core/num/f64.rs
1//! Constants for the `f64` double-precision floating point type.
2//!
3//! *[See also the `f64` primitive type][f64].*
4//!
5//! Mathematically significant numbers are provided in the `consts` sub-module.
6//!
7//! For the constants defined directly in this module
8//! (as distinct from those defined in the `consts` sub-module),
9//! new code should instead use the associated constants
10//! defined directly on the `f64` type.
11
12#![stable(feature = "rust1", since = "1.0.0")]
13
14use crate::convert::FloatToInt;
15use crate::num::FpCategory;
16use crate::panic::const_assert;
17use crate::{intrinsics, mem};
18
19/// The radix or base of the internal representation of `f64`.
20/// Use [`f64::RADIX`] instead.
21///
22/// # Examples
23///
24/// ```rust
25/// // deprecated way
26/// # #[allow(deprecated, deprecated_in_future)]
27/// let r = std::f64::RADIX;
28///
29/// // intended way
30/// let r = f64::RADIX;
31/// ```
32#[stable(feature = "rust1", since = "1.0.0")]
33#[deprecated(since = "TBD", note = "replaced by the `RADIX` associated constant on `f64`")]
34#[rustc_diagnostic_item = "f64_legacy_const_radix"]
35pub const RADIX: u32 = f64::RADIX;
36
37/// Number of significant digits in base 2.
38/// Use [`f64::MANTISSA_DIGITS`] instead.
39///
40/// # Examples
41///
42/// ```rust
43/// // deprecated way
44/// # #[allow(deprecated, deprecated_in_future)]
45/// let d = std::f64::MANTISSA_DIGITS;
46///
47/// // intended way
48/// let d = f64::MANTISSA_DIGITS;
49/// ```
50#[stable(feature = "rust1", since = "1.0.0")]
51#[deprecated(
52 since = "TBD",
53 note = "replaced by the `MANTISSA_DIGITS` associated constant on `f64`"
54)]
55#[rustc_diagnostic_item = "f64_legacy_const_mantissa_dig"]
56pub const MANTISSA_DIGITS: u32 = f64::MANTISSA_DIGITS;
57
58/// Approximate number of significant digits in base 10.
59/// Use [`f64::DIGITS`] instead.
60///
61/// # Examples
62///
63/// ```rust
64/// // deprecated way
65/// # #[allow(deprecated, deprecated_in_future)]
66/// let d = std::f64::DIGITS;
67///
68/// // intended way
69/// let d = f64::DIGITS;
70/// ```
71#[stable(feature = "rust1", since = "1.0.0")]
72#[deprecated(since = "TBD", note = "replaced by the `DIGITS` associated constant on `f64`")]
73#[rustc_diagnostic_item = "f64_legacy_const_digits"]
74pub const DIGITS: u32 = f64::DIGITS;
75
76/// [Machine epsilon] value for `f64`.
77/// Use [`f64::EPSILON`] instead.
78///
79/// This is the difference between `1.0` and the next larger representable number.
80///
81/// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
82///
83/// # Examples
84///
85/// ```rust
86/// // deprecated way
87/// # #[allow(deprecated, deprecated_in_future)]
88/// let e = std::f64::EPSILON;
89///
90/// // intended way
91/// let e = f64::EPSILON;
92/// ```
93#[stable(feature = "rust1", since = "1.0.0")]
94#[deprecated(since = "TBD", note = "replaced by the `EPSILON` associated constant on `f64`")]
95#[rustc_diagnostic_item = "f64_legacy_const_epsilon"]
96pub const EPSILON: f64 = f64::EPSILON;
97
98/// Smallest finite `f64` value.
99/// Use [`f64::MIN`] instead.
100///
101/// # Examples
102///
103/// ```rust
104/// // deprecated way
105/// # #[allow(deprecated, deprecated_in_future)]
106/// let min = std::f64::MIN;
107///
108/// // intended way
109/// let min = f64::MIN;
110/// ```
111#[stable(feature = "rust1", since = "1.0.0")]
112#[deprecated(since = "TBD", note = "replaced by the `MIN` associated constant on `f64`")]
113#[rustc_diagnostic_item = "f64_legacy_const_min"]
114pub const MIN: f64 = f64::MIN;
115
116/// Smallest positive normal `f64` value.
117/// Use [`f64::MIN_POSITIVE`] instead.
118///
119/// # Examples
120///
121/// ```rust
122/// // deprecated way
123/// # #[allow(deprecated, deprecated_in_future)]
124/// let min = std::f64::MIN_POSITIVE;
125///
126/// // intended way
127/// let min = f64::MIN_POSITIVE;
128/// ```
129#[stable(feature = "rust1", since = "1.0.0")]
130#[deprecated(since = "TBD", note = "replaced by the `MIN_POSITIVE` associated constant on `f64`")]
131#[rustc_diagnostic_item = "f64_legacy_const_min_positive"]
132pub const MIN_POSITIVE: f64 = f64::MIN_POSITIVE;
133
134/// Largest finite `f64` value.
135/// Use [`f64::MAX`] instead.
136///
137/// # Examples
138///
139/// ```rust
140/// // deprecated way
141/// # #[allow(deprecated, deprecated_in_future)]
142/// let max = std::f64::MAX;
143///
144/// // intended way
145/// let max = f64::MAX;
146/// ```
147#[stable(feature = "rust1", since = "1.0.0")]
148#[deprecated(since = "TBD", note = "replaced by the `MAX` associated constant on `f64`")]
149#[rustc_diagnostic_item = "f64_legacy_const_max"]
150pub const MAX: f64 = f64::MAX;
151
152/// One greater than the minimum possible normal power of 2 exponent.
153/// Use [`f64::MIN_EXP`] instead.
154///
155/// # Examples
156///
157/// ```rust
158/// // deprecated way
159/// # #[allow(deprecated, deprecated_in_future)]
160/// let min = std::f64::MIN_EXP;
161///
162/// // intended way
163/// let min = f64::MIN_EXP;
164/// ```
165#[stable(feature = "rust1", since = "1.0.0")]
166#[deprecated(since = "TBD", note = "replaced by the `MIN_EXP` associated constant on `f64`")]
167#[rustc_diagnostic_item = "f64_legacy_const_min_exp"]
168pub const MIN_EXP: i32 = f64::MIN_EXP;
169
170/// Maximum possible power of 2 exponent.
171/// Use [`f64::MAX_EXP`] instead.
172///
173/// # Examples
174///
175/// ```rust
176/// // deprecated way
177/// # #[allow(deprecated, deprecated_in_future)]
178/// let max = std::f64::MAX_EXP;
179///
180/// // intended way
181/// let max = f64::MAX_EXP;
182/// ```
183#[stable(feature = "rust1", since = "1.0.0")]
184#[deprecated(since = "TBD", note = "replaced by the `MAX_EXP` associated constant on `f64`")]
185#[rustc_diagnostic_item = "f64_legacy_const_max_exp"]
186pub const MAX_EXP: i32 = f64::MAX_EXP;
187
188/// Minimum possible normal power of 10 exponent.
189/// Use [`f64::MIN_10_EXP`] instead.
190///
191/// # Examples
192///
193/// ```rust
194/// // deprecated way
195/// # #[allow(deprecated, deprecated_in_future)]
196/// let min = std::f64::MIN_10_EXP;
197///
198/// // intended way
199/// let min = f64::MIN_10_EXP;
200/// ```
201#[stable(feature = "rust1", since = "1.0.0")]
202#[deprecated(since = "TBD", note = "replaced by the `MIN_10_EXP` associated constant on `f64`")]
203#[rustc_diagnostic_item = "f64_legacy_const_min_10_exp"]
204pub const MIN_10_EXP: i32 = f64::MIN_10_EXP;
205
206/// Maximum possible power of 10 exponent.
207/// Use [`f64::MAX_10_EXP`] instead.
208///
209/// # Examples
210///
211/// ```rust
212/// // deprecated way
213/// # #[allow(deprecated, deprecated_in_future)]
214/// let max = std::f64::MAX_10_EXP;
215///
216/// // intended way
217/// let max = f64::MAX_10_EXP;
218/// ```
219#[stable(feature = "rust1", since = "1.0.0")]
220#[deprecated(since = "TBD", note = "replaced by the `MAX_10_EXP` associated constant on `f64`")]
221#[rustc_diagnostic_item = "f64_legacy_const_max_10_exp"]
222pub const MAX_10_EXP: i32 = f64::MAX_10_EXP;
223
224/// Not a Number (NaN).
225/// Use [`f64::NAN`] instead.
226///
227/// # Examples
228///
229/// ```rust
230/// // deprecated way
231/// # #[allow(deprecated, deprecated_in_future)]
232/// let nan = std::f64::NAN;
233///
234/// // intended way
235/// let nan = f64::NAN;
236/// ```
237#[stable(feature = "rust1", since = "1.0.0")]
238#[deprecated(since = "TBD", note = "replaced by the `NAN` associated constant on `f64`")]
239#[rustc_diagnostic_item = "f64_legacy_const_nan"]
240pub const NAN: f64 = f64::NAN;
241
242/// Infinity (∞).
243/// Use [`f64::INFINITY`] instead.
244///
245/// # Examples
246///
247/// ```rust
248/// // deprecated way
249/// # #[allow(deprecated, deprecated_in_future)]
250/// let inf = std::f64::INFINITY;
251///
252/// // intended way
253/// let inf = f64::INFINITY;
254/// ```
255#[stable(feature = "rust1", since = "1.0.0")]
256#[deprecated(since = "TBD", note = "replaced by the `INFINITY` associated constant on `f64`")]
257#[rustc_diagnostic_item = "f64_legacy_const_infinity"]
258pub const INFINITY: f64 = f64::INFINITY;
259
260/// Negative infinity (−∞).
261/// Use [`f64::NEG_INFINITY`] instead.
262///
263/// # Examples
264///
265/// ```rust
266/// // deprecated way
267/// # #[allow(deprecated, deprecated_in_future)]
268/// let ninf = std::f64::NEG_INFINITY;
269///
270/// // intended way
271/// let ninf = f64::NEG_INFINITY;
272/// ```
273#[stable(feature = "rust1", since = "1.0.0")]
274#[deprecated(since = "TBD", note = "replaced by the `NEG_INFINITY` associated constant on `f64`")]
275#[rustc_diagnostic_item = "f64_legacy_const_neg_infinity"]
276pub const NEG_INFINITY: f64 = f64::NEG_INFINITY;
277
278/// Basic mathematical constants.
279#[stable(feature = "rust1", since = "1.0.0")]
280pub mod consts {
281 // FIXME: replace with mathematical constants from cmath.
282
283 /// Archimedes' constant (π)
284 #[stable(feature = "rust1", since = "1.0.0")]
285 pub const PI: f64 = 3.14159265358979323846264338327950288_f64;
286
287 /// The full circle constant (τ)
288 ///
289 /// Equal to 2π.
290 #[stable(feature = "tau_constant", since = "1.47.0")]
291 pub const TAU: f64 = 6.28318530717958647692528676655900577_f64;
292
293 /// The golden ratio (φ)
294 #[unstable(feature = "more_float_constants", issue = "103883")]
295 pub const PHI: f64 = 1.618033988749894848204586834365638118_f64;
296
297 /// The Euler-Mascheroni constant (γ)
298 #[unstable(feature = "more_float_constants", issue = "103883")]
299 pub const EGAMMA: f64 = 0.577215664901532860606512090082402431_f64;
300
301 /// π/2
302 #[stable(feature = "rust1", since = "1.0.0")]
303 pub const FRAC_PI_2: f64 = 1.57079632679489661923132169163975144_f64;
304
305 /// π/3
306 #[stable(feature = "rust1", since = "1.0.0")]
307 pub const FRAC_PI_3: f64 = 1.04719755119659774615421446109316763_f64;
308
309 /// π/4
310 #[stable(feature = "rust1", since = "1.0.0")]
311 pub const FRAC_PI_4: f64 = 0.785398163397448309615660845819875721_f64;
312
313 /// π/6
314 #[stable(feature = "rust1", since = "1.0.0")]
315 pub const FRAC_PI_6: f64 = 0.52359877559829887307710723054658381_f64;
316
317 /// π/8
318 #[stable(feature = "rust1", since = "1.0.0")]
319 pub const FRAC_PI_8: f64 = 0.39269908169872415480783042290993786_f64;
320
321 /// 1/π
322 #[stable(feature = "rust1", since = "1.0.0")]
323 pub const FRAC_1_PI: f64 = 0.318309886183790671537767526745028724_f64;
324
325 /// 1/sqrt(π)
326 #[unstable(feature = "more_float_constants", issue = "103883")]
327 pub const FRAC_1_SQRT_PI: f64 = 0.564189583547756286948079451560772586_f64;
328
329 /// 1/sqrt(2π)
330 #[doc(alias = "FRAC_1_SQRT_TAU")]
331 #[unstable(feature = "more_float_constants", issue = "103883")]
332 pub const FRAC_1_SQRT_2PI: f64 = 0.398942280401432677939946059934381868_f64;
333
334 /// 2/π
335 #[stable(feature = "rust1", since = "1.0.0")]
336 pub const FRAC_2_PI: f64 = 0.636619772367581343075535053490057448_f64;
337
338 /// 2/sqrt(π)
339 #[stable(feature = "rust1", since = "1.0.0")]
340 pub const FRAC_2_SQRT_PI: f64 = 1.12837916709551257389615890312154517_f64;
341
342 /// sqrt(2)
343 #[stable(feature = "rust1", since = "1.0.0")]
344 pub const SQRT_2: f64 = 1.41421356237309504880168872420969808_f64;
345
346 /// 1/sqrt(2)
347 #[stable(feature = "rust1", since = "1.0.0")]
348 pub const FRAC_1_SQRT_2: f64 = 0.707106781186547524400844362104849039_f64;
349
350 /// sqrt(3)
351 #[unstable(feature = "more_float_constants", issue = "103883")]
352 pub const SQRT_3: f64 = 1.732050807568877293527446341505872367_f64;
353
354 /// 1/sqrt(3)
355 #[unstable(feature = "more_float_constants", issue = "103883")]
356 pub const FRAC_1_SQRT_3: f64 = 0.577350269189625764509148780501957456_f64;
357
358 /// Euler's number (e)
359 #[stable(feature = "rust1", since = "1.0.0")]
360 pub const E: f64 = 2.71828182845904523536028747135266250_f64;
361
362 /// log<sub>2</sub>(10)
363 #[stable(feature = "extra_log_consts", since = "1.43.0")]
364 pub const LOG2_10: f64 = 3.32192809488736234787031942948939018_f64;
365
366 /// log<sub>2</sub>(e)
367 #[stable(feature = "rust1", since = "1.0.0")]
368 pub const LOG2_E: f64 = 1.44269504088896340735992468100189214_f64;
369
370 /// log<sub>10</sub>(2)
371 #[stable(feature = "extra_log_consts", since = "1.43.0")]
372 pub const LOG10_2: f64 = 0.301029995663981195213738894724493027_f64;
373
374 /// log<sub>10</sub>(e)
375 #[stable(feature = "rust1", since = "1.0.0")]
376 pub const LOG10_E: f64 = 0.434294481903251827651128918916605082_f64;
377
378 /// ln(2)
379 #[stable(feature = "rust1", since = "1.0.0")]
380 pub const LN_2: f64 = 0.693147180559945309417232121458176568_f64;
381
382 /// ln(10)
383 #[stable(feature = "rust1", since = "1.0.0")]
384 pub const LN_10: f64 = 2.30258509299404568401799145468436421_f64;
385}
386
387impl f64 {
388 /// The radix or base of the internal representation of `f64`.
389 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
390 pub const RADIX: u32 = 2;
391
392 /// Number of significant digits in base 2.
393 ///
394 /// Note that the size of the mantissa in the bitwise representation is one
395 /// smaller than this since the leading 1 is not stored explicitly.
396 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
397 pub const MANTISSA_DIGITS: u32 = 53;
398 /// Approximate number of significant digits in base 10.
399 ///
400 /// This is the maximum <i>x</i> such that any decimal number with <i>x</i>
401 /// significant digits can be converted to `f64` and back without loss.
402 ///
403 /// Equal to floor(log<sub>10</sub> 2<sup>[`MANTISSA_DIGITS`] − 1</sup>).
404 ///
405 /// [`MANTISSA_DIGITS`]: f64::MANTISSA_DIGITS
406 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
407 pub const DIGITS: u32 = 15;
408
409 /// [Machine epsilon] value for `f64`.
410 ///
411 /// This is the difference between `1.0` and the next larger representable number.
412 ///
413 /// Equal to 2<sup>1 − [`MANTISSA_DIGITS`]</sup>.
414 ///
415 /// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
416 /// [`MANTISSA_DIGITS`]: f64::MANTISSA_DIGITS
417 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
418 #[rustc_diagnostic_item = "f64_epsilon"]
419 pub const EPSILON: f64 = 2.2204460492503131e-16_f64;
420
421 /// Smallest finite `f64` value.
422 ///
423 /// Equal to −[`MAX`].
424 ///
425 /// [`MAX`]: f64::MAX
426 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
427 pub const MIN: f64 = -1.7976931348623157e+308_f64;
428 /// Smallest positive normal `f64` value.
429 ///
430 /// Equal to 2<sup>[`MIN_EXP`] − 1</sup>.
431 ///
432 /// [`MIN_EXP`]: f64::MIN_EXP
433 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
434 pub const MIN_POSITIVE: f64 = 2.2250738585072014e-308_f64;
435 /// Largest finite `f64` value.
436 ///
437 /// Equal to
438 /// (1 − 2<sup>−[`MANTISSA_DIGITS`]</sup>) 2<sup>[`MAX_EXP`]</sup>.
439 ///
440 /// [`MANTISSA_DIGITS`]: f64::MANTISSA_DIGITS
441 /// [`MAX_EXP`]: f64::MAX_EXP
442 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
443 pub const MAX: f64 = 1.7976931348623157e+308_f64;
444
445 /// One greater than the minimum possible *normal* power of 2 exponent
446 /// for a significand bounded by 1 ≤ x < 2 (i.e. the IEEE definition).
447 ///
448 /// This corresponds to the exact minimum possible *normal* power of 2 exponent
449 /// for a significand bounded by 0.5 ≤ x < 1 (i.e. the C definition).
450 /// In other words, all normal numbers representable by this type are
451 /// greater than or equal to 0.5 × 2<sup><i>MIN_EXP</i></sup>.
452 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
453 pub const MIN_EXP: i32 = -1021;
454 /// One greater than the maximum possible power of 2 exponent
455 /// for a significand bounded by 1 ≤ x < 2 (i.e. the IEEE definition).
456 ///
457 /// This corresponds to the exact maximum possible power of 2 exponent
458 /// for a significand bounded by 0.5 ≤ x < 1 (i.e. the C definition).
459 /// In other words, all numbers representable by this type are
460 /// strictly less than 2<sup><i>MAX_EXP</i></sup>.
461 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
462 pub const MAX_EXP: i32 = 1024;
463
464 /// Minimum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
465 ///
466 /// Equal to ceil(log<sub>10</sub> [`MIN_POSITIVE`]).
467 ///
468 /// [`MIN_POSITIVE`]: f64::MIN_POSITIVE
469 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
470 pub const MIN_10_EXP: i32 = -307;
471 /// Maximum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
472 ///
473 /// Equal to floor(log<sub>10</sub> [`MAX`]).
474 ///
475 /// [`MAX`]: f64::MAX
476 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
477 pub const MAX_10_EXP: i32 = 308;
478
479 /// Not a Number (NaN).
480 ///
481 /// Note that IEEE 754 doesn't define just a single NaN value; a plethora of bit patterns are
482 /// considered to be NaN. Furthermore, the standard makes a difference between a "signaling" and
483 /// a "quiet" NaN, and allows inspecting its "payload" (the unspecified bits in the bit pattern)
484 /// and its sign. See the [specification of NaN bit patterns](f32#nan-bit-patterns) for more
485 /// info.
486 ///
487 /// This constant is guaranteed to be a quiet NaN (on targets that follow the Rust assumptions
488 /// that the quiet/signaling bit being set to 1 indicates a quiet NaN). Beyond that, nothing is
489 /// guaranteed about the specific bit pattern chosen here: both payload and sign are arbitrary.
490 /// The concrete bit pattern may change across Rust versions and target platforms.
491 #[rustc_diagnostic_item = "f64_nan"]
492 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
493 #[allow(clippy::eq_op)]
494 pub const NAN: f64 = 0.0_f64 / 0.0_f64;
495 /// Infinity (∞).
496 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
497 pub const INFINITY: f64 = 1.0_f64 / 0.0_f64;
498 /// Negative infinity (−∞).
499 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
500 pub const NEG_INFINITY: f64 = -1.0_f64 / 0.0_f64;
501
502 /// Sign bit
503 pub(crate) const SIGN_MASK: u64 = 0x8000_0000_0000_0000;
504
505 /// Exponent mask
506 pub(crate) const EXP_MASK: u64 = 0x7ff0_0000_0000_0000;
507
508 /// Mantissa mask
509 pub(crate) const MAN_MASK: u64 = 0x000f_ffff_ffff_ffff;
510
511 /// Minimum representable positive value (min subnormal)
512 const TINY_BITS: u64 = 0x1;
513
514 /// Minimum representable negative value (min negative subnormal)
515 const NEG_TINY_BITS: u64 = Self::TINY_BITS | Self::SIGN_MASK;
516
517 /// Returns `true` if this value is NaN.
518 ///
519 /// ```
520 /// let nan = f64::NAN;
521 /// let f = 7.0_f64;
522 ///
523 /// assert!(nan.is_nan());
524 /// assert!(!f.is_nan());
525 /// ```
526 #[must_use]
527 #[stable(feature = "rust1", since = "1.0.0")]
528 #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
529 #[inline]
530 #[allow(clippy::eq_op)] // > if you intended to check if the operand is NaN, use `.is_nan()` instead :)
531 pub const fn is_nan(self) -> bool {
532 self != self
533 }
534
535 /// Returns `true` if this value is positive infinity or negative infinity, and
536 /// `false` otherwise.
537 ///
538 /// ```
539 /// let f = 7.0f64;
540 /// let inf = f64::INFINITY;
541 /// let neg_inf = f64::NEG_INFINITY;
542 /// let nan = f64::NAN;
543 ///
544 /// assert!(!f.is_infinite());
545 /// assert!(!nan.is_infinite());
546 ///
547 /// assert!(inf.is_infinite());
548 /// assert!(neg_inf.is_infinite());
549 /// ```
550 #[must_use]
551 #[stable(feature = "rust1", since = "1.0.0")]
552 #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
553 #[inline]
554 pub const fn is_infinite(self) -> bool {
555 // Getting clever with transmutation can result in incorrect answers on some FPUs
556 // FIXME: alter the Rust <-> Rust calling convention to prevent this problem.
557 // See https://github.com/rust-lang/rust/issues/72327
558 (self == f64::INFINITY) | (self == f64::NEG_INFINITY)
559 }
560
561 /// Returns `true` if this number is neither infinite nor NaN.
562 ///
563 /// ```
564 /// let f = 7.0f64;
565 /// let inf: f64 = f64::INFINITY;
566 /// let neg_inf: f64 = f64::NEG_INFINITY;
567 /// let nan: f64 = f64::NAN;
568 ///
569 /// assert!(f.is_finite());
570 ///
571 /// assert!(!nan.is_finite());
572 /// assert!(!inf.is_finite());
573 /// assert!(!neg_inf.is_finite());
574 /// ```
575 #[must_use]
576 #[stable(feature = "rust1", since = "1.0.0")]
577 #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
578 #[inline]
579 pub const fn is_finite(self) -> bool {
580 // There's no need to handle NaN separately: if self is NaN,
581 // the comparison is not true, exactly as desired.
582 self.abs() < Self::INFINITY
583 }
584
585 /// Returns `true` if the number is [subnormal].
586 ///
587 /// ```
588 /// let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308_f64
589 /// let max = f64::MAX;
590 /// let lower_than_min = 1.0e-308_f64;
591 /// let zero = 0.0_f64;
592 ///
593 /// assert!(!min.is_subnormal());
594 /// assert!(!max.is_subnormal());
595 ///
596 /// assert!(!zero.is_subnormal());
597 /// assert!(!f64::NAN.is_subnormal());
598 /// assert!(!f64::INFINITY.is_subnormal());
599 /// // Values between `0` and `min` are Subnormal.
600 /// assert!(lower_than_min.is_subnormal());
601 /// ```
602 /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
603 #[must_use]
604 #[stable(feature = "is_subnormal", since = "1.53.0")]
605 #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
606 #[inline]
607 pub const fn is_subnormal(self) -> bool {
608 matches!(self.classify(), FpCategory::Subnormal)
609 }
610
611 /// Returns `true` if the number is neither zero, infinite,
612 /// [subnormal], or NaN.
613 ///
614 /// ```
615 /// let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308f64
616 /// let max = f64::MAX;
617 /// let lower_than_min = 1.0e-308_f64;
618 /// let zero = 0.0f64;
619 ///
620 /// assert!(min.is_normal());
621 /// assert!(max.is_normal());
622 ///
623 /// assert!(!zero.is_normal());
624 /// assert!(!f64::NAN.is_normal());
625 /// assert!(!f64::INFINITY.is_normal());
626 /// // Values between `0` and `min` are Subnormal.
627 /// assert!(!lower_than_min.is_normal());
628 /// ```
629 /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
630 #[must_use]
631 #[stable(feature = "rust1", since = "1.0.0")]
632 #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
633 #[inline]
634 pub const fn is_normal(self) -> bool {
635 matches!(self.classify(), FpCategory::Normal)
636 }
637
638 /// Returns the floating point category of the number. If only one property
639 /// is going to be tested, it is generally faster to use the specific
640 /// predicate instead.
641 ///
642 /// ```
643 /// use std::num::FpCategory;
644 ///
645 /// let num = 12.4_f64;
646 /// let inf = f64::INFINITY;
647 ///
648 /// assert_eq!(num.classify(), FpCategory::Normal);
649 /// assert_eq!(inf.classify(), FpCategory::Infinite);
650 /// ```
651 #[stable(feature = "rust1", since = "1.0.0")]
652 #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
653 pub const fn classify(self) -> FpCategory {
654 // We used to have complicated logic here that avoids the simple bit-based tests to work
655 // around buggy codegen for x87 targets (see
656 // https://github.com/rust-lang/rust/issues/114479). However, some LLVM versions later, none
657 // of our tests is able to find any difference between the complicated and the naive
658 // version, so now we are back to the naive version.
659 let b = self.to_bits();
660 match (b & Self::MAN_MASK, b & Self::EXP_MASK) {
661 (0, Self::EXP_MASK) => FpCategory::Infinite,
662 (_, Self::EXP_MASK) => FpCategory::Nan,
663 (0, 0) => FpCategory::Zero,
664 (_, 0) => FpCategory::Subnormal,
665 _ => FpCategory::Normal,
666 }
667 }
668
669 /// Returns `true` if `self` has a positive sign, including `+0.0`, NaNs with
670 /// positive sign bit and positive infinity.
671 ///
672 /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of
673 /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are
674 /// conserved over arithmetic operations, the result of `is_sign_positive` on
675 /// a NaN might produce an unexpected or non-portable result. See the [specification
676 /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == 1.0`
677 /// if you need fully portable behavior (will return `false` for all NaNs).
678 ///
679 /// ```
680 /// let f = 7.0_f64;
681 /// let g = -7.0_f64;
682 ///
683 /// assert!(f.is_sign_positive());
684 /// assert!(!g.is_sign_positive());
685 /// ```
686 #[must_use]
687 #[stable(feature = "rust1", since = "1.0.0")]
688 #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
689 #[inline]
690 pub const fn is_sign_positive(self) -> bool {
691 !self.is_sign_negative()
692 }
693
694 #[must_use]
695 #[stable(feature = "rust1", since = "1.0.0")]
696 #[deprecated(since = "1.0.0", note = "renamed to is_sign_positive")]
697 #[inline]
698 #[doc(hidden)]
699 pub fn is_positive(self) -> bool {
700 self.is_sign_positive()
701 }
702
703 /// Returns `true` if `self` has a negative sign, including `-0.0`, NaNs with
704 /// negative sign bit and negative infinity.
705 ///
706 /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of
707 /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are
708 /// conserved over arithmetic operations, the result of `is_sign_negative` on
709 /// a NaN might produce an unexpected or non-portable result. See the [specification
710 /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == -1.0`
711 /// if you need fully portable behavior (will return `false` for all NaNs).
712 ///
713 /// ```
714 /// let f = 7.0_f64;
715 /// let g = -7.0_f64;
716 ///
717 /// assert!(!f.is_sign_negative());
718 /// assert!(g.is_sign_negative());
719 /// ```
720 #[must_use]
721 #[stable(feature = "rust1", since = "1.0.0")]
722 #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
723 #[inline]
724 pub const fn is_sign_negative(self) -> bool {
725 // IEEE754 says: isSignMinus(x) is true if and only if x has negative sign. isSignMinus
726 // applies to zeros and NaNs as well.
727 self.to_bits() & Self::SIGN_MASK != 0
728 }
729
730 #[must_use]
731 #[stable(feature = "rust1", since = "1.0.0")]
732 #[deprecated(since = "1.0.0", note = "renamed to is_sign_negative")]
733 #[inline]
734 #[doc(hidden)]
735 pub fn is_negative(self) -> bool {
736 self.is_sign_negative()
737 }
738
739 /// Returns the least number greater than `self`.
740 ///
741 /// Let `TINY` be the smallest representable positive `f64`. Then,
742 /// - if `self.is_nan()`, this returns `self`;
743 /// - if `self` is [`NEG_INFINITY`], this returns [`MIN`];
744 /// - if `self` is `-TINY`, this returns -0.0;
745 /// - if `self` is -0.0 or +0.0, this returns `TINY`;
746 /// - if `self` is [`MAX`] or [`INFINITY`], this returns [`INFINITY`];
747 /// - otherwise the unique least value greater than `self` is returned.
748 ///
749 /// The identity `x.next_up() == -(-x).next_down()` holds for all non-NaN `x`. When `x`
750 /// is finite `x == x.next_up().next_down()` also holds.
751 ///
752 /// ```rust
753 /// // f64::EPSILON is the difference between 1.0 and the next number up.
754 /// assert_eq!(1.0f64.next_up(), 1.0 + f64::EPSILON);
755 /// // But not for most numbers.
756 /// assert!(0.1f64.next_up() < 0.1 + f64::EPSILON);
757 /// assert_eq!(9007199254740992f64.next_up(), 9007199254740994.0);
758 /// ```
759 ///
760 /// This operation corresponds to IEEE-754 `nextUp`.
761 ///
762 /// [`NEG_INFINITY`]: Self::NEG_INFINITY
763 /// [`INFINITY`]: Self::INFINITY
764 /// [`MIN`]: Self::MIN
765 /// [`MAX`]: Self::MAX
766 #[inline]
767 #[doc(alias = "nextUp")]
768 #[stable(feature = "float_next_up_down", since = "1.86.0")]
769 #[rustc_const_stable(feature = "float_next_up_down", since = "1.86.0")]
770 pub const fn next_up(self) -> Self {
771 // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing
772 // denormals to zero. This is in general unsound and unsupported, but here
773 // we do our best to still produce the correct result on such targets.
774 let bits = self.to_bits();
775 if self.is_nan() || bits == Self::INFINITY.to_bits() {
776 return self;
777 }
778
779 let abs = bits & !Self::SIGN_MASK;
780 let next_bits = if abs == 0 {
781 Self::TINY_BITS
782 } else if bits == abs {
783 bits + 1
784 } else {
785 bits - 1
786 };
787 Self::from_bits(next_bits)
788 }
789
790 /// Returns the greatest number less than `self`.
791 ///
792 /// Let `TINY` be the smallest representable positive `f64`. Then,
793 /// - if `self.is_nan()`, this returns `self`;
794 /// - if `self` is [`INFINITY`], this returns [`MAX`];
795 /// - if `self` is `TINY`, this returns 0.0;
796 /// - if `self` is -0.0 or +0.0, this returns `-TINY`;
797 /// - if `self` is [`MIN`] or [`NEG_INFINITY`], this returns [`NEG_INFINITY`];
798 /// - otherwise the unique greatest value less than `self` is returned.
799 ///
800 /// The identity `x.next_down() == -(-x).next_up()` holds for all non-NaN `x`. When `x`
801 /// is finite `x == x.next_down().next_up()` also holds.
802 ///
803 /// ```rust
804 /// let x = 1.0f64;
805 /// // Clamp value into range [0, 1).
806 /// let clamped = x.clamp(0.0, 1.0f64.next_down());
807 /// assert!(clamped < 1.0);
808 /// assert_eq!(clamped.next_up(), 1.0);
809 /// ```
810 ///
811 /// This operation corresponds to IEEE-754 `nextDown`.
812 ///
813 /// [`NEG_INFINITY`]: Self::NEG_INFINITY
814 /// [`INFINITY`]: Self::INFINITY
815 /// [`MIN`]: Self::MIN
816 /// [`MAX`]: Self::MAX
817 #[inline]
818 #[doc(alias = "nextDown")]
819 #[stable(feature = "float_next_up_down", since = "1.86.0")]
820 #[rustc_const_stable(feature = "float_next_up_down", since = "1.86.0")]
821 pub const fn next_down(self) -> Self {
822 // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing
823 // denormals to zero. This is in general unsound and unsupported, but here
824 // we do our best to still produce the correct result on such targets.
825 let bits = self.to_bits();
826 if self.is_nan() || bits == Self::NEG_INFINITY.to_bits() {
827 return self;
828 }
829
830 let abs = bits & !Self::SIGN_MASK;
831 let next_bits = if abs == 0 {
832 Self::NEG_TINY_BITS
833 } else if bits == abs {
834 bits - 1
835 } else {
836 bits + 1
837 };
838 Self::from_bits(next_bits)
839 }
840
841 /// Takes the reciprocal (inverse) of a number, `1/x`.
842 ///
843 /// ```
844 /// let x = 2.0_f64;
845 /// let abs_difference = (x.recip() - (1.0 / x)).abs();
846 ///
847 /// assert!(abs_difference < 1e-10);
848 /// ```
849 #[must_use = "this returns the result of the operation, without modifying the original"]
850 #[stable(feature = "rust1", since = "1.0.0")]
851 #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
852 #[inline]
853 pub const fn recip(self) -> f64 {
854 1.0 / self
855 }
856
857 /// Converts radians to degrees.
858 ///
859 /// # Unspecified precision
860 ///
861 /// The precision of this function is non-deterministic. This means it varies by platform,
862 /// Rust version, and can even differ within the same execution from one invocation to the next.
863 ///
864 /// # Examples
865 ///
866 /// ```
867 /// let angle = std::f64::consts::PI;
868 ///
869 /// let abs_difference = (angle.to_degrees() - 180.0).abs();
870 ///
871 /// assert!(abs_difference < 1e-10);
872 /// ```
873 #[must_use = "this returns the result of the operation, \
874 without modifying the original"]
875 #[stable(feature = "rust1", since = "1.0.0")]
876 #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
877 #[inline]
878 pub const fn to_degrees(self) -> f64 {
879 // The division here is correctly rounded with respect to the true value of 180/π.
880 // Although π is irrational and already rounded, the double rounding happens
881 // to produce correct result for f64.
882 const PIS_IN_180: f64 = 180.0 / consts::PI;
883 self * PIS_IN_180
884 }
885
886 /// Converts degrees to radians.
887 ///
888 /// # Unspecified precision
889 ///
890 /// The precision of this function is non-deterministic. This means it varies by platform,
891 /// Rust version, and can even differ within the same execution from one invocation to the next.
892 ///
893 /// # Examples
894 ///
895 /// ```
896 /// let angle = 180.0_f64;
897 ///
898 /// let abs_difference = (angle.to_radians() - std::f64::consts::PI).abs();
899 ///
900 /// assert!(abs_difference < 1e-10);
901 /// ```
902 #[must_use = "this returns the result of the operation, \
903 without modifying the original"]
904 #[stable(feature = "rust1", since = "1.0.0")]
905 #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
906 #[inline]
907 pub const fn to_radians(self) -> f64 {
908 // The division here is correctly rounded with respect to the true value of π/180.
909 // Although π is irrational and already rounded, the double rounding happens
910 // to produce correct result for f64.
911 const RADS_PER_DEG: f64 = consts::PI / 180.0;
912 self * RADS_PER_DEG
913 }
914
915 /// Returns the maximum of the two numbers, ignoring NaN.
916 ///
917 /// If one of the arguments is NaN, then the other argument is returned.
918 /// This follows the IEEE 754-2008 semantics for maxNum, except for handling of signaling NaNs;
919 /// this function handles all NaNs the same way and avoids maxNum's problems with associativity.
920 /// This also matches the behavior of libm’s fmax. In particular, if the inputs compare equal
921 /// (such as for the case of `+0.0` and `-0.0`), either input may be returned non-deterministically.
922 ///
923 /// ```
924 /// let x = 1.0_f64;
925 /// let y = 2.0_f64;
926 ///
927 /// assert_eq!(x.max(y), y);
928 /// ```
929 #[must_use = "this returns the result of the comparison, without modifying either input"]
930 #[stable(feature = "rust1", since = "1.0.0")]
931 #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
932 #[inline]
933 pub const fn max(self, other: f64) -> f64 {
934 intrinsics::maxnumf64(self, other)
935 }
936
937 /// Returns the minimum of the two numbers, ignoring NaN.
938 ///
939 /// If one of the arguments is NaN, then the other argument is returned.
940 /// This follows the IEEE 754-2008 semantics for minNum, except for handling of signaling NaNs;
941 /// this function handles all NaNs the same way and avoids minNum's problems with associativity.
942 /// This also matches the behavior of libm’s fmin. In particular, if the inputs compare equal
943 /// (such as for the case of `+0.0` and `-0.0`), either input may be returned non-deterministically.
944 ///
945 /// ```
946 /// let x = 1.0_f64;
947 /// let y = 2.0_f64;
948 ///
949 /// assert_eq!(x.min(y), x);
950 /// ```
951 #[must_use = "this returns the result of the comparison, without modifying either input"]
952 #[stable(feature = "rust1", since = "1.0.0")]
953 #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
954 #[inline]
955 pub const fn min(self, other: f64) -> f64 {
956 intrinsics::minnumf64(self, other)
957 }
958
959 /// Returns the maximum of the two numbers, propagating NaN.
960 ///
961 /// This returns NaN when *either* argument is NaN, as opposed to
962 /// [`f64::max`] which only returns NaN when *both* arguments are NaN.
963 ///
964 /// ```
965 /// #![feature(float_minimum_maximum)]
966 /// let x = 1.0_f64;
967 /// let y = 2.0_f64;
968 ///
969 /// assert_eq!(x.maximum(y), y);
970 /// assert!(x.maximum(f64::NAN).is_nan());
971 /// ```
972 ///
973 /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the greater
974 /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0.
975 /// Note that this follows the semantics specified in IEEE 754-2019.
976 ///
977 /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN
978 /// operand is conserved; see the [specification of NaN bit patterns](f32#nan-bit-patterns) for more info.
979 #[must_use = "this returns the result of the comparison, without modifying either input"]
980 #[unstable(feature = "float_minimum_maximum", issue = "91079")]
981 #[inline]
982 pub const fn maximum(self, other: f64) -> f64 {
983 intrinsics::maximumf64(self, other)
984 }
985
986 /// Returns the minimum of the two numbers, propagating NaN.
987 ///
988 /// This returns NaN when *either* argument is NaN, as opposed to
989 /// [`f64::min`] which only returns NaN when *both* arguments are NaN.
990 ///
991 /// ```
992 /// #![feature(float_minimum_maximum)]
993 /// let x = 1.0_f64;
994 /// let y = 2.0_f64;
995 ///
996 /// assert_eq!(x.minimum(y), x);
997 /// assert!(x.minimum(f64::NAN).is_nan());
998 /// ```
999 ///
1000 /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the lesser
1001 /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0.
1002 /// Note that this follows the semantics specified in IEEE 754-2019.
1003 ///
1004 /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN
1005 /// operand is conserved; see the [specification of NaN bit patterns](f32#nan-bit-patterns) for more info.
1006 #[must_use = "this returns the result of the comparison, without modifying either input"]
1007 #[unstable(feature = "float_minimum_maximum", issue = "91079")]
1008 #[inline]
1009 pub const fn minimum(self, other: f64) -> f64 {
1010 intrinsics::minimumf64(self, other)
1011 }
1012
1013 /// Calculates the midpoint (average) between `self` and `rhs`.
1014 ///
1015 /// This returns NaN when *either* argument is NaN or if a combination of
1016 /// +inf and -inf is provided as arguments.
1017 ///
1018 /// # Examples
1019 ///
1020 /// ```
1021 /// assert_eq!(1f64.midpoint(4.0), 2.5);
1022 /// assert_eq!((-5.5f64).midpoint(8.0), 1.25);
1023 /// ```
1024 #[inline]
1025 #[doc(alias = "average")]
1026 #[stable(feature = "num_midpoint", since = "1.85.0")]
1027 #[rustc_const_stable(feature = "num_midpoint", since = "1.85.0")]
1028 pub const fn midpoint(self, other: f64) -> f64 {
1029 const LO: f64 = f64::MIN_POSITIVE * 2.;
1030 const HI: f64 = f64::MAX / 2.;
1031
1032 let (a, b) = (self, other);
1033 let abs_a = a.abs();
1034 let abs_b = b.abs();
1035
1036 if abs_a <= HI && abs_b <= HI {
1037 // Overflow is impossible
1038 (a + b) / 2.
1039 } else if abs_a < LO {
1040 // Not safe to halve `a` (would underflow)
1041 a + (b / 2.)
1042 } else if abs_b < LO {
1043 // Not safe to halve `b` (would underflow)
1044 (a / 2.) + b
1045 } else {
1046 // Safe to halve `a` and `b`
1047 (a / 2.) + (b / 2.)
1048 }
1049 }
1050
1051 /// Rounds toward zero and converts to any primitive integer type,
1052 /// assuming that the value is finite and fits in that type.
1053 ///
1054 /// ```
1055 /// let value = 4.6_f64;
1056 /// let rounded = unsafe { value.to_int_unchecked::<u16>() };
1057 /// assert_eq!(rounded, 4);
1058 ///
1059 /// let value = -128.9_f64;
1060 /// let rounded = unsafe { value.to_int_unchecked::<i8>() };
1061 /// assert_eq!(rounded, i8::MIN);
1062 /// ```
1063 ///
1064 /// # Safety
1065 ///
1066 /// The value must:
1067 ///
1068 /// * Not be `NaN`
1069 /// * Not be infinite
1070 /// * Be representable in the return type `Int`, after truncating off its fractional part
1071 #[must_use = "this returns the result of the operation, \
1072 without modifying the original"]
1073 #[stable(feature = "float_approx_unchecked_to", since = "1.44.0")]
1074 #[inline]
1075 pub unsafe fn to_int_unchecked<Int>(self) -> Int
1076 where
1077 Self: FloatToInt<Int>,
1078 {
1079 // SAFETY: the caller must uphold the safety contract for
1080 // `FloatToInt::to_int_unchecked`.
1081 unsafe { FloatToInt::<Int>::to_int_unchecked(self) }
1082 }
1083
1084 /// Raw transmutation to `u64`.
1085 ///
1086 /// This is currently identical to `transmute::<f64, u64>(self)` on all platforms.
1087 ///
1088 /// See [`from_bits`](Self::from_bits) for some discussion of the
1089 /// portability of this operation (there are almost no issues).
1090 ///
1091 /// Note that this function is distinct from `as` casting, which attempts to
1092 /// preserve the *numeric* value, and not the bitwise value.
1093 ///
1094 /// # Examples
1095 ///
1096 /// ```
1097 /// assert!((1f64).to_bits() != 1f64 as u64); // to_bits() is not casting!
1098 /// assert_eq!((12.5f64).to_bits(), 0x4029000000000000);
1099 /// ```
1100 #[must_use = "this returns the result of the operation, \
1101 without modifying the original"]
1102 #[stable(feature = "float_bits_conv", since = "1.20.0")]
1103 #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1104 #[allow(unnecessary_transmutes)]
1105 #[inline]
1106 pub const fn to_bits(self) -> u64 {
1107 // SAFETY: `u64` is a plain old datatype so we can always transmute to it.
1108 unsafe { mem::transmute(self) }
1109 }
1110
1111 /// Raw transmutation from `u64`.
1112 ///
1113 /// This is currently identical to `transmute::<u64, f64>(v)` on all platforms.
1114 /// It turns out this is incredibly portable, for two reasons:
1115 ///
1116 /// * Floats and Ints have the same endianness on all supported platforms.
1117 /// * IEEE 754 very precisely specifies the bit layout of floats.
1118 ///
1119 /// However there is one caveat: prior to the 2008 version of IEEE 754, how
1120 /// to interpret the NaN signaling bit wasn't actually specified. Most platforms
1121 /// (notably x86 and ARM) picked the interpretation that was ultimately
1122 /// standardized in 2008, but some didn't (notably MIPS). As a result, all
1123 /// signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa.
1124 ///
1125 /// Rather than trying to preserve signaling-ness cross-platform, this
1126 /// implementation favors preserving the exact bits. This means that
1127 /// any payloads encoded in NaNs will be preserved even if the result of
1128 /// this method is sent over the network from an x86 machine to a MIPS one.
1129 ///
1130 /// If the results of this method are only manipulated by the same
1131 /// architecture that produced them, then there is no portability concern.
1132 ///
1133 /// If the input isn't NaN, then there is no portability concern.
1134 ///
1135 /// If you don't care about signaling-ness (very likely), then there is no
1136 /// portability concern.
1137 ///
1138 /// Note that this function is distinct from `as` casting, which attempts to
1139 /// preserve the *numeric* value, and not the bitwise value.
1140 ///
1141 /// # Examples
1142 ///
1143 /// ```
1144 /// let v = f64::from_bits(0x4029000000000000);
1145 /// assert_eq!(v, 12.5);
1146 /// ```
1147 #[stable(feature = "float_bits_conv", since = "1.20.0")]
1148 #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1149 #[must_use]
1150 #[inline]
1151 #[allow(unnecessary_transmutes)]
1152 pub const fn from_bits(v: u64) -> Self {
1153 // It turns out the safety issues with sNaN were overblown! Hooray!
1154 // SAFETY: `u64` is a plain old datatype so we can always transmute from it.
1155 unsafe { mem::transmute(v) }
1156 }
1157
1158 /// Returns the memory representation of this floating point number as a byte array in
1159 /// big-endian (network) byte order.
1160 ///
1161 /// See [`from_bits`](Self::from_bits) for some discussion of the
1162 /// portability of this operation (there are almost no issues).
1163 ///
1164 /// # Examples
1165 ///
1166 /// ```
1167 /// let bytes = 12.5f64.to_be_bytes();
1168 /// assert_eq!(bytes, [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
1169 /// ```
1170 #[must_use = "this returns the result of the operation, \
1171 without modifying the original"]
1172 #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1173 #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1174 #[inline]
1175 pub const fn to_be_bytes(self) -> [u8; 8] {
1176 self.to_bits().to_be_bytes()
1177 }
1178
1179 /// Returns the memory representation of this floating point number as a byte array in
1180 /// little-endian byte order.
1181 ///
1182 /// See [`from_bits`](Self::from_bits) for some discussion of the
1183 /// portability of this operation (there are almost no issues).
1184 ///
1185 /// # Examples
1186 ///
1187 /// ```
1188 /// let bytes = 12.5f64.to_le_bytes();
1189 /// assert_eq!(bytes, [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]);
1190 /// ```
1191 #[must_use = "this returns the result of the operation, \
1192 without modifying the original"]
1193 #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1194 #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1195 #[inline]
1196 pub const fn to_le_bytes(self) -> [u8; 8] {
1197 self.to_bits().to_le_bytes()
1198 }
1199
1200 /// Returns the memory representation of this floating point number as a byte array in
1201 /// native byte order.
1202 ///
1203 /// As the target platform's native endianness is used, portable code
1204 /// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate, instead.
1205 ///
1206 /// [`to_be_bytes`]: f64::to_be_bytes
1207 /// [`to_le_bytes`]: f64::to_le_bytes
1208 ///
1209 /// See [`from_bits`](Self::from_bits) for some discussion of the
1210 /// portability of this operation (there are almost no issues).
1211 ///
1212 /// # Examples
1213 ///
1214 /// ```
1215 /// let bytes = 12.5f64.to_ne_bytes();
1216 /// assert_eq!(
1217 /// bytes,
1218 /// if cfg!(target_endian = "big") {
1219 /// [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
1220 /// } else {
1221 /// [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]
1222 /// }
1223 /// );
1224 /// ```
1225 #[must_use = "this returns the result of the operation, \
1226 without modifying the original"]
1227 #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1228 #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1229 #[inline]
1230 pub const fn to_ne_bytes(self) -> [u8; 8] {
1231 self.to_bits().to_ne_bytes()
1232 }
1233
1234 /// Creates a floating point value from its representation as a byte array in big endian.
1235 ///
1236 /// See [`from_bits`](Self::from_bits) for some discussion of the
1237 /// portability of this operation (there are almost no issues).
1238 ///
1239 /// # Examples
1240 ///
1241 /// ```
1242 /// let value = f64::from_be_bytes([0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
1243 /// assert_eq!(value, 12.5);
1244 /// ```
1245 #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1246 #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1247 #[must_use]
1248 #[inline]
1249 pub const fn from_be_bytes(bytes: [u8; 8]) -> Self {
1250 Self::from_bits(u64::from_be_bytes(bytes))
1251 }
1252
1253 /// Creates a floating point value from its representation as a byte array in little endian.
1254 ///
1255 /// See [`from_bits`](Self::from_bits) for some discussion of the
1256 /// portability of this operation (there are almost no issues).
1257 ///
1258 /// # Examples
1259 ///
1260 /// ```
1261 /// let value = f64::from_le_bytes([0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]);
1262 /// assert_eq!(value, 12.5);
1263 /// ```
1264 #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1265 #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1266 #[must_use]
1267 #[inline]
1268 pub const fn from_le_bytes(bytes: [u8; 8]) -> Self {
1269 Self::from_bits(u64::from_le_bytes(bytes))
1270 }
1271
1272 /// Creates a floating point value from its representation as a byte array in native endian.
1273 ///
1274 /// As the target platform's native endianness is used, portable code
1275 /// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as
1276 /// appropriate instead.
1277 ///
1278 /// [`from_be_bytes`]: f64::from_be_bytes
1279 /// [`from_le_bytes`]: f64::from_le_bytes
1280 ///
1281 /// See [`from_bits`](Self::from_bits) for some discussion of the
1282 /// portability of this operation (there are almost no issues).
1283 ///
1284 /// # Examples
1285 ///
1286 /// ```
1287 /// let value = f64::from_ne_bytes(if cfg!(target_endian = "big") {
1288 /// [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
1289 /// } else {
1290 /// [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]
1291 /// });
1292 /// assert_eq!(value, 12.5);
1293 /// ```
1294 #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1295 #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1296 #[must_use]
1297 #[inline]
1298 pub const fn from_ne_bytes(bytes: [u8; 8]) -> Self {
1299 Self::from_bits(u64::from_ne_bytes(bytes))
1300 }
1301
1302 /// Returns the ordering between `self` and `other`.
1303 ///
1304 /// Unlike the standard partial comparison between floating point numbers,
1305 /// this comparison always produces an ordering in accordance to
1306 /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision)
1307 /// floating point standard. The values are ordered in the following sequence:
1308 ///
1309 /// - negative quiet NaN
1310 /// - negative signaling NaN
1311 /// - negative infinity
1312 /// - negative numbers
1313 /// - negative subnormal numbers
1314 /// - negative zero
1315 /// - positive zero
1316 /// - positive subnormal numbers
1317 /// - positive numbers
1318 /// - positive infinity
1319 /// - positive signaling NaN
1320 /// - positive quiet NaN.
1321 ///
1322 /// The ordering established by this function does not always agree with the
1323 /// [`PartialOrd`] and [`PartialEq`] implementations of `f64`. For example,
1324 /// they consider negative and positive zero equal, while `total_cmp`
1325 /// doesn't.
1326 ///
1327 /// The interpretation of the signaling NaN bit follows the definition in
1328 /// the IEEE 754 standard, which may not match the interpretation by some of
1329 /// the older, non-conformant (e.g. MIPS) hardware implementations.
1330 ///
1331 /// # Example
1332 ///
1333 /// ```
1334 /// struct GoodBoy {
1335 /// name: String,
1336 /// weight: f64,
1337 /// }
1338 ///
1339 /// let mut bois = vec![
1340 /// GoodBoy { name: "Pucci".to_owned(), weight: 0.1 },
1341 /// GoodBoy { name: "Woofer".to_owned(), weight: 99.0 },
1342 /// GoodBoy { name: "Yapper".to_owned(), weight: 10.0 },
1343 /// GoodBoy { name: "Chonk".to_owned(), weight: f64::INFINITY },
1344 /// GoodBoy { name: "Abs. Unit".to_owned(), weight: f64::NAN },
1345 /// GoodBoy { name: "Floaty".to_owned(), weight: -5.0 },
1346 /// ];
1347 ///
1348 /// bois.sort_by(|a, b| a.weight.total_cmp(&b.weight));
1349 ///
1350 /// // `f64::NAN` could be positive or negative, which will affect the sort order.
1351 /// if f64::NAN.is_sign_negative() {
1352 /// assert!(bois.into_iter().map(|b| b.weight)
1353 /// .zip([f64::NAN, -5.0, 0.1, 10.0, 99.0, f64::INFINITY].iter())
1354 /// .all(|(a, b)| a.to_bits() == b.to_bits()))
1355 /// } else {
1356 /// assert!(bois.into_iter().map(|b| b.weight)
1357 /// .zip([-5.0, 0.1, 10.0, 99.0, f64::INFINITY, f64::NAN].iter())
1358 /// .all(|(a, b)| a.to_bits() == b.to_bits()))
1359 /// }
1360 /// ```
1361 #[stable(feature = "total_cmp", since = "1.62.0")]
1362 #[must_use]
1363 #[inline]
1364 pub fn total_cmp(&self, other: &Self) -> crate::cmp::Ordering {
1365 let mut left = self.to_bits() as i64;
1366 let mut right = other.to_bits() as i64;
1367
1368 // In case of negatives, flip all the bits except the sign
1369 // to achieve a similar layout as two's complement integers
1370 //
1371 // Why does this work? IEEE 754 floats consist of three fields:
1372 // Sign bit, exponent and mantissa. The set of exponent and mantissa
1373 // fields as a whole have the property that their bitwise order is
1374 // equal to the numeric magnitude where the magnitude is defined.
1375 // The magnitude is not normally defined on NaN values, but
1376 // IEEE 754 totalOrder defines the NaN values also to follow the
1377 // bitwise order. This leads to order explained in the doc comment.
1378 // However, the representation of magnitude is the same for negative
1379 // and positive numbers – only the sign bit is different.
1380 // To easily compare the floats as signed integers, we need to
1381 // flip the exponent and mantissa bits in case of negative numbers.
1382 // We effectively convert the numbers to "two's complement" form.
1383 //
1384 // To do the flipping, we construct a mask and XOR against it.
1385 // We branchlessly calculate an "all-ones except for the sign bit"
1386 // mask from negative-signed values: right shifting sign-extends
1387 // the integer, so we "fill" the mask with sign bits, and then
1388 // convert to unsigned to push one more zero bit.
1389 // On positive values, the mask is all zeros, so it's a no-op.
1390 left ^= (((left >> 63) as u64) >> 1) as i64;
1391 right ^= (((right >> 63) as u64) >> 1) as i64;
1392
1393 left.cmp(&right)
1394 }
1395
1396 /// Restrict a value to a certain interval unless it is NaN.
1397 ///
1398 /// Returns `max` if `self` is greater than `max`, and `min` if `self` is
1399 /// less than `min`. Otherwise this returns `self`.
1400 ///
1401 /// Note that this function returns NaN if the initial value was NaN as
1402 /// well.
1403 ///
1404 /// # Panics
1405 ///
1406 /// Panics if `min > max`, `min` is NaN, or `max` is NaN.
1407 ///
1408 /// # Examples
1409 ///
1410 /// ```
1411 /// assert!((-3.0f64).clamp(-2.0, 1.0) == -2.0);
1412 /// assert!((0.0f64).clamp(-2.0, 1.0) == 0.0);
1413 /// assert!((2.0f64).clamp(-2.0, 1.0) == 1.0);
1414 /// assert!((f64::NAN).clamp(-2.0, 1.0).is_nan());
1415 /// ```
1416 #[must_use = "method returns a new number and does not mutate the original value"]
1417 #[stable(feature = "clamp", since = "1.50.0")]
1418 #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
1419 #[inline]
1420 pub const fn clamp(mut self, min: f64, max: f64) -> f64 {
1421 const_assert!(
1422 min <= max,
1423 "min > max, or either was NaN",
1424 "min > max, or either was NaN. min = {min:?}, max = {max:?}",
1425 min: f64,
1426 max: f64,
1427 );
1428
1429 if self < min {
1430 self = min;
1431 }
1432 if self > max {
1433 self = max;
1434 }
1435 self
1436 }
1437
1438 /// Computes the absolute value of `self`.
1439 ///
1440 /// This function always returns the precise result.
1441 ///
1442 /// # Examples
1443 ///
1444 /// ```
1445 /// let x = 3.5_f64;
1446 /// let y = -3.5_f64;
1447 ///
1448 /// assert_eq!(x.abs(), x);
1449 /// assert_eq!(y.abs(), -y);
1450 ///
1451 /// assert!(f64::NAN.abs().is_nan());
1452 /// ```
1453 #[must_use = "method returns a new number and does not mutate the original value"]
1454 #[stable(feature = "rust1", since = "1.0.0")]
1455 #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
1456 #[inline]
1457 pub const fn abs(self) -> f64 {
1458 // SAFETY: this is actually a safe intrinsic
1459 unsafe { intrinsics::fabsf64(self) }
1460 }
1461
1462 /// Returns a number that represents the sign of `self`.
1463 ///
1464 /// - `1.0` if the number is positive, `+0.0` or `INFINITY`
1465 /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
1466 /// - NaN if the number is NaN
1467 ///
1468 /// # Examples
1469 ///
1470 /// ```
1471 /// let f = 3.5_f64;
1472 ///
1473 /// assert_eq!(f.signum(), 1.0);
1474 /// assert_eq!(f64::NEG_INFINITY.signum(), -1.0);
1475 ///
1476 /// assert!(f64::NAN.signum().is_nan());
1477 /// ```
1478 #[must_use = "method returns a new number and does not mutate the original value"]
1479 #[stable(feature = "rust1", since = "1.0.0")]
1480 #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
1481 #[inline]
1482 pub const fn signum(self) -> f64 {
1483 if self.is_nan() { Self::NAN } else { 1.0_f64.copysign(self) }
1484 }
1485
1486 /// Returns a number composed of the magnitude of `self` and the sign of
1487 /// `sign`.
1488 ///
1489 /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`.
1490 /// If `self` is a NaN, then a NaN with the same payload as `self` and the sign bit of `sign` is
1491 /// returned.
1492 ///
1493 /// If `sign` is a NaN, then this operation will still carry over its sign into the result. Note
1494 /// that IEEE 754 doesn't assign any meaning to the sign bit in case of a NaN, and as Rust
1495 /// doesn't guarantee that the bit pattern of NaNs are conserved over arithmetic operations, the
1496 /// result of `copysign` with `sign` being a NaN might produce an unexpected or non-portable
1497 /// result. See the [specification of NaN bit patterns](primitive@f32#nan-bit-patterns) for more
1498 /// info.
1499 ///
1500 /// # Examples
1501 ///
1502 /// ```
1503 /// let f = 3.5_f64;
1504 ///
1505 /// assert_eq!(f.copysign(0.42), 3.5_f64);
1506 /// assert_eq!(f.copysign(-0.42), -3.5_f64);
1507 /// assert_eq!((-f).copysign(0.42), 3.5_f64);
1508 /// assert_eq!((-f).copysign(-0.42), -3.5_f64);
1509 ///
1510 /// assert!(f64::NAN.copysign(1.0).is_nan());
1511 /// ```
1512 #[must_use = "method returns a new number and does not mutate the original value"]
1513 #[stable(feature = "copysign", since = "1.35.0")]
1514 #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
1515 #[inline]
1516 pub const fn copysign(self, sign: f64) -> f64 {
1517 // SAFETY: this is actually a safe intrinsic
1518 unsafe { intrinsics::copysignf64(self, sign) }
1519 }
1520
1521 /// Float addition that allows optimizations based on algebraic rules.
1522 ///
1523 /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1524 #[must_use = "method returns a new number and does not mutate the original value"]
1525 #[unstable(feature = "float_algebraic", issue = "136469")]
1526 #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1527 #[inline]
1528 pub const fn algebraic_add(self, rhs: f64) -> f64 {
1529 intrinsics::fadd_algebraic(self, rhs)
1530 }
1531
1532 /// Float subtraction that allows optimizations based on algebraic rules.
1533 ///
1534 /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1535 #[must_use = "method returns a new number and does not mutate the original value"]
1536 #[unstable(feature = "float_algebraic", issue = "136469")]
1537 #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1538 #[inline]
1539 pub const fn algebraic_sub(self, rhs: f64) -> f64 {
1540 intrinsics::fsub_algebraic(self, rhs)
1541 }
1542
1543 /// Float multiplication that allows optimizations based on algebraic rules.
1544 ///
1545 /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1546 #[must_use = "method returns a new number and does not mutate the original value"]
1547 #[unstable(feature = "float_algebraic", issue = "136469")]
1548 #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1549 #[inline]
1550 pub const fn algebraic_mul(self, rhs: f64) -> f64 {
1551 intrinsics::fmul_algebraic(self, rhs)
1552 }
1553
1554 /// Float division that allows optimizations based on algebraic rules.
1555 ///
1556 /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1557 #[must_use = "method returns a new number and does not mutate the original value"]
1558 #[unstable(feature = "float_algebraic", issue = "136469")]
1559 #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1560 #[inline]
1561 pub const fn algebraic_div(self, rhs: f64) -> f64 {
1562 intrinsics::fdiv_algebraic(self, rhs)
1563 }
1564
1565 /// Float remainder that allows optimizations based on algebraic rules.
1566 ///
1567 /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1568 #[must_use = "method returns a new number and does not mutate the original value"]
1569 #[unstable(feature = "float_algebraic", issue = "136469")]
1570 #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1571 #[inline]
1572 pub const fn algebraic_rem(self, rhs: f64) -> f64 {
1573 intrinsics::frem_algebraic(self, rhs)
1574 }
1575}
1576
1577#[unstable(feature = "core_float_math", issue = "137578")]
1578/// Experimental implementations of floating point functions in `core`.
1579///
1580/// _The standalone functions in this module are for testing only.
1581/// They will be stabilized as inherent methods._
1582pub mod math {
1583 use crate::intrinsics;
1584 use crate::num::libm;
1585
1586 /// Experimental version of `floor` in `core`. See [`f64::floor`] for details.
1587 ///
1588 /// # Examples
1589 ///
1590 /// ```
1591 /// #![feature(core_float_math)]
1592 ///
1593 /// use core::f64;
1594 ///
1595 /// let f = 3.7_f64;
1596 /// let g = 3.0_f64;
1597 /// let h = -3.7_f64;
1598 ///
1599 /// assert_eq!(f64::math::floor(f), 3.0);
1600 /// assert_eq!(f64::math::floor(g), 3.0);
1601 /// assert_eq!(f64::math::floor(h), -4.0);
1602 /// ```
1603 ///
1604 /// _This standalone function is for testing only.
1605 /// It will be stabilized as an inherent method._
1606 ///
1607 /// [`f64::floor`]: ../../../std/primitive.f64.html#method.floor
1608 #[inline]
1609 #[unstable(feature = "core_float_math", issue = "137578")]
1610 #[must_use = "method returns a new number and does not mutate the original value"]
1611 pub const fn floor(x: f64) -> f64 {
1612 // SAFETY: intrinsic with no preconditions
1613 unsafe { intrinsics::floorf64(x) }
1614 }
1615
1616 /// Experimental version of `ceil` in `core`. See [`f64::ceil`] for details.
1617 ///
1618 /// # Examples
1619 ///
1620 /// ```
1621 /// #![feature(core_float_math)]
1622 ///
1623 /// use core::f64;
1624 ///
1625 /// let f = 3.01_f64;
1626 /// let g = 4.0_f64;
1627 ///
1628 /// assert_eq!(f64::math::ceil(f), 4.0);
1629 /// assert_eq!(f64::math::ceil(g), 4.0);
1630 /// ```
1631 ///
1632 /// _This standalone function is for testing only.
1633 /// It will be stabilized as an inherent method._
1634 ///
1635 /// [`f64::ceil`]: ../../../std/primitive.f64.html#method.ceil
1636 #[inline]
1637 #[doc(alias = "ceiling")]
1638 #[unstable(feature = "core_float_math", issue = "137578")]
1639 #[must_use = "method returns a new number and does not mutate the original value"]
1640 pub const fn ceil(x: f64) -> f64 {
1641 // SAFETY: intrinsic with no preconditions
1642 unsafe { intrinsics::ceilf64(x) }
1643 }
1644
1645 /// Experimental version of `round` in `core`. See [`f64::round`] for details.
1646 ///
1647 /// # Examples
1648 ///
1649 /// ```
1650 /// #![feature(core_float_math)]
1651 ///
1652 /// use core::f64;
1653 ///
1654 /// let f = 3.3_f64;
1655 /// let g = -3.3_f64;
1656 /// let h = -3.7_f64;
1657 /// let i = 3.5_f64;
1658 /// let j = 4.5_f64;
1659 ///
1660 /// assert_eq!(f64::math::round(f), 3.0);
1661 /// assert_eq!(f64::math::round(g), -3.0);
1662 /// assert_eq!(f64::math::round(h), -4.0);
1663 /// assert_eq!(f64::math::round(i), 4.0);
1664 /// assert_eq!(f64::math::round(j), 5.0);
1665 /// ```
1666 ///
1667 /// _This standalone function is for testing only.
1668 /// It will be stabilized as an inherent method._
1669 ///
1670 /// [`f64::round`]: ../../../std/primitive.f64.html#method.round
1671 #[inline]
1672 #[unstable(feature = "core_float_math", issue = "137578")]
1673 #[must_use = "method returns a new number and does not mutate the original value"]
1674 pub const fn round(x: f64) -> f64 {
1675 // SAFETY: intrinsic with no preconditions
1676 unsafe { intrinsics::roundf64(x) }
1677 }
1678
1679 /// Experimental version of `round_ties_even` in `core`. See [`f64::round_ties_even`] for
1680 /// details.
1681 ///
1682 /// # Examples
1683 ///
1684 /// ```
1685 /// #![feature(core_float_math)]
1686 ///
1687 /// use core::f64;
1688 ///
1689 /// let f = 3.3_f64;
1690 /// let g = -3.3_f64;
1691 /// let h = 3.5_f64;
1692 /// let i = 4.5_f64;
1693 ///
1694 /// assert_eq!(f64::math::round_ties_even(f), 3.0);
1695 /// assert_eq!(f64::math::round_ties_even(g), -3.0);
1696 /// assert_eq!(f64::math::round_ties_even(h), 4.0);
1697 /// assert_eq!(f64::math::round_ties_even(i), 4.0);
1698 /// ```
1699 ///
1700 /// _This standalone function is for testing only.
1701 /// It will be stabilized as an inherent method._
1702 ///
1703 /// [`f64::round_ties_even`]: ../../../std/primitive.f64.html#method.round_ties_even
1704 #[inline]
1705 #[unstable(feature = "core_float_math", issue = "137578")]
1706 #[must_use = "method returns a new number and does not mutate the original value"]
1707 pub const fn round_ties_even(x: f64) -> f64 {
1708 intrinsics::round_ties_even_f64(x)
1709 }
1710
1711 /// Experimental version of `trunc` in `core`. See [`f64::trunc`] for details.
1712 ///
1713 /// # Examples
1714 ///
1715 /// ```
1716 /// #![feature(core_float_math)]
1717 ///
1718 /// use core::f64;
1719 ///
1720 /// let f = 3.7_f64;
1721 /// let g = 3.0_f64;
1722 /// let h = -3.7_f64;
1723 ///
1724 /// assert_eq!(f64::math::trunc(f), 3.0);
1725 /// assert_eq!(f64::math::trunc(g), 3.0);
1726 /// assert_eq!(f64::math::trunc(h), -3.0);
1727 /// ```
1728 ///
1729 /// _This standalone function is for testing only.
1730 /// It will be stabilized as an inherent method._
1731 ///
1732 /// [`f64::trunc`]: ../../../std/primitive.f64.html#method.trunc
1733 #[inline]
1734 #[doc(alias = "truncate")]
1735 #[unstable(feature = "core_float_math", issue = "137578")]
1736 #[must_use = "method returns a new number and does not mutate the original value"]
1737 pub const fn trunc(x: f64) -> f64 {
1738 // SAFETY: intrinsic with no preconditions
1739 unsafe { intrinsics::truncf64(x) }
1740 }
1741
1742 /// Experimental version of `fract` in `core`. See [`f64::fract`] for details.
1743 ///
1744 /// # Examples
1745 ///
1746 /// ```
1747 /// #![feature(core_float_math)]
1748 ///
1749 /// use core::f64;
1750 ///
1751 /// let x = 3.6_f64;
1752 /// let y = -3.6_f64;
1753 /// let abs_difference_x = (f64::math::fract(x) - 0.6).abs();
1754 /// let abs_difference_y = (f64::math::fract(y) - (-0.6)).abs();
1755 ///
1756 /// assert!(abs_difference_x < 1e-10);
1757 /// assert!(abs_difference_y < 1e-10);
1758 /// ```
1759 ///
1760 /// _This standalone function is for testing only.
1761 /// It will be stabilized as an inherent method._
1762 ///
1763 /// [`f64::fract`]: ../../../std/primitive.f64.html#method.fract
1764 #[inline]
1765 #[unstable(feature = "core_float_math", issue = "137578")]
1766 #[must_use = "method returns a new number and does not mutate the original value"]
1767 pub const fn fract(x: f64) -> f64 {
1768 x - trunc(x)
1769 }
1770
1771 /// Experimental version of `mul_add` in `core`. See [`f64::mul_add`] for details.
1772 ///
1773 /// # Examples
1774 ///
1775 /// ```
1776 /// #![feature(core_float_math)]
1777 ///
1778 /// # // FIXME(#140515): mingw has an incorrect fma
1779 /// # // https://sourceforge.net/p/mingw-w64/bugs/848/
1780 /// # #[cfg(all(target_os = "windows", target_env = "gnu", not(target_abi = "llvm")))] {
1781 /// use core::f64;
1782 ///
1783 /// let m = 10.0_f64;
1784 /// let x = 4.0_f64;
1785 /// let b = 60.0_f64;
1786 ///
1787 /// assert_eq!(f64::math::mul_add(m, x, b), 100.0);
1788 /// assert_eq!(m * x + b, 100.0);
1789 ///
1790 /// let one_plus_eps = 1.0_f64 + f64::EPSILON;
1791 /// let one_minus_eps = 1.0_f64 - f64::EPSILON;
1792 /// let minus_one = -1.0_f64;
1793 ///
1794 /// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps.
1795 /// assert_eq!(
1796 /// f64::math::mul_add(one_plus_eps, one_minus_eps, minus_one),
1797 /// -f64::EPSILON * f64::EPSILON
1798 /// );
1799 /// // Different rounding with the non-fused multiply and add.
1800 /// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0);
1801 /// # }
1802 /// ```
1803 ///
1804 /// _This standalone function is for testing only.
1805 /// It will be stabilized as an inherent method._
1806 ///
1807 /// [`f64::mul_add`]: ../../../std/primitive.f64.html#method.mul_add
1808 #[inline]
1809 #[doc(alias = "fma", alias = "fusedMultiplyAdd")]
1810 #[unstable(feature = "core_float_math", issue = "137578")]
1811 #[must_use = "method returns a new number and does not mutate the original value"]
1812 pub fn mul_add(x: f64, a: f64, b: f64) -> f64 {
1813 // SAFETY: intrinsic with no preconditions
1814 unsafe { intrinsics::fmaf64(x, a, b) }
1815 }
1816
1817 /// Experimental version of `div_euclid` in `core`. See [`f64::div_euclid`] for details.
1818 ///
1819 /// # Examples
1820 ///
1821 /// ```
1822 /// #![feature(core_float_math)]
1823 ///
1824 /// use core::f64;
1825 ///
1826 /// let a: f64 = 7.0;
1827 /// let b = 4.0;
1828 /// assert_eq!(f64::math::div_euclid(a, b), 1.0); // 7.0 > 4.0 * 1.0
1829 /// assert_eq!(f64::math::div_euclid(-a, b), -2.0); // -7.0 >= 4.0 * -2.0
1830 /// assert_eq!(f64::math::div_euclid(a, -b), -1.0); // 7.0 >= -4.0 * -1.0
1831 /// assert_eq!(f64::math::div_euclid(-a, -b), 2.0); // -7.0 >= -4.0 * 2.0
1832 /// ```
1833 ///
1834 /// _This standalone function is for testing only.
1835 /// It will be stabilized as an inherent method._
1836 ///
1837 /// [`f64::div_euclid`]: ../../../std/primitive.f64.html#method.div_euclid
1838 #[inline]
1839 #[unstable(feature = "core_float_math", issue = "137578")]
1840 #[must_use = "method returns a new number and does not mutate the original value"]
1841 pub fn div_euclid(x: f64, rhs: f64) -> f64 {
1842 let q = trunc(x / rhs);
1843 if x % rhs < 0.0 {
1844 return if rhs > 0.0 { q - 1.0 } else { q + 1.0 };
1845 }
1846 q
1847 }
1848
1849 /// Experimental version of `rem_euclid` in `core`. See [`f64::rem_euclid`] for details.
1850 ///
1851 /// # Examples
1852 ///
1853 /// ```
1854 /// #![feature(core_float_math)]
1855 ///
1856 /// use core::f64;
1857 ///
1858 /// let a: f64 = 7.0;
1859 /// let b = 4.0;
1860 /// assert_eq!(f64::math::rem_euclid(a, b), 3.0);
1861 /// assert_eq!(f64::math::rem_euclid(-a, b), 1.0);
1862 /// assert_eq!(f64::math::rem_euclid(a, -b), 3.0);
1863 /// assert_eq!(f64::math::rem_euclid(-a, -b), 1.0);
1864 /// // limitation due to round-off error
1865 /// assert!(f64::math::rem_euclid(-f64::EPSILON, 3.0) != 0.0);
1866 /// ```
1867 ///
1868 /// _This standalone function is for testing only.
1869 /// It will be stabilized as an inherent method._
1870 ///
1871 /// [`f64::rem_euclid`]: ../../../std/primitive.f64.html#method.rem_euclid
1872 #[inline]
1873 #[doc(alias = "modulo", alias = "mod")]
1874 #[unstable(feature = "core_float_math", issue = "137578")]
1875 #[must_use = "method returns a new number and does not mutate the original value"]
1876 pub fn rem_euclid(x: f64, rhs: f64) -> f64 {
1877 let r = x % rhs;
1878 if r < 0.0 { r + rhs.abs() } else { r }
1879 }
1880
1881 /// Experimental version of `powi` in `core`. See [`f64::powi`] for details.
1882 ///
1883 /// # Examples
1884 ///
1885 /// ```
1886 /// #![feature(core_float_math)]
1887 ///
1888 /// use core::f64;
1889 ///
1890 /// let x = 2.0_f64;
1891 /// let abs_difference = (f64::math::powi(x, 2) - (x * x)).abs();
1892 /// assert!(abs_difference <= 1e-6);
1893 ///
1894 /// assert_eq!(f64::math::powi(f64::NAN, 0), 1.0);
1895 /// ```
1896 ///
1897 /// _This standalone function is for testing only.
1898 /// It will be stabilized as an inherent method._
1899 ///
1900 /// [`f64::powi`]: ../../../std/primitive.f64.html#method.powi
1901 #[inline]
1902 #[unstable(feature = "core_float_math", issue = "137578")]
1903 #[must_use = "method returns a new number and does not mutate the original value"]
1904 pub fn powi(x: f64, n: i32) -> f64 {
1905 // SAFETY: intrinsic with no preconditions
1906 unsafe { intrinsics::powif64(x, n) }
1907 }
1908
1909 /// Experimental version of `sqrt` in `core`. See [`f64::sqrt`] for details.
1910 ///
1911 /// # Examples
1912 ///
1913 /// ```
1914 /// #![feature(core_float_math)]
1915 ///
1916 /// use core::f64;
1917 ///
1918 /// let positive = 4.0_f64;
1919 /// let negative = -4.0_f64;
1920 /// let negative_zero = -0.0_f64;
1921 ///
1922 /// assert_eq!(f64::math::sqrt(positive), 2.0);
1923 /// assert!(f64::math::sqrt(negative).is_nan());
1924 /// assert_eq!(f64::math::sqrt(negative_zero), negative_zero);
1925 /// ```
1926 ///
1927 /// _This standalone function is for testing only.
1928 /// It will be stabilized as an inherent method._
1929 ///
1930 /// [`f64::sqrt`]: ../../../std/primitive.f64.html#method.sqrt
1931 #[inline]
1932 #[doc(alias = "squareRoot")]
1933 #[unstable(feature = "core_float_math", issue = "137578")]
1934 #[must_use = "method returns a new number and does not mutate the original value"]
1935 pub fn sqrt(x: f64) -> f64 {
1936 // SAFETY: intrinsic with no preconditions
1937 unsafe { intrinsics::sqrtf64(x) }
1938 }
1939
1940 /// Experimental version of `abs_sub` in `core`. See [`f64::abs_sub`] for details.
1941 ///
1942 /// # Examples
1943 ///
1944 /// ```
1945 /// #![feature(core_float_math)]
1946 ///
1947 /// use core::f64;
1948 ///
1949 /// let x = 3.0_f64;
1950 /// let y = -3.0_f64;
1951 ///
1952 /// let abs_difference_x = (f64::math::abs_sub(x, 1.0) - 2.0).abs();
1953 /// let abs_difference_y = (f64::math::abs_sub(y, 1.0) - 0.0).abs();
1954 ///
1955 /// assert!(abs_difference_x < 1e-10);
1956 /// assert!(abs_difference_y < 1e-10);
1957 /// ```
1958 ///
1959 /// _This standalone function is for testing only.
1960 /// It will be stabilized as an inherent method._
1961 ///
1962 /// [`f64::abs_sub`]: ../../../std/primitive.f64.html#method.abs_sub
1963 #[inline]
1964 #[unstable(feature = "core_float_math", issue = "137578")]
1965 #[deprecated(
1966 since = "1.10.0",
1967 note = "you probably meant `(self - other).abs()`: \
1968 this operation is `(self - other).max(0.0)` \
1969 except that `abs_sub` also propagates NaNs (also \
1970 known as `fdim` in C). If you truly need the positive \
1971 difference, consider using that expression or the C function \
1972 `fdim`, depending on how you wish to handle NaN (please consider \
1973 filing an issue describing your use-case too)."
1974 )]
1975 #[must_use = "method returns a new number and does not mutate the original value"]
1976 pub fn abs_sub(x: f64, other: f64) -> f64 {
1977 libm::fdim(x, other)
1978 }
1979
1980 /// Experimental version of `cbrt` in `core`. See [`f64::cbrt`] for details.
1981 ///
1982 /// # Examples
1983 ///
1984 /// ```
1985 /// #![feature(core_float_math)]
1986 ///
1987 /// use core::f64;
1988 ///
1989 /// let x = 8.0_f64;
1990 ///
1991 /// // x^(1/3) - 2 == 0
1992 /// let abs_difference = (f64::math::cbrt(x) - 2.0).abs();
1993 ///
1994 /// assert!(abs_difference < 1e-10);
1995 /// ```
1996 ///
1997 /// _This standalone function is for testing only.
1998 /// It will be stabilized as an inherent method._
1999 ///
2000 /// [`f64::cbrt`]: ../../../std/primitive.f64.html#method.cbrt
2001 #[inline]
2002 #[unstable(feature = "core_float_math", issue = "137578")]
2003 #[must_use = "method returns a new number and does not mutate the original value"]
2004 pub fn cbrt(x: f64) -> f64 {
2005 libm::cbrt(x)
2006 }
2007}