1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
//! Defines the `IntoIter` owned iterator for arrays.

use crate::{
    fmt,
    iter::{ExactSizeIterator, FusedIterator, TrustedLen},
    mem::{self, MaybeUninit},
    ops::Range,
    ptr,
};
use super::LengthAtMost32;


/// A by-value [array] iterator.
///
/// [array]: ../../std/primitive.array.html
#[unstable(feature = "array_value_iter", issue = "65798")]
pub struct IntoIter<T, const N: usize>
where
    [T; N]: LengthAtMost32,
{
    /// This is the array we are iterating over.
    ///
    /// Elements with index `i` where `alive.start <= i < alive.end` have not
    /// been yielded yet and are valid array entries. Elements with indices `i
    /// < alive.start` or `i >= alive.end` have been yielded already and must
    /// not be accessed anymore! Those dead elements might even be in a
    /// completely uninitialized state!
    ///
    /// So the invariants are:
    /// - `data[alive]` is alive (i.e. contains valid elements)
    /// - `data[..alive.start]` and `data[alive.end..]` are dead (i.e. the
    ///   elements were already read and must not be touched anymore!)
    data: [MaybeUninit<T>; N],

    /// The elements in `data` that have not been yielded yet.
    ///
    /// Invariants:
    /// - `alive.start <= alive.end`
    /// - `alive.end <= N`
    alive: Range<usize>,
}

impl<T, const N: usize> IntoIter<T, {N}>
where
    [T; N]: LengthAtMost32,
{
    /// Creates a new iterator over the given `array`.
    ///
    /// *Note*: this method might never get stabilized and/or removed in the
    /// future as there will likely be another, preferred way of obtaining this
    /// iterator (either via `IntoIterator` for arrays or via another way).
    #[unstable(feature = "array_value_iter", issue = "65798")]
    pub fn new(array: [T; N]) -> Self {
        // SAFETY: The transmute here is actually safe. The docs of `MaybeUninit`
        // promise:
        //
        // > `MaybeUninit<T>` is guaranteed to have the same size and alignment
        // > as `T`.
        //
        // The docs even show a transmute from an array of `MaybeUninit<T>` to
        // an array of `T`.
        //
        // With that, this initialization satisfies the invariants.

        // FIXME(LukasKalbertodt): actually use `mem::transmute` here, once it
        // works with const generics:
        //     `mem::transmute::<[T; {N}], [MaybeUninit<T>; {N}]>(array)`
        //
        // Until then, we do it manually here. We first create a bitwise copy
        // but cast the pointer so that it is treated as a different type. Then
        // we forget `array` so that it is not dropped.
        let data = unsafe {
            let data = ptr::read(&array as *const [T; N] as *const [MaybeUninit<T>; N]);
            mem::forget(array);
            data
        };

        Self {
            data,
            alive: 0..N,
        }
    }

    /// Returns an immutable slice of all elements that have not been yielded
    /// yet.
    fn as_slice(&self) -> &[T] {
        let slice = &self.data[self.alive.clone()];
        // SAFETY: This transmute is safe. As mentioned in `new`, `MaybeUninit` retains
        // the size and alignment of `T`. Furthermore, we know that all
        // elements within `alive` are properly initialized.
        unsafe {
            mem::transmute::<&[MaybeUninit<T>], &[T]>(slice)
        }
    }

    /// Returns a mutable slice of all elements that have not been yielded yet.
    fn as_mut_slice(&mut self) -> &mut [T] {
        // This transmute is safe, same as in `as_slice` above.
        let slice = &mut self.data[self.alive.clone()];
        // SAFETY: This transmute is safe. As mentioned in `new`, `MaybeUninit` retains
        // the size and alignment of `T`. Furthermore, we know that all
        // elements within `alive` are properly initialized.
        unsafe {
            mem::transmute::<&mut [MaybeUninit<T>], &mut [T]>(slice)
        }
    }
}


#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
impl<T, const N: usize> Iterator for IntoIter<T, {N}>
where
    [T; N]: LengthAtMost32,
{
    type Item = T;
    fn next(&mut self) -> Option<Self::Item> {
        if self.alive.start == self.alive.end {
            return None;
        }

        // Bump start index.
        //
        // From the check above we know that `alive.start != alive.end`.
        // Combine this with the invariant `alive.start <= alive.end`, we know
        // that `alive.start < alive.end`. Increasing `alive.start` by 1
        // maintains the invariant regarding `alive`. However, due to this
        // change, for a short time, the alive zone is not `data[alive]`
        // anymore, but `data[idx..alive.end]`.
        let idx = self.alive.start;
        self.alive.start += 1;

        // Read the element from the array.
        // SAFETY: This is safe: `idx` is an index
        // into the "alive" region of the array. Reading this element means
        // that `data[idx]` is regarded as dead now (i.e. do not touch). As
        // `idx` was the start of the alive-zone, the alive zone is now
        // `data[alive]` again, restoring all invariants.
        let out = unsafe { self.data.get_unchecked(idx).read() };

        Some(out)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let len = self.len();
        (len, Some(len))
    }

    fn count(self) -> usize {
        self.len()
    }

    fn last(mut self) -> Option<Self::Item> {
        self.next_back()
    }
}

#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
impl<T, const N: usize> DoubleEndedIterator for IntoIter<T, {N}>
where
    [T; N]: LengthAtMost32,
{
    fn next_back(&mut self) -> Option<Self::Item> {
        if self.alive.start == self.alive.end {
            return None;
        }

        // Decrease end index.
        //
        // From the check above we know that `alive.start != alive.end`.
        // Combine this with the invariant `alive.start <= alive.end`, we know
        // that `alive.start < alive.end`. As `alive.start` cannot be negative,
        // `alive.end` is at least 1, meaning that we can safely decrement it
        // by one. This also maintains the invariant `alive.start <=
        // alive.end`. However, due to this change, for a short time, the alive
        // zone is not `data[alive]` anymore, but `data[alive.start..alive.end
        // + 1]`.
        self.alive.end -= 1;

        // Read the element from the array.
        // SAFETY: This is safe: `alive.end` is an
        // index into the "alive" region of the array. Compare the previous
        // comment that states that the alive region is
        // `data[alive.start..alive.end + 1]`. Reading this element means that
        // `data[alive.end]` is regarded as dead now (i.e. do not touch). As
        // `alive.end` was the end of the alive-zone, the alive zone is now
        // `data[alive]` again, restoring all invariants.
        let out = unsafe { self.data.get_unchecked(self.alive.end).read() };

        Some(out)
    }
}

#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
impl<T, const N: usize> Drop for IntoIter<T, {N}>
where
    [T; N]: LengthAtMost32,
{
    fn drop(&mut self) {
        // SAFETY: This is safe: `as_mut_slice` returns exactly the sub-slice
        // of elements that have not been moved out yet and that remain
        // to be dropped.
        unsafe {
            ptr::drop_in_place(self.as_mut_slice())
        }
    }
}

#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
impl<T, const N: usize> ExactSizeIterator for IntoIter<T, {N}>
where
    [T; N]: LengthAtMost32,
{
    fn len(&self) -> usize {
        // Will never underflow due to the invariant `alive.start <=
        // alive.end`.
        self.alive.end - self.alive.start
    }
    fn is_empty(&self) -> bool {
        self.alive.is_empty()
    }
}

#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
impl<T, const N: usize> FusedIterator for IntoIter<T, {N}>
where
    [T; N]: LengthAtMost32,
{}

// The iterator indeed reports the correct length. The number of "alive"
// elements (that will still be yielded) is the length of the range `alive`.
// This range is decremented in length in either `next` or `next_back`. It is
// always decremented by 1 in those methods, but only if `Some(_)` is returned.
#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
unsafe impl<T, const N: usize> TrustedLen for IntoIter<T, {N}>
where
    [T; N]: LengthAtMost32,
{}

#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
impl<T: Clone, const N: usize> Clone for IntoIter<T, {N}>
where
    [T; N]: LengthAtMost32,
{
    fn clone(&self) -> Self {
        // SAFETY: each point of unsafety is documented inside the unsafe block
        unsafe {
            // This creates a new uninitialized array. Note that the `assume_init`
            // refers to the array, not the individual elements. And it is Ok if
            // the array is in an uninitialized state as all elements may be
            // uninitialized (all bit patterns are valid). Compare the
            // `MaybeUninit` docs for more information.
            let mut new_data: [MaybeUninit<T>; N] = MaybeUninit::uninit().assume_init();

            // Clone all alive elements.
            for idx in self.alive.clone() {
                // The element at `idx` in the old array is alive, so we can
                // safely call `get_ref()`. We then clone it, and write the
                // clone into the new array.
                let clone = self.data.get_unchecked(idx).get_ref().clone();
                new_data.get_unchecked_mut(idx).write(clone);
            }

            Self {
                data: new_data,
                alive: self.alive.clone(),
            }
        }
    }
}

#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
impl<T: fmt::Debug, const N: usize> fmt::Debug for IntoIter<T, {N}>
where
    [T; N]: LengthAtMost32,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        // Only print the elements that were not yielded yet: we cannot
        // access the yielded elements anymore.
        f.debug_tuple("IntoIter")
            .field(&self.as_slice())
            .finish()
    }
}