref", since = "1.73.0")]
438    #[must_use]
439    #[inline(always)]
440    pub const unsafe fn as_ref<'a>(&self) -> &'a T {
441        // SAFETY: the caller must guarantee that `self` meets all the
442        // requirements for a reference.
443        // `cast_const` avoids a mutable raw pointer deref.
444        unsafe { &*self.as_ptr().cast_const() }
445    }
446
447    /// Returns a unique reference to the value. If the value may be uninitialized, [`as_uninit_mut`]
448    /// must be used instead.
449    ///
450    /// For the shared counterpart see [`as_ref`].
451    ///
452    /// [`as_uninit_mut`]: NonNull::as_uninit_mut
453    /// [`as_ref`]: NonNull::as_ref
454    ///
455    /// # Safety
456    ///
457    /// When calling this method, you have to ensure that
458    /// the pointer is [convertible to a reference](crate::ptr#pointer-to-reference-conversion).
459    /// # Examples
460    ///
461    /// ```
462    /// use std::ptr::NonNull;
463    ///
464    /// let mut x = 0u32;
465    /// let mut ptr = NonNull::new(&mut x).expect("null pointer");
466    ///
467    /// let x_ref = unsafe { ptr.as_mut() };
468    /// assert_eq!(*x_ref, 0);
469    /// *x_ref += 2;
470    /// assert_eq!(*x_ref, 2);
471    /// ```
472    ///
473    /// [the module documentation]: crate::ptr#safety
474    #[stable(feature = "nonnull", since = "1.25.0")]
475    #[rustc_const_stable(feature = "const_ptr_as_ref", since = "1.83.0")]
476    #[must_use]
477    #[inline(always)]
478    pub const unsafe fn as_mut<'a>(&mut self) -> &'a mut T {
479        // SAFETY: the caller must guarantee that `self` meets all the
480        // requirements for a mutable reference.
481        unsafe { &mut *self.as_ptr() }
482    }
483
484    /// Casts to a pointer of another type.
485    ///
486    /// # Examples
487    ///
488    /// ```
489    /// use std::ptr::NonNull;
490    ///
491    /// let mut x = 0u32;
492    /// let ptr = NonNull::new(&mut x as *mut _).expect("null pointer");
493    ///
494    /// let casted_ptr = ptr.cast::<i8>();
495    /// let raw_ptr: *mut i8 = casted_ptr.as_ptr();
496    /// ```
497    #[stable(feature = "nonnull_cast", since = "1.27.0")]
498    #[rustc_const_stable(feature = "const_nonnull_cast", since = "1.36.0")]
499    #[must_use = "this returns the result of the operation, \
500                  without modifying the original"]
501    #[inline]
502    pub const fn cast<U>(self) -> NonNull<U> {
503        // SAFETY: `self` is a `NonNull` pointer which is necessarily non-null
504        unsafe { NonNull { pointer: self.as_ptr() as *mut U } }
505    }
506
507    /// Try to cast to a pointer of another type by checking alignment.
508    ///
509    /// If the pointer is properly aligned to the target type, it will be
510    /// cast to the target type. Otherwise, `None` is returned.
511    ///
512    /// # Examples
513    ///
514    /// ```rust
515    /// #![feature(pointer_try_cast_aligned)]
516    /// use std::ptr::NonNull;
517    ///
518    /// let mut x = 0u64;
519    ///
520    /// let aligned = NonNull::from_mut(&mut x);
521    /// let unaligned = unsafe { aligned.byte_add(1) };
522    ///
523    /// assert!(aligned.try_cast_aligned::<u32>().is_some());
524    /// assert!(unaligned.try_cast_aligned::<u32>().is_none());
525    /// ```
526    #[unstable(feature = "pointer_try_cast_aligned", issue = "141221")]
527    #[must_use = "this returns the result of the operation, \
528                  without modifying the original"]
529    #[inline]
530    pub fn try_cast_aligned<U>(self) -> Option<NonNull<U>> {
531        if self.is_aligned_to(align_of::<U>()) { Some(self.cast()) } else { None }
532    }
533
534    /// Adds an offset to a pointer.
535    ///
536    /// `count` is in units of T; e.g., a `count` of 3 represents a pointer
537    /// offset of `3 * size_of::<T>()` bytes.
538    ///
539    /// # Safety
540    ///
541    /// If any of the following conditions are violated, the result is Undefined Behavior:
542    ///
543    /// * The computed offset, `count * size_of::<T>()` bytes, must not overflow `isize`.
544    ///
545    /// * If the computed offset is non-zero, then `self` must be derived from a pointer to some
546    ///   [allocation], and the entire memory range between `self` and the result must be in
547    ///   bounds of that allocation. In particular, this range must not "wrap around" the edge
548    ///   of the address space.
549    ///
550    /// Allocations can never be larger than `isize::MAX` bytes, so if the computed offset
551    /// stays in bounds of the allocation, it is guaranteed to satisfy the first requirement.
552    /// This implies, for instance, that `vec.as_ptr().add(vec.len())` (for `vec: Vec<T>`) is always
553    /// safe.
554    ///
555    /// [allocation]: crate::ptr#allocation
556    ///
557    /// # Examples
558    ///
559    /// ```
560    /// use std::ptr::NonNull;
561    ///
562    /// let mut s = [1, 2, 3];
563    /// let ptr: NonNull<u32> = NonNull::new(s.as_mut_ptr()).unwrap();
564    ///
565    /// unsafe {
566    ///     println!("{}", ptr.offset(1).read());
567    ///     println!("{}", ptr.offset(2).read());
568    /// }
569    /// ```
570    #[inline(always)]
571    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
572    #[must_use = "returns a new pointer rather than modifying its argument"]
573    #[stable(feature = "non_null_convenience", since = "1.80.0")]
574    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
575    pub const unsafe fn offset(self, count: isize) -> Self
576    where
577        T: Sized,
578    {
579        // SAFETY: the caller must uphold the safety contract for `offset`.
580        // Additionally safety contract of `offset` guarantees that the resulting pointer is
581        // pointing to an allocation, there can't be an allocation at null, thus it's safe to
582        // construct `NonNull`.
583        unsafe { NonNull { pointer: intrinsics::offset(self.as_ptr(), count) } }
584    }
585
586    /// Calculates the offset from a pointer in bytes.
587    ///
588    /// `count` is in units of **bytes**.
589    ///
590    /// This is purely a convenience for casting to a `u8` pointer and
591    /// using [offset][pointer::offset] on it. See that method for documentation
592    /// and safety requirements.
593    ///
594    /// For non-`Sized` pointees this operation changes only the data pointer,
595    /// leaving the metadata untouched.
596    #[must_use]
597    #[inline(always)]
598    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
599    #[stable(feature = "non_null_convenience", since = "1.80.0")]
600    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
601    pub const unsafe fn byte_offset(self, count: isize) -> Self {
602        // SAFETY: the caller must uphold the safety contract for `offset` and `byte_offset` has
603        // the same safety contract.
604        // Additionally safety contract of `offset` guarantees that the resulting pointer is
605        // pointing to an allocation, there can't be an allocation at null, thus it's safe to
606        // construct `NonNull`.
607        unsafe { NonNull { pointer: self.as_ptr().byte_offset(count) } }
608    }
609
610    /// Adds an offset to a pointer (convenience for `.offset(count as isize)`).
611    ///
612    /// `count` is in units of T; e.g., a `count` of 3 represents a pointer
613    /// offset of `3 * size_of::<T>()` bytes.
614    ///
615    /// # Safety
616    ///
617    /// If any of the following conditions are violated, the result is Undefined Behavior:
618    ///
619    /// * The computed offset, `count * size_of::<T>()` bytes, must not overflow `isize`.
620    ///
621    /// * If the computed offset is non-zero, then `self` must be derived from a pointer to some
622    ///   [allocation], and the entire memory range between `self` and the result must be in
623    ///   bounds of that allocation. In particular, this range must not "wrap around" the edge
624    ///   of the address space.
625    ///
626    /// Allocations can never be larger than `isize::MAX` bytes, so if the computed offset
627    /// stays in bounds of the allocation, it is guaranteed to satisfy the first requirement.
628    /// This implies, for instance, that `vec.as_ptr().add(vec.len())` (for `vec: Vec<T>`) is always
629    /// safe.
630    ///
631    /// [allocation]: crate::ptr#allocation
632    ///
633    /// # Examples
634    ///
635    /// ```
636    /// use std::ptr::NonNull;
637    ///
638    /// let s: &str = "123";
639    /// let ptr: NonNull<u8> = NonNull::new(s.as_ptr().cast_mut()).unwrap();
640    ///
641    /// unsafe {
642    ///     println!("{}", ptr.add(1).read() as char);
643    ///     println!("{}", ptr.add(2).read() as char);
644    /// }
645    /// ```
646    #[inline(always)]
647    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
648    #[must_use = "returns a new pointer rather than modifying its argument"]
649    #[stable(feature = "non_null_convenience", since = "1.80.0")]
650    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
651    pub const unsafe fn add(self, count: usize) -> Self
652    where
653        T: Sized,
654    {
655        // SAFETY: the caller must uphold the safety contract for `offset`.
656        // Additionally safety contract of `offset` guarantees that the resulting pointer is
657        // pointing to an allocation, there can't be an allocation at null, thus it's safe to
658        // construct `NonNull`.
659        unsafe { NonNull { pointer: intrinsics::offset(self.as_ptr(), count) } }
660    }
661
662    /// Calculates the offset from a pointer in bytes (convenience for `.byte_offset(count as isize)`).
663    ///
664    /// `count` is in units of bytes.
665    ///
666    /// This is purely a convenience for casting to a `u8` pointer and
667    /// using [`add`][NonNull::add] on it. See that method for documentation
668    /// and safety requirements.
669    ///
670    /// For non-`Sized` pointees this operation changes only the data pointer,
671    /// leaving the metadata untouched.
672    #[must_use]
673    #[inline(always)]
674    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
675    #[stable(feature = "non_null_convenience", since = "1.80.0")]
676    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
677    pub const unsafe fn byte_add(self, count: usize) -> Self {
678        // SAFETY: the caller must uphold the safety contract for `add` and `byte_add` has the same
679        // safety contract.
680        // Additionally safety contract of `add` guarantees that the resulting pointer is pointing
681        // to an allocation, there can't be an allocation at null, thus it's safe to construct
682        // `NonNull`.
683        unsafe { NonNull { pointer: self.as_ptr().byte_add(count) } }
684    }
685
686    /// Subtracts an offset from a pointer (convenience for
687    /// `.offset((count as isize).wrapping_neg())`).
688    ///
689    /// `count` is in units of T; e.g., a `count` of 3 represents a pointer
690    /// offset of `3 * size_of::<T>()` bytes.
691    ///
692    /// # Safety
693    ///
694    /// If any of the following conditions are violated, the result is Undefined Behavior:
695    ///
696    /// * The computed offset, `count * size_of::<T>()` bytes, must not overflow `isize`.
697    ///
698    /// * If the computed offset is non-zero, then `self` must be derived from a pointer to some
699    ///   [allocation], and the entire memory range between `self` and the result must be in
700    ///   bounds of that allocation. In particular, this range must not "wrap around" the edge
701    ///   of the address space.
702    ///
703    /// Allocations can never be larger than `isize::MAX` bytes, so if the computed offset
704    /// stays in bounds of the allocation, it is guaranteed to satisfy the first requirement.
705    /// This implies, for instance, that `vec.as_ptr().add(vec.len())` (for `vec: Vec<T>`) is always
706    /// safe.
707    ///
708    /// [allocation]: crate::ptr#allocation
709    ///
710    /// # Examples
711    ///
712    /// ```
713    /// use std::ptr::NonNull;
714    ///
715    /// let s: &str = "123";
716    ///
717    /// unsafe {
718    ///     let end: NonNull<u8> = NonNull::new(s.as_ptr().cast_mut()).unwrap().add(3);
719    ///     println!("{}", end.sub(1).read() as char);
720    ///     println!("{}", end.sub(2).read() as char);
721    /// }
722    /// ```
723    #[inline(always)]
724    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
725    #[must_use = "returns a new pointer rather than modifying its argument"]
726    #[stable(feature = "non_null_convenience", since = "1.80.0")]
727    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
728    pub const unsafe fn sub(self, count: usize) -> Self
729    where
730        T: Sized,
731    {
732        if T::IS_ZST {
733            // Pointer arithmetic does nothing when the pointee is a ZST.
734            self
735        } else {
736            // SAFETY: the caller must uphold the safety contract for `offset`.
737            // Because the pointee is *not* a ZST, that means that `count` is
738            // at most `isize::MAX`, and thus the negation cannot overflow.
739            unsafe { self.offset((count as isize).unchecked_neg()) }
740        }
741    }
742
743    /// Calculates the offset from a pointer in bytes (convenience for
744    /// `.byte_offset((count as isize).wrapping_neg())`).
745    ///
746    /// `count` is in units of bytes.
747    ///
748    /// This is purely a convenience for casting to a `u8` pointer and
749    /// using [`sub`][NonNull::sub] on it. See that method for documentation
750    /// and safety requirements.
751    ///
752    /// For non-`Sized` pointees this operation changes only the data pointer,
753    /// leaving the metadata untouched.
754    #[must_use]
755    #[inline(always)]
756    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
757    #[stable(feature = "non_null_convenience", since = "1.80.0")]
758    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
759    pub const unsafe fn byte_sub(self, count: usize) -> Self {
760        // SAFETY: the caller must uphold the safety contract for `sub` and `byte_sub` has the same
761        // safety contract.
762        // Additionally safety contract of `sub` guarantees that the resulting pointer is pointing
763        // to an allocation, there can't be an allocation at null, thus it's safe to construct
764        // `NonNull`.
765        unsafe { NonNull { pointer: self.as_ptr().byte_sub(count) } }
766    }
767
768    /// Calculates the distance between two pointers within the same allocation. The returned value is in
769    /// units of T: the distance in bytes divided by `size_of::<T>()`.
770    ///
771    /// This is equivalent to `(self as isize - origin as isize) / (size_of::<T>() as isize)`,
772    /// except that it has a lot more opportunities for UB, in exchange for the compiler
773    /// better understanding what you are doing.
774    ///
775    /// The primary motivation of this method is for computing the `len` of an array/slice
776    /// of `T` that you are currently representing as a "start" and "end" pointer
777    /// (and "end" is "one past the end" of the array).
778    /// In that case, `end.offset_from(start)` gets you the length of the array.
779    ///
780    /// All of the following safety requirements are trivially satisfied for this usecase.
781    ///
782    /// [`offset`]: #method.offset
783    ///
784    /// # Safety
785    ///
786    /// If any of the following conditions are violated, the result is Undefined Behavior:
787    ///
788    /// * `self` and `origin` must either
789    ///
790    ///   * point to the same address, or
791    ///   * both be *derived from* a pointer to the same [allocation], and the memory range between
792    ///     the two pointers must be in bounds of that object. (See below for an example.)
793    ///
794    /// * The distance between the pointers, in bytes, must be an exact multiple
795    ///   of the size of `T`.
796    ///
797    /// As a consequence, the absolute distance between the pointers, in bytes, computed on
798    /// mathematical integers (without "wrapping around"), cannot overflow an `isize`. This is
799    /// implied by the in-bounds requirement, and the fact that no allocation can be larger
800    /// than `isize::MAX` bytes.
801    ///
802    /// The requirement for pointers to be derived from the same allocation is primarily
803    /// needed for `const`-compatibility: the distance between pointers into *different* allocated
804    /// objects is not known at compile-time. However, the requirement also exists at
805    /// runtime and may be exploited by optimizations. If you wish to compute the difference between
806    /// pointers that are not guaranteed to be from the same allocation, use `(self as isize -
807    /// origin as isize) / size_of::<T>()`.
808    // FIXME: recommend `addr()` instead of `as usize` once that is stable.
809    ///
810    /// [`add`]: #method.add
811    /// [allocation]: crate::ptr#allocation
812    ///
813    /// # Panics
814    ///
815    /// This function panics if `T` is a Zero-Sized Type ("ZST").
816    ///
817    /// # Examples
818    ///
819    /// Basic usage:
820    ///
821    /// ```
822    /// use std::ptr::NonNull;
823    ///
824    /// let a = [0; 5];
825    /// let ptr1: NonNull<u32> = NonNull::from(&a[1]);
826    /// let ptr2: NonNull<u32> = NonNull::from(&a[3]);
827    /// unsafe {
828    ///     assert_eq!(ptr2.offset_from(ptr1), 2);
829    ///     assert_eq!(ptr1.offset_from(ptr2), -2);
830    ///     assert_eq!(ptr1.offset(2), ptr2);
831    ///     assert_eq!(ptr2.offset(-2), ptr1);
832    /// }
833    /// ```
834    ///
835    /// *Incorrect* usage:
836    ///
837    /// ```rust,no_run
838    /// use std::ptr::NonNull;
839    ///
840    /// let ptr1 = NonNull::new(Box::into_raw(Box::new(0u8))).unwrap();
841    /// let ptr2 = NonNull::new(Box::into_raw(Box::new(1u8))).unwrap();
842    /// let diff = (ptr2.addr().get() as isize).wrapping_sub(ptr1.addr().get() as isize);
843    /// // Make ptr2_other an "alias" of ptr2.add(1), but derived from ptr1.
844    /// let diff_plus_1 = diff.wrapping_add(1);
845    /// let ptr2_other = NonNull::new(ptr1.as_ptr().wrapping_byte_offset(diff_plus_1)).unwrap();
846    /// assert_eq!(ptr2.addr(), ptr2_other.addr());
847    /// // Since ptr2_other and ptr2 are derived from pointers to different objects,
848    /// // computing their offset is undefined behavior, even though
849    /// // they point to addresses that are in-bounds of the same object!
850    ///
851    /// let one = unsafe { ptr2_other.offset_from(ptr2) }; // Undefined Behavior! ⚠️
852    /// ```
853    #[inline]
854    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
855    #[stable(feature = "non_null_convenience", since = "1.80.0")]
856    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
857    pub const unsafe fn offset_from(self, origin: NonNull<T>) -> isize
858    where
859        T: Sized,
860    {
861        // SAFETY: the caller must uphold the safety contract for `offset_from`.
862        unsafe { self.as_ptr().offset_from(origin.as_ptr()) }
863    }
864
865    /// Calculates the distance between two pointers within the same allocation. The returned value is in
866    /// units of **bytes**.
867    ///
868    /// This is purely a convenience for casting to a `u8` pointer and
869    /// using [`offset_from`][NonNull::offset_from] on it. See that method for
870    /// documentation and safety requirements.
871    ///
872    /// For non-`Sized` pointees this operation considers only the data pointers,
873    /// ignoring the metadata.
874    #[inline(always)]
875    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
876    #[stable(feature = "non_null_convenience", since = "1.80.0")]
877    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
878    pub const unsafe fn byte_offset_from<U: ?Sized>(self, origin: NonNull<U>) -> isize {
879        // SAFETY: the caller must uphold the safety contract for `byte_offset_from`.
880        unsafe { self.as_ptr().byte_offset_from(origin.as_ptr()) }
881    }
882
883    // N.B. `wrapping_offset``, `wrapping_add`, etc are not implemented because they can wrap to null
884
885    /// Calculates the distance between two pointers within the same allocation, *where it's known that
886    /// `self` is equal to or greater than `origin`*. The returned value is in
887    /// units of T: the distance in bytes is divided by `size_of::<T>()`.
888    ///
889    /// This computes the same value that [`offset_from`](#method.offset_from)
890    /// would compute, but with the added precondition that the offset is
891    /// guaranteed to be non-negative.  This method is equivalent to
892    /// `usize::try_from(self.offset_from(origin)).unwrap_unchecked()`,
893    /// but it provides slightly more information to the optimizer, which can
894    /// sometimes allow it to optimize slightly better with some backends.
895    ///
896    /// This method can be though of as recovering the `count` that was passed
897    /// to [`add`](#method.add) (or, with the parameters in the other order,
898    /// to [`sub`](#method.sub)).  The following are all equivalent, assuming
899    /// that their safety preconditions are met:
900    /// ```rust
901    /// # unsafe fn blah(ptr: std::ptr::NonNull<u32>, origin: std::ptr::NonNull<u32>, count: usize) -> bool { unsafe {
902    /// ptr.offset_from_unsigned(origin) == count
903    /// # &&
904    /// origin.add(count) == ptr
905    /// # &&
906    /// ptr.sub(count) == origin
907    /// # } }
908    /// ```
909    ///
910    /// # Safety
911    ///
912    /// - The distance between the pointers must be non-negative (`self >= origin`)
913    ///
914    /// - *All* the safety conditions of [`offset_from`](#method.offset_from)
915    ///   apply to this method as well; see it for the full details.
916    ///
917    /// Importantly, despite the return type of this method being able to represent
918    /// a larger offset, it's still *not permitted* to pass pointers which differ
919    /// by more than `isize::MAX` *bytes*.  As such, the result of this method will
920    /// always be less than or equal to `isize::MAX as usize`.
921    ///
922    /// # Panics
923    ///
924    /// This function panics if `T` is a Zero-Sized Type ("ZST").
925    ///
926    /// # Examples
927    ///
928    /// ```
929    /// use std::ptr::NonNull;
930    ///
931    /// let a = [0; 5];
932    /// let ptr1: NonNull<u32> = NonNull::from(&a[1]);
933    /// let ptr2: NonNull<u32> = NonNull::from(&a[3]);
934    /// unsafe {
935    ///     assert_eq!(ptr2.offset_from_unsigned(ptr1), 2);
936    ///     assert_eq!(ptr1.add(2), ptr2);
937    ///     assert_eq!(ptr2.sub(2), ptr1);
938    ///     assert_eq!(ptr2.offset_from_unsigned(ptr2), 0);
939    /// }
940    ///
941    /// // This would be incorrect, as the pointers are not correctly ordered:
942    /// // ptr1.offset_from_unsigned(ptr2)
943    /// ```
944    #[inline]
945    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
946    #[stable(feature = "ptr_sub_ptr", since = "1.87.0")]
947    #[rustc_const_stable(feature = "const_ptr_sub_ptr", since = "1.87.0")]
948    pub const unsafe fn offset_from_unsigned(self, subtracted: NonNull<T>) -> usize
949    where
950        T: Sized,
951    {
952        // SAFETY: the caller must uphold the safety contract for `offset_from_unsigned`.
953        unsafe { self.as_ptr().offset_from_unsigned(subtracted.as_ptr()) }
954    }
955
956    /// Calculates the distance between two pointers within the same allocation, *where it's known that
957    /// `self` is equal to or greater than `origin`*. The returned value is in
958    /// units of **bytes**.
959    ///
960    /// This is purely a convenience for casting to a `u8` pointer and
961    /// using [`offset_from_unsigned`][NonNull::offset_from_unsigned] on it.
962    /// See that method for documentation and safety requirements.
963    ///
964    /// For non-`Sized` pointees this operation considers only the data pointers,
965    /// ignoring the metadata.
966    #[inline(always)]
967    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
968    #[stable(feature = "ptr_sub_ptr", since = "1.87.0")]
969    #[rustc_const_stable(feature = "const_ptr_sub_ptr", since = "1.87.0")]
970    pub const unsafe fn byte_offset_from_unsigned<U: ?Sized>(self, origin: NonNull<U>) -> usize {
971        // SAFETY: the caller must uphold the safety contract for `byte_offset_from_unsigned`.
972        unsafe { self.as_ptr().byte_offset_from_unsigned(origin.as_ptr()) }
973    }
974
975    /// Reads the value from `self` without moving it. This leaves the
976    /// memory in `self` unchanged.
977    ///
978    /// See [`ptr::read`] for safety concerns and examples.
979    ///
980    /// [`ptr::read`]: crate::ptr::read()
981    #[inline]
982    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
983    #[stable(feature = "non_null_convenience", since = "1.80.0")]
984    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
985    pub const unsafe fn read(self) -> T
986    where
987        T: Sized,
988    {
989        // SAFETY: the caller must uphold the safety contract for `read`.
990        unsafe { ptr::read(self.as_ptr()) }
991    }
992
993    /// Performs a volatile read of the value from `self` without moving it. This
994    /// leaves the memory in `self` unchanged.
995    ///
996    /// Volatile operations are intended to act on I/O memory, and are guaranteed
997    /// to not be elided or reordered by the compiler across other volatile
998    /// operations.
999    ///
1000    /// See [`ptr::read_volatile`] for safety concerns and examples.
1001    ///
1002    /// [`ptr::read_volatile`]: crate::ptr::read_volatile()
1003    #[inline]
1004    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1005    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1006    pub unsafe fn read_volatile(self) -> T
1007    where
1008        T: Sized,
1009    {
1010        // SAFETY: the caller must uphold the safety contract for `read_volatile`.
1011        unsafe { ptr::read_volatile(self.as_ptr()) }
1012    }
1013
1014    /// Reads the value from `self` without moving it. This leaves the
1015    /// memory in `self` unchanged.
1016    ///
1017    /// Unlike `read`, the pointer may be unaligned.
1018    ///
1019    /// See [`ptr::read_unaligned`] for safety concerns and examples.
1020    ///
1021    /// [`ptr::read_unaligned`]: crate::ptr::read_unaligned()
1022    #[inline]
1023    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1024    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1025    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
1026    pub const unsafe fn read_unaligned(self) -> T
1027    where
1028        T: Sized,
1029    {
1030        // SAFETY: the caller must uphold the safety contract for `read_unaligned`.
1031        unsafe { ptr::read_unaligned(self.as_ptr()) }
1032    }
1033
1034    /// Copies `count * size_of::<T>()` bytes from `self` to `dest`. The source
1035    /// and destination may overlap.
1036    ///
1037    /// NOTE: this has the *same* argument order as [`ptr::copy`].
1038    ///
1039    /// See [`ptr::copy`] for safety concerns and examples.
1040    ///
1041    /// [`ptr::copy`]: crate::ptr::copy()
1042    #[inline(always)]
1043    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1044    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1045    #[rustc_const_stable(feature = "const_intrinsic_copy", since = "1.83.0")]
1046    pub const unsafe fn copy_to(self, dest: NonNull<T>, count: usize)
1047    where
1048        T: Sized,
1049    {
1050        // SAFETY: the caller must uphold the safety contract for `copy`.
1051        unsafe { ptr::copy(self.as_ptr(), dest.as_ptr(), count) }
1052    }
1053
1054    /// Copies `count * size_of::<T>()` bytes from `self` to `dest`. The source
1055    /// and destination may *not* overlap.
1056    ///
1057    /// NOTE: this has the *same* argument order as [`ptr::copy_nonoverlapping`].
1058    ///
1059    /// See [`ptr::copy_nonoverlapping`] for safety concerns and examples.
1060    ///
1061    /// [`ptr::copy_nonoverlapping`]: crate::ptr::copy_nonoverlapping()
1062    #[inline(always)]
1063    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1064    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1065    #[rustc_const_stable(feature = "const_intrinsic_copy", since = "1.83.0")]
1066    pub const unsafe fn copy_to_nonoverlapping(self, dest: NonNull<T>, count: usize)
1067    where
1068        T: Sized,
1069    {
1070        // SAFETY: the caller must uphold the safety contract for `copy_nonoverlapping`.
1071        unsafe { ptr::copy_nonoverlapping(self.as_ptr(), dest.as_ptr(), count) }
1072    }
1073
1074    /// Copies `count * size_of::<T>()` bytes from `src` to `self`. The source
1075    /// and destination may overlap.
1076    ///
1077    /// NOTE: this has the *opposite* argument order of [`ptr::copy`].
1078    ///
1079    /// See [`ptr::copy`] for safety concerns and examples.
1080    ///
1081    /// [`ptr::copy`]: crate::ptr::copy()
1082    #[inline(always)]
1083    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1084    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1085    #[rustc_const_stable(feature = "const_intrinsic_copy", since = "1.83.0")]
1086    pub const unsafe fn copy_from(self, src: NonNull<T>, count: usize)
1087    where
1088        T: Sized,
1089    {
1090        // SAFETY: the caller must uphold the safety contract for `copy`.
1091        unsafe { ptr::copy(src.as_ptr(), self.as_ptr(), count) }
1092    }
1093
1094    /// Copies `count * size_of::<T>()` bytes from `src` to `self`. The source
1095    /// and destination may *not* overlap.
1096    ///
1097    /// NOTE: this has the *opposite* argument order of [`ptr::copy_nonoverlapping`].
1098    ///
1099    /// See [`ptr::copy_nonoverlapping`] for safety concerns and examples.
1100    ///
1101    /// [`ptr::copy_nonoverlapping`]: crate::ptr::copy_nonoverlapping()
1102    #[inline(always)]
1103    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1104    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1105    #[rustc_const_stable(feature = "const_intrinsic_copy", since = "1.83.0")]
1106    pub const unsafe fn copy_from_nonoverlapping(self, src: NonNull<T>, count: usize)
1107    where
1108        T: Sized,
1109    {
1110        // SAFETY: the caller must uphold the safety contract for `copy_nonoverlapping`.
1111        unsafe { ptr::copy_nonoverlapping(src.as_ptr(), self.as_ptr(), count) }
1112    }
1113
1114    /// Executes the destructor (if any) of the pointed-to value.
1115    ///
1116    /// See [`ptr::drop_in_place`] for safety concerns and examples.
1117    ///
1118    /// [`ptr::drop_in_place`]: crate::ptr::drop_in_place()
1119    #[inline(always)]
1120    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1121    #[rustc_const_unstable(feature = "const_drop_in_place", issue = "109342")]
1122    pub const unsafe fn drop_in_place(self)
1123    where
1124        T: [const] Destruct,
1125    {
1126        // SAFETY: the caller must uphold the safety contract for `drop_in_place`.
1127        unsafe { ptr::drop_in_place(self.as_ptr()) }
1128    }
1129
1130    /// Overwrites a memory location with the given value without reading or
1131    /// dropping the old value.
1132    ///
1133    /// See [`ptr::write`] for safety concerns and examples.
1134    ///
1135    /// [`ptr::write`]: crate::ptr::write()
1136    #[inline(always)]
1137    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1138    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1139    #[rustc_const_stable(feature = "const_ptr_write", since = "1.83.0")]
1140    pub const unsafe fn write(self, val: T)
1141    where
1142        T: Sized,
1143    {
1144        // SAFETY: the caller must uphold the safety contract for `write`.
1145        unsafe { ptr::write(self.as_ptr(), val) }
1146    }
1147
1148    /// Invokes memset on the specified pointer, setting `count * size_of::<T>()`
1149    /// bytes of memory starting at `self` to `val`.
1150    ///
1151    /// See [`ptr::write_bytes`] for safety concerns and examples.
1152    ///
1153    /// [`ptr::write_bytes`]: crate::ptr::write_bytes()
1154    #[inline(always)]
1155    #[doc(alias = "memset")]
1156    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1157    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1158    #[rustc_const_stable(feature = "const_ptr_write", since = "1.83.0")]
1159    pub const unsafe fn write_bytes(self, val: u8, count: usize)
1160    where
1161        T: Sized,
1162    {
1163        // SAFETY: the caller must uphold the safety contract for `write_bytes`.
1164        unsafe { ptr::write_bytes(self.as_ptr(), val, count) }
1165    }
1166
1167    /// Performs a volatile write of a memory location with the given value without
1168    /// reading or dropping the old value.
1169    ///
1170    /// Volatile operations are intended to act on I/O memory, and are guaranteed
1171    /// to not be elided or reordered by the compiler across other volatile
1172    /// operations.
1173    ///
1174    /// See [`ptr::write_volatile`] for safety concerns and examples.
1175    ///
1176    /// [`ptr::write_volatile`]: crate::ptr::write_volatile()
1177    #[inline(always)]
1178    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1179    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1180    pub unsafe fn write_volatile(self, val: T)
1181    where
1182        T: Sized,
1183    {
1184        // SAFETY: the caller must uphold the safety contract for `write_volatile`.
1185        unsafe { ptr::write_volatile(self.as_ptr(), val) }
1186    }
1187
1188    /// Overwrites a memory location with the given value without reading or
1189    /// dropping the old value.
1190    ///
1191    /// Unlike `write`, the pointer may be unaligned.
1192    ///
1193    /// See [`ptr::write_unaligned`] for safety concerns and examples.
1194    ///
1195    /// [`ptr::write_unaligned`]: crate::ptr::write_unaligned()
1196    #[inline(always)]
1197    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1198    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1199    #[rustc_const_stable(feature = "const_ptr_write", since = "1.83.0")]
1200    pub const unsafe fn write_unaligned(self, val: T)
1201    where
1202        T: Sized,
1203    {
1204        // SAFETY: the caller must uphold the safety contract for `write_unaligned`.
1205        unsafe { ptr::write_unaligned(self.as_ptr(), val) }
1206    }
1207
1208    /// Replaces the value at `self` with `src`, returning the old
1209    /// value, without dropping either.
1210    ///
1211    /// See [`ptr::replace`] for safety concerns and examples.
1212    ///
1213    /// [`ptr::replace`]: crate::ptr::replace()
1214    #[inline(always)]
1215    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1216    #[rustc_const_stable(feature = "const_inherent_ptr_replace", since = "1.88.0")]
1217    pub const unsafe fn replace(self, src: T) -> T
1218    where
1219        T: Sized,
1220    {
1221        // SAFETY: the caller must uphold the safety contract for `replace`.
1222        unsafe { ptr::replace(self.as_ptr(), src) }
1223    }
1224
1225    /// Swaps the values at two mutable locations of the same type, without
1226    /// deinitializing either. They may overlap, unlike `mem::swap` which is
1227    /// otherwise equivalent.
1228    ///
1229    /// See [`ptr::swap`] for safety concerns and examples.
1230    ///
1231    /// [`ptr::swap`]: crate::ptr::swap()
1232    #[inline(always)]
1233    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1234    #[rustc_const_stable(feature = "const_swap", since = "1.85.0")]
1235    pub const unsafe fn swap(self, with: NonNull<T>)
1236    where
1237        T: Sized,
1238    {
1239        // SAFETY: the caller must uphold the safety contract for `swap`.
1240        unsafe { ptr::swap(self.as_ptr(), with.as_ptr()) }
1241    }
1242
1243    /// Computes the offset that needs to be applied to the pointer in order to make it aligned to
1244    /// `align`.
1245    ///
1246    /// If it is not possible to align the pointer, the implementation returns
1247    /// `usize::MAX`.
1248    ///
1249    /// The offset is expressed in number of `T` elements, and not bytes.
1250    ///
1251    /// There are no guarantees whatsoever that offsetting the pointer will not overflow or go
1252    /// beyond the allocation that the pointer points into. It is up to the caller to ensure that
1253    /// the returned offset is correct in all terms other than alignment.
1254    ///
1255    /// When this is called during compile-time evaluation (which is unstable), the implementation
1256    /// may return `usize::MAX` in cases where that can never happen at runtime. This is because the
1257    /// actual alignment of pointers is not known yet during compile-time, so an offset with
1258    /// guaranteed alignment can sometimes not be computed. For example, a buffer declared as `[u8;
1259    /// N]` might be allocated at an odd or an even address, but at compile-time this is not yet
1260    /// known, so the execution has to be correct for either choice. It is therefore impossible to
1261    /// find an offset that is guaranteed to be 2-aligned. (This behavior is subject to change, as usual
1262    /// for unstable APIs.)
1263    ///
1264    /// # Panics
1265    ///
1266    /// The function panics if `align` is not a power-of-two.
1267    ///
1268    /// # Examples
1269    ///
1270    /// Accessing adjacent `u8` as `u16`
1271    ///
1272    /// ```
1273    /// use std::ptr::NonNull;
1274    ///
1275    /// # unsafe {
1276    /// let x = [5_u8, 6, 7, 8, 9];
1277    /// let ptr = NonNull::new(x.as_ptr() as *mut u8).unwrap();
1278    /// let offset = ptr.align_offset(align_of::<u16>());
1279    ///
1280    /// if offset < x.len() - 1 {
1281    ///     let u16_ptr = ptr.add(offset).cast::<u16>();
1282    ///     assert!(u16_ptr.read() == u16::from_ne_bytes([5, 6]) || u16_ptr.read() == u16::from_ne_bytes([6, 7]));
1283    /// } else {
1284    ///     // while the pointer can be aligned via `offset`, it would point
1285    ///     // outside the allocation
1286    /// }
1287    /// # }
1288    /// ```
1289    #[inline]
1290    #[must_use]
1291    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1292    pub fn align_offset(self, align: usize) -> usize
1293    where
1294        T: Sized,
1295    {
1296        if !align.is_power_of_two() {
1297            panic!("align_offset: align is not a power-of-two");
1298        }
1299
1300        {
1301            // SAFETY: `align` has been checked to be a power of 2 above.
1302            unsafe { ptr::align_offset(self.as_ptr(), align) }
1303        }
1304    }
1305
1306    /// Returns whether the pointer is properly aligned for `T`.
1307    ///
1308    /// # Examples
1309    ///
1310    /// ```
1311    /// use std::ptr::NonNull;
1312    ///
1313    /// // On some platforms, the alignment of i32 is less than 4.
1314    /// #[repr(align(4))]
1315    /// struct AlignedI32(i32);
1316    ///
1317    /// let data = AlignedI32(42);
1318    /// let ptr = NonNull::<AlignedI32>::from(&data);
1319    ///
1320    /// assert!(ptr.is_aligned());
1321    /// assert!(!NonNull::new(ptr.as_ptr().wrapping_byte_add(1)).unwrap().is_aligned());
1322    /// ```
1323    #[inline]
1324    #[must_use]
1325    #[stable(feature = "pointer_is_aligned", since = "1.79.0")]
1326    pub fn is_aligned(self) -> bool
1327    where
1328        T: Sized,
1329    {
1330        self.as_ptr().is_aligned()
1331    }
1332
1333    /// Returns whether the pointer is aligned to `align`.
1334    ///
1335    /// For non-`Sized` pointees this operation considers only the data pointer,
1336    /// ignoring the metadata.
1337    ///
1338    /// # Panics
1339    ///
1340    /// The function panics if `align` is not a power-of-two (this includes 0).
1341    ///
1342    /// # Examples
1343    ///
1344    /// ```
1345    /// #![feature(pointer_is_aligned_to)]
1346    ///
1347    /// // On some platforms, the alignment of i32 is less than 4.
1348    /// #[repr(align(4))]
1349    /// struct AlignedI32(i32);
1350    ///
1351    /// let data = AlignedI32(42);
1352    /// let ptr = &data as *const AlignedI32;
1353    ///
1354    /// assert!(ptr.is_aligned_to(1));
1355    /// assert!(ptr.is_aligned_to(2));
1356    /// assert!(ptr.is_aligned_to(4));
1357    ///
1358    /// assert!(ptr.wrapping_byte_add(2).is_aligned_to(2));
1359    /// assert!(!ptr.wrapping_byte_add(2).is_aligned_to(4));
1360    ///
1361    /// assert_ne!(ptr.is_aligned_to(8), ptr.wrapping_add(1).is_aligned_to(8));
1362    /// ```
1363    #[inline]
1364    #[must_use]
1365    #[unstable(feature = "pointer_is_aligned_to", issue = "96284")]
1366    pub fn is_aligned_to(self, align: usize) -> bool {
1367        self.as_ptr().is_aligned_to(align)
1368    }
1369}
1370
1371impl<T> NonNull<T> {
1372    /// Casts from a type to its maybe-uninitialized version.
1373    #[must_use]
1374    #[inline(always)]
1375    #[unstable(feature = "cast_maybe_uninit", issue = "145036")]
1376    pub const fn cast_uninit(self) -> NonNull<MaybeUninit<T>> {
1377        self.cast()
1378    }
1379}
1380impl<T> NonNull<MaybeUninit<T>> {
1381    /// Casts from a maybe-uninitialized type to its initialized version.
1382    ///
1383    /// This is always safe, since UB can only occur if the pointer is read
1384    /// before being initialized.
1385    #[must_use]
1386    #[inline(always)]
1387    #[unstable(feature = "cast_maybe_uninit", issue = "145036")]
1388    pub const fn cast_init(self) -> NonNull<T> {
1389        self.cast()
1390    }
1391}
1392
1393impl<T> NonNull<[T]> {
1394    /// Creates a non-null raw slice from a thin pointer and a length.
1395    ///
1396    /// The `len` argument is the number of **elements**, not the number of bytes.
1397    ///
1398    /// This function is safe, but dereferencing the return value is unsafe.
1399    /// See the documentation of [`slice::from_raw_parts`] for slice safety requirements.
1400    ///
1401    /// # Examples
1402    ///
1403    /// ```rust
1404    /// use std::ptr::NonNull;
1405    ///
1406    /// // create a slice pointer when starting out with a pointer to the first element
1407    /// let mut x = [5, 6, 7];
1408    /// let nonnull_pointer = NonNull::new(x.as_mut_ptr()).unwrap();
1409    /// let slice = NonNull::slice_from_raw_parts(nonnull_pointer, 3);
1410    /// assert_eq!(unsafe { slice.as_ref()[2] }, 7);
1411    /// ```
1412    ///
1413    /// (Note that this example artificially demonstrates a use of this method,
1414    /// but `let slice = NonNull::from(&x[..]);` would be a better way to write code like this.)
1415    #[stable(feature = "nonnull_slice_from_raw_parts", since = "1.70.0")]
1416    #[rustc_const_stable(feature = "const_slice_from_raw_parts_mut", since = "1.83.0")]
1417    #[must_use]
1418    #[inline]
1419    pub const fn slice_from_raw_parts(data: NonNull<T>, len: usize) -> Self {
1420        // SAFETY: `data` is a `NonNull` pointer which is necessarily non-null
1421        unsafe { Self::new_unchecked(super::slice_from_raw_parts_mut(data.as_ptr(), len)) }
1422    }
1423
1424    /// Returns the length of a non-null raw slice.
1425    ///
1426    /// The returned value is the number of **elements**, not the number of bytes.
1427    ///
1428    /// This function is safe, even when the non-null raw slice cannot be dereferenced to a slice
1429    /// because the pointer does not have a valid address.
1430    ///
1431    /// # Examples
1432    ///
1433    /// ```rust
1434    /// use std::ptr::NonNull;
1435    ///
1436    /// let slice: NonNull<[i8]> = NonNull::slice_from_raw_parts(NonNull::dangling(), 3);
1437    /// assert_eq!(slice.len(), 3);
1438    /// ```
1439    #[stable(feature = "slice_ptr_len_nonnull", since = "1.63.0")]
1440    #[rustc_const_stable(feature = "const_slice_ptr_len_nonnull", since = "1.63.0")]
1441    #[must_use]
1442    #[inline]
1443    pub const fn len(self) -> usize {
1444        self.as_ptr().len()
1445    }
1446
1447    /// Returns `true` if the non-null raw slice has a length of 0.
1448    ///
1449    /// # Examples
1450    ///
1451    /// ```rust
1452    /// use std::ptr::NonNull;
1453    ///
1454    /// let slice: NonNull<[i8]> = NonNull::slice_from_raw_parts(NonNull::dangling(), 3);
1455    /// assert!(!slice.is_empty());
1456    /// ```
1457    #[stable(feature = "slice_ptr_is_empty_nonnull", since = "1.79.0")]
1458    #[rustc_const_stable(feature = "const_slice_ptr_is_empty_nonnull", since = "1.79.0")]
1459    #[must_use]
1460    #[inline]
1461    pub const fn is_empty(self) -> bool {
1462        self.len() == 0
1463    }
1464
1465    /// Returns a non-null pointer to the slice's buffer.
1466    ///
1467    /// # Examples
1468    ///
1469    /// ```rust
1470    /// #![feature(slice_ptr_get)]
1471    /// use std::ptr::NonNull;
1472    ///
1473    /// let slice: NonNull<[i8]> = NonNull::slice_from_raw_parts(NonNull::dangling(), 3);
1474    /// assert_eq!(slice.as_non_null_ptr(), NonNull::<i8>::dangling());
1475    /// ```
1476    #[inline]
1477    #[must_use]
1478    #[unstable(feature = "slice_ptr_get", issue = "74265")]
1479    pub const fn as_non_null_ptr(self) -> NonNull<T> {
1480        self.cast()
1481    }
1482
1483    /// Returns a raw pointer to the slice's buffer.
1484    ///
1485    /// # Examples
1486    ///
1487    /// ```rust
1488    /// #![feature(slice_ptr_get)]
1489    /// use std::ptr::NonNull;
1490    ///
1491    /// let slice: NonNull<[i8]> = NonNull::slice_from_raw_parts(NonNull::dangling(), 3);
1492    /// assert_eq!(slice.as_mut_ptr(), NonNull::<i8>::dangling().as_ptr());
1493    /// ```
1494    #[inline]
1495    #[must_use]
1496    #[unstable(feature = "slice_ptr_get", issue = "74265")]
1497    #[rustc_never_returns_null_ptr]
1498    pub const fn as_mut_ptr(self) -> *mut T {
1499        self.as_non_null_ptr().as_ptr()
1500    }
1501
1502    /// Returns a shared reference to a slice of possibly uninitialized values. In contrast to
1503    /// [`as_ref`], this does not require that the value has to be initialized.
1504    ///
1505    /// For the mutable counterpart see [`as_uninit_slice_mut`].
1506    ///
1507    /// [`as_ref`]: NonNull::as_ref
1508    /// [`as_uninit_slice_mut`]: NonNull::as_uninit_slice_mut
1509    ///
1510    /// # Safety
1511    ///
1512    /// When calling this method, you have to ensure that all of the following is true:
1513    ///
1514    /// * The pointer must be [valid] for reads for `ptr.len() * size_of::<T>()` many bytes,
1515    ///   and it must be properly aligned. This means in particular:
1516    ///
1517    ///     * The entire memory range of this slice must be contained within a single allocation!
1518    ///       Slices can never span across multiple allocations.
1519    ///
1520    ///     * The pointer must be aligned even for zero-length slices. One
1521    ///       reason for this is that enum layout optimizations may rely on references
1522    ///       (including slices of any length) being aligned and non-null to distinguish
1523    ///       them from other data. You can obtain a pointer that is usable as `data`
1524    ///       for zero-length slices using [`NonNull::dangling()`].
1525    ///
1526    /// * The total size `ptr.len() * size_of::<T>()` of the slice must be no larger than `isize::MAX`.
1527    ///   See the safety documentation of [`pointer::offset`].
1528    ///
1529    /// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
1530    ///   arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
1531    ///   In particular, while this reference exists, the memory the pointer points to must
1532    ///   not get mutated (except inside `UnsafeCell`).
1533    ///
1534    /// This applies even if the result of this method is unused!
1535    ///
1536    /// See also [`slice::from_raw_parts`].
1537    ///
1538    /// [valid]: crate::ptr#safety
1539    #[inline]
1540    #[must_use]
1541    #[unstable(feature = "ptr_as_uninit", issue = "75402")]
1542    pub const unsafe fn as_uninit_slice<'a>(self) -> &'a [MaybeUninit<T>] {
1543        // SAFETY: the caller must uphold the safety contract for `as_uninit_slice`.
1544        unsafe { slice::from_raw_parts(self.cast().as_ptr(), self.len()) }
1545    }
1546
1547    /// Returns a unique reference to a slice of possibly uninitialized values. In contrast to
1548    /// [`as_mut`], this does not require that the value has to be initialized.
1549    ///
1550    /// For the shared counterpart see [`as_uninit_slice`].
1551    ///
1552    /// [`as_mut`]: NonNull::as_mut
1553    /// [`as_uninit_slice`]: NonNull::as_uninit_slice
1554    ///
1555    /// # Safety
1556    ///
1557    /// When calling this method, you have to ensure that all of the following is true:
1558    ///
1559    /// * The pointer must be [valid] for reads and writes for `ptr.len() * size_of::<T>()`
1560    ///   many bytes, and it must be properly aligned. This means in particular:
1561    ///
1562    ///     * The entire memory range of this slice must be contained within a single allocation!
1563    ///       Slices can never span across multiple allocations.
1564    ///
1565    ///     * The pointer must be aligned even for zero-length slices. One
1566    ///       reason for this is that enum layout optimizations may rely on references
1567    ///       (including slices of any length) being aligned and non-null to distinguish
1568    ///       them from other data. You can obtain a pointer that is usable as `data`
1569    ///       for zero-length slices using [`NonNull::dangling()`].
1570    ///
1571    /// * The total size `ptr.len() * size_of::<T>()` of the slice must be no larger than `isize::MAX`.
1572    ///   See the safety documentation of [`pointer::offset`].
1573    ///
1574    /// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
1575    ///   arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
1576    ///   In particular, while this reference exists, the memory the pointer points to must
1577    ///   not get accessed (read or written) through any other pointer.
1578    ///
1579    /// This applies even if the result of this method is unused!
1580    ///
1581    /// See also [`slice::from_raw_parts_mut`].
1582    ///
1583    /// [valid]: crate::ptr#safety
1584    ///
1585    /// # Examples
1586    ///
1587    /// ```rust
1588    /// #![feature(allocator_api, ptr_as_uninit)]
1589    ///
1590    /// use std::alloc::{Allocator, Layout, Global};
1591    /// use std::mem::MaybeUninit;
1592    /// use std::ptr::NonNull;
1593    ///
1594    /// let memory: NonNull<[u8]> = Global.allocate(Layout::new::<[u8; 32]>())?;
1595    /// // This is safe as `memory` is valid for reads and writes for `memory.len()` many bytes.
1596    /// // Note that calling `memory.as_mut()` is not allowed here as the content may be uninitialized.
1597    /// # #[allow(unused_variables)]
1598    /// let slice: &mut [MaybeUninit<u8>] = unsafe { memory.as_uninit_slice_mut() };
1599    /// # // Prevent leaks for Miri.
1600    /// # unsafe { Global.deallocate(memory.cast(), Layout::new::<[u8; 32]>()); }
1601    /// # Ok::<_, std::alloc::AllocError>(())
1602    /// ```
1603    #[inline]
1604    #[must_use]
1605    #[unstable(feature = "ptr_as_uninit", issue = "75402")]
1606    pub const unsafe fn as_uninit_slice_mut<'a>(self) -> &'a mut [MaybeUninit<T>] {
1607        // SAFETY: the caller must uphold the safety contract for `as_uninit_slice_mut`.
1608        unsafe { slice::from_raw_parts_mut(self.cast().as_ptr(), self.len()) }
1609    }
1610
1611    /// Returns a raw pointer to an element or subslice, without doing bounds
1612    /// checking.
1613    ///
1614    /// Calling this method with an out-of-bounds index or when `self` is not dereferenceable
1615    /// is *[undefined behavior]* even if the resulting pointer is not used.
1616    ///
1617    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1618    ///
1619    /// # Examples
1620    ///
1621    /// ```
1622    /// #![feature(slice_ptr_get)]
1623    /// use std::ptr::NonNull;
1624    ///
1625    /// let x = &mut [1, 2, 4];
1626    /// let x = NonNull::slice_from_raw_parts(NonNull::new(x.as_mut_ptr()).unwrap(), x.len());
1627    ///
1628    /// unsafe {
1629    ///     assert_eq!(x.get_unchecked_mut(1).as_ptr(), x.as_non_null_ptr().as_ptr().add(1));
1630    /// }
1631    /// ```
1632    #[unstable(feature = "slice_ptr_get", issue = "74265")]
1633    #[rustc_const_unstable(feature = "const_index", issue = "143775")]
1634    #[inline]
1635    pub const unsafe fn get_unchecked_mut<I>(self, index: I) -> NonNull<I::Output>
1636    where
1637        I: [const] SliceIndex<[T]>,
1638    {
1639        // SAFETY: the caller ensures that `self` is dereferenceable and `index` in-bounds.
1640        // As a consequence, the resulting pointer cannot be null.
1641        unsafe { NonNull::new_unchecked(self.as_ptr().get_unchecked_mut(index)) }
1642    }
1643}
1644
1645#[stable(feature = "nonnull", since = "1.25.0")]
1646impl<T: PointeeSized> Clone for NonNull<T> {
1647    #[inline(always)]
1648    fn clone(&self) -> Self {
1649        *self
1650    }
1651}
1652
1653#[stable(feature = "nonnull", since = "1.25.0")]
1654impl<T: PointeeSized> Copy for NonNull<T> {}
1655
1656#[unstable(feature = "coerce_unsized", issue = "18598")]
1657impl<T: PointeeSized, U: PointeeSized> CoerceUnsized<NonNull<U>> for NonNull<T> where T: Unsize<U> {}
1658
1659#[unstable(feature = "dispatch_from_dyn", issue = "none")]
1660impl<T: PointeeSized, U: PointeeSized> DispatchFromDyn<NonNull<U>> for NonNull<T> where T: Unsize<U> {}
1661
1662#[stable(feature = "pin", since = "1.33.0")]
1663unsafe impl<T: PointeeSized> PinCoerceUnsized for NonNull<T> {}
1664
1665#[stable(feature = "nonnull", since = "1.25.0")]
1666impl<T: PointeeSized> fmt::Debug for NonNull<T> {
1667    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1668        fmt::Pointer::fmt(&self.as_ptr(), f)
1669    }
1670}
1671
1672#[stable(feature = "nonnull", since = "1.25.0")]
1673impl<T: PointeeSized> fmt::Pointer for NonNull<T> {
1674    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1675        fmt::Pointer::fmt(&self.as_ptr(), f)
1676    }
1677}
1678
1679#[stable(feature = "nonnull", since = "1.25.0")]
1680impl<T: PointeeSized> Eq for NonNull<T> {}
1681
1682#[stable(feature = "nonnull", since = "1.25.0")]
1683impl<T: PointeeSized> PartialEq for NonNull<T> {
1684    #[inline]
1685    #[allow(ambiguous_wide_pointer_comparisons)]
1686    fn eq(&self, other: &Self) -> bool {
1687        self.as_ptr() == other.as_ptr()
1688    }
1689}
1690
1691#[stable(feature = "nonnull", since = "1.25.0")]
1692impl<T: PointeeSized> Ord for NonNull<T> {
1693    #[inline]
1694    #[allow(ambiguous_wide_pointer_comparisons)]
1695    fn cmp(&self, other: &Self) -> Ordering {
1696        self.as_ptr().cmp(&other.as_ptr())
1697    }
1698}
1699
1700#[stable(feature = "nonnull", since = "1.25.0")]
1701impl<T: PointeeSized> PartialOrd for NonNull<T> {
1702    #[inline]
1703    #[allow(ambiguous_wide_pointer_comparisons)]
1704    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1705        self.as_ptr().partial_cmp(&other.as_ptr())
1706    }
1707}
1708
1709#[stable(feature = "nonnull", since = "1.25.0")]
1710impl<T: PointeeSized> hash::Hash for NonNull<T> {
1711    #[inline]
1712    fn hash<H: hash::Hasher>(&self, state: &mut H) {
1713        self.as_ptr().hash(state)
1714    }
1715}
1716
1717#[unstable(feature = "ptr_internals", issue = "none")]
1718#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1719impl<T: PointeeSized> const From<Unique<T>> for NonNull<T> {
1720    #[inline]
1721    fn from(unique: Unique<T>) -> Self {
1722        unique.as_non_null_ptr()
1723    }
1724}
1725
1726#[stable(feature = "nonnull", since = "1.25.0")]
1727#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1728impl<T: PointeeSized> const From<&mut T> for NonNull<T> {
1729    /// Converts a `&mut T` to a `NonNull<T>`.
1730    ///
1731    /// This conversion is safe and infallible since references cannot be null.
1732    #[inline]
1733    fn from(r: &mut T) -> Self {
1734        NonNull::from_mut(r)
1735    }
1736}
1737
1738#[stable(feature = "nonnull", since = "1.25.0")]
1739#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1740impl<T: PointeeSized> const From<&T> for NonNull<T> {
1741    /// Converts a `&T` to a `NonNull<T>`.
1742    ///
1743    /// This conversion is safe and infallible since references cannot be null.
1744    #[inline]
1745    fn from(r: &T) -> Self {
1746        NonNull::from_ref(r)
1747    }
1748}