Skip to main content

alloc/raw_vec/
mod.rs

1#![unstable(feature = "raw_vec_internals", reason = "unstable const warnings", issue = "none")]
2#![cfg_attr(test, allow(dead_code))]
3
4// Note: This module is also included in the alloctests crate using #[path] to
5// run the tests. See the comment there for an explanation why this is the case.
6
7use core::marker::{Destruct, PhantomData};
8use core::mem::{ManuallyDrop, MaybeUninit, SizedTypeProperties};
9use core::ptr::{self, Alignment, NonNull, Unique};
10use core::{cmp, hint};
11
12#[cfg(not(no_global_oom_handling))]
13use crate::alloc::handle_alloc_error;
14use crate::alloc::{Allocator, Global, Layout};
15use crate::boxed::Box;
16use crate::collections::TryReserveError;
17use crate::collections::TryReserveErrorKind::*;
18
19#[cfg(test)]
20mod tests;
21
22// One central function responsible for reporting capacity overflows. This'll
23// ensure that the code generation related to these panics is minimal as there's
24// only one location which panics rather than a bunch throughout the module.
25#[cfg(not(no_global_oom_handling))]
26#[cfg_attr(not(panic = "immediate-abort"), inline(never))]
27const fn capacity_overflow() -> ! {
28    panic!("capacity overflow");
29}
30
31enum AllocInit {
32    /// The contents of the new memory are uninitialized.
33    Uninitialized,
34    #[cfg(not(no_global_oom_handling))]
35    /// The new memory is guaranteed to be zeroed.
36    Zeroed,
37}
38
39type Cap = core::num::niche_types::UsizeNoHighBit;
40
41const ZERO_CAP: Cap = unsafe { Cap::new_unchecked(0) };
42
43/// `Cap(cap)`, except if `T` is a ZST then `Cap::ZERO`.
44///
45/// # Safety: cap must be <= `isize::MAX`.
46unsafe fn new_cap<T>(cap: usize) -> Cap {
47    if T::IS_ZST { ZERO_CAP } else { unsafe { Cap::new_unchecked(cap) } }
48}
49
50/// A low-level utility for more ergonomically allocating, reallocating, and deallocating
51/// a buffer of memory on the heap without having to worry about all the corner cases
52/// involved. This type is excellent for building your own data structures like Vec and VecDeque.
53/// In particular:
54///
55/// * Produces `Unique::dangling()` on zero-sized types.
56/// * Produces `Unique::dangling()` on zero-length allocations.
57/// * Avoids freeing `Unique::dangling()`.
58/// * Catches all overflows in capacity computations (promotes them to "capacity overflow" panics).
59/// * Guards against 32-bit systems allocating more than `isize::MAX` bytes.
60/// * Guards against overflowing your length.
61/// * Calls `handle_alloc_error` for fallible allocations.
62/// * Contains a `ptr::Unique` and thus endows the user with all related benefits.
63/// * Uses the excess returned from the allocator to use the largest available capacity.
64///
65/// This type does not in anyway inspect the memory that it manages. When dropped it *will*
66/// free its memory, but it *won't* try to drop its contents. It is up to the user of `RawVec`
67/// to handle the actual things *stored* inside of a `RawVec`.
68///
69/// Note that the excess of a zero-sized types is always infinite, so `capacity()` always returns
70/// `usize::MAX`. This means that you need to be careful when round-tripping this type with a
71/// `Box<[T]>`, since `capacity()` won't yield the length.
72#[allow(missing_debug_implementations)]
73pub(crate) struct RawVec<T, A: Allocator = Global> {
74    inner: RawVecInner<A>,
75    _marker: PhantomData<T>,
76}
77
78/// Like a `RawVec`, but only generic over the allocator, not the type.
79///
80/// As such, all the methods need the layout passed-in as a parameter.
81///
82/// Having this separation reduces the amount of code we need to monomorphize,
83/// as most operations don't need the actual type, just its layout.
84#[allow(missing_debug_implementations)]
85struct RawVecInner<A: Allocator = Global> {
86    ptr: Unique<u8>,
87    /// Never used for ZSTs; it's `capacity()`'s responsibility to return usize::MAX in that case.
88    ///
89    /// # Safety
90    ///
91    /// `cap` must be in the `0..=isize::MAX` range.
92    cap: Cap,
93    alloc: A,
94}
95
96impl<T> RawVec<T, Global> {
97    /// Creates the biggest possible `RawVec` (on the system heap)
98    /// without allocating. If `T` has positive size, then this makes a
99    /// `RawVec` with capacity `0`. If `T` is zero-sized, then it makes a
100    /// `RawVec` with capacity `usize::MAX`. Useful for implementing
101    /// delayed allocation.
102    #[must_use]
103    pub(crate) const fn new() -> Self {
104        Self::new_in(Global)
105    }
106
107    /// Creates a `RawVec` (on the system heap) with exactly the
108    /// capacity and alignment requirements for a `[T; capacity]`. This is
109    /// equivalent to calling `RawVec::new` when `capacity` is `0` or `T` is
110    /// zero-sized. Note that if `T` is zero-sized this means you will
111    /// *not* get a `RawVec` with the requested capacity.
112    ///
113    /// Non-fallible version of `try_with_capacity`
114    ///
115    /// # Panics
116    ///
117    /// Panics if the requested capacity exceeds `isize::MAX` bytes.
118    ///
119    /// # Aborts
120    ///
121    /// Aborts on OOM.
122    #[cfg(not(any(no_global_oom_handling, test)))]
123    #[must_use]
124    #[inline]
125    pub(crate) fn with_capacity(capacity: usize) -> Self {
126        Self { inner: RawVecInner::with_capacity(capacity, T::LAYOUT), _marker: PhantomData }
127    }
128
129    /// Like `with_capacity`, but guarantees the buffer is zeroed.
130    #[cfg(not(any(no_global_oom_handling, test)))]
131    #[must_use]
132    #[inline]
133    pub(crate) fn with_capacity_zeroed(capacity: usize) -> Self {
134        Self {
135            inner: RawVecInner::with_capacity_zeroed_in(capacity, Global, T::LAYOUT),
136            _marker: PhantomData,
137        }
138    }
139}
140
141impl RawVecInner<Global> {
142    #[cfg(not(any(no_global_oom_handling, test)))]
143    #[must_use]
144    #[inline]
145    fn with_capacity(capacity: usize, elem_layout: Layout) -> Self {
146        match Self::try_allocate_in(capacity, AllocInit::Uninitialized, Global, elem_layout) {
147            Ok(res) => res,
148            Err(err) => handle_error(err),
149        }
150    }
151}
152
153// Tiny Vecs are dumb. Skip to:
154// - 8 if the element size is 1, because any heap allocator is likely
155//   to round up a request of less than 8 bytes to at least 8 bytes.
156// - 4 if elements are moderate-sized (<= 1 KiB).
157// - 1 otherwise, to avoid wasting too much space for very short Vecs.
158const fn min_non_zero_cap(size: usize) -> usize {
159    if size == 1 {
160        8
161    } else if size <= 1024 {
162        4
163    } else {
164        1
165    }
166}
167
168#[rustc_const_unstable(feature = "const_heap", issue = "79597")]
169#[rustfmt::skip] // FIXME(fee1-dead): temporary measure before rustfmt is bumped
170const impl<T, A: [const] Allocator + [const] Destruct> RawVec<T, A> {
171    /// Like `with_capacity`, but parameterized over the choice of
172    /// allocator for the returned `RawVec`.
173    #[cfg(not(no_global_oom_handling))]
174    #[inline]
175    pub(crate) fn with_capacity_in(capacity: usize, alloc: A) -> Self {
176        Self {
177            inner: RawVecInner::with_capacity_in(capacity, alloc, T::LAYOUT),
178            _marker: PhantomData,
179        }
180    }
181
182    /// A specialized version of `self.reserve(len, 1)` which requires the
183    /// caller to ensure `len == self.capacity()`.
184    #[cfg(not(no_global_oom_handling))]
185    #[inline(never)]
186    pub(crate) fn grow_one(&mut self) {
187        // SAFETY: All calls on self.inner pass T::LAYOUT as the elem_layout
188        unsafe { self.inner.grow_one(T::LAYOUT) }
189    }
190}
191
192impl<T, A: Allocator> RawVec<T, A> {
193    #[cfg(not(no_global_oom_handling))]
194    pub(crate) const MIN_NON_ZERO_CAP: usize = min_non_zero_cap(size_of::<T>());
195
196    /// Like `new`, but parameterized over the choice of allocator for
197    /// the returned `RawVec`.
198    #[inline]
199    pub(crate) const fn new_in(alloc: A) -> Self {
200        // Check assumption made in `current_memory`
201        const { assert!(T::LAYOUT.size() % T::LAYOUT.align() == 0) };
202        Self { inner: RawVecInner::new_in(alloc, Alignment::of::<T>()), _marker: PhantomData }
203    }
204
205    /// Like `try_with_capacity`, but parameterized over the choice of
206    /// allocator for the returned `RawVec`.
207    #[inline]
208    pub(crate) fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> {
209        match RawVecInner::try_with_capacity_in(capacity, alloc, T::LAYOUT) {
210            Ok(inner) => Ok(Self { inner, _marker: PhantomData }),
211            Err(e) => Err(e),
212        }
213    }
214
215    /// Like `with_capacity_zeroed`, but parameterized over the choice
216    /// of allocator for the returned `RawVec`.
217    #[cfg(not(no_global_oom_handling))]
218    #[inline]
219    pub(crate) fn with_capacity_zeroed_in(capacity: usize, alloc: A) -> Self {
220        Self {
221            inner: RawVecInner::with_capacity_zeroed_in(capacity, alloc, T::LAYOUT),
222            _marker: PhantomData,
223        }
224    }
225
226    /// Converts the entire buffer into `Box<[MaybeUninit<T>]>` with the specified `len`.
227    ///
228    /// Note that this will correctly reconstitute any `cap` changes
229    /// that may have been performed. (See description of type for details.)
230    ///
231    /// # Safety
232    ///
233    /// * `len` must be greater than or equal to the most recently requested capacity, and
234    /// * `len` must be less than or equal to `self.capacity()`.
235    ///
236    /// Note, that the requested capacity and `self.capacity()` could differ, as
237    /// an allocator could overallocate and return a greater memory block than requested.
238    pub(crate) unsafe fn into_box(self, len: usize) -> Box<[MaybeUninit<T>], A> {
239        // Sanity-check one half of the safety requirement (we cannot check the other half).
240        debug_assert!(
241            len <= self.capacity(),
242            "`len` must be smaller than or equal to `self.capacity()`"
243        );
244
245        let me = ManuallyDrop::new(self);
246        unsafe {
247            let slice = ptr::slice_from_raw_parts_mut(me.ptr() as *mut MaybeUninit<T>, len);
248            Box::from_raw_in(slice, ptr::read(&me.inner.alloc))
249        }
250    }
251
252    /// Reconstitutes a `RawVec` from a pointer, capacity, and allocator.
253    ///
254    /// # Safety
255    ///
256    /// The `ptr` must be allocated (via the given allocator `alloc`), and with the given
257    /// `capacity`.
258    /// The `capacity` cannot exceed `isize::MAX` for sized types. (only a concern on 32-bit
259    /// systems). For ZSTs capacity is ignored.
260    /// If the `ptr` and `capacity` come from a `RawVec` created via `alloc`, then this is
261    /// guaranteed.
262    #[inline]
263    pub(crate) unsafe fn from_raw_parts_in(ptr: *mut T, capacity: usize, alloc: A) -> Self {
264        // SAFETY: Precondition passed to the caller
265        unsafe {
266            let ptr = ptr.cast();
267            let capacity = new_cap::<T>(capacity);
268            Self {
269                inner: RawVecInner::from_raw_parts_in(ptr, capacity, alloc),
270                _marker: PhantomData,
271            }
272        }
273    }
274
275    /// A convenience method for hoisting the non-null precondition out of [`RawVec::from_raw_parts_in`].
276    ///
277    /// # Safety
278    ///
279    /// See [`RawVec::from_raw_parts_in`].
280    #[inline]
281    pub(crate) unsafe fn from_nonnull_in(ptr: NonNull<T>, capacity: usize, alloc: A) -> Self {
282        // SAFETY: Precondition passed to the caller
283        unsafe {
284            let ptr = ptr.cast();
285            let capacity = new_cap::<T>(capacity);
286            Self { inner: RawVecInner::from_nonnull_in(ptr, capacity, alloc), _marker: PhantomData }
287        }
288    }
289
290    /// Gets a raw pointer to the start of the allocation. Note that this is
291    /// `Unique::dangling()` if `capacity == 0` or `T` is zero-sized. In the former case, you must
292    /// be careful.
293    #[inline]
294    pub(crate) const fn ptr(&self) -> *mut T {
295        self.inner.ptr()
296    }
297
298    #[inline]
299    pub(crate) const fn non_null(&self) -> NonNull<T> {
300        self.inner.non_null()
301    }
302
303    /// Gets the capacity of the allocation.
304    ///
305    /// This will always be `usize::MAX` if `T` is zero-sized.
306    #[inline]
307    pub(crate) const fn capacity(&self) -> usize {
308        self.inner.capacity(size_of::<T>())
309    }
310
311    /// Returns a shared reference to the allocator backing this `RawVec`.
312    #[inline]
313    pub(crate) fn allocator(&self) -> &A {
314        self.inner.allocator()
315    }
316
317    /// Ensures that the buffer contains at least enough space to hold `len +
318    /// additional` elements. If it doesn't already have enough capacity, will
319    /// reallocate enough space plus comfortable slack space to get amortized
320    /// *O*(1) behavior. Will limit this behavior if it would needlessly cause
321    /// itself to panic.
322    ///
323    /// If `len` exceeds `self.capacity()`, this may fail to actually allocate
324    /// the requested space. This is not really unsafe, but the unsafe
325    /// code *you* write that relies on the behavior of this function may break.
326    ///
327    /// This is ideal for implementing a bulk-push operation like `extend`.
328    ///
329    /// # Panics
330    ///
331    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
332    ///
333    /// # Aborts
334    ///
335    /// Aborts on OOM.
336    #[cfg(not(no_global_oom_handling))]
337    #[inline]
338    pub(crate) fn reserve(&mut self, len: usize, additional: usize) {
339        // SAFETY: All calls on self.inner pass T::LAYOUT as the elem_layout
340        unsafe { self.inner.reserve(len, additional, T::LAYOUT) }
341    }
342
343    /// The same as `reserve`, but returns on errors instead of panicking or aborting.
344    pub(crate) fn try_reserve(
345        &mut self,
346        len: usize,
347        additional: usize,
348    ) -> Result<(), TryReserveError> {
349        // SAFETY: All calls on self.inner pass T::LAYOUT as the elem_layout
350        unsafe { self.inner.try_reserve(len, additional, T::LAYOUT) }
351    }
352
353    /// Ensures that the buffer contains at least enough space to hold `len +
354    /// additional` elements. If it doesn't already, will reallocate the
355    /// minimum possible amount of memory necessary. Generally this will be
356    /// exactly the amount of memory necessary, but in principle the allocator
357    /// is free to give back more than we asked for.
358    ///
359    /// If `len` exceeds `self.capacity()`, this may fail to actually allocate
360    /// the requested space. This is not really unsafe, but the unsafe code
361    /// *you* write that relies on the behavior of this function may break.
362    ///
363    /// # Panics
364    ///
365    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
366    ///
367    /// # Aborts
368    ///
369    /// Aborts on OOM.
370    #[cfg(not(no_global_oom_handling))]
371    pub(crate) fn reserve_exact(&mut self, len: usize, additional: usize) {
372        // SAFETY: All calls on self.inner pass T::LAYOUT as the elem_layout
373        unsafe { self.inner.reserve_exact(len, additional, T::LAYOUT) }
374    }
375
376    /// The same as `reserve_exact`, but returns on errors instead of panicking or aborting.
377    pub(crate) fn try_reserve_exact(
378        &mut self,
379        len: usize,
380        additional: usize,
381    ) -> Result<(), TryReserveError> {
382        // SAFETY: All calls on self.inner pass T::LAYOUT as the elem_layout
383        unsafe { self.inner.try_reserve_exact(len, additional, T::LAYOUT) }
384    }
385
386    /// Shrinks the buffer down to the specified capacity. If the given amount
387    /// is 0, actually completely deallocates.
388    ///
389    /// # Panics
390    ///
391    /// Panics if the given amount is *larger* than the current capacity.
392    ///
393    /// # Aborts
394    ///
395    /// Aborts on OOM.
396    #[cfg(not(no_global_oom_handling))]
397    #[inline]
398    pub(crate) fn shrink_to_fit(&mut self, cap: usize) {
399        // SAFETY: All calls on self.inner pass T::LAYOUT as the elem_layout
400        unsafe { self.inner.shrink_to_fit(cap, T::LAYOUT) }
401    }
402}
403
404unsafe impl<#[may_dangle] T, A: Allocator> Drop for RawVec<T, A> {
405    /// Frees the memory owned by the `RawVec` *without* trying to drop its contents.
406    fn drop(&mut self) {
407        // SAFETY: We are in a Drop impl, self.inner will not be used again.
408        unsafe { self.inner.deallocate(T::LAYOUT) }
409    }
410}
411
412#[rustc_const_unstable(feature = "const_heap", issue = "79597")]
413#[rustfmt::skip] // FIXME(fee1-dead): temporary measure before rustfmt is bumped
414const impl<A: [const] Allocator + [const] Destruct> RawVecInner<A> {
415    #[cfg(not(no_global_oom_handling))]
416    #[inline]
417    fn with_capacity_in(capacity: usize, alloc: A, elem_layout: Layout) -> Self {
418        match Self::try_allocate_in(capacity, AllocInit::Uninitialized, alloc, elem_layout) {
419            Ok(this) => {
420                unsafe {
421                    // Make it more obvious that a subsequent Vec::reserve(capacity) will not allocate.
422                    hint::assert_unchecked(!this.needs_to_grow(0, capacity, elem_layout));
423                }
424                this
425            }
426            Err(err) => handle_error(err),
427        }
428    }
429
430    fn try_allocate_in(
431        capacity: usize,
432        init: AllocInit,
433        alloc: A,
434        elem_layout: Layout,
435    ) -> Result<Self, TryReserveError> {
436        // We avoid `unwrap_or_else` here because it bloats the amount of
437        // LLVM IR generated.
438        let layout = match layout_array(capacity, elem_layout) {
439            Ok(layout) => layout,
440            Err(_) => return Err(CapacityOverflow.into()),
441        };
442
443        // Don't allocate here because `Drop` will not deallocate when `capacity` is 0.
444        if layout.size() == 0 {
445            return Ok(Self::new_in(alloc, elem_layout.alignment()));
446        }
447
448        let result = match init {
449            AllocInit::Uninitialized => alloc.allocate(layout),
450            #[cfg(not(no_global_oom_handling))]
451            AllocInit::Zeroed => alloc.allocate_zeroed(layout),
452        };
453        let ptr = match result {
454            Ok(ptr) => ptr,
455            Err(_) => return Err(AllocError { layout, non_exhaustive: () }.into()),
456        };
457
458        // Allocators currently return a `NonNull<[u8]>` whose length
459        // matches the size requested. If that ever changes, the capacity
460        // here should change to `ptr.len() / size_of::<T>()`.
461        Ok(Self {
462            ptr: Unique::from(ptr.cast()),
463            cap: unsafe { Cap::new_unchecked(capacity) },
464            alloc,
465        })
466    }
467
468    /// # Safety
469    /// - `elem_layout` must be valid for `self`, i.e. it must be the same `elem_layout` used to
470    ///   initially construct `self`
471    /// - `elem_layout`'s size must be a multiple of its alignment
472    #[cfg(not(no_global_oom_handling))]
473    #[inline]
474    unsafe fn grow_one(&mut self, elem_layout: Layout) {
475        // SAFETY: Precondition passed to caller
476        if let Err(err) = unsafe { self.grow_amortized(self.cap.as_inner(), 1, elem_layout) } {
477            handle_error(err);
478        }
479    }
480
481    /// # Safety
482    /// - `elem_layout` must be valid for `self`, i.e. it must be the same `elem_layout` used to
483    ///   initially construct `self`
484    /// - `elem_layout`'s size must be a multiple of its alignment
485    /// - The sum of `len` and `additional` must be greater than the current capacity
486    unsafe fn grow_amortized(
487        &mut self,
488        len: usize,
489        additional: usize,
490        elem_layout: Layout,
491    ) -> Result<(), TryReserveError> {
492        // This is ensured by the calling contexts.
493        debug_assert!(additional > 0);
494
495        if elem_layout.size() == 0 {
496            // Since we return a capacity of `usize::MAX` when `elem_size` is
497            // 0, getting to here necessarily means the `RawVec` is overfull.
498            return Err(CapacityOverflow.into());
499        }
500
501        // Nothing we can really do about these checks, sadly.
502        let required_cap = len.checked_add(additional).ok_or(CapacityOverflow)?;
503
504        // This guarantees exponential growth. The doubling cannot overflow
505        // because `cap <= isize::MAX` and the type of `cap` is `usize`.
506        let cap = cmp::max(self.cap.as_inner() * 2, required_cap);
507        let cap = cmp::max(min_non_zero_cap(elem_layout.size()), cap);
508
509        // SAFETY:
510        // - cap >= len + additional
511        // - other preconditions passed to caller
512        let ptr = unsafe { self.finish_grow(cap, elem_layout)? };
513
514        // SAFETY: `finish_grow` would have failed if `cap > isize::MAX`
515        unsafe { self.set_ptr_and_cap(ptr, cap) };
516        Ok(())
517    }
518
519    /// # Safety
520    /// - `elem_layout` must be valid for `self`, i.e. it must be the same `elem_layout` used to
521    ///   initially construct `self`
522    /// - `elem_layout`'s size must be a multiple of its alignment
523    /// - `cap` must be greater than the current capacity
524    // not marked inline(never) since we want optimizers to be able to observe the specifics of this
525    // function, see tests/codegen-llvm/vec-reserve-extend.rs.
526    #[cold]
527    unsafe fn finish_grow(
528        &self,
529        cap: usize,
530        elem_layout: Layout,
531    ) -> Result<NonNull<[u8]>, TryReserveError> {
532        let new_layout = layout_array(cap, elem_layout)?;
533
534        let memory = if let Some((ptr, old_layout)) = unsafe { self.current_memory(elem_layout) } {
535            // FIXME(const-hack): switch to `debug_assert_eq`
536            debug_assert!(old_layout.align() == new_layout.align());
537            unsafe {
538                // The allocator checks for alignment equality
539                hint::assert_unchecked(old_layout.align() == new_layout.align());
540                self.alloc.grow(ptr, old_layout, new_layout)
541            }
542        } else {
543            self.alloc.allocate(new_layout)
544        };
545
546        // FIXME(const-hack): switch back to `map_err`
547        match memory {
548            Ok(memory) => Ok(memory),
549            Err(_) => Err(AllocError { layout: new_layout, non_exhaustive: () }.into()),
550        }
551    }
552}
553
554impl<A: Allocator> RawVecInner<A> {
555    #[inline]
556    const fn new_in(alloc: A, align: Alignment) -> Self {
557        let ptr = Unique::from_non_null(NonNull::without_provenance(align.as_nonzero()));
558        // `cap: 0` means "unallocated". zero-sized types are ignored.
559        Self { ptr, cap: ZERO_CAP, alloc }
560    }
561
562    #[inline]
563    fn try_with_capacity_in(
564        capacity: usize,
565        alloc: A,
566        elem_layout: Layout,
567    ) -> Result<Self, TryReserveError> {
568        Self::try_allocate_in(capacity, AllocInit::Uninitialized, alloc, elem_layout)
569    }
570
571    #[cfg(not(no_global_oom_handling))]
572    #[inline]
573    fn with_capacity_zeroed_in(capacity: usize, alloc: A, elem_layout: Layout) -> Self {
574        match Self::try_allocate_in(capacity, AllocInit::Zeroed, alloc, elem_layout) {
575            Ok(res) => res,
576            Err(err) => handle_error(err),
577        }
578    }
579
580    #[inline]
581    unsafe fn from_raw_parts_in(ptr: *mut u8, cap: Cap, alloc: A) -> Self {
582        Self { ptr: unsafe { Unique::new_unchecked(ptr) }, cap, alloc }
583    }
584
585    #[inline]
586    unsafe fn from_nonnull_in(ptr: NonNull<u8>, cap: Cap, alloc: A) -> Self {
587        Self { ptr: Unique::from(ptr), cap, alloc }
588    }
589
590    #[inline]
591    const fn ptr<T>(&self) -> *mut T {
592        self.non_null::<T>().as_ptr()
593    }
594
595    #[inline]
596    const fn non_null<T>(&self) -> NonNull<T> {
597        self.ptr.cast().as_non_null_ptr()
598    }
599
600    #[inline]
601    const fn capacity(&self, elem_size: usize) -> usize {
602        if elem_size == 0 { usize::MAX } else { self.cap.as_inner() }
603    }
604
605    #[inline]
606    fn allocator(&self) -> &A {
607        &self.alloc
608    }
609
610    /// # Safety
611    /// - `elem_layout` must be valid for `self`, i.e. it must be the same `elem_layout` used to
612    ///   initially construct `self`
613    /// - `elem_layout`'s size must be a multiple of its alignment
614    #[inline]
615    #[rustc_const_unstable(feature = "const_heap", issue = "79597")]
616    const unsafe fn current_memory(&self, elem_layout: Layout) -> Option<(NonNull<u8>, Layout)> {
617        if elem_layout.size() == 0 || self.cap.as_inner() == 0 {
618            None
619        } else {
620            // We could use Layout::array here which ensures the absence of isize and usize overflows
621            // and could hypothetically handle differences between stride and size, but this memory
622            // has already been allocated so we know it can't overflow and currently Rust does not
623            // support such types. So we can do better by skipping some checks and avoid an unwrap.
624            unsafe {
625                let alloc_size = elem_layout.size().unchecked_mul(self.cap.as_inner());
626                let layout = Layout::from_size_align_unchecked(alloc_size, elem_layout.align());
627                Some((self.ptr.into(), layout))
628            }
629        }
630    }
631
632    /// # Safety
633    /// - `elem_layout` must be valid for `self`, i.e. it must be the same `elem_layout` used to
634    ///   initially construct `self`
635    /// - `elem_layout`'s size must be a multiple of its alignment
636    #[cfg(not(no_global_oom_handling))]
637    #[inline]
638    unsafe fn reserve(&mut self, len: usize, additional: usize, elem_layout: Layout) {
639        // Callers expect this function to be very cheap when there is already sufficient capacity.
640        // Therefore, we move all the resizing and error-handling logic from grow_amortized and
641        // handle_reserve behind a call, while making sure that this function is likely to be
642        // inlined as just a comparison and a call if the comparison fails.
643        #[cold]
644        unsafe fn do_reserve_and_handle<A: Allocator>(
645            slf: &mut RawVecInner<A>,
646            len: usize,
647            additional: usize,
648            elem_layout: Layout,
649        ) {
650            // SAFETY: Precondition passed to caller
651            if let Err(err) = unsafe { slf.grow_amortized(len, additional, elem_layout) } {
652                handle_error(err);
653            }
654        }
655
656        if self.needs_to_grow(len, additional, elem_layout) {
657            unsafe {
658                do_reserve_and_handle(self, len, additional, elem_layout);
659            }
660        }
661    }
662
663    /// # Safety
664    /// - `elem_layout` must be valid for `self`, i.e. it must be the same `elem_layout` used to
665    ///   initially construct `self`
666    /// - `elem_layout`'s size must be a multiple of its alignment
667    unsafe fn try_reserve(
668        &mut self,
669        len: usize,
670        additional: usize,
671        elem_layout: Layout,
672    ) -> Result<(), TryReserveError> {
673        if self.needs_to_grow(len, additional, elem_layout) {
674            // SAFETY: Precondition passed to caller
675            unsafe {
676                self.grow_amortized(len, additional, elem_layout)?;
677            }
678        }
679        unsafe {
680            // Inform the optimizer that the reservation has succeeded or wasn't needed
681            hint::assert_unchecked(!self.needs_to_grow(len, additional, elem_layout));
682        }
683        Ok(())
684    }
685
686    /// # Safety
687    /// - `elem_layout` must be valid for `self`, i.e. it must be the same `elem_layout` used to
688    ///   initially construct `self`
689    /// - `elem_layout`'s size must be a multiple of its alignment
690    #[cfg(not(no_global_oom_handling))]
691    unsafe fn reserve_exact(&mut self, len: usize, additional: usize, elem_layout: Layout) {
692        // SAFETY: Precondition passed to caller
693        if let Err(err) = unsafe { self.try_reserve_exact(len, additional, elem_layout) } {
694            handle_error(err);
695        }
696    }
697
698    /// # Safety
699    /// - `elem_layout` must be valid for `self`, i.e. it must be the same `elem_layout` used to
700    ///   initially construct `self`
701    /// - `elem_layout`'s size must be a multiple of its alignment
702    unsafe fn try_reserve_exact(
703        &mut self,
704        len: usize,
705        additional: usize,
706        elem_layout: Layout,
707    ) -> Result<(), TryReserveError> {
708        if self.needs_to_grow(len, additional, elem_layout) {
709            // SAFETY: Precondition passed to caller
710            unsafe {
711                self.grow_exact(len, additional, elem_layout)?;
712            }
713        }
714        unsafe {
715            // Inform the optimizer that the reservation has succeeded or wasn't needed
716            hint::assert_unchecked(!self.needs_to_grow(len, additional, elem_layout));
717        }
718        Ok(())
719    }
720
721    /// # Safety
722    /// - `elem_layout` must be valid for `self`, i.e. it must be the same `elem_layout` used to
723    ///   initially construct `self`
724    /// - `elem_layout`'s size must be a multiple of its alignment
725    /// - `cap` must be less than or equal to `self.capacity(elem_layout.size())`
726    #[cfg(not(no_global_oom_handling))]
727    #[inline]
728    unsafe fn shrink_to_fit(&mut self, cap: usize, elem_layout: Layout) {
729        if let Err(err) = unsafe { self.shrink(cap, elem_layout) } {
730            handle_error(err);
731        }
732    }
733
734    #[inline]
735    const fn needs_to_grow(&self, len: usize, additional: usize, elem_layout: Layout) -> bool {
736        additional > self.capacity(elem_layout.size()).wrapping_sub(len)
737    }
738
739    #[inline]
740    #[rustc_const_unstable(feature = "const_heap", issue = "79597")]
741    const unsafe fn set_ptr_and_cap(&mut self, ptr: NonNull<[u8]>, cap: usize) {
742        // Allocators currently return a `NonNull<[u8]>` whose length matches
743        // the size requested. If that ever changes, the capacity here should
744        // change to `ptr.len() / size_of::<T>()`.
745        self.ptr = Unique::from(ptr.cast());
746        self.cap = unsafe { Cap::new_unchecked(cap) };
747    }
748
749    /// # Safety
750    /// - `elem_layout` must be valid for `self`, i.e. it must be the same `elem_layout` used to
751    ///   initially construct `self`
752    /// - `elem_layout`'s size must be a multiple of its alignment
753    /// - The sum of `len` and `additional` must be greater than the current capacity
754    unsafe fn grow_exact(
755        &mut self,
756        len: usize,
757        additional: usize,
758        elem_layout: Layout,
759    ) -> Result<(), TryReserveError> {
760        if elem_layout.size() == 0 {
761            // Since we return a capacity of `usize::MAX` when the type size is
762            // 0, getting to here necessarily means the `RawVec` is overfull.
763            return Err(CapacityOverflow.into());
764        }
765
766        let cap = len.checked_add(additional).ok_or(CapacityOverflow)?;
767
768        // SAFETY: preconditions passed to caller
769        let ptr = unsafe { self.finish_grow(cap, elem_layout)? };
770
771        // SAFETY: `finish_grow` would have failed if `cap > isize::MAX`
772        unsafe { self.set_ptr_and_cap(ptr, cap) };
773        Ok(())
774    }
775
776    /// # Safety
777    /// - `elem_layout` must be valid for `self`, i.e. it must be the same `elem_layout` used to
778    ///   initially construct `self`
779    /// - `elem_layout`'s size must be a multiple of its alignment
780    /// - `cap` must be less than or equal to `self.capacity(elem_layout.size())`
781    #[cfg(not(no_global_oom_handling))]
782    #[inline]
783    unsafe fn shrink(&mut self, cap: usize, elem_layout: Layout) -> Result<(), TryReserveError> {
784        assert!(cap <= self.capacity(elem_layout.size()), "Tried to shrink to a larger capacity");
785        // SAFETY: Just checked this isn't trying to grow
786        unsafe { self.shrink_unchecked(cap, elem_layout) }
787    }
788
789    /// `shrink`, but without the capacity check.
790    ///
791    /// This is split out so that `shrink` can inline the check, since it
792    /// optimizes out in things like `shrink_to_fit`, without needing to
793    /// also inline all this code, as doing that ends up failing the
794    /// `vec-shrink-panic` codegen test when `shrink_to_fit` ends up being too
795    /// big for LLVM to be willing to inline.
796    ///
797    /// # Safety
798    /// `cap <= self.capacity()`
799    #[cfg(not(no_global_oom_handling))]
800    unsafe fn shrink_unchecked(
801        &mut self,
802        cap: usize,
803        elem_layout: Layout,
804    ) -> Result<(), TryReserveError> {
805        // SAFETY: Precondition passed to caller
806        let Some((ptr, layout)) = (unsafe { self.current_memory(elem_layout) }) else {
807            return Ok(());
808        };
809
810        // If shrinking to 0, deallocate the buffer. We don't reach this point
811        // for the T::IS_ZST case since current_memory() will have returned
812        // None.
813        if cap == 0 {
814            unsafe { self.alloc.deallocate(ptr, layout) };
815            self.ptr =
816                unsafe { Unique::new_unchecked(ptr::without_provenance_mut(elem_layout.align())) };
817            self.cap = ZERO_CAP;
818        } else {
819            let ptr = unsafe {
820                // Layout cannot overflow here because it would have
821                // overflowed earlier when capacity was larger.
822                let new_size = elem_layout.size().unchecked_mul(cap);
823                let new_layout = Layout::from_size_align_unchecked(new_size, layout.align());
824                self.alloc
825                    .shrink(ptr, layout, new_layout)
826                    .map_err(|_| AllocError { layout: new_layout, non_exhaustive: () })?
827            };
828            // SAFETY: if the allocation is valid, then the capacity is too
829            unsafe {
830                self.set_ptr_and_cap(ptr, cap);
831            }
832        }
833        Ok(())
834    }
835
836    /// # Safety
837    ///
838    /// This function deallocates the owned allocation, but does not update `ptr` or `cap` to
839    /// prevent double-free or use-after-free. Essentially, do not do anything with the caller
840    /// after this function returns.
841    /// Ideally this function would take `self` by move, but it cannot because it exists to be
842    /// called from a `Drop` impl.
843    unsafe fn deallocate(&mut self, elem_layout: Layout) {
844        // SAFETY: Precondition passed to caller
845        if let Some((ptr, layout)) = unsafe { self.current_memory(elem_layout) } {
846            unsafe {
847                self.alloc.deallocate(ptr, layout);
848            }
849        }
850    }
851}
852
853// Central function for reserve error handling.
854#[cfg(not(no_global_oom_handling))]
855#[cold]
856#[optimize(size)]
857#[rustc_const_unstable(feature = "const_heap", issue = "79597")]
858const fn handle_error(e: TryReserveError) -> ! {
859    match e.kind() {
860        CapacityOverflow => capacity_overflow(),
861        AllocError { layout, .. } => handle_alloc_error(layout),
862    }
863}
864
865#[inline]
866#[rustc_const_unstable(feature = "const_heap", issue = "79597")]
867const fn layout_array(cap: usize, elem_layout: Layout) -> Result<Layout, TryReserveError> {
868    // This is only used with `elem_layout`s which are those of real rust types,
869    // which lets us use the much-simpler `repeat_packed`.
870    debug_assert!(elem_layout.size() == elem_layout.pad_to_align().size());
871
872    // FIXME(const-hack) return to using `map` and `map_err` once `const_closures` is implemented
873    match elem_layout.repeat_packed(cap) {
874        Ok(layout) => Ok(layout),
875        Err(_) => Err(CapacityOverflow.into()),
876    }
877}