core/num/f64.rs
1//! Constants for the `f64` double-precision floating point type.
2//!
3//! *[See also the `f64` primitive type][f64].*
4//!
5//! Mathematically significant numbers are provided in the `consts` sub-module.
6//!
7//! For the constants defined directly in this module
8//! (as distinct from those defined in the `consts` sub-module),
9//! new code should instead use the associated constants
10//! defined directly on the `f64` type.
11
12#![stable(feature = "rust1", since = "1.0.0")]
13
14use crate::convert::FloatToInt;
15use crate::num::FpCategory;
16use crate::panic::const_assert;
17use crate::{intrinsics, mem};
18
19/// The radix or base of the internal representation of `f64`.
20/// Use [`f64::RADIX`] instead.
21///
22/// # Examples
23///
24/// ```rust
25/// // deprecated way
26/// # #[allow(deprecated, deprecated_in_future)]
27/// let r = std::f64::RADIX;
28///
29/// // intended way
30/// let r = f64::RADIX;
31/// ```
32#[stable(feature = "rust1", since = "1.0.0")]
33#[deprecated(since = "TBD", note = "replaced by the `RADIX` associated constant on `f64`")]
34#[rustc_diagnostic_item = "f64_legacy_const_radix"]
35pub const RADIX: u32 = f64::RADIX;
36
37/// Number of significant digits in base 2.
38/// Use [`f64::MANTISSA_DIGITS`] instead.
39///
40/// # Examples
41///
42/// ```rust
43/// // deprecated way
44/// # #[allow(deprecated, deprecated_in_future)]
45/// let d = std::f64::MANTISSA_DIGITS;
46///
47/// // intended way
48/// let d = f64::MANTISSA_DIGITS;
49/// ```
50#[stable(feature = "rust1", since = "1.0.0")]
51#[deprecated(
52 since = "TBD",
53 note = "replaced by the `MANTISSA_DIGITS` associated constant on `f64`"
54)]
55#[rustc_diagnostic_item = "f64_legacy_const_mantissa_dig"]
56pub const MANTISSA_DIGITS: u32 = f64::MANTISSA_DIGITS;
57
58/// Approximate number of significant digits in base 10.
59/// Use [`f64::DIGITS`] instead.
60///
61/// # Examples
62///
63/// ```rust
64/// // deprecated way
65/// # #[allow(deprecated, deprecated_in_future)]
66/// let d = std::f64::DIGITS;
67///
68/// // intended way
69/// let d = f64::DIGITS;
70/// ```
71#[stable(feature = "rust1", since = "1.0.0")]
72#[deprecated(since = "TBD", note = "replaced by the `DIGITS` associated constant on `f64`")]
73#[rustc_diagnostic_item = "f64_legacy_const_digits"]
74pub const DIGITS: u32 = f64::DIGITS;
75
76/// [Machine epsilon] value for `f64`.
77/// Use [`f64::EPSILON`] instead.
78///
79/// This is the difference between `1.0` and the next larger representable number.
80///
81/// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
82///
83/// # Examples
84///
85/// ```rust
86/// // deprecated way
87/// # #[allow(deprecated, deprecated_in_future)]
88/// let e = std::f64::EPSILON;
89///
90/// // intended way
91/// let e = f64::EPSILON;
92/// ```
93#[stable(feature = "rust1", since = "1.0.0")]
94#[deprecated(since = "TBD", note = "replaced by the `EPSILON` associated constant on `f64`")]
95#[rustc_diagnostic_item = "f64_legacy_const_epsilon"]
96pub const EPSILON: f64 = f64::EPSILON;
97
98/// Smallest finite `f64` value.
99/// Use [`f64::MIN`] instead.
100///
101/// # Examples
102///
103/// ```rust
104/// // deprecated way
105/// # #[allow(deprecated, deprecated_in_future)]
106/// let min = std::f64::MIN;
107///
108/// // intended way
109/// let min = f64::MIN;
110/// ```
111#[stable(feature = "rust1", since = "1.0.0")]
112#[deprecated(since = "TBD", note = "replaced by the `MIN` associated constant on `f64`")]
113#[rustc_diagnostic_item = "f64_legacy_const_min"]
114pub const MIN: f64 = f64::MIN;
115
116/// Smallest positive normal `f64` value.
117/// Use [`f64::MIN_POSITIVE`] instead.
118///
119/// # Examples
120///
121/// ```rust
122/// // deprecated way
123/// # #[allow(deprecated, deprecated_in_future)]
124/// let min = std::f64::MIN_POSITIVE;
125///
126/// // intended way
127/// let min = f64::MIN_POSITIVE;
128/// ```
129#[stable(feature = "rust1", since = "1.0.0")]
130#[deprecated(since = "TBD", note = "replaced by the `MIN_POSITIVE` associated constant on `f64`")]
131#[rustc_diagnostic_item = "f64_legacy_const_min_positive"]
132pub const MIN_POSITIVE: f64 = f64::MIN_POSITIVE;
133
134/// Largest finite `f64` value.
135/// Use [`f64::MAX`] instead.
136///
137/// # Examples
138///
139/// ```rust
140/// // deprecated way
141/// # #[allow(deprecated, deprecated_in_future)]
142/// let max = std::f64::MAX;
143///
144/// // intended way
145/// let max = f64::MAX;
146/// ```
147#[stable(feature = "rust1", since = "1.0.0")]
148#[deprecated(since = "TBD", note = "replaced by the `MAX` associated constant on `f64`")]
149#[rustc_diagnostic_item = "f64_legacy_const_max"]
150pub const MAX: f64 = f64::MAX;
151
152/// One greater than the minimum possible normal power of 2 exponent.
153/// Use [`f64::MIN_EXP`] instead.
154///
155/// # Examples
156///
157/// ```rust
158/// // deprecated way
159/// # #[allow(deprecated, deprecated_in_future)]
160/// let min = std::f64::MIN_EXP;
161///
162/// // intended way
163/// let min = f64::MIN_EXP;
164/// ```
165#[stable(feature = "rust1", since = "1.0.0")]
166#[deprecated(since = "TBD", note = "replaced by the `MIN_EXP` associated constant on `f64`")]
167#[rustc_diagnostic_item = "f64_legacy_const_min_exp"]
168pub const MIN_EXP: i32 = f64::MIN_EXP;
169
170/// Maximum possible power of 2 exponent.
171/// Use [`f64::MAX_EXP`] instead.
172///
173/// # Examples
174///
175/// ```rust
176/// // deprecated way
177/// # #[allow(deprecated, deprecated_in_future)]
178/// let max = std::f64::MAX_EXP;
179///
180/// // intended way
181/// let max = f64::MAX_EXP;
182/// ```
183#[stable(feature = "rust1", since = "1.0.0")]
184#[deprecated(since = "TBD", note = "replaced by the `MAX_EXP` associated constant on `f64`")]
185#[rustc_diagnostic_item = "f64_legacy_const_max_exp"]
186pub const MAX_EXP: i32 = f64::MAX_EXP;
187
188/// Minimum possible normal power of 10 exponent.
189/// Use [`f64::MIN_10_EXP`] instead.
190///
191/// # Examples
192///
193/// ```rust
194/// // deprecated way
195/// # #[allow(deprecated, deprecated_in_future)]
196/// let min = std::f64::MIN_10_EXP;
197///
198/// // intended way
199/// let min = f64::MIN_10_EXP;
200/// ```
201#[stable(feature = "rust1", since = "1.0.0")]
202#[deprecated(since = "TBD", note = "replaced by the `MIN_10_EXP` associated constant on `f64`")]
203#[rustc_diagnostic_item = "f64_legacy_const_min_10_exp"]
204pub const MIN_10_EXP: i32 = f64::MIN_10_EXP;
205
206/// Maximum possible power of 10 exponent.
207/// Use [`f64::MAX_10_EXP`] instead.
208///
209/// # Examples
210///
211/// ```rust
212/// // deprecated way
213/// # #[allow(deprecated, deprecated_in_future)]
214/// let max = std::f64::MAX_10_EXP;
215///
216/// // intended way
217/// let max = f64::MAX_10_EXP;
218/// ```
219#[stable(feature = "rust1", since = "1.0.0")]
220#[deprecated(since = "TBD", note = "replaced by the `MAX_10_EXP` associated constant on `f64`")]
221#[rustc_diagnostic_item = "f64_legacy_const_max_10_exp"]
222pub const MAX_10_EXP: i32 = f64::MAX_10_EXP;
223
224/// Not a Number (NaN).
225/// Use [`f64::NAN`] instead.
226///
227/// # Examples
228///
229/// ```rust
230/// // deprecated way
231/// # #[allow(deprecated, deprecated_in_future)]
232/// let nan = std::f64::NAN;
233///
234/// // intended way
235/// let nan = f64::NAN;
236/// ```
237#[stable(feature = "rust1", since = "1.0.0")]
238#[deprecated(since = "TBD", note = "replaced by the `NAN` associated constant on `f64`")]
239#[rustc_diagnostic_item = "f64_legacy_const_nan"]
240pub const NAN: f64 = f64::NAN;
241
242/// Infinity (∞).
243/// Use [`f64::INFINITY`] instead.
244///
245/// # Examples
246///
247/// ```rust
248/// // deprecated way
249/// # #[allow(deprecated, deprecated_in_future)]
250/// let inf = std::f64::INFINITY;
251///
252/// // intended way
253/// let inf = f64::INFINITY;
254/// ```
255#[stable(feature = "rust1", since = "1.0.0")]
256#[deprecated(since = "TBD", note = "replaced by the `INFINITY` associated constant on `f64`")]
257#[rustc_diagnostic_item = "f64_legacy_const_infinity"]
258pub const INFINITY: f64 = f64::INFINITY;
259
260/// Negative infinity (−∞).
261/// Use [`f64::NEG_INFINITY`] instead.
262///
263/// # Examples
264///
265/// ```rust
266/// // deprecated way
267/// # #[allow(deprecated, deprecated_in_future)]
268/// let ninf = std::f64::NEG_INFINITY;
269///
270/// // intended way
271/// let ninf = f64::NEG_INFINITY;
272/// ```
273#[stable(feature = "rust1", since = "1.0.0")]
274#[deprecated(since = "TBD", note = "replaced by the `NEG_INFINITY` associated constant on `f64`")]
275#[rustc_diagnostic_item = "f64_legacy_const_neg_infinity"]
276pub const NEG_INFINITY: f64 = f64::NEG_INFINITY;
277
278/// Basic mathematical constants.
279#[stable(feature = "rust1", since = "1.0.0")]
280#[rustc_diagnostic_item = "f64_consts_mod"]
281pub mod consts {
282 // FIXME: replace with mathematical constants from cmath.
283
284 /// Archimedes' constant (π)
285 #[stable(feature = "rust1", since = "1.0.0")]
286 pub const PI: f64 = 3.14159265358979323846264338327950288_f64;
287
288 /// The full circle constant (τ)
289 ///
290 /// Equal to 2π.
291 #[stable(feature = "tau_constant", since = "1.47.0")]
292 pub const TAU: f64 = 6.28318530717958647692528676655900577_f64;
293
294 /// The golden ratio (φ)
295 #[unstable(feature = "more_float_constants", issue = "146939")]
296 pub const PHI: f64 = 1.618033988749894848204586834365638118_f64;
297
298 /// The Euler-Mascheroni constant (γ)
299 #[unstable(feature = "more_float_constants", issue = "146939")]
300 pub const EGAMMA: f64 = 0.577215664901532860606512090082402431_f64;
301
302 /// π/2
303 #[stable(feature = "rust1", since = "1.0.0")]
304 pub const FRAC_PI_2: f64 = 1.57079632679489661923132169163975144_f64;
305
306 /// π/3
307 #[stable(feature = "rust1", since = "1.0.0")]
308 pub const FRAC_PI_3: f64 = 1.04719755119659774615421446109316763_f64;
309
310 /// π/4
311 #[stable(feature = "rust1", since = "1.0.0")]
312 pub const FRAC_PI_4: f64 = 0.785398163397448309615660845819875721_f64;
313
314 /// π/6
315 #[stable(feature = "rust1", since = "1.0.0")]
316 pub const FRAC_PI_6: f64 = 0.52359877559829887307710723054658381_f64;
317
318 /// π/8
319 #[stable(feature = "rust1", since = "1.0.0")]
320 pub const FRAC_PI_8: f64 = 0.39269908169872415480783042290993786_f64;
321
322 /// 1/π
323 #[stable(feature = "rust1", since = "1.0.0")]
324 pub const FRAC_1_PI: f64 = 0.318309886183790671537767526745028724_f64;
325
326 /// 1/sqrt(π)
327 #[unstable(feature = "more_float_constants", issue = "146939")]
328 pub const FRAC_1_SQRT_PI: f64 = 0.564189583547756286948079451560772586_f64;
329
330 /// 1/sqrt(2π)
331 #[doc(alias = "FRAC_1_SQRT_TAU")]
332 #[unstable(feature = "more_float_constants", issue = "146939")]
333 pub const FRAC_1_SQRT_2PI: f64 = 0.398942280401432677939946059934381868_f64;
334
335 /// 2/π
336 #[stable(feature = "rust1", since = "1.0.0")]
337 pub const FRAC_2_PI: f64 = 0.636619772367581343075535053490057448_f64;
338
339 /// 2/sqrt(π)
340 #[stable(feature = "rust1", since = "1.0.0")]
341 pub const FRAC_2_SQRT_PI: f64 = 1.12837916709551257389615890312154517_f64;
342
343 /// sqrt(2)
344 #[stable(feature = "rust1", since = "1.0.0")]
345 pub const SQRT_2: f64 = 1.41421356237309504880168872420969808_f64;
346
347 /// 1/sqrt(2)
348 #[stable(feature = "rust1", since = "1.0.0")]
349 pub const FRAC_1_SQRT_2: f64 = 0.707106781186547524400844362104849039_f64;
350
351 /// sqrt(3)
352 #[unstable(feature = "more_float_constants", issue = "146939")]
353 pub const SQRT_3: f64 = 1.732050807568877293527446341505872367_f64;
354
355 /// 1/sqrt(3)
356 #[unstable(feature = "more_float_constants", issue = "146939")]
357 pub const FRAC_1_SQRT_3: f64 = 0.577350269189625764509148780501957456_f64;
358
359 /// Euler's number (e)
360 #[stable(feature = "rust1", since = "1.0.0")]
361 pub const E: f64 = 2.71828182845904523536028747135266250_f64;
362
363 /// log<sub>2</sub>(10)
364 #[stable(feature = "extra_log_consts", since = "1.43.0")]
365 pub const LOG2_10: f64 = 3.32192809488736234787031942948939018_f64;
366
367 /// log<sub>2</sub>(e)
368 #[stable(feature = "rust1", since = "1.0.0")]
369 pub const LOG2_E: f64 = 1.44269504088896340735992468100189214_f64;
370
371 /// log<sub>10</sub>(2)
372 #[stable(feature = "extra_log_consts", since = "1.43.0")]
373 pub const LOG10_2: f64 = 0.301029995663981195213738894724493027_f64;
374
375 /// log<sub>10</sub>(e)
376 #[stable(feature = "rust1", since = "1.0.0")]
377 pub const LOG10_E: f64 = 0.434294481903251827651128918916605082_f64;
378
379 /// ln(2)
380 #[stable(feature = "rust1", since = "1.0.0")]
381 pub const LN_2: f64 = 0.693147180559945309417232121458176568_f64;
382
383 /// ln(10)
384 #[stable(feature = "rust1", since = "1.0.0")]
385 pub const LN_10: f64 = 2.30258509299404568401799145468436421_f64;
386}
387
388impl f64 {
389 /// The radix or base of the internal representation of `f64`.
390 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
391 pub const RADIX: u32 = 2;
392
393 /// Number of significant digits in base 2.
394 ///
395 /// Note that the size of the mantissa in the bitwise representation is one
396 /// smaller than this since the leading 1 is not stored explicitly.
397 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
398 pub const MANTISSA_DIGITS: u32 = 53;
399 /// Approximate number of significant digits in base 10.
400 ///
401 /// This is the maximum <i>x</i> such that any decimal number with <i>x</i>
402 /// significant digits can be converted to `f64` and back without loss.
403 ///
404 /// Equal to floor(log<sub>10</sub> 2<sup>[`MANTISSA_DIGITS`] − 1</sup>).
405 ///
406 /// [`MANTISSA_DIGITS`]: f64::MANTISSA_DIGITS
407 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
408 pub const DIGITS: u32 = 15;
409
410 /// [Machine epsilon] value for `f64`.
411 ///
412 /// This is the difference between `1.0` and the next larger representable number.
413 ///
414 /// Equal to 2<sup>1 − [`MANTISSA_DIGITS`]</sup>.
415 ///
416 /// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
417 /// [`MANTISSA_DIGITS`]: f64::MANTISSA_DIGITS
418 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
419 #[rustc_diagnostic_item = "f64_epsilon"]
420 pub const EPSILON: f64 = 2.2204460492503131e-16_f64;
421
422 /// Smallest finite `f64` value.
423 ///
424 /// Equal to −[`MAX`].
425 ///
426 /// [`MAX`]: f64::MAX
427 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
428 pub const MIN: f64 = -1.7976931348623157e+308_f64;
429 /// Smallest positive normal `f64` value.
430 ///
431 /// Equal to 2<sup>[`MIN_EXP`] − 1</sup>.
432 ///
433 /// [`MIN_EXP`]: f64::MIN_EXP
434 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
435 pub const MIN_POSITIVE: f64 = 2.2250738585072014e-308_f64;
436 /// Largest finite `f64` value.
437 ///
438 /// Equal to
439 /// (1 − 2<sup>−[`MANTISSA_DIGITS`]</sup>) 2<sup>[`MAX_EXP`]</sup>.
440 ///
441 /// [`MANTISSA_DIGITS`]: f64::MANTISSA_DIGITS
442 /// [`MAX_EXP`]: f64::MAX_EXP
443 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
444 pub const MAX: f64 = 1.7976931348623157e+308_f64;
445
446 /// One greater than the minimum possible *normal* power of 2 exponent
447 /// for a significand bounded by 1 ≤ x < 2 (i.e. the IEEE definition).
448 ///
449 /// This corresponds to the exact minimum possible *normal* power of 2 exponent
450 /// for a significand bounded by 0.5 ≤ x < 1 (i.e. the C definition).
451 /// In other words, all normal numbers representable by this type are
452 /// greater than or equal to 0.5 × 2<sup><i>MIN_EXP</i></sup>.
453 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
454 pub const MIN_EXP: i32 = -1021;
455 /// One greater than the maximum possible power of 2 exponent
456 /// for a significand bounded by 1 ≤ x < 2 (i.e. the IEEE definition).
457 ///
458 /// This corresponds to the exact maximum possible power of 2 exponent
459 /// for a significand bounded by 0.5 ≤ x < 1 (i.e. the C definition).
460 /// In other words, all numbers representable by this type are
461 /// strictly less than 2<sup><i>MAX_EXP</i></sup>.
462 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
463 pub const MAX_EXP: i32 = 1024;
464
465 /// Minimum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
466 ///
467 /// Equal to ceil(log<sub>10</sub> [`MIN_POSITIVE`]).
468 ///
469 /// [`MIN_POSITIVE`]: f64::MIN_POSITIVE
470 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
471 pub const MIN_10_EXP: i32 = -307;
472 /// Maximum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
473 ///
474 /// Equal to floor(log<sub>10</sub> [`MAX`]).
475 ///
476 /// [`MAX`]: f64::MAX
477 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
478 pub const MAX_10_EXP: i32 = 308;
479
480 /// Not a Number (NaN).
481 ///
482 /// Note that IEEE 754 doesn't define just a single NaN value; a plethora of bit patterns are
483 /// considered to be NaN. Furthermore, the standard makes a difference between a "signaling" and
484 /// a "quiet" NaN, and allows inspecting its "payload" (the unspecified bits in the bit pattern)
485 /// and its sign. See the [specification of NaN bit patterns](f32#nan-bit-patterns) for more
486 /// info.
487 ///
488 /// This constant is guaranteed to be a quiet NaN (on targets that follow the Rust assumptions
489 /// that the quiet/signaling bit being set to 1 indicates a quiet NaN). Beyond that, nothing is
490 /// guaranteed about the specific bit pattern chosen here: both payload and sign are arbitrary.
491 /// The concrete bit pattern may change across Rust versions and target platforms.
492 #[rustc_diagnostic_item = "f64_nan"]
493 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
494 #[allow(clippy::eq_op)]
495 pub const NAN: f64 = 0.0_f64 / 0.0_f64;
496 /// Infinity (∞).
497 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
498 pub const INFINITY: f64 = 1.0_f64 / 0.0_f64;
499 /// Negative infinity (−∞).
500 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
501 pub const NEG_INFINITY: f64 = -1.0_f64 / 0.0_f64;
502
503 /// Sign bit
504 pub(crate) const SIGN_MASK: u64 = 0x8000_0000_0000_0000;
505
506 /// Exponent mask
507 pub(crate) const EXP_MASK: u64 = 0x7ff0_0000_0000_0000;
508
509 /// Mantissa mask
510 pub(crate) const MAN_MASK: u64 = 0x000f_ffff_ffff_ffff;
511
512 /// Minimum representable positive value (min subnormal)
513 const TINY_BITS: u64 = 0x1;
514
515 /// Minimum representable negative value (min negative subnormal)
516 const NEG_TINY_BITS: u64 = Self::TINY_BITS | Self::SIGN_MASK;
517
518 /// Returns `true` if this value is NaN.
519 ///
520 /// ```
521 /// let nan = f64::NAN;
522 /// let f = 7.0_f64;
523 ///
524 /// assert!(nan.is_nan());
525 /// assert!(!f.is_nan());
526 /// ```
527 #[must_use]
528 #[stable(feature = "rust1", since = "1.0.0")]
529 #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
530 #[inline]
531 #[allow(clippy::eq_op)] // > if you intended to check if the operand is NaN, use `.is_nan()` instead :)
532 pub const fn is_nan(self) -> bool {
533 self != self
534 }
535
536 /// Returns `true` if this value is positive infinity or negative infinity, and
537 /// `false` otherwise.
538 ///
539 /// ```
540 /// let f = 7.0f64;
541 /// let inf = f64::INFINITY;
542 /// let neg_inf = f64::NEG_INFINITY;
543 /// let nan = f64::NAN;
544 ///
545 /// assert!(!f.is_infinite());
546 /// assert!(!nan.is_infinite());
547 ///
548 /// assert!(inf.is_infinite());
549 /// assert!(neg_inf.is_infinite());
550 /// ```
551 #[must_use]
552 #[stable(feature = "rust1", since = "1.0.0")]
553 #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
554 #[inline]
555 pub const fn is_infinite(self) -> bool {
556 // Getting clever with transmutation can result in incorrect answers on some FPUs
557 // FIXME: alter the Rust <-> Rust calling convention to prevent this problem.
558 // See https://github.com/rust-lang/rust/issues/72327
559 (self == f64::INFINITY) | (self == f64::NEG_INFINITY)
560 }
561
562 /// Returns `true` if this number is neither infinite nor NaN.
563 ///
564 /// ```
565 /// let f = 7.0f64;
566 /// let inf: f64 = f64::INFINITY;
567 /// let neg_inf: f64 = f64::NEG_INFINITY;
568 /// let nan: f64 = f64::NAN;
569 ///
570 /// assert!(f.is_finite());
571 ///
572 /// assert!(!nan.is_finite());
573 /// assert!(!inf.is_finite());
574 /// assert!(!neg_inf.is_finite());
575 /// ```
576 #[must_use]
577 #[stable(feature = "rust1", since = "1.0.0")]
578 #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
579 #[inline]
580 pub const fn is_finite(self) -> bool {
581 // There's no need to handle NaN separately: if self is NaN,
582 // the comparison is not true, exactly as desired.
583 self.abs() < Self::INFINITY
584 }
585
586 /// Returns `true` if the number is [subnormal].
587 ///
588 /// ```
589 /// let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308_f64
590 /// let max = f64::MAX;
591 /// let lower_than_min = 1.0e-308_f64;
592 /// let zero = 0.0_f64;
593 ///
594 /// assert!(!min.is_subnormal());
595 /// assert!(!max.is_subnormal());
596 ///
597 /// assert!(!zero.is_subnormal());
598 /// assert!(!f64::NAN.is_subnormal());
599 /// assert!(!f64::INFINITY.is_subnormal());
600 /// // Values between `0` and `min` are Subnormal.
601 /// assert!(lower_than_min.is_subnormal());
602 /// ```
603 /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
604 #[must_use]
605 #[stable(feature = "is_subnormal", since = "1.53.0")]
606 #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
607 #[inline]
608 pub const fn is_subnormal(self) -> bool {
609 matches!(self.classify(), FpCategory::Subnormal)
610 }
611
612 /// Returns `true` if the number is neither zero, infinite,
613 /// [subnormal], or NaN.
614 ///
615 /// ```
616 /// let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308f64
617 /// let max = f64::MAX;
618 /// let lower_than_min = 1.0e-308_f64;
619 /// let zero = 0.0f64;
620 ///
621 /// assert!(min.is_normal());
622 /// assert!(max.is_normal());
623 ///
624 /// assert!(!zero.is_normal());
625 /// assert!(!f64::NAN.is_normal());
626 /// assert!(!f64::INFINITY.is_normal());
627 /// // Values between `0` and `min` are Subnormal.
628 /// assert!(!lower_than_min.is_normal());
629 /// ```
630 /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
631 #[must_use]
632 #[stable(feature = "rust1", since = "1.0.0")]
633 #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
634 #[inline]
635 pub const fn is_normal(self) -> bool {
636 matches!(self.classify(), FpCategory::Normal)
637 }
638
639 /// Returns the floating point category of the number. If only one property
640 /// is going to be tested, it is generally faster to use the specific
641 /// predicate instead.
642 ///
643 /// ```
644 /// use std::num::FpCategory;
645 ///
646 /// let num = 12.4_f64;
647 /// let inf = f64::INFINITY;
648 ///
649 /// assert_eq!(num.classify(), FpCategory::Normal);
650 /// assert_eq!(inf.classify(), FpCategory::Infinite);
651 /// ```
652 #[stable(feature = "rust1", since = "1.0.0")]
653 #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
654 pub const fn classify(self) -> FpCategory {
655 // We used to have complicated logic here that avoids the simple bit-based tests to work
656 // around buggy codegen for x87 targets (see
657 // https://github.com/rust-lang/rust/issues/114479). However, some LLVM versions later, none
658 // of our tests is able to find any difference between the complicated and the naive
659 // version, so now we are back to the naive version.
660 let b = self.to_bits();
661 match (b & Self::MAN_MASK, b & Self::EXP_MASK) {
662 (0, Self::EXP_MASK) => FpCategory::Infinite,
663 (_, Self::EXP_MASK) => FpCategory::Nan,
664 (0, 0) => FpCategory::Zero,
665 (_, 0) => FpCategory::Subnormal,
666 _ => FpCategory::Normal,
667 }
668 }
669
670 /// Returns `true` if `self` has a positive sign, including `+0.0`, NaNs with
671 /// positive sign bit and positive infinity.
672 ///
673 /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of
674 /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are
675 /// conserved over arithmetic operations, the result of `is_sign_positive` on
676 /// a NaN might produce an unexpected or non-portable result. See the [specification
677 /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == 1.0`
678 /// if you need fully portable behavior (will return `false` for all NaNs).
679 ///
680 /// ```
681 /// let f = 7.0_f64;
682 /// let g = -7.0_f64;
683 ///
684 /// assert!(f.is_sign_positive());
685 /// assert!(!g.is_sign_positive());
686 /// ```
687 #[must_use]
688 #[stable(feature = "rust1", since = "1.0.0")]
689 #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
690 #[inline]
691 pub const fn is_sign_positive(self) -> bool {
692 !self.is_sign_negative()
693 }
694
695 #[must_use]
696 #[stable(feature = "rust1", since = "1.0.0")]
697 #[deprecated(since = "1.0.0", note = "renamed to is_sign_positive")]
698 #[inline]
699 #[doc(hidden)]
700 pub fn is_positive(self) -> bool {
701 self.is_sign_positive()
702 }
703
704 /// Returns `true` if `self` has a negative sign, including `-0.0`, NaNs with
705 /// negative sign bit and negative infinity.
706 ///
707 /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of
708 /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are
709 /// conserved over arithmetic operations, the result of `is_sign_negative` on
710 /// a NaN might produce an unexpected or non-portable result. See the [specification
711 /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == -1.0`
712 /// if you need fully portable behavior (will return `false` for all NaNs).
713 ///
714 /// ```
715 /// let f = 7.0_f64;
716 /// let g = -7.0_f64;
717 ///
718 /// assert!(!f.is_sign_negative());
719 /// assert!(g.is_sign_negative());
720 /// ```
721 #[must_use]
722 #[stable(feature = "rust1", since = "1.0.0")]
723 #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
724 #[inline]
725 pub const fn is_sign_negative(self) -> bool {
726 // IEEE754 says: isSignMinus(x) is true if and only if x has negative sign. isSignMinus
727 // applies to zeros and NaNs as well.
728 self.to_bits() & Self::SIGN_MASK != 0
729 }
730
731 #[must_use]
732 #[stable(feature = "rust1", since = "1.0.0")]
733 #[deprecated(since = "1.0.0", note = "renamed to is_sign_negative")]
734 #[inline]
735 #[doc(hidden)]
736 pub fn is_negative(self) -> bool {
737 self.is_sign_negative()
738 }
739
740 /// Returns the least number greater than `self`.
741 ///
742 /// Let `TINY` be the smallest representable positive `f64`. Then,
743 /// - if `self.is_nan()`, this returns `self`;
744 /// - if `self` is [`NEG_INFINITY`], this returns [`MIN`];
745 /// - if `self` is `-TINY`, this returns -0.0;
746 /// - if `self` is -0.0 or +0.0, this returns `TINY`;
747 /// - if `self` is [`MAX`] or [`INFINITY`], this returns [`INFINITY`];
748 /// - otherwise the unique least value greater than `self` is returned.
749 ///
750 /// The identity `x.next_up() == -(-x).next_down()` holds for all non-NaN `x`. When `x`
751 /// is finite `x == x.next_up().next_down()` also holds.
752 ///
753 /// ```rust
754 /// // f64::EPSILON is the difference between 1.0 and the next number up.
755 /// assert_eq!(1.0f64.next_up(), 1.0 + f64::EPSILON);
756 /// // But not for most numbers.
757 /// assert!(0.1f64.next_up() < 0.1 + f64::EPSILON);
758 /// assert_eq!(9007199254740992f64.next_up(), 9007199254740994.0);
759 /// ```
760 ///
761 /// This operation corresponds to IEEE-754 `nextUp`.
762 ///
763 /// [`NEG_INFINITY`]: Self::NEG_INFINITY
764 /// [`INFINITY`]: Self::INFINITY
765 /// [`MIN`]: Self::MIN
766 /// [`MAX`]: Self::MAX
767 #[inline]
768 #[doc(alias = "nextUp")]
769 #[stable(feature = "float_next_up_down", since = "1.86.0")]
770 #[rustc_const_stable(feature = "float_next_up_down", since = "1.86.0")]
771 pub const fn next_up(self) -> Self {
772 // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing
773 // denormals to zero. This is in general unsound and unsupported, but here
774 // we do our best to still produce the correct result on such targets.
775 let bits = self.to_bits();
776 if self.is_nan() || bits == Self::INFINITY.to_bits() {
777 return self;
778 }
779
780 let abs = bits & !Self::SIGN_MASK;
781 let next_bits = if abs == 0 {
782 Self::TINY_BITS
783 } else if bits == abs {
784 bits + 1
785 } else {
786 bits - 1
787 };
788 Self::from_bits(next_bits)
789 }
790
791 /// Returns the greatest number less than `self`.
792 ///
793 /// Let `TINY` be the smallest representable positive `f64`. Then,
794 /// - if `self.is_nan()`, this returns `self`;
795 /// - if `self` is [`INFINITY`], this returns [`MAX`];
796 /// - if `self` is `TINY`, this returns 0.0;
797 /// - if `self` is -0.0 or +0.0, this returns `-TINY`;
798 /// - if `self` is [`MIN`] or [`NEG_INFINITY`], this returns [`NEG_INFINITY`];
799 /// - otherwise the unique greatest value less than `self` is returned.
800 ///
801 /// The identity `x.next_down() == -(-x).next_up()` holds for all non-NaN `x`. When `x`
802 /// is finite `x == x.next_down().next_up()` also holds.
803 ///
804 /// ```rust
805 /// let x = 1.0f64;
806 /// // Clamp value into range [0, 1).
807 /// let clamped = x.clamp(0.0, 1.0f64.next_down());
808 /// assert!(clamped < 1.0);
809 /// assert_eq!(clamped.next_up(), 1.0);
810 /// ```
811 ///
812 /// This operation corresponds to IEEE-754 `nextDown`.
813 ///
814 /// [`NEG_INFINITY`]: Self::NEG_INFINITY
815 /// [`INFINITY`]: Self::INFINITY
816 /// [`MIN`]: Self::MIN
817 /// [`MAX`]: Self::MAX
818 #[inline]
819 #[doc(alias = "nextDown")]
820 #[stable(feature = "float_next_up_down", since = "1.86.0")]
821 #[rustc_const_stable(feature = "float_next_up_down", since = "1.86.0")]
822 pub const fn next_down(self) -> Self {
823 // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing
824 // denormals to zero. This is in general unsound and unsupported, but here
825 // we do our best to still produce the correct result on such targets.
826 let bits = self.to_bits();
827 if self.is_nan() || bits == Self::NEG_INFINITY.to_bits() {
828 return self;
829 }
830
831 let abs = bits & !Self::SIGN_MASK;
832 let next_bits = if abs == 0 {
833 Self::NEG_TINY_BITS
834 } else if bits == abs {
835 bits - 1
836 } else {
837 bits + 1
838 };
839 Self::from_bits(next_bits)
840 }
841
842 /// Takes the reciprocal (inverse) of a number, `1/x`.
843 ///
844 /// ```
845 /// let x = 2.0_f64;
846 /// let abs_difference = (x.recip() - (1.0 / x)).abs();
847 ///
848 /// assert!(abs_difference < 1e-10);
849 /// ```
850 #[must_use = "this returns the result of the operation, without modifying the original"]
851 #[stable(feature = "rust1", since = "1.0.0")]
852 #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
853 #[inline]
854 pub const fn recip(self) -> f64 {
855 1.0 / self
856 }
857
858 /// Converts radians to degrees.
859 ///
860 /// # Unspecified precision
861 ///
862 /// The precision of this function is non-deterministic. This means it varies by platform,
863 /// Rust version, and can even differ within the same execution from one invocation to the next.
864 ///
865 /// # Examples
866 ///
867 /// ```
868 /// let angle = std::f64::consts::PI;
869 ///
870 /// let abs_difference = (angle.to_degrees() - 180.0).abs();
871 ///
872 /// assert!(abs_difference < 1e-10);
873 /// ```
874 #[must_use = "this returns the result of the operation, \
875 without modifying the original"]
876 #[stable(feature = "rust1", since = "1.0.0")]
877 #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
878 #[inline]
879 pub const fn to_degrees(self) -> f64 {
880 // The division here is correctly rounded with respect to the true value of 180/π.
881 // Although π is irrational and already rounded, the double rounding happens
882 // to produce correct result for f64.
883 const PIS_IN_180: f64 = 180.0 / consts::PI;
884 self * PIS_IN_180
885 }
886
887 /// Converts degrees to radians.
888 ///
889 /// # Unspecified precision
890 ///
891 /// The precision of this function is non-deterministic. This means it varies by platform,
892 /// Rust version, and can even differ within the same execution from one invocation to the next.
893 ///
894 /// # Examples
895 ///
896 /// ```
897 /// let angle = 180.0_f64;
898 ///
899 /// let abs_difference = (angle.to_radians() - std::f64::consts::PI).abs();
900 ///
901 /// assert!(abs_difference < 1e-10);
902 /// ```
903 #[must_use = "this returns the result of the operation, \
904 without modifying the original"]
905 #[stable(feature = "rust1", since = "1.0.0")]
906 #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
907 #[inline]
908 pub const fn to_radians(self) -> f64 {
909 // The division here is correctly rounded with respect to the true value of π/180.
910 // Although π is irrational and already rounded, the double rounding happens
911 // to produce correct result for f64.
912 const RADS_PER_DEG: f64 = consts::PI / 180.0;
913 self * RADS_PER_DEG
914 }
915
916 /// Returns the maximum of the two numbers, ignoring NaN.
917 ///
918 /// If one of the arguments is NaN, then the other argument is returned.
919 /// This follows the IEEE 754-2008 semantics for maxNum, except for handling of signaling NaNs;
920 /// this function handles all NaNs the same way and avoids maxNum's problems with associativity.
921 /// This also matches the behavior of libm’s fmax. In particular, if the inputs compare equal
922 /// (such as for the case of `+0.0` and `-0.0`), either input may be returned non-deterministically.
923 ///
924 /// ```
925 /// let x = 1.0_f64;
926 /// let y = 2.0_f64;
927 ///
928 /// assert_eq!(x.max(y), y);
929 /// ```
930 #[must_use = "this returns the result of the comparison, without modifying either input"]
931 #[stable(feature = "rust1", since = "1.0.0")]
932 #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
933 #[inline]
934 pub const fn max(self, other: f64) -> f64 {
935 intrinsics::maxnumf64(self, other)
936 }
937
938 /// Returns the minimum of the two numbers, ignoring NaN.
939 ///
940 /// If one of the arguments is NaN, then the other argument is returned.
941 /// This follows the IEEE 754-2008 semantics for minNum, except for handling of signaling NaNs;
942 /// this function handles all NaNs the same way and avoids minNum's problems with associativity.
943 /// This also matches the behavior of libm’s fmin. In particular, if the inputs compare equal
944 /// (such as for the case of `+0.0` and `-0.0`), either input may be returned non-deterministically.
945 ///
946 /// ```
947 /// let x = 1.0_f64;
948 /// let y = 2.0_f64;
949 ///
950 /// assert_eq!(x.min(y), x);
951 /// ```
952 #[must_use = "this returns the result of the comparison, without modifying either input"]
953 #[stable(feature = "rust1", since = "1.0.0")]
954 #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
955 #[inline]
956 pub const fn min(self, other: f64) -> f64 {
957 intrinsics::minnumf64(self, other)
958 }
959
960 /// Returns the maximum of the two numbers, propagating NaN.
961 ///
962 /// This returns NaN when *either* argument is NaN, as opposed to
963 /// [`f64::max`] which only returns NaN when *both* arguments are NaN.
964 ///
965 /// ```
966 /// #![feature(float_minimum_maximum)]
967 /// let x = 1.0_f64;
968 /// let y = 2.0_f64;
969 ///
970 /// assert_eq!(x.maximum(y), y);
971 /// assert!(x.maximum(f64::NAN).is_nan());
972 /// ```
973 ///
974 /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the greater
975 /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0.
976 /// Note that this follows the semantics specified in IEEE 754-2019.
977 ///
978 /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN
979 /// operand is conserved; see the [specification of NaN bit patterns](f32#nan-bit-patterns) for more info.
980 #[must_use = "this returns the result of the comparison, without modifying either input"]
981 #[unstable(feature = "float_minimum_maximum", issue = "91079")]
982 #[inline]
983 pub const fn maximum(self, other: f64) -> f64 {
984 intrinsics::maximumf64(self, other)
985 }
986
987 /// Returns the minimum of the two numbers, propagating NaN.
988 ///
989 /// This returns NaN when *either* argument is NaN, as opposed to
990 /// [`f64::min`] which only returns NaN when *both* arguments are NaN.
991 ///
992 /// ```
993 /// #![feature(float_minimum_maximum)]
994 /// let x = 1.0_f64;
995 /// let y = 2.0_f64;
996 ///
997 /// assert_eq!(x.minimum(y), x);
998 /// assert!(x.minimum(f64::NAN).is_nan());
999 /// ```
1000 ///
1001 /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the lesser
1002 /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0.
1003 /// Note that this follows the semantics specified in IEEE 754-2019.
1004 ///
1005 /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN
1006 /// operand is conserved; see the [specification of NaN bit patterns](f32#nan-bit-patterns) for more info.
1007 #[must_use = "this returns the result of the comparison, without modifying either input"]
1008 #[unstable(feature = "float_minimum_maximum", issue = "91079")]
1009 #[inline]
1010 pub const fn minimum(self, other: f64) -> f64 {
1011 intrinsics::minimumf64(self, other)
1012 }
1013
1014 /// Calculates the midpoint (average) between `self` and `rhs`.
1015 ///
1016 /// This returns NaN when *either* argument is NaN or if a combination of
1017 /// +inf and -inf is provided as arguments.
1018 ///
1019 /// # Examples
1020 ///
1021 /// ```
1022 /// assert_eq!(1f64.midpoint(4.0), 2.5);
1023 /// assert_eq!((-5.5f64).midpoint(8.0), 1.25);
1024 /// ```
1025 #[inline]
1026 #[doc(alias = "average")]
1027 #[stable(feature = "num_midpoint", since = "1.85.0")]
1028 #[rustc_const_stable(feature = "num_midpoint", since = "1.85.0")]
1029 pub const fn midpoint(self, other: f64) -> f64 {
1030 const HI: f64 = f64::MAX / 2.;
1031
1032 let (a, b) = (self, other);
1033 let abs_a = a.abs();
1034 let abs_b = b.abs();
1035
1036 if abs_a <= HI && abs_b <= HI {
1037 // Overflow is impossible
1038 (a + b) / 2.
1039 } else {
1040 (a / 2.) + (b / 2.)
1041 }
1042 }
1043
1044 /// Rounds toward zero and converts to any primitive integer type,
1045 /// assuming that the value is finite and fits in that type.
1046 ///
1047 /// ```
1048 /// let value = 4.6_f64;
1049 /// let rounded = unsafe { value.to_int_unchecked::<u16>() };
1050 /// assert_eq!(rounded, 4);
1051 ///
1052 /// let value = -128.9_f64;
1053 /// let rounded = unsafe { value.to_int_unchecked::<i8>() };
1054 /// assert_eq!(rounded, i8::MIN);
1055 /// ```
1056 ///
1057 /// # Safety
1058 ///
1059 /// The value must:
1060 ///
1061 /// * Not be `NaN`
1062 /// * Not be infinite
1063 /// * Be representable in the return type `Int`, after truncating off its fractional part
1064 #[must_use = "this returns the result of the operation, \
1065 without modifying the original"]
1066 #[stable(feature = "float_approx_unchecked_to", since = "1.44.0")]
1067 #[inline]
1068 pub unsafe fn to_int_unchecked<Int>(self) -> Int
1069 where
1070 Self: FloatToInt<Int>,
1071 {
1072 // SAFETY: the caller must uphold the safety contract for
1073 // `FloatToInt::to_int_unchecked`.
1074 unsafe { FloatToInt::<Int>::to_int_unchecked(self) }
1075 }
1076
1077 /// Raw transmutation to `u64`.
1078 ///
1079 /// This is currently identical to `transmute::<f64, u64>(self)` on all platforms.
1080 ///
1081 /// See [`from_bits`](Self::from_bits) for some discussion of the
1082 /// portability of this operation (there are almost no issues).
1083 ///
1084 /// Note that this function is distinct from `as` casting, which attempts to
1085 /// preserve the *numeric* value, and not the bitwise value.
1086 ///
1087 /// # Examples
1088 ///
1089 /// ```
1090 /// assert!((1f64).to_bits() != 1f64 as u64); // to_bits() is not casting!
1091 /// assert_eq!((12.5f64).to_bits(), 0x4029000000000000);
1092 /// ```
1093 #[must_use = "this returns the result of the operation, \
1094 without modifying the original"]
1095 #[stable(feature = "float_bits_conv", since = "1.20.0")]
1096 #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1097 #[allow(unnecessary_transmutes)]
1098 #[inline]
1099 pub const fn to_bits(self) -> u64 {
1100 // SAFETY: `u64` is a plain old datatype so we can always transmute to it.
1101 unsafe { mem::transmute(self) }
1102 }
1103
1104 /// Raw transmutation from `u64`.
1105 ///
1106 /// This is currently identical to `transmute::<u64, f64>(v)` on all platforms.
1107 /// It turns out this is incredibly portable, for two reasons:
1108 ///
1109 /// * Floats and Ints have the same endianness on all supported platforms.
1110 /// * IEEE 754 very precisely specifies the bit layout of floats.
1111 ///
1112 /// However there is one caveat: prior to the 2008 version of IEEE 754, how
1113 /// to interpret the NaN signaling bit wasn't actually specified. Most platforms
1114 /// (notably x86 and ARM) picked the interpretation that was ultimately
1115 /// standardized in 2008, but some didn't (notably MIPS). As a result, all
1116 /// signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa.
1117 ///
1118 /// Rather than trying to preserve signaling-ness cross-platform, this
1119 /// implementation favors preserving the exact bits. This means that
1120 /// any payloads encoded in NaNs will be preserved even if the result of
1121 /// this method is sent over the network from an x86 machine to a MIPS one.
1122 ///
1123 /// If the results of this method are only manipulated by the same
1124 /// architecture that produced them, then there is no portability concern.
1125 ///
1126 /// If the input isn't NaN, then there is no portability concern.
1127 ///
1128 /// If you don't care about signaling-ness (very likely), then there is no
1129 /// portability concern.
1130 ///
1131 /// Note that this function is distinct from `as` casting, which attempts to
1132 /// preserve the *numeric* value, and not the bitwise value.
1133 ///
1134 /// # Examples
1135 ///
1136 /// ```
1137 /// let v = f64::from_bits(0x4029000000000000);
1138 /// assert_eq!(v, 12.5);
1139 /// ```
1140 #[stable(feature = "float_bits_conv", since = "1.20.0")]
1141 #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1142 #[must_use]
1143 #[inline]
1144 #[allow(unnecessary_transmutes)]
1145 pub const fn from_bits(v: u64) -> Self {
1146 // It turns out the safety issues with sNaN were overblown! Hooray!
1147 // SAFETY: `u64` is a plain old datatype so we can always transmute from it.
1148 unsafe { mem::transmute(v) }
1149 }
1150
1151 /// Returns the memory representation of this floating point number as a byte array in
1152 /// big-endian (network) byte order.
1153 ///
1154 /// See [`from_bits`](Self::from_bits) for some discussion of the
1155 /// portability of this operation (there are almost no issues).
1156 ///
1157 /// # Examples
1158 ///
1159 /// ```
1160 /// let bytes = 12.5f64.to_be_bytes();
1161 /// assert_eq!(bytes, [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
1162 /// ```
1163 #[must_use = "this returns the result of the operation, \
1164 without modifying the original"]
1165 #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1166 #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1167 #[inline]
1168 pub const fn to_be_bytes(self) -> [u8; 8] {
1169 self.to_bits().to_be_bytes()
1170 }
1171
1172 /// Returns the memory representation of this floating point number as a byte array in
1173 /// little-endian byte order.
1174 ///
1175 /// See [`from_bits`](Self::from_bits) for some discussion of the
1176 /// portability of this operation (there are almost no issues).
1177 ///
1178 /// # Examples
1179 ///
1180 /// ```
1181 /// let bytes = 12.5f64.to_le_bytes();
1182 /// assert_eq!(bytes, [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]);
1183 /// ```
1184 #[must_use = "this returns the result of the operation, \
1185 without modifying the original"]
1186 #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1187 #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1188 #[inline]
1189 pub const fn to_le_bytes(self) -> [u8; 8] {
1190 self.to_bits().to_le_bytes()
1191 }
1192
1193 /// Returns the memory representation of this floating point number as a byte array in
1194 /// native byte order.
1195 ///
1196 /// As the target platform's native endianness is used, portable code
1197 /// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate, instead.
1198 ///
1199 /// [`to_be_bytes`]: f64::to_be_bytes
1200 /// [`to_le_bytes`]: f64::to_le_bytes
1201 ///
1202 /// See [`from_bits`](Self::from_bits) for some discussion of the
1203 /// portability of this operation (there are almost no issues).
1204 ///
1205 /// # Examples
1206 ///
1207 /// ```
1208 /// let bytes = 12.5f64.to_ne_bytes();
1209 /// assert_eq!(
1210 /// bytes,
1211 /// if cfg!(target_endian = "big") {
1212 /// [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
1213 /// } else {
1214 /// [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]
1215 /// }
1216 /// );
1217 /// ```
1218 #[must_use = "this returns the result of the operation, \
1219 without modifying the original"]
1220 #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1221 #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1222 #[inline]
1223 pub const fn to_ne_bytes(self) -> [u8; 8] {
1224 self.to_bits().to_ne_bytes()
1225 }
1226
1227 /// Creates a floating point value from its representation as a byte array in big endian.
1228 ///
1229 /// See [`from_bits`](Self::from_bits) for some discussion of the
1230 /// portability of this operation (there are almost no issues).
1231 ///
1232 /// # Examples
1233 ///
1234 /// ```
1235 /// let value = f64::from_be_bytes([0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
1236 /// assert_eq!(value, 12.5);
1237 /// ```
1238 #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1239 #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1240 #[must_use]
1241 #[inline]
1242 pub const fn from_be_bytes(bytes: [u8; 8]) -> Self {
1243 Self::from_bits(u64::from_be_bytes(bytes))
1244 }
1245
1246 /// Creates a floating point value from its representation as a byte array in little endian.
1247 ///
1248 /// See [`from_bits`](Self::from_bits) for some discussion of the
1249 /// portability of this operation (there are almost no issues).
1250 ///
1251 /// # Examples
1252 ///
1253 /// ```
1254 /// let value = f64::from_le_bytes([0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]);
1255 /// assert_eq!(value, 12.5);
1256 /// ```
1257 #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1258 #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1259 #[must_use]
1260 #[inline]
1261 pub const fn from_le_bytes(bytes: [u8; 8]) -> Self {
1262 Self::from_bits(u64::from_le_bytes(bytes))
1263 }
1264
1265 /// Creates a floating point value from its representation as a byte array in native endian.
1266 ///
1267 /// As the target platform's native endianness is used, portable code
1268 /// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as
1269 /// appropriate instead.
1270 ///
1271 /// [`from_be_bytes`]: f64::from_be_bytes
1272 /// [`from_le_bytes`]: f64::from_le_bytes
1273 ///
1274 /// See [`from_bits`](Self::from_bits) for some discussion of the
1275 /// portability of this operation (there are almost no issues).
1276 ///
1277 /// # Examples
1278 ///
1279 /// ```
1280 /// let value = f64::from_ne_bytes(if cfg!(target_endian = "big") {
1281 /// [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
1282 /// } else {
1283 /// [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]
1284 /// });
1285 /// assert_eq!(value, 12.5);
1286 /// ```
1287 #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1288 #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1289 #[must_use]
1290 #[inline]
1291 pub const fn from_ne_bytes(bytes: [u8; 8]) -> Self {
1292 Self::from_bits(u64::from_ne_bytes(bytes))
1293 }
1294
1295 /// Returns the ordering between `self` and `other`.
1296 ///
1297 /// Unlike the standard partial comparison between floating point numbers,
1298 /// this comparison always produces an ordering in accordance to
1299 /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision)
1300 /// floating point standard. The values are ordered in the following sequence:
1301 ///
1302 /// - negative quiet NaN
1303 /// - negative signaling NaN
1304 /// - negative infinity
1305 /// - negative numbers
1306 /// - negative subnormal numbers
1307 /// - negative zero
1308 /// - positive zero
1309 /// - positive subnormal numbers
1310 /// - positive numbers
1311 /// - positive infinity
1312 /// - positive signaling NaN
1313 /// - positive quiet NaN.
1314 ///
1315 /// The ordering established by this function does not always agree with the
1316 /// [`PartialOrd`] and [`PartialEq`] implementations of `f64`. For example,
1317 /// they consider negative and positive zero equal, while `total_cmp`
1318 /// doesn't.
1319 ///
1320 /// The interpretation of the signaling NaN bit follows the definition in
1321 /// the IEEE 754 standard, which may not match the interpretation by some of
1322 /// the older, non-conformant (e.g. MIPS) hardware implementations.
1323 ///
1324 /// # Example
1325 ///
1326 /// ```
1327 /// struct GoodBoy {
1328 /// name: String,
1329 /// weight: f64,
1330 /// }
1331 ///
1332 /// let mut bois = vec![
1333 /// GoodBoy { name: "Pucci".to_owned(), weight: 0.1 },
1334 /// GoodBoy { name: "Woofer".to_owned(), weight: 99.0 },
1335 /// GoodBoy { name: "Yapper".to_owned(), weight: 10.0 },
1336 /// GoodBoy { name: "Chonk".to_owned(), weight: f64::INFINITY },
1337 /// GoodBoy { name: "Abs. Unit".to_owned(), weight: f64::NAN },
1338 /// GoodBoy { name: "Floaty".to_owned(), weight: -5.0 },
1339 /// ];
1340 ///
1341 /// bois.sort_by(|a, b| a.weight.total_cmp(&b.weight));
1342 ///
1343 /// // `f64::NAN` could be positive or negative, which will affect the sort order.
1344 /// if f64::NAN.is_sign_negative() {
1345 /// assert!(bois.into_iter().map(|b| b.weight)
1346 /// .zip([f64::NAN, -5.0, 0.1, 10.0, 99.0, f64::INFINITY].iter())
1347 /// .all(|(a, b)| a.to_bits() == b.to_bits()))
1348 /// } else {
1349 /// assert!(bois.into_iter().map(|b| b.weight)
1350 /// .zip([-5.0, 0.1, 10.0, 99.0, f64::INFINITY, f64::NAN].iter())
1351 /// .all(|(a, b)| a.to_bits() == b.to_bits()))
1352 /// }
1353 /// ```
1354 #[stable(feature = "total_cmp", since = "1.62.0")]
1355 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1356 #[must_use]
1357 #[inline]
1358 pub const fn total_cmp(&self, other: &Self) -> crate::cmp::Ordering {
1359 let mut left = self.to_bits() as i64;
1360 let mut right = other.to_bits() as i64;
1361
1362 // In case of negatives, flip all the bits except the sign
1363 // to achieve a similar layout as two's complement integers
1364 //
1365 // Why does this work? IEEE 754 floats consist of three fields:
1366 // Sign bit, exponent and mantissa. The set of exponent and mantissa
1367 // fields as a whole have the property that their bitwise order is
1368 // equal to the numeric magnitude where the magnitude is defined.
1369 // The magnitude is not normally defined on NaN values, but
1370 // IEEE 754 totalOrder defines the NaN values also to follow the
1371 // bitwise order. This leads to order explained in the doc comment.
1372 // However, the representation of magnitude is the same for negative
1373 // and positive numbers – only the sign bit is different.
1374 // To easily compare the floats as signed integers, we need to
1375 // flip the exponent and mantissa bits in case of negative numbers.
1376 // We effectively convert the numbers to "two's complement" form.
1377 //
1378 // To do the flipping, we construct a mask and XOR against it.
1379 // We branchlessly calculate an "all-ones except for the sign bit"
1380 // mask from negative-signed values: right shifting sign-extends
1381 // the integer, so we "fill" the mask with sign bits, and then
1382 // convert to unsigned to push one more zero bit.
1383 // On positive values, the mask is all zeros, so it's a no-op.
1384 left ^= (((left >> 63) as u64) >> 1) as i64;
1385 right ^= (((right >> 63) as u64) >> 1) as i64;
1386
1387 left.cmp(&right)
1388 }
1389
1390 /// Restrict a value to a certain interval unless it is NaN.
1391 ///
1392 /// Returns `max` if `self` is greater than `max`, and `min` if `self` is
1393 /// less than `min`. Otherwise this returns `self`.
1394 ///
1395 /// Note that this function returns NaN if the initial value was NaN as
1396 /// well.
1397 ///
1398 /// # Panics
1399 ///
1400 /// Panics if `min > max`, `min` is NaN, or `max` is NaN.
1401 ///
1402 /// # Examples
1403 ///
1404 /// ```
1405 /// assert!((-3.0f64).clamp(-2.0, 1.0) == -2.0);
1406 /// assert!((0.0f64).clamp(-2.0, 1.0) == 0.0);
1407 /// assert!((2.0f64).clamp(-2.0, 1.0) == 1.0);
1408 /// assert!((f64::NAN).clamp(-2.0, 1.0).is_nan());
1409 /// ```
1410 #[must_use = "method returns a new number and does not mutate the original value"]
1411 #[stable(feature = "clamp", since = "1.50.0")]
1412 #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
1413 #[inline]
1414 pub const fn clamp(mut self, min: f64, max: f64) -> f64 {
1415 const_assert!(
1416 min <= max,
1417 "min > max, or either was NaN",
1418 "min > max, or either was NaN. min = {min:?}, max = {max:?}",
1419 min: f64,
1420 max: f64,
1421 );
1422
1423 if self < min {
1424 self = min;
1425 }
1426 if self > max {
1427 self = max;
1428 }
1429 self
1430 }
1431
1432 /// Computes the absolute value of `self`.
1433 ///
1434 /// This function always returns the precise result.
1435 ///
1436 /// # Examples
1437 ///
1438 /// ```
1439 /// let x = 3.5_f64;
1440 /// let y = -3.5_f64;
1441 ///
1442 /// assert_eq!(x.abs(), x);
1443 /// assert_eq!(y.abs(), -y);
1444 ///
1445 /// assert!(f64::NAN.abs().is_nan());
1446 /// ```
1447 #[must_use = "method returns a new number and does not mutate the original value"]
1448 #[stable(feature = "rust1", since = "1.0.0")]
1449 #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
1450 #[inline]
1451 pub const fn abs(self) -> f64 {
1452 intrinsics::fabsf64(self)
1453 }
1454
1455 /// Returns a number that represents the sign of `self`.
1456 ///
1457 /// - `1.0` if the number is positive, `+0.0` or `INFINITY`
1458 /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
1459 /// - NaN if the number is NaN
1460 ///
1461 /// # Examples
1462 ///
1463 /// ```
1464 /// let f = 3.5_f64;
1465 ///
1466 /// assert_eq!(f.signum(), 1.0);
1467 /// assert_eq!(f64::NEG_INFINITY.signum(), -1.0);
1468 ///
1469 /// assert!(f64::NAN.signum().is_nan());
1470 /// ```
1471 #[must_use = "method returns a new number and does not mutate the original value"]
1472 #[stable(feature = "rust1", since = "1.0.0")]
1473 #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
1474 #[inline]
1475 pub const fn signum(self) -> f64 {
1476 if self.is_nan() { Self::NAN } else { 1.0_f64.copysign(self) }
1477 }
1478
1479 /// Returns a number composed of the magnitude of `self` and the sign of
1480 /// `sign`.
1481 ///
1482 /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`.
1483 /// If `self` is a NaN, then a NaN with the same payload as `self` and the sign bit of `sign` is
1484 /// returned.
1485 ///
1486 /// If `sign` is a NaN, then this operation will still carry over its sign into the result. Note
1487 /// that IEEE 754 doesn't assign any meaning to the sign bit in case of a NaN, and as Rust
1488 /// doesn't guarantee that the bit pattern of NaNs are conserved over arithmetic operations, the
1489 /// result of `copysign` with `sign` being a NaN might produce an unexpected or non-portable
1490 /// result. See the [specification of NaN bit patterns](primitive@f32#nan-bit-patterns) for more
1491 /// info.
1492 ///
1493 /// # Examples
1494 ///
1495 /// ```
1496 /// let f = 3.5_f64;
1497 ///
1498 /// assert_eq!(f.copysign(0.42), 3.5_f64);
1499 /// assert_eq!(f.copysign(-0.42), -3.5_f64);
1500 /// assert_eq!((-f).copysign(0.42), 3.5_f64);
1501 /// assert_eq!((-f).copysign(-0.42), -3.5_f64);
1502 ///
1503 /// assert!(f64::NAN.copysign(1.0).is_nan());
1504 /// ```
1505 #[must_use = "method returns a new number and does not mutate the original value"]
1506 #[stable(feature = "copysign", since = "1.35.0")]
1507 #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
1508 #[inline]
1509 pub const fn copysign(self, sign: f64) -> f64 {
1510 intrinsics::copysignf64(self, sign)
1511 }
1512
1513 /// Float addition that allows optimizations based on algebraic rules.
1514 ///
1515 /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1516 #[must_use = "method returns a new number and does not mutate the original value"]
1517 #[unstable(feature = "float_algebraic", issue = "136469")]
1518 #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1519 #[inline]
1520 pub const fn algebraic_add(self, rhs: f64) -> f64 {
1521 intrinsics::fadd_algebraic(self, rhs)
1522 }
1523
1524 /// Float subtraction that allows optimizations based on algebraic rules.
1525 ///
1526 /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1527 #[must_use = "method returns a new number and does not mutate the original value"]
1528 #[unstable(feature = "float_algebraic", issue = "136469")]
1529 #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1530 #[inline]
1531 pub const fn algebraic_sub(self, rhs: f64) -> f64 {
1532 intrinsics::fsub_algebraic(self, rhs)
1533 }
1534
1535 /// Float multiplication that allows optimizations based on algebraic rules.
1536 ///
1537 /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1538 #[must_use = "method returns a new number and does not mutate the original value"]
1539 #[unstable(feature = "float_algebraic", issue = "136469")]
1540 #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1541 #[inline]
1542 pub const fn algebraic_mul(self, rhs: f64) -> f64 {
1543 intrinsics::fmul_algebraic(self, rhs)
1544 }
1545
1546 /// Float division that allows optimizations based on algebraic rules.
1547 ///
1548 /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1549 #[must_use = "method returns a new number and does not mutate the original value"]
1550 #[unstable(feature = "float_algebraic", issue = "136469")]
1551 #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1552 #[inline]
1553 pub const fn algebraic_div(self, rhs: f64) -> f64 {
1554 intrinsics::fdiv_algebraic(self, rhs)
1555 }
1556
1557 /// Float remainder that allows optimizations based on algebraic rules.
1558 ///
1559 /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1560 #[must_use = "method returns a new number and does not mutate the original value"]
1561 #[unstable(feature = "float_algebraic", issue = "136469")]
1562 #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1563 #[inline]
1564 pub const fn algebraic_rem(self, rhs: f64) -> f64 {
1565 intrinsics::frem_algebraic(self, rhs)
1566 }
1567}
1568
1569#[unstable(feature = "core_float_math", issue = "137578")]
1570/// Experimental implementations of floating point functions in `core`.
1571///
1572/// _The standalone functions in this module are for testing only.
1573/// They will be stabilized as inherent methods._
1574pub mod math {
1575 use crate::intrinsics;
1576 use crate::num::libm;
1577
1578 /// Experimental version of `floor` in `core`. See [`f64::floor`] for details.
1579 ///
1580 /// # Examples
1581 ///
1582 /// ```
1583 /// #![feature(core_float_math)]
1584 ///
1585 /// use core::f64;
1586 ///
1587 /// let f = 3.7_f64;
1588 /// let g = 3.0_f64;
1589 /// let h = -3.7_f64;
1590 ///
1591 /// assert_eq!(f64::math::floor(f), 3.0);
1592 /// assert_eq!(f64::math::floor(g), 3.0);
1593 /// assert_eq!(f64::math::floor(h), -4.0);
1594 /// ```
1595 ///
1596 /// _This standalone function is for testing only.
1597 /// It will be stabilized as an inherent method._
1598 ///
1599 /// [`f64::floor`]: ../../../std/primitive.f64.html#method.floor
1600 #[inline]
1601 #[unstable(feature = "core_float_math", issue = "137578")]
1602 #[must_use = "method returns a new number and does not mutate the original value"]
1603 pub const fn floor(x: f64) -> f64 {
1604 intrinsics::floorf64(x)
1605 }
1606
1607 /// Experimental version of `ceil` in `core`. See [`f64::ceil`] for details.
1608 ///
1609 /// # Examples
1610 ///
1611 /// ```
1612 /// #![feature(core_float_math)]
1613 ///
1614 /// use core::f64;
1615 ///
1616 /// let f = 3.01_f64;
1617 /// let g = 4.0_f64;
1618 ///
1619 /// assert_eq!(f64::math::ceil(f), 4.0);
1620 /// assert_eq!(f64::math::ceil(g), 4.0);
1621 /// ```
1622 ///
1623 /// _This standalone function is for testing only.
1624 /// It will be stabilized as an inherent method._
1625 ///
1626 /// [`f64::ceil`]: ../../../std/primitive.f64.html#method.ceil
1627 #[inline]
1628 #[doc(alias = "ceiling")]
1629 #[unstable(feature = "core_float_math", issue = "137578")]
1630 #[must_use = "method returns a new number and does not mutate the original value"]
1631 pub const fn ceil(x: f64) -> f64 {
1632 intrinsics::ceilf64(x)
1633 }
1634
1635 /// Experimental version of `round` in `core`. See [`f64::round`] for details.
1636 ///
1637 /// # Examples
1638 ///
1639 /// ```
1640 /// #![feature(core_float_math)]
1641 ///
1642 /// use core::f64;
1643 ///
1644 /// let f = 3.3_f64;
1645 /// let g = -3.3_f64;
1646 /// let h = -3.7_f64;
1647 /// let i = 3.5_f64;
1648 /// let j = 4.5_f64;
1649 ///
1650 /// assert_eq!(f64::math::round(f), 3.0);
1651 /// assert_eq!(f64::math::round(g), -3.0);
1652 /// assert_eq!(f64::math::round(h), -4.0);
1653 /// assert_eq!(f64::math::round(i), 4.0);
1654 /// assert_eq!(f64::math::round(j), 5.0);
1655 /// ```
1656 ///
1657 /// _This standalone function is for testing only.
1658 /// It will be stabilized as an inherent method._
1659 ///
1660 /// [`f64::round`]: ../../../std/primitive.f64.html#method.round
1661 #[inline]
1662 #[unstable(feature = "core_float_math", issue = "137578")]
1663 #[must_use = "method returns a new number and does not mutate the original value"]
1664 pub const fn round(x: f64) -> f64 {
1665 intrinsics::roundf64(x)
1666 }
1667
1668 /// Experimental version of `round_ties_even` in `core`. See [`f64::round_ties_even`] for
1669 /// details.
1670 ///
1671 /// # Examples
1672 ///
1673 /// ```
1674 /// #![feature(core_float_math)]
1675 ///
1676 /// use core::f64;
1677 ///
1678 /// let f = 3.3_f64;
1679 /// let g = -3.3_f64;
1680 /// let h = 3.5_f64;
1681 /// let i = 4.5_f64;
1682 ///
1683 /// assert_eq!(f64::math::round_ties_even(f), 3.0);
1684 /// assert_eq!(f64::math::round_ties_even(g), -3.0);
1685 /// assert_eq!(f64::math::round_ties_even(h), 4.0);
1686 /// assert_eq!(f64::math::round_ties_even(i), 4.0);
1687 /// ```
1688 ///
1689 /// _This standalone function is for testing only.
1690 /// It will be stabilized as an inherent method._
1691 ///
1692 /// [`f64::round_ties_even`]: ../../../std/primitive.f64.html#method.round_ties_even
1693 #[inline]
1694 #[unstable(feature = "core_float_math", issue = "137578")]
1695 #[must_use = "method returns a new number and does not mutate the original value"]
1696 pub const fn round_ties_even(x: f64) -> f64 {
1697 intrinsics::round_ties_even_f64(x)
1698 }
1699
1700 /// Experimental version of `trunc` in `core`. See [`f64::trunc`] for details.
1701 ///
1702 /// # Examples
1703 ///
1704 /// ```
1705 /// #![feature(core_float_math)]
1706 ///
1707 /// use core::f64;
1708 ///
1709 /// let f = 3.7_f64;
1710 /// let g = 3.0_f64;
1711 /// let h = -3.7_f64;
1712 ///
1713 /// assert_eq!(f64::math::trunc(f), 3.0);
1714 /// assert_eq!(f64::math::trunc(g), 3.0);
1715 /// assert_eq!(f64::math::trunc(h), -3.0);
1716 /// ```
1717 ///
1718 /// _This standalone function is for testing only.
1719 /// It will be stabilized as an inherent method._
1720 ///
1721 /// [`f64::trunc`]: ../../../std/primitive.f64.html#method.trunc
1722 #[inline]
1723 #[doc(alias = "truncate")]
1724 #[unstable(feature = "core_float_math", issue = "137578")]
1725 #[must_use = "method returns a new number and does not mutate the original value"]
1726 pub const fn trunc(x: f64) -> f64 {
1727 intrinsics::truncf64(x)
1728 }
1729
1730 /// Experimental version of `fract` in `core`. See [`f64::fract`] for details.
1731 ///
1732 /// # Examples
1733 ///
1734 /// ```
1735 /// #![feature(core_float_math)]
1736 ///
1737 /// use core::f64;
1738 ///
1739 /// let x = 3.6_f64;
1740 /// let y = -3.6_f64;
1741 /// let abs_difference_x = (f64::math::fract(x) - 0.6).abs();
1742 /// let abs_difference_y = (f64::math::fract(y) - (-0.6)).abs();
1743 ///
1744 /// assert!(abs_difference_x < 1e-10);
1745 /// assert!(abs_difference_y < 1e-10);
1746 /// ```
1747 ///
1748 /// _This standalone function is for testing only.
1749 /// It will be stabilized as an inherent method._
1750 ///
1751 /// [`f64::fract`]: ../../../std/primitive.f64.html#method.fract
1752 #[inline]
1753 #[unstable(feature = "core_float_math", issue = "137578")]
1754 #[must_use = "method returns a new number and does not mutate the original value"]
1755 pub const fn fract(x: f64) -> f64 {
1756 x - trunc(x)
1757 }
1758
1759 /// Experimental version of `mul_add` in `core`. See [`f64::mul_add`] for details.
1760 ///
1761 /// # Examples
1762 ///
1763 /// ```
1764 /// #![feature(core_float_math)]
1765 ///
1766 /// # // FIXME(#140515): mingw has an incorrect fma
1767 /// # // https://sourceforge.net/p/mingw-w64/bugs/848/
1768 /// # #[cfg(all(target_os = "windows", target_env = "gnu", not(target_abi = "llvm")))] {
1769 /// use core::f64;
1770 ///
1771 /// let m = 10.0_f64;
1772 /// let x = 4.0_f64;
1773 /// let b = 60.0_f64;
1774 ///
1775 /// assert_eq!(f64::math::mul_add(m, x, b), 100.0);
1776 /// assert_eq!(m * x + b, 100.0);
1777 ///
1778 /// let one_plus_eps = 1.0_f64 + f64::EPSILON;
1779 /// let one_minus_eps = 1.0_f64 - f64::EPSILON;
1780 /// let minus_one = -1.0_f64;
1781 ///
1782 /// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps.
1783 /// assert_eq!(
1784 /// f64::math::mul_add(one_plus_eps, one_minus_eps, minus_one),
1785 /// -f64::EPSILON * f64::EPSILON
1786 /// );
1787 /// // Different rounding with the non-fused multiply and add.
1788 /// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0);
1789 /// # }
1790 /// ```
1791 ///
1792 /// _This standalone function is for testing only.
1793 /// It will be stabilized as an inherent method._
1794 ///
1795 /// [`f64::mul_add`]: ../../../std/primitive.f64.html#method.mul_add
1796 #[inline]
1797 #[doc(alias = "fma", alias = "fusedMultiplyAdd")]
1798 #[unstable(feature = "core_float_math", issue = "137578")]
1799 #[must_use = "method returns a new number and does not mutate the original value"]
1800 #[rustc_const_unstable(feature = "const_mul_add", issue = "146724")]
1801 pub const fn mul_add(x: f64, a: f64, b: f64) -> f64 {
1802 intrinsics::fmaf64(x, a, b)
1803 }
1804
1805 /// Experimental version of `div_euclid` in `core`. See [`f64::div_euclid`] for details.
1806 ///
1807 /// # Examples
1808 ///
1809 /// ```
1810 /// #![feature(core_float_math)]
1811 ///
1812 /// use core::f64;
1813 ///
1814 /// let a: f64 = 7.0;
1815 /// let b = 4.0;
1816 /// assert_eq!(f64::math::div_euclid(a, b), 1.0); // 7.0 > 4.0 * 1.0
1817 /// assert_eq!(f64::math::div_euclid(-a, b), -2.0); // -7.0 >= 4.0 * -2.0
1818 /// assert_eq!(f64::math::div_euclid(a, -b), -1.0); // 7.0 >= -4.0 * -1.0
1819 /// assert_eq!(f64::math::div_euclid(-a, -b), 2.0); // -7.0 >= -4.0 * 2.0
1820 /// ```
1821 ///
1822 /// _This standalone function is for testing only.
1823 /// It will be stabilized as an inherent method._
1824 ///
1825 /// [`f64::div_euclid`]: ../../../std/primitive.f64.html#method.div_euclid
1826 #[inline]
1827 #[unstable(feature = "core_float_math", issue = "137578")]
1828 #[must_use = "method returns a new number and does not mutate the original value"]
1829 pub fn div_euclid(x: f64, rhs: f64) -> f64 {
1830 let q = trunc(x / rhs);
1831 if x % rhs < 0.0 {
1832 return if rhs > 0.0 { q - 1.0 } else { q + 1.0 };
1833 }
1834 q
1835 }
1836
1837 /// Experimental version of `rem_euclid` in `core`. See [`f64::rem_euclid`] for details.
1838 ///
1839 /// # Examples
1840 ///
1841 /// ```
1842 /// #![feature(core_float_math)]
1843 ///
1844 /// use core::f64;
1845 ///
1846 /// let a: f64 = 7.0;
1847 /// let b = 4.0;
1848 /// assert_eq!(f64::math::rem_euclid(a, b), 3.0);
1849 /// assert_eq!(f64::math::rem_euclid(-a, b), 1.0);
1850 /// assert_eq!(f64::math::rem_euclid(a, -b), 3.0);
1851 /// assert_eq!(f64::math::rem_euclid(-a, -b), 1.0);
1852 /// // limitation due to round-off error
1853 /// assert!(f64::math::rem_euclid(-f64::EPSILON, 3.0) != 0.0);
1854 /// ```
1855 ///
1856 /// _This standalone function is for testing only.
1857 /// It will be stabilized as an inherent method._
1858 ///
1859 /// [`f64::rem_euclid`]: ../../../std/primitive.f64.html#method.rem_euclid
1860 #[inline]
1861 #[doc(alias = "modulo", alias = "mod")]
1862 #[unstable(feature = "core_float_math", issue = "137578")]
1863 #[must_use = "method returns a new number and does not mutate the original value"]
1864 pub fn rem_euclid(x: f64, rhs: f64) -> f64 {
1865 let r = x % rhs;
1866 if r < 0.0 { r + rhs.abs() } else { r }
1867 }
1868
1869 /// Experimental version of `powi` in `core`. See [`f64::powi`] for details.
1870 ///
1871 /// # Examples
1872 ///
1873 /// ```
1874 /// #![feature(core_float_math)]
1875 ///
1876 /// use core::f64;
1877 ///
1878 /// let x = 2.0_f64;
1879 /// let abs_difference = (f64::math::powi(x, 2) - (x * x)).abs();
1880 /// assert!(abs_difference <= 1e-6);
1881 ///
1882 /// assert_eq!(f64::math::powi(f64::NAN, 0), 1.0);
1883 /// ```
1884 ///
1885 /// _This standalone function is for testing only.
1886 /// It will be stabilized as an inherent method._
1887 ///
1888 /// [`f64::powi`]: ../../../std/primitive.f64.html#method.powi
1889 #[inline]
1890 #[unstable(feature = "core_float_math", issue = "137578")]
1891 #[must_use = "method returns a new number and does not mutate the original value"]
1892 pub fn powi(x: f64, n: i32) -> f64 {
1893 intrinsics::powif64(x, n)
1894 }
1895
1896 /// Experimental version of `sqrt` in `core`. See [`f64::sqrt`] for details.
1897 ///
1898 /// # Examples
1899 ///
1900 /// ```
1901 /// #![feature(core_float_math)]
1902 ///
1903 /// use core::f64;
1904 ///
1905 /// let positive = 4.0_f64;
1906 /// let negative = -4.0_f64;
1907 /// let negative_zero = -0.0_f64;
1908 ///
1909 /// assert_eq!(f64::math::sqrt(positive), 2.0);
1910 /// assert!(f64::math::sqrt(negative).is_nan());
1911 /// assert_eq!(f64::math::sqrt(negative_zero), negative_zero);
1912 /// ```
1913 ///
1914 /// _This standalone function is for testing only.
1915 /// It will be stabilized as an inherent method._
1916 ///
1917 /// [`f64::sqrt`]: ../../../std/primitive.f64.html#method.sqrt
1918 #[inline]
1919 #[doc(alias = "squareRoot")]
1920 #[unstable(feature = "core_float_math", issue = "137578")]
1921 #[must_use = "method returns a new number and does not mutate the original value"]
1922 pub fn sqrt(x: f64) -> f64 {
1923 intrinsics::sqrtf64(x)
1924 }
1925
1926 /// Experimental version of `abs_sub` in `core`. See [`f64::abs_sub`] for details.
1927 ///
1928 /// # Examples
1929 ///
1930 /// ```
1931 /// #![feature(core_float_math)]
1932 ///
1933 /// use core::f64;
1934 ///
1935 /// let x = 3.0_f64;
1936 /// let y = -3.0_f64;
1937 ///
1938 /// let abs_difference_x = (f64::math::abs_sub(x, 1.0) - 2.0).abs();
1939 /// let abs_difference_y = (f64::math::abs_sub(y, 1.0) - 0.0).abs();
1940 ///
1941 /// assert!(abs_difference_x < 1e-10);
1942 /// assert!(abs_difference_y < 1e-10);
1943 /// ```
1944 ///
1945 /// _This standalone function is for testing only.
1946 /// It will be stabilized as an inherent method._
1947 ///
1948 /// [`f64::abs_sub`]: ../../../std/primitive.f64.html#method.abs_sub
1949 #[inline]
1950 #[unstable(feature = "core_float_math", issue = "137578")]
1951 #[deprecated(
1952 since = "1.10.0",
1953 note = "you probably meant `(self - other).abs()`: \
1954 this operation is `(self - other).max(0.0)` \
1955 except that `abs_sub` also propagates NaNs (also \
1956 known as `fdim` in C). If you truly need the positive \
1957 difference, consider using that expression or the C function \
1958 `fdim`, depending on how you wish to handle NaN (please consider \
1959 filing an issue describing your use-case too)."
1960 )]
1961 #[must_use = "method returns a new number and does not mutate the original value"]
1962 pub fn abs_sub(x: f64, other: f64) -> f64 {
1963 libm::fdim(x, other)
1964 }
1965
1966 /// Experimental version of `cbrt` in `core`. See [`f64::cbrt`] for details.
1967 ///
1968 /// # Examples
1969 ///
1970 /// ```
1971 /// #![feature(core_float_math)]
1972 ///
1973 /// use core::f64;
1974 ///
1975 /// let x = 8.0_f64;
1976 ///
1977 /// // x^(1/3) - 2 == 0
1978 /// let abs_difference = (f64::math::cbrt(x) - 2.0).abs();
1979 ///
1980 /// assert!(abs_difference < 1e-10);
1981 /// ```
1982 ///
1983 /// _This standalone function is for testing only.
1984 /// It will be stabilized as an inherent method._
1985 ///
1986 /// [`f64::cbrt`]: ../../../std/primitive.f64.html#method.cbrt
1987 #[inline]
1988 #[unstable(feature = "core_float_math", issue = "137578")]
1989 #[must_use = "method returns a new number and does not mutate the original value"]
1990 pub fn cbrt(x: f64) -> f64 {
1991 libm::cbrt(x)
1992 }
1993}