Skip to main content

alloc/collections/
linked_list.rs

1//! A doubly-linked list with owned nodes.
2//!
3//! The `LinkedList` allows pushing and popping elements at either end
4//! in constant time.
5//!
6//! NOTE: It is almost always better to use [`Vec`] or [`VecDeque`] because
7//! array-based containers are generally faster,
8//! more memory efficient, and make better use of CPU cache.
9//!
10//! [`Vec`]: crate::vec::Vec
11//! [`VecDeque`]: super::vec_deque::VecDeque
12
13#![stable(feature = "rust1", since = "1.0.0")]
14
15use core::cmp::Ordering;
16use core::hash::{Hash, Hasher};
17use core::iter::FusedIterator;
18use core::marker::PhantomData;
19use core::ptr::NonNull;
20use core::{fmt, mem};
21
22use super::SpecExtend;
23use crate::alloc::{Allocator, Global};
24use crate::boxed::Box;
25
26#[cfg(test)]
27mod tests;
28
29/// A doubly-linked list with owned nodes.
30///
31/// The `LinkedList` allows pushing and popping elements at either end
32/// in constant time.
33///
34/// A `LinkedList` with a known list of items can be initialized from an array:
35/// ```
36/// use std::collections::LinkedList;
37///
38/// let list = LinkedList::from([1, 2, 3]);
39/// ```
40///
41/// NOTE: It is almost always better to use [`Vec`] or [`VecDeque`] because
42/// array-based containers are generally faster,
43/// more memory efficient, and make better use of CPU cache.
44///
45/// [`Vec`]: crate::vec::Vec
46/// [`VecDeque`]: super::vec_deque::VecDeque
47#[stable(feature = "rust1", since = "1.0.0")]
48#[cfg_attr(not(test), rustc_diagnostic_item = "LinkedList")]
49#[rustc_insignificant_dtor]
50pub struct LinkedList<
51    T,
52    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
53> {
54    head: Option<NonNull<Node<T>>>,
55    tail: Option<NonNull<Node<T>>>,
56    len: usize,
57    alloc: A,
58    marker: PhantomData<Box<Node<T>, A>>,
59}
60
61struct Node<T> {
62    next: Option<NonNull<Node<T>>>,
63    prev: Option<NonNull<Node<T>>>,
64    element: T,
65}
66
67/// An iterator over the elements of a `LinkedList`.
68///
69/// This `struct` is created by [`LinkedList::iter()`]. See its
70/// documentation for more.
71#[must_use = "iterators are lazy and do nothing unless consumed"]
72#[stable(feature = "rust1", since = "1.0.0")]
73pub struct Iter<'a, T: 'a> {
74    head: Option<NonNull<Node<T>>>,
75    tail: Option<NonNull<Node<T>>>,
76    len: usize,
77    marker: PhantomData<&'a Node<T>>,
78}
79
80#[stable(feature = "collection_debug", since = "1.17.0")]
81impl<T: fmt::Debug> fmt::Debug for Iter<'_, T> {
82    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
83        f.debug_tuple("Iter")
84            .field(&*mem::ManuallyDrop::new(LinkedList {
85                head: self.head,
86                tail: self.tail,
87                len: self.len,
88                alloc: Global,
89                marker: PhantomData,
90            }))
91            .field(&self.len)
92            .finish()
93    }
94}
95
96// FIXME(#26925) Remove in favor of `#[derive(Clone)]`
97#[stable(feature = "rust1", since = "1.0.0")]
98impl<T> Clone for Iter<'_, T> {
99    fn clone(&self) -> Self {
100        Iter { ..*self }
101    }
102}
103
104/// A mutable iterator over the elements of a `LinkedList`.
105///
106/// This `struct` is created by [`LinkedList::iter_mut()`]. See its
107/// documentation for more.
108#[must_use = "iterators are lazy and do nothing unless consumed"]
109#[stable(feature = "rust1", since = "1.0.0")]
110pub struct IterMut<'a, T: 'a> {
111    head: Option<NonNull<Node<T>>>,
112    tail: Option<NonNull<Node<T>>>,
113    len: usize,
114    marker: PhantomData<&'a mut Node<T>>,
115}
116
117#[stable(feature = "collection_debug", since = "1.17.0")]
118impl<T: fmt::Debug> fmt::Debug for IterMut<'_, T> {
119    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
120        f.debug_tuple("IterMut")
121            .field(&*mem::ManuallyDrop::new(LinkedList {
122                head: self.head,
123                tail: self.tail,
124                len: self.len,
125                alloc: Global,
126                marker: PhantomData,
127            }))
128            .field(&self.len)
129            .finish()
130    }
131}
132
133/// An owning iterator over the elements of a `LinkedList`.
134///
135/// This `struct` is created by the [`into_iter`] method on [`LinkedList`]
136/// (provided by the [`IntoIterator`] trait). See its documentation for more.
137///
138/// [`into_iter`]: LinkedList::into_iter
139#[derive(Clone)]
140#[stable(feature = "rust1", since = "1.0.0")]
141pub struct IntoIter<
142    T,
143    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
144> {
145    list: LinkedList<T, A>,
146}
147
148#[stable(feature = "collection_debug", since = "1.17.0")]
149impl<T: fmt::Debug, A: Allocator> fmt::Debug for IntoIter<T, A> {
150    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
151        f.debug_tuple("IntoIter").field(&self.list).finish()
152    }
153}
154
155impl<T> Node<T> {
156    fn new(element: T) -> Self {
157        Node { next: None, prev: None, element }
158    }
159
160    fn into_element<A: Allocator>(self: Box<Self, A>) -> T {
161        self.element
162    }
163}
164
165// private methods
166impl<T, A: Allocator> LinkedList<T, A> {
167    /// Adds the given node to the front of the list.
168    ///
169    /// # Safety
170    /// `node` must point to a valid node in the list's allocator.
171    /// This method takes ownership of the node, so the pointer should not be used again.
172    #[inline]
173    unsafe fn push_front_node(&mut self, node: NonNull<Node<T>>) {
174        // This method takes care not to create mutable references to whole nodes,
175        // to maintain validity of aliasing pointers into `element`.
176        unsafe {
177            (*node.as_ptr()).next = self.head;
178            (*node.as_ptr()).prev = None;
179            let node = Some(node);
180
181            match self.head {
182                None => self.tail = node,
183                // Not creating new mutable (unique!) references overlapping `element`.
184                Some(head) => (*head.as_ptr()).prev = node,
185            }
186
187            self.head = node;
188            self.len += 1;
189        }
190    }
191
192    /// Removes and returns the node at the front of the list.
193    #[inline]
194    fn pop_front_node(&mut self) -> Option<Box<Node<T>, &A>> {
195        // This method takes care not to create mutable references to whole nodes,
196        // to maintain validity of aliasing pointers into `element`.
197        self.head.map(|node| unsafe {
198            let node = Box::from_raw_in(node.as_ptr(), &self.alloc);
199            self.head = node.next;
200
201            match self.head {
202                None => self.tail = None,
203                // Not creating new mutable (unique!) references overlapping `element`.
204                Some(head) => (*head.as_ptr()).prev = None,
205            }
206
207            self.len -= 1;
208            node
209        })
210    }
211
212    /// Adds the given node to the back of the list.
213    ///
214    /// # Safety
215    /// `node` must point to a valid node in the list's allocator.
216    /// This method takes ownership of the node, so the pointer should not be used again.
217    #[inline]
218    unsafe fn push_back_node(&mut self, node: NonNull<Node<T>>) {
219        // This method takes care not to create mutable references to whole nodes,
220        // to maintain validity of aliasing pointers into `element`.
221        unsafe {
222            (*node.as_ptr()).next = None;
223            (*node.as_ptr()).prev = self.tail;
224            let node = Some(node);
225
226            match self.tail {
227                None => self.head = node,
228                // Not creating new mutable (unique!) references overlapping `element`.
229                Some(tail) => (*tail.as_ptr()).next = node,
230            }
231
232            self.tail = node;
233            self.len += 1;
234        }
235    }
236
237    /// Removes and returns the node at the back of the list.
238    #[inline]
239    fn pop_back_node(&mut self) -> Option<Box<Node<T>, &A>> {
240        // This method takes care not to create mutable references to whole nodes,
241        // to maintain validity of aliasing pointers into `element`.
242        self.tail.map(|node| unsafe {
243            let node = Box::from_raw_in(node.as_ptr(), &self.alloc);
244            self.tail = node.prev;
245
246            match self.tail {
247                None => self.head = None,
248                // Not creating new mutable (unique!) references overlapping `element`.
249                Some(tail) => (*tail.as_ptr()).next = None,
250            }
251
252            self.len -= 1;
253            node
254        })
255    }
256
257    /// Unlinks the specified node from the current list.
258    ///
259    /// Warning: this will not check that the provided node belongs to the current list.
260    ///
261    /// This method takes care not to create mutable references to `element`, to
262    /// maintain validity of aliasing pointers.
263    #[inline]
264    unsafe fn unlink_node(&mut self, mut node: NonNull<Node<T>>) {
265        let node = unsafe { node.as_mut() }; // this one is ours now, we can create an &mut.
266
267        // Not creating new mutable (unique!) references overlapping `element`.
268        match node.prev {
269            Some(prev) => unsafe { (*prev.as_ptr()).next = node.next },
270            // this node is the head node
271            None => self.head = node.next,
272        };
273
274        match node.next {
275            Some(next) => unsafe { (*next.as_ptr()).prev = node.prev },
276            // this node is the tail node
277            None => self.tail = node.prev,
278        };
279
280        self.len -= 1;
281    }
282
283    /// Splices a series of nodes between two existing nodes.
284    ///
285    /// Warning: this will not check that the provided node belongs to the two existing lists.
286    #[inline]
287    unsafe fn splice_nodes(
288        &mut self,
289        existing_prev: Option<NonNull<Node<T>>>,
290        existing_next: Option<NonNull<Node<T>>>,
291        mut splice_start: NonNull<Node<T>>,
292        mut splice_end: NonNull<Node<T>>,
293        splice_length: usize,
294    ) {
295        // This method takes care not to create multiple mutable references to whole nodes at the same time,
296        // to maintain validity of aliasing pointers into `element`.
297        if let Some(mut existing_prev) = existing_prev {
298            unsafe {
299                existing_prev.as_mut().next = Some(splice_start);
300            }
301        } else {
302            self.head = Some(splice_start);
303        }
304        if let Some(mut existing_next) = existing_next {
305            unsafe {
306                existing_next.as_mut().prev = Some(splice_end);
307            }
308        } else {
309            self.tail = Some(splice_end);
310        }
311        unsafe {
312            splice_start.as_mut().prev = existing_prev;
313            splice_end.as_mut().next = existing_next;
314        }
315
316        self.len += splice_length;
317    }
318
319    /// Detaches all nodes from a linked list as a series of nodes.
320    #[inline]
321    fn detach_all_nodes(mut self) -> Option<(NonNull<Node<T>>, NonNull<Node<T>>, usize)> {
322        let head = self.head.take();
323        let tail = self.tail.take();
324        let len = mem::replace(&mut self.len, 0);
325        if let Some(head) = head {
326            // SAFETY: In a LinkedList, either both the head and tail are None because
327            // the list is empty, or both head and tail are Some because the list is populated.
328            // Since we have verified the head is Some, we are sure the tail is Some too.
329            let tail = unsafe { tail.unwrap_unchecked() };
330            Some((head, tail, len))
331        } else {
332            None
333        }
334    }
335
336    #[inline]
337    unsafe fn split_off_before_node(
338        &mut self,
339        split_node: Option<NonNull<Node<T>>>,
340        at: usize,
341    ) -> Self
342    where
343        A: Clone,
344    {
345        // The split node is the new head node of the second part
346        if let Some(mut split_node) = split_node {
347            let first_part_head;
348            let first_part_tail;
349            unsafe {
350                first_part_tail = split_node.as_mut().prev.take();
351            }
352            if let Some(mut tail) = first_part_tail {
353                unsafe {
354                    tail.as_mut().next = None;
355                }
356                first_part_head = self.head;
357            } else {
358                first_part_head = None;
359            }
360
361            let first_part = LinkedList {
362                head: first_part_head,
363                tail: first_part_tail,
364                len: at,
365                alloc: self.alloc.clone(),
366                marker: PhantomData,
367            };
368
369            // Fix the head ptr of the second part
370            self.head = Some(split_node);
371            self.len = self.len - at;
372
373            first_part
374        } else {
375            mem::replace(self, LinkedList::new_in(self.alloc.clone()))
376        }
377    }
378
379    #[inline]
380    unsafe fn split_off_after_node(
381        &mut self,
382        split_node: Option<NonNull<Node<T>>>,
383        at: usize,
384    ) -> Self
385    where
386        A: Clone,
387    {
388        // The split node is the new tail node of the first part and owns
389        // the head of the second part.
390        if let Some(mut split_node) = split_node {
391            let second_part_head;
392            let second_part_tail;
393            unsafe {
394                second_part_head = split_node.as_mut().next.take();
395            }
396            if let Some(mut head) = second_part_head {
397                unsafe {
398                    head.as_mut().prev = None;
399                }
400                second_part_tail = self.tail;
401            } else {
402                second_part_tail = None;
403            }
404
405            let second_part = LinkedList {
406                head: second_part_head,
407                tail: second_part_tail,
408                len: self.len - at,
409                alloc: self.alloc.clone(),
410                marker: PhantomData,
411            };
412
413            // Fix the tail ptr of the first part
414            self.tail = Some(split_node);
415            self.len = at;
416
417            second_part
418        } else {
419            mem::replace(self, LinkedList::new_in(self.alloc.clone()))
420        }
421    }
422}
423
424#[stable(feature = "rust1", since = "1.0.0")]
425impl<T> Default for LinkedList<T> {
426    /// Creates an empty `LinkedList<T>`.
427    #[inline]
428    fn default() -> Self {
429        Self::new()
430    }
431}
432
433impl<T> LinkedList<T> {
434    /// Creates an empty `LinkedList`.
435    ///
436    /// # Examples
437    ///
438    /// ```
439    /// use std::collections::LinkedList;
440    ///
441    /// let list: LinkedList<u32> = LinkedList::new();
442    /// ```
443    #[inline]
444    #[rustc_const_stable(feature = "const_linked_list_new", since = "1.39.0")]
445    #[stable(feature = "rust1", since = "1.0.0")]
446    #[must_use]
447    pub const fn new() -> Self {
448        LinkedList { head: None, tail: None, len: 0, alloc: Global, marker: PhantomData }
449    }
450
451    /// Moves all elements from `other` to the end of the list.
452    ///
453    /// This reuses all the nodes from `other` and moves them into `self`. After
454    /// this operation, `other` becomes empty.
455    ///
456    /// This operation should compute in *O*(1) time and *O*(1) memory.
457    ///
458    /// # Examples
459    ///
460    /// ```
461    /// use std::collections::LinkedList;
462    ///
463    /// let mut list1 = LinkedList::new();
464    /// list1.push_back('a');
465    ///
466    /// let mut list2 = LinkedList::new();
467    /// list2.push_back('b');
468    /// list2.push_back('c');
469    ///
470    /// list1.append(&mut list2);
471    ///
472    /// let mut iter = list1.iter();
473    /// assert_eq!(iter.next(), Some(&'a'));
474    /// assert_eq!(iter.next(), Some(&'b'));
475    /// assert_eq!(iter.next(), Some(&'c'));
476    /// assert!(iter.next().is_none());
477    ///
478    /// assert!(list2.is_empty());
479    /// ```
480    #[stable(feature = "rust1", since = "1.0.0")]
481    pub fn append(&mut self, other: &mut Self) {
482        match self.tail {
483            None => mem::swap(self, other),
484            Some(mut tail) => {
485                // `as_mut` is okay here because we have exclusive access to the entirety
486                // of both lists.
487                if let Some(mut other_head) = other.head.take() {
488                    unsafe {
489                        tail.as_mut().next = Some(other_head);
490                        other_head.as_mut().prev = Some(tail);
491                    }
492
493                    self.tail = other.tail.take();
494                    self.len += mem::replace(&mut other.len, 0);
495                }
496            }
497        }
498    }
499}
500
501impl<T, A: Allocator> LinkedList<T, A> {
502    /// Constructs an empty `LinkedList<T, A>`.
503    ///
504    /// # Examples
505    ///
506    /// ```
507    /// #![feature(allocator_api)]
508    ///
509    /// use std::alloc::System;
510    /// use std::collections::LinkedList;
511    ///
512    /// let list: LinkedList<u32, _> = LinkedList::new_in(System);
513    /// ```
514    #[inline]
515    #[unstable(feature = "allocator_api", issue = "32838")]
516    pub const fn new_in(alloc: A) -> Self {
517        LinkedList { head: None, tail: None, len: 0, alloc, marker: PhantomData }
518    }
519    /// Provides a forward iterator.
520    ///
521    /// # Examples
522    ///
523    /// ```
524    /// use std::collections::LinkedList;
525    ///
526    /// let mut list: LinkedList<u32> = LinkedList::new();
527    ///
528    /// list.push_back(0);
529    /// list.push_back(1);
530    /// list.push_back(2);
531    ///
532    /// let mut iter = list.iter();
533    /// assert_eq!(iter.next(), Some(&0));
534    /// assert_eq!(iter.next(), Some(&1));
535    /// assert_eq!(iter.next(), Some(&2));
536    /// assert_eq!(iter.next(), None);
537    /// ```
538    #[inline]
539    #[stable(feature = "rust1", since = "1.0.0")]
540    pub fn iter(&self) -> Iter<'_, T> {
541        Iter { head: self.head, tail: self.tail, len: self.len, marker: PhantomData }
542    }
543
544    /// Provides a forward iterator with mutable references.
545    ///
546    /// # Examples
547    ///
548    /// ```
549    /// use std::collections::LinkedList;
550    ///
551    /// let mut list: LinkedList<u32> = LinkedList::new();
552    ///
553    /// list.push_back(0);
554    /// list.push_back(1);
555    /// list.push_back(2);
556    ///
557    /// for element in list.iter_mut() {
558    ///     *element += 10;
559    /// }
560    ///
561    /// let mut iter = list.iter();
562    /// assert_eq!(iter.next(), Some(&10));
563    /// assert_eq!(iter.next(), Some(&11));
564    /// assert_eq!(iter.next(), Some(&12));
565    /// assert_eq!(iter.next(), None);
566    /// ```
567    #[inline]
568    #[stable(feature = "rust1", since = "1.0.0")]
569    pub fn iter_mut(&mut self) -> IterMut<'_, T> {
570        IterMut { head: self.head, tail: self.tail, len: self.len, marker: PhantomData }
571    }
572
573    /// Provides a cursor at the front element.
574    ///
575    /// The cursor is pointing to the "ghost" non-element if the list is empty.
576    #[inline]
577    #[must_use]
578    #[unstable(feature = "linked_list_cursors", issue = "58533")]
579    pub fn cursor_front(&self) -> Cursor<'_, T, A> {
580        Cursor { index: 0, current: self.head, list: self }
581    }
582
583    /// Provides a cursor with editing operations at the front element.
584    ///
585    /// The cursor is pointing to the "ghost" non-element if the list is empty.
586    #[inline]
587    #[must_use]
588    #[unstable(feature = "linked_list_cursors", issue = "58533")]
589    pub fn cursor_front_mut(&mut self) -> CursorMut<'_, T, A> {
590        CursorMut { index: 0, current: self.head, list: self }
591    }
592
593    /// Provides a cursor at the back element.
594    ///
595    /// The cursor is pointing to the "ghost" non-element if the list is empty.
596    #[inline]
597    #[must_use]
598    #[unstable(feature = "linked_list_cursors", issue = "58533")]
599    pub fn cursor_back(&self) -> Cursor<'_, T, A> {
600        Cursor { index: self.len.saturating_sub(1), current: self.tail, list: self }
601    }
602
603    /// Provides a cursor with editing operations at the back element.
604    ///
605    /// The cursor is pointing to the "ghost" non-element if the list is empty.
606    #[inline]
607    #[must_use]
608    #[unstable(feature = "linked_list_cursors", issue = "58533")]
609    pub fn cursor_back_mut(&mut self) -> CursorMut<'_, T, A> {
610        CursorMut { index: self.len.saturating_sub(1), current: self.tail, list: self }
611    }
612
613    /// Returns `true` if the `LinkedList` is empty.
614    ///
615    /// This operation should compute in *O*(1) time.
616    ///
617    /// # Examples
618    ///
619    /// ```
620    /// use std::collections::LinkedList;
621    ///
622    /// let mut dl = LinkedList::new();
623    /// assert!(dl.is_empty());
624    ///
625    /// dl.push_front("foo");
626    /// assert!(!dl.is_empty());
627    /// ```
628    #[inline]
629    #[must_use]
630    #[stable(feature = "rust1", since = "1.0.0")]
631    pub fn is_empty(&self) -> bool {
632        self.head.is_none()
633    }
634
635    /// Returns the length of the `LinkedList`.
636    ///
637    /// This operation should compute in *O*(1) time.
638    ///
639    /// # Examples
640    ///
641    /// ```
642    /// use std::collections::LinkedList;
643    ///
644    /// let mut dl = LinkedList::new();
645    ///
646    /// dl.push_front(2);
647    /// assert_eq!(dl.len(), 1);
648    ///
649    /// dl.push_front(1);
650    /// assert_eq!(dl.len(), 2);
651    ///
652    /// dl.push_back(3);
653    /// assert_eq!(dl.len(), 3);
654    /// ```
655    #[inline]
656    #[must_use]
657    #[stable(feature = "rust1", since = "1.0.0")]
658    #[rustc_confusables("length", "size")]
659    pub fn len(&self) -> usize {
660        self.len
661    }
662
663    /// Removes all elements from the `LinkedList`.
664    ///
665    /// This operation should compute in *O*(*n*) time.
666    ///
667    /// # Examples
668    ///
669    /// ```
670    /// use std::collections::LinkedList;
671    ///
672    /// let mut dl = LinkedList::new();
673    ///
674    /// dl.push_front(2);
675    /// dl.push_front(1);
676    /// assert_eq!(dl.len(), 2);
677    /// assert_eq!(dl.front(), Some(&1));
678    ///
679    /// dl.clear();
680    /// assert_eq!(dl.len(), 0);
681    /// assert_eq!(dl.front(), None);
682    /// ```
683    #[inline]
684    #[stable(feature = "rust1", since = "1.0.0")]
685    pub fn clear(&mut self) {
686        // We need to drop the nodes while keeping self.alloc
687        // We can do this by moving (head, tail, len) into a new list that borrows self.alloc
688        drop(LinkedList {
689            head: self.head.take(),
690            tail: self.tail.take(),
691            len: mem::take(&mut self.len),
692            alloc: &self.alloc,
693            marker: PhantomData,
694        });
695    }
696
697    /// Returns `true` if the `LinkedList` contains an element equal to the
698    /// given value.
699    ///
700    /// This operation should compute linearly in *O*(*n*) time.
701    ///
702    /// # Examples
703    ///
704    /// ```
705    /// use std::collections::LinkedList;
706    ///
707    /// let mut list: LinkedList<u32> = LinkedList::new();
708    ///
709    /// list.push_back(0);
710    /// list.push_back(1);
711    /// list.push_back(2);
712    ///
713    /// assert_eq!(list.contains(&0), true);
714    /// assert_eq!(list.contains(&10), false);
715    /// ```
716    #[stable(feature = "linked_list_contains", since = "1.12.0")]
717    pub fn contains(&self, x: &T) -> bool
718    where
719        T: PartialEq<T>,
720    {
721        self.iter().any(|e| e == x)
722    }
723
724    /// Provides a reference to the front element, or `None` if the list is
725    /// empty.
726    ///
727    /// This operation should compute in *O*(1) time.
728    ///
729    /// # Examples
730    ///
731    /// ```
732    /// use std::collections::LinkedList;
733    ///
734    /// let mut dl = LinkedList::new();
735    /// assert_eq!(dl.front(), None);
736    ///
737    /// dl.push_front(1);
738    /// assert_eq!(dl.front(), Some(&1));
739    /// ```
740    #[inline]
741    #[must_use]
742    #[stable(feature = "rust1", since = "1.0.0")]
743    #[rustc_confusables("first")]
744    pub fn front(&self) -> Option<&T> {
745        unsafe { self.head.as_ref().map(|node| &node.as_ref().element) }
746    }
747
748    /// Provides a mutable reference to the front element, or `None` if the list
749    /// is empty.
750    ///
751    /// This operation should compute in *O*(1) time.
752    ///
753    /// # Examples
754    ///
755    /// ```
756    /// use std::collections::LinkedList;
757    ///
758    /// let mut dl = LinkedList::new();
759    /// assert_eq!(dl.front(), None);
760    ///
761    /// dl.push_front(1);
762    /// assert_eq!(dl.front(), Some(&1));
763    ///
764    /// match dl.front_mut() {
765    ///     None => {},
766    ///     Some(x) => *x = 5,
767    /// }
768    /// assert_eq!(dl.front(), Some(&5));
769    /// ```
770    #[inline]
771    #[must_use]
772    #[stable(feature = "rust1", since = "1.0.0")]
773    pub fn front_mut(&mut self) -> Option<&mut T> {
774        unsafe { self.head.as_mut().map(|node| &mut node.as_mut().element) }
775    }
776
777    /// Provides a reference to the back element, or `None` if the list is
778    /// empty.
779    ///
780    /// This operation should compute in *O*(1) time.
781    ///
782    /// # Examples
783    ///
784    /// ```
785    /// use std::collections::LinkedList;
786    ///
787    /// let mut dl = LinkedList::new();
788    /// assert_eq!(dl.back(), None);
789    ///
790    /// dl.push_back(1);
791    /// assert_eq!(dl.back(), Some(&1));
792    /// ```
793    #[inline]
794    #[must_use]
795    #[stable(feature = "rust1", since = "1.0.0")]
796    pub fn back(&self) -> Option<&T> {
797        unsafe { self.tail.as_ref().map(|node| &node.as_ref().element) }
798    }
799
800    /// Provides a mutable reference to the back element, or `None` if the list
801    /// is empty.
802    ///
803    /// This operation should compute in *O*(1) time.
804    ///
805    /// # Examples
806    ///
807    /// ```
808    /// use std::collections::LinkedList;
809    ///
810    /// let mut dl = LinkedList::new();
811    /// assert_eq!(dl.back(), None);
812    ///
813    /// dl.push_back(1);
814    /// assert_eq!(dl.back(), Some(&1));
815    ///
816    /// match dl.back_mut() {
817    ///     None => {},
818    ///     Some(x) => *x = 5,
819    /// }
820    /// assert_eq!(dl.back(), Some(&5));
821    /// ```
822    #[inline]
823    #[stable(feature = "rust1", since = "1.0.0")]
824    pub fn back_mut(&mut self) -> Option<&mut T> {
825        unsafe { self.tail.as_mut().map(|node| &mut node.as_mut().element) }
826    }
827
828    /// Adds an element to the front of the list.
829    ///
830    /// This operation should compute in *O*(1) time.
831    ///
832    /// # Examples
833    ///
834    /// ```
835    /// use std::collections::LinkedList;
836    ///
837    /// let mut dl = LinkedList::new();
838    ///
839    /// dl.push_front(2);
840    /// assert_eq!(dl.front().unwrap(), &2);
841    ///
842    /// dl.push_front(1);
843    /// assert_eq!(dl.front().unwrap(), &1);
844    /// ```
845    #[stable(feature = "rust1", since = "1.0.0")]
846    pub fn push_front(&mut self, elt: T) {
847        let _ = self.push_front_mut(elt);
848    }
849
850    /// Adds an element to the front of the list, returning a reference to it.
851    ///
852    /// This operation should compute in *O*(1) time.
853    ///
854    /// # Examples
855    ///
856    /// ```
857    /// use std::collections::LinkedList;
858    ///
859    /// let mut dl = LinkedList::from([1, 2, 3]);
860    ///
861    /// let ptr = dl.push_front_mut(2);
862    /// *ptr += 4;
863    /// assert_eq!(dl.front().unwrap(), &6);
864    /// ```
865    #[stable(feature = "push_mut", since = "CURRENT_RUSTC_VERSION")]
866    #[must_use = "if you don't need a reference to the value, use `LinkedList::push_front` instead"]
867    pub fn push_front_mut(&mut self, elt: T) -> &mut T {
868        let mut node =
869            Box::into_non_null_with_allocator(Box::new_in(Node::new(elt), &self.alloc)).0;
870        // SAFETY: node is a unique pointer to a node in self.alloc
871        unsafe {
872            self.push_front_node(node);
873            &mut node.as_mut().element
874        }
875    }
876
877    /// Removes the first element and returns it, or `None` if the list is
878    /// empty.
879    ///
880    /// This operation should compute in *O*(1) time.
881    ///
882    /// # Examples
883    ///
884    /// ```
885    /// use std::collections::LinkedList;
886    ///
887    /// let mut d = LinkedList::new();
888    /// assert_eq!(d.pop_front(), None);
889    ///
890    /// d.push_front(1);
891    /// d.push_front(3);
892    /// assert_eq!(d.pop_front(), Some(3));
893    /// assert_eq!(d.pop_front(), Some(1));
894    /// assert_eq!(d.pop_front(), None);
895    /// ```
896    #[stable(feature = "rust1", since = "1.0.0")]
897    pub fn pop_front(&mut self) -> Option<T> {
898        self.pop_front_node().map(Node::into_element)
899    }
900
901    /// Adds an element to the back of the list.
902    ///
903    /// This operation should compute in *O*(1) time.
904    ///
905    /// # Examples
906    ///
907    /// ```
908    /// use std::collections::LinkedList;
909    ///
910    /// let mut d = LinkedList::new();
911    /// d.push_back(1);
912    /// d.push_back(3);
913    /// assert_eq!(3, *d.back().unwrap());
914    /// ```
915    #[stable(feature = "rust1", since = "1.0.0")]
916    #[rustc_confusables("push", "append")]
917    pub fn push_back(&mut self, elt: T) {
918        let _ = self.push_back_mut(elt);
919    }
920
921    /// Adds an element to the back of the list, returning a reference to it.
922    ///
923    /// This operation should compute in *O*(1) time.
924    ///
925    /// # Examples
926    ///
927    /// ```
928    /// use std::collections::LinkedList;
929    ///
930    /// let mut dl = LinkedList::from([1, 2, 3]);
931    ///
932    /// let ptr = dl.push_back_mut(2);
933    /// *ptr += 4;
934    /// assert_eq!(dl.back().unwrap(), &6);
935    /// ```
936    #[stable(feature = "push_mut", since = "CURRENT_RUSTC_VERSION")]
937    #[must_use = "if you don't need a reference to the value, use `LinkedList::push_back` instead"]
938    pub fn push_back_mut(&mut self, elt: T) -> &mut T {
939        let mut node =
940            Box::into_non_null_with_allocator(Box::new_in(Node::new(elt), &self.alloc)).0;
941        // SAFETY: node is a unique pointer to a node in self.alloc
942        unsafe {
943            self.push_back_node(node);
944            &mut node.as_mut().element
945        }
946    }
947
948    /// Removes the last element from a list and returns it, or `None` if
949    /// it is empty.
950    ///
951    /// This operation should compute in *O*(1) time.
952    ///
953    /// # Examples
954    ///
955    /// ```
956    /// use std::collections::LinkedList;
957    ///
958    /// let mut d = LinkedList::new();
959    /// assert_eq!(d.pop_back(), None);
960    /// d.push_back(1);
961    /// d.push_back(3);
962    /// assert_eq!(d.pop_back(), Some(3));
963    /// ```
964    #[stable(feature = "rust1", since = "1.0.0")]
965    pub fn pop_back(&mut self) -> Option<T> {
966        self.pop_back_node().map(Node::into_element)
967    }
968
969    /// Splits the list into two at the given index. Returns everything after the given index,
970    /// including the index.
971    ///
972    /// This operation should compute in *O*(*n*) time.
973    ///
974    /// # Panics
975    ///
976    /// Panics if `at > len`.
977    ///
978    /// # Examples
979    ///
980    /// ```
981    /// use std::collections::LinkedList;
982    ///
983    /// let mut d = LinkedList::new();
984    ///
985    /// d.push_front(1);
986    /// d.push_front(2);
987    /// d.push_front(3);
988    ///
989    /// let mut split = d.split_off(2);
990    ///
991    /// assert_eq!(split.pop_front(), Some(1));
992    /// assert_eq!(split.pop_front(), None);
993    /// ```
994    #[stable(feature = "rust1", since = "1.0.0")]
995    pub fn split_off(&mut self, at: usize) -> LinkedList<T, A>
996    where
997        A: Clone,
998    {
999        let len = self.len();
1000        assert!(at <= len, "Cannot split off at a nonexistent index");
1001        if at == 0 {
1002            return mem::replace(self, Self::new_in(self.alloc.clone()));
1003        } else if at == len {
1004            return Self::new_in(self.alloc.clone());
1005        }
1006
1007        // Below, we iterate towards the `i-1`th node, either from the start or the end,
1008        // depending on which would be faster.
1009        let split_node = if at - 1 <= len - 1 - (at - 1) {
1010            let mut iter = self.iter_mut();
1011            // instead of skipping using .skip() (which creates a new struct),
1012            // we skip manually so we can access the head field without
1013            // depending on implementation details of Skip
1014            for _ in 0..at - 1 {
1015                iter.next();
1016            }
1017            iter.head
1018        } else {
1019            // better off starting from the end
1020            let mut iter = self.iter_mut();
1021            for _ in 0..len - 1 - (at - 1) {
1022                iter.next_back();
1023            }
1024            iter.tail
1025        };
1026        unsafe { self.split_off_after_node(split_node, at) }
1027    }
1028
1029    /// Removes the element at the given index and returns it.
1030    ///
1031    /// This operation should compute in *O*(*n*) time.
1032    ///
1033    /// # Panics
1034    /// Panics if at >= len
1035    ///
1036    /// # Examples
1037    ///
1038    /// ```
1039    /// #![feature(linked_list_remove)]
1040    /// use std::collections::LinkedList;
1041    ///
1042    /// let mut d = LinkedList::new();
1043    ///
1044    /// d.push_front(1);
1045    /// d.push_front(2);
1046    /// d.push_front(3);
1047    ///
1048    /// assert_eq!(d.remove(1), 2);
1049    /// assert_eq!(d.remove(0), 3);
1050    /// assert_eq!(d.remove(0), 1);
1051    /// ```
1052    #[unstable(feature = "linked_list_remove", issue = "69210")]
1053    #[rustc_confusables("delete", "take")]
1054    pub fn remove(&mut self, at: usize) -> T {
1055        let len = self.len();
1056        assert!(at < len, "Cannot remove at an index outside of the list bounds");
1057
1058        // Below, we iterate towards the node at the given index, either from
1059        // the start or the end, depending on which would be faster.
1060        let offset_from_end = len - at - 1;
1061        if at <= offset_from_end {
1062            let mut cursor = self.cursor_front_mut();
1063            for _ in 0..at {
1064                cursor.move_next();
1065            }
1066            cursor.remove_current().unwrap()
1067        } else {
1068            let mut cursor = self.cursor_back_mut();
1069            for _ in 0..offset_from_end {
1070                cursor.move_prev();
1071            }
1072            cursor.remove_current().unwrap()
1073        }
1074    }
1075
1076    /// Retains only the elements specified by the predicate.
1077    ///
1078    /// In other words, remove all elements `e` for which `f(&mut e)` returns false.
1079    /// This method operates in place, visiting each element exactly once in the
1080    /// original order, and preserves the order of the retained elements.
1081    ///
1082    /// # Examples
1083    ///
1084    /// ```
1085    /// #![feature(linked_list_retain)]
1086    /// use std::collections::LinkedList;
1087    ///
1088    /// let mut d = LinkedList::new();
1089    ///
1090    /// d.push_front(1);
1091    /// d.push_front(2);
1092    /// d.push_front(3);
1093    ///
1094    /// d.retain(|&mut x| x % 2 == 0);
1095    ///
1096    /// assert_eq!(d.pop_front(), Some(2));
1097    /// assert_eq!(d.pop_front(), None);
1098    /// ```
1099    ///
1100    /// Because the elements are visited exactly once in the original order,
1101    /// external state may be used to decide which elements to keep.
1102    ///
1103    /// ```
1104    /// #![feature(linked_list_retain)]
1105    /// use std::collections::LinkedList;
1106    ///
1107    /// let mut d = LinkedList::new();
1108    ///
1109    /// d.push_front(1);
1110    /// d.push_front(2);
1111    /// d.push_front(3);
1112    ///
1113    /// let keep = [false, true, false];
1114    /// let mut iter = keep.iter();
1115    /// d.retain(|_| *iter.next().unwrap());
1116    /// assert_eq!(d.pop_front(), Some(2));
1117    /// assert_eq!(d.pop_front(), None);
1118    /// ```
1119    #[unstable(feature = "linked_list_retain", issue = "114135")]
1120    pub fn retain<F>(&mut self, mut f: F)
1121    where
1122        F: FnMut(&mut T) -> bool,
1123    {
1124        let mut cursor = self.cursor_front_mut();
1125        while let Some(node) = cursor.current() {
1126            if !f(node) {
1127                cursor.remove_current().unwrap();
1128            } else {
1129                cursor.move_next();
1130            }
1131        }
1132    }
1133
1134    /// Creates an iterator which uses a closure to determine if an element should be removed.
1135    ///
1136    /// If the closure returns `true`, the element is removed from the list and
1137    /// yielded. If the closure returns `false`, or panics, the element remains
1138    /// in the list and will not be yielded.
1139    ///
1140    /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating
1141    /// or the iteration short-circuits, then the remaining elements will be retained.
1142    /// Use `extract_if().for_each(drop)` if you do not need the returned iterator.
1143    ///
1144    /// The iterator also lets you mutate the value of each element in the
1145    /// closure, regardless of whether you choose to keep or remove it.
1146    ///
1147    /// # Examples
1148    ///
1149    /// Splitting a list into even and odd values, reusing the original list:
1150    ///
1151    /// ```
1152    /// use std::collections::LinkedList;
1153    ///
1154    /// let mut numbers: LinkedList<u32> = LinkedList::new();
1155    /// numbers.extend(&[1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15]);
1156    ///
1157    /// let evens = numbers.extract_if(|x| *x % 2 == 0).collect::<LinkedList<_>>();
1158    /// let odds = numbers;
1159    ///
1160    /// assert_eq!(evens.into_iter().collect::<Vec<_>>(), vec![2, 4, 6, 8, 14]);
1161    /// assert_eq!(odds.into_iter().collect::<Vec<_>>(), vec![1, 3, 5, 9, 11, 13, 15]);
1162    /// ```
1163    #[stable(feature = "extract_if", since = "1.87.0")]
1164    pub fn extract_if<F>(&mut self, filter: F) -> ExtractIf<'_, T, F, A>
1165    where
1166        F: FnMut(&mut T) -> bool,
1167    {
1168        // avoid borrow issues.
1169        let it = self.head;
1170        let old_len = self.len;
1171
1172        ExtractIf { list: self, it, pred: filter, idx: 0, old_len }
1173    }
1174}
1175
1176#[stable(feature = "rust1", since = "1.0.0")]
1177unsafe impl<#[may_dangle] T, A: Allocator> Drop for LinkedList<T, A> {
1178    fn drop(&mut self) {
1179        struct DropGuard<'a, T, A: Allocator>(&'a mut LinkedList<T, A>);
1180
1181        impl<'a, T, A: Allocator> Drop for DropGuard<'a, T, A> {
1182            fn drop(&mut self) {
1183                // Continue the same loop we do below. This only runs when a destructor has
1184                // panicked. If another one panics this will abort.
1185                while self.0.pop_front_node().is_some() {}
1186            }
1187        }
1188
1189        // Wrap self so that if a destructor panics, we can try to keep looping
1190        let guard = DropGuard(self);
1191        while guard.0.pop_front_node().is_some() {}
1192        mem::forget(guard);
1193    }
1194}
1195
1196#[stable(feature = "rust1", since = "1.0.0")]
1197impl<'a, T> Iterator for Iter<'a, T> {
1198    type Item = &'a T;
1199
1200    #[inline]
1201    fn next(&mut self) -> Option<&'a T> {
1202        if self.len == 0 {
1203            None
1204        } else {
1205            self.head.map(|node| unsafe {
1206                // Need an unbound lifetime to get 'a
1207                let node = &*node.as_ptr();
1208                self.len -= 1;
1209                self.head = node.next;
1210                &node.element
1211            })
1212        }
1213    }
1214
1215    #[inline]
1216    fn size_hint(&self) -> (usize, Option<usize>) {
1217        (self.len, Some(self.len))
1218    }
1219
1220    #[inline]
1221    fn last(mut self) -> Option<&'a T> {
1222        self.next_back()
1223    }
1224}
1225
1226#[stable(feature = "rust1", since = "1.0.0")]
1227impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
1228    #[inline]
1229    fn next_back(&mut self) -> Option<&'a T> {
1230        if self.len == 0 {
1231            None
1232        } else {
1233            self.tail.map(|node| unsafe {
1234                // Need an unbound lifetime to get 'a
1235                let node = &*node.as_ptr();
1236                self.len -= 1;
1237                self.tail = node.prev;
1238                &node.element
1239            })
1240        }
1241    }
1242}
1243
1244#[stable(feature = "rust1", since = "1.0.0")]
1245impl<T> ExactSizeIterator for Iter<'_, T> {}
1246
1247#[stable(feature = "fused", since = "1.26.0")]
1248impl<T> FusedIterator for Iter<'_, T> {}
1249
1250#[stable(feature = "default_iters", since = "1.70.0")]
1251impl<T> Default for Iter<'_, T> {
1252    /// Creates an empty `linked_list::Iter`.
1253    ///
1254    /// ```
1255    /// # use std::collections::linked_list;
1256    /// let iter: linked_list::Iter<'_, u8> = Default::default();
1257    /// assert_eq!(iter.len(), 0);
1258    /// ```
1259    fn default() -> Self {
1260        Iter { head: None, tail: None, len: 0, marker: Default::default() }
1261    }
1262}
1263
1264#[stable(feature = "rust1", since = "1.0.0")]
1265impl<'a, T> Iterator for IterMut<'a, T> {
1266    type Item = &'a mut T;
1267
1268    #[inline]
1269    fn next(&mut self) -> Option<&'a mut T> {
1270        if self.len == 0 {
1271            None
1272        } else {
1273            self.head.map(|node| unsafe {
1274                // Need an unbound lifetime to get 'a
1275                let node = &mut *node.as_ptr();
1276                self.len -= 1;
1277                self.head = node.next;
1278                &mut node.element
1279            })
1280        }
1281    }
1282
1283    #[inline]
1284    fn size_hint(&self) -> (usize, Option<usize>) {
1285        (self.len, Some(self.len))
1286    }
1287
1288    #[inline]
1289    fn last(mut self) -> Option<&'a mut T> {
1290        self.next_back()
1291    }
1292}
1293
1294#[stable(feature = "rust1", since = "1.0.0")]
1295impl<'a, T> DoubleEndedIterator for IterMut<'a, T> {
1296    #[inline]
1297    fn next_back(&mut self) -> Option<&'a mut T> {
1298        if self.len == 0 {
1299            None
1300        } else {
1301            self.tail.map(|node| unsafe {
1302                // Need an unbound lifetime to get 'a
1303                let node = &mut *node.as_ptr();
1304                self.len -= 1;
1305                self.tail = node.prev;
1306                &mut node.element
1307            })
1308        }
1309    }
1310}
1311
1312#[stable(feature = "rust1", since = "1.0.0")]
1313impl<T> ExactSizeIterator for IterMut<'_, T> {}
1314
1315#[stable(feature = "fused", since = "1.26.0")]
1316impl<T> FusedIterator for IterMut<'_, T> {}
1317
1318#[stable(feature = "default_iters", since = "1.70.0")]
1319impl<T> Default for IterMut<'_, T> {
1320    fn default() -> Self {
1321        IterMut { head: None, tail: None, len: 0, marker: Default::default() }
1322    }
1323}
1324
1325/// A cursor over a `LinkedList`.
1326///
1327/// A `Cursor` is like an iterator, except that it can freely seek back-and-forth.
1328///
1329/// Cursors always rest between two elements in the list, and index in a logically circular way.
1330/// To accommodate this, there is a "ghost" non-element that yields `None` between the head and
1331/// tail of the list.
1332///
1333/// When created, cursors start at the front of the list, or the "ghost" non-element if the list is empty.
1334#[unstable(feature = "linked_list_cursors", issue = "58533")]
1335pub struct Cursor<
1336    'a,
1337    T: 'a,
1338    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
1339> {
1340    index: usize,
1341    current: Option<NonNull<Node<T>>>,
1342    list: &'a LinkedList<T, A>,
1343}
1344
1345#[unstable(feature = "linked_list_cursors", issue = "58533")]
1346impl<T, A: Allocator> Clone for Cursor<'_, T, A> {
1347    fn clone(&self) -> Self {
1348        let Cursor { index, current, list } = *self;
1349        Cursor { index, current, list }
1350    }
1351}
1352
1353#[unstable(feature = "linked_list_cursors", issue = "58533")]
1354impl<T: fmt::Debug, A: Allocator> fmt::Debug for Cursor<'_, T, A> {
1355    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1356        f.debug_tuple("Cursor").field(&self.list).field(&self.index()).finish()
1357    }
1358}
1359
1360/// A cursor over a `LinkedList` with editing operations.
1361///
1362/// A `Cursor` is like an iterator, except that it can freely seek back-and-forth, and can
1363/// safely mutate the list during iteration. This is because the lifetime of its yielded
1364/// references is tied to its own lifetime, instead of just the underlying list. This means
1365/// cursors cannot yield multiple elements at once.
1366///
1367/// Cursors always rest between two elements in the list, and index in a logically circular way.
1368/// To accommodate this, there is a "ghost" non-element that yields `None` between the head and
1369/// tail of the list.
1370#[unstable(feature = "linked_list_cursors", issue = "58533")]
1371pub struct CursorMut<
1372    'a,
1373    T: 'a,
1374    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
1375> {
1376    index: usize,
1377    current: Option<NonNull<Node<T>>>,
1378    list: &'a mut LinkedList<T, A>,
1379}
1380
1381#[unstable(feature = "linked_list_cursors", issue = "58533")]
1382impl<T: fmt::Debug, A: Allocator> fmt::Debug for CursorMut<'_, T, A> {
1383    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1384        f.debug_tuple("CursorMut").field(&self.list).field(&self.index()).finish()
1385    }
1386}
1387
1388impl<'a, T, A: Allocator> Cursor<'a, T, A> {
1389    /// Returns the cursor position index within the `LinkedList`.
1390    ///
1391    /// This returns `None` if the cursor is currently pointing to the
1392    /// "ghost" non-element.
1393    #[must_use]
1394    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1395    pub fn index(&self) -> Option<usize> {
1396        let _ = self.current?;
1397        Some(self.index)
1398    }
1399
1400    /// Moves the cursor to the next element of the `LinkedList`.
1401    ///
1402    /// If the cursor is pointing to the "ghost" non-element then this will move it to
1403    /// the first element of the `LinkedList`. If it is pointing to the last
1404    /// element of the `LinkedList` then this will move it to the "ghost" non-element.
1405    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1406    pub fn move_next(&mut self) {
1407        match self.current.take() {
1408            // We had no current element; the cursor was sitting at the start position
1409            // Next element should be the head of the list
1410            None => {
1411                self.current = self.list.head;
1412                self.index = 0;
1413            }
1414            // We had a previous element, so let's go to its next
1415            Some(current) => unsafe {
1416                self.current = current.as_ref().next;
1417                self.index += 1;
1418            },
1419        }
1420    }
1421
1422    /// Moves the cursor to the previous element of the `LinkedList`.
1423    ///
1424    /// If the cursor is pointing to the "ghost" non-element then this will move it to
1425    /// the last element of the `LinkedList`. If it is pointing to the first
1426    /// element of the `LinkedList` then this will move it to the "ghost" non-element.
1427    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1428    pub fn move_prev(&mut self) {
1429        match self.current.take() {
1430            // No current. We're at the start of the list. Yield None and jump to the end.
1431            None => {
1432                self.current = self.list.tail;
1433                self.index = self.list.len().saturating_sub(1);
1434            }
1435            // Have a prev. Yield it and go to the previous element.
1436            Some(current) => unsafe {
1437                self.current = current.as_ref().prev;
1438                self.index = self.index.checked_sub(1).unwrap_or_else(|| self.list.len());
1439            },
1440        }
1441    }
1442
1443    /// Returns a reference to the element that the cursor is currently
1444    /// pointing to.
1445    ///
1446    /// This returns `None` if the cursor is currently pointing to the
1447    /// "ghost" non-element.
1448    #[must_use]
1449    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1450    pub fn current(&self) -> Option<&'a T> {
1451        unsafe { self.current.map(|current| &(*current.as_ptr()).element) }
1452    }
1453
1454    /// Returns a reference to the next element.
1455    ///
1456    /// If the cursor is pointing to the "ghost" non-element then this returns
1457    /// the first element of the `LinkedList`. If it is pointing to the last
1458    /// element of the `LinkedList` then this returns `None`.
1459    #[must_use]
1460    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1461    pub fn peek_next(&self) -> Option<&'a T> {
1462        unsafe {
1463            let next = match self.current {
1464                None => self.list.head,
1465                Some(current) => current.as_ref().next,
1466            };
1467            next.map(|next| &(*next.as_ptr()).element)
1468        }
1469    }
1470
1471    /// Returns a reference to the previous element.
1472    ///
1473    /// If the cursor is pointing to the "ghost" non-element then this returns
1474    /// the last element of the `LinkedList`. If it is pointing to the first
1475    /// element of the `LinkedList` then this returns `None`.
1476    #[must_use]
1477    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1478    pub fn peek_prev(&self) -> Option<&'a T> {
1479        unsafe {
1480            let prev = match self.current {
1481                None => self.list.tail,
1482                Some(current) => current.as_ref().prev,
1483            };
1484            prev.map(|prev| &(*prev.as_ptr()).element)
1485        }
1486    }
1487
1488    /// Provides a reference to the front element of the cursor's parent list,
1489    /// or None if the list is empty.
1490    #[must_use]
1491    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1492    #[rustc_confusables("first")]
1493    pub fn front(&self) -> Option<&'a T> {
1494        self.list.front()
1495    }
1496
1497    /// Provides a reference to the back element of the cursor's parent list,
1498    /// or None if the list is empty.
1499    #[must_use]
1500    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1501    #[rustc_confusables("last")]
1502    pub fn back(&self) -> Option<&'a T> {
1503        self.list.back()
1504    }
1505
1506    /// Provides a reference to the cursor's parent list.
1507    #[must_use]
1508    #[inline(always)]
1509    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1510    pub fn as_list(&self) -> &'a LinkedList<T, A> {
1511        self.list
1512    }
1513}
1514
1515impl<'a, T, A: Allocator> CursorMut<'a, T, A> {
1516    /// Returns the cursor position index within the `LinkedList`.
1517    ///
1518    /// This returns `None` if the cursor is currently pointing to the
1519    /// "ghost" non-element.
1520    #[must_use]
1521    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1522    pub fn index(&self) -> Option<usize> {
1523        let _ = self.current?;
1524        Some(self.index)
1525    }
1526
1527    /// Moves the cursor to the next element of the `LinkedList`.
1528    ///
1529    /// If the cursor is pointing to the "ghost" non-element then this will move it to
1530    /// the first element of the `LinkedList`. If it is pointing to the last
1531    /// element of the `LinkedList` then this will move it to the "ghost" non-element.
1532    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1533    pub fn move_next(&mut self) {
1534        match self.current.take() {
1535            // We had no current element; the cursor was sitting at the start position
1536            // Next element should be the head of the list
1537            None => {
1538                self.current = self.list.head;
1539                self.index = 0;
1540            }
1541            // We had a previous element, so let's go to its next
1542            Some(current) => unsafe {
1543                self.current = current.as_ref().next;
1544                self.index += 1;
1545            },
1546        }
1547    }
1548
1549    /// Moves the cursor to the previous element of the `LinkedList`.
1550    ///
1551    /// If the cursor is pointing to the "ghost" non-element then this will move it to
1552    /// the last element of the `LinkedList`. If it is pointing to the first
1553    /// element of the `LinkedList` then this will move it to the "ghost" non-element.
1554    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1555    pub fn move_prev(&mut self) {
1556        match self.current.take() {
1557            // No current. We're at the start of the list. Yield None and jump to the end.
1558            None => {
1559                self.current = self.list.tail;
1560                self.index = self.list.len().saturating_sub(1);
1561            }
1562            // Have a prev. Yield it and go to the previous element.
1563            Some(current) => unsafe {
1564                self.current = current.as_ref().prev;
1565                self.index = self.index.checked_sub(1).unwrap_or_else(|| self.list.len());
1566            },
1567        }
1568    }
1569
1570    /// Returns a reference to the element that the cursor is currently
1571    /// pointing to.
1572    ///
1573    /// This returns `None` if the cursor is currently pointing to the
1574    /// "ghost" non-element.
1575    #[must_use]
1576    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1577    pub fn current(&mut self) -> Option<&mut T> {
1578        unsafe { self.current.map(|current| &mut (*current.as_ptr()).element) }
1579    }
1580
1581    /// Returns a reference to the next element.
1582    ///
1583    /// If the cursor is pointing to the "ghost" non-element then this returns
1584    /// the first element of the `LinkedList`. If it is pointing to the last
1585    /// element of the `LinkedList` then this returns `None`.
1586    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1587    pub fn peek_next(&mut self) -> Option<&mut T> {
1588        unsafe {
1589            let next = match self.current {
1590                None => self.list.head,
1591                Some(current) => current.as_ref().next,
1592            };
1593            next.map(|next| &mut (*next.as_ptr()).element)
1594        }
1595    }
1596
1597    /// Returns a reference to the previous element.
1598    ///
1599    /// If the cursor is pointing to the "ghost" non-element then this returns
1600    /// the last element of the `LinkedList`. If it is pointing to the first
1601    /// element of the `LinkedList` then this returns `None`.
1602    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1603    pub fn peek_prev(&mut self) -> Option<&mut T> {
1604        unsafe {
1605            let prev = match self.current {
1606                None => self.list.tail,
1607                Some(current) => current.as_ref().prev,
1608            };
1609            prev.map(|prev| &mut (*prev.as_ptr()).element)
1610        }
1611    }
1612
1613    /// Returns a read-only cursor pointing to the current element.
1614    ///
1615    /// The lifetime of the returned `Cursor` is bound to that of the
1616    /// `CursorMut`, which means it cannot outlive the `CursorMut` and that the
1617    /// `CursorMut` is frozen for the lifetime of the `Cursor`.
1618    #[must_use]
1619    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1620    pub fn as_cursor(&self) -> Cursor<'_, T, A> {
1621        Cursor { list: self.list, current: self.current, index: self.index }
1622    }
1623
1624    /// Provides a read-only reference to the cursor's parent list.
1625    ///
1626    /// The lifetime of the returned reference is bound to that of the
1627    /// `CursorMut`, which means it cannot outlive the `CursorMut` and that the
1628    /// `CursorMut` is frozen for the lifetime of the reference.
1629    #[must_use]
1630    #[inline(always)]
1631    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1632    pub fn as_list(&self) -> &LinkedList<T, A> {
1633        self.list
1634    }
1635}
1636
1637// Now the list editing operations
1638
1639impl<'a, T> CursorMut<'a, T> {
1640    /// Inserts the elements from the given `LinkedList` after the current one.
1641    ///
1642    /// If the cursor is pointing at the "ghost" non-element then the new elements are
1643    /// inserted at the start of the `LinkedList`.
1644    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1645    pub fn splice_after(&mut self, list: LinkedList<T>) {
1646        unsafe {
1647            let Some((splice_head, splice_tail, splice_len)) = list.detach_all_nodes() else {
1648                return;
1649            };
1650            let node_next = match self.current {
1651                None => self.list.head,
1652                Some(node) => node.as_ref().next,
1653            };
1654            self.list.splice_nodes(self.current, node_next, splice_head, splice_tail, splice_len);
1655            if self.current.is_none() {
1656                // The "ghost" non-element's index has changed.
1657                self.index = self.list.len;
1658            }
1659        }
1660    }
1661
1662    /// Inserts the elements from the given `LinkedList` before the current one.
1663    ///
1664    /// If the cursor is pointing at the "ghost" non-element then the new elements are
1665    /// inserted at the end of the `LinkedList`.
1666    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1667    pub fn splice_before(&mut self, list: LinkedList<T>) {
1668        unsafe {
1669            let (splice_head, splice_tail, splice_len) = match list.detach_all_nodes() {
1670                Some(parts) => parts,
1671                _ => return,
1672            };
1673            let node_prev = match self.current {
1674                None => self.list.tail,
1675                Some(node) => node.as_ref().prev,
1676            };
1677            self.list.splice_nodes(node_prev, self.current, splice_head, splice_tail, splice_len);
1678            self.index += splice_len;
1679        }
1680    }
1681}
1682
1683impl<'a, T, A: Allocator> CursorMut<'a, T, A> {
1684    /// Inserts a new element into the `LinkedList` after the current one.
1685    ///
1686    /// If the cursor is pointing at the "ghost" non-element then the new element is
1687    /// inserted at the front of the `LinkedList`.
1688    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1689    pub fn insert_after(&mut self, item: T) {
1690        unsafe {
1691            let spliced_node =
1692                Box::into_non_null_with_allocator(Box::new_in(Node::new(item), &self.list.alloc)).0;
1693            let node_next = match self.current {
1694                None => self.list.head,
1695                Some(node) => node.as_ref().next,
1696            };
1697            self.list.splice_nodes(self.current, node_next, spliced_node, spliced_node, 1);
1698            if self.current.is_none() {
1699                // The "ghost" non-element's index has changed.
1700                self.index = self.list.len;
1701            }
1702        }
1703    }
1704
1705    /// Inserts a new element into the `LinkedList` before the current one.
1706    ///
1707    /// If the cursor is pointing at the "ghost" non-element then the new element is
1708    /// inserted at the end of the `LinkedList`.
1709    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1710    pub fn insert_before(&mut self, item: T) {
1711        unsafe {
1712            let spliced_node =
1713                Box::into_non_null_with_allocator(Box::new_in(Node::new(item), &self.list.alloc)).0;
1714            let node_prev = match self.current {
1715                None => self.list.tail,
1716                Some(node) => node.as_ref().prev,
1717            };
1718            self.list.splice_nodes(node_prev, self.current, spliced_node, spliced_node, 1);
1719            self.index += 1;
1720        }
1721    }
1722
1723    /// Removes the current element from the `LinkedList`.
1724    ///
1725    /// The element that was removed is returned, and the cursor is
1726    /// moved to point to the next element in the `LinkedList`.
1727    ///
1728    /// If the cursor is currently pointing to the "ghost" non-element then no element
1729    /// is removed and `None` is returned.
1730    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1731    pub fn remove_current(&mut self) -> Option<T> {
1732        let unlinked_node = self.current?;
1733        unsafe {
1734            self.current = unlinked_node.as_ref().next;
1735            self.list.unlink_node(unlinked_node);
1736            let unlinked_node = Box::from_raw_in(unlinked_node.as_ptr(), &self.list.alloc);
1737            Some(unlinked_node.element)
1738        }
1739    }
1740
1741    /// Removes the current element from the `LinkedList` without deallocating the list node.
1742    ///
1743    /// The node that was removed is returned as a new `LinkedList` containing only this node.
1744    /// The cursor is moved to point to the next element in the current `LinkedList`.
1745    ///
1746    /// If the cursor is currently pointing to the "ghost" non-element then no element
1747    /// is removed and `None` is returned.
1748    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1749    pub fn remove_current_as_list(&mut self) -> Option<LinkedList<T, A>>
1750    where
1751        A: Clone,
1752    {
1753        let mut unlinked_node = self.current?;
1754        unsafe {
1755            self.current = unlinked_node.as_ref().next;
1756            self.list.unlink_node(unlinked_node);
1757
1758            unlinked_node.as_mut().prev = None;
1759            unlinked_node.as_mut().next = None;
1760            Some(LinkedList {
1761                head: Some(unlinked_node),
1762                tail: Some(unlinked_node),
1763                len: 1,
1764                alloc: self.list.alloc.clone(),
1765                marker: PhantomData,
1766            })
1767        }
1768    }
1769
1770    /// Splits the list into two after the current element. This will return a
1771    /// new list consisting of everything after the cursor, with the original
1772    /// list retaining everything before.
1773    ///
1774    /// If the cursor is pointing at the "ghost" non-element then the entire contents
1775    /// of the `LinkedList` are moved.
1776    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1777    pub fn split_after(&mut self) -> LinkedList<T, A>
1778    where
1779        A: Clone,
1780    {
1781        let split_off_idx = if self.index == self.list.len { 0 } else { self.index + 1 };
1782        if self.index == self.list.len {
1783            // The "ghost" non-element's index has changed to 0.
1784            self.index = 0;
1785        }
1786        unsafe { self.list.split_off_after_node(self.current, split_off_idx) }
1787    }
1788
1789    /// Splits the list into two before the current element. This will return a
1790    /// new list consisting of everything before the cursor, with the original
1791    /// list retaining everything after.
1792    ///
1793    /// If the cursor is pointing at the "ghost" non-element then the entire contents
1794    /// of the `LinkedList` are moved.
1795    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1796    pub fn split_before(&mut self) -> LinkedList<T, A>
1797    where
1798        A: Clone,
1799    {
1800        let split_off_idx = self.index;
1801        self.index = 0;
1802        unsafe { self.list.split_off_before_node(self.current, split_off_idx) }
1803    }
1804
1805    /// Appends an element to the front of the cursor's parent list. The node
1806    /// that the cursor points to is unchanged, even if it is the "ghost" node.
1807    ///
1808    /// This operation should compute in *O*(1) time.
1809    // `push_front` continues to point to "ghost" when it adds a node to mimic
1810    // the behavior of `insert_before` on an empty list.
1811    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1812    pub fn push_front(&mut self, elt: T) {
1813        // Safety: We know that `push_front` does not change the position in
1814        // memory of other nodes. This ensures that `self.current` remains
1815        // valid.
1816        self.list.push_front(elt);
1817        self.index += 1;
1818    }
1819
1820    /// Appends an element to the back of the cursor's parent list. The node
1821    /// that the cursor points to is unchanged, even if it is the "ghost" node.
1822    ///
1823    /// This operation should compute in *O*(1) time.
1824    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1825    #[rustc_confusables("push", "append")]
1826    pub fn push_back(&mut self, elt: T) {
1827        // Safety: We know that `push_back` does not change the position in
1828        // memory of other nodes. This ensures that `self.current` remains
1829        // valid.
1830        self.list.push_back(elt);
1831        if self.current().is_none() {
1832            // The index of "ghost" is the length of the list, so we just need
1833            // to increment self.index to reflect the new length of the list.
1834            self.index += 1;
1835        }
1836    }
1837
1838    /// Removes the first element from the cursor's parent list and returns it,
1839    /// or None if the list is empty. The element the cursor points to remains
1840    /// unchanged, unless it was pointing to the front element. In that case, it
1841    /// points to the new front element.
1842    ///
1843    /// This operation should compute in *O*(1) time.
1844    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1845    pub fn pop_front(&mut self) -> Option<T> {
1846        // We can't check if current is empty, we must check the list directly.
1847        // It is possible for `self.current == None` and the list to be
1848        // non-empty.
1849        if self.list.is_empty() {
1850            None
1851        } else {
1852            // We can't point to the node that we pop. Copying the behavior of
1853            // `remove_current`, we move on to the next node in the sequence.
1854            // If the list is of length 1 then we end pointing to the "ghost"
1855            // node at index 0, which is expected.
1856            if self.list.head == self.current {
1857                self.move_next();
1858            }
1859            // An element was removed before (or at) our current position, so
1860            // the index must be decremented. `saturating_sub` handles the
1861            // ghost node case where index could be 0.
1862            self.index = self.index.saturating_sub(1);
1863            self.list.pop_front()
1864        }
1865    }
1866
1867    /// Removes the last element from the cursor's parent list and returns it,
1868    /// or None if the list is empty. The element the cursor points to remains
1869    /// unchanged, unless it was pointing to the back element. In that case, it
1870    /// points to the "ghost" element.
1871    ///
1872    /// This operation should compute in *O*(1) time.
1873    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1874    #[rustc_confusables("pop")]
1875    pub fn pop_back(&mut self) -> Option<T> {
1876        if self.list.is_empty() {
1877            None
1878        } else {
1879            if self.list.tail == self.current {
1880                // The index now reflects the length of the list. It was the
1881                // length of the list minus 1, but now the list is 1 smaller. No
1882                // change is needed for `index`.
1883                self.current = None;
1884            } else if self.current.is_none() {
1885                self.index = self.list.len - 1;
1886            }
1887            self.list.pop_back()
1888        }
1889    }
1890
1891    /// Provides a reference to the front element of the cursor's parent list,
1892    /// or None if the list is empty.
1893    #[must_use]
1894    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1895    #[rustc_confusables("first")]
1896    pub fn front(&self) -> Option<&T> {
1897        self.list.front()
1898    }
1899
1900    /// Provides a mutable reference to the front element of the cursor's
1901    /// parent list, or None if the list is empty.
1902    #[must_use]
1903    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1904    pub fn front_mut(&mut self) -> Option<&mut T> {
1905        self.list.front_mut()
1906    }
1907
1908    /// Provides a reference to the back element of the cursor's parent list,
1909    /// or None if the list is empty.
1910    #[must_use]
1911    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1912    #[rustc_confusables("last")]
1913    pub fn back(&self) -> Option<&T> {
1914        self.list.back()
1915    }
1916
1917    /// Provides a mutable reference to back element of the cursor's parent
1918    /// list, or `None` if the list is empty.
1919    ///
1920    /// # Examples
1921    /// Building and mutating a list with a cursor, then getting the back element:
1922    /// ```
1923    /// #![feature(linked_list_cursors)]
1924    /// use std::collections::LinkedList;
1925    /// let mut dl = LinkedList::new();
1926    /// dl.push_front(3);
1927    /// dl.push_front(2);
1928    /// dl.push_front(1);
1929    /// let mut cursor = dl.cursor_front_mut();
1930    /// *cursor.current().unwrap() = 99;
1931    /// *cursor.back_mut().unwrap() = 0;
1932    /// let mut contents = dl.into_iter();
1933    /// assert_eq!(contents.next(), Some(99));
1934    /// assert_eq!(contents.next(), Some(2));
1935    /// assert_eq!(contents.next(), Some(0));
1936    /// assert_eq!(contents.next(), None);
1937    /// ```
1938    #[must_use]
1939    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1940    pub fn back_mut(&mut self) -> Option<&mut T> {
1941        self.list.back_mut()
1942    }
1943}
1944
1945/// An iterator produced by calling `extract_if` on LinkedList.
1946#[stable(feature = "extract_if", since = "1.87.0")]
1947#[must_use = "iterators are lazy and do nothing unless consumed; \
1948    use `extract_if().for_each(drop)` to remove and discard elements"]
1949pub struct ExtractIf<
1950    'a,
1951    T: 'a,
1952    F: 'a,
1953    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
1954> {
1955    list: &'a mut LinkedList<T, A>,
1956    it: Option<NonNull<Node<T>>>,
1957    pred: F,
1958    idx: usize,
1959    old_len: usize,
1960}
1961
1962#[stable(feature = "extract_if", since = "1.87.0")]
1963impl<T, F, A: Allocator> Iterator for ExtractIf<'_, T, F, A>
1964where
1965    F: FnMut(&mut T) -> bool,
1966{
1967    type Item = T;
1968
1969    fn next(&mut self) -> Option<T> {
1970        while let Some(mut node) = self.it {
1971            unsafe {
1972                self.it = node.as_ref().next;
1973                self.idx += 1;
1974
1975                if (self.pred)(&mut node.as_mut().element) {
1976                    // `unlink_node` is okay with aliasing `element` references.
1977                    self.list.unlink_node(node);
1978                    return Some(Box::from_raw_in(node.as_ptr(), &self.list.alloc).element);
1979                }
1980            }
1981        }
1982
1983        None
1984    }
1985
1986    fn size_hint(&self) -> (usize, Option<usize>) {
1987        (0, Some(self.old_len - self.idx))
1988    }
1989}
1990
1991#[stable(feature = "extract_if", since = "1.87.0")]
1992impl<T, F, A> fmt::Debug for ExtractIf<'_, T, F, A>
1993where
1994    T: fmt::Debug,
1995    A: Allocator,
1996{
1997    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1998        let peek = self.it.map(|node| unsafe { &node.as_ref().element });
1999        f.debug_struct("ExtractIf").field("peek", &peek).finish_non_exhaustive()
2000    }
2001}
2002
2003#[stable(feature = "rust1", since = "1.0.0")]
2004impl<T, A: Allocator> Iterator for IntoIter<T, A> {
2005    type Item = T;
2006
2007    #[inline]
2008    fn next(&mut self) -> Option<T> {
2009        self.list.pop_front()
2010    }
2011
2012    #[inline]
2013    fn size_hint(&self) -> (usize, Option<usize>) {
2014        (self.list.len, Some(self.list.len))
2015    }
2016}
2017
2018#[stable(feature = "rust1", since = "1.0.0")]
2019impl<T, A: Allocator> DoubleEndedIterator for IntoIter<T, A> {
2020    #[inline]
2021    fn next_back(&mut self) -> Option<T> {
2022        self.list.pop_back()
2023    }
2024}
2025
2026#[stable(feature = "rust1", since = "1.0.0")]
2027impl<T, A: Allocator> ExactSizeIterator for IntoIter<T, A> {}
2028
2029#[stable(feature = "fused", since = "1.26.0")]
2030impl<T, A: Allocator> FusedIterator for IntoIter<T, A> {}
2031
2032#[stable(feature = "default_iters", since = "1.70.0")]
2033impl<T> Default for IntoIter<T> {
2034    /// Creates an empty `linked_list::IntoIter`.
2035    ///
2036    /// ```
2037    /// # use std::collections::linked_list;
2038    /// let iter: linked_list::IntoIter<u8> = Default::default();
2039    /// assert_eq!(iter.len(), 0);
2040    /// ```
2041    fn default() -> Self {
2042        LinkedList::new().into_iter()
2043    }
2044}
2045
2046#[stable(feature = "rust1", since = "1.0.0")]
2047impl<T> FromIterator<T> for LinkedList<T> {
2048    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
2049        let mut list = Self::new();
2050        list.extend(iter);
2051        list
2052    }
2053}
2054
2055#[stable(feature = "rust1", since = "1.0.0")]
2056impl<T, A: Allocator> IntoIterator for LinkedList<T, A> {
2057    type Item = T;
2058    type IntoIter = IntoIter<T, A>;
2059
2060    /// Consumes the list into an iterator yielding elements by value.
2061    #[inline]
2062    fn into_iter(self) -> IntoIter<T, A> {
2063        IntoIter { list: self }
2064    }
2065}
2066
2067#[stable(feature = "rust1", since = "1.0.0")]
2068impl<'a, T, A: Allocator> IntoIterator for &'a LinkedList<T, A> {
2069    type Item = &'a T;
2070    type IntoIter = Iter<'a, T>;
2071
2072    fn into_iter(self) -> Iter<'a, T> {
2073        self.iter()
2074    }
2075}
2076
2077#[stable(feature = "rust1", since = "1.0.0")]
2078impl<'a, T, A: Allocator> IntoIterator for &'a mut LinkedList<T, A> {
2079    type Item = &'a mut T;
2080    type IntoIter = IterMut<'a, T>;
2081
2082    fn into_iter(self) -> IterMut<'a, T> {
2083        self.iter_mut()
2084    }
2085}
2086
2087#[stable(feature = "rust1", since = "1.0.0")]
2088impl<T, A: Allocator> Extend<T> for LinkedList<T, A> {
2089    fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
2090        <Self as SpecExtend<I>>::spec_extend(self, iter);
2091    }
2092
2093    #[inline]
2094    fn extend_one(&mut self, elem: T) {
2095        self.push_back(elem);
2096    }
2097}
2098
2099impl<I: IntoIterator, A: Allocator> SpecExtend<I> for LinkedList<I::Item, A> {
2100    default fn spec_extend(&mut self, iter: I) {
2101        iter.into_iter().for_each(move |elt| self.push_back(elt));
2102    }
2103}
2104
2105impl<T> SpecExtend<LinkedList<T>> for LinkedList<T> {
2106    fn spec_extend(&mut self, ref mut other: LinkedList<T>) {
2107        self.append(other);
2108    }
2109}
2110
2111#[stable(feature = "extend_ref", since = "1.2.0")]
2112impl<'a, T: 'a + Copy, A: Allocator> Extend<&'a T> for LinkedList<T, A> {
2113    fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
2114        self.extend(iter.into_iter().cloned());
2115    }
2116
2117    #[inline]
2118    fn extend_one(&mut self, &elem: &'a T) {
2119        self.push_back(elem);
2120    }
2121}
2122
2123#[stable(feature = "rust1", since = "1.0.0")]
2124impl<T: PartialEq, A: Allocator> PartialEq for LinkedList<T, A> {
2125    fn eq(&self, other: &Self) -> bool {
2126        self.len() == other.len() && self.iter().eq(other)
2127    }
2128
2129    fn ne(&self, other: &Self) -> bool {
2130        self.len() != other.len() || self.iter().ne(other)
2131    }
2132}
2133
2134#[stable(feature = "rust1", since = "1.0.0")]
2135impl<T: Eq, A: Allocator> Eq for LinkedList<T, A> {}
2136
2137#[stable(feature = "rust1", since = "1.0.0")]
2138impl<T: PartialOrd, A: Allocator> PartialOrd for LinkedList<T, A> {
2139    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
2140        self.iter().partial_cmp(other)
2141    }
2142}
2143
2144#[stable(feature = "rust1", since = "1.0.0")]
2145impl<T: Ord, A: Allocator> Ord for LinkedList<T, A> {
2146    #[inline]
2147    fn cmp(&self, other: &Self) -> Ordering {
2148        self.iter().cmp(other)
2149    }
2150}
2151
2152#[stable(feature = "rust1", since = "1.0.0")]
2153impl<T: Clone, A: Allocator + Clone> Clone for LinkedList<T, A> {
2154    fn clone(&self) -> Self {
2155        let mut list = Self::new_in(self.alloc.clone());
2156        list.extend(self.iter().cloned());
2157        list
2158    }
2159
2160    /// Overwrites the contents of `self` with a clone of the contents of `source`.
2161    ///
2162    /// This method is preferred over simply assigning `source.clone()` to `self`,
2163    /// as it avoids reallocation of the nodes of the linked list. Additionally,
2164    /// if the element type `T` overrides `clone_from()`, this will reuse the
2165    /// resources of `self`'s elements as well.
2166    fn clone_from(&mut self, source: &Self) {
2167        let mut source_iter = source.iter();
2168        if self.len() > source.len() {
2169            self.split_off(source.len());
2170        }
2171        for (elem, source_elem) in self.iter_mut().zip(&mut source_iter) {
2172            elem.clone_from(source_elem);
2173        }
2174        if !source_iter.is_empty() {
2175            self.extend(source_iter.cloned());
2176        }
2177    }
2178}
2179
2180#[stable(feature = "rust1", since = "1.0.0")]
2181impl<T: fmt::Debug, A: Allocator> fmt::Debug for LinkedList<T, A> {
2182    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2183        f.debug_list().entries(self).finish()
2184    }
2185}
2186
2187#[stable(feature = "rust1", since = "1.0.0")]
2188impl<T: Hash, A: Allocator> Hash for LinkedList<T, A> {
2189    fn hash<H: Hasher>(&self, state: &mut H) {
2190        state.write_length_prefix(self.len());
2191        for elt in self {
2192            elt.hash(state);
2193        }
2194    }
2195}
2196
2197#[stable(feature = "std_collections_from_array", since = "1.56.0")]
2198impl<T, const N: usize> From<[T; N]> for LinkedList<T> {
2199    /// Converts a `[T; N]` into a `LinkedList<T>`.
2200    ///
2201    /// ```
2202    /// use std::collections::LinkedList;
2203    ///
2204    /// let list1 = LinkedList::from([1, 2, 3, 4]);
2205    /// let list2: LinkedList<_> = [1, 2, 3, 4].into();
2206    /// assert_eq!(list1, list2);
2207    /// ```
2208    fn from(arr: [T; N]) -> Self {
2209        Self::from_iter(arr)
2210    }
2211}
2212
2213// Ensure that `LinkedList` and its read-only iterators are covariant in their type parameters.
2214#[allow(dead_code)]
2215fn assert_covariance() {
2216    fn a<'a>(x: LinkedList<&'static str>) -> LinkedList<&'a str> {
2217        x
2218    }
2219    fn b<'i, 'a>(x: Iter<'i, &'static str>) -> Iter<'i, &'a str> {
2220        x
2221    }
2222    fn c<'a>(x: IntoIter<&'static str>) -> IntoIter<&'a str> {
2223        x
2224    }
2225}
2226
2227#[stable(feature = "rust1", since = "1.0.0")]
2228unsafe impl<T: Send, A: Allocator + Send> Send for LinkedList<T, A> {}
2229
2230#[stable(feature = "rust1", since = "1.0.0")]
2231unsafe impl<T: Sync, A: Allocator + Sync> Sync for LinkedList<T, A> {}
2232
2233#[stable(feature = "rust1", since = "1.0.0")]
2234unsafe impl<T: Sync> Send for Iter<'_, T> {}
2235
2236#[stable(feature = "rust1", since = "1.0.0")]
2237unsafe impl<T: Sync> Sync for Iter<'_, T> {}
2238
2239#[stable(feature = "rust1", since = "1.0.0")]
2240unsafe impl<T: Send> Send for IterMut<'_, T> {}
2241
2242#[stable(feature = "rust1", since = "1.0.0")]
2243unsafe impl<T: Sync> Sync for IterMut<'_, T> {}
2244
2245#[unstable(feature = "linked_list_cursors", issue = "58533")]
2246unsafe impl<T: Sync, A: Allocator + Sync> Send for Cursor<'_, T, A> {}
2247
2248#[unstable(feature = "linked_list_cursors", issue = "58533")]
2249unsafe impl<T: Sync, A: Allocator + Sync> Sync for Cursor<'_, T, A> {}
2250
2251#[unstable(feature = "linked_list_cursors", issue = "58533")]
2252unsafe impl<T: Send, A: Allocator + Send> Send for CursorMut<'_, T, A> {}
2253
2254#[unstable(feature = "linked_list_cursors", issue = "58533")]
2255unsafe impl<T: Sync, A: Allocator + Sync> Sync for CursorMut<'_, T, A> {}