1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
//! Defines the `IntoIter` owned iterator for arrays.

use crate::{
    fmt,
    iter::{self, ExactSizeIterator, FusedIterator, TrustedLen, TrustedRandomAccess},
    mem::{self, MaybeUninit},
    ops::Range,
    ptr,
};

/// A by-value [array] iterator.
#[stable(feature = "array_value_iter", since = "1.51.0")]
pub struct IntoIter<T, const N: usize> {
    /// This is the array we are iterating over.
    ///
    /// Elements with index `i` where `alive.start <= i < alive.end` have not
    /// been yielded yet and are valid array entries. Elements with indices `i
    /// < alive.start` or `i >= alive.end` have been yielded already and must
    /// not be accessed anymore! Those dead elements might even be in a
    /// completely uninitialized state!
    ///
    /// So the invariants are:
    /// - `data[alive]` is alive (i.e. contains valid elements)
    /// - `data[..alive.start]` and `data[alive.end..]` are dead (i.e. the
    ///   elements were already read and must not be touched anymore!)
    data: [MaybeUninit<T>; N],

    /// The elements in `data` that have not been yielded yet.
    ///
    /// Invariants:
    /// - `alive.start <= alive.end`
    /// - `alive.end <= N`
    alive: Range<usize>,
}

impl<T, const N: usize> IntoIter<T, N> {
    /// Creates a new iterator over the given `array`.
    ///
    /// *Note*: this method might be deprecated in the future,
    /// after [`IntoIterator` is implemented for arrays][array-into-iter].
    ///
    /// # Examples
    ///
    /// ```
    /// use std::array;
    ///
    /// for value in array::IntoIter::new([1, 2, 3, 4, 5]) {
    ///     // The type of `value` is a `i32` here, instead of `&i32`
    ///     let _: i32 = value;
    /// }
    /// ```
    /// [array-into-iter]: https://github.com/rust-lang/rust/pull/65819
    #[stable(feature = "array_value_iter", since = "1.51.0")]
    pub fn new(array: [T; N]) -> Self {
        // SAFETY: The transmute here is actually safe. The docs of `MaybeUninit`
        // promise:
        //
        // > `MaybeUninit<T>` is guaranteed to have the same size and alignment
        // > as `T`.
        //
        // The docs even show a transmute from an array of `MaybeUninit<T>` to
        // an array of `T`.
        //
        // With that, this initialization satisfies the invariants.

        // FIXME(LukasKalbertodt): actually use `mem::transmute` here, once it
        // works with const generics:
        //     `mem::transmute::<[T; N], [MaybeUninit<T>; N]>(array)`
        //
        // Until then, we can use `mem::transmute_copy` to create a bitwise copy
        // as a different type, then forget `array` so that it is not dropped.
        unsafe {
            let iter = Self { data: mem::transmute_copy(&array), alive: 0..N };
            mem::forget(array);
            iter
        }
    }

    /// Returns an immutable slice of all elements that have not been yielded
    /// yet.
    #[stable(feature = "array_value_iter", since = "1.51.0")]
    pub fn as_slice(&self) -> &[T] {
        // SAFETY: We know that all elements within `alive` are properly initialized.
        unsafe {
            let slice = self.data.get_unchecked(self.alive.clone());
            MaybeUninit::slice_assume_init_ref(slice)
        }
    }

    /// Returns a mutable slice of all elements that have not been yielded yet.
    #[stable(feature = "array_value_iter", since = "1.51.0")]
    pub fn as_mut_slice(&mut self) -> &mut [T] {
        // SAFETY: We know that all elements within `alive` are properly initialized.
        unsafe {
            let slice = self.data.get_unchecked_mut(self.alive.clone());
            MaybeUninit::slice_assume_init_mut(slice)
        }
    }
}

#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
impl<T, const N: usize> Iterator for IntoIter<T, N> {
    type Item = T;
    fn next(&mut self) -> Option<Self::Item> {
        // Get the next index from the front.
        //
        // Increasing `alive.start` by 1 maintains the invariant regarding
        // `alive`. However, due to this change, for a short time, the alive
        // zone is not `data[alive]` anymore, but `data[idx..alive.end]`.
        self.alive.next().map(|idx| {
            // Read the element from the array.
            // SAFETY: `idx` is an index into the former "alive" region of the
            // array. Reading this element means that `data[idx]` is regarded as
            // dead now (i.e. do not touch). As `idx` was the start of the
            // alive-zone, the alive zone is now `data[alive]` again, restoring
            // all invariants.
            unsafe { self.data.get_unchecked(idx).assume_init_read() }
        })
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let len = self.len();
        (len, Some(len))
    }

    fn count(self) -> usize {
        self.len()
    }

    fn last(mut self) -> Option<Self::Item> {
        self.next_back()
    }

    #[inline]
    unsafe fn __iterator_get_unchecked(&mut self, idx: usize) -> Self::Item
    where
        Self: TrustedRandomAccess,
    {
        // SAFETY: Callers are only allowed to pass an index that is in bounds
        // Additionally Self: TrustedRandomAccess is only implemented for T: Copy which means even
        // multiple repeated reads of the same index would be safe and the
        // values aree !Drop, thus won't suffer from double drops.
        unsafe { self.data.get_unchecked(self.alive.start + idx).assume_init_read() }
    }
}

#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
impl<T, const N: usize> DoubleEndedIterator for IntoIter<T, N> {
    fn next_back(&mut self) -> Option<Self::Item> {
        // Get the next index from the back.
        //
        // Decreasing `alive.end` by 1 maintains the invariant regarding
        // `alive`. However, due to this change, for a short time, the alive
        // zone is not `data[alive]` anymore, but `data[alive.start..=idx]`.
        self.alive.next_back().map(|idx| {
            // Read the element from the array.
            // SAFETY: `idx` is an index into the former "alive" region of the
            // array. Reading this element means that `data[idx]` is regarded as
            // dead now (i.e. do not touch). As `idx` was the end of the
            // alive-zone, the alive zone is now `data[alive]` again, restoring
            // all invariants.
            unsafe { self.data.get_unchecked(idx).assume_init_read() }
        })
    }
}

#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
impl<T, const N: usize> Drop for IntoIter<T, N> {
    fn drop(&mut self) {
        // SAFETY: This is safe: `as_mut_slice` returns exactly the sub-slice
        // of elements that have not been moved out yet and that remain
        // to be dropped.
        unsafe { ptr::drop_in_place(self.as_mut_slice()) }
    }
}

#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
impl<T, const N: usize> ExactSizeIterator for IntoIter<T, N> {
    fn len(&self) -> usize {
        // Will never underflow due to the invariant `alive.start <=
        // alive.end`.
        self.alive.end - self.alive.start
    }
    fn is_empty(&self) -> bool {
        self.alive.is_empty()
    }
}

#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
impl<T, const N: usize> FusedIterator for IntoIter<T, N> {}

// The iterator indeed reports the correct length. The number of "alive"
// elements (that will still be yielded) is the length of the range `alive`.
// This range is decremented in length in either `next` or `next_back`. It is
// always decremented by 1 in those methods, but only if `Some(_)` is returned.
#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
unsafe impl<T, const N: usize> TrustedLen for IntoIter<T, N> {}

#[doc(hidden)]
#[unstable(feature = "trusted_random_access", issue = "none")]
// T: Copy as approximation for !Drop since get_unchecked does not update the pointers
// and thus we can't implement drop-handling
unsafe impl<T, const N: usize> TrustedRandomAccess for IntoIter<T, N>
where
    T: Copy,
{
    const MAY_HAVE_SIDE_EFFECT: bool = false;
}

#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
impl<T: Clone, const N: usize> Clone for IntoIter<T, N> {
    fn clone(&self) -> Self {
        // Note, we don't really need to match the exact same alive range, so
        // we can just clone into offset 0 regardless of where `self` is.
        let mut new = Self { data: MaybeUninit::uninit_array(), alive: 0..0 };

        // Clone all alive elements.
        for (src, dst) in iter::zip(self.as_slice(), &mut new.data) {
            // Write a clone into the new array, then update its alive range.
            // If cloning panics, we'll correctly drop the previous items.
            dst.write(src.clone());
            new.alive.end += 1;
        }

        new
    }
}

#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
impl<T: fmt::Debug, const N: usize> fmt::Debug for IntoIter<T, N> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        // Only print the elements that were not yielded yet: we cannot
        // access the yielded elements anymore.
        f.debug_tuple("IntoIter").field(&self.as_slice()).finish()
    }
}