alloc/collections/
linked_list.rs

1//! A doubly-linked list with owned nodes.
2//!
3//! The `LinkedList` allows pushing and popping elements at either end
4//! in constant time.
5//!
6//! NOTE: It is almost always better to use [`Vec`] or [`VecDeque`] because
7//! array-based containers are generally faster,
8//! more memory efficient, and make better use of CPU cache.
9//!
10//! [`Vec`]: crate::vec::Vec
11//! [`VecDeque`]: super::vec_deque::VecDeque
12
13#![stable(feature = "rust1", since = "1.0.0")]
14
15use core::cmp::Ordering;
16use core::hash::{Hash, Hasher};
17use core::iter::FusedIterator;
18use core::marker::PhantomData;
19use core::ptr::NonNull;
20use core::{fmt, mem};
21
22use super::SpecExtend;
23use crate::alloc::{Allocator, Global};
24use crate::boxed::Box;
25
26#[cfg(test)]
27mod tests;
28
29/// A doubly-linked list with owned nodes.
30///
31/// The `LinkedList` allows pushing and popping elements at either end
32/// in constant time.
33///
34/// A `LinkedList` with a known list of items can be initialized from an array:
35/// ```
36/// use std::collections::LinkedList;
37///
38/// let list = LinkedList::from([1, 2, 3]);
39/// ```
40///
41/// NOTE: It is almost always better to use [`Vec`] or [`VecDeque`] because
42/// array-based containers are generally faster,
43/// more memory efficient, and make better use of CPU cache.
44///
45/// [`Vec`]: crate::vec::Vec
46/// [`VecDeque`]: super::vec_deque::VecDeque
47#[stable(feature = "rust1", since = "1.0.0")]
48#[cfg_attr(not(test), rustc_diagnostic_item = "LinkedList")]
49#[rustc_insignificant_dtor]
50pub struct LinkedList<
51    T,
52    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
53> {
54    head: Option<NonNull<Node<T>>>,
55    tail: Option<NonNull<Node<T>>>,
56    len: usize,
57    alloc: A,
58    marker: PhantomData<Box<Node<T>, A>>,
59}
60
61struct Node<T> {
62    next: Option<NonNull<Node<T>>>,
63    prev: Option<NonNull<Node<T>>>,
64    element: T,
65}
66
67/// An iterator over the elements of a `LinkedList`.
68///
69/// This `struct` is created by [`LinkedList::iter()`]. See its
70/// documentation for more.
71#[must_use = "iterators are lazy and do nothing unless consumed"]
72#[stable(feature = "rust1", since = "1.0.0")]
73pub struct Iter<'a, T: 'a> {
74    head: Option<NonNull<Node<T>>>,
75    tail: Option<NonNull<Node<T>>>,
76    len: usize,
77    marker: PhantomData<&'a Node<T>>,
78}
79
80#[stable(feature = "collection_debug", since = "1.17.0")]
81impl<T: fmt::Debug> fmt::Debug for Iter<'_, T> {
82    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
83        f.debug_tuple("Iter")
84            .field(&*mem::ManuallyDrop::new(LinkedList {
85                head: self.head,
86                tail: self.tail,
87                len: self.len,
88                alloc: Global,
89                marker: PhantomData,
90            }))
91            .field(&self.len)
92            .finish()
93    }
94}
95
96// FIXME(#26925) Remove in favor of `#[derive(Clone)]`
97#[stable(feature = "rust1", since = "1.0.0")]
98impl<T> Clone for Iter<'_, T> {
99    fn clone(&self) -> Self {
100        Iter { ..*self }
101    }
102}
103
104/// A mutable iterator over the elements of a `LinkedList`.
105///
106/// This `struct` is created by [`LinkedList::iter_mut()`]. See its
107/// documentation for more.
108#[must_use = "iterators are lazy and do nothing unless consumed"]
109#[stable(feature = "rust1", since = "1.0.0")]
110pub struct IterMut<'a, T: 'a> {
111    head: Option<NonNull<Node<T>>>,
112    tail: Option<NonNull<Node<T>>>,
113    len: usize,
114    marker: PhantomData<&'a mut Node<T>>,
115}
116
117#[stable(feature = "collection_debug", since = "1.17.0")]
118impl<T: fmt::Debug> fmt::Debug for IterMut<'_, T> {
119    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
120        f.debug_tuple("IterMut")
121            .field(&*mem::ManuallyDrop::new(LinkedList {
122                head: self.head,
123                tail: self.tail,
124                len: self.len,
125                alloc: Global,
126                marker: PhantomData,
127            }))
128            .field(&self.len)
129            .finish()
130    }
131}
132
133/// An owning iterator over the elements of a `LinkedList`.
134///
135/// This `struct` is created by the [`into_iter`] method on [`LinkedList`]
136/// (provided by the [`IntoIterator`] trait). See its documentation for more.
137///
138/// [`into_iter`]: LinkedList::into_iter
139#[derive(Clone)]
140#[stable(feature = "rust1", since = "1.0.0")]
141pub struct IntoIter<
142    T,
143    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
144> {
145    list: LinkedList<T, A>,
146}
147
148#[stable(feature = "collection_debug", since = "1.17.0")]
149impl<T: fmt::Debug, A: Allocator> fmt::Debug for IntoIter<T, A> {
150    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
151        f.debug_tuple("IntoIter").field(&self.list).finish()
152    }
153}
154
155impl<T> Node<T> {
156    fn new(element: T) -> Self {
157        Node { next: None, prev: None, element }
158    }
159
160    fn into_element<A: Allocator>(self: Box<Self, A>) -> T {
161        self.element
162    }
163}
164
165// private methods
166impl<T, A: Allocator> LinkedList<T, A> {
167    /// Adds the given node to the front of the list.
168    ///
169    /// # Safety
170    /// `node` must point to a valid node that was boxed and leaked using the list's allocator.
171    /// This method takes ownership of the node, so the pointer should not be used again.
172    #[inline]
173    unsafe fn push_front_node(&mut self, node: NonNull<Node<T>>) {
174        // This method takes care not to create mutable references to whole nodes,
175        // to maintain validity of aliasing pointers into `element`.
176        unsafe {
177            (*node.as_ptr()).next = self.head;
178            (*node.as_ptr()).prev = None;
179            let node = Some(node);
180
181            match self.head {
182                None => self.tail = node,
183                // Not creating new mutable (unique!) references overlapping `element`.
184                Some(head) => (*head.as_ptr()).prev = node,
185            }
186
187            self.head = node;
188            self.len += 1;
189        }
190    }
191
192    /// Removes and returns the node at the front of the list.
193    #[inline]
194    fn pop_front_node(&mut self) -> Option<Box<Node<T>, &A>> {
195        // This method takes care not to create mutable references to whole nodes,
196        // to maintain validity of aliasing pointers into `element`.
197        self.head.map(|node| unsafe {
198            let node = Box::from_raw_in(node.as_ptr(), &self.alloc);
199            self.head = node.next;
200
201            match self.head {
202                None => self.tail = None,
203                // Not creating new mutable (unique!) references overlapping `element`.
204                Some(head) => (*head.as_ptr()).prev = None,
205            }
206
207            self.len -= 1;
208            node
209        })
210    }
211
212    /// Adds the given node to the back of the list.
213    ///
214    /// # Safety
215    /// `node` must point to a valid node that was boxed and leaked using the list's allocator.
216    /// This method takes ownership of the node, so the pointer should not be used again.
217    #[inline]
218    unsafe fn push_back_node(&mut self, node: NonNull<Node<T>>) {
219        // This method takes care not to create mutable references to whole nodes,
220        // to maintain validity of aliasing pointers into `element`.
221        unsafe {
222            (*node.as_ptr()).next = None;
223            (*node.as_ptr()).prev = self.tail;
224            let node = Some(node);
225
226            match self.tail {
227                None => self.head = node,
228                // Not creating new mutable (unique!) references overlapping `element`.
229                Some(tail) => (*tail.as_ptr()).next = node,
230            }
231
232            self.tail = node;
233            self.len += 1;
234        }
235    }
236
237    /// Removes and returns the node at the back of the list.
238    #[inline]
239    fn pop_back_node(&mut self) -> Option<Box<Node<T>, &A>> {
240        // This method takes care not to create mutable references to whole nodes,
241        // to maintain validity of aliasing pointers into `element`.
242        self.tail.map(|node| unsafe {
243            let node = Box::from_raw_in(node.as_ptr(), &self.alloc);
244            self.tail = node.prev;
245
246            match self.tail {
247                None => self.head = None,
248                // Not creating new mutable (unique!) references overlapping `element`.
249                Some(tail) => (*tail.as_ptr()).next = None,
250            }
251
252            self.len -= 1;
253            node
254        })
255    }
256
257    /// Unlinks the specified node from the current list.
258    ///
259    /// Warning: this will not check that the provided node belongs to the current list.
260    ///
261    /// This method takes care not to create mutable references to `element`, to
262    /// maintain validity of aliasing pointers.
263    #[inline]
264    unsafe fn unlink_node(&mut self, mut node: NonNull<Node<T>>) {
265        let node = unsafe { node.as_mut() }; // this one is ours now, we can create an &mut.
266
267        // Not creating new mutable (unique!) references overlapping `element`.
268        match node.prev {
269            Some(prev) => unsafe { (*prev.as_ptr()).next = node.next },
270            // this node is the head node
271            None => self.head = node.next,
272        };
273
274        match node.next {
275            Some(next) => unsafe { (*next.as_ptr()).prev = node.prev },
276            // this node is the tail node
277            None => self.tail = node.prev,
278        };
279
280        self.len -= 1;
281    }
282
283    /// Splices a series of nodes between two existing nodes.
284    ///
285    /// Warning: this will not check that the provided node belongs to the two existing lists.
286    #[inline]
287    unsafe fn splice_nodes(
288        &mut self,
289        existing_prev: Option<NonNull<Node<T>>>,
290        existing_next: Option<NonNull<Node<T>>>,
291        mut splice_start: NonNull<Node<T>>,
292        mut splice_end: NonNull<Node<T>>,
293        splice_length: usize,
294    ) {
295        // This method takes care not to create multiple mutable references to whole nodes at the same time,
296        // to maintain validity of aliasing pointers into `element`.
297        if let Some(mut existing_prev) = existing_prev {
298            unsafe {
299                existing_prev.as_mut().next = Some(splice_start);
300            }
301        } else {
302            self.head = Some(splice_start);
303        }
304        if let Some(mut existing_next) = existing_next {
305            unsafe {
306                existing_next.as_mut().prev = Some(splice_end);
307            }
308        } else {
309            self.tail = Some(splice_end);
310        }
311        unsafe {
312            splice_start.as_mut().prev = existing_prev;
313            splice_end.as_mut().next = existing_next;
314        }
315
316        self.len += splice_length;
317    }
318
319    /// Detaches all nodes from a linked list as a series of nodes.
320    #[inline]
321    fn detach_all_nodes(mut self) -> Option<(NonNull<Node<T>>, NonNull<Node<T>>, usize)> {
322        let head = self.head.take();
323        let tail = self.tail.take();
324        let len = mem::replace(&mut self.len, 0);
325        if let Some(head) = head {
326            // SAFETY: In a LinkedList, either both the head and tail are None because
327            // the list is empty, or both head and tail are Some because the list is populated.
328            // Since we have verified the head is Some, we are sure the tail is Some too.
329            let tail = unsafe { tail.unwrap_unchecked() };
330            Some((head, tail, len))
331        } else {
332            None
333        }
334    }
335
336    #[inline]
337    unsafe fn split_off_before_node(
338        &mut self,
339        split_node: Option<NonNull<Node<T>>>,
340        at: usize,
341    ) -> Self
342    where
343        A: Clone,
344    {
345        // The split node is the new head node of the second part
346        if let Some(mut split_node) = split_node {
347            let first_part_head;
348            let first_part_tail;
349            unsafe {
350                first_part_tail = split_node.as_mut().prev.take();
351            }
352            if let Some(mut tail) = first_part_tail {
353                unsafe {
354                    tail.as_mut().next = None;
355                }
356                first_part_head = self.head;
357            } else {
358                first_part_head = None;
359            }
360
361            let first_part = LinkedList {
362                head: first_part_head,
363                tail: first_part_tail,
364                len: at,
365                alloc: self.alloc.clone(),
366                marker: PhantomData,
367            };
368
369            // Fix the head ptr of the second part
370            self.head = Some(split_node);
371            self.len = self.len - at;
372
373            first_part
374        } else {
375            mem::replace(self, LinkedList::new_in(self.alloc.clone()))
376        }
377    }
378
379    #[inline]
380    unsafe fn split_off_after_node(
381        &mut self,
382        split_node: Option<NonNull<Node<T>>>,
383        at: usize,
384    ) -> Self
385    where
386        A: Clone,
387    {
388        // The split node is the new tail node of the first part and owns
389        // the head of the second part.
390        if let Some(mut split_node) = split_node {
391            let second_part_head;
392            let second_part_tail;
393            unsafe {
394                second_part_head = split_node.as_mut().next.take();
395            }
396            if let Some(mut head) = second_part_head {
397                unsafe {
398                    head.as_mut().prev = None;
399                }
400                second_part_tail = self.tail;
401            } else {
402                second_part_tail = None;
403            }
404
405            let second_part = LinkedList {
406                head: second_part_head,
407                tail: second_part_tail,
408                len: self.len - at,
409                alloc: self.alloc.clone(),
410                marker: PhantomData,
411            };
412
413            // Fix the tail ptr of the first part
414            self.tail = Some(split_node);
415            self.len = at;
416
417            second_part
418        } else {
419            mem::replace(self, LinkedList::new_in(self.alloc.clone()))
420        }
421    }
422}
423
424#[stable(feature = "rust1", since = "1.0.0")]
425impl<T> Default for LinkedList<T> {
426    /// Creates an empty `LinkedList<T>`.
427    #[inline]
428    fn default() -> Self {
429        Self::new()
430    }
431}
432
433impl<T> LinkedList<T> {
434    /// Creates an empty `LinkedList`.
435    ///
436    /// # Examples
437    ///
438    /// ```
439    /// use std::collections::LinkedList;
440    ///
441    /// let list: LinkedList<u32> = LinkedList::new();
442    /// ```
443    #[inline]
444    #[rustc_const_stable(feature = "const_linked_list_new", since = "1.39.0")]
445    #[stable(feature = "rust1", since = "1.0.0")]
446    #[must_use]
447    pub const fn new() -> Self {
448        LinkedList { head: None, tail: None, len: 0, alloc: Global, marker: PhantomData }
449    }
450
451    /// Moves all elements from `other` to the end of the list.
452    ///
453    /// This reuses all the nodes from `other` and moves them into `self`. After
454    /// this operation, `other` becomes empty.
455    ///
456    /// This operation should compute in *O*(1) time and *O*(1) memory.
457    ///
458    /// # Examples
459    ///
460    /// ```
461    /// use std::collections::LinkedList;
462    ///
463    /// let mut list1 = LinkedList::new();
464    /// list1.push_back('a');
465    ///
466    /// let mut list2 = LinkedList::new();
467    /// list2.push_back('b');
468    /// list2.push_back('c');
469    ///
470    /// list1.append(&mut list2);
471    ///
472    /// let mut iter = list1.iter();
473    /// assert_eq!(iter.next(), Some(&'a'));
474    /// assert_eq!(iter.next(), Some(&'b'));
475    /// assert_eq!(iter.next(), Some(&'c'));
476    /// assert!(iter.next().is_none());
477    ///
478    /// assert!(list2.is_empty());
479    /// ```
480    #[stable(feature = "rust1", since = "1.0.0")]
481    pub fn append(&mut self, other: &mut Self) {
482        match self.tail {
483            None => mem::swap(self, other),
484            Some(mut tail) => {
485                // `as_mut` is okay here because we have exclusive access to the entirety
486                // of both lists.
487                if let Some(mut other_head) = other.head.take() {
488                    unsafe {
489                        tail.as_mut().next = Some(other_head);
490                        other_head.as_mut().prev = Some(tail);
491                    }
492
493                    self.tail = other.tail.take();
494                    self.len += mem::replace(&mut other.len, 0);
495                }
496            }
497        }
498    }
499}
500
501impl<T, A: Allocator> LinkedList<T, A> {
502    /// Constructs an empty `LinkedList<T, A>`.
503    ///
504    /// # Examples
505    ///
506    /// ```
507    /// #![feature(allocator_api)]
508    ///
509    /// use std::alloc::System;
510    /// use std::collections::LinkedList;
511    ///
512    /// let list: LinkedList<u32, _> = LinkedList::new_in(System);
513    /// ```
514    #[inline]
515    #[unstable(feature = "allocator_api", issue = "32838")]
516    pub const fn new_in(alloc: A) -> Self {
517        LinkedList { head: None, tail: None, len: 0, alloc, marker: PhantomData }
518    }
519    /// Provides a forward iterator.
520    ///
521    /// # Examples
522    ///
523    /// ```
524    /// use std::collections::LinkedList;
525    ///
526    /// let mut list: LinkedList<u32> = LinkedList::new();
527    ///
528    /// list.push_back(0);
529    /// list.push_back(1);
530    /// list.push_back(2);
531    ///
532    /// let mut iter = list.iter();
533    /// assert_eq!(iter.next(), Some(&0));
534    /// assert_eq!(iter.next(), Some(&1));
535    /// assert_eq!(iter.next(), Some(&2));
536    /// assert_eq!(iter.next(), None);
537    /// ```
538    #[inline]
539    #[stable(feature = "rust1", since = "1.0.0")]
540    pub fn iter(&self) -> Iter<'_, T> {
541        Iter { head: self.head, tail: self.tail, len: self.len, marker: PhantomData }
542    }
543
544    /// Provides a forward iterator with mutable references.
545    ///
546    /// # Examples
547    ///
548    /// ```
549    /// use std::collections::LinkedList;
550    ///
551    /// let mut list: LinkedList<u32> = LinkedList::new();
552    ///
553    /// list.push_back(0);
554    /// list.push_back(1);
555    /// list.push_back(2);
556    ///
557    /// for element in list.iter_mut() {
558    ///     *element += 10;
559    /// }
560    ///
561    /// let mut iter = list.iter();
562    /// assert_eq!(iter.next(), Some(&10));
563    /// assert_eq!(iter.next(), Some(&11));
564    /// assert_eq!(iter.next(), Some(&12));
565    /// assert_eq!(iter.next(), None);
566    /// ```
567    #[inline]
568    #[stable(feature = "rust1", since = "1.0.0")]
569    pub fn iter_mut(&mut self) -> IterMut<'_, T> {
570        IterMut { head: self.head, tail: self.tail, len: self.len, marker: PhantomData }
571    }
572
573    /// Provides a cursor at the front element.
574    ///
575    /// The cursor is pointing to the "ghost" non-element if the list is empty.
576    #[inline]
577    #[must_use]
578    #[unstable(feature = "linked_list_cursors", issue = "58533")]
579    pub fn cursor_front(&self) -> Cursor<'_, T, A> {
580        Cursor { index: 0, current: self.head, list: self }
581    }
582
583    /// Provides a cursor with editing operations at the front element.
584    ///
585    /// The cursor is pointing to the "ghost" non-element if the list is empty.
586    #[inline]
587    #[must_use]
588    #[unstable(feature = "linked_list_cursors", issue = "58533")]
589    pub fn cursor_front_mut(&mut self) -> CursorMut<'_, T, A> {
590        CursorMut { index: 0, current: self.head, list: self }
591    }
592
593    /// Provides a cursor at the back element.
594    ///
595    /// The cursor is pointing to the "ghost" non-element if the list is empty.
596    #[inline]
597    #[must_use]
598    #[unstable(feature = "linked_list_cursors", issue = "58533")]
599    pub fn cursor_back(&self) -> Cursor<'_, T, A> {
600        Cursor { index: self.len.checked_sub(1).unwrap_or(0), current: self.tail, list: self }
601    }
602
603    /// Provides a cursor with editing operations at the back element.
604    ///
605    /// The cursor is pointing to the "ghost" non-element if the list is empty.
606    #[inline]
607    #[must_use]
608    #[unstable(feature = "linked_list_cursors", issue = "58533")]
609    pub fn cursor_back_mut(&mut self) -> CursorMut<'_, T, A> {
610        CursorMut { index: self.len.checked_sub(1).unwrap_or(0), current: self.tail, list: self }
611    }
612
613    /// Returns `true` if the `LinkedList` is empty.
614    ///
615    /// This operation should compute in *O*(1) time.
616    ///
617    /// # Examples
618    ///
619    /// ```
620    /// use std::collections::LinkedList;
621    ///
622    /// let mut dl = LinkedList::new();
623    /// assert!(dl.is_empty());
624    ///
625    /// dl.push_front("foo");
626    /// assert!(!dl.is_empty());
627    /// ```
628    #[inline]
629    #[must_use]
630    #[stable(feature = "rust1", since = "1.0.0")]
631    pub fn is_empty(&self) -> bool {
632        self.head.is_none()
633    }
634
635    /// Returns the length of the `LinkedList`.
636    ///
637    /// This operation should compute in *O*(1) time.
638    ///
639    /// # Examples
640    ///
641    /// ```
642    /// use std::collections::LinkedList;
643    ///
644    /// let mut dl = LinkedList::new();
645    ///
646    /// dl.push_front(2);
647    /// assert_eq!(dl.len(), 1);
648    ///
649    /// dl.push_front(1);
650    /// assert_eq!(dl.len(), 2);
651    ///
652    /// dl.push_back(3);
653    /// assert_eq!(dl.len(), 3);
654    /// ```
655    #[inline]
656    #[must_use]
657    #[stable(feature = "rust1", since = "1.0.0")]
658    #[rustc_confusables("length", "size")]
659    pub fn len(&self) -> usize {
660        self.len
661    }
662
663    /// Removes all elements from the `LinkedList`.
664    ///
665    /// This operation should compute in *O*(*n*) time.
666    ///
667    /// # Examples
668    ///
669    /// ```
670    /// use std::collections::LinkedList;
671    ///
672    /// let mut dl = LinkedList::new();
673    ///
674    /// dl.push_front(2);
675    /// dl.push_front(1);
676    /// assert_eq!(dl.len(), 2);
677    /// assert_eq!(dl.front(), Some(&1));
678    ///
679    /// dl.clear();
680    /// assert_eq!(dl.len(), 0);
681    /// assert_eq!(dl.front(), None);
682    /// ```
683    #[inline]
684    #[stable(feature = "rust1", since = "1.0.0")]
685    pub fn clear(&mut self) {
686        // We need to drop the nodes while keeping self.alloc
687        // We can do this by moving (head, tail, len) into a new list that borrows self.alloc
688        drop(LinkedList {
689            head: self.head.take(),
690            tail: self.tail.take(),
691            len: mem::take(&mut self.len),
692            alloc: &self.alloc,
693            marker: PhantomData,
694        });
695    }
696
697    /// Returns `true` if the `LinkedList` contains an element equal to the
698    /// given value.
699    ///
700    /// This operation should compute linearly in *O*(*n*) time.
701    ///
702    /// # Examples
703    ///
704    /// ```
705    /// use std::collections::LinkedList;
706    ///
707    /// let mut list: LinkedList<u32> = LinkedList::new();
708    ///
709    /// list.push_back(0);
710    /// list.push_back(1);
711    /// list.push_back(2);
712    ///
713    /// assert_eq!(list.contains(&0), true);
714    /// assert_eq!(list.contains(&10), false);
715    /// ```
716    #[stable(feature = "linked_list_contains", since = "1.12.0")]
717    pub fn contains(&self, x: &T) -> bool
718    where
719        T: PartialEq<T>,
720    {
721        self.iter().any(|e| e == x)
722    }
723
724    /// Provides a reference to the front element, or `None` if the list is
725    /// empty.
726    ///
727    /// This operation should compute in *O*(1) time.
728    ///
729    /// # Examples
730    ///
731    /// ```
732    /// use std::collections::LinkedList;
733    ///
734    /// let mut dl = LinkedList::new();
735    /// assert_eq!(dl.front(), None);
736    ///
737    /// dl.push_front(1);
738    /// assert_eq!(dl.front(), Some(&1));
739    /// ```
740    #[inline]
741    #[must_use]
742    #[stable(feature = "rust1", since = "1.0.0")]
743    #[rustc_confusables("first")]
744    pub fn front(&self) -> Option<&T> {
745        unsafe { self.head.as_ref().map(|node| &node.as_ref().element) }
746    }
747
748    /// Provides a mutable reference to the front element, or `None` if the list
749    /// is empty.
750    ///
751    /// This operation should compute in *O*(1) time.
752    ///
753    /// # Examples
754    ///
755    /// ```
756    /// use std::collections::LinkedList;
757    ///
758    /// let mut dl = LinkedList::new();
759    /// assert_eq!(dl.front(), None);
760    ///
761    /// dl.push_front(1);
762    /// assert_eq!(dl.front(), Some(&1));
763    ///
764    /// match dl.front_mut() {
765    ///     None => {},
766    ///     Some(x) => *x = 5,
767    /// }
768    /// assert_eq!(dl.front(), Some(&5));
769    /// ```
770    #[inline]
771    #[must_use]
772    #[stable(feature = "rust1", since = "1.0.0")]
773    pub fn front_mut(&mut self) -> Option<&mut T> {
774        unsafe { self.head.as_mut().map(|node| &mut node.as_mut().element) }
775    }
776
777    /// Provides a reference to the back element, or `None` if the list is
778    /// empty.
779    ///
780    /// This operation should compute in *O*(1) time.
781    ///
782    /// # Examples
783    ///
784    /// ```
785    /// use std::collections::LinkedList;
786    ///
787    /// let mut dl = LinkedList::new();
788    /// assert_eq!(dl.back(), None);
789    ///
790    /// dl.push_back(1);
791    /// assert_eq!(dl.back(), Some(&1));
792    /// ```
793    #[inline]
794    #[must_use]
795    #[stable(feature = "rust1", since = "1.0.0")]
796    pub fn back(&self) -> Option<&T> {
797        unsafe { self.tail.as_ref().map(|node| &node.as_ref().element) }
798    }
799
800    /// Provides a mutable reference to the back element, or `None` if the list
801    /// is empty.
802    ///
803    /// This operation should compute in *O*(1) time.
804    ///
805    /// # Examples
806    ///
807    /// ```
808    /// use std::collections::LinkedList;
809    ///
810    /// let mut dl = LinkedList::new();
811    /// assert_eq!(dl.back(), None);
812    ///
813    /// dl.push_back(1);
814    /// assert_eq!(dl.back(), Some(&1));
815    ///
816    /// match dl.back_mut() {
817    ///     None => {},
818    ///     Some(x) => *x = 5,
819    /// }
820    /// assert_eq!(dl.back(), Some(&5));
821    /// ```
822    #[inline]
823    #[stable(feature = "rust1", since = "1.0.0")]
824    pub fn back_mut(&mut self) -> Option<&mut T> {
825        unsafe { self.tail.as_mut().map(|node| &mut node.as_mut().element) }
826    }
827
828    /// Adds an element first in the list.
829    ///
830    /// This operation should compute in *O*(1) time.
831    ///
832    /// # Examples
833    ///
834    /// ```
835    /// use std::collections::LinkedList;
836    ///
837    /// let mut dl = LinkedList::new();
838    ///
839    /// dl.push_front(2);
840    /// assert_eq!(dl.front().unwrap(), &2);
841    ///
842    /// dl.push_front(1);
843    /// assert_eq!(dl.front().unwrap(), &1);
844    /// ```
845    #[stable(feature = "rust1", since = "1.0.0")]
846    pub fn push_front(&mut self, elt: T) {
847        let node = Box::new_in(Node::new(elt), &self.alloc);
848        let node_ptr = NonNull::from(Box::leak(node));
849        // SAFETY: node_ptr is a unique pointer to a node we boxed with self.alloc and leaked
850        unsafe {
851            self.push_front_node(node_ptr);
852        }
853    }
854
855    /// Removes the first element and returns it, or `None` if the list is
856    /// empty.
857    ///
858    /// This operation should compute in *O*(1) time.
859    ///
860    /// # Examples
861    ///
862    /// ```
863    /// use std::collections::LinkedList;
864    ///
865    /// let mut d = LinkedList::new();
866    /// assert_eq!(d.pop_front(), None);
867    ///
868    /// d.push_front(1);
869    /// d.push_front(3);
870    /// assert_eq!(d.pop_front(), Some(3));
871    /// assert_eq!(d.pop_front(), Some(1));
872    /// assert_eq!(d.pop_front(), None);
873    /// ```
874    #[stable(feature = "rust1", since = "1.0.0")]
875    pub fn pop_front(&mut self) -> Option<T> {
876        self.pop_front_node().map(Node::into_element)
877    }
878
879    /// Appends an element to the back of a list.
880    ///
881    /// This operation should compute in *O*(1) time.
882    ///
883    /// # Examples
884    ///
885    /// ```
886    /// use std::collections::LinkedList;
887    ///
888    /// let mut d = LinkedList::new();
889    /// d.push_back(1);
890    /// d.push_back(3);
891    /// assert_eq!(3, *d.back().unwrap());
892    /// ```
893    #[stable(feature = "rust1", since = "1.0.0")]
894    #[rustc_confusables("push", "append")]
895    pub fn push_back(&mut self, elt: T) {
896        let node = Box::new_in(Node::new(elt), &self.alloc);
897        let node_ptr = NonNull::from(Box::leak(node));
898        // SAFETY: node_ptr is a unique pointer to a node we boxed with self.alloc and leaked
899        unsafe {
900            self.push_back_node(node_ptr);
901        }
902    }
903
904    /// Removes the last element from a list and returns it, or `None` if
905    /// it is empty.
906    ///
907    /// This operation should compute in *O*(1) time.
908    ///
909    /// # Examples
910    ///
911    /// ```
912    /// use std::collections::LinkedList;
913    ///
914    /// let mut d = LinkedList::new();
915    /// assert_eq!(d.pop_back(), None);
916    /// d.push_back(1);
917    /// d.push_back(3);
918    /// assert_eq!(d.pop_back(), Some(3));
919    /// ```
920    #[stable(feature = "rust1", since = "1.0.0")]
921    pub fn pop_back(&mut self) -> Option<T> {
922        self.pop_back_node().map(Node::into_element)
923    }
924
925    /// Splits the list into two at the given index. Returns everything after the given index,
926    /// including the index.
927    ///
928    /// This operation should compute in *O*(*n*) time.
929    ///
930    /// # Panics
931    ///
932    /// Panics if `at > len`.
933    ///
934    /// # Examples
935    ///
936    /// ```
937    /// use std::collections::LinkedList;
938    ///
939    /// let mut d = LinkedList::new();
940    ///
941    /// d.push_front(1);
942    /// d.push_front(2);
943    /// d.push_front(3);
944    ///
945    /// let mut split = d.split_off(2);
946    ///
947    /// assert_eq!(split.pop_front(), Some(1));
948    /// assert_eq!(split.pop_front(), None);
949    /// ```
950    #[stable(feature = "rust1", since = "1.0.0")]
951    pub fn split_off(&mut self, at: usize) -> LinkedList<T, A>
952    where
953        A: Clone,
954    {
955        let len = self.len();
956        assert!(at <= len, "Cannot split off at a nonexistent index");
957        if at == 0 {
958            return mem::replace(self, Self::new_in(self.alloc.clone()));
959        } else if at == len {
960            return Self::new_in(self.alloc.clone());
961        }
962
963        // Below, we iterate towards the `i-1`th node, either from the start or the end,
964        // depending on which would be faster.
965        let split_node = if at - 1 <= len - 1 - (at - 1) {
966            let mut iter = self.iter_mut();
967            // instead of skipping using .skip() (which creates a new struct),
968            // we skip manually so we can access the head field without
969            // depending on implementation details of Skip
970            for _ in 0..at - 1 {
971                iter.next();
972            }
973            iter.head
974        } else {
975            // better off starting from the end
976            let mut iter = self.iter_mut();
977            for _ in 0..len - 1 - (at - 1) {
978                iter.next_back();
979            }
980            iter.tail
981        };
982        unsafe { self.split_off_after_node(split_node, at) }
983    }
984
985    /// Removes the element at the given index and returns it.
986    ///
987    /// This operation should compute in *O*(*n*) time.
988    ///
989    /// # Panics
990    /// Panics if at >= len
991    ///
992    /// # Examples
993    ///
994    /// ```
995    /// #![feature(linked_list_remove)]
996    /// use std::collections::LinkedList;
997    ///
998    /// let mut d = LinkedList::new();
999    ///
1000    /// d.push_front(1);
1001    /// d.push_front(2);
1002    /// d.push_front(3);
1003    ///
1004    /// assert_eq!(d.remove(1), 2);
1005    /// assert_eq!(d.remove(0), 3);
1006    /// assert_eq!(d.remove(0), 1);
1007    /// ```
1008    #[unstable(feature = "linked_list_remove", issue = "69210")]
1009    #[rustc_confusables("delete", "take")]
1010    pub fn remove(&mut self, at: usize) -> T {
1011        let len = self.len();
1012        assert!(at < len, "Cannot remove at an index outside of the list bounds");
1013
1014        // Below, we iterate towards the node at the given index, either from
1015        // the start or the end, depending on which would be faster.
1016        let offset_from_end = len - at - 1;
1017        if at <= offset_from_end {
1018            let mut cursor = self.cursor_front_mut();
1019            for _ in 0..at {
1020                cursor.move_next();
1021            }
1022            cursor.remove_current().unwrap()
1023        } else {
1024            let mut cursor = self.cursor_back_mut();
1025            for _ in 0..offset_from_end {
1026                cursor.move_prev();
1027            }
1028            cursor.remove_current().unwrap()
1029        }
1030    }
1031
1032    /// Retains only the elements specified by the predicate.
1033    ///
1034    /// In other words, remove all elements `e` for which `f(&e)` returns false.
1035    /// This method operates in place, visiting each element exactly once in the
1036    /// original order, and preserves the order of the retained elements.
1037    ///
1038    /// # Examples
1039    ///
1040    /// ```
1041    /// #![feature(linked_list_retain)]
1042    /// use std::collections::LinkedList;
1043    ///
1044    /// let mut d = LinkedList::new();
1045    ///
1046    /// d.push_front(1);
1047    /// d.push_front(2);
1048    /// d.push_front(3);
1049    ///
1050    /// d.retain(|&x| x % 2 == 0);
1051    ///
1052    /// assert_eq!(d.pop_front(), Some(2));
1053    /// assert_eq!(d.pop_front(), None);
1054    /// ```
1055    ///
1056    /// Because the elements are visited exactly once in the original order,
1057    /// external state may be used to decide which elements to keep.
1058    ///
1059    /// ```
1060    /// #![feature(linked_list_retain)]
1061    /// use std::collections::LinkedList;
1062    ///
1063    /// let mut d = LinkedList::new();
1064    ///
1065    /// d.push_front(1);
1066    /// d.push_front(2);
1067    /// d.push_front(3);
1068    ///
1069    /// let keep = [false, true, false];
1070    /// let mut iter = keep.iter();
1071    /// d.retain(|_| *iter.next().unwrap());
1072    /// assert_eq!(d.pop_front(), Some(2));
1073    /// assert_eq!(d.pop_front(), None);
1074    /// ```
1075    #[unstable(feature = "linked_list_retain", issue = "114135")]
1076    pub fn retain<F>(&mut self, mut f: F)
1077    where
1078        F: FnMut(&T) -> bool,
1079    {
1080        self.retain_mut(|elem| f(elem));
1081    }
1082
1083    /// Retains only the elements specified by the predicate.
1084    ///
1085    /// In other words, remove all elements `e` for which `f(&mut e)` returns false.
1086    /// This method operates in place, visiting each element exactly once in the
1087    /// original order, and preserves the order of the retained elements.
1088    ///
1089    /// # Examples
1090    ///
1091    /// ```
1092    /// #![feature(linked_list_retain)]
1093    /// use std::collections::LinkedList;
1094    ///
1095    /// let mut d = LinkedList::new();
1096    ///
1097    /// d.push_front(1);
1098    /// d.push_front(2);
1099    /// d.push_front(3);
1100    ///
1101    /// d.retain_mut(|x| if *x % 2 == 0 {
1102    ///     *x += 1;
1103    ///     true
1104    /// } else {
1105    ///     false
1106    /// });
1107    /// assert_eq!(d.pop_front(), Some(3));
1108    /// assert_eq!(d.pop_front(), None);
1109    /// ```
1110    #[unstable(feature = "linked_list_retain", issue = "114135")]
1111    pub fn retain_mut<F>(&mut self, mut f: F)
1112    where
1113        F: FnMut(&mut T) -> bool,
1114    {
1115        let mut cursor = self.cursor_front_mut();
1116        while let Some(node) = cursor.current() {
1117            if !f(node) {
1118                cursor.remove_current().unwrap();
1119            } else {
1120                cursor.move_next();
1121            }
1122        }
1123    }
1124
1125    /// Creates an iterator which uses a closure to determine if an element should be removed.
1126    ///
1127    /// If the closure returns true, then the element is removed and yielded.
1128    /// If the closure returns false, the element will remain in the list and will not be yielded
1129    /// by the iterator.
1130    ///
1131    /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating
1132    /// or the iteration short-circuits, then the remaining elements will be retained.
1133    /// Use `extract_if().for_each(drop)` if you do not need the returned iterator.
1134    ///
1135    /// Note that `extract_if` lets you mutate every element in the filter closure, regardless of
1136    /// whether you choose to keep or remove it.
1137    ///
1138    /// # Examples
1139    ///
1140    /// Splitting a list into evens and odds, reusing the original list:
1141    ///
1142    /// ```
1143    /// use std::collections::LinkedList;
1144    ///
1145    /// let mut numbers: LinkedList<u32> = LinkedList::new();
1146    /// numbers.extend(&[1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15]);
1147    ///
1148    /// let evens = numbers.extract_if(|x| *x % 2 == 0).collect::<LinkedList<_>>();
1149    /// let odds = numbers;
1150    ///
1151    /// assert_eq!(evens.into_iter().collect::<Vec<_>>(), vec![2, 4, 6, 8, 14]);
1152    /// assert_eq!(odds.into_iter().collect::<Vec<_>>(), vec![1, 3, 5, 9, 11, 13, 15]);
1153    /// ```
1154    #[stable(feature = "extract_if", since = "CURRENT_RUSTC_VERSION")]
1155    pub fn extract_if<F>(&mut self, filter: F) -> ExtractIf<'_, T, F, A>
1156    where
1157        F: FnMut(&mut T) -> bool,
1158    {
1159        // avoid borrow issues.
1160        let it = self.head;
1161        let old_len = self.len;
1162
1163        ExtractIf { list: self, it, pred: filter, idx: 0, old_len }
1164    }
1165}
1166
1167#[stable(feature = "rust1", since = "1.0.0")]
1168unsafe impl<#[may_dangle] T, A: Allocator> Drop for LinkedList<T, A> {
1169    fn drop(&mut self) {
1170        struct DropGuard<'a, T, A: Allocator>(&'a mut LinkedList<T, A>);
1171
1172        impl<'a, T, A: Allocator> Drop for DropGuard<'a, T, A> {
1173            fn drop(&mut self) {
1174                // Continue the same loop we do below. This only runs when a destructor has
1175                // panicked. If another one panics this will abort.
1176                while self.0.pop_front_node().is_some() {}
1177            }
1178        }
1179
1180        // Wrap self so that if a destructor panics, we can try to keep looping
1181        let guard = DropGuard(self);
1182        while guard.0.pop_front_node().is_some() {}
1183        mem::forget(guard);
1184    }
1185}
1186
1187#[stable(feature = "rust1", since = "1.0.0")]
1188impl<'a, T> Iterator for Iter<'a, T> {
1189    type Item = &'a T;
1190
1191    #[inline]
1192    fn next(&mut self) -> Option<&'a T> {
1193        if self.len == 0 {
1194            None
1195        } else {
1196            self.head.map(|node| unsafe {
1197                // Need an unbound lifetime to get 'a
1198                let node = &*node.as_ptr();
1199                self.len -= 1;
1200                self.head = node.next;
1201                &node.element
1202            })
1203        }
1204    }
1205
1206    #[inline]
1207    fn size_hint(&self) -> (usize, Option<usize>) {
1208        (self.len, Some(self.len))
1209    }
1210
1211    #[inline]
1212    fn last(mut self) -> Option<&'a T> {
1213        self.next_back()
1214    }
1215}
1216
1217#[stable(feature = "rust1", since = "1.0.0")]
1218impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
1219    #[inline]
1220    fn next_back(&mut self) -> Option<&'a T> {
1221        if self.len == 0 {
1222            None
1223        } else {
1224            self.tail.map(|node| unsafe {
1225                // Need an unbound lifetime to get 'a
1226                let node = &*node.as_ptr();
1227                self.len -= 1;
1228                self.tail = node.prev;
1229                &node.element
1230            })
1231        }
1232    }
1233}
1234
1235#[stable(feature = "rust1", since = "1.0.0")]
1236impl<T> ExactSizeIterator for Iter<'_, T> {}
1237
1238#[stable(feature = "fused", since = "1.26.0")]
1239impl<T> FusedIterator for Iter<'_, T> {}
1240
1241#[stable(feature = "default_iters", since = "1.70.0")]
1242impl<T> Default for Iter<'_, T> {
1243    /// Creates an empty `linked_list::Iter`.
1244    ///
1245    /// ```
1246    /// # use std::collections::linked_list;
1247    /// let iter: linked_list::Iter<'_, u8> = Default::default();
1248    /// assert_eq!(iter.len(), 0);
1249    /// ```
1250    fn default() -> Self {
1251        Iter { head: None, tail: None, len: 0, marker: Default::default() }
1252    }
1253}
1254
1255#[stable(feature = "rust1", since = "1.0.0")]
1256impl<'a, T> Iterator for IterMut<'a, T> {
1257    type Item = &'a mut T;
1258
1259    #[inline]
1260    fn next(&mut self) -> Option<&'a mut T> {
1261        if self.len == 0 {
1262            None
1263        } else {
1264            self.head.map(|node| unsafe {
1265                // Need an unbound lifetime to get 'a
1266                let node = &mut *node.as_ptr();
1267                self.len -= 1;
1268                self.head = node.next;
1269                &mut node.element
1270            })
1271        }
1272    }
1273
1274    #[inline]
1275    fn size_hint(&self) -> (usize, Option<usize>) {
1276        (self.len, Some(self.len))
1277    }
1278
1279    #[inline]
1280    fn last(mut self) -> Option<&'a mut T> {
1281        self.next_back()
1282    }
1283}
1284
1285#[stable(feature = "rust1", since = "1.0.0")]
1286impl<'a, T> DoubleEndedIterator for IterMut<'a, T> {
1287    #[inline]
1288    fn next_back(&mut self) -> Option<&'a mut T> {
1289        if self.len == 0 {
1290            None
1291        } else {
1292            self.tail.map(|node| unsafe {
1293                // Need an unbound lifetime to get 'a
1294                let node = &mut *node.as_ptr();
1295                self.len -= 1;
1296                self.tail = node.prev;
1297                &mut node.element
1298            })
1299        }
1300    }
1301}
1302
1303#[stable(feature = "rust1", since = "1.0.0")]
1304impl<T> ExactSizeIterator for IterMut<'_, T> {}
1305
1306#[stable(feature = "fused", since = "1.26.0")]
1307impl<T> FusedIterator for IterMut<'_, T> {}
1308
1309#[stable(feature = "default_iters", since = "1.70.0")]
1310impl<T> Default for IterMut<'_, T> {
1311    fn default() -> Self {
1312        IterMut { head: None, tail: None, len: 0, marker: Default::default() }
1313    }
1314}
1315
1316/// A cursor over a `LinkedList`.
1317///
1318/// A `Cursor` is like an iterator, except that it can freely seek back-and-forth.
1319///
1320/// Cursors always rest between two elements in the list, and index in a logically circular way.
1321/// To accommodate this, there is a "ghost" non-element that yields `None` between the head and
1322/// tail of the list.
1323///
1324/// When created, cursors start at the front of the list, or the "ghost" non-element if the list is empty.
1325#[unstable(feature = "linked_list_cursors", issue = "58533")]
1326pub struct Cursor<
1327    'a,
1328    T: 'a,
1329    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
1330> {
1331    index: usize,
1332    current: Option<NonNull<Node<T>>>,
1333    list: &'a LinkedList<T, A>,
1334}
1335
1336#[unstable(feature = "linked_list_cursors", issue = "58533")]
1337impl<T, A: Allocator> Clone for Cursor<'_, T, A> {
1338    fn clone(&self) -> Self {
1339        let Cursor { index, current, list } = *self;
1340        Cursor { index, current, list }
1341    }
1342}
1343
1344#[unstable(feature = "linked_list_cursors", issue = "58533")]
1345impl<T: fmt::Debug, A: Allocator> fmt::Debug for Cursor<'_, T, A> {
1346    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1347        f.debug_tuple("Cursor").field(&self.list).field(&self.index()).finish()
1348    }
1349}
1350
1351/// A cursor over a `LinkedList` with editing operations.
1352///
1353/// A `Cursor` is like an iterator, except that it can freely seek back-and-forth, and can
1354/// safely mutate the list during iteration. This is because the lifetime of its yielded
1355/// references is tied to its own lifetime, instead of just the underlying list. This means
1356/// cursors cannot yield multiple elements at once.
1357///
1358/// Cursors always rest between two elements in the list, and index in a logically circular way.
1359/// To accommodate this, there is a "ghost" non-element that yields `None` between the head and
1360/// tail of the list.
1361#[unstable(feature = "linked_list_cursors", issue = "58533")]
1362pub struct CursorMut<
1363    'a,
1364    T: 'a,
1365    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
1366> {
1367    index: usize,
1368    current: Option<NonNull<Node<T>>>,
1369    list: &'a mut LinkedList<T, A>,
1370}
1371
1372#[unstable(feature = "linked_list_cursors", issue = "58533")]
1373impl<T: fmt::Debug, A: Allocator> fmt::Debug for CursorMut<'_, T, A> {
1374    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1375        f.debug_tuple("CursorMut").field(&self.list).field(&self.index()).finish()
1376    }
1377}
1378
1379impl<'a, T, A: Allocator> Cursor<'a, T, A> {
1380    /// Returns the cursor position index within the `LinkedList`.
1381    ///
1382    /// This returns `None` if the cursor is currently pointing to the
1383    /// "ghost" non-element.
1384    #[must_use]
1385    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1386    pub fn index(&self) -> Option<usize> {
1387        let _ = self.current?;
1388        Some(self.index)
1389    }
1390
1391    /// Moves the cursor to the next element of the `LinkedList`.
1392    ///
1393    /// If the cursor is pointing to the "ghost" non-element then this will move it to
1394    /// the first element of the `LinkedList`. If it is pointing to the last
1395    /// element of the `LinkedList` then this will move it to the "ghost" non-element.
1396    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1397    pub fn move_next(&mut self) {
1398        match self.current.take() {
1399            // We had no current element; the cursor was sitting at the start position
1400            // Next element should be the head of the list
1401            None => {
1402                self.current = self.list.head;
1403                self.index = 0;
1404            }
1405            // We had a previous element, so let's go to its next
1406            Some(current) => unsafe {
1407                self.current = current.as_ref().next;
1408                self.index += 1;
1409            },
1410        }
1411    }
1412
1413    /// Moves the cursor to the previous element of the `LinkedList`.
1414    ///
1415    /// If the cursor is pointing to the "ghost" non-element then this will move it to
1416    /// the last element of the `LinkedList`. If it is pointing to the first
1417    /// element of the `LinkedList` then this will move it to the "ghost" non-element.
1418    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1419    pub fn move_prev(&mut self) {
1420        match self.current.take() {
1421            // No current. We're at the start of the list. Yield None and jump to the end.
1422            None => {
1423                self.current = self.list.tail;
1424                self.index = self.list.len().checked_sub(1).unwrap_or(0);
1425            }
1426            // Have a prev. Yield it and go to the previous element.
1427            Some(current) => unsafe {
1428                self.current = current.as_ref().prev;
1429                self.index = self.index.checked_sub(1).unwrap_or_else(|| self.list.len());
1430            },
1431        }
1432    }
1433
1434    /// Returns a reference to the element that the cursor is currently
1435    /// pointing to.
1436    ///
1437    /// This returns `None` if the cursor is currently pointing to the
1438    /// "ghost" non-element.
1439    #[must_use]
1440    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1441    pub fn current(&self) -> Option<&'a T> {
1442        unsafe { self.current.map(|current| &(*current.as_ptr()).element) }
1443    }
1444
1445    /// Returns a reference to the next element.
1446    ///
1447    /// If the cursor is pointing to the "ghost" non-element then this returns
1448    /// the first element of the `LinkedList`. If it is pointing to the last
1449    /// element of the `LinkedList` then this returns `None`.
1450    #[must_use]
1451    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1452    pub fn peek_next(&self) -> Option<&'a T> {
1453        unsafe {
1454            let next = match self.current {
1455                None => self.list.head,
1456                Some(current) => current.as_ref().next,
1457            };
1458            next.map(|next| &(*next.as_ptr()).element)
1459        }
1460    }
1461
1462    /// Returns a reference to the previous element.
1463    ///
1464    /// If the cursor is pointing to the "ghost" non-element then this returns
1465    /// the last element of the `LinkedList`. If it is pointing to the first
1466    /// element of the `LinkedList` then this returns `None`.
1467    #[must_use]
1468    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1469    pub fn peek_prev(&self) -> Option<&'a T> {
1470        unsafe {
1471            let prev = match self.current {
1472                None => self.list.tail,
1473                Some(current) => current.as_ref().prev,
1474            };
1475            prev.map(|prev| &(*prev.as_ptr()).element)
1476        }
1477    }
1478
1479    /// Provides a reference to the front element of the cursor's parent list,
1480    /// or None if the list is empty.
1481    #[must_use]
1482    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1483    #[rustc_confusables("first")]
1484    pub fn front(&self) -> Option<&'a T> {
1485        self.list.front()
1486    }
1487
1488    /// Provides a reference to the back element of the cursor's parent list,
1489    /// or None if the list is empty.
1490    #[must_use]
1491    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1492    #[rustc_confusables("last")]
1493    pub fn back(&self) -> Option<&'a T> {
1494        self.list.back()
1495    }
1496
1497    /// Provides a reference to the cursor's parent list.
1498    #[must_use]
1499    #[inline(always)]
1500    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1501    pub fn as_list(&self) -> &'a LinkedList<T, A> {
1502        self.list
1503    }
1504}
1505
1506impl<'a, T, A: Allocator> CursorMut<'a, T, A> {
1507    /// Returns the cursor position index within the `LinkedList`.
1508    ///
1509    /// This returns `None` if the cursor is currently pointing to the
1510    /// "ghost" non-element.
1511    #[must_use]
1512    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1513    pub fn index(&self) -> Option<usize> {
1514        let _ = self.current?;
1515        Some(self.index)
1516    }
1517
1518    /// Moves the cursor to the next element of the `LinkedList`.
1519    ///
1520    /// If the cursor is pointing to the "ghost" non-element then this will move it to
1521    /// the first element of the `LinkedList`. If it is pointing to the last
1522    /// element of the `LinkedList` then this will move it to the "ghost" non-element.
1523    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1524    pub fn move_next(&mut self) {
1525        match self.current.take() {
1526            // We had no current element; the cursor was sitting at the start position
1527            // Next element should be the head of the list
1528            None => {
1529                self.current = self.list.head;
1530                self.index = 0;
1531            }
1532            // We had a previous element, so let's go to its next
1533            Some(current) => unsafe {
1534                self.current = current.as_ref().next;
1535                self.index += 1;
1536            },
1537        }
1538    }
1539
1540    /// Moves the cursor to the previous element of the `LinkedList`.
1541    ///
1542    /// If the cursor is pointing to the "ghost" non-element then this will move it to
1543    /// the last element of the `LinkedList`. If it is pointing to the first
1544    /// element of the `LinkedList` then this will move it to the "ghost" non-element.
1545    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1546    pub fn move_prev(&mut self) {
1547        match self.current.take() {
1548            // No current. We're at the start of the list. Yield None and jump to the end.
1549            None => {
1550                self.current = self.list.tail;
1551                self.index = self.list.len().checked_sub(1).unwrap_or(0);
1552            }
1553            // Have a prev. Yield it and go to the previous element.
1554            Some(current) => unsafe {
1555                self.current = current.as_ref().prev;
1556                self.index = self.index.checked_sub(1).unwrap_or_else(|| self.list.len());
1557            },
1558        }
1559    }
1560
1561    /// Returns a reference to the element that the cursor is currently
1562    /// pointing to.
1563    ///
1564    /// This returns `None` if the cursor is currently pointing to the
1565    /// "ghost" non-element.
1566    #[must_use]
1567    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1568    pub fn current(&mut self) -> Option<&mut T> {
1569        unsafe { self.current.map(|current| &mut (*current.as_ptr()).element) }
1570    }
1571
1572    /// Returns a reference to the next element.
1573    ///
1574    /// If the cursor is pointing to the "ghost" non-element then this returns
1575    /// the first element of the `LinkedList`. If it is pointing to the last
1576    /// element of the `LinkedList` then this returns `None`.
1577    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1578    pub fn peek_next(&mut self) -> Option<&mut T> {
1579        unsafe {
1580            let next = match self.current {
1581                None => self.list.head,
1582                Some(current) => current.as_ref().next,
1583            };
1584            next.map(|next| &mut (*next.as_ptr()).element)
1585        }
1586    }
1587
1588    /// Returns a reference to the previous element.
1589    ///
1590    /// If the cursor is pointing to the "ghost" non-element then this returns
1591    /// the last element of the `LinkedList`. If it is pointing to the first
1592    /// element of the `LinkedList` then this returns `None`.
1593    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1594    pub fn peek_prev(&mut self) -> Option<&mut T> {
1595        unsafe {
1596            let prev = match self.current {
1597                None => self.list.tail,
1598                Some(current) => current.as_ref().prev,
1599            };
1600            prev.map(|prev| &mut (*prev.as_ptr()).element)
1601        }
1602    }
1603
1604    /// Returns a read-only cursor pointing to the current element.
1605    ///
1606    /// The lifetime of the returned `Cursor` is bound to that of the
1607    /// `CursorMut`, which means it cannot outlive the `CursorMut` and that the
1608    /// `CursorMut` is frozen for the lifetime of the `Cursor`.
1609    #[must_use]
1610    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1611    pub fn as_cursor(&self) -> Cursor<'_, T, A> {
1612        Cursor { list: self.list, current: self.current, index: self.index }
1613    }
1614
1615    /// Provides a read-only reference to the cursor's parent list.
1616    ///
1617    /// The lifetime of the returned reference is bound to that of the
1618    /// `CursorMut`, which means it cannot outlive the `CursorMut` and that the
1619    /// `CursorMut` is frozen for the lifetime of the reference.
1620    #[must_use]
1621    #[inline(always)]
1622    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1623    pub fn as_list(&self) -> &LinkedList<T, A> {
1624        self.list
1625    }
1626}
1627
1628// Now the list editing operations
1629
1630impl<'a, T> CursorMut<'a, T> {
1631    /// Inserts the elements from the given `LinkedList` after the current one.
1632    ///
1633    /// If the cursor is pointing at the "ghost" non-element then the new elements are
1634    /// inserted at the start of the `LinkedList`.
1635    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1636    pub fn splice_after(&mut self, list: LinkedList<T>) {
1637        unsafe {
1638            let (splice_head, splice_tail, splice_len) = match list.detach_all_nodes() {
1639                Some(parts) => parts,
1640                _ => return,
1641            };
1642            let node_next = match self.current {
1643                None => self.list.head,
1644                Some(node) => node.as_ref().next,
1645            };
1646            self.list.splice_nodes(self.current, node_next, splice_head, splice_tail, splice_len);
1647            if self.current.is_none() {
1648                // The "ghost" non-element's index has changed.
1649                self.index = self.list.len;
1650            }
1651        }
1652    }
1653
1654    /// Inserts the elements from the given `LinkedList` before the current one.
1655    ///
1656    /// If the cursor is pointing at the "ghost" non-element then the new elements are
1657    /// inserted at the end of the `LinkedList`.
1658    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1659    pub fn splice_before(&mut self, list: LinkedList<T>) {
1660        unsafe {
1661            let (splice_head, splice_tail, splice_len) = match list.detach_all_nodes() {
1662                Some(parts) => parts,
1663                _ => return,
1664            };
1665            let node_prev = match self.current {
1666                None => self.list.tail,
1667                Some(node) => node.as_ref().prev,
1668            };
1669            self.list.splice_nodes(node_prev, self.current, splice_head, splice_tail, splice_len);
1670            self.index += splice_len;
1671        }
1672    }
1673}
1674
1675impl<'a, T, A: Allocator> CursorMut<'a, T, A> {
1676    /// Inserts a new element into the `LinkedList` after the current one.
1677    ///
1678    /// If the cursor is pointing at the "ghost" non-element then the new element is
1679    /// inserted at the front of the `LinkedList`.
1680    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1681    pub fn insert_after(&mut self, item: T) {
1682        unsafe {
1683            let spliced_node = Box::leak(Box::new_in(Node::new(item), &self.list.alloc)).into();
1684            let node_next = match self.current {
1685                None => self.list.head,
1686                Some(node) => node.as_ref().next,
1687            };
1688            self.list.splice_nodes(self.current, node_next, spliced_node, spliced_node, 1);
1689            if self.current.is_none() {
1690                // The "ghost" non-element's index has changed.
1691                self.index = self.list.len;
1692            }
1693        }
1694    }
1695
1696    /// Inserts a new element into the `LinkedList` before the current one.
1697    ///
1698    /// If the cursor is pointing at the "ghost" non-element then the new element is
1699    /// inserted at the end of the `LinkedList`.
1700    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1701    pub fn insert_before(&mut self, item: T) {
1702        unsafe {
1703            let spliced_node = Box::leak(Box::new_in(Node::new(item), &self.list.alloc)).into();
1704            let node_prev = match self.current {
1705                None => self.list.tail,
1706                Some(node) => node.as_ref().prev,
1707            };
1708            self.list.splice_nodes(node_prev, self.current, spliced_node, spliced_node, 1);
1709            self.index += 1;
1710        }
1711    }
1712
1713    /// Removes the current element from the `LinkedList`.
1714    ///
1715    /// The element that was removed is returned, and the cursor is
1716    /// moved to point to the next element in the `LinkedList`.
1717    ///
1718    /// If the cursor is currently pointing to the "ghost" non-element then no element
1719    /// is removed and `None` is returned.
1720    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1721    pub fn remove_current(&mut self) -> Option<T> {
1722        let unlinked_node = self.current?;
1723        unsafe {
1724            self.current = unlinked_node.as_ref().next;
1725            self.list.unlink_node(unlinked_node);
1726            let unlinked_node = Box::from_raw_in(unlinked_node.as_ptr(), &self.list.alloc);
1727            Some(unlinked_node.element)
1728        }
1729    }
1730
1731    /// Removes the current element from the `LinkedList` without deallocating the list node.
1732    ///
1733    /// The node that was removed is returned as a new `LinkedList` containing only this node.
1734    /// The cursor is moved to point to the next element in the current `LinkedList`.
1735    ///
1736    /// If the cursor is currently pointing to the "ghost" non-element then no element
1737    /// is removed and `None` is returned.
1738    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1739    pub fn remove_current_as_list(&mut self) -> Option<LinkedList<T, A>>
1740    where
1741        A: Clone,
1742    {
1743        let mut unlinked_node = self.current?;
1744        unsafe {
1745            self.current = unlinked_node.as_ref().next;
1746            self.list.unlink_node(unlinked_node);
1747
1748            unlinked_node.as_mut().prev = None;
1749            unlinked_node.as_mut().next = None;
1750            Some(LinkedList {
1751                head: Some(unlinked_node),
1752                tail: Some(unlinked_node),
1753                len: 1,
1754                alloc: self.list.alloc.clone(),
1755                marker: PhantomData,
1756            })
1757        }
1758    }
1759
1760    /// Splits the list into two after the current element. This will return a
1761    /// new list consisting of everything after the cursor, with the original
1762    /// list retaining everything before.
1763    ///
1764    /// If the cursor is pointing at the "ghost" non-element then the entire contents
1765    /// of the `LinkedList` are moved.
1766    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1767    pub fn split_after(&mut self) -> LinkedList<T, A>
1768    where
1769        A: Clone,
1770    {
1771        let split_off_idx = if self.index == self.list.len { 0 } else { self.index + 1 };
1772        if self.index == self.list.len {
1773            // The "ghost" non-element's index has changed to 0.
1774            self.index = 0;
1775        }
1776        unsafe { self.list.split_off_after_node(self.current, split_off_idx) }
1777    }
1778
1779    /// Splits the list into two before the current element. This will return a
1780    /// new list consisting of everything before the cursor, with the original
1781    /// list retaining everything after.
1782    ///
1783    /// If the cursor is pointing at the "ghost" non-element then the entire contents
1784    /// of the `LinkedList` are moved.
1785    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1786    pub fn split_before(&mut self) -> LinkedList<T, A>
1787    where
1788        A: Clone,
1789    {
1790        let split_off_idx = self.index;
1791        self.index = 0;
1792        unsafe { self.list.split_off_before_node(self.current, split_off_idx) }
1793    }
1794
1795    /// Appends an element to the front of the cursor's parent list. The node
1796    /// that the cursor points to is unchanged, even if it is the "ghost" node.
1797    ///
1798    /// This operation should compute in *O*(1) time.
1799    // `push_front` continues to point to "ghost" when it adds a node to mimic
1800    // the behavior of `insert_before` on an empty list.
1801    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1802    pub fn push_front(&mut self, elt: T) {
1803        // Safety: We know that `push_front` does not change the position in
1804        // memory of other nodes. This ensures that `self.current` remains
1805        // valid.
1806        self.list.push_front(elt);
1807        self.index += 1;
1808    }
1809
1810    /// Appends an element to the back of the cursor's parent list. The node
1811    /// that the cursor points to is unchanged, even if it is the "ghost" node.
1812    ///
1813    /// This operation should compute in *O*(1) time.
1814    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1815    #[rustc_confusables("push", "append")]
1816    pub fn push_back(&mut self, elt: T) {
1817        // Safety: We know that `push_back` does not change the position in
1818        // memory of other nodes. This ensures that `self.current` remains
1819        // valid.
1820        self.list.push_back(elt);
1821        if self.current().is_none() {
1822            // The index of "ghost" is the length of the list, so we just need
1823            // to increment self.index to reflect the new length of the list.
1824            self.index += 1;
1825        }
1826    }
1827
1828    /// Removes the first element from the cursor's parent list and returns it,
1829    /// or None if the list is empty. The element the cursor points to remains
1830    /// unchanged, unless it was pointing to the front element. In that case, it
1831    /// points to the new front element.
1832    ///
1833    /// This operation should compute in *O*(1) time.
1834    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1835    pub fn pop_front(&mut self) -> Option<T> {
1836        // We can't check if current is empty, we must check the list directly.
1837        // It is possible for `self.current == None` and the list to be
1838        // non-empty.
1839        if self.list.is_empty() {
1840            None
1841        } else {
1842            // We can't point to the node that we pop. Copying the behavior of
1843            // `remove_current`, we move on to the next node in the sequence.
1844            // If the list is of length 1 then we end pointing to the "ghost"
1845            // node at index 0, which is expected.
1846            if self.list.head == self.current {
1847                self.move_next();
1848            } else {
1849                self.index -= 1;
1850            }
1851            self.list.pop_front()
1852        }
1853    }
1854
1855    /// Removes the last element from the cursor's parent list and returns it,
1856    /// or None if the list is empty. The element the cursor points to remains
1857    /// unchanged, unless it was pointing to the back element. In that case, it
1858    /// points to the "ghost" element.
1859    ///
1860    /// This operation should compute in *O*(1) time.
1861    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1862    #[rustc_confusables("pop")]
1863    pub fn pop_back(&mut self) -> Option<T> {
1864        if self.list.is_empty() {
1865            None
1866        } else {
1867            if self.list.tail == self.current {
1868                // The index now reflects the length of the list. It was the
1869                // length of the list minus 1, but now the list is 1 smaller. No
1870                // change is needed for `index`.
1871                self.current = None;
1872            } else if self.current.is_none() {
1873                self.index = self.list.len - 1;
1874            }
1875            self.list.pop_back()
1876        }
1877    }
1878
1879    /// Provides a reference to the front element of the cursor's parent list,
1880    /// or None if the list is empty.
1881    #[must_use]
1882    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1883    #[rustc_confusables("first")]
1884    pub fn front(&self) -> Option<&T> {
1885        self.list.front()
1886    }
1887
1888    /// Provides a mutable reference to the front element of the cursor's
1889    /// parent list, or None if the list is empty.
1890    #[must_use]
1891    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1892    pub fn front_mut(&mut self) -> Option<&mut T> {
1893        self.list.front_mut()
1894    }
1895
1896    /// Provides a reference to the back element of the cursor's parent list,
1897    /// or None if the list is empty.
1898    #[must_use]
1899    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1900    #[rustc_confusables("last")]
1901    pub fn back(&self) -> Option<&T> {
1902        self.list.back()
1903    }
1904
1905    /// Provides a mutable reference to back element of the cursor's parent
1906    /// list, or `None` if the list is empty.
1907    ///
1908    /// # Examples
1909    /// Building and mutating a list with a cursor, then getting the back element:
1910    /// ```
1911    /// #![feature(linked_list_cursors)]
1912    /// use std::collections::LinkedList;
1913    /// let mut dl = LinkedList::new();
1914    /// dl.push_front(3);
1915    /// dl.push_front(2);
1916    /// dl.push_front(1);
1917    /// let mut cursor = dl.cursor_front_mut();
1918    /// *cursor.current().unwrap() = 99;
1919    /// *cursor.back_mut().unwrap() = 0;
1920    /// let mut contents = dl.into_iter();
1921    /// assert_eq!(contents.next(), Some(99));
1922    /// assert_eq!(contents.next(), Some(2));
1923    /// assert_eq!(contents.next(), Some(0));
1924    /// assert_eq!(contents.next(), None);
1925    /// ```
1926    #[must_use]
1927    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1928    pub fn back_mut(&mut self) -> Option<&mut T> {
1929        self.list.back_mut()
1930    }
1931}
1932
1933/// An iterator produced by calling `extract_if` on LinkedList.
1934#[stable(feature = "extract_if", since = "CURRENT_RUSTC_VERSION")]
1935#[must_use = "iterators are lazy and do nothing unless consumed"]
1936pub struct ExtractIf<
1937    'a,
1938    T: 'a,
1939    F: 'a,
1940    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
1941> {
1942    list: &'a mut LinkedList<T, A>,
1943    it: Option<NonNull<Node<T>>>,
1944    pred: F,
1945    idx: usize,
1946    old_len: usize,
1947}
1948
1949#[stable(feature = "extract_if", since = "CURRENT_RUSTC_VERSION")]
1950impl<T, F, A: Allocator> Iterator for ExtractIf<'_, T, F, A>
1951where
1952    F: FnMut(&mut T) -> bool,
1953{
1954    type Item = T;
1955
1956    fn next(&mut self) -> Option<T> {
1957        while let Some(mut node) = self.it {
1958            unsafe {
1959                self.it = node.as_ref().next;
1960                self.idx += 1;
1961
1962                if (self.pred)(&mut node.as_mut().element) {
1963                    // `unlink_node` is okay with aliasing `element` references.
1964                    self.list.unlink_node(node);
1965                    return Some(Box::from_raw_in(node.as_ptr(), &self.list.alloc).element);
1966                }
1967            }
1968        }
1969
1970        None
1971    }
1972
1973    fn size_hint(&self) -> (usize, Option<usize>) {
1974        (0, Some(self.old_len - self.idx))
1975    }
1976}
1977
1978#[stable(feature = "extract_if", since = "CURRENT_RUSTC_VERSION")]
1979impl<T: fmt::Debug, F> fmt::Debug for ExtractIf<'_, T, F> {
1980    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1981        f.debug_tuple("ExtractIf").field(&self.list).finish()
1982    }
1983}
1984
1985#[stable(feature = "rust1", since = "1.0.0")]
1986impl<T, A: Allocator> Iterator for IntoIter<T, A> {
1987    type Item = T;
1988
1989    #[inline]
1990    fn next(&mut self) -> Option<T> {
1991        self.list.pop_front()
1992    }
1993
1994    #[inline]
1995    fn size_hint(&self) -> (usize, Option<usize>) {
1996        (self.list.len, Some(self.list.len))
1997    }
1998}
1999
2000#[stable(feature = "rust1", since = "1.0.0")]
2001impl<T, A: Allocator> DoubleEndedIterator for IntoIter<T, A> {
2002    #[inline]
2003    fn next_back(&mut self) -> Option<T> {
2004        self.list.pop_back()
2005    }
2006}
2007
2008#[stable(feature = "rust1", since = "1.0.0")]
2009impl<T, A: Allocator> ExactSizeIterator for IntoIter<T, A> {}
2010
2011#[stable(feature = "fused", since = "1.26.0")]
2012impl<T, A: Allocator> FusedIterator for IntoIter<T, A> {}
2013
2014#[stable(feature = "default_iters", since = "1.70.0")]
2015impl<T> Default for IntoIter<T> {
2016    /// Creates an empty `linked_list::IntoIter`.
2017    ///
2018    /// ```
2019    /// # use std::collections::linked_list;
2020    /// let iter: linked_list::IntoIter<u8> = Default::default();
2021    /// assert_eq!(iter.len(), 0);
2022    /// ```
2023    fn default() -> Self {
2024        LinkedList::new().into_iter()
2025    }
2026}
2027
2028#[stable(feature = "rust1", since = "1.0.0")]
2029impl<T> FromIterator<T> for LinkedList<T> {
2030    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
2031        let mut list = Self::new();
2032        list.extend(iter);
2033        list
2034    }
2035}
2036
2037#[stable(feature = "rust1", since = "1.0.0")]
2038impl<T, A: Allocator> IntoIterator for LinkedList<T, A> {
2039    type Item = T;
2040    type IntoIter = IntoIter<T, A>;
2041
2042    /// Consumes the list into an iterator yielding elements by value.
2043    #[inline]
2044    fn into_iter(self) -> IntoIter<T, A> {
2045        IntoIter { list: self }
2046    }
2047}
2048
2049#[stable(feature = "rust1", since = "1.0.0")]
2050impl<'a, T, A: Allocator> IntoIterator for &'a LinkedList<T, A> {
2051    type Item = &'a T;
2052    type IntoIter = Iter<'a, T>;
2053
2054    fn into_iter(self) -> Iter<'a, T> {
2055        self.iter()
2056    }
2057}
2058
2059#[stable(feature = "rust1", since = "1.0.0")]
2060impl<'a, T, A: Allocator> IntoIterator for &'a mut LinkedList<T, A> {
2061    type Item = &'a mut T;
2062    type IntoIter = IterMut<'a, T>;
2063
2064    fn into_iter(self) -> IterMut<'a, T> {
2065        self.iter_mut()
2066    }
2067}
2068
2069#[stable(feature = "rust1", since = "1.0.0")]
2070impl<T, A: Allocator> Extend<T> for LinkedList<T, A> {
2071    fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
2072        <Self as SpecExtend<I>>::spec_extend(self, iter);
2073    }
2074
2075    #[inline]
2076    fn extend_one(&mut self, elem: T) {
2077        self.push_back(elem);
2078    }
2079}
2080
2081impl<I: IntoIterator, A: Allocator> SpecExtend<I> for LinkedList<I::Item, A> {
2082    default fn spec_extend(&mut self, iter: I) {
2083        iter.into_iter().for_each(move |elt| self.push_back(elt));
2084    }
2085}
2086
2087impl<T> SpecExtend<LinkedList<T>> for LinkedList<T> {
2088    fn spec_extend(&mut self, ref mut other: LinkedList<T>) {
2089        self.append(other);
2090    }
2091}
2092
2093#[stable(feature = "extend_ref", since = "1.2.0")]
2094impl<'a, T: 'a + Copy, A: Allocator> Extend<&'a T> for LinkedList<T, A> {
2095    fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
2096        self.extend(iter.into_iter().cloned());
2097    }
2098
2099    #[inline]
2100    fn extend_one(&mut self, &elem: &'a T) {
2101        self.push_back(elem);
2102    }
2103}
2104
2105#[stable(feature = "rust1", since = "1.0.0")]
2106impl<T: PartialEq, A: Allocator> PartialEq for LinkedList<T, A> {
2107    fn eq(&self, other: &Self) -> bool {
2108        self.len() == other.len() && self.iter().eq(other)
2109    }
2110
2111    fn ne(&self, other: &Self) -> bool {
2112        self.len() != other.len() || self.iter().ne(other)
2113    }
2114}
2115
2116#[stable(feature = "rust1", since = "1.0.0")]
2117impl<T: Eq, A: Allocator> Eq for LinkedList<T, A> {}
2118
2119#[stable(feature = "rust1", since = "1.0.0")]
2120impl<T: PartialOrd, A: Allocator> PartialOrd for LinkedList<T, A> {
2121    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
2122        self.iter().partial_cmp(other)
2123    }
2124}
2125
2126#[stable(feature = "rust1", since = "1.0.0")]
2127impl<T: Ord, A: Allocator> Ord for LinkedList<T, A> {
2128    #[inline]
2129    fn cmp(&self, other: &Self) -> Ordering {
2130        self.iter().cmp(other)
2131    }
2132}
2133
2134#[stable(feature = "rust1", since = "1.0.0")]
2135impl<T: Clone, A: Allocator + Clone> Clone for LinkedList<T, A> {
2136    fn clone(&self) -> Self {
2137        let mut list = Self::new_in(self.alloc.clone());
2138        list.extend(self.iter().cloned());
2139        list
2140    }
2141
2142    /// Overwrites the contents of `self` with a clone of the contents of `source`.
2143    ///
2144    /// This method is preferred over simply assigning `source.clone()` to `self`,
2145    /// as it avoids reallocation of the nodes of the linked list. Additionally,
2146    /// if the element type `T` overrides `clone_from()`, this will reuse the
2147    /// resources of `self`'s elements as well.
2148    fn clone_from(&mut self, source: &Self) {
2149        let mut source_iter = source.iter();
2150        if self.len() > source.len() {
2151            self.split_off(source.len());
2152        }
2153        for (elem, source_elem) in self.iter_mut().zip(&mut source_iter) {
2154            elem.clone_from(source_elem);
2155        }
2156        if !source_iter.is_empty() {
2157            self.extend(source_iter.cloned());
2158        }
2159    }
2160}
2161
2162#[stable(feature = "rust1", since = "1.0.0")]
2163impl<T: fmt::Debug, A: Allocator> fmt::Debug for LinkedList<T, A> {
2164    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2165        f.debug_list().entries(self).finish()
2166    }
2167}
2168
2169#[stable(feature = "rust1", since = "1.0.0")]
2170impl<T: Hash, A: Allocator> Hash for LinkedList<T, A> {
2171    fn hash<H: Hasher>(&self, state: &mut H) {
2172        state.write_length_prefix(self.len());
2173        for elt in self {
2174            elt.hash(state);
2175        }
2176    }
2177}
2178
2179#[stable(feature = "std_collections_from_array", since = "1.56.0")]
2180impl<T, const N: usize> From<[T; N]> for LinkedList<T> {
2181    /// Converts a `[T; N]` into a `LinkedList<T>`.
2182    ///
2183    /// ```
2184    /// use std::collections::LinkedList;
2185    ///
2186    /// let list1 = LinkedList::from([1, 2, 3, 4]);
2187    /// let list2: LinkedList<_> = [1, 2, 3, 4].into();
2188    /// assert_eq!(list1, list2);
2189    /// ```
2190    fn from(arr: [T; N]) -> Self {
2191        Self::from_iter(arr)
2192    }
2193}
2194
2195// Ensure that `LinkedList` and its read-only iterators are covariant in their type parameters.
2196#[allow(dead_code)]
2197fn assert_covariance() {
2198    fn a<'a>(x: LinkedList<&'static str>) -> LinkedList<&'a str> {
2199        x
2200    }
2201    fn b<'i, 'a>(x: Iter<'i, &'static str>) -> Iter<'i, &'a str> {
2202        x
2203    }
2204    fn c<'a>(x: IntoIter<&'static str>) -> IntoIter<&'a str> {
2205        x
2206    }
2207}
2208
2209#[stable(feature = "rust1", since = "1.0.0")]
2210unsafe impl<T: Send, A: Allocator + Send> Send for LinkedList<T, A> {}
2211
2212#[stable(feature = "rust1", since = "1.0.0")]
2213unsafe impl<T: Sync, A: Allocator + Sync> Sync for LinkedList<T, A> {}
2214
2215#[stable(feature = "rust1", since = "1.0.0")]
2216unsafe impl<T: Sync> Send for Iter<'_, T> {}
2217
2218#[stable(feature = "rust1", since = "1.0.0")]
2219unsafe impl<T: Sync> Sync for Iter<'_, T> {}
2220
2221#[stable(feature = "rust1", since = "1.0.0")]
2222unsafe impl<T: Send> Send for IterMut<'_, T> {}
2223
2224#[stable(feature = "rust1", since = "1.0.0")]
2225unsafe impl<T: Sync> Sync for IterMut<'_, T> {}
2226
2227#[unstable(feature = "linked_list_cursors", issue = "58533")]
2228unsafe impl<T: Sync, A: Allocator + Sync> Send for Cursor<'_, T, A> {}
2229
2230#[unstable(feature = "linked_list_cursors", issue = "58533")]
2231unsafe impl<T: Sync, A: Allocator + Sync> Sync for Cursor<'_, T, A> {}
2232
2233#[unstable(feature = "linked_list_cursors", issue = "58533")]
2234unsafe impl<T: Send, A: Allocator + Send> Send for CursorMut<'_, T, A> {}
2235
2236#[unstable(feature = "linked_list_cursors", issue = "58533")]
2237unsafe impl<T: Sync, A: Allocator + Sync> Sync for CursorMut<'_, T, A> {}