alloc/collections/binary_heap/
mod.rs

1//! A priority queue implemented with a binary heap.
2//!
3//! Insertion and popping the largest element have *O*(log(*n*)) time complexity.
4//! Checking the largest element is *O*(1). Converting a vector to a binary heap
5//! can be done in-place, and has *O*(*n*) complexity. A binary heap can also be
6//! converted to a sorted vector in-place, allowing it to be used for an *O*(*n* * log(*n*))
7//! in-place heapsort.
8//!
9//! # Examples
10//!
11//! This is a larger example that implements [Dijkstra's algorithm][dijkstra]
12//! to solve the [shortest path problem][sssp] on a [directed graph][dir_graph].
13//! It shows how to use [`BinaryHeap`] with custom types.
14//!
15//! [dijkstra]: https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
16//! [sssp]: https://en.wikipedia.org/wiki/Shortest_path_problem
17//! [dir_graph]: https://en.wikipedia.org/wiki/Directed_graph
18//!
19//! ```
20//! use std::cmp::Ordering;
21//! use std::collections::BinaryHeap;
22//!
23//! #[derive(Copy, Clone, Eq, PartialEq)]
24//! struct State {
25//!     cost: usize,
26//!     position: usize,
27//! }
28//!
29//! // The priority queue depends on `Ord`.
30//! // Explicitly implement the trait so the queue becomes a min-heap
31//! // instead of a max-heap.
32//! impl Ord for State {
33//!     fn cmp(&self, other: &Self) -> Ordering {
34//!         // Notice that we flip the ordering on costs.
35//!         // In case of a tie we compare positions - this step is necessary
36//!         // to make implementations of `PartialEq` and `Ord` consistent.
37//!         other.cost.cmp(&self.cost)
38//!             .then_with(|| self.position.cmp(&other.position))
39//!     }
40//! }
41//!
42//! // `PartialOrd` needs to be implemented as well.
43//! impl PartialOrd for State {
44//!     fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
45//!         Some(self.cmp(other))
46//!     }
47//! }
48//!
49//! // Each node is represented as a `usize`, for a shorter implementation.
50//! struct Edge {
51//!     node: usize,
52//!     cost: usize,
53//! }
54//!
55//! // Dijkstra's shortest path algorithm.
56//!
57//! // Start at `start` and use `dist` to track the current shortest distance
58//! // to each node. This implementation isn't memory-efficient as it may leave duplicate
59//! // nodes in the queue. It also uses `usize::MAX` as a sentinel value,
60//! // for a simpler implementation.
61//! fn shortest_path(adj_list: &Vec<Vec<Edge>>, start: usize, goal: usize) -> Option<usize> {
62//!     // dist[node] = current shortest distance from `start` to `node`
63//!     let mut dist: Vec<_> = (0..adj_list.len()).map(|_| usize::MAX).collect();
64//!
65//!     let mut heap = BinaryHeap::new();
66//!
67//!     // We're at `start`, with a zero cost
68//!     dist[start] = 0;
69//!     heap.push(State { cost: 0, position: start });
70//!
71//!     // Examine the frontier with lower cost nodes first (min-heap)
72//!     while let Some(State { cost, position }) = heap.pop() {
73//!         // Alternatively we could have continued to find all shortest paths
74//!         if position == goal { return Some(cost); }
75//!
76//!         // Important as we may have already found a better way
77//!         if cost > dist[position] { continue; }
78//!
79//!         // For each node we can reach, see if we can find a way with
80//!         // a lower cost going through this node
81//!         for edge in &adj_list[position] {
82//!             let next = State { cost: cost + edge.cost, position: edge.node };
83//!
84//!             // If so, add it to the frontier and continue
85//!             if next.cost < dist[next.position] {
86//!                 heap.push(next);
87//!                 // Relaxation, we have now found a better way
88//!                 dist[next.position] = next.cost;
89//!             }
90//!         }
91//!     }
92//!
93//!     // Goal not reachable
94//!     None
95//! }
96//!
97//! fn main() {
98//!     // This is the directed graph we're going to use.
99//!     // The node numbers correspond to the different states,
100//!     // and the edge weights symbolize the cost of moving
101//!     // from one node to another.
102//!     // Note that the edges are one-way.
103//!     //
104//!     //                  7
105//!     //          +-----------------+
106//!     //          |                 |
107//!     //          v   1        2    |  2
108//!     //          0 -----> 1 -----> 3 ---> 4
109//!     //          |        ^        ^      ^
110//!     //          |        | 1      |      |
111//!     //          |        |        | 3    | 1
112//!     //          +------> 2 -------+      |
113//!     //           10      |               |
114//!     //                   +---------------+
115//!     //
116//!     // The graph is represented as an adjacency list where each index,
117//!     // corresponding to a node value, has a list of outgoing edges.
118//!     // Chosen for its efficiency.
119//!     let graph = vec![
120//!         // Node 0
121//!         vec![Edge { node: 2, cost: 10 },
122//!              Edge { node: 1, cost: 1 }],
123//!         // Node 1
124//!         vec![Edge { node: 3, cost: 2 }],
125//!         // Node 2
126//!         vec![Edge { node: 1, cost: 1 },
127//!              Edge { node: 3, cost: 3 },
128//!              Edge { node: 4, cost: 1 }],
129//!         // Node 3
130//!         vec![Edge { node: 0, cost: 7 },
131//!              Edge { node: 4, cost: 2 }],
132//!         // Node 4
133//!         vec![]];
134//!
135//!     assert_eq!(shortest_path(&graph, 0, 1), Some(1));
136//!     assert_eq!(shortest_path(&graph, 0, 3), Some(3));
137//!     assert_eq!(shortest_path(&graph, 3, 0), Some(7));
138//!     assert_eq!(shortest_path(&graph, 0, 4), Some(5));
139//!     assert_eq!(shortest_path(&graph, 4, 0), None);
140//! }
141//! ```
142
143#![allow(missing_docs)]
144#![stable(feature = "rust1", since = "1.0.0")]
145
146use core::alloc::Allocator;
147use core::iter::{FusedIterator, InPlaceIterable, SourceIter, TrustedFused, TrustedLen};
148use core::mem::{self, ManuallyDrop, swap};
149use core::num::NonZero;
150use core::ops::{Deref, DerefMut};
151use core::{fmt, ptr};
152
153use crate::alloc::Global;
154use crate::collections::TryReserveError;
155use crate::slice;
156#[cfg(not(test))]
157use crate::vec::AsVecIntoIter;
158use crate::vec::{self, Vec};
159
160/// A priority queue implemented with a binary heap.
161///
162/// This will be a max-heap.
163///
164/// It is a logic error for an item to be modified in such a way that the
165/// item's ordering relative to any other item, as determined by the [`Ord`]
166/// trait, changes while it is in the heap. This is normally only possible
167/// through interior mutability, global state, I/O, or unsafe code. The
168/// behavior resulting from such a logic error is not specified, but will
169/// be encapsulated to the `BinaryHeap` that observed the logic error and not
170/// result in undefined behavior. This could include panics, incorrect results,
171/// aborts, memory leaks, and non-termination.
172///
173/// As long as no elements change their relative order while being in the heap
174/// as described above, the API of `BinaryHeap` guarantees that the heap
175/// invariant remains intact i.e. its methods all behave as documented. For
176/// example if a method is documented as iterating in sorted order, that's
177/// guaranteed to work as long as elements in the heap have not changed order,
178/// even in the presence of closures getting unwinded out of, iterators getting
179/// leaked, and similar foolishness.
180///
181/// # Examples
182///
183/// ```
184/// use std::collections::BinaryHeap;
185///
186/// // Type inference lets us omit an explicit type signature (which
187/// // would be `BinaryHeap<i32>` in this example).
188/// let mut heap = BinaryHeap::new();
189///
190/// // We can use peek to look at the next item in the heap. In this case,
191/// // there's no items in there yet so we get None.
192/// assert_eq!(heap.peek(), None);
193///
194/// // Let's add some scores...
195/// heap.push(1);
196/// heap.push(5);
197/// heap.push(2);
198///
199/// // Now peek shows the most important item in the heap.
200/// assert_eq!(heap.peek(), Some(&5));
201///
202/// // We can check the length of a heap.
203/// assert_eq!(heap.len(), 3);
204///
205/// // We can iterate over the items in the heap, although they are returned in
206/// // a random order.
207/// for x in &heap {
208///     println!("{x}");
209/// }
210///
211/// // If we instead pop these scores, they should come back in order.
212/// assert_eq!(heap.pop(), Some(5));
213/// assert_eq!(heap.pop(), Some(2));
214/// assert_eq!(heap.pop(), Some(1));
215/// assert_eq!(heap.pop(), None);
216///
217/// // We can clear the heap of any remaining items.
218/// heap.clear();
219///
220/// // The heap should now be empty.
221/// assert!(heap.is_empty())
222/// ```
223///
224/// A `BinaryHeap` with a known list of items can be initialized from an array:
225///
226/// ```
227/// use std::collections::BinaryHeap;
228///
229/// let heap = BinaryHeap::from([1, 5, 2]);
230/// ```
231///
232/// ## Min-heap
233///
234/// Either [`core::cmp::Reverse`] or a custom [`Ord`] implementation can be used to
235/// make `BinaryHeap` a min-heap. This makes `heap.pop()` return the smallest
236/// value instead of the greatest one.
237///
238/// ```
239/// use std::collections::BinaryHeap;
240/// use std::cmp::Reverse;
241///
242/// let mut heap = BinaryHeap::new();
243///
244/// // Wrap values in `Reverse`
245/// heap.push(Reverse(1));
246/// heap.push(Reverse(5));
247/// heap.push(Reverse(2));
248///
249/// // If we pop these scores now, they should come back in the reverse order.
250/// assert_eq!(heap.pop(), Some(Reverse(1)));
251/// assert_eq!(heap.pop(), Some(Reverse(2)));
252/// assert_eq!(heap.pop(), Some(Reverse(5)));
253/// assert_eq!(heap.pop(), None);
254/// ```
255///
256/// # Time complexity
257///
258/// | [push]  | [pop]         | [peek]/[peek\_mut] |
259/// |---------|---------------|--------------------|
260/// | *O*(1)~ | *O*(log(*n*)) | *O*(1)             |
261///
262/// The value for `push` is an expected cost; the method documentation gives a
263/// more detailed analysis.
264///
265/// [`core::cmp::Reverse`]: core::cmp::Reverse
266/// [`Cell`]: core::cell::Cell
267/// [`RefCell`]: core::cell::RefCell
268/// [push]: BinaryHeap::push
269/// [pop]: BinaryHeap::pop
270/// [peek]: BinaryHeap::peek
271/// [peek\_mut]: BinaryHeap::peek_mut
272#[stable(feature = "rust1", since = "1.0.0")]
273#[cfg_attr(not(test), rustc_diagnostic_item = "BinaryHeap")]
274pub struct BinaryHeap<
275    T,
276    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
277> {
278    data: Vec<T, A>,
279}
280
281/// Structure wrapping a mutable reference to the greatest item on a
282/// `BinaryHeap`.
283///
284/// This `struct` is created by the [`peek_mut`] method on [`BinaryHeap`]. See
285/// its documentation for more.
286///
287/// [`peek_mut`]: BinaryHeap::peek_mut
288#[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
289pub struct PeekMut<
290    'a,
291    T: 'a + Ord,
292    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
293> {
294    heap: &'a mut BinaryHeap<T, A>,
295    // If a set_len + sift_down are required, this is Some. If a &mut T has not
296    // yet been exposed to peek_mut()'s caller, it's None.
297    original_len: Option<NonZero<usize>>,
298}
299
300#[stable(feature = "collection_debug", since = "1.17.0")]
301impl<T: Ord + fmt::Debug, A: Allocator> fmt::Debug for PeekMut<'_, T, A> {
302    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
303        f.debug_tuple("PeekMut").field(&self.heap.data[0]).finish()
304    }
305}
306
307#[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
308impl<T: Ord, A: Allocator> Drop for PeekMut<'_, T, A> {
309    fn drop(&mut self) {
310        if let Some(original_len) = self.original_len {
311            // SAFETY: That's how many elements were in the Vec at the time of
312            // the PeekMut::deref_mut call, and therefore also at the time of
313            // the BinaryHeap::peek_mut call. Since the PeekMut did not end up
314            // getting leaked, we are now undoing the leak amplification that
315            // the DerefMut prepared for.
316            unsafe { self.heap.data.set_len(original_len.get()) };
317
318            // SAFETY: PeekMut is only instantiated for non-empty heaps.
319            unsafe { self.heap.sift_down(0) };
320        }
321    }
322}
323
324#[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
325impl<T: Ord, A: Allocator> Deref for PeekMut<'_, T, A> {
326    type Target = T;
327    fn deref(&self) -> &T {
328        debug_assert!(!self.heap.is_empty());
329        // SAFE: PeekMut is only instantiated for non-empty heaps
330        unsafe { self.heap.data.get_unchecked(0) }
331    }
332}
333
334#[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
335impl<T: Ord, A: Allocator> DerefMut for PeekMut<'_, T, A> {
336    fn deref_mut(&mut self) -> &mut T {
337        debug_assert!(!self.heap.is_empty());
338
339        let len = self.heap.len();
340        if len > 1 {
341            // Here we preemptively leak all the rest of the underlying vector
342            // after the currently max element. If the caller mutates the &mut T
343            // we're about to give them, and then leaks the PeekMut, all these
344            // elements will remain leaked. If they don't leak the PeekMut, then
345            // either Drop or PeekMut::pop will un-leak the vector elements.
346            //
347            // This is technique is described throughout several other places in
348            // the standard library as "leak amplification".
349            unsafe {
350                // SAFETY: len > 1 so len != 0.
351                self.original_len = Some(NonZero::new_unchecked(len));
352                // SAFETY: len > 1 so all this does for now is leak elements,
353                // which is safe.
354                self.heap.data.set_len(1);
355            }
356        }
357
358        // SAFE: PeekMut is only instantiated for non-empty heaps
359        unsafe { self.heap.data.get_unchecked_mut(0) }
360    }
361}
362
363impl<'a, T: Ord, A: Allocator> PeekMut<'a, T, A> {
364    /// Sifts the current element to its new position.
365    ///
366    /// Afterwards refers to the new element. Returns if the element changed.
367    ///
368    /// ## Examples
369    ///
370    /// The condition can be used to upper bound all elements in the heap. When only few elements
371    /// are affected, the heap's sort ensures this is faster than a reconstruction from the raw
372    /// element list and requires no additional allocation.
373    ///
374    /// ```
375    /// #![feature(binary_heap_peek_mut_refresh)]
376    /// use std::collections::BinaryHeap;
377    ///
378    /// let mut heap: BinaryHeap<u32> = (0..128).collect();
379    /// let mut peek = heap.peek_mut().unwrap();
380    ///
381    /// loop {
382    ///     *peek = 99;
383    ///
384    ///     if !peek.refresh() {
385    ///         break;
386    ///     }
387    /// }
388    ///
389    /// // Post condition, this is now an upper bound.
390    /// assert!(*peek < 100);
391    /// ```
392    ///
393    /// When the element remains the maximum after modification, the peek remains unchanged:
394    ///
395    /// ```
396    /// #![feature(binary_heap_peek_mut_refresh)]
397    /// use std::collections::BinaryHeap;
398    ///
399    /// let mut heap: BinaryHeap<u32> = [1, 2, 3].into();
400    /// let mut peek = heap.peek_mut().unwrap();
401    ///
402    /// assert_eq!(*peek, 3);
403    /// *peek = 42;
404    ///
405    /// // When we refresh, the peek is updated to the new maximum.
406    /// assert!(!peek.refresh(), "42 is even larger than 3");
407    /// assert_eq!(*peek, 42);
408    /// ```
409    #[unstable(feature = "binary_heap_peek_mut_refresh", issue = "138355")]
410    #[must_use = "is equivalent to dropping and getting a new PeekMut except for return information"]
411    pub fn refresh(&mut self) -> bool {
412        // The length of the underlying heap is unchanged by sifting down. The value stored for leak
413        // amplification thus remains accurate. We erase the leak amplification firstly because the
414        // operation is then equivalent to constructing a new PeekMut and secondly this avoids any
415        // future complication where original_len being non-empty would be interpreted as the heap
416        // having been leak amplified instead of checking the heap itself.
417        if let Some(original_len) = self.original_len.take() {
418            // SAFETY: This is how many elements were in the Vec at the time of
419            // the BinaryHeap::peek_mut call.
420            unsafe { self.heap.data.set_len(original_len.get()) };
421
422            // The length of the heap did not change by sifting, upholding our own invariants.
423
424            // SAFETY: PeekMut is only instantiated for non-empty heaps.
425            (unsafe { self.heap.sift_down(0) }) != 0
426        } else {
427            // The element was not modified.
428            false
429        }
430    }
431
432    /// Removes the peeked value from the heap and returns it.
433    #[stable(feature = "binary_heap_peek_mut_pop", since = "1.18.0")]
434    pub fn pop(mut this: PeekMut<'a, T, A>) -> T {
435        if let Some(original_len) = this.original_len.take() {
436            // SAFETY: This is how many elements were in the Vec at the time of
437            // the BinaryHeap::peek_mut call.
438            unsafe { this.heap.data.set_len(original_len.get()) };
439
440            // Unlike in Drop, here we don't also need to do a sift_down even if
441            // the caller could've mutated the element. It is removed from the
442            // heap on the next line and pop() is not sensitive to its value.
443        }
444
445        // SAFETY: Have a `PeekMut` element proves that the associated binary heap being non-empty,
446        // so the `pop` operation will not fail.
447        unsafe { this.heap.pop().unwrap_unchecked() }
448    }
449}
450
451#[stable(feature = "rust1", since = "1.0.0")]
452impl<T: Clone, A: Allocator + Clone> Clone for BinaryHeap<T, A> {
453    fn clone(&self) -> Self {
454        BinaryHeap { data: self.data.clone() }
455    }
456
457    /// Overwrites the contents of `self` with a clone of the contents of `source`.
458    ///
459    /// This method is preferred over simply assigning `source.clone()` to `self`,
460    /// as it avoids reallocation if possible.
461    ///
462    /// See [`Vec::clone_from()`] for more details.
463    fn clone_from(&mut self, source: &Self) {
464        self.data.clone_from(&source.data);
465    }
466}
467
468#[stable(feature = "rust1", since = "1.0.0")]
469impl<T: Ord> Default for BinaryHeap<T> {
470    /// Creates an empty `BinaryHeap<T>`.
471    #[inline]
472    fn default() -> BinaryHeap<T> {
473        BinaryHeap::new()
474    }
475}
476
477#[stable(feature = "binaryheap_debug", since = "1.4.0")]
478impl<T: fmt::Debug, A: Allocator> fmt::Debug for BinaryHeap<T, A> {
479    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
480        f.debug_list().entries(self.iter()).finish()
481    }
482}
483
484struct RebuildOnDrop<
485    'a,
486    T: Ord,
487    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
488> {
489    heap: &'a mut BinaryHeap<T, A>,
490    rebuild_from: usize,
491}
492
493impl<T: Ord, A: Allocator> Drop for RebuildOnDrop<'_, T, A> {
494    fn drop(&mut self) {
495        self.heap.rebuild_tail(self.rebuild_from);
496    }
497}
498
499impl<T: Ord> BinaryHeap<T> {
500    /// Creates an empty `BinaryHeap` as a max-heap.
501    ///
502    /// # Examples
503    ///
504    /// Basic usage:
505    ///
506    /// ```
507    /// use std::collections::BinaryHeap;
508    /// let mut heap = BinaryHeap::new();
509    /// heap.push(4);
510    /// ```
511    #[stable(feature = "rust1", since = "1.0.0")]
512    #[rustc_const_stable(feature = "const_binary_heap_constructor", since = "1.80.0")]
513    #[must_use]
514    pub const fn new() -> BinaryHeap<T> {
515        BinaryHeap { data: vec![] }
516    }
517
518    /// Creates an empty `BinaryHeap` with at least the specified capacity.
519    ///
520    /// The binary heap will be able to hold at least `capacity` elements without
521    /// reallocating. This method is allowed to allocate for more elements than
522    /// `capacity`. If `capacity` is zero, the binary heap will not allocate.
523    ///
524    /// # Examples
525    ///
526    /// Basic usage:
527    ///
528    /// ```
529    /// use std::collections::BinaryHeap;
530    /// let mut heap = BinaryHeap::with_capacity(10);
531    /// heap.push(4);
532    /// ```
533    #[stable(feature = "rust1", since = "1.0.0")]
534    #[must_use]
535    pub fn with_capacity(capacity: usize) -> BinaryHeap<T> {
536        BinaryHeap { data: Vec::with_capacity(capacity) }
537    }
538}
539
540impl<T: Ord, A: Allocator> BinaryHeap<T, A> {
541    /// Creates an empty `BinaryHeap` as a max-heap, using `A` as allocator.
542    ///
543    /// # Examples
544    ///
545    /// Basic usage:
546    ///
547    /// ```
548    /// #![feature(allocator_api)]
549    ///
550    /// use std::alloc::System;
551    /// use std::collections::BinaryHeap;
552    /// let mut heap = BinaryHeap::new_in(System);
553    /// heap.push(4);
554    /// ```
555    #[unstable(feature = "allocator_api", issue = "32838")]
556    #[must_use]
557    pub const fn new_in(alloc: A) -> BinaryHeap<T, A> {
558        BinaryHeap { data: Vec::new_in(alloc) }
559    }
560
561    /// Creates an empty `BinaryHeap` with at least the specified capacity, using `A` as allocator.
562    ///
563    /// The binary heap will be able to hold at least `capacity` elements without
564    /// reallocating. This method is allowed to allocate for more elements than
565    /// `capacity`. If `capacity` is zero, the binary heap will not allocate.
566    ///
567    /// # Examples
568    ///
569    /// Basic usage:
570    ///
571    /// ```
572    /// #![feature(allocator_api)]
573    ///
574    /// use std::alloc::System;
575    /// use std::collections::BinaryHeap;
576    /// let mut heap = BinaryHeap::with_capacity_in(10, System);
577    /// heap.push(4);
578    /// ```
579    #[unstable(feature = "allocator_api", issue = "32838")]
580    #[must_use]
581    pub fn with_capacity_in(capacity: usize, alloc: A) -> BinaryHeap<T, A> {
582        BinaryHeap { data: Vec::with_capacity_in(capacity, alloc) }
583    }
584
585    /// Returns a mutable reference to the greatest item in the binary heap, or
586    /// `None` if it is empty.
587    ///
588    /// Note: If the `PeekMut` value is leaked, some heap elements might get
589    /// leaked along with it, but the remaining elements will remain a valid
590    /// heap.
591    ///
592    /// # Examples
593    ///
594    /// Basic usage:
595    ///
596    /// ```
597    /// use std::collections::BinaryHeap;
598    /// let mut heap = BinaryHeap::new();
599    /// assert!(heap.peek_mut().is_none());
600    ///
601    /// heap.push(1);
602    /// heap.push(5);
603    /// heap.push(2);
604    /// if let Some(mut val) = heap.peek_mut() {
605    ///     *val = 0;
606    /// }
607    /// assert_eq!(heap.peek(), Some(&2));
608    /// ```
609    ///
610    /// # Time complexity
611    ///
612    /// If the item is modified then the worst case time complexity is *O*(log(*n*)),
613    /// otherwise it's *O*(1).
614    #[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
615    pub fn peek_mut(&mut self) -> Option<PeekMut<'_, T, A>> {
616        if self.is_empty() { None } else { Some(PeekMut { heap: self, original_len: None }) }
617    }
618
619    /// Removes the greatest item from the binary heap and returns it, or `None` if it
620    /// is empty.
621    ///
622    /// # Examples
623    ///
624    /// Basic usage:
625    ///
626    /// ```
627    /// use std::collections::BinaryHeap;
628    /// let mut heap = BinaryHeap::from([1, 3]);
629    ///
630    /// assert_eq!(heap.pop(), Some(3));
631    /// assert_eq!(heap.pop(), Some(1));
632    /// assert_eq!(heap.pop(), None);
633    /// ```
634    ///
635    /// # Time complexity
636    ///
637    /// The worst case cost of `pop` on a heap containing *n* elements is *O*(log(*n*)).
638    #[stable(feature = "rust1", since = "1.0.0")]
639    pub fn pop(&mut self) -> Option<T> {
640        self.data.pop().map(|mut item| {
641            if !self.is_empty() {
642                swap(&mut item, &mut self.data[0]);
643                // SAFETY: !self.is_empty() means that self.len() > 0
644                unsafe { self.sift_down_to_bottom(0) };
645            }
646            item
647        })
648    }
649
650    /// Pushes an item onto the binary heap.
651    ///
652    /// # Examples
653    ///
654    /// Basic usage:
655    ///
656    /// ```
657    /// use std::collections::BinaryHeap;
658    /// let mut heap = BinaryHeap::new();
659    /// heap.push(3);
660    /// heap.push(5);
661    /// heap.push(1);
662    ///
663    /// assert_eq!(heap.len(), 3);
664    /// assert_eq!(heap.peek(), Some(&5));
665    /// ```
666    ///
667    /// # Time complexity
668    ///
669    /// The expected cost of `push`, averaged over every possible ordering of
670    /// the elements being pushed, and over a sufficiently large number of
671    /// pushes, is *O*(1). This is the most meaningful cost metric when pushing
672    /// elements that are *not* already in any sorted pattern.
673    ///
674    /// The time complexity degrades if elements are pushed in predominantly
675    /// ascending order. In the worst case, elements are pushed in ascending
676    /// sorted order and the amortized cost per push is *O*(log(*n*)) against a heap
677    /// containing *n* elements.
678    ///
679    /// The worst case cost of a *single* call to `push` is *O*(*n*). The worst case
680    /// occurs when capacity is exhausted and needs a resize. The resize cost
681    /// has been amortized in the previous figures.
682    #[stable(feature = "rust1", since = "1.0.0")]
683    #[rustc_confusables("append", "put")]
684    pub fn push(&mut self, item: T) {
685        let old_len = self.len();
686        self.data.push(item);
687        // SAFETY: Since we pushed a new item it means that
688        //  old_len = self.len() - 1 < self.len()
689        unsafe { self.sift_up(0, old_len) };
690    }
691
692    /// Consumes the `BinaryHeap` and returns a vector in sorted
693    /// (ascending) order.
694    ///
695    /// # Examples
696    ///
697    /// Basic usage:
698    ///
699    /// ```
700    /// use std::collections::BinaryHeap;
701    ///
702    /// let mut heap = BinaryHeap::from([1, 2, 4, 5, 7]);
703    /// heap.push(6);
704    /// heap.push(3);
705    ///
706    /// let vec = heap.into_sorted_vec();
707    /// assert_eq!(vec, [1, 2, 3, 4, 5, 6, 7]);
708    /// ```
709    #[must_use = "`self` will be dropped if the result is not used"]
710    #[stable(feature = "binary_heap_extras_15", since = "1.5.0")]
711    pub fn into_sorted_vec(mut self) -> Vec<T, A> {
712        let mut end = self.len();
713        while end > 1 {
714            end -= 1;
715            // SAFETY: `end` goes from `self.len() - 1` to 1 (both included),
716            //  so it's always a valid index to access.
717            //  It is safe to access index 0 (i.e. `ptr`), because
718            //  1 <= end < self.len(), which means self.len() >= 2.
719            unsafe {
720                let ptr = self.data.as_mut_ptr();
721                ptr::swap(ptr, ptr.add(end));
722            }
723            // SAFETY: `end` goes from `self.len() - 1` to 1 (both included) so:
724            //  0 < 1 <= end <= self.len() - 1 < self.len()
725            //  Which means 0 < end and end < self.len().
726            unsafe { self.sift_down_range(0, end) };
727        }
728        self.into_vec()
729    }
730
731    // The implementations of sift_up and sift_down use unsafe blocks in
732    // order to move an element out of the vector (leaving behind a
733    // hole), shift along the others and move the removed element back into the
734    // vector at the final location of the hole.
735    // The `Hole` type is used to represent this, and make sure
736    // the hole is filled back at the end of its scope, even on panic.
737    // Using a hole reduces the constant factor compared to using swaps,
738    // which involves twice as many moves.
739
740    /// # Safety
741    ///
742    /// The caller must guarantee that `pos < self.len()`.
743    ///
744    /// Returns the new position of the element.
745    unsafe fn sift_up(&mut self, start: usize, pos: usize) -> usize {
746        // Take out the value at `pos` and create a hole.
747        // SAFETY: The caller guarantees that pos < self.len()
748        let mut hole = unsafe { Hole::new(&mut self.data, pos) };
749
750        while hole.pos() > start {
751            let parent = (hole.pos() - 1) / 2;
752
753            // SAFETY: hole.pos() > start >= 0, which means hole.pos() > 0
754            //  and so hole.pos() - 1 can't underflow.
755            //  This guarantees that parent < hole.pos() so
756            //  it's a valid index and also != hole.pos().
757            if hole.element() <= unsafe { hole.get(parent) } {
758                break;
759            }
760
761            // SAFETY: Same as above
762            unsafe { hole.move_to(parent) };
763        }
764
765        hole.pos()
766    }
767
768    /// Take an element at `pos` and move it down the heap,
769    /// while its children are larger.
770    ///
771    /// Returns the new position of the element.
772    ///
773    /// # Safety
774    ///
775    /// The caller must guarantee that `pos < end <= self.len()`.
776    unsafe fn sift_down_range(&mut self, pos: usize, end: usize) -> usize {
777        // SAFETY: The caller guarantees that pos < end <= self.len().
778        let mut hole = unsafe { Hole::new(&mut self.data, pos) };
779        let mut child = 2 * hole.pos() + 1;
780
781        // Loop invariant: child == 2 * hole.pos() + 1.
782        while child <= end.saturating_sub(2) {
783            // compare with the greater of the two children
784            // SAFETY: child < end - 1 < self.len() and
785            //  child + 1 < end <= self.len(), so they're valid indexes.
786            //  child == 2 * hole.pos() + 1 != hole.pos() and
787            //  child + 1 == 2 * hole.pos() + 2 != hole.pos().
788            // FIXME: 2 * hole.pos() + 1 or 2 * hole.pos() + 2 could overflow
789            //  if T is a ZST
790            child += unsafe { hole.get(child) <= hole.get(child + 1) } as usize;
791
792            // if we are already in order, stop.
793            // SAFETY: child is now either the old child or the old child+1
794            //  We already proven that both are < self.len() and != hole.pos()
795            if hole.element() >= unsafe { hole.get(child) } {
796                return hole.pos();
797            }
798
799            // SAFETY: same as above.
800            unsafe { hole.move_to(child) };
801            child = 2 * hole.pos() + 1;
802        }
803
804        // SAFETY: && short circuit, which means that in the
805        //  second condition it's already true that child == end - 1 < self.len().
806        if child == end - 1 && hole.element() < unsafe { hole.get(child) } {
807            // SAFETY: child is already proven to be a valid index and
808            //  child == 2 * hole.pos() + 1 != hole.pos().
809            unsafe { hole.move_to(child) };
810        }
811
812        hole.pos()
813    }
814
815    /// # Safety
816    ///
817    /// The caller must guarantee that `pos < self.len()`.
818    unsafe fn sift_down(&mut self, pos: usize) -> usize {
819        let len = self.len();
820        // SAFETY: pos < len is guaranteed by the caller and
821        //  obviously len = self.len() <= self.len().
822        unsafe { self.sift_down_range(pos, len) }
823    }
824
825    /// Take an element at `pos` and move it all the way down the heap,
826    /// then sift it up to its position.
827    ///
828    /// Note: This is faster when the element is known to be large / should
829    /// be closer to the bottom.
830    ///
831    /// # Safety
832    ///
833    /// The caller must guarantee that `pos < self.len()`.
834    unsafe fn sift_down_to_bottom(&mut self, mut pos: usize) {
835        let end = self.len();
836        let start = pos;
837
838        // SAFETY: The caller guarantees that pos < self.len().
839        let mut hole = unsafe { Hole::new(&mut self.data, pos) };
840        let mut child = 2 * hole.pos() + 1;
841
842        // Loop invariant: child == 2 * hole.pos() + 1.
843        while child <= end.saturating_sub(2) {
844            // SAFETY: child < end - 1 < self.len() and
845            //  child + 1 < end <= self.len(), so they're valid indexes.
846            //  child == 2 * hole.pos() + 1 != hole.pos() and
847            //  child + 1 == 2 * hole.pos() + 2 != hole.pos().
848            // FIXME: 2 * hole.pos() + 1 or 2 * hole.pos() + 2 could overflow
849            //  if T is a ZST
850            child += unsafe { hole.get(child) <= hole.get(child + 1) } as usize;
851
852            // SAFETY: Same as above
853            unsafe { hole.move_to(child) };
854            child = 2 * hole.pos() + 1;
855        }
856
857        if child == end - 1 {
858            // SAFETY: child == end - 1 < self.len(), so it's a valid index
859            //  and child == 2 * hole.pos() + 1 != hole.pos().
860            unsafe { hole.move_to(child) };
861        }
862        pos = hole.pos();
863        drop(hole);
864
865        // SAFETY: pos is the position in the hole and was already proven
866        //  to be a valid index.
867        unsafe { self.sift_up(start, pos) };
868    }
869
870    /// Rebuild assuming data[0..start] is still a proper heap.
871    fn rebuild_tail(&mut self, start: usize) {
872        if start == self.len() {
873            return;
874        }
875
876        let tail_len = self.len() - start;
877
878        #[inline(always)]
879        fn log2_fast(x: usize) -> usize {
880            (usize::BITS - x.leading_zeros() - 1) as usize
881        }
882
883        // `rebuild` takes O(self.len()) operations
884        // and about 2 * self.len() comparisons in the worst case
885        // while repeating `sift_up` takes O(tail_len * log(start)) operations
886        // and about 1 * tail_len * log_2(start) comparisons in the worst case,
887        // assuming start >= tail_len. For larger heaps, the crossover point
888        // no longer follows this reasoning and was determined empirically.
889        let better_to_rebuild = if start < tail_len {
890            true
891        } else if self.len() <= 2048 {
892            2 * self.len() < tail_len * log2_fast(start)
893        } else {
894            2 * self.len() < tail_len * 11
895        };
896
897        if better_to_rebuild {
898            self.rebuild();
899        } else {
900            for i in start..self.len() {
901                // SAFETY: The index `i` is always less than self.len().
902                unsafe { self.sift_up(0, i) };
903            }
904        }
905    }
906
907    fn rebuild(&mut self) {
908        let mut n = self.len() / 2;
909        while n > 0 {
910            n -= 1;
911            // SAFETY: n starts from self.len() / 2 and goes down to 0.
912            //  The only case when !(n < self.len()) is if
913            //  self.len() == 0, but it's ruled out by the loop condition.
914            unsafe { self.sift_down(n) };
915        }
916    }
917
918    /// Moves all the elements of `other` into `self`, leaving `other` empty.
919    ///
920    /// # Examples
921    ///
922    /// Basic usage:
923    ///
924    /// ```
925    /// use std::collections::BinaryHeap;
926    ///
927    /// let mut a = BinaryHeap::from([-10, 1, 2, 3, 3]);
928    /// let mut b = BinaryHeap::from([-20, 5, 43]);
929    ///
930    /// a.append(&mut b);
931    ///
932    /// assert_eq!(a.into_sorted_vec(), [-20, -10, 1, 2, 3, 3, 5, 43]);
933    /// assert!(b.is_empty());
934    /// ```
935    #[stable(feature = "binary_heap_append", since = "1.11.0")]
936    pub fn append(&mut self, other: &mut Self) {
937        if self.len() < other.len() {
938            swap(self, other);
939        }
940
941        let start = self.data.len();
942
943        self.data.append(&mut other.data);
944
945        self.rebuild_tail(start);
946    }
947
948    /// Clears the binary heap, returning an iterator over the removed elements
949    /// in heap order. If the iterator is dropped before being fully consumed,
950    /// it drops the remaining elements in heap order.
951    ///
952    /// The returned iterator keeps a mutable borrow on the heap to optimize
953    /// its implementation.
954    ///
955    /// Note:
956    /// * `.drain_sorted()` is *O*(*n* \* log(*n*)); much slower than `.drain()`.
957    ///   You should use the latter for most cases.
958    ///
959    /// # Examples
960    ///
961    /// Basic usage:
962    ///
963    /// ```
964    /// #![feature(binary_heap_drain_sorted)]
965    /// use std::collections::BinaryHeap;
966    ///
967    /// let mut heap = BinaryHeap::from([1, 2, 3, 4, 5]);
968    /// assert_eq!(heap.len(), 5);
969    ///
970    /// drop(heap.drain_sorted()); // removes all elements in heap order
971    /// assert_eq!(heap.len(), 0);
972    /// ```
973    #[inline]
974    #[unstable(feature = "binary_heap_drain_sorted", issue = "59278")]
975    pub fn drain_sorted(&mut self) -> DrainSorted<'_, T, A> {
976        DrainSorted { inner: self }
977    }
978
979    /// Retains only the elements specified by the predicate.
980    ///
981    /// In other words, remove all elements `e` for which `f(&e)` returns
982    /// `false`. The elements are visited in unsorted (and unspecified) order.
983    ///
984    /// # Examples
985    ///
986    /// Basic usage:
987    ///
988    /// ```
989    /// use std::collections::BinaryHeap;
990    ///
991    /// let mut heap = BinaryHeap::from([-10, -5, 1, 2, 4, 13]);
992    ///
993    /// heap.retain(|x| x % 2 == 0); // only keep even numbers
994    ///
995    /// assert_eq!(heap.into_sorted_vec(), [-10, 2, 4])
996    /// ```
997    #[stable(feature = "binary_heap_retain", since = "1.70.0")]
998    pub fn retain<F>(&mut self, mut f: F)
999    where
1000        F: FnMut(&T) -> bool,
1001    {
1002        // rebuild_start will be updated to the first touched element below, and the rebuild will
1003        // only be done for the tail.
1004        let mut guard = RebuildOnDrop { rebuild_from: self.len(), heap: self };
1005        let mut i = 0;
1006
1007        guard.heap.data.retain(|e| {
1008            let keep = f(e);
1009            if !keep && i < guard.rebuild_from {
1010                guard.rebuild_from = i;
1011            }
1012            i += 1;
1013            keep
1014        });
1015    }
1016}
1017
1018impl<T, A: Allocator> BinaryHeap<T, A> {
1019    /// Returns an iterator visiting all values in the underlying vector, in
1020    /// arbitrary order.
1021    ///
1022    /// # Examples
1023    ///
1024    /// Basic usage:
1025    ///
1026    /// ```
1027    /// use std::collections::BinaryHeap;
1028    /// let heap = BinaryHeap::from([1, 2, 3, 4]);
1029    ///
1030    /// // Print 1, 2, 3, 4 in arbitrary order
1031    /// for x in heap.iter() {
1032    ///     println!("{x}");
1033    /// }
1034    /// ```
1035    #[stable(feature = "rust1", since = "1.0.0")]
1036    #[cfg_attr(not(test), rustc_diagnostic_item = "binaryheap_iter")]
1037    pub fn iter(&self) -> Iter<'_, T> {
1038        Iter { iter: self.data.iter() }
1039    }
1040
1041    /// Returns an iterator which retrieves elements in heap order.
1042    ///
1043    /// This method consumes the original heap.
1044    ///
1045    /// # Examples
1046    ///
1047    /// Basic usage:
1048    ///
1049    /// ```
1050    /// #![feature(binary_heap_into_iter_sorted)]
1051    /// use std::collections::BinaryHeap;
1052    /// let heap = BinaryHeap::from([1, 2, 3, 4, 5]);
1053    ///
1054    /// assert_eq!(heap.into_iter_sorted().take(2).collect::<Vec<_>>(), [5, 4]);
1055    /// ```
1056    #[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")]
1057    pub fn into_iter_sorted(self) -> IntoIterSorted<T, A> {
1058        IntoIterSorted { inner: self }
1059    }
1060
1061    /// Returns the greatest item in the binary heap, or `None` if it is empty.
1062    ///
1063    /// # Examples
1064    ///
1065    /// Basic usage:
1066    ///
1067    /// ```
1068    /// use std::collections::BinaryHeap;
1069    /// let mut heap = BinaryHeap::new();
1070    /// assert_eq!(heap.peek(), None);
1071    ///
1072    /// heap.push(1);
1073    /// heap.push(5);
1074    /// heap.push(2);
1075    /// assert_eq!(heap.peek(), Some(&5));
1076    ///
1077    /// ```
1078    ///
1079    /// # Time complexity
1080    ///
1081    /// Cost is *O*(1) in the worst case.
1082    #[must_use]
1083    #[stable(feature = "rust1", since = "1.0.0")]
1084    pub fn peek(&self) -> Option<&T> {
1085        self.data.get(0)
1086    }
1087
1088    /// Returns the number of elements the binary heap can hold without reallocating.
1089    ///
1090    /// # Examples
1091    ///
1092    /// Basic usage:
1093    ///
1094    /// ```
1095    /// use std::collections::BinaryHeap;
1096    /// let mut heap = BinaryHeap::with_capacity(100);
1097    /// assert!(heap.capacity() >= 100);
1098    /// heap.push(4);
1099    /// ```
1100    #[must_use]
1101    #[stable(feature = "rust1", since = "1.0.0")]
1102    pub fn capacity(&self) -> usize {
1103        self.data.capacity()
1104    }
1105
1106    /// Reserves the minimum capacity for at least `additional` elements more than
1107    /// the current length. Unlike [`reserve`], this will not
1108    /// deliberately over-allocate to speculatively avoid frequent allocations.
1109    /// After calling `reserve_exact`, capacity will be greater than or equal to
1110    /// `self.len() + additional`. Does nothing if the capacity is already
1111    /// sufficient.
1112    ///
1113    /// [`reserve`]: BinaryHeap::reserve
1114    ///
1115    /// # Panics
1116    ///
1117    /// Panics if the new capacity overflows [`usize`].
1118    ///
1119    /// # Examples
1120    ///
1121    /// Basic usage:
1122    ///
1123    /// ```
1124    /// use std::collections::BinaryHeap;
1125    /// let mut heap = BinaryHeap::new();
1126    /// heap.reserve_exact(100);
1127    /// assert!(heap.capacity() >= 100);
1128    /// heap.push(4);
1129    /// ```
1130    ///
1131    /// [`reserve`]: BinaryHeap::reserve
1132    #[stable(feature = "rust1", since = "1.0.0")]
1133    pub fn reserve_exact(&mut self, additional: usize) {
1134        self.data.reserve_exact(additional);
1135    }
1136
1137    /// Reserves capacity for at least `additional` elements more than the
1138    /// current length. The allocator may reserve more space to speculatively
1139    /// avoid frequent allocations. After calling `reserve`,
1140    /// capacity will be greater than or equal to `self.len() + additional`.
1141    /// Does nothing if capacity is already sufficient.
1142    ///
1143    /// # Panics
1144    ///
1145    /// Panics if the new capacity overflows [`usize`].
1146    ///
1147    /// # Examples
1148    ///
1149    /// Basic usage:
1150    ///
1151    /// ```
1152    /// use std::collections::BinaryHeap;
1153    /// let mut heap = BinaryHeap::new();
1154    /// heap.reserve(100);
1155    /// assert!(heap.capacity() >= 100);
1156    /// heap.push(4);
1157    /// ```
1158    #[stable(feature = "rust1", since = "1.0.0")]
1159    pub fn reserve(&mut self, additional: usize) {
1160        self.data.reserve(additional);
1161    }
1162
1163    /// Tries to reserve the minimum capacity for at least `additional` elements
1164    /// more than the current length. Unlike [`try_reserve`], this will not
1165    /// deliberately over-allocate to speculatively avoid frequent allocations.
1166    /// After calling `try_reserve_exact`, capacity will be greater than or
1167    /// equal to `self.len() + additional` if it returns `Ok(())`.
1168    /// Does nothing if the capacity is already sufficient.
1169    ///
1170    /// Note that the allocator may give the collection more space than it
1171    /// requests. Therefore, capacity can not be relied upon to be precisely
1172    /// minimal. Prefer [`try_reserve`] if future insertions are expected.
1173    ///
1174    /// [`try_reserve`]: BinaryHeap::try_reserve
1175    ///
1176    /// # Errors
1177    ///
1178    /// If the capacity overflows, or the allocator reports a failure, then an error
1179    /// is returned.
1180    ///
1181    /// # Examples
1182    ///
1183    /// ```
1184    /// use std::collections::BinaryHeap;
1185    /// use std::collections::TryReserveError;
1186    ///
1187    /// fn find_max_slow(data: &[u32]) -> Result<Option<u32>, TryReserveError> {
1188    ///     let mut heap = BinaryHeap::new();
1189    ///
1190    ///     // Pre-reserve the memory, exiting if we can't
1191    ///     heap.try_reserve_exact(data.len())?;
1192    ///
1193    ///     // Now we know this can't OOM in the middle of our complex work
1194    ///     heap.extend(data.iter());
1195    ///
1196    ///     Ok(heap.pop())
1197    /// }
1198    /// # find_max_slow(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1199    /// ```
1200    #[stable(feature = "try_reserve_2", since = "1.63.0")]
1201    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
1202        self.data.try_reserve_exact(additional)
1203    }
1204
1205    /// Tries to reserve capacity for at least `additional` elements more than the
1206    /// current length. The allocator may reserve more space to speculatively
1207    /// avoid frequent allocations. After calling `try_reserve`, capacity will be
1208    /// greater than or equal to `self.len() + additional` if it returns
1209    /// `Ok(())`. Does nothing if capacity is already sufficient. This method
1210    /// preserves the contents even if an error occurs.
1211    ///
1212    /// # Errors
1213    ///
1214    /// If the capacity overflows, or the allocator reports a failure, then an error
1215    /// is returned.
1216    ///
1217    /// # Examples
1218    ///
1219    /// ```
1220    /// use std::collections::BinaryHeap;
1221    /// use std::collections::TryReserveError;
1222    ///
1223    /// fn find_max_slow(data: &[u32]) -> Result<Option<u32>, TryReserveError> {
1224    ///     let mut heap = BinaryHeap::new();
1225    ///
1226    ///     // Pre-reserve the memory, exiting if we can't
1227    ///     heap.try_reserve(data.len())?;
1228    ///
1229    ///     // Now we know this can't OOM in the middle of our complex work
1230    ///     heap.extend(data.iter());
1231    ///
1232    ///     Ok(heap.pop())
1233    /// }
1234    /// # find_max_slow(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1235    /// ```
1236    #[stable(feature = "try_reserve_2", since = "1.63.0")]
1237    pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
1238        self.data.try_reserve(additional)
1239    }
1240
1241    /// Discards as much additional capacity as possible.
1242    ///
1243    /// # Examples
1244    ///
1245    /// Basic usage:
1246    ///
1247    /// ```
1248    /// use std::collections::BinaryHeap;
1249    /// let mut heap: BinaryHeap<i32> = BinaryHeap::with_capacity(100);
1250    ///
1251    /// assert!(heap.capacity() >= 100);
1252    /// heap.shrink_to_fit();
1253    /// assert!(heap.capacity() == 0);
1254    /// ```
1255    #[stable(feature = "rust1", since = "1.0.0")]
1256    pub fn shrink_to_fit(&mut self) {
1257        self.data.shrink_to_fit();
1258    }
1259
1260    /// Discards capacity with a lower bound.
1261    ///
1262    /// The capacity will remain at least as large as both the length
1263    /// and the supplied value.
1264    ///
1265    /// If the current capacity is less than the lower limit, this is a no-op.
1266    ///
1267    /// # Examples
1268    ///
1269    /// ```
1270    /// use std::collections::BinaryHeap;
1271    /// let mut heap: BinaryHeap<i32> = BinaryHeap::with_capacity(100);
1272    ///
1273    /// assert!(heap.capacity() >= 100);
1274    /// heap.shrink_to(10);
1275    /// assert!(heap.capacity() >= 10);
1276    /// ```
1277    #[inline]
1278    #[stable(feature = "shrink_to", since = "1.56.0")]
1279    pub fn shrink_to(&mut self, min_capacity: usize) {
1280        self.data.shrink_to(min_capacity)
1281    }
1282
1283    /// Returns a slice of all values in the underlying vector, in arbitrary
1284    /// order.
1285    ///
1286    /// # Examples
1287    ///
1288    /// Basic usage:
1289    ///
1290    /// ```
1291    /// use std::collections::BinaryHeap;
1292    /// use std::io::{self, Write};
1293    ///
1294    /// let heap = BinaryHeap::from([1, 2, 3, 4, 5, 6, 7]);
1295    ///
1296    /// io::sink().write(heap.as_slice()).unwrap();
1297    /// ```
1298    #[must_use]
1299    #[stable(feature = "binary_heap_as_slice", since = "1.80.0")]
1300    pub fn as_slice(&self) -> &[T] {
1301        self.data.as_slice()
1302    }
1303
1304    /// Consumes the `BinaryHeap` and returns the underlying vector
1305    /// in arbitrary order.
1306    ///
1307    /// # Examples
1308    ///
1309    /// Basic usage:
1310    ///
1311    /// ```
1312    /// use std::collections::BinaryHeap;
1313    /// let heap = BinaryHeap::from([1, 2, 3, 4, 5, 6, 7]);
1314    /// let vec = heap.into_vec();
1315    ///
1316    /// // Will print in some order
1317    /// for x in vec {
1318    ///     println!("{x}");
1319    /// }
1320    /// ```
1321    #[must_use = "`self` will be dropped if the result is not used"]
1322    #[stable(feature = "binary_heap_extras_15", since = "1.5.0")]
1323    pub fn into_vec(self) -> Vec<T, A> {
1324        self.into()
1325    }
1326
1327    /// Returns a reference to the underlying allocator.
1328    #[unstable(feature = "allocator_api", issue = "32838")]
1329    #[inline]
1330    pub fn allocator(&self) -> &A {
1331        self.data.allocator()
1332    }
1333
1334    /// Returns the length of the binary heap.
1335    ///
1336    /// # Examples
1337    ///
1338    /// Basic usage:
1339    ///
1340    /// ```
1341    /// use std::collections::BinaryHeap;
1342    /// let heap = BinaryHeap::from([1, 3]);
1343    ///
1344    /// assert_eq!(heap.len(), 2);
1345    /// ```
1346    #[must_use]
1347    #[stable(feature = "rust1", since = "1.0.0")]
1348    #[rustc_confusables("length", "size")]
1349    pub fn len(&self) -> usize {
1350        self.data.len()
1351    }
1352
1353    /// Checks if the binary heap is empty.
1354    ///
1355    /// # Examples
1356    ///
1357    /// Basic usage:
1358    ///
1359    /// ```
1360    /// use std::collections::BinaryHeap;
1361    /// let mut heap = BinaryHeap::new();
1362    ///
1363    /// assert!(heap.is_empty());
1364    ///
1365    /// heap.push(3);
1366    /// heap.push(5);
1367    /// heap.push(1);
1368    ///
1369    /// assert!(!heap.is_empty());
1370    /// ```
1371    #[must_use]
1372    #[stable(feature = "rust1", since = "1.0.0")]
1373    pub fn is_empty(&self) -> bool {
1374        self.len() == 0
1375    }
1376
1377    /// Clears the binary heap, returning an iterator over the removed elements
1378    /// in arbitrary order. If the iterator is dropped before being fully
1379    /// consumed, it drops the remaining elements in arbitrary order.
1380    ///
1381    /// The returned iterator keeps a mutable borrow on the heap to optimize
1382    /// its implementation.
1383    ///
1384    /// # Examples
1385    ///
1386    /// Basic usage:
1387    ///
1388    /// ```
1389    /// use std::collections::BinaryHeap;
1390    /// let mut heap = BinaryHeap::from([1, 3]);
1391    ///
1392    /// assert!(!heap.is_empty());
1393    ///
1394    /// for x in heap.drain() {
1395    ///     println!("{x}");
1396    /// }
1397    ///
1398    /// assert!(heap.is_empty());
1399    /// ```
1400    #[inline]
1401    #[stable(feature = "drain", since = "1.6.0")]
1402    pub fn drain(&mut self) -> Drain<'_, T, A> {
1403        Drain { iter: self.data.drain(..) }
1404    }
1405
1406    /// Drops all items from the binary heap.
1407    ///
1408    /// # Examples
1409    ///
1410    /// Basic usage:
1411    ///
1412    /// ```
1413    /// use std::collections::BinaryHeap;
1414    /// let mut heap = BinaryHeap::from([1, 3]);
1415    ///
1416    /// assert!(!heap.is_empty());
1417    ///
1418    /// heap.clear();
1419    ///
1420    /// assert!(heap.is_empty());
1421    /// ```
1422    #[stable(feature = "rust1", since = "1.0.0")]
1423    pub fn clear(&mut self) {
1424        self.drain();
1425    }
1426}
1427
1428/// Hole represents a hole in a slice i.e., an index without valid value
1429/// (because it was moved from or duplicated).
1430/// In drop, `Hole` will restore the slice by filling the hole
1431/// position with the value that was originally removed.
1432struct Hole<'a, T: 'a> {
1433    data: &'a mut [T],
1434    elt: ManuallyDrop<T>,
1435    pos: usize,
1436}
1437
1438impl<'a, T> Hole<'a, T> {
1439    /// Creates a new `Hole` at index `pos`.
1440    ///
1441    /// Unsafe because pos must be within the data slice.
1442    #[inline]
1443    unsafe fn new(data: &'a mut [T], pos: usize) -> Self {
1444        debug_assert!(pos < data.len());
1445        // SAFE: pos should be inside the slice
1446        let elt = unsafe { ptr::read(data.get_unchecked(pos)) };
1447        Hole { data, elt: ManuallyDrop::new(elt), pos }
1448    }
1449
1450    #[inline]
1451    fn pos(&self) -> usize {
1452        self.pos
1453    }
1454
1455    /// Returns a reference to the element removed.
1456    #[inline]
1457    fn element(&self) -> &T {
1458        &self.elt
1459    }
1460
1461    /// Returns a reference to the element at `index`.
1462    ///
1463    /// Unsafe because index must be within the data slice and not equal to pos.
1464    #[inline]
1465    unsafe fn get(&self, index: usize) -> &T {
1466        debug_assert!(index != self.pos);
1467        debug_assert!(index < self.data.len());
1468        unsafe { self.data.get_unchecked(index) }
1469    }
1470
1471    /// Move hole to new location
1472    ///
1473    /// Unsafe because index must be within the data slice and not equal to pos.
1474    #[inline]
1475    unsafe fn move_to(&mut self, index: usize) {
1476        debug_assert!(index != self.pos);
1477        debug_assert!(index < self.data.len());
1478        unsafe {
1479            let ptr = self.data.as_mut_ptr();
1480            let index_ptr: *const _ = ptr.add(index);
1481            let hole_ptr = ptr.add(self.pos);
1482            ptr::copy_nonoverlapping(index_ptr, hole_ptr, 1);
1483        }
1484        self.pos = index;
1485    }
1486}
1487
1488impl<T> Drop for Hole<'_, T> {
1489    #[inline]
1490    fn drop(&mut self) {
1491        // fill the hole again
1492        unsafe {
1493            let pos = self.pos;
1494            ptr::copy_nonoverlapping(&*self.elt, self.data.get_unchecked_mut(pos), 1);
1495        }
1496    }
1497}
1498
1499/// An iterator over the elements of a `BinaryHeap`.
1500///
1501/// This `struct` is created by [`BinaryHeap::iter()`]. See its
1502/// documentation for more.
1503///
1504/// [`iter`]: BinaryHeap::iter
1505#[must_use = "iterators are lazy and do nothing unless consumed"]
1506#[stable(feature = "rust1", since = "1.0.0")]
1507pub struct Iter<'a, T: 'a> {
1508    iter: slice::Iter<'a, T>,
1509}
1510
1511#[stable(feature = "default_iters_sequel", since = "1.82.0")]
1512impl<T> Default for Iter<'_, T> {
1513    /// Creates an empty `binary_heap::Iter`.
1514    ///
1515    /// ```
1516    /// # use std::collections::binary_heap;
1517    /// let iter: binary_heap::Iter<'_, u8> = Default::default();
1518    /// assert_eq!(iter.len(), 0);
1519    /// ```
1520    fn default() -> Self {
1521        Iter { iter: Default::default() }
1522    }
1523}
1524
1525#[stable(feature = "collection_debug", since = "1.17.0")]
1526impl<T: fmt::Debug> fmt::Debug for Iter<'_, T> {
1527    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1528        f.debug_tuple("Iter").field(&self.iter.as_slice()).finish()
1529    }
1530}
1531
1532// FIXME(#26925) Remove in favor of `#[derive(Clone)]`
1533#[stable(feature = "rust1", since = "1.0.0")]
1534impl<T> Clone for Iter<'_, T> {
1535    fn clone(&self) -> Self {
1536        Iter { iter: self.iter.clone() }
1537    }
1538}
1539
1540#[stable(feature = "rust1", since = "1.0.0")]
1541impl<'a, T> Iterator for Iter<'a, T> {
1542    type Item = &'a T;
1543
1544    #[inline]
1545    fn next(&mut self) -> Option<&'a T> {
1546        self.iter.next()
1547    }
1548
1549    #[inline]
1550    fn size_hint(&self) -> (usize, Option<usize>) {
1551        self.iter.size_hint()
1552    }
1553
1554    #[inline]
1555    fn last(self) -> Option<&'a T> {
1556        self.iter.last()
1557    }
1558}
1559
1560#[stable(feature = "rust1", since = "1.0.0")]
1561impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
1562    #[inline]
1563    fn next_back(&mut self) -> Option<&'a T> {
1564        self.iter.next_back()
1565    }
1566}
1567
1568#[stable(feature = "rust1", since = "1.0.0")]
1569impl<T> ExactSizeIterator for Iter<'_, T> {
1570    fn is_empty(&self) -> bool {
1571        self.iter.is_empty()
1572    }
1573}
1574
1575#[stable(feature = "fused", since = "1.26.0")]
1576impl<T> FusedIterator for Iter<'_, T> {}
1577
1578/// An owning iterator over the elements of a `BinaryHeap`.
1579///
1580/// This `struct` is created by [`BinaryHeap::into_iter()`]
1581/// (provided by the [`IntoIterator`] trait). See its documentation for more.
1582///
1583/// [`into_iter`]: BinaryHeap::into_iter
1584#[stable(feature = "rust1", since = "1.0.0")]
1585#[derive(Clone)]
1586pub struct IntoIter<
1587    T,
1588    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
1589> {
1590    iter: vec::IntoIter<T, A>,
1591}
1592
1593impl<T, A: Allocator> IntoIter<T, A> {
1594    /// Returns a reference to the underlying allocator.
1595    #[unstable(feature = "allocator_api", issue = "32838")]
1596    pub fn allocator(&self) -> &A {
1597        self.iter.allocator()
1598    }
1599}
1600
1601#[stable(feature = "collection_debug", since = "1.17.0")]
1602impl<T: fmt::Debug, A: Allocator> fmt::Debug for IntoIter<T, A> {
1603    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1604        f.debug_tuple("IntoIter").field(&self.iter.as_slice()).finish()
1605    }
1606}
1607
1608#[stable(feature = "rust1", since = "1.0.0")]
1609impl<T, A: Allocator> Iterator for IntoIter<T, A> {
1610    type Item = T;
1611
1612    #[inline]
1613    fn next(&mut self) -> Option<T> {
1614        self.iter.next()
1615    }
1616
1617    #[inline]
1618    fn size_hint(&self) -> (usize, Option<usize>) {
1619        self.iter.size_hint()
1620    }
1621}
1622
1623#[stable(feature = "rust1", since = "1.0.0")]
1624impl<T, A: Allocator> DoubleEndedIterator for IntoIter<T, A> {
1625    #[inline]
1626    fn next_back(&mut self) -> Option<T> {
1627        self.iter.next_back()
1628    }
1629}
1630
1631#[stable(feature = "rust1", since = "1.0.0")]
1632impl<T, A: Allocator> ExactSizeIterator for IntoIter<T, A> {
1633    fn is_empty(&self) -> bool {
1634        self.iter.is_empty()
1635    }
1636}
1637
1638#[stable(feature = "fused", since = "1.26.0")]
1639impl<T, A: Allocator> FusedIterator for IntoIter<T, A> {}
1640
1641#[doc(hidden)]
1642#[unstable(issue = "none", feature = "trusted_fused")]
1643unsafe impl<T, A: Allocator> TrustedFused for IntoIter<T, A> {}
1644
1645#[stable(feature = "default_iters", since = "1.70.0")]
1646impl<T> Default for IntoIter<T> {
1647    /// Creates an empty `binary_heap::IntoIter`.
1648    ///
1649    /// ```
1650    /// # use std::collections::binary_heap;
1651    /// let iter: binary_heap::IntoIter<u8> = Default::default();
1652    /// assert_eq!(iter.len(), 0);
1653    /// ```
1654    fn default() -> Self {
1655        IntoIter { iter: Default::default() }
1656    }
1657}
1658
1659// In addition to the SAFETY invariants of the following three unsafe traits
1660// also refer to the vec::in_place_collect module documentation to get an overview
1661#[unstable(issue = "none", feature = "inplace_iteration")]
1662#[doc(hidden)]
1663unsafe impl<T, A: Allocator> SourceIter for IntoIter<T, A> {
1664    type Source = IntoIter<T, A>;
1665
1666    #[inline]
1667    unsafe fn as_inner(&mut self) -> &mut Self::Source {
1668        self
1669    }
1670}
1671
1672#[unstable(issue = "none", feature = "inplace_iteration")]
1673#[doc(hidden)]
1674unsafe impl<I, A: Allocator> InPlaceIterable for IntoIter<I, A> {
1675    const EXPAND_BY: Option<NonZero<usize>> = NonZero::new(1);
1676    const MERGE_BY: Option<NonZero<usize>> = NonZero::new(1);
1677}
1678
1679#[cfg(not(test))]
1680unsafe impl<I> AsVecIntoIter for IntoIter<I> {
1681    type Item = I;
1682
1683    fn as_into_iter(&mut self) -> &mut vec::IntoIter<Self::Item> {
1684        &mut self.iter
1685    }
1686}
1687
1688#[must_use = "iterators are lazy and do nothing unless consumed"]
1689#[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")]
1690#[derive(Clone, Debug)]
1691pub struct IntoIterSorted<
1692    T,
1693    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
1694> {
1695    inner: BinaryHeap<T, A>,
1696}
1697
1698impl<T, A: Allocator> IntoIterSorted<T, A> {
1699    /// Returns a reference to the underlying allocator.
1700    #[unstable(feature = "allocator_api", issue = "32838")]
1701    pub fn allocator(&self) -> &A {
1702        self.inner.allocator()
1703    }
1704}
1705
1706#[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")]
1707impl<T: Ord, A: Allocator> Iterator for IntoIterSorted<T, A> {
1708    type Item = T;
1709
1710    #[inline]
1711    fn next(&mut self) -> Option<T> {
1712        self.inner.pop()
1713    }
1714
1715    #[inline]
1716    fn size_hint(&self) -> (usize, Option<usize>) {
1717        let exact = self.inner.len();
1718        (exact, Some(exact))
1719    }
1720}
1721
1722#[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")]
1723impl<T: Ord, A: Allocator> ExactSizeIterator for IntoIterSorted<T, A> {}
1724
1725#[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")]
1726impl<T: Ord, A: Allocator> FusedIterator for IntoIterSorted<T, A> {}
1727
1728#[unstable(feature = "trusted_len", issue = "37572")]
1729unsafe impl<T: Ord, A: Allocator> TrustedLen for IntoIterSorted<T, A> {}
1730
1731/// A draining iterator over the elements of a `BinaryHeap`.
1732///
1733/// This `struct` is created by [`BinaryHeap::drain()`]. See its
1734/// documentation for more.
1735///
1736/// [`drain`]: BinaryHeap::drain
1737#[stable(feature = "drain", since = "1.6.0")]
1738#[derive(Debug)]
1739pub struct Drain<
1740    'a,
1741    T: 'a,
1742    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
1743> {
1744    iter: vec::Drain<'a, T, A>,
1745}
1746
1747impl<T, A: Allocator> Drain<'_, T, A> {
1748    /// Returns a reference to the underlying allocator.
1749    #[unstable(feature = "allocator_api", issue = "32838")]
1750    pub fn allocator(&self) -> &A {
1751        self.iter.allocator()
1752    }
1753}
1754
1755#[stable(feature = "drain", since = "1.6.0")]
1756impl<T, A: Allocator> Iterator for Drain<'_, T, A> {
1757    type Item = T;
1758
1759    #[inline]
1760    fn next(&mut self) -> Option<T> {
1761        self.iter.next()
1762    }
1763
1764    #[inline]
1765    fn size_hint(&self) -> (usize, Option<usize>) {
1766        self.iter.size_hint()
1767    }
1768}
1769
1770#[stable(feature = "drain", since = "1.6.0")]
1771impl<T, A: Allocator> DoubleEndedIterator for Drain<'_, T, A> {
1772    #[inline]
1773    fn next_back(&mut self) -> Option<T> {
1774        self.iter.next_back()
1775    }
1776}
1777
1778#[stable(feature = "drain", since = "1.6.0")]
1779impl<T, A: Allocator> ExactSizeIterator for Drain<'_, T, A> {
1780    fn is_empty(&self) -> bool {
1781        self.iter.is_empty()
1782    }
1783}
1784
1785#[stable(feature = "fused", since = "1.26.0")]
1786impl<T, A: Allocator> FusedIterator for Drain<'_, T, A> {}
1787
1788/// A draining iterator over the elements of a `BinaryHeap`.
1789///
1790/// This `struct` is created by [`BinaryHeap::drain_sorted()`]. See its
1791/// documentation for more.
1792///
1793/// [`drain_sorted`]: BinaryHeap::drain_sorted
1794#[unstable(feature = "binary_heap_drain_sorted", issue = "59278")]
1795#[derive(Debug)]
1796pub struct DrainSorted<
1797    'a,
1798    T: Ord,
1799    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
1800> {
1801    inner: &'a mut BinaryHeap<T, A>,
1802}
1803
1804impl<'a, T: Ord, A: Allocator> DrainSorted<'a, T, A> {
1805    /// Returns a reference to the underlying allocator.
1806    #[unstable(feature = "allocator_api", issue = "32838")]
1807    pub fn allocator(&self) -> &A {
1808        self.inner.allocator()
1809    }
1810}
1811
1812#[unstable(feature = "binary_heap_drain_sorted", issue = "59278")]
1813impl<'a, T: Ord, A: Allocator> Drop for DrainSorted<'a, T, A> {
1814    /// Removes heap elements in heap order.
1815    fn drop(&mut self) {
1816        struct DropGuard<'r, 'a, T: Ord, A: Allocator>(&'r mut DrainSorted<'a, T, A>);
1817
1818        impl<'r, 'a, T: Ord, A: Allocator> Drop for DropGuard<'r, 'a, T, A> {
1819            fn drop(&mut self) {
1820                while self.0.inner.pop().is_some() {}
1821            }
1822        }
1823
1824        while let Some(item) = self.inner.pop() {
1825            let guard = DropGuard(self);
1826            drop(item);
1827            mem::forget(guard);
1828        }
1829    }
1830}
1831
1832#[unstable(feature = "binary_heap_drain_sorted", issue = "59278")]
1833impl<T: Ord, A: Allocator> Iterator for DrainSorted<'_, T, A> {
1834    type Item = T;
1835
1836    #[inline]
1837    fn next(&mut self) -> Option<T> {
1838        self.inner.pop()
1839    }
1840
1841    #[inline]
1842    fn size_hint(&self) -> (usize, Option<usize>) {
1843        let exact = self.inner.len();
1844        (exact, Some(exact))
1845    }
1846}
1847
1848#[unstable(feature = "binary_heap_drain_sorted", issue = "59278")]
1849impl<T: Ord, A: Allocator> ExactSizeIterator for DrainSorted<'_, T, A> {}
1850
1851#[unstable(feature = "binary_heap_drain_sorted", issue = "59278")]
1852impl<T: Ord, A: Allocator> FusedIterator for DrainSorted<'_, T, A> {}
1853
1854#[unstable(feature = "trusted_len", issue = "37572")]
1855unsafe impl<T: Ord, A: Allocator> TrustedLen for DrainSorted<'_, T, A> {}
1856
1857#[stable(feature = "binary_heap_extras_15", since = "1.5.0")]
1858impl<T: Ord, A: Allocator> From<Vec<T, A>> for BinaryHeap<T, A> {
1859    /// Converts a `Vec<T>` into a `BinaryHeap<T>`.
1860    ///
1861    /// This conversion happens in-place, and has *O*(*n*) time complexity.
1862    fn from(vec: Vec<T, A>) -> BinaryHeap<T, A> {
1863        let mut heap = BinaryHeap { data: vec };
1864        heap.rebuild();
1865        heap
1866    }
1867}
1868
1869#[stable(feature = "std_collections_from_array", since = "1.56.0")]
1870impl<T: Ord, const N: usize> From<[T; N]> for BinaryHeap<T> {
1871    /// ```
1872    /// use std::collections::BinaryHeap;
1873    ///
1874    /// let mut h1 = BinaryHeap::from([1, 4, 2, 3]);
1875    /// let mut h2: BinaryHeap<_> = [1, 4, 2, 3].into();
1876    /// while let Some((a, b)) = h1.pop().zip(h2.pop()) {
1877    ///     assert_eq!(a, b);
1878    /// }
1879    /// ```
1880    fn from(arr: [T; N]) -> Self {
1881        Self::from_iter(arr)
1882    }
1883}
1884
1885#[stable(feature = "binary_heap_extras_15", since = "1.5.0")]
1886impl<T, A: Allocator> From<BinaryHeap<T, A>> for Vec<T, A> {
1887    /// Converts a `BinaryHeap<T>` into a `Vec<T>`.
1888    ///
1889    /// This conversion requires no data movement or allocation, and has
1890    /// constant time complexity.
1891    fn from(heap: BinaryHeap<T, A>) -> Vec<T, A> {
1892        heap.data
1893    }
1894}
1895
1896#[stable(feature = "rust1", since = "1.0.0")]
1897impl<T: Ord> FromIterator<T> for BinaryHeap<T> {
1898    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> BinaryHeap<T> {
1899        BinaryHeap::from(iter.into_iter().collect::<Vec<_>>())
1900    }
1901}
1902
1903#[stable(feature = "rust1", since = "1.0.0")]
1904impl<T, A: Allocator> IntoIterator for BinaryHeap<T, A> {
1905    type Item = T;
1906    type IntoIter = IntoIter<T, A>;
1907
1908    /// Creates a consuming iterator, that is, one that moves each value out of
1909    /// the binary heap in arbitrary order. The binary heap cannot be used
1910    /// after calling this.
1911    ///
1912    /// # Examples
1913    ///
1914    /// Basic usage:
1915    ///
1916    /// ```
1917    /// use std::collections::BinaryHeap;
1918    /// let heap = BinaryHeap::from([1, 2, 3, 4]);
1919    ///
1920    /// // Print 1, 2, 3, 4 in arbitrary order
1921    /// for x in heap.into_iter() {
1922    ///     // x has type i32, not &i32
1923    ///     println!("{x}");
1924    /// }
1925    /// ```
1926    fn into_iter(self) -> IntoIter<T, A> {
1927        IntoIter { iter: self.data.into_iter() }
1928    }
1929}
1930
1931#[stable(feature = "rust1", since = "1.0.0")]
1932impl<'a, T, A: Allocator> IntoIterator for &'a BinaryHeap<T, A> {
1933    type Item = &'a T;
1934    type IntoIter = Iter<'a, T>;
1935
1936    fn into_iter(self) -> Iter<'a, T> {
1937        self.iter()
1938    }
1939}
1940
1941#[stable(feature = "rust1", since = "1.0.0")]
1942impl<T: Ord, A: Allocator> Extend<T> for BinaryHeap<T, A> {
1943    #[inline]
1944    fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
1945        let guard = RebuildOnDrop { rebuild_from: self.len(), heap: self };
1946        guard.heap.data.extend(iter);
1947    }
1948
1949    #[inline]
1950    fn extend_one(&mut self, item: T) {
1951        self.push(item);
1952    }
1953
1954    #[inline]
1955    fn extend_reserve(&mut self, additional: usize) {
1956        self.reserve(additional);
1957    }
1958}
1959
1960#[stable(feature = "extend_ref", since = "1.2.0")]
1961impl<'a, T: 'a + Ord + Copy, A: Allocator> Extend<&'a T> for BinaryHeap<T, A> {
1962    fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
1963        self.extend(iter.into_iter().cloned());
1964    }
1965
1966    #[inline]
1967    fn extend_one(&mut self, &item: &'a T) {
1968        self.push(item);
1969    }
1970
1971    #[inline]
1972    fn extend_reserve(&mut self, additional: usize) {
1973        self.reserve(additional);
1974    }
1975}