core/num/
f64.rs

1//! Constants for the `f64` double-precision floating point type.
2//!
3//! *[See also the `f64` primitive type][f64].*
4//!
5//! Mathematically significant numbers are provided in the `consts` sub-module.
6//!
7//! For the constants defined directly in this module
8//! (as distinct from those defined in the `consts` sub-module),
9//! new code should instead use the associated constants
10//! defined directly on the `f64` type.
11
12#![stable(feature = "rust1", since = "1.0.0")]
13
14use crate::convert::FloatToInt;
15use crate::num::FpCategory;
16use crate::panic::const_assert;
17use crate::{intrinsics, mem};
18
19/// The radix or base of the internal representation of `f64`.
20/// Use [`f64::RADIX`] instead.
21///
22/// # Examples
23///
24/// ```rust
25/// // deprecated way
26/// # #[allow(deprecated, deprecated_in_future)]
27/// let r = std::f64::RADIX;
28///
29/// // intended way
30/// let r = f64::RADIX;
31/// ```
32#[stable(feature = "rust1", since = "1.0.0")]
33#[deprecated(since = "TBD", note = "replaced by the `RADIX` associated constant on `f64`")]
34#[rustc_diagnostic_item = "f64_legacy_const_radix"]
35pub const RADIX: u32 = f64::RADIX;
36
37/// Number of significant digits in base 2.
38/// Use [`f64::MANTISSA_DIGITS`] instead.
39///
40/// # Examples
41///
42/// ```rust
43/// // deprecated way
44/// # #[allow(deprecated, deprecated_in_future)]
45/// let d = std::f64::MANTISSA_DIGITS;
46///
47/// // intended way
48/// let d = f64::MANTISSA_DIGITS;
49/// ```
50#[stable(feature = "rust1", since = "1.0.0")]
51#[deprecated(
52    since = "TBD",
53    note = "replaced by the `MANTISSA_DIGITS` associated constant on `f64`"
54)]
55#[rustc_diagnostic_item = "f64_legacy_const_mantissa_dig"]
56pub const MANTISSA_DIGITS: u32 = f64::MANTISSA_DIGITS;
57
58/// Approximate number of significant digits in base 10.
59/// Use [`f64::DIGITS`] instead.
60///
61/// # Examples
62///
63/// ```rust
64/// // deprecated way
65/// # #[allow(deprecated, deprecated_in_future)]
66/// let d = std::f64::DIGITS;
67///
68/// // intended way
69/// let d = f64::DIGITS;
70/// ```
71#[stable(feature = "rust1", since = "1.0.0")]
72#[deprecated(since = "TBD", note = "replaced by the `DIGITS` associated constant on `f64`")]
73#[rustc_diagnostic_item = "f64_legacy_const_digits"]
74pub const DIGITS: u32 = f64::DIGITS;
75
76/// [Machine epsilon] value for `f64`.
77/// Use [`f64::EPSILON`] instead.
78///
79/// This is the difference between `1.0` and the next larger representable number.
80///
81/// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
82///
83/// # Examples
84///
85/// ```rust
86/// // deprecated way
87/// # #[allow(deprecated, deprecated_in_future)]
88/// let e = std::f64::EPSILON;
89///
90/// // intended way
91/// let e = f64::EPSILON;
92/// ```
93#[stable(feature = "rust1", since = "1.0.0")]
94#[deprecated(since = "TBD", note = "replaced by the `EPSILON` associated constant on `f64`")]
95#[rustc_diagnostic_item = "f64_legacy_const_epsilon"]
96pub const EPSILON: f64 = f64::EPSILON;
97
98/// Smallest finite `f64` value.
99/// Use [`f64::MIN`] instead.
100///
101/// # Examples
102///
103/// ```rust
104/// // deprecated way
105/// # #[allow(deprecated, deprecated_in_future)]
106/// let min = std::f64::MIN;
107///
108/// // intended way
109/// let min = f64::MIN;
110/// ```
111#[stable(feature = "rust1", since = "1.0.0")]
112#[deprecated(since = "TBD", note = "replaced by the `MIN` associated constant on `f64`")]
113#[rustc_diagnostic_item = "f64_legacy_const_min"]
114pub const MIN: f64 = f64::MIN;
115
116/// Smallest positive normal `f64` value.
117/// Use [`f64::MIN_POSITIVE`] instead.
118///
119/// # Examples
120///
121/// ```rust
122/// // deprecated way
123/// # #[allow(deprecated, deprecated_in_future)]
124/// let min = std::f64::MIN_POSITIVE;
125///
126/// // intended way
127/// let min = f64::MIN_POSITIVE;
128/// ```
129#[stable(feature = "rust1", since = "1.0.0")]
130#[deprecated(since = "TBD", note = "replaced by the `MIN_POSITIVE` associated constant on `f64`")]
131#[rustc_diagnostic_item = "f64_legacy_const_min_positive"]
132pub const MIN_POSITIVE: f64 = f64::MIN_POSITIVE;
133
134/// Largest finite `f64` value.
135/// Use [`f64::MAX`] instead.
136///
137/// # Examples
138///
139/// ```rust
140/// // deprecated way
141/// # #[allow(deprecated, deprecated_in_future)]
142/// let max = std::f64::MAX;
143///
144/// // intended way
145/// let max = f64::MAX;
146/// ```
147#[stable(feature = "rust1", since = "1.0.0")]
148#[deprecated(since = "TBD", note = "replaced by the `MAX` associated constant on `f64`")]
149#[rustc_diagnostic_item = "f64_legacy_const_max"]
150pub const MAX: f64 = f64::MAX;
151
152/// One greater than the minimum possible normal power of 2 exponent.
153/// Use [`f64::MIN_EXP`] instead.
154///
155/// # Examples
156///
157/// ```rust
158/// // deprecated way
159/// # #[allow(deprecated, deprecated_in_future)]
160/// let min = std::f64::MIN_EXP;
161///
162/// // intended way
163/// let min = f64::MIN_EXP;
164/// ```
165#[stable(feature = "rust1", since = "1.0.0")]
166#[deprecated(since = "TBD", note = "replaced by the `MIN_EXP` associated constant on `f64`")]
167#[rustc_diagnostic_item = "f64_legacy_const_min_exp"]
168pub const MIN_EXP: i32 = f64::MIN_EXP;
169
170/// Maximum possible power of 2 exponent.
171/// Use [`f64::MAX_EXP`] instead.
172///
173/// # Examples
174///
175/// ```rust
176/// // deprecated way
177/// # #[allow(deprecated, deprecated_in_future)]
178/// let max = std::f64::MAX_EXP;
179///
180/// // intended way
181/// let max = f64::MAX_EXP;
182/// ```
183#[stable(feature = "rust1", since = "1.0.0")]
184#[deprecated(since = "TBD", note = "replaced by the `MAX_EXP` associated constant on `f64`")]
185#[rustc_diagnostic_item = "f64_legacy_const_max_exp"]
186pub const MAX_EXP: i32 = f64::MAX_EXP;
187
188/// Minimum possible normal power of 10 exponent.
189/// Use [`f64::MIN_10_EXP`] instead.
190///
191/// # Examples
192///
193/// ```rust
194/// // deprecated way
195/// # #[allow(deprecated, deprecated_in_future)]
196/// let min = std::f64::MIN_10_EXP;
197///
198/// // intended way
199/// let min = f64::MIN_10_EXP;
200/// ```
201#[stable(feature = "rust1", since = "1.0.0")]
202#[deprecated(since = "TBD", note = "replaced by the `MIN_10_EXP` associated constant on `f64`")]
203#[rustc_diagnostic_item = "f64_legacy_const_min_10_exp"]
204pub const MIN_10_EXP: i32 = f64::MIN_10_EXP;
205
206/// Maximum possible power of 10 exponent.
207/// Use [`f64::MAX_10_EXP`] instead.
208///
209/// # Examples
210///
211/// ```rust
212/// // deprecated way
213/// # #[allow(deprecated, deprecated_in_future)]
214/// let max = std::f64::MAX_10_EXP;
215///
216/// // intended way
217/// let max = f64::MAX_10_EXP;
218/// ```
219#[stable(feature = "rust1", since = "1.0.0")]
220#[deprecated(since = "TBD", note = "replaced by the `MAX_10_EXP` associated constant on `f64`")]
221#[rustc_diagnostic_item = "f64_legacy_const_max_10_exp"]
222pub const MAX_10_EXP: i32 = f64::MAX_10_EXP;
223
224/// Not a Number (NaN).
225/// Use [`f64::NAN`] instead.
226///
227/// # Examples
228///
229/// ```rust
230/// // deprecated way
231/// # #[allow(deprecated, deprecated_in_future)]
232/// let nan = std::f64::NAN;
233///
234/// // intended way
235/// let nan = f64::NAN;
236/// ```
237#[stable(feature = "rust1", since = "1.0.0")]
238#[deprecated(since = "TBD", note = "replaced by the `NAN` associated constant on `f64`")]
239#[rustc_diagnostic_item = "f64_legacy_const_nan"]
240pub const NAN: f64 = f64::NAN;
241
242/// Infinity (∞).
243/// Use [`f64::INFINITY`] instead.
244///
245/// # Examples
246///
247/// ```rust
248/// // deprecated way
249/// # #[allow(deprecated, deprecated_in_future)]
250/// let inf = std::f64::INFINITY;
251///
252/// // intended way
253/// let inf = f64::INFINITY;
254/// ```
255#[stable(feature = "rust1", since = "1.0.0")]
256#[deprecated(since = "TBD", note = "replaced by the `INFINITY` associated constant on `f64`")]
257#[rustc_diagnostic_item = "f64_legacy_const_infinity"]
258pub const INFINITY: f64 = f64::INFINITY;
259
260/// Negative infinity (−∞).
261/// Use [`f64::NEG_INFINITY`] instead.
262///
263/// # Examples
264///
265/// ```rust
266/// // deprecated way
267/// # #[allow(deprecated, deprecated_in_future)]
268/// let ninf = std::f64::NEG_INFINITY;
269///
270/// // intended way
271/// let ninf = f64::NEG_INFINITY;
272/// ```
273#[stable(feature = "rust1", since = "1.0.0")]
274#[deprecated(since = "TBD", note = "replaced by the `NEG_INFINITY` associated constant on `f64`")]
275#[rustc_diagnostic_item = "f64_legacy_const_neg_infinity"]
276pub const NEG_INFINITY: f64 = f64::NEG_INFINITY;
277
278/// Basic mathematical constants.
279#[stable(feature = "rust1", since = "1.0.0")]
280#[rustc_diagnostic_item = "f64_consts_mod"]
281pub mod consts {
282    // FIXME: replace with mathematical constants from cmath.
283
284    /// Archimedes' constant (π)
285    #[stable(feature = "rust1", since = "1.0.0")]
286    pub const PI: f64 = 3.14159265358979323846264338327950288_f64;
287
288    /// The full circle constant (τ)
289    ///
290    /// Equal to 2π.
291    #[stable(feature = "tau_constant", since = "1.47.0")]
292    pub const TAU: f64 = 6.28318530717958647692528676655900577_f64;
293
294    /// The golden ratio (φ)
295    #[unstable(feature = "more_float_constants", issue = "146939")]
296    pub const PHI: f64 = 1.618033988749894848204586834365638118_f64;
297
298    /// The Euler-Mascheroni constant (γ)
299    #[unstable(feature = "more_float_constants", issue = "146939")]
300    pub const EGAMMA: f64 = 0.577215664901532860606512090082402431_f64;
301
302    /// π/2
303    #[stable(feature = "rust1", since = "1.0.0")]
304    pub const FRAC_PI_2: f64 = 1.57079632679489661923132169163975144_f64;
305
306    /// π/3
307    #[stable(feature = "rust1", since = "1.0.0")]
308    pub const FRAC_PI_3: f64 = 1.04719755119659774615421446109316763_f64;
309
310    /// π/4
311    #[stable(feature = "rust1", since = "1.0.0")]
312    pub const FRAC_PI_4: f64 = 0.785398163397448309615660845819875721_f64;
313
314    /// π/6
315    #[stable(feature = "rust1", since = "1.0.0")]
316    pub const FRAC_PI_6: f64 = 0.52359877559829887307710723054658381_f64;
317
318    /// π/8
319    #[stable(feature = "rust1", since = "1.0.0")]
320    pub const FRAC_PI_8: f64 = 0.39269908169872415480783042290993786_f64;
321
322    /// 1/π
323    #[stable(feature = "rust1", since = "1.0.0")]
324    pub const FRAC_1_PI: f64 = 0.318309886183790671537767526745028724_f64;
325
326    /// 1/sqrt(π)
327    #[unstable(feature = "more_float_constants", issue = "146939")]
328    pub const FRAC_1_SQRT_PI: f64 = 0.564189583547756286948079451560772586_f64;
329
330    /// 1/sqrt(2π)
331    #[doc(alias = "FRAC_1_SQRT_TAU")]
332    #[unstable(feature = "more_float_constants", issue = "146939")]
333    pub const FRAC_1_SQRT_2PI: f64 = 0.398942280401432677939946059934381868_f64;
334
335    /// 2/π
336    #[stable(feature = "rust1", since = "1.0.0")]
337    pub const FRAC_2_PI: f64 = 0.636619772367581343075535053490057448_f64;
338
339    /// 2/sqrt(π)
340    #[stable(feature = "rust1", since = "1.0.0")]
341    pub const FRAC_2_SQRT_PI: f64 = 1.12837916709551257389615890312154517_f64;
342
343    /// sqrt(2)
344    #[stable(feature = "rust1", since = "1.0.0")]
345    pub const SQRT_2: f64 = 1.41421356237309504880168872420969808_f64;
346
347    /// 1/sqrt(2)
348    #[stable(feature = "rust1", since = "1.0.0")]
349    pub const FRAC_1_SQRT_2: f64 = 0.707106781186547524400844362104849039_f64;
350
351    /// sqrt(3)
352    #[unstable(feature = "more_float_constants", issue = "146939")]
353    pub const SQRT_3: f64 = 1.732050807568877293527446341505872367_f64;
354
355    /// 1/sqrt(3)
356    #[unstable(feature = "more_float_constants", issue = "146939")]
357    pub const FRAC_1_SQRT_3: f64 = 0.577350269189625764509148780501957456_f64;
358
359    /// Euler's number (e)
360    #[stable(feature = "rust1", since = "1.0.0")]
361    pub const E: f64 = 2.71828182845904523536028747135266250_f64;
362
363    /// log<sub>2</sub>(10)
364    #[stable(feature = "extra_log_consts", since = "1.43.0")]
365    pub const LOG2_10: f64 = 3.32192809488736234787031942948939018_f64;
366
367    /// log<sub>2</sub>(e)
368    #[stable(feature = "rust1", since = "1.0.0")]
369    pub const LOG2_E: f64 = 1.44269504088896340735992468100189214_f64;
370
371    /// log<sub>10</sub>(2)
372    #[stable(feature = "extra_log_consts", since = "1.43.0")]
373    pub const LOG10_2: f64 = 0.301029995663981195213738894724493027_f64;
374
375    /// log<sub>10</sub>(e)
376    #[stable(feature = "rust1", since = "1.0.0")]
377    pub const LOG10_E: f64 = 0.434294481903251827651128918916605082_f64;
378
379    /// ln(2)
380    #[stable(feature = "rust1", since = "1.0.0")]
381    pub const LN_2: f64 = 0.693147180559945309417232121458176568_f64;
382
383    /// ln(10)
384    #[stable(feature = "rust1", since = "1.0.0")]
385    pub const LN_10: f64 = 2.30258509299404568401799145468436421_f64;
386}
387
388impl f64 {
389    /// The radix or base of the internal representation of `f64`.
390    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
391    pub const RADIX: u32 = 2;
392
393    /// Number of significant digits in base 2.
394    ///
395    /// Note that the size of the mantissa in the bitwise representation is one
396    /// smaller than this since the leading 1 is not stored explicitly.
397    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
398    pub const MANTISSA_DIGITS: u32 = 53;
399    /// Approximate number of significant digits in base 10.
400    ///
401    /// This is the maximum <i>x</i> such that any decimal number with <i>x</i>
402    /// significant digits can be converted to `f64` and back without loss.
403    ///
404    /// Equal to floor(log<sub>10</sub>&nbsp;2<sup>[`MANTISSA_DIGITS`]&nbsp;&minus;&nbsp;1</sup>).
405    ///
406    /// [`MANTISSA_DIGITS`]: f64::MANTISSA_DIGITS
407    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
408    pub const DIGITS: u32 = 15;
409
410    /// [Machine epsilon] value for `f64`.
411    ///
412    /// This is the difference between `1.0` and the next larger representable number.
413    ///
414    /// Equal to 2<sup>1&nbsp;&minus;&nbsp;[`MANTISSA_DIGITS`]</sup>.
415    ///
416    /// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
417    /// [`MANTISSA_DIGITS`]: f64::MANTISSA_DIGITS
418    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
419    #[rustc_diagnostic_item = "f64_epsilon"]
420    pub const EPSILON: f64 = 2.2204460492503131e-16_f64;
421
422    /// Smallest finite `f64` value.
423    ///
424    /// Equal to &minus;[`MAX`].
425    ///
426    /// [`MAX`]: f64::MAX
427    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
428    pub const MIN: f64 = -1.7976931348623157e+308_f64;
429    /// Smallest positive normal `f64` value.
430    ///
431    /// Equal to 2<sup>[`MIN_EXP`]&nbsp;&minus;&nbsp;1</sup>.
432    ///
433    /// [`MIN_EXP`]: f64::MIN_EXP
434    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
435    pub const MIN_POSITIVE: f64 = 2.2250738585072014e-308_f64;
436    /// Largest finite `f64` value.
437    ///
438    /// Equal to
439    /// (1&nbsp;&minus;&nbsp;2<sup>&minus;[`MANTISSA_DIGITS`]</sup>)&nbsp;2<sup>[`MAX_EXP`]</sup>.
440    ///
441    /// [`MANTISSA_DIGITS`]: f64::MANTISSA_DIGITS
442    /// [`MAX_EXP`]: f64::MAX_EXP
443    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
444    pub const MAX: f64 = 1.7976931348623157e+308_f64;
445
446    /// One greater than the minimum possible *normal* power of 2 exponent
447    /// for a significand bounded by 1 ≤ x < 2 (i.e. the IEEE definition).
448    ///
449    /// This corresponds to the exact minimum possible *normal* power of 2 exponent
450    /// for a significand bounded by 0.5 ≤ x < 1 (i.e. the C definition).
451    /// In other words, all normal numbers representable by this type are
452    /// greater than or equal to 0.5&nbsp;×&nbsp;2<sup><i>MIN_EXP</i></sup>.
453    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
454    pub const MIN_EXP: i32 = -1021;
455    /// One greater than the maximum possible power of 2 exponent
456    /// for a significand bounded by 1 ≤ x < 2 (i.e. the IEEE definition).
457    ///
458    /// This corresponds to the exact maximum possible power of 2 exponent
459    /// for a significand bounded by 0.5 ≤ x < 1 (i.e. the C definition).
460    /// In other words, all numbers representable by this type are
461    /// strictly less than 2<sup><i>MAX_EXP</i></sup>.
462    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
463    pub const MAX_EXP: i32 = 1024;
464
465    /// Minimum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
466    ///
467    /// Equal to ceil(log<sub>10</sub>&nbsp;[`MIN_POSITIVE`]).
468    ///
469    /// [`MIN_POSITIVE`]: f64::MIN_POSITIVE
470    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
471    pub const MIN_10_EXP: i32 = -307;
472    /// Maximum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
473    ///
474    /// Equal to floor(log<sub>10</sub>&nbsp;[`MAX`]).
475    ///
476    /// [`MAX`]: f64::MAX
477    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
478    pub const MAX_10_EXP: i32 = 308;
479
480    /// Not a Number (NaN).
481    ///
482    /// Note that IEEE 754 doesn't define just a single NaN value; a plethora of bit patterns are
483    /// considered to be NaN. Furthermore, the standard makes a difference between a "signaling" and
484    /// a "quiet" NaN, and allows inspecting its "payload" (the unspecified bits in the bit pattern)
485    /// and its sign. See the [specification of NaN bit patterns](f32#nan-bit-patterns) for more
486    /// info.
487    ///
488    /// This constant is guaranteed to be a quiet NaN (on targets that follow the Rust assumptions
489    /// that the quiet/signaling bit being set to 1 indicates a quiet NaN). Beyond that, nothing is
490    /// guaranteed about the specific bit pattern chosen here: both payload and sign are arbitrary.
491    /// The concrete bit pattern may change across Rust versions and target platforms.
492    #[rustc_diagnostic_item = "f64_nan"]
493    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
494    #[allow(clippy::eq_op)]
495    pub const NAN: f64 = 0.0_f64 / 0.0_f64;
496    /// Infinity (∞).
497    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
498    pub const INFINITY: f64 = 1.0_f64 / 0.0_f64;
499    /// Negative infinity (−∞).
500    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
501    pub const NEG_INFINITY: f64 = -1.0_f64 / 0.0_f64;
502
503    /// Sign bit
504    pub(crate) const SIGN_MASK: u64 = 0x8000_0000_0000_0000;
505
506    /// Exponent mask
507    pub(crate) const EXP_MASK: u64 = 0x7ff0_0000_0000_0000;
508
509    /// Mantissa mask
510    pub(crate) const MAN_MASK: u64 = 0x000f_ffff_ffff_ffff;
511
512    /// Minimum representable positive value (min subnormal)
513    const TINY_BITS: u64 = 0x1;
514
515    /// Minimum representable negative value (min negative subnormal)
516    const NEG_TINY_BITS: u64 = Self::TINY_BITS | Self::SIGN_MASK;
517
518    /// Returns `true` if this value is NaN.
519    ///
520    /// ```
521    /// let nan = f64::NAN;
522    /// let f = 7.0_f64;
523    ///
524    /// assert!(nan.is_nan());
525    /// assert!(!f.is_nan());
526    /// ```
527    #[must_use]
528    #[stable(feature = "rust1", since = "1.0.0")]
529    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
530    #[inline]
531    #[allow(clippy::eq_op)] // > if you intended to check if the operand is NaN, use `.is_nan()` instead :)
532    pub const fn is_nan(self) -> bool {
533        self != self
534    }
535
536    /// Returns `true` if this value is positive infinity or negative infinity, and
537    /// `false` otherwise.
538    ///
539    /// ```
540    /// let f = 7.0f64;
541    /// let inf = f64::INFINITY;
542    /// let neg_inf = f64::NEG_INFINITY;
543    /// let nan = f64::NAN;
544    ///
545    /// assert!(!f.is_infinite());
546    /// assert!(!nan.is_infinite());
547    ///
548    /// assert!(inf.is_infinite());
549    /// assert!(neg_inf.is_infinite());
550    /// ```
551    #[must_use]
552    #[stable(feature = "rust1", since = "1.0.0")]
553    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
554    #[inline]
555    pub const fn is_infinite(self) -> bool {
556        // Getting clever with transmutation can result in incorrect answers on some FPUs
557        // FIXME: alter the Rust <-> Rust calling convention to prevent this problem.
558        // See https://github.com/rust-lang/rust/issues/72327
559        (self == f64::INFINITY) | (self == f64::NEG_INFINITY)
560    }
561
562    /// Returns `true` if this number is neither infinite nor NaN.
563    ///
564    /// ```
565    /// let f = 7.0f64;
566    /// let inf: f64 = f64::INFINITY;
567    /// let neg_inf: f64 = f64::NEG_INFINITY;
568    /// let nan: f64 = f64::NAN;
569    ///
570    /// assert!(f.is_finite());
571    ///
572    /// assert!(!nan.is_finite());
573    /// assert!(!inf.is_finite());
574    /// assert!(!neg_inf.is_finite());
575    /// ```
576    #[must_use]
577    #[stable(feature = "rust1", since = "1.0.0")]
578    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
579    #[inline]
580    pub const fn is_finite(self) -> bool {
581        // There's no need to handle NaN separately: if self is NaN,
582        // the comparison is not true, exactly as desired.
583        self.abs() < Self::INFINITY
584    }
585
586    /// Returns `true` if the number is [subnormal].
587    ///
588    /// ```
589    /// let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308_f64
590    /// let max = f64::MAX;
591    /// let lower_than_min = 1.0e-308_f64;
592    /// let zero = 0.0_f64;
593    ///
594    /// assert!(!min.is_subnormal());
595    /// assert!(!max.is_subnormal());
596    ///
597    /// assert!(!zero.is_subnormal());
598    /// assert!(!f64::NAN.is_subnormal());
599    /// assert!(!f64::INFINITY.is_subnormal());
600    /// // Values between `0` and `min` are Subnormal.
601    /// assert!(lower_than_min.is_subnormal());
602    /// ```
603    /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
604    #[must_use]
605    #[stable(feature = "is_subnormal", since = "1.53.0")]
606    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
607    #[inline]
608    pub const fn is_subnormal(self) -> bool {
609        matches!(self.classify(), FpCategory::Subnormal)
610    }
611
612    /// Returns `true` if the number is neither zero, infinite,
613    /// [subnormal], or NaN.
614    ///
615    /// ```
616    /// let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308f64
617    /// let max = f64::MAX;
618    /// let lower_than_min = 1.0e-308_f64;
619    /// let zero = 0.0f64;
620    ///
621    /// assert!(min.is_normal());
622    /// assert!(max.is_normal());
623    ///
624    /// assert!(!zero.is_normal());
625    /// assert!(!f64::NAN.is_normal());
626    /// assert!(!f64::INFINITY.is_normal());
627    /// // Values between `0` and `min` are Subnormal.
628    /// assert!(!lower_than_min.is_normal());
629    /// ```
630    /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
631    #[must_use]
632    #[stable(feature = "rust1", since = "1.0.0")]
633    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
634    #[inline]
635    pub const fn is_normal(self) -> bool {
636        matches!(self.classify(), FpCategory::Normal)
637    }
638
639    /// Returns the floating point category of the number. If only one property
640    /// is going to be tested, it is generally faster to use the specific
641    /// predicate instead.
642    ///
643    /// ```
644    /// use std::num::FpCategory;
645    ///
646    /// let num = 12.4_f64;
647    /// let inf = f64::INFINITY;
648    ///
649    /// assert_eq!(num.classify(), FpCategory::Normal);
650    /// assert_eq!(inf.classify(), FpCategory::Infinite);
651    /// ```
652    #[stable(feature = "rust1", since = "1.0.0")]
653    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
654    pub const fn classify(self) -> FpCategory {
655        // We used to have complicated logic here that avoids the simple bit-based tests to work
656        // around buggy codegen for x87 targets (see
657        // https://github.com/rust-lang/rust/issues/114479). However, some LLVM versions later, none
658        // of our tests is able to find any difference between the complicated and the naive
659        // version, so now we are back to the naive version.
660        let b = self.to_bits();
661        match (b & Self::MAN_MASK, b & Self::EXP_MASK) {
662            (0, Self::EXP_MASK) => FpCategory::Infinite,
663            (_, Self::EXP_MASK) => FpCategory::Nan,
664            (0, 0) => FpCategory::Zero,
665            (_, 0) => FpCategory::Subnormal,
666            _ => FpCategory::Normal,
667        }
668    }
669
670    /// Returns `true` if `self` has a positive sign, including `+0.0`, NaNs with
671    /// positive sign bit and positive infinity.
672    ///
673    /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of
674    /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are
675    /// conserved over arithmetic operations, the result of `is_sign_positive` on
676    /// a NaN might produce an unexpected or non-portable result. See the [specification
677    /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == 1.0`
678    /// if you need fully portable behavior (will return `false` for all NaNs).
679    ///
680    /// ```
681    /// let f = 7.0_f64;
682    /// let g = -7.0_f64;
683    ///
684    /// assert!(f.is_sign_positive());
685    /// assert!(!g.is_sign_positive());
686    /// ```
687    #[must_use]
688    #[stable(feature = "rust1", since = "1.0.0")]
689    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
690    #[inline]
691    pub const fn is_sign_positive(self) -> bool {
692        !self.is_sign_negative()
693    }
694
695    #[must_use]
696    #[stable(feature = "rust1", since = "1.0.0")]
697    #[deprecated(since = "1.0.0", note = "renamed to is_sign_positive")]
698    #[inline]
699    #[doc(hidden)]
700    pub fn is_positive(self) -> bool {
701        self.is_sign_positive()
702    }
703
704    /// Returns `true` if `self` has a negative sign, including `-0.0`, NaNs with
705    /// negative sign bit and negative infinity.
706    ///
707    /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of
708    /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are
709    /// conserved over arithmetic operations, the result of `is_sign_negative` on
710    /// a NaN might produce an unexpected or non-portable result. See the [specification
711    /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == -1.0`
712    /// if you need fully portable behavior (will return `false` for all NaNs).
713    ///
714    /// ```
715    /// let f = 7.0_f64;
716    /// let g = -7.0_f64;
717    ///
718    /// assert!(!f.is_sign_negative());
719    /// assert!(g.is_sign_negative());
720    /// ```
721    #[must_use]
722    #[stable(feature = "rust1", since = "1.0.0")]
723    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
724    #[inline]
725    pub const fn is_sign_negative(self) -> bool {
726        // IEEE754 says: isSignMinus(x) is true if and only if x has negative sign. isSignMinus
727        // applies to zeros and NaNs as well.
728        self.to_bits() & Self::SIGN_MASK != 0
729    }
730
731    #[must_use]
732    #[stable(feature = "rust1", since = "1.0.0")]
733    #[deprecated(since = "1.0.0", note = "renamed to is_sign_negative")]
734    #[inline]
735    #[doc(hidden)]
736    pub fn is_negative(self) -> bool {
737        self.is_sign_negative()
738    }
739
740    /// Returns the least number greater than `self`.
741    ///
742    /// Let `TINY` be the smallest representable positive `f64`. Then,
743    ///  - if `self.is_nan()`, this returns `self`;
744    ///  - if `self` is [`NEG_INFINITY`], this returns [`MIN`];
745    ///  - if `self` is `-TINY`, this returns -0.0;
746    ///  - if `self` is -0.0 or +0.0, this returns `TINY`;
747    ///  - if `self` is [`MAX`] or [`INFINITY`], this returns [`INFINITY`];
748    ///  - otherwise the unique least value greater than `self` is returned.
749    ///
750    /// The identity `x.next_up() == -(-x).next_down()` holds for all non-NaN `x`. When `x`
751    /// is finite `x == x.next_up().next_down()` also holds.
752    ///
753    /// ```rust
754    /// // f64::EPSILON is the difference between 1.0 and the next number up.
755    /// assert_eq!(1.0f64.next_up(), 1.0 + f64::EPSILON);
756    /// // But not for most numbers.
757    /// assert!(0.1f64.next_up() < 0.1 + f64::EPSILON);
758    /// assert_eq!(9007199254740992f64.next_up(), 9007199254740994.0);
759    /// ```
760    ///
761    /// This operation corresponds to IEEE-754 `nextUp`.
762    ///
763    /// [`NEG_INFINITY`]: Self::NEG_INFINITY
764    /// [`INFINITY`]: Self::INFINITY
765    /// [`MIN`]: Self::MIN
766    /// [`MAX`]: Self::MAX
767    #[inline]
768    #[doc(alias = "nextUp")]
769    #[stable(feature = "float_next_up_down", since = "1.86.0")]
770    #[rustc_const_stable(feature = "float_next_up_down", since = "1.86.0")]
771    pub const fn next_up(self) -> Self {
772        // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing
773        // denormals to zero. This is in general unsound and unsupported, but here
774        // we do our best to still produce the correct result on such targets.
775        let bits = self.to_bits();
776        if self.is_nan() || bits == Self::INFINITY.to_bits() {
777            return self;
778        }
779
780        let abs = bits & !Self::SIGN_MASK;
781        let next_bits = if abs == 0 {
782            Self::TINY_BITS
783        } else if bits == abs {
784            bits + 1
785        } else {
786            bits - 1
787        };
788        Self::from_bits(next_bits)
789    }
790
791    /// Returns the greatest number less than `self`.
792    ///
793    /// Let `TINY` be the smallest representable positive `f64`. Then,
794    ///  - if `self.is_nan()`, this returns `self`;
795    ///  - if `self` is [`INFINITY`], this returns [`MAX`];
796    ///  - if `self` is `TINY`, this returns 0.0;
797    ///  - if `self` is -0.0 or +0.0, this returns `-TINY`;
798    ///  - if `self` is [`MIN`] or [`NEG_INFINITY`], this returns [`NEG_INFINITY`];
799    ///  - otherwise the unique greatest value less than `self` is returned.
800    ///
801    /// The identity `x.next_down() == -(-x).next_up()` holds for all non-NaN `x`. When `x`
802    /// is finite `x == x.next_down().next_up()` also holds.
803    ///
804    /// ```rust
805    /// let x = 1.0f64;
806    /// // Clamp value into range [0, 1).
807    /// let clamped = x.clamp(0.0, 1.0f64.next_down());
808    /// assert!(clamped < 1.0);
809    /// assert_eq!(clamped.next_up(), 1.0);
810    /// ```
811    ///
812    /// This operation corresponds to IEEE-754 `nextDown`.
813    ///
814    /// [`NEG_INFINITY`]: Self::NEG_INFINITY
815    /// [`INFINITY`]: Self::INFINITY
816    /// [`MIN`]: Self::MIN
817    /// [`MAX`]: Self::MAX
818    #[inline]
819    #[doc(alias = "nextDown")]
820    #[stable(feature = "float_next_up_down", since = "1.86.0")]
821    #[rustc_const_stable(feature = "float_next_up_down", since = "1.86.0")]
822    pub const fn next_down(self) -> Self {
823        // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing
824        // denormals to zero. This is in general unsound and unsupported, but here
825        // we do our best to still produce the correct result on such targets.
826        let bits = self.to_bits();
827        if self.is_nan() || bits == Self::NEG_INFINITY.to_bits() {
828            return self;
829        }
830
831        let abs = bits & !Self::SIGN_MASK;
832        let next_bits = if abs == 0 {
833            Self::NEG_TINY_BITS
834        } else if bits == abs {
835            bits - 1
836        } else {
837            bits + 1
838        };
839        Self::from_bits(next_bits)
840    }
841
842    /// Takes the reciprocal (inverse) of a number, `1/x`.
843    ///
844    /// ```
845    /// let x = 2.0_f64;
846    /// let abs_difference = (x.recip() - (1.0 / x)).abs();
847    ///
848    /// assert!(abs_difference < 1e-10);
849    /// ```
850    #[must_use = "this returns the result of the operation, without modifying the original"]
851    #[stable(feature = "rust1", since = "1.0.0")]
852    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
853    #[inline]
854    pub const fn recip(self) -> f64 {
855        1.0 / self
856    }
857
858    /// Converts radians to degrees.
859    ///
860    /// # Unspecified precision
861    ///
862    /// The precision of this function is non-deterministic. This means it varies by platform,
863    /// Rust version, and can even differ within the same execution from one invocation to the next.
864    ///
865    /// # Examples
866    ///
867    /// ```
868    /// let angle = std::f64::consts::PI;
869    ///
870    /// let abs_difference = (angle.to_degrees() - 180.0).abs();
871    ///
872    /// assert!(abs_difference < 1e-10);
873    /// ```
874    #[must_use = "this returns the result of the operation, \
875                  without modifying the original"]
876    #[stable(feature = "rust1", since = "1.0.0")]
877    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
878    #[inline]
879    pub const fn to_degrees(self) -> f64 {
880        // The division here is correctly rounded with respect to the true value of 180/π.
881        // Although π is irrational and already rounded, the double rounding happens
882        // to produce correct result for f64.
883        const PIS_IN_180: f64 = 180.0 / consts::PI;
884        self * PIS_IN_180
885    }
886
887    /// Converts degrees to radians.
888    ///
889    /// # Unspecified precision
890    ///
891    /// The precision of this function is non-deterministic. This means it varies by platform,
892    /// Rust version, and can even differ within the same execution from one invocation to the next.
893    ///
894    /// # Examples
895    ///
896    /// ```
897    /// let angle = 180.0_f64;
898    ///
899    /// let abs_difference = (angle.to_radians() - std::f64::consts::PI).abs();
900    ///
901    /// assert!(abs_difference < 1e-10);
902    /// ```
903    #[must_use = "this returns the result of the operation, \
904                  without modifying the original"]
905    #[stable(feature = "rust1", since = "1.0.0")]
906    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
907    #[inline]
908    pub const fn to_radians(self) -> f64 {
909        // The division here is correctly rounded with respect to the true value of π/180.
910        // Although π is irrational and already rounded, the double rounding happens
911        // to produce correct result for f64.
912        const RADS_PER_DEG: f64 = consts::PI / 180.0;
913        self * RADS_PER_DEG
914    }
915
916    /// Returns the maximum of the two numbers, ignoring NaN.
917    ///
918    /// If one of the arguments is NaN, then the other argument is returned.
919    /// This follows the IEEE 754-2008 semantics for maxNum, except for handling of signaling NaNs;
920    /// this function handles all NaNs the same way and avoids maxNum's problems with associativity.
921    /// This also matches the behavior of libm’s fmax. In particular, if the inputs compare equal
922    /// (such as for the case of `+0.0` and `-0.0`), either input may be returned non-deterministically.
923    ///
924    /// ```
925    /// let x = 1.0_f64;
926    /// let y = 2.0_f64;
927    ///
928    /// assert_eq!(x.max(y), y);
929    /// ```
930    #[must_use = "this returns the result of the comparison, without modifying either input"]
931    #[stable(feature = "rust1", since = "1.0.0")]
932    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
933    #[inline]
934    pub const fn max(self, other: f64) -> f64 {
935        intrinsics::maxnumf64(self, other)
936    }
937
938    /// Returns the minimum of the two numbers, ignoring NaN.
939    ///
940    /// If one of the arguments is NaN, then the other argument is returned.
941    /// This follows the IEEE 754-2008 semantics for minNum, except for handling of signaling NaNs;
942    /// this function handles all NaNs the same way and avoids minNum's problems with associativity.
943    /// This also matches the behavior of libm’s fmin. In particular, if the inputs compare equal
944    /// (such as for the case of `+0.0` and `-0.0`), either input may be returned non-deterministically.
945    ///
946    /// ```
947    /// let x = 1.0_f64;
948    /// let y = 2.0_f64;
949    ///
950    /// assert_eq!(x.min(y), x);
951    /// ```
952    #[must_use = "this returns the result of the comparison, without modifying either input"]
953    #[stable(feature = "rust1", since = "1.0.0")]
954    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
955    #[inline]
956    pub const fn min(self, other: f64) -> f64 {
957        intrinsics::minnumf64(self, other)
958    }
959
960    /// Returns the maximum of the two numbers, propagating NaN.
961    ///
962    /// This returns NaN when *either* argument is NaN, as opposed to
963    /// [`f64::max`] which only returns NaN when *both* arguments are NaN.
964    ///
965    /// ```
966    /// #![feature(float_minimum_maximum)]
967    /// let x = 1.0_f64;
968    /// let y = 2.0_f64;
969    ///
970    /// assert_eq!(x.maximum(y), y);
971    /// assert!(x.maximum(f64::NAN).is_nan());
972    /// ```
973    ///
974    /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the greater
975    /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0.
976    /// Note that this follows the semantics specified in IEEE 754-2019.
977    ///
978    /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN
979    /// operand is conserved; see the [specification of NaN bit patterns](f32#nan-bit-patterns) for more info.
980    #[must_use = "this returns the result of the comparison, without modifying either input"]
981    #[unstable(feature = "float_minimum_maximum", issue = "91079")]
982    #[inline]
983    pub const fn maximum(self, other: f64) -> f64 {
984        intrinsics::maximumf64(self, other)
985    }
986
987    /// Returns the minimum of the two numbers, propagating NaN.
988    ///
989    /// This returns NaN when *either* argument is NaN, as opposed to
990    /// [`f64::min`] which only returns NaN when *both* arguments are NaN.
991    ///
992    /// ```
993    /// #![feature(float_minimum_maximum)]
994    /// let x = 1.0_f64;
995    /// let y = 2.0_f64;
996    ///
997    /// assert_eq!(x.minimum(y), x);
998    /// assert!(x.minimum(f64::NAN).is_nan());
999    /// ```
1000    ///
1001    /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the lesser
1002    /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0.
1003    /// Note that this follows the semantics specified in IEEE 754-2019.
1004    ///
1005    /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN
1006    /// operand is conserved; see the [specification of NaN bit patterns](f32#nan-bit-patterns) for more info.
1007    #[must_use = "this returns the result of the comparison, without modifying either input"]
1008    #[unstable(feature = "float_minimum_maximum", issue = "91079")]
1009    #[inline]
1010    pub const fn minimum(self, other: f64) -> f64 {
1011        intrinsics::minimumf64(self, other)
1012    }
1013
1014    /// Calculates the midpoint (average) between `self` and `rhs`.
1015    ///
1016    /// This returns NaN when *either* argument is NaN or if a combination of
1017    /// +inf and -inf is provided as arguments.
1018    ///
1019    /// # Examples
1020    ///
1021    /// ```
1022    /// assert_eq!(1f64.midpoint(4.0), 2.5);
1023    /// assert_eq!((-5.5f64).midpoint(8.0), 1.25);
1024    /// ```
1025    #[inline]
1026    #[doc(alias = "average")]
1027    #[stable(feature = "num_midpoint", since = "1.85.0")]
1028    #[rustc_const_stable(feature = "num_midpoint", since = "1.85.0")]
1029    pub const fn midpoint(self, other: f64) -> f64 {
1030        const HI: f64 = f64::MAX / 2.;
1031
1032        let (a, b) = (self, other);
1033        let abs_a = a.abs();
1034        let abs_b = b.abs();
1035
1036        if abs_a <= HI && abs_b <= HI {
1037            // Overflow is impossible
1038            (a + b) / 2.
1039        } else {
1040            (a / 2.) + (b / 2.)
1041        }
1042    }
1043
1044    /// Rounds toward zero and converts to any primitive integer type,
1045    /// assuming that the value is finite and fits in that type.
1046    ///
1047    /// ```
1048    /// let value = 4.6_f64;
1049    /// let rounded = unsafe { value.to_int_unchecked::<u16>() };
1050    /// assert_eq!(rounded, 4);
1051    ///
1052    /// let value = -128.9_f64;
1053    /// let rounded = unsafe { value.to_int_unchecked::<i8>() };
1054    /// assert_eq!(rounded, i8::MIN);
1055    /// ```
1056    ///
1057    /// # Safety
1058    ///
1059    /// The value must:
1060    ///
1061    /// * Not be `NaN`
1062    /// * Not be infinite
1063    /// * Be representable in the return type `Int`, after truncating off its fractional part
1064    #[must_use = "this returns the result of the operation, \
1065                  without modifying the original"]
1066    #[stable(feature = "float_approx_unchecked_to", since = "1.44.0")]
1067    #[inline]
1068    pub unsafe fn to_int_unchecked<Int>(self) -> Int
1069    where
1070        Self: FloatToInt<Int>,
1071    {
1072        // SAFETY: the caller must uphold the safety contract for
1073        // `FloatToInt::to_int_unchecked`.
1074        unsafe { FloatToInt::<Int>::to_int_unchecked(self) }
1075    }
1076
1077    /// Raw transmutation to `u64`.
1078    ///
1079    /// This is currently identical to `transmute::<f64, u64>(self)` on all platforms.
1080    ///
1081    /// See [`from_bits`](Self::from_bits) for some discussion of the
1082    /// portability of this operation (there are almost no issues).
1083    ///
1084    /// Note that this function is distinct from `as` casting, which attempts to
1085    /// preserve the *numeric* value, and not the bitwise value.
1086    ///
1087    /// # Examples
1088    ///
1089    /// ```
1090    /// assert!((1f64).to_bits() != 1f64 as u64); // to_bits() is not casting!
1091    /// assert_eq!((12.5f64).to_bits(), 0x4029000000000000);
1092    /// ```
1093    #[must_use = "this returns the result of the operation, \
1094                  without modifying the original"]
1095    #[stable(feature = "float_bits_conv", since = "1.20.0")]
1096    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1097    #[allow(unnecessary_transmutes)]
1098    #[inline]
1099    pub const fn to_bits(self) -> u64 {
1100        // SAFETY: `u64` is a plain old datatype so we can always transmute to it.
1101        unsafe { mem::transmute(self) }
1102    }
1103
1104    /// Raw transmutation from `u64`.
1105    ///
1106    /// This is currently identical to `transmute::<u64, f64>(v)` on all platforms.
1107    /// It turns out this is incredibly portable, for two reasons:
1108    ///
1109    /// * Floats and Ints have the same endianness on all supported platforms.
1110    /// * IEEE 754 very precisely specifies the bit layout of floats.
1111    ///
1112    /// However there is one caveat: prior to the 2008 version of IEEE 754, how
1113    /// to interpret the NaN signaling bit wasn't actually specified. Most platforms
1114    /// (notably x86 and ARM) picked the interpretation that was ultimately
1115    /// standardized in 2008, but some didn't (notably MIPS). As a result, all
1116    /// signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa.
1117    ///
1118    /// Rather than trying to preserve signaling-ness cross-platform, this
1119    /// implementation favors preserving the exact bits. This means that
1120    /// any payloads encoded in NaNs will be preserved even if the result of
1121    /// this method is sent over the network from an x86 machine to a MIPS one.
1122    ///
1123    /// If the results of this method are only manipulated by the same
1124    /// architecture that produced them, then there is no portability concern.
1125    ///
1126    /// If the input isn't NaN, then there is no portability concern.
1127    ///
1128    /// If you don't care about signaling-ness (very likely), then there is no
1129    /// portability concern.
1130    ///
1131    /// Note that this function is distinct from `as` casting, which attempts to
1132    /// preserve the *numeric* value, and not the bitwise value.
1133    ///
1134    /// # Examples
1135    ///
1136    /// ```
1137    /// let v = f64::from_bits(0x4029000000000000);
1138    /// assert_eq!(v, 12.5);
1139    /// ```
1140    #[stable(feature = "float_bits_conv", since = "1.20.0")]
1141    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1142    #[must_use]
1143    #[inline]
1144    #[allow(unnecessary_transmutes)]
1145    pub const fn from_bits(v: u64) -> Self {
1146        // It turns out the safety issues with sNaN were overblown! Hooray!
1147        // SAFETY: `u64` is a plain old datatype so we can always transmute from it.
1148        unsafe { mem::transmute(v) }
1149    }
1150
1151    /// Returns the memory representation of this floating point number as a byte array in
1152    /// big-endian (network) byte order.
1153    ///
1154    /// See [`from_bits`](Self::from_bits) for some discussion of the
1155    /// portability of this operation (there are almost no issues).
1156    ///
1157    /// # Examples
1158    ///
1159    /// ```
1160    /// let bytes = 12.5f64.to_be_bytes();
1161    /// assert_eq!(bytes, [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
1162    /// ```
1163    #[must_use = "this returns the result of the operation, \
1164                  without modifying the original"]
1165    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1166    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1167    #[inline]
1168    pub const fn to_be_bytes(self) -> [u8; 8] {
1169        self.to_bits().to_be_bytes()
1170    }
1171
1172    /// Returns the memory representation of this floating point number as a byte array in
1173    /// little-endian byte order.
1174    ///
1175    /// See [`from_bits`](Self::from_bits) for some discussion of the
1176    /// portability of this operation (there are almost no issues).
1177    ///
1178    /// # Examples
1179    ///
1180    /// ```
1181    /// let bytes = 12.5f64.to_le_bytes();
1182    /// assert_eq!(bytes, [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]);
1183    /// ```
1184    #[must_use = "this returns the result of the operation, \
1185                  without modifying the original"]
1186    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1187    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1188    #[inline]
1189    pub const fn to_le_bytes(self) -> [u8; 8] {
1190        self.to_bits().to_le_bytes()
1191    }
1192
1193    /// Returns the memory representation of this floating point number as a byte array in
1194    /// native byte order.
1195    ///
1196    /// As the target platform's native endianness is used, portable code
1197    /// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate, instead.
1198    ///
1199    /// [`to_be_bytes`]: f64::to_be_bytes
1200    /// [`to_le_bytes`]: f64::to_le_bytes
1201    ///
1202    /// See [`from_bits`](Self::from_bits) for some discussion of the
1203    /// portability of this operation (there are almost no issues).
1204    ///
1205    /// # Examples
1206    ///
1207    /// ```
1208    /// let bytes = 12.5f64.to_ne_bytes();
1209    /// assert_eq!(
1210    ///     bytes,
1211    ///     if cfg!(target_endian = "big") {
1212    ///         [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
1213    ///     } else {
1214    ///         [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]
1215    ///     }
1216    /// );
1217    /// ```
1218    #[must_use = "this returns the result of the operation, \
1219                  without modifying the original"]
1220    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1221    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1222    #[inline]
1223    pub const fn to_ne_bytes(self) -> [u8; 8] {
1224        self.to_bits().to_ne_bytes()
1225    }
1226
1227    /// Creates a floating point value from its representation as a byte array in big endian.
1228    ///
1229    /// See [`from_bits`](Self::from_bits) for some discussion of the
1230    /// portability of this operation (there are almost no issues).
1231    ///
1232    /// # Examples
1233    ///
1234    /// ```
1235    /// let value = f64::from_be_bytes([0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
1236    /// assert_eq!(value, 12.5);
1237    /// ```
1238    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1239    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1240    #[must_use]
1241    #[inline]
1242    pub const fn from_be_bytes(bytes: [u8; 8]) -> Self {
1243        Self::from_bits(u64::from_be_bytes(bytes))
1244    }
1245
1246    /// Creates a floating point value from its representation as a byte array in little endian.
1247    ///
1248    /// See [`from_bits`](Self::from_bits) for some discussion of the
1249    /// portability of this operation (there are almost no issues).
1250    ///
1251    /// # Examples
1252    ///
1253    /// ```
1254    /// let value = f64::from_le_bytes([0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]);
1255    /// assert_eq!(value, 12.5);
1256    /// ```
1257    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1258    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1259    #[must_use]
1260    #[inline]
1261    pub const fn from_le_bytes(bytes: [u8; 8]) -> Self {
1262        Self::from_bits(u64::from_le_bytes(bytes))
1263    }
1264
1265    /// Creates a floating point value from its representation as a byte array in native endian.
1266    ///
1267    /// As the target platform's native endianness is used, portable code
1268    /// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as
1269    /// appropriate instead.
1270    ///
1271    /// [`from_be_bytes`]: f64::from_be_bytes
1272    /// [`from_le_bytes`]: f64::from_le_bytes
1273    ///
1274    /// See [`from_bits`](Self::from_bits) for some discussion of the
1275    /// portability of this operation (there are almost no issues).
1276    ///
1277    /// # Examples
1278    ///
1279    /// ```
1280    /// let value = f64::from_ne_bytes(if cfg!(target_endian = "big") {
1281    ///     [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
1282    /// } else {
1283    ///     [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]
1284    /// });
1285    /// assert_eq!(value, 12.5);
1286    /// ```
1287    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1288    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1289    #[must_use]
1290    #[inline]
1291    pub const fn from_ne_bytes(bytes: [u8; 8]) -> Self {
1292        Self::from_bits(u64::from_ne_bytes(bytes))
1293    }
1294
1295    /// Returns the ordering between `self` and `other`.
1296    ///
1297    /// Unlike the standard partial comparison between floating point numbers,
1298    /// this comparison always produces an ordering in accordance to
1299    /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision)
1300    /// floating point standard. The values are ordered in the following sequence:
1301    ///
1302    /// - negative quiet NaN
1303    /// - negative signaling NaN
1304    /// - negative infinity
1305    /// - negative numbers
1306    /// - negative subnormal numbers
1307    /// - negative zero
1308    /// - positive zero
1309    /// - positive subnormal numbers
1310    /// - positive numbers
1311    /// - positive infinity
1312    /// - positive signaling NaN
1313    /// - positive quiet NaN.
1314    ///
1315    /// The ordering established by this function does not always agree with the
1316    /// [`PartialOrd`] and [`PartialEq`] implementations of `f64`. For example,
1317    /// they consider negative and positive zero equal, while `total_cmp`
1318    /// doesn't.
1319    ///
1320    /// The interpretation of the signaling NaN bit follows the definition in
1321    /// the IEEE 754 standard, which may not match the interpretation by some of
1322    /// the older, non-conformant (e.g. MIPS) hardware implementations.
1323    ///
1324    /// # Example
1325    ///
1326    /// ```
1327    /// struct GoodBoy {
1328    ///     name: String,
1329    ///     weight: f64,
1330    /// }
1331    ///
1332    /// let mut bois = vec![
1333    ///     GoodBoy { name: "Pucci".to_owned(), weight: 0.1 },
1334    ///     GoodBoy { name: "Woofer".to_owned(), weight: 99.0 },
1335    ///     GoodBoy { name: "Yapper".to_owned(), weight: 10.0 },
1336    ///     GoodBoy { name: "Chonk".to_owned(), weight: f64::INFINITY },
1337    ///     GoodBoy { name: "Abs. Unit".to_owned(), weight: f64::NAN },
1338    ///     GoodBoy { name: "Floaty".to_owned(), weight: -5.0 },
1339    /// ];
1340    ///
1341    /// bois.sort_by(|a, b| a.weight.total_cmp(&b.weight));
1342    ///
1343    /// // `f64::NAN` could be positive or negative, which will affect the sort order.
1344    /// if f64::NAN.is_sign_negative() {
1345    ///     assert!(bois.into_iter().map(|b| b.weight)
1346    ///         .zip([f64::NAN, -5.0, 0.1, 10.0, 99.0, f64::INFINITY].iter())
1347    ///         .all(|(a, b)| a.to_bits() == b.to_bits()))
1348    /// } else {
1349    ///     assert!(bois.into_iter().map(|b| b.weight)
1350    ///         .zip([-5.0, 0.1, 10.0, 99.0, f64::INFINITY, f64::NAN].iter())
1351    ///         .all(|(a, b)| a.to_bits() == b.to_bits()))
1352    /// }
1353    /// ```
1354    #[stable(feature = "total_cmp", since = "1.62.0")]
1355    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1356    #[must_use]
1357    #[inline]
1358    pub const fn total_cmp(&self, other: &Self) -> crate::cmp::Ordering {
1359        let mut left = self.to_bits() as i64;
1360        let mut right = other.to_bits() as i64;
1361
1362        // In case of negatives, flip all the bits except the sign
1363        // to achieve a similar layout as two's complement integers
1364        //
1365        // Why does this work? IEEE 754 floats consist of three fields:
1366        // Sign bit, exponent and mantissa. The set of exponent and mantissa
1367        // fields as a whole have the property that their bitwise order is
1368        // equal to the numeric magnitude where the magnitude is defined.
1369        // The magnitude is not normally defined on NaN values, but
1370        // IEEE 754 totalOrder defines the NaN values also to follow the
1371        // bitwise order. This leads to order explained in the doc comment.
1372        // However, the representation of magnitude is the same for negative
1373        // and positive numbers – only the sign bit is different.
1374        // To easily compare the floats as signed integers, we need to
1375        // flip the exponent and mantissa bits in case of negative numbers.
1376        // We effectively convert the numbers to "two's complement" form.
1377        //
1378        // To do the flipping, we construct a mask and XOR against it.
1379        // We branchlessly calculate an "all-ones except for the sign bit"
1380        // mask from negative-signed values: right shifting sign-extends
1381        // the integer, so we "fill" the mask with sign bits, and then
1382        // convert to unsigned to push one more zero bit.
1383        // On positive values, the mask is all zeros, so it's a no-op.
1384        left ^= (((left >> 63) as u64) >> 1) as i64;
1385        right ^= (((right >> 63) as u64) >> 1) as i64;
1386
1387        left.cmp(&right)
1388    }
1389
1390    /// Restrict a value to a certain interval unless it is NaN.
1391    ///
1392    /// Returns `max` if `self` is greater than `max`, and `min` if `self` is
1393    /// less than `min`. Otherwise this returns `self`.
1394    ///
1395    /// Note that this function returns NaN if the initial value was NaN as
1396    /// well.
1397    ///
1398    /// # Panics
1399    ///
1400    /// Panics if `min > max`, `min` is NaN, or `max` is NaN.
1401    ///
1402    /// # Examples
1403    ///
1404    /// ```
1405    /// assert!((-3.0f64).clamp(-2.0, 1.0) == -2.0);
1406    /// assert!((0.0f64).clamp(-2.0, 1.0) == 0.0);
1407    /// assert!((2.0f64).clamp(-2.0, 1.0) == 1.0);
1408    /// assert!((f64::NAN).clamp(-2.0, 1.0).is_nan());
1409    /// ```
1410    #[must_use = "method returns a new number and does not mutate the original value"]
1411    #[stable(feature = "clamp", since = "1.50.0")]
1412    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
1413    #[inline]
1414    pub const fn clamp(mut self, min: f64, max: f64) -> f64 {
1415        const_assert!(
1416            min <= max,
1417            "min > max, or either was NaN",
1418            "min > max, or either was NaN. min = {min:?}, max = {max:?}",
1419            min: f64,
1420            max: f64,
1421        );
1422
1423        if self < min {
1424            self = min;
1425        }
1426        if self > max {
1427            self = max;
1428        }
1429        self
1430    }
1431
1432    /// Computes the absolute value of `self`.
1433    ///
1434    /// This function always returns the precise result.
1435    ///
1436    /// # Examples
1437    ///
1438    /// ```
1439    /// let x = 3.5_f64;
1440    /// let y = -3.5_f64;
1441    ///
1442    /// assert_eq!(x.abs(), x);
1443    /// assert_eq!(y.abs(), -y);
1444    ///
1445    /// assert!(f64::NAN.abs().is_nan());
1446    /// ```
1447    #[must_use = "method returns a new number and does not mutate the original value"]
1448    #[stable(feature = "rust1", since = "1.0.0")]
1449    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
1450    #[inline]
1451    pub const fn abs(self) -> f64 {
1452        intrinsics::fabsf64(self)
1453    }
1454
1455    /// Returns a number that represents the sign of `self`.
1456    ///
1457    /// - `1.0` if the number is positive, `+0.0` or `INFINITY`
1458    /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
1459    /// - NaN if the number is NaN
1460    ///
1461    /// # Examples
1462    ///
1463    /// ```
1464    /// let f = 3.5_f64;
1465    ///
1466    /// assert_eq!(f.signum(), 1.0);
1467    /// assert_eq!(f64::NEG_INFINITY.signum(), -1.0);
1468    ///
1469    /// assert!(f64::NAN.signum().is_nan());
1470    /// ```
1471    #[must_use = "method returns a new number and does not mutate the original value"]
1472    #[stable(feature = "rust1", since = "1.0.0")]
1473    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
1474    #[inline]
1475    pub const fn signum(self) -> f64 {
1476        if self.is_nan() { Self::NAN } else { 1.0_f64.copysign(self) }
1477    }
1478
1479    /// Returns a number composed of the magnitude of `self` and the sign of
1480    /// `sign`.
1481    ///
1482    /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`.
1483    /// If `self` is a NaN, then a NaN with the same payload as `self` and the sign bit of `sign` is
1484    /// returned.
1485    ///
1486    /// If `sign` is a NaN, then this operation will still carry over its sign into the result. Note
1487    /// that IEEE 754 doesn't assign any meaning to the sign bit in case of a NaN, and as Rust
1488    /// doesn't guarantee that the bit pattern of NaNs are conserved over arithmetic operations, the
1489    /// result of `copysign` with `sign` being a NaN might produce an unexpected or non-portable
1490    /// result. See the [specification of NaN bit patterns](primitive@f32#nan-bit-patterns) for more
1491    /// info.
1492    ///
1493    /// # Examples
1494    ///
1495    /// ```
1496    /// let f = 3.5_f64;
1497    ///
1498    /// assert_eq!(f.copysign(0.42), 3.5_f64);
1499    /// assert_eq!(f.copysign(-0.42), -3.5_f64);
1500    /// assert_eq!((-f).copysign(0.42), 3.5_f64);
1501    /// assert_eq!((-f).copysign(-0.42), -3.5_f64);
1502    ///
1503    /// assert!(f64::NAN.copysign(1.0).is_nan());
1504    /// ```
1505    #[must_use = "method returns a new number and does not mutate the original value"]
1506    #[stable(feature = "copysign", since = "1.35.0")]
1507    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
1508    #[inline]
1509    pub const fn copysign(self, sign: f64) -> f64 {
1510        intrinsics::copysignf64(self, sign)
1511    }
1512
1513    /// Float addition that allows optimizations based on algebraic rules.
1514    ///
1515    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1516    #[must_use = "method returns a new number and does not mutate the original value"]
1517    #[unstable(feature = "float_algebraic", issue = "136469")]
1518    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1519    #[inline]
1520    pub const fn algebraic_add(self, rhs: f64) -> f64 {
1521        intrinsics::fadd_algebraic(self, rhs)
1522    }
1523
1524    /// Float subtraction that allows optimizations based on algebraic rules.
1525    ///
1526    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1527    #[must_use = "method returns a new number and does not mutate the original value"]
1528    #[unstable(feature = "float_algebraic", issue = "136469")]
1529    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1530    #[inline]
1531    pub const fn algebraic_sub(self, rhs: f64) -> f64 {
1532        intrinsics::fsub_algebraic(self, rhs)
1533    }
1534
1535    /// Float multiplication that allows optimizations based on algebraic rules.
1536    ///
1537    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1538    #[must_use = "method returns a new number and does not mutate the original value"]
1539    #[unstable(feature = "float_algebraic", issue = "136469")]
1540    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1541    #[inline]
1542    pub const fn algebraic_mul(self, rhs: f64) -> f64 {
1543        intrinsics::fmul_algebraic(self, rhs)
1544    }
1545
1546    /// Float division that allows optimizations based on algebraic rules.
1547    ///
1548    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1549    #[must_use = "method returns a new number and does not mutate the original value"]
1550    #[unstable(feature = "float_algebraic", issue = "136469")]
1551    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1552    #[inline]
1553    pub const fn algebraic_div(self, rhs: f64) -> f64 {
1554        intrinsics::fdiv_algebraic(self, rhs)
1555    }
1556
1557    /// Float remainder that allows optimizations based on algebraic rules.
1558    ///
1559    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1560    #[must_use = "method returns a new number and does not mutate the original value"]
1561    #[unstable(feature = "float_algebraic", issue = "136469")]
1562    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1563    #[inline]
1564    pub const fn algebraic_rem(self, rhs: f64) -> f64 {
1565        intrinsics::frem_algebraic(self, rhs)
1566    }
1567}
1568
1569#[unstable(feature = "core_float_math", issue = "137578")]
1570/// Experimental implementations of floating point functions in `core`.
1571///
1572/// _The standalone functions in this module are for testing only.
1573/// They will be stabilized as inherent methods._
1574pub mod math {
1575    use crate::intrinsics;
1576    use crate::num::libm;
1577
1578    /// Experimental version of `floor` in `core`. See [`f64::floor`] for details.
1579    ///
1580    /// # Examples
1581    ///
1582    /// ```
1583    /// #![feature(core_float_math)]
1584    ///
1585    /// use core::f64;
1586    ///
1587    /// let f = 3.7_f64;
1588    /// let g = 3.0_f64;
1589    /// let h = -3.7_f64;
1590    ///
1591    /// assert_eq!(f64::math::floor(f), 3.0);
1592    /// assert_eq!(f64::math::floor(g), 3.0);
1593    /// assert_eq!(f64::math::floor(h), -4.0);
1594    /// ```
1595    ///
1596    /// _This standalone function is for testing only.
1597    /// It will be stabilized as an inherent method._
1598    ///
1599    /// [`f64::floor`]: ../../../std/primitive.f64.html#method.floor
1600    #[inline]
1601    #[unstable(feature = "core_float_math", issue = "137578")]
1602    #[must_use = "method returns a new number and does not mutate the original value"]
1603    pub const fn floor(x: f64) -> f64 {
1604        intrinsics::floorf64(x)
1605    }
1606
1607    /// Experimental version of `ceil` in `core`. See [`f64::ceil`] for details.
1608    ///
1609    /// # Examples
1610    ///
1611    /// ```
1612    /// #![feature(core_float_math)]
1613    ///
1614    /// use core::f64;
1615    ///
1616    /// let f = 3.01_f64;
1617    /// let g = 4.0_f64;
1618    ///
1619    /// assert_eq!(f64::math::ceil(f), 4.0);
1620    /// assert_eq!(f64::math::ceil(g), 4.0);
1621    /// ```
1622    ///
1623    /// _This standalone function is for testing only.
1624    /// It will be stabilized as an inherent method._
1625    ///
1626    /// [`f64::ceil`]: ../../../std/primitive.f64.html#method.ceil
1627    #[inline]
1628    #[doc(alias = "ceiling")]
1629    #[unstable(feature = "core_float_math", issue = "137578")]
1630    #[must_use = "method returns a new number and does not mutate the original value"]
1631    pub const fn ceil(x: f64) -> f64 {
1632        intrinsics::ceilf64(x)
1633    }
1634
1635    /// Experimental version of `round` in `core`. See [`f64::round`] for details.
1636    ///
1637    /// # Examples
1638    ///
1639    /// ```
1640    /// #![feature(core_float_math)]
1641    ///
1642    /// use core::f64;
1643    ///
1644    /// let f = 3.3_f64;
1645    /// let g = -3.3_f64;
1646    /// let h = -3.7_f64;
1647    /// let i = 3.5_f64;
1648    /// let j = 4.5_f64;
1649    ///
1650    /// assert_eq!(f64::math::round(f), 3.0);
1651    /// assert_eq!(f64::math::round(g), -3.0);
1652    /// assert_eq!(f64::math::round(h), -4.0);
1653    /// assert_eq!(f64::math::round(i), 4.0);
1654    /// assert_eq!(f64::math::round(j), 5.0);
1655    /// ```
1656    ///
1657    /// _This standalone function is for testing only.
1658    /// It will be stabilized as an inherent method._
1659    ///
1660    /// [`f64::round`]: ../../../std/primitive.f64.html#method.round
1661    #[inline]
1662    #[unstable(feature = "core_float_math", issue = "137578")]
1663    #[must_use = "method returns a new number and does not mutate the original value"]
1664    pub const fn round(x: f64) -> f64 {
1665        intrinsics::roundf64(x)
1666    }
1667
1668    /// Experimental version of `round_ties_even` in `core`. See [`f64::round_ties_even`] for
1669    /// details.
1670    ///
1671    /// # Examples
1672    ///
1673    /// ```
1674    /// #![feature(core_float_math)]
1675    ///
1676    /// use core::f64;
1677    ///
1678    /// let f = 3.3_f64;
1679    /// let g = -3.3_f64;
1680    /// let h = 3.5_f64;
1681    /// let i = 4.5_f64;
1682    ///
1683    /// assert_eq!(f64::math::round_ties_even(f), 3.0);
1684    /// assert_eq!(f64::math::round_ties_even(g), -3.0);
1685    /// assert_eq!(f64::math::round_ties_even(h), 4.0);
1686    /// assert_eq!(f64::math::round_ties_even(i), 4.0);
1687    /// ```
1688    ///
1689    /// _This standalone function is for testing only.
1690    /// It will be stabilized as an inherent method._
1691    ///
1692    /// [`f64::round_ties_even`]: ../../../std/primitive.f64.html#method.round_ties_even
1693    #[inline]
1694    #[unstable(feature = "core_float_math", issue = "137578")]
1695    #[must_use = "method returns a new number and does not mutate the original value"]
1696    pub const fn round_ties_even(x: f64) -> f64 {
1697        intrinsics::round_ties_even_f64(x)
1698    }
1699
1700    /// Experimental version of `trunc` in `core`. See [`f64::trunc`] for details.
1701    ///
1702    /// # Examples
1703    ///
1704    /// ```
1705    /// #![feature(core_float_math)]
1706    ///
1707    /// use core::f64;
1708    ///
1709    /// let f = 3.7_f64;
1710    /// let g = 3.0_f64;
1711    /// let h = -3.7_f64;
1712    ///
1713    /// assert_eq!(f64::math::trunc(f), 3.0);
1714    /// assert_eq!(f64::math::trunc(g), 3.0);
1715    /// assert_eq!(f64::math::trunc(h), -3.0);
1716    /// ```
1717    ///
1718    /// _This standalone function is for testing only.
1719    /// It will be stabilized as an inherent method._
1720    ///
1721    /// [`f64::trunc`]: ../../../std/primitive.f64.html#method.trunc
1722    #[inline]
1723    #[doc(alias = "truncate")]
1724    #[unstable(feature = "core_float_math", issue = "137578")]
1725    #[must_use = "method returns a new number and does not mutate the original value"]
1726    pub const fn trunc(x: f64) -> f64 {
1727        intrinsics::truncf64(x)
1728    }
1729
1730    /// Experimental version of `fract` in `core`. See [`f64::fract`] for details.
1731    ///
1732    /// # Examples
1733    ///
1734    /// ```
1735    /// #![feature(core_float_math)]
1736    ///
1737    /// use core::f64;
1738    ///
1739    /// let x = 3.6_f64;
1740    /// let y = -3.6_f64;
1741    /// let abs_difference_x = (f64::math::fract(x) - 0.6).abs();
1742    /// let abs_difference_y = (f64::math::fract(y) - (-0.6)).abs();
1743    ///
1744    /// assert!(abs_difference_x < 1e-10);
1745    /// assert!(abs_difference_y < 1e-10);
1746    /// ```
1747    ///
1748    /// _This standalone function is for testing only.
1749    /// It will be stabilized as an inherent method._
1750    ///
1751    /// [`f64::fract`]: ../../../std/primitive.f64.html#method.fract
1752    #[inline]
1753    #[unstable(feature = "core_float_math", issue = "137578")]
1754    #[must_use = "method returns a new number and does not mutate the original value"]
1755    pub const fn fract(x: f64) -> f64 {
1756        x - trunc(x)
1757    }
1758
1759    /// Experimental version of `mul_add` in `core`. See [`f64::mul_add`] for details.
1760    ///
1761    /// # Examples
1762    ///
1763    /// ```
1764    /// #![feature(core_float_math)]
1765    ///
1766    /// # // FIXME(#140515): mingw has an incorrect fma
1767    /// # // https://sourceforge.net/p/mingw-w64/bugs/848/
1768    /// # #[cfg(all(target_os = "windows", target_env = "gnu", not(target_abi = "llvm")))] {
1769    /// use core::f64;
1770    ///
1771    /// let m = 10.0_f64;
1772    /// let x = 4.0_f64;
1773    /// let b = 60.0_f64;
1774    ///
1775    /// assert_eq!(f64::math::mul_add(m, x, b), 100.0);
1776    /// assert_eq!(m * x + b, 100.0);
1777    ///
1778    /// let one_plus_eps = 1.0_f64 + f64::EPSILON;
1779    /// let one_minus_eps = 1.0_f64 - f64::EPSILON;
1780    /// let minus_one = -1.0_f64;
1781    ///
1782    /// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps.
1783    /// assert_eq!(
1784    ///     f64::math::mul_add(one_plus_eps, one_minus_eps, minus_one),
1785    ///     -f64::EPSILON * f64::EPSILON
1786    /// );
1787    /// // Different rounding with the non-fused multiply and add.
1788    /// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0);
1789    /// # }
1790    /// ```
1791    ///
1792    /// _This standalone function is for testing only.
1793    /// It will be stabilized as an inherent method._
1794    ///
1795    /// [`f64::mul_add`]: ../../../std/primitive.f64.html#method.mul_add
1796    #[inline]
1797    #[doc(alias = "fma", alias = "fusedMultiplyAdd")]
1798    #[unstable(feature = "core_float_math", issue = "137578")]
1799    #[must_use = "method returns a new number and does not mutate the original value"]
1800    #[rustc_const_unstable(feature = "const_mul_add", issue = "146724")]
1801    pub const fn mul_add(x: f64, a: f64, b: f64) -> f64 {
1802        intrinsics::fmaf64(x, a, b)
1803    }
1804
1805    /// Experimental version of `div_euclid` in `core`. See [`f64::div_euclid`] for details.
1806    ///
1807    /// # Examples
1808    ///
1809    /// ```
1810    /// #![feature(core_float_math)]
1811    ///
1812    /// use core::f64;
1813    ///
1814    /// let a: f64 = 7.0;
1815    /// let b = 4.0;
1816    /// assert_eq!(f64::math::div_euclid(a, b), 1.0); // 7.0 > 4.0 * 1.0
1817    /// assert_eq!(f64::math::div_euclid(-a, b), -2.0); // -7.0 >= 4.0 * -2.0
1818    /// assert_eq!(f64::math::div_euclid(a, -b), -1.0); // 7.0 >= -4.0 * -1.0
1819    /// assert_eq!(f64::math::div_euclid(-a, -b), 2.0); // -7.0 >= -4.0 * 2.0
1820    /// ```
1821    ///
1822    /// _This standalone function is for testing only.
1823    /// It will be stabilized as an inherent method._
1824    ///
1825    /// [`f64::div_euclid`]: ../../../std/primitive.f64.html#method.div_euclid
1826    #[inline]
1827    #[unstable(feature = "core_float_math", issue = "137578")]
1828    #[must_use = "method returns a new number and does not mutate the original value"]
1829    pub fn div_euclid(x: f64, rhs: f64) -> f64 {
1830        let q = trunc(x / rhs);
1831        if x % rhs < 0.0 {
1832            return if rhs > 0.0 { q - 1.0 } else { q + 1.0 };
1833        }
1834        q
1835    }
1836
1837    /// Experimental version of `rem_euclid` in `core`. See [`f64::rem_euclid`] for details.
1838    ///
1839    /// # Examples
1840    ///
1841    /// ```
1842    /// #![feature(core_float_math)]
1843    ///
1844    /// use core::f64;
1845    ///
1846    /// let a: f64 = 7.0;
1847    /// let b = 4.0;
1848    /// assert_eq!(f64::math::rem_euclid(a, b), 3.0);
1849    /// assert_eq!(f64::math::rem_euclid(-a, b), 1.0);
1850    /// assert_eq!(f64::math::rem_euclid(a, -b), 3.0);
1851    /// assert_eq!(f64::math::rem_euclid(-a, -b), 1.0);
1852    /// // limitation due to round-off error
1853    /// assert!(f64::math::rem_euclid(-f64::EPSILON, 3.0) != 0.0);
1854    /// ```
1855    ///
1856    /// _This standalone function is for testing only.
1857    /// It will be stabilized as an inherent method._
1858    ///
1859    /// [`f64::rem_euclid`]: ../../../std/primitive.f64.html#method.rem_euclid
1860    #[inline]
1861    #[doc(alias = "modulo", alias = "mod")]
1862    #[unstable(feature = "core_float_math", issue = "137578")]
1863    #[must_use = "method returns a new number and does not mutate the original value"]
1864    pub fn rem_euclid(x: f64, rhs: f64) -> f64 {
1865        let r = x % rhs;
1866        if r < 0.0 { r + rhs.abs() } else { r }
1867    }
1868
1869    /// Experimental version of `powi` in `core`. See [`f64::powi`] for details.
1870    ///
1871    /// # Examples
1872    ///
1873    /// ```
1874    /// #![feature(core_float_math)]
1875    ///
1876    /// use core::f64;
1877    ///
1878    /// let x = 2.0_f64;
1879    /// let abs_difference = (f64::math::powi(x, 2) - (x * x)).abs();
1880    /// assert!(abs_difference <= 1e-6);
1881    ///
1882    /// assert_eq!(f64::math::powi(f64::NAN, 0), 1.0);
1883    /// ```
1884    ///
1885    /// _This standalone function is for testing only.
1886    /// It will be stabilized as an inherent method._
1887    ///
1888    /// [`f64::powi`]: ../../../std/primitive.f64.html#method.powi
1889    #[inline]
1890    #[unstable(feature = "core_float_math", issue = "137578")]
1891    #[must_use = "method returns a new number and does not mutate the original value"]
1892    pub fn powi(x: f64, n: i32) -> f64 {
1893        intrinsics::powif64(x, n)
1894    }
1895
1896    /// Experimental version of `sqrt` in `core`. See [`f64::sqrt`] for details.
1897    ///
1898    /// # Examples
1899    ///
1900    /// ```
1901    /// #![feature(core_float_math)]
1902    ///
1903    /// use core::f64;
1904    ///
1905    /// let positive = 4.0_f64;
1906    /// let negative = -4.0_f64;
1907    /// let negative_zero = -0.0_f64;
1908    ///
1909    /// assert_eq!(f64::math::sqrt(positive), 2.0);
1910    /// assert!(f64::math::sqrt(negative).is_nan());
1911    /// assert_eq!(f64::math::sqrt(negative_zero), negative_zero);
1912    /// ```
1913    ///
1914    /// _This standalone function is for testing only.
1915    /// It will be stabilized as an inherent method._
1916    ///
1917    /// [`f64::sqrt`]: ../../../std/primitive.f64.html#method.sqrt
1918    #[inline]
1919    #[doc(alias = "squareRoot")]
1920    #[unstable(feature = "core_float_math", issue = "137578")]
1921    #[must_use = "method returns a new number and does not mutate the original value"]
1922    pub fn sqrt(x: f64) -> f64 {
1923        intrinsics::sqrtf64(x)
1924    }
1925
1926    /// Experimental version of `abs_sub` in `core`. See [`f64::abs_sub`] for details.
1927    ///
1928    /// # Examples
1929    ///
1930    /// ```
1931    /// #![feature(core_float_math)]
1932    ///
1933    /// use core::f64;
1934    ///
1935    /// let x = 3.0_f64;
1936    /// let y = -3.0_f64;
1937    ///
1938    /// let abs_difference_x = (f64::math::abs_sub(x, 1.0) - 2.0).abs();
1939    /// let abs_difference_y = (f64::math::abs_sub(y, 1.0) - 0.0).abs();
1940    ///
1941    /// assert!(abs_difference_x < 1e-10);
1942    /// assert!(abs_difference_y < 1e-10);
1943    /// ```
1944    ///
1945    /// _This standalone function is for testing only.
1946    /// It will be stabilized as an inherent method._
1947    ///
1948    /// [`f64::abs_sub`]: ../../../std/primitive.f64.html#method.abs_sub
1949    #[inline]
1950    #[unstable(feature = "core_float_math", issue = "137578")]
1951    #[deprecated(
1952        since = "1.10.0",
1953        note = "you probably meant `(self - other).abs()`: \
1954                this operation is `(self - other).max(0.0)` \
1955                except that `abs_sub` also propagates NaNs (also \
1956                known as `fdim` in C). If you truly need the positive \
1957                difference, consider using that expression or the C function \
1958                `fdim`, depending on how you wish to handle NaN (please consider \
1959                filing an issue describing your use-case too)."
1960    )]
1961    #[must_use = "method returns a new number and does not mutate the original value"]
1962    pub fn abs_sub(x: f64, other: f64) -> f64 {
1963        libm::fdim(x, other)
1964    }
1965
1966    /// Experimental version of `cbrt` in `core`. See [`f64::cbrt`] for details.
1967    ///
1968    /// # Examples
1969    ///
1970    /// ```
1971    /// #![feature(core_float_math)]
1972    ///
1973    /// use core::f64;
1974    ///
1975    /// let x = 8.0_f64;
1976    ///
1977    /// // x^(1/3) - 2 == 0
1978    /// let abs_difference = (f64::math::cbrt(x) - 2.0).abs();
1979    ///
1980    /// assert!(abs_difference < 1e-10);
1981    /// ```
1982    ///
1983    /// _This standalone function is for testing only.
1984    /// It will be stabilized as an inherent method._
1985    ///
1986    /// [`f64::cbrt`]: ../../../std/primitive.f64.html#method.cbrt
1987    #[inline]
1988    #[unstable(feature = "core_float_math", issue = "137578")]
1989    #[must_use = "method returns a new number and does not mutate the original value"]
1990    pub fn cbrt(x: f64) -> f64 {
1991        libm::cbrt(x)
1992    }
1993}