Skip to main content

alloc/collections/binary_heap/
mod.rs

1//! A priority queue implemented with a binary heap.
2//!
3//! Insertion and popping the largest element have *O*(log(*n*)) time complexity.
4//! Checking the largest element is *O*(1). Converting a vector to a binary heap
5//! can be done in-place, and has *O*(*n*) complexity. A binary heap can also be
6//! converted to a sorted vector in-place, allowing it to be used for an *O*(*n* * log(*n*))
7//! in-place heapsort.
8//!
9//! # Examples
10//!
11//! This is a larger example that implements [Dijkstra's algorithm][dijkstra]
12//! to solve the [shortest path problem][sssp] on a [directed graph][dir_graph].
13//! It shows how to use [`BinaryHeap`] with custom types.
14//!
15//! [dijkstra]: https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
16//! [sssp]: https://en.wikipedia.org/wiki/Shortest_path_problem
17//! [dir_graph]: https://en.wikipedia.org/wiki/Directed_graph
18//!
19//! ```
20//! use std::cmp::Ordering;
21//! use std::collections::BinaryHeap;
22//!
23//! #[derive(Copy, Clone, Eq, PartialEq)]
24//! struct State {
25//!     cost: usize,
26//!     position: usize,
27//! }
28//!
29//! // The priority queue depends on `Ord`.
30//! // Explicitly implement the trait so the queue becomes a min-heap
31//! // instead of a max-heap.
32//! impl Ord for State {
33//!     fn cmp(&self, other: &Self) -> Ordering {
34//!         // Notice that we flip the ordering on costs.
35//!         // In case of a tie we compare positions - this step is necessary
36//!         // to make implementations of `PartialEq` and `Ord` consistent.
37//!         other.cost.cmp(&self.cost)
38//!             .then_with(|| self.position.cmp(&other.position))
39//!     }
40//! }
41//!
42//! // `PartialOrd` needs to be implemented as well.
43//! impl PartialOrd for State {
44//!     fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
45//!         Some(self.cmp(other))
46//!     }
47//! }
48//!
49//! // Each node is represented as a `usize`, for a shorter implementation.
50//! struct Edge {
51//!     node: usize,
52//!     cost: usize,
53//! }
54//!
55//! // Dijkstra's shortest path algorithm.
56//!
57//! // Start at `start` and use `dist` to track the current shortest distance
58//! // to each node. This implementation isn't memory-efficient as it may leave duplicate
59//! // nodes in the queue. It also uses `usize::MAX` as a sentinel value,
60//! // for a simpler implementation.
61//! fn shortest_path(adj_list: &Vec<Vec<Edge>>, start: usize, goal: usize) -> Option<usize> {
62//!     // dist[node] = current shortest distance from `start` to `node`
63//!     let mut dist: Vec<_> = (0..adj_list.len()).map(|_| usize::MAX).collect();
64//!
65//!     let mut heap = BinaryHeap::new();
66//!
67//!     // We're at `start`, with a zero cost
68//!     dist[start] = 0;
69//!     heap.push(State { cost: 0, position: start });
70//!
71//!     // Examine the frontier with lower cost nodes first (min-heap)
72//!     while let Some(State { cost, position }) = heap.pop() {
73//!         // Alternatively we could have continued to find all shortest paths
74//!         if position == goal { return Some(cost); }
75//!
76//!         // Important as we may have already found a better way
77//!         if cost > dist[position] { continue; }
78//!
79//!         // For each node we can reach, see if we can find a way with
80//!         // a lower cost going through this node
81//!         for edge in &adj_list[position] {
82//!             let next = State { cost: cost + edge.cost, position: edge.node };
83//!
84//!             // If so, add it to the frontier and continue
85//!             if next.cost < dist[next.position] {
86//!                 heap.push(next);
87//!                 // Relaxation, we have now found a better way
88//!                 dist[next.position] = next.cost;
89//!             }
90//!         }
91//!     }
92//!
93//!     // Goal not reachable
94//!     None
95//! }
96//!
97//! fn main() {
98//!     // This is the directed graph we're going to use.
99//!     // The node numbers correspond to the different states,
100//!     // and the edge weights symbolize the cost of moving
101//!     // from one node to another.
102//!     // Note that the edges are one-way.
103//!     //
104//!     //                  7
105//!     //          +-----------------+
106//!     //          |                 |
107//!     //          v   1        2    |  2
108//!     //          0 -----> 1 -----> 3 ---> 4
109//!     //          |        ^        ^      ^
110//!     //          |        | 1      |      |
111//!     //          |        |        | 3    | 1
112//!     //          +------> 2 -------+      |
113//!     //           10      |               |
114//!     //                   +---------------+
115//!     //
116//!     // The graph is represented as an adjacency list where each index,
117//!     // corresponding to a node value, has a list of outgoing edges.
118//!     // Chosen for its efficiency.
119//!     let graph = vec![
120//!         // Node 0
121//!         vec![Edge { node: 2, cost: 10 },
122//!              Edge { node: 1, cost: 1 }],
123//!         // Node 1
124//!         vec![Edge { node: 3, cost: 2 }],
125//!         // Node 2
126//!         vec![Edge { node: 1, cost: 1 },
127//!              Edge { node: 3, cost: 3 },
128//!              Edge { node: 4, cost: 1 }],
129//!         // Node 3
130//!         vec![Edge { node: 0, cost: 7 },
131//!              Edge { node: 4, cost: 2 }],
132//!         // Node 4
133//!         vec![]];
134//!
135//!     assert_eq!(shortest_path(&graph, 0, 1), Some(1));
136//!     assert_eq!(shortest_path(&graph, 0, 3), Some(3));
137//!     assert_eq!(shortest_path(&graph, 3, 0), Some(7));
138//!     assert_eq!(shortest_path(&graph, 0, 4), Some(5));
139//!     assert_eq!(shortest_path(&graph, 4, 0), None);
140//! }
141//! ```
142
143#![allow(missing_docs)]
144#![stable(feature = "rust1", since = "1.0.0")]
145
146use core::alloc::Allocator;
147use core::iter::{FusedIterator, InPlaceIterable, SourceIter, TrustedFused, TrustedLen};
148use core::mem::{self, ManuallyDrop, swap};
149use core::num::NonZero;
150use core::ops::{Deref, DerefMut};
151use core::{fmt, ptr};
152
153use crate::alloc::Global;
154use crate::collections::TryReserveError;
155use crate::slice;
156#[cfg(not(test))]
157use crate::vec::AsVecIntoIter;
158use crate::vec::{self, Vec};
159
160/// A priority queue implemented with a binary heap.
161///
162/// This will be a max-heap.
163///
164/// It is a logic error for an item to be modified in such a way that the
165/// item's ordering relative to any other item, as determined by the [`Ord`]
166/// trait, changes while it is in the heap. This is normally only possible
167/// through interior mutability, global state, I/O, or unsafe code. The
168/// behavior resulting from such a logic error is not specified, but will
169/// be encapsulated to the `BinaryHeap` that observed the logic error and not
170/// result in undefined behavior. This could include panics, incorrect results,
171/// aborts, memory leaks, and non-termination.
172///
173/// As long as no elements change their relative order while being in the heap
174/// as described above, the API of `BinaryHeap` guarantees that the heap
175/// invariant remains intact i.e. its methods all behave as documented. For
176/// example if a method is documented as iterating in sorted order, that's
177/// guaranteed to work as long as elements in the heap have not changed order,
178/// even in the presence of closures getting unwinded out of, iterators getting
179/// leaked, and similar foolishness.
180///
181/// # Examples
182///
183/// ```
184/// use std::collections::BinaryHeap;
185///
186/// // Type inference lets us omit an explicit type signature (which
187/// // would be `BinaryHeap<i32>` in this example).
188/// let mut heap = BinaryHeap::new();
189///
190/// // We can use peek to look at the next item in the heap. In this case,
191/// // there's no items in there yet so we get None.
192/// assert_eq!(heap.peek(), None);
193///
194/// // Let's add some scores...
195/// heap.push(1);
196/// heap.push(5);
197/// heap.push(2);
198///
199/// // Now peek shows the most important item in the heap.
200/// assert_eq!(heap.peek(), Some(&5));
201///
202/// // We can check the length of a heap.
203/// assert_eq!(heap.len(), 3);
204///
205/// // We can iterate over the items in the heap, although they are returned in
206/// // a random order.
207/// for x in &heap {
208///     println!("{x}");
209/// }
210///
211/// // If we instead pop these scores, they should come back in order.
212/// assert_eq!(heap.pop(), Some(5));
213/// assert_eq!(heap.pop(), Some(2));
214/// assert_eq!(heap.pop(), Some(1));
215/// assert_eq!(heap.pop(), None);
216///
217/// // We can clear the heap of any remaining items.
218/// heap.clear();
219///
220/// // The heap should now be empty.
221/// assert!(heap.is_empty())
222/// ```
223///
224/// A `BinaryHeap` with a known list of items can be initialized from an array:
225///
226/// ```
227/// use std::collections::BinaryHeap;
228///
229/// let heap = BinaryHeap::from([1, 5, 2]);
230/// ```
231///
232/// ## Min-heap
233///
234/// Either [`core::cmp::Reverse`] or a custom [`Ord`] implementation can be used to
235/// make `BinaryHeap` a min-heap. This makes `heap.pop()` return the smallest
236/// value instead of the greatest one.
237///
238/// ```
239/// use std::collections::BinaryHeap;
240/// use std::cmp::Reverse;
241///
242/// let mut heap = BinaryHeap::new();
243///
244/// // Wrap values in `Reverse`
245/// heap.push(Reverse(1));
246/// heap.push(Reverse(5));
247/// heap.push(Reverse(2));
248///
249/// // If we pop these scores now, they should come back in the reverse order.
250/// assert_eq!(heap.pop(), Some(Reverse(1)));
251/// assert_eq!(heap.pop(), Some(Reverse(2)));
252/// assert_eq!(heap.pop(), Some(Reverse(5)));
253/// assert_eq!(heap.pop(), None);
254/// ```
255///
256/// # Time complexity
257///
258/// | [push]  | [pop]         | [peek]/[peek\_mut] |
259/// |---------|---------------|--------------------|
260/// | *O*(1)~ | *O*(log(*n*)) | *O*(1)             |
261///
262/// The value for `push` is an expected cost; the method documentation gives a
263/// more detailed analysis.
264///
265/// [`core::cmp::Reverse`]: core::cmp::Reverse
266/// [`Cell`]: core::cell::Cell
267/// [`RefCell`]: core::cell::RefCell
268/// [push]: BinaryHeap::push
269/// [pop]: BinaryHeap::pop
270/// [peek]: BinaryHeap::peek
271/// [peek\_mut]: BinaryHeap::peek_mut
272#[stable(feature = "rust1", since = "1.0.0")]
273#[cfg_attr(not(test), rustc_diagnostic_item = "BinaryHeap")]
274pub struct BinaryHeap<
275    T,
276    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
277> {
278    data: Vec<T, A>,
279}
280
281/// Structure wrapping a mutable reference to the greatest item on a
282/// `BinaryHeap`.
283///
284/// This `struct` is created by the [`peek_mut`] method on [`BinaryHeap`]. See
285/// its documentation for more.
286///
287/// [`peek_mut`]: BinaryHeap::peek_mut
288#[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
289pub struct PeekMut<
290    'a,
291    T: 'a + Ord,
292    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
293> {
294    heap: &'a mut BinaryHeap<T, A>,
295    // If a set_len + sift_down are required, this is Some. If a &mut T has not
296    // yet been exposed to peek_mut()'s caller, it's None.
297    original_len: Option<NonZero<usize>>,
298}
299
300#[stable(feature = "collection_debug", since = "1.17.0")]
301impl<T: Ord + fmt::Debug, A: Allocator> fmt::Debug for PeekMut<'_, T, A> {
302    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
303        f.debug_tuple("PeekMut").field(&self.heap.data[0]).finish()
304    }
305}
306
307#[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
308impl<T: Ord, A: Allocator> Drop for PeekMut<'_, T, A> {
309    fn drop(&mut self) {
310        if let Some(original_len) = self.original_len {
311            // SAFETY: That's how many elements were in the Vec at the time of
312            // the PeekMut::deref_mut call, and therefore also at the time of
313            // the BinaryHeap::peek_mut call. Since the PeekMut did not end up
314            // getting leaked, we are now undoing the leak amplification that
315            // the DerefMut prepared for.
316            unsafe { self.heap.data.set_len(original_len.get()) };
317
318            // SAFETY: PeekMut is only instantiated for non-empty heaps.
319            unsafe { self.heap.sift_down(0) };
320        }
321    }
322}
323
324#[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
325impl<T: Ord, A: Allocator> Deref for PeekMut<'_, T, A> {
326    type Target = T;
327    fn deref(&self) -> &T {
328        debug_assert!(!self.heap.is_empty());
329        // SAFE: PeekMut is only instantiated for non-empty heaps
330        unsafe { self.heap.data.get_unchecked(0) }
331    }
332}
333
334#[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
335impl<T: Ord, A: Allocator> DerefMut for PeekMut<'_, T, A> {
336    fn deref_mut(&mut self) -> &mut T {
337        debug_assert!(!self.heap.is_empty());
338
339        let len = self.heap.len();
340        if len > 1 {
341            // Here we preemptively leak all the rest of the underlying vector
342            // after the currently max element. If the caller mutates the &mut T
343            // we're about to give them, and then leaks the PeekMut, all these
344            // elements will remain leaked. If they don't leak the PeekMut, then
345            // either Drop or PeekMut::pop will un-leak the vector elements.
346            //
347            // This is technique is described throughout several other places in
348            // the standard library as "leak amplification".
349            unsafe {
350                // SAFETY: len > 1 so len != 0.
351                self.original_len = Some(NonZero::new_unchecked(len));
352                // SAFETY: len > 1 so all this does for now is leak elements,
353                // which is safe.
354                self.heap.data.set_len(1);
355            }
356        }
357
358        // SAFE: PeekMut is only instantiated for non-empty heaps
359        unsafe { self.heap.data.get_unchecked_mut(0) }
360    }
361}
362
363impl<'a, T: Ord, A: Allocator> PeekMut<'a, T, A> {
364    /// Sifts the current element to its new position.
365    ///
366    /// Afterwards refers to the new element. Returns if the element changed.
367    ///
368    /// ## Examples
369    ///
370    /// The condition can be used to upper bound all elements in the heap. When only few elements
371    /// are affected, the heap's sort ensures this is faster than a reconstruction from the raw
372    /// element list and requires no additional allocation.
373    ///
374    /// ```
375    /// #![feature(binary_heap_peek_mut_refresh)]
376    /// use std::collections::BinaryHeap;
377    ///
378    /// let mut heap: BinaryHeap<u32> = (0..128).collect();
379    /// let mut peek = heap.peek_mut().unwrap();
380    ///
381    /// loop {
382    ///     *peek = 99;
383    ///
384    ///     if !peek.refresh() {
385    ///         break;
386    ///     }
387    /// }
388    ///
389    /// // Post condition, this is now an upper bound.
390    /// assert!(*peek < 100);
391    /// ```
392    ///
393    /// When the element remains the maximum after modification, the peek remains unchanged:
394    ///
395    /// ```
396    /// #![feature(binary_heap_peek_mut_refresh)]
397    /// use std::collections::BinaryHeap;
398    ///
399    /// let mut heap: BinaryHeap<u32> = [1, 2, 3].into();
400    /// let mut peek = heap.peek_mut().unwrap();
401    ///
402    /// assert_eq!(*peek, 3);
403    /// *peek = 42;
404    ///
405    /// // When we refresh, the peek is updated to the new maximum.
406    /// assert!(!peek.refresh(), "42 is even larger than 3");
407    /// assert_eq!(*peek, 42);
408    /// ```
409    #[unstable(feature = "binary_heap_peek_mut_refresh", issue = "138355")]
410    #[must_use = "is equivalent to dropping and getting a new PeekMut except for return information"]
411    pub fn refresh(&mut self) -> bool {
412        // The length of the underlying heap is unchanged by sifting down. The value stored for leak
413        // amplification thus remains accurate. We erase the leak amplification firstly because the
414        // operation is then equivalent to constructing a new PeekMut and secondly this avoids any
415        // future complication where original_len being non-empty would be interpreted as the heap
416        // having been leak amplified instead of checking the heap itself.
417        if let Some(original_len) = self.original_len.take() {
418            // SAFETY: This is how many elements were in the Vec at the time of
419            // the BinaryHeap::peek_mut call.
420            unsafe { self.heap.data.set_len(original_len.get()) };
421
422            // The length of the heap did not change by sifting, upholding our own invariants.
423
424            // SAFETY: PeekMut is only instantiated for non-empty heaps.
425            (unsafe { self.heap.sift_down(0) }) != 0
426        } else {
427            // The element was not modified.
428            false
429        }
430    }
431
432    /// Removes the peeked value from the heap and returns it.
433    #[stable(feature = "binary_heap_peek_mut_pop", since = "1.18.0")]
434    pub fn pop(mut this: PeekMut<'a, T, A>) -> T {
435        if let Some(original_len) = this.original_len.take() {
436            // SAFETY: This is how many elements were in the Vec at the time of
437            // the BinaryHeap::peek_mut call.
438            unsafe { this.heap.data.set_len(original_len.get()) };
439
440            // Unlike in Drop, here we don't also need to do a sift_down even if
441            // the caller could've mutated the element. It is removed from the
442            // heap on the next line and pop() is not sensitive to its value.
443        }
444
445        // SAFETY: Have a `PeekMut` element proves that the associated binary heap being non-empty,
446        // so the `pop` operation will not fail.
447        unsafe { this.heap.pop().unwrap_unchecked() }
448    }
449}
450
451#[stable(feature = "rust1", since = "1.0.0")]
452impl<T: Clone, A: Allocator + Clone> Clone for BinaryHeap<T, A> {
453    fn clone(&self) -> Self {
454        BinaryHeap { data: self.data.clone() }
455    }
456
457    /// Overwrites the contents of `self` with a clone of the contents of `source`.
458    ///
459    /// This method is preferred over simply assigning `source.clone()` to `self`,
460    /// as it avoids reallocation if possible.
461    ///
462    /// See [`Vec::clone_from()`] for more details.
463    fn clone_from(&mut self, source: &Self) {
464        self.data.clone_from(&source.data);
465    }
466}
467
468#[stable(feature = "rust1", since = "1.0.0")]
469impl<T> Default for BinaryHeap<T> {
470    /// Creates an empty `BinaryHeap<T>`.
471    #[inline]
472    fn default() -> BinaryHeap<T> {
473        BinaryHeap::new()
474    }
475}
476
477#[stable(feature = "binaryheap_debug", since = "1.4.0")]
478impl<T: fmt::Debug, A: Allocator> fmt::Debug for BinaryHeap<T, A> {
479    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
480        f.debug_list().entries(self.iter()).finish()
481    }
482}
483
484struct RebuildOnDrop<
485    'a,
486    T: Ord,
487    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
488> {
489    heap: &'a mut BinaryHeap<T, A>,
490    rebuild_from: usize,
491}
492
493impl<T: Ord, A: Allocator> Drop for RebuildOnDrop<'_, T, A> {
494    fn drop(&mut self) {
495        self.heap.rebuild_tail(self.rebuild_from);
496    }
497}
498
499impl<T> BinaryHeap<T> {
500    /// Creates an empty `BinaryHeap` as a max-heap.
501    ///
502    /// # Examples
503    ///
504    /// Basic usage:
505    ///
506    /// ```
507    /// use std::collections::BinaryHeap;
508    /// let mut heap = BinaryHeap::new();
509    /// heap.push(4);
510    /// ```
511    #[stable(feature = "rust1", since = "1.0.0")]
512    #[rustc_const_stable(feature = "const_binary_heap_constructor", since = "1.80.0")]
513    #[must_use]
514    pub const fn new() -> BinaryHeap<T> {
515        BinaryHeap { data: vec![] }
516    }
517
518    /// Creates an empty `BinaryHeap` with at least the specified capacity.
519    ///
520    /// The binary heap will be able to hold at least `capacity` elements without
521    /// reallocating. This method is allowed to allocate for more elements than
522    /// `capacity`. If `capacity` is zero, the binary heap will not allocate.
523    ///
524    /// # Examples
525    ///
526    /// Basic usage:
527    ///
528    /// ```
529    /// use std::collections::BinaryHeap;
530    /// let mut heap = BinaryHeap::with_capacity(10);
531    /// heap.push(4);
532    /// ```
533    #[stable(feature = "rust1", since = "1.0.0")]
534    #[must_use]
535    pub fn with_capacity(capacity: usize) -> BinaryHeap<T> {
536        BinaryHeap { data: Vec::with_capacity(capacity) }
537    }
538}
539
540impl<T, A: Allocator> BinaryHeap<T, A> {
541    /// Creates an empty `BinaryHeap` as a max-heap, using `A` as allocator.
542    ///
543    /// # Examples
544    ///
545    /// Basic usage:
546    ///
547    /// ```
548    /// #![feature(allocator_api)]
549    ///
550    /// use std::alloc::System;
551    /// use std::collections::BinaryHeap;
552    /// let mut heap = BinaryHeap::new_in(System);
553    /// heap.push(4);
554    /// ```
555    #[unstable(feature = "allocator_api", issue = "32838")]
556    #[must_use]
557    pub const fn new_in(alloc: A) -> BinaryHeap<T, A> {
558        BinaryHeap { data: Vec::new_in(alloc) }
559    }
560
561    /// Creates an empty `BinaryHeap` with at least the specified capacity, using `A` as allocator.
562    ///
563    /// The binary heap will be able to hold at least `capacity` elements without
564    /// reallocating. This method is allowed to allocate for more elements than
565    /// `capacity`. If `capacity` is zero, the binary heap will not allocate.
566    ///
567    /// # Examples
568    ///
569    /// Basic usage:
570    ///
571    /// ```
572    /// #![feature(allocator_api)]
573    ///
574    /// use std::alloc::System;
575    /// use std::collections::BinaryHeap;
576    /// let mut heap = BinaryHeap::with_capacity_in(10, System);
577    /// heap.push(4);
578    /// ```
579    #[unstable(feature = "allocator_api", issue = "32838")]
580    #[must_use]
581    pub fn with_capacity_in(capacity: usize, alloc: A) -> BinaryHeap<T, A> {
582        BinaryHeap { data: Vec::with_capacity_in(capacity, alloc) }
583    }
584}
585
586impl<T: Ord, A: Allocator> BinaryHeap<T, A> {
587    /// Returns a mutable reference to the greatest item in the binary heap, or
588    /// `None` if it is empty.
589    ///
590    /// Note: If the `PeekMut` value is leaked, some heap elements might get
591    /// leaked along with it, but the remaining elements will remain a valid
592    /// heap.
593    ///
594    /// # Examples
595    ///
596    /// Basic usage:
597    ///
598    /// ```
599    /// use std::collections::BinaryHeap;
600    /// let mut heap = BinaryHeap::new();
601    /// assert!(heap.peek_mut().is_none());
602    ///
603    /// heap.push(1);
604    /// heap.push(5);
605    /// heap.push(2);
606    /// if let Some(mut val) = heap.peek_mut() {
607    ///     *val = 0;
608    /// }
609    /// assert_eq!(heap.peek(), Some(&2));
610    /// ```
611    ///
612    /// # Time complexity
613    ///
614    /// If the item is modified then the worst case time complexity is *O*(log(*n*)),
615    /// otherwise it's *O*(1).
616    #[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
617    pub fn peek_mut(&mut self) -> Option<PeekMut<'_, T, A>> {
618        if self.is_empty() { None } else { Some(PeekMut { heap: self, original_len: None }) }
619    }
620
621    /// Removes the greatest item from the binary heap and returns it, or `None` if it
622    /// is empty.
623    ///
624    /// # Examples
625    ///
626    /// Basic usage:
627    ///
628    /// ```
629    /// use std::collections::BinaryHeap;
630    /// let mut heap = BinaryHeap::from([1, 3]);
631    ///
632    /// assert_eq!(heap.pop(), Some(3));
633    /// assert_eq!(heap.pop(), Some(1));
634    /// assert_eq!(heap.pop(), None);
635    /// ```
636    ///
637    /// # Time complexity
638    ///
639    /// The worst case cost of `pop` on a heap containing *n* elements is *O*(log(*n*)).
640    #[stable(feature = "rust1", since = "1.0.0")]
641    pub fn pop(&mut self) -> Option<T> {
642        self.data.pop().map(|mut item| {
643            if !self.is_empty() {
644                swap(&mut item, &mut self.data[0]);
645                // SAFETY: !self.is_empty() means that self.len() > 0
646                unsafe { self.sift_down_to_bottom(0) };
647            }
648            item
649        })
650    }
651
652    /// Removes and returns the greatest item from the binary heap if the predicate
653    /// returns `true`, or [`None`] if the predicate returns false or the heap
654    /// is empty (the predicate will not be called in that case).
655    ///
656    /// # Examples
657    ///
658    /// ```
659    /// #![feature(binary_heap_pop_if)]
660    /// use std::collections::BinaryHeap;
661    /// let mut heap = BinaryHeap::from([1, 2]);
662    /// let pred = |x: &i32| *x % 2 == 0;
663    ///
664    /// assert_eq!(heap.pop_if(pred), Some(2));
665    /// assert_eq!(heap.as_slice(), [1]);
666    /// assert_eq!(heap.pop_if(pred), None);
667    /// assert_eq!(heap.as_slice(), [1]);
668    /// ```
669    ///
670    /// # Time complexity
671    ///
672    /// The worst case cost of `pop_if` on a heap containing *n* elements is *O*(log(*n*)).
673    #[unstable(feature = "binary_heap_pop_if", issue = "151828")]
674    pub fn pop_if(&mut self, predicate: impl FnOnce(&T) -> bool) -> Option<T> {
675        let first = self.peek()?;
676        if predicate(first) { self.pop() } else { None }
677    }
678
679    /// Pushes an item onto the binary heap.
680    ///
681    /// # Examples
682    ///
683    /// Basic usage:
684    ///
685    /// ```
686    /// use std::collections::BinaryHeap;
687    /// let mut heap = BinaryHeap::new();
688    /// heap.push(3);
689    /// heap.push(5);
690    /// heap.push(1);
691    ///
692    /// assert_eq!(heap.len(), 3);
693    /// assert_eq!(heap.peek(), Some(&5));
694    /// ```
695    ///
696    /// # Time complexity
697    ///
698    /// The expected cost of `push`, averaged over every possible ordering of
699    /// the elements being pushed, and over a sufficiently large number of
700    /// pushes, is *O*(1). This is the most meaningful cost metric when pushing
701    /// elements that are *not* already in any sorted pattern.
702    ///
703    /// The time complexity degrades if elements are pushed in predominantly
704    /// ascending order. In the worst case, elements are pushed in ascending
705    /// sorted order and the amortized cost per push is *O*(log(*n*)) against a heap
706    /// containing *n* elements.
707    ///
708    /// The worst case cost of a *single* call to `push` is *O*(*n*). The worst case
709    /// occurs when capacity is exhausted and needs a resize. The resize cost
710    /// has been amortized in the previous figures.
711    #[stable(feature = "rust1", since = "1.0.0")]
712    #[rustc_confusables("append", "put")]
713    pub fn push(&mut self, item: T) {
714        let old_len = self.len();
715        self.data.push(item);
716        // SAFETY: Since we pushed a new item it means that
717        //  old_len = self.len() - 1 < self.len()
718        unsafe { self.sift_up(0, old_len) };
719    }
720
721    /// Consumes the `BinaryHeap` and returns a vector in sorted
722    /// (ascending) order.
723    ///
724    /// # Examples
725    ///
726    /// Basic usage:
727    ///
728    /// ```
729    /// use std::collections::BinaryHeap;
730    ///
731    /// let mut heap = BinaryHeap::from([1, 2, 4, 5, 7]);
732    /// heap.push(6);
733    /// heap.push(3);
734    ///
735    /// let vec = heap.into_sorted_vec();
736    /// assert_eq!(vec, [1, 2, 3, 4, 5, 6, 7]);
737    /// ```
738    #[must_use = "`self` will be dropped if the result is not used"]
739    #[stable(feature = "binary_heap_extras_15", since = "1.5.0")]
740    pub fn into_sorted_vec(mut self) -> Vec<T, A> {
741        let mut end = self.len();
742        while end > 1 {
743            end -= 1;
744            // SAFETY: `end` goes from `self.len() - 1` to 1 (both included),
745            //  so it's always a valid index to access.
746            //  It is safe to access index 0 (i.e. `ptr`), because
747            //  1 <= end < self.len(), which means self.len() >= 2.
748            unsafe {
749                let ptr = self.data.as_mut_ptr();
750                ptr::swap(ptr, ptr.add(end));
751            }
752            // SAFETY: `end` goes from `self.len() - 1` to 1 (both included) so:
753            //  0 < 1 <= end <= self.len() - 1 < self.len()
754            //  Which means 0 < end and end < self.len().
755            unsafe { self.sift_down_range(0, end) };
756        }
757        self.into_vec()
758    }
759
760    // The implementations of sift_up and sift_down use unsafe blocks in
761    // order to move an element out of the vector (leaving behind a
762    // hole), shift along the others and move the removed element back into the
763    // vector at the final location of the hole.
764    // The `Hole` type is used to represent this, and make sure
765    // the hole is filled back at the end of its scope, even on panic.
766    // Using a hole reduces the constant factor compared to using swaps,
767    // which involves twice as many moves.
768
769    /// # Safety
770    ///
771    /// The caller must guarantee that `pos < self.len()`.
772    ///
773    /// Returns the new position of the element.
774    unsafe fn sift_up(&mut self, start: usize, pos: usize) -> usize {
775        // Take out the value at `pos` and create a hole.
776        // SAFETY: The caller guarantees that pos < self.len()
777        let mut hole = unsafe { Hole::new(&mut self.data, pos) };
778
779        while hole.pos() > start {
780            let parent = (hole.pos() - 1) / 2;
781
782            // SAFETY: hole.pos() > start >= 0, which means hole.pos() > 0
783            //  and so hole.pos() - 1 can't underflow.
784            //  This guarantees that parent < hole.pos() so
785            //  it's a valid index and also != hole.pos().
786            if hole.element() <= unsafe { hole.get(parent) } {
787                break;
788            }
789
790            // SAFETY: Same as above
791            unsafe { hole.move_to(parent) };
792        }
793
794        hole.pos()
795    }
796
797    /// Take an element at `pos` and move it down the heap,
798    /// while its children are larger.
799    ///
800    /// Returns the new position of the element.
801    ///
802    /// # Safety
803    ///
804    /// The caller must guarantee that `pos < end <= self.len()`.
805    unsafe fn sift_down_range(&mut self, pos: usize, end: usize) -> usize {
806        // SAFETY: The caller guarantees that pos < end <= self.len().
807        let mut hole = unsafe { Hole::new(&mut self.data, pos) };
808        let mut child = 2 * hole.pos() + 1;
809
810        // Loop invariant: child == 2 * hole.pos() + 1.
811        while child <= end.saturating_sub(2) {
812            // compare with the greater of the two children
813            // SAFETY: child < end - 1 < self.len() and
814            //  child + 1 < end <= self.len(), so they're valid indexes.
815            //  child == 2 * hole.pos() + 1 != hole.pos() and
816            //  child + 1 == 2 * hole.pos() + 2 != hole.pos().
817            // FIXME: 2 * hole.pos() + 1 or 2 * hole.pos() + 2 could overflow
818            //  if T is a ZST
819            child += unsafe { hole.get(child) <= hole.get(child + 1) } as usize;
820
821            // if we are already in order, stop.
822            // SAFETY: child is now either the old child or the old child+1
823            //  We already proven that both are < self.len() and != hole.pos()
824            if hole.element() >= unsafe { hole.get(child) } {
825                return hole.pos();
826            }
827
828            // SAFETY: same as above.
829            unsafe { hole.move_to(child) };
830            child = 2 * hole.pos() + 1;
831        }
832
833        // SAFETY: && short circuit, which means that in the
834        //  second condition it's already true that child == end - 1 < self.len().
835        if child == end - 1 && hole.element() < unsafe { hole.get(child) } {
836            // SAFETY: child is already proven to be a valid index and
837            //  child == 2 * hole.pos() + 1 != hole.pos().
838            unsafe { hole.move_to(child) };
839        }
840
841        hole.pos()
842    }
843
844    /// # Safety
845    ///
846    /// The caller must guarantee that `pos < self.len()`.
847    unsafe fn sift_down(&mut self, pos: usize) -> usize {
848        let len = self.len();
849        // SAFETY: pos < len is guaranteed by the caller and
850        //  obviously len = self.len() <= self.len().
851        unsafe { self.sift_down_range(pos, len) }
852    }
853
854    /// Take an element at `pos` and move it all the way down the heap,
855    /// then sift it up to its position.
856    ///
857    /// Note: This is faster when the element is known to be large / should
858    /// be closer to the bottom.
859    ///
860    /// # Safety
861    ///
862    /// The caller must guarantee that `pos < self.len()`.
863    unsafe fn sift_down_to_bottom(&mut self, mut pos: usize) {
864        let end = self.len();
865        let start = pos;
866
867        // SAFETY: The caller guarantees that pos < self.len().
868        let mut hole = unsafe { Hole::new(&mut self.data, pos) };
869        let mut child = 2 * hole.pos() + 1;
870
871        // Loop invariant: child == 2 * hole.pos() + 1.
872        while child <= end.saturating_sub(2) {
873            // SAFETY: child < end - 1 < self.len() and
874            //  child + 1 < end <= self.len(), so they're valid indexes.
875            //  child == 2 * hole.pos() + 1 != hole.pos() and
876            //  child + 1 == 2 * hole.pos() + 2 != hole.pos().
877            // FIXME: 2 * hole.pos() + 1 or 2 * hole.pos() + 2 could overflow
878            //  if T is a ZST
879            child += unsafe { hole.get(child) <= hole.get(child + 1) } as usize;
880
881            // SAFETY: Same as above
882            unsafe { hole.move_to(child) };
883            child = 2 * hole.pos() + 1;
884        }
885
886        if child == end - 1 {
887            // SAFETY: child == end - 1 < self.len(), so it's a valid index
888            //  and child == 2 * hole.pos() + 1 != hole.pos().
889            unsafe { hole.move_to(child) };
890        }
891        pos = hole.pos();
892        drop(hole);
893
894        // SAFETY: pos is the position in the hole and was already proven
895        //  to be a valid index.
896        unsafe { self.sift_up(start, pos) };
897    }
898
899    /// Rebuild assuming data[0..start] is still a proper heap.
900    fn rebuild_tail(&mut self, start: usize) {
901        if start == self.len() {
902            return;
903        }
904
905        let tail_len = self.len() - start;
906
907        #[inline(always)]
908        fn log2_fast(x: usize) -> usize {
909            (usize::BITS - x.leading_zeros() - 1) as usize
910        }
911
912        // `rebuild` takes O(self.len()) operations
913        // and about 2 * self.len() comparisons in the worst case
914        // while repeating `sift_up` takes O(tail_len * log(start)) operations
915        // and about 1 * tail_len * log_2(start) comparisons in the worst case,
916        // assuming start >= tail_len. For larger heaps, the crossover point
917        // no longer follows this reasoning and was determined empirically.
918        let better_to_rebuild = if start < tail_len {
919            true
920        } else if self.len() <= 2048 {
921            2 * self.len() < tail_len * log2_fast(start)
922        } else {
923            2 * self.len() < tail_len * 11
924        };
925
926        if better_to_rebuild {
927            self.rebuild();
928        } else {
929            for i in start..self.len() {
930                // SAFETY: The index `i` is always less than self.len().
931                unsafe { self.sift_up(0, i) };
932            }
933        }
934    }
935
936    fn rebuild(&mut self) {
937        let mut n = self.len() / 2;
938        while n > 0 {
939            n -= 1;
940            // SAFETY: n starts from self.len() / 2 and goes down to 0.
941            //  The only case when !(n < self.len()) is if
942            //  self.len() == 0, but it's ruled out by the loop condition.
943            unsafe { self.sift_down(n) };
944        }
945    }
946
947    /// Moves all the elements of `other` into `self`, leaving `other` empty.
948    ///
949    /// # Examples
950    ///
951    /// Basic usage:
952    ///
953    /// ```
954    /// use std::collections::BinaryHeap;
955    ///
956    /// let mut a = BinaryHeap::from([-10, 1, 2, 3, 3]);
957    /// let mut b = BinaryHeap::from([-20, 5, 43]);
958    ///
959    /// a.append(&mut b);
960    ///
961    /// assert_eq!(a.into_sorted_vec(), [-20, -10, 1, 2, 3, 3, 5, 43]);
962    /// assert!(b.is_empty());
963    /// ```
964    #[stable(feature = "binary_heap_append", since = "1.11.0")]
965    pub fn append(&mut self, other: &mut Self) {
966        if self.len() < other.len() {
967            swap(self, other);
968        }
969
970        let start = self.data.len();
971
972        self.data.append(&mut other.data);
973
974        self.rebuild_tail(start);
975    }
976
977    /// Clears the binary heap, returning an iterator over the removed elements
978    /// in heap order. If the iterator is dropped before being fully consumed,
979    /// it drops the remaining elements in heap order.
980    ///
981    /// The returned iterator keeps a mutable borrow on the heap to optimize
982    /// its implementation.
983    ///
984    /// Note:
985    /// * `.drain_sorted()` is *O*(*n* \* log(*n*)); much slower than `.drain()`.
986    ///   You should use the latter for most cases.
987    ///
988    /// # Examples
989    ///
990    /// Basic usage:
991    ///
992    /// ```
993    /// #![feature(binary_heap_drain_sorted)]
994    /// use std::collections::BinaryHeap;
995    ///
996    /// let mut heap = BinaryHeap::from([1, 2, 3, 4, 5]);
997    /// assert_eq!(heap.len(), 5);
998    ///
999    /// drop(heap.drain_sorted()); // removes all elements in heap order
1000    /// assert_eq!(heap.len(), 0);
1001    /// ```
1002    #[inline]
1003    #[unstable(feature = "binary_heap_drain_sorted", issue = "59278")]
1004    pub fn drain_sorted(&mut self) -> DrainSorted<'_, T, A> {
1005        DrainSorted { inner: self }
1006    }
1007
1008    /// Retains only the elements specified by the predicate.
1009    ///
1010    /// In other words, remove all elements `e` for which `f(&e)` returns
1011    /// `false`. The elements are visited in unsorted (and unspecified) order.
1012    ///
1013    /// # Examples
1014    ///
1015    /// Basic usage:
1016    ///
1017    /// ```
1018    /// use std::collections::BinaryHeap;
1019    ///
1020    /// let mut heap = BinaryHeap::from([-10, -5, 1, 2, 4, 13]);
1021    ///
1022    /// heap.retain(|x| x % 2 == 0); // only keep even numbers
1023    ///
1024    /// assert_eq!(heap.into_sorted_vec(), [-10, 2, 4])
1025    /// ```
1026    #[stable(feature = "binary_heap_retain", since = "1.70.0")]
1027    pub fn retain<F>(&mut self, mut f: F)
1028    where
1029        F: FnMut(&T) -> bool,
1030    {
1031        // rebuild_start will be updated to the first touched element below, and the rebuild will
1032        // only be done for the tail.
1033        let mut guard = RebuildOnDrop { rebuild_from: self.len(), heap: self };
1034        let mut i = 0;
1035
1036        guard.heap.data.retain(|e| {
1037            let keep = f(e);
1038            if !keep && i < guard.rebuild_from {
1039                guard.rebuild_from = i;
1040            }
1041            i += 1;
1042            keep
1043        });
1044    }
1045}
1046
1047impl<T, A: Allocator> BinaryHeap<T, A> {
1048    /// Returns an iterator visiting all values in the underlying vector, in
1049    /// arbitrary order.
1050    ///
1051    /// # Examples
1052    ///
1053    /// Basic usage:
1054    ///
1055    /// ```
1056    /// use std::collections::BinaryHeap;
1057    /// let heap = BinaryHeap::from([1, 2, 3, 4]);
1058    ///
1059    /// // Print 1, 2, 3, 4 in arbitrary order
1060    /// for x in heap.iter() {
1061    ///     println!("{x}");
1062    /// }
1063    /// ```
1064    #[stable(feature = "rust1", since = "1.0.0")]
1065    #[cfg_attr(not(test), rustc_diagnostic_item = "binaryheap_iter")]
1066    pub fn iter(&self) -> Iter<'_, T> {
1067        Iter { iter: self.data.iter() }
1068    }
1069
1070    /// Returns an iterator which retrieves elements in heap order.
1071    ///
1072    /// This method consumes the original heap.
1073    ///
1074    /// # Examples
1075    ///
1076    /// Basic usage:
1077    ///
1078    /// ```
1079    /// #![feature(binary_heap_into_iter_sorted)]
1080    /// use std::collections::BinaryHeap;
1081    /// let heap = BinaryHeap::from([1, 2, 3, 4, 5]);
1082    ///
1083    /// assert_eq!(heap.into_iter_sorted().take(2).collect::<Vec<_>>(), [5, 4]);
1084    /// ```
1085    #[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")]
1086    pub fn into_iter_sorted(self) -> IntoIterSorted<T, A> {
1087        IntoIterSorted { inner: self }
1088    }
1089
1090    /// Returns the greatest item in the binary heap, or `None` if it is empty.
1091    ///
1092    /// # Examples
1093    ///
1094    /// Basic usage:
1095    ///
1096    /// ```
1097    /// use std::collections::BinaryHeap;
1098    /// let mut heap = BinaryHeap::new();
1099    /// assert_eq!(heap.peek(), None);
1100    ///
1101    /// heap.push(1);
1102    /// heap.push(5);
1103    /// heap.push(2);
1104    /// assert_eq!(heap.peek(), Some(&5));
1105    ///
1106    /// ```
1107    ///
1108    /// # Time complexity
1109    ///
1110    /// Cost is *O*(1) in the worst case.
1111    #[must_use]
1112    #[stable(feature = "rust1", since = "1.0.0")]
1113    pub fn peek(&self) -> Option<&T> {
1114        self.data.get(0)
1115    }
1116
1117    /// Returns the number of elements the binary heap can hold without reallocating.
1118    ///
1119    /// # Examples
1120    ///
1121    /// Basic usage:
1122    ///
1123    /// ```
1124    /// use std::collections::BinaryHeap;
1125    /// let mut heap = BinaryHeap::with_capacity(100);
1126    /// assert!(heap.capacity() >= 100);
1127    /// heap.push(4);
1128    /// ```
1129    #[must_use]
1130    #[stable(feature = "rust1", since = "1.0.0")]
1131    pub fn capacity(&self) -> usize {
1132        self.data.capacity()
1133    }
1134
1135    /// Reserves the minimum capacity for at least `additional` elements more than
1136    /// the current length. Unlike [`reserve`], this will not
1137    /// deliberately over-allocate to speculatively avoid frequent allocations.
1138    /// After calling `reserve_exact`, capacity will be greater than or equal to
1139    /// `self.len() + additional`. Does nothing if the capacity is already
1140    /// sufficient.
1141    ///
1142    /// [`reserve`]: BinaryHeap::reserve
1143    ///
1144    /// # Panics
1145    ///
1146    /// Panics if the new capacity overflows [`usize`].
1147    ///
1148    /// # Examples
1149    ///
1150    /// Basic usage:
1151    ///
1152    /// ```
1153    /// use std::collections::BinaryHeap;
1154    /// let mut heap = BinaryHeap::new();
1155    /// heap.reserve_exact(100);
1156    /// assert!(heap.capacity() >= 100);
1157    /// heap.push(4);
1158    /// ```
1159    ///
1160    /// [`reserve`]: BinaryHeap::reserve
1161    #[stable(feature = "rust1", since = "1.0.0")]
1162    pub fn reserve_exact(&mut self, additional: usize) {
1163        self.data.reserve_exact(additional);
1164    }
1165
1166    /// Reserves capacity for at least `additional` elements more than the
1167    /// current length. The allocator may reserve more space to speculatively
1168    /// avoid frequent allocations. After calling `reserve`,
1169    /// capacity will be greater than or equal to `self.len() + additional`.
1170    /// Does nothing if capacity is already sufficient.
1171    ///
1172    /// # Panics
1173    ///
1174    /// Panics if the new capacity overflows [`usize`].
1175    ///
1176    /// # Examples
1177    ///
1178    /// Basic usage:
1179    ///
1180    /// ```
1181    /// use std::collections::BinaryHeap;
1182    /// let mut heap = BinaryHeap::new();
1183    /// heap.reserve(100);
1184    /// assert!(heap.capacity() >= 100);
1185    /// heap.push(4);
1186    /// ```
1187    #[stable(feature = "rust1", since = "1.0.0")]
1188    pub fn reserve(&mut self, additional: usize) {
1189        self.data.reserve(additional);
1190    }
1191
1192    /// Tries to reserve the minimum capacity for at least `additional` elements
1193    /// more than the current length. Unlike [`try_reserve`], this will not
1194    /// deliberately over-allocate to speculatively avoid frequent allocations.
1195    /// After calling `try_reserve_exact`, capacity will be greater than or
1196    /// equal to `self.len() + additional` if it returns `Ok(())`.
1197    /// Does nothing if the capacity is already sufficient.
1198    ///
1199    /// Note that the allocator may give the collection more space than it
1200    /// requests. Therefore, capacity can not be relied upon to be precisely
1201    /// minimal. Prefer [`try_reserve`] if future insertions are expected.
1202    ///
1203    /// [`try_reserve`]: BinaryHeap::try_reserve
1204    ///
1205    /// # Errors
1206    ///
1207    /// If the capacity overflows, or the allocator reports a failure, then an error
1208    /// is returned.
1209    ///
1210    /// # Examples
1211    ///
1212    /// ```
1213    /// use std::collections::BinaryHeap;
1214    /// use std::collections::TryReserveError;
1215    ///
1216    /// fn find_max_slow(data: &[u32]) -> Result<Option<u32>, TryReserveError> {
1217    ///     let mut heap = BinaryHeap::new();
1218    ///
1219    ///     // Pre-reserve the memory, exiting if we can't
1220    ///     heap.try_reserve_exact(data.len())?;
1221    ///
1222    ///     // Now we know this can't OOM in the middle of our complex work
1223    ///     heap.extend(data.iter());
1224    ///
1225    ///     Ok(heap.pop())
1226    /// }
1227    /// # find_max_slow(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1228    /// ```
1229    #[stable(feature = "try_reserve_2", since = "1.63.0")]
1230    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
1231        self.data.try_reserve_exact(additional)
1232    }
1233
1234    /// Tries to reserve capacity for at least `additional` elements more than the
1235    /// current length. The allocator may reserve more space to speculatively
1236    /// avoid frequent allocations. After calling `try_reserve`, capacity will be
1237    /// greater than or equal to `self.len() + additional` if it returns
1238    /// `Ok(())`. Does nothing if capacity is already sufficient. This method
1239    /// preserves the contents even if an error occurs.
1240    ///
1241    /// # Errors
1242    ///
1243    /// If the capacity overflows, or the allocator reports a failure, then an error
1244    /// is returned.
1245    ///
1246    /// # Examples
1247    ///
1248    /// ```
1249    /// use std::collections::BinaryHeap;
1250    /// use std::collections::TryReserveError;
1251    ///
1252    /// fn find_max_slow(data: &[u32]) -> Result<Option<u32>, TryReserveError> {
1253    ///     let mut heap = BinaryHeap::new();
1254    ///
1255    ///     // Pre-reserve the memory, exiting if we can't
1256    ///     heap.try_reserve(data.len())?;
1257    ///
1258    ///     // Now we know this can't OOM in the middle of our complex work
1259    ///     heap.extend(data.iter());
1260    ///
1261    ///     Ok(heap.pop())
1262    /// }
1263    /// # find_max_slow(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1264    /// ```
1265    #[stable(feature = "try_reserve_2", since = "1.63.0")]
1266    pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
1267        self.data.try_reserve(additional)
1268    }
1269
1270    /// Discards as much additional capacity as possible.
1271    ///
1272    /// # Examples
1273    ///
1274    /// Basic usage:
1275    ///
1276    /// ```
1277    /// use std::collections::BinaryHeap;
1278    /// let mut heap: BinaryHeap<i32> = BinaryHeap::with_capacity(100);
1279    ///
1280    /// assert!(heap.capacity() >= 100);
1281    /// heap.shrink_to_fit();
1282    /// assert!(heap.capacity() == 0);
1283    /// ```
1284    #[stable(feature = "rust1", since = "1.0.0")]
1285    pub fn shrink_to_fit(&mut self) {
1286        self.data.shrink_to_fit();
1287    }
1288
1289    /// Discards capacity with a lower bound.
1290    ///
1291    /// The capacity will remain at least as large as both the length
1292    /// and the supplied value.
1293    ///
1294    /// If the current capacity is less than the lower limit, this is a no-op.
1295    ///
1296    /// # Examples
1297    ///
1298    /// ```
1299    /// use std::collections::BinaryHeap;
1300    /// let mut heap: BinaryHeap<i32> = BinaryHeap::with_capacity(100);
1301    ///
1302    /// assert!(heap.capacity() >= 100);
1303    /// heap.shrink_to(10);
1304    /// assert!(heap.capacity() >= 10);
1305    /// ```
1306    #[inline]
1307    #[stable(feature = "shrink_to", since = "1.56.0")]
1308    pub fn shrink_to(&mut self, min_capacity: usize) {
1309        self.data.shrink_to(min_capacity)
1310    }
1311
1312    /// Returns a slice of all values in the underlying vector, in arbitrary
1313    /// order.
1314    ///
1315    /// # Examples
1316    ///
1317    /// Basic usage:
1318    ///
1319    /// ```
1320    /// use std::collections::BinaryHeap;
1321    /// use std::io::{self, Write};
1322    ///
1323    /// let heap = BinaryHeap::from([1, 2, 3, 4, 5, 6, 7]);
1324    ///
1325    /// io::sink().write(heap.as_slice()).unwrap();
1326    /// ```
1327    #[must_use]
1328    #[stable(feature = "binary_heap_as_slice", since = "1.80.0")]
1329    pub fn as_slice(&self) -> &[T] {
1330        self.data.as_slice()
1331    }
1332
1333    /// Consumes the `BinaryHeap` and returns the underlying vector
1334    /// in arbitrary order.
1335    ///
1336    /// # Examples
1337    ///
1338    /// Basic usage:
1339    ///
1340    /// ```
1341    /// use std::collections::BinaryHeap;
1342    /// let heap = BinaryHeap::from([1, 2, 3, 4, 5, 6, 7]);
1343    /// let vec = heap.into_vec();
1344    ///
1345    /// // Will print in some order
1346    /// for x in vec {
1347    ///     println!("{x}");
1348    /// }
1349    /// ```
1350    #[must_use = "`self` will be dropped if the result is not used"]
1351    #[stable(feature = "binary_heap_extras_15", since = "1.5.0")]
1352    pub fn into_vec(self) -> Vec<T, A> {
1353        self.into()
1354    }
1355
1356    /// Returns a reference to the underlying allocator.
1357    #[unstable(feature = "allocator_api", issue = "32838")]
1358    #[inline]
1359    pub fn allocator(&self) -> &A {
1360        self.data.allocator()
1361    }
1362
1363    /// Returns the length of the binary heap.
1364    ///
1365    /// # Examples
1366    ///
1367    /// Basic usage:
1368    ///
1369    /// ```
1370    /// use std::collections::BinaryHeap;
1371    /// let heap = BinaryHeap::from([1, 3]);
1372    ///
1373    /// assert_eq!(heap.len(), 2);
1374    /// ```
1375    #[must_use]
1376    #[stable(feature = "rust1", since = "1.0.0")]
1377    #[rustc_confusables("length", "size")]
1378    pub fn len(&self) -> usize {
1379        self.data.len()
1380    }
1381
1382    /// Checks if the binary heap is empty.
1383    ///
1384    /// # Examples
1385    ///
1386    /// Basic usage:
1387    ///
1388    /// ```
1389    /// use std::collections::BinaryHeap;
1390    /// let mut heap = BinaryHeap::new();
1391    ///
1392    /// assert!(heap.is_empty());
1393    ///
1394    /// heap.push(3);
1395    /// heap.push(5);
1396    /// heap.push(1);
1397    ///
1398    /// assert!(!heap.is_empty());
1399    /// ```
1400    #[must_use]
1401    #[stable(feature = "rust1", since = "1.0.0")]
1402    pub fn is_empty(&self) -> bool {
1403        self.len() == 0
1404    }
1405
1406    /// Clears the binary heap, returning an iterator over the removed elements
1407    /// in arbitrary order. If the iterator is dropped before being fully
1408    /// consumed, it drops the remaining elements in arbitrary order.
1409    ///
1410    /// The returned iterator keeps a mutable borrow on the heap to optimize
1411    /// its implementation.
1412    ///
1413    /// # Examples
1414    ///
1415    /// Basic usage:
1416    ///
1417    /// ```
1418    /// use std::collections::BinaryHeap;
1419    /// let mut heap = BinaryHeap::from([1, 3]);
1420    ///
1421    /// assert!(!heap.is_empty());
1422    ///
1423    /// for x in heap.drain() {
1424    ///     println!("{x}");
1425    /// }
1426    ///
1427    /// assert!(heap.is_empty());
1428    /// ```
1429    #[inline]
1430    #[stable(feature = "drain", since = "1.6.0")]
1431    pub fn drain(&mut self) -> Drain<'_, T, A> {
1432        Drain { iter: self.data.drain(..) }
1433    }
1434
1435    /// Drops all items from the binary heap.
1436    ///
1437    /// # Examples
1438    ///
1439    /// Basic usage:
1440    ///
1441    /// ```
1442    /// use std::collections::BinaryHeap;
1443    /// let mut heap = BinaryHeap::from([1, 3]);
1444    ///
1445    /// assert!(!heap.is_empty());
1446    ///
1447    /// heap.clear();
1448    ///
1449    /// assert!(heap.is_empty());
1450    /// ```
1451    #[stable(feature = "rust1", since = "1.0.0")]
1452    pub fn clear(&mut self) {
1453        self.drain();
1454    }
1455}
1456
1457/// Hole represents a hole in a slice i.e., an index without valid value
1458/// (because it was moved from or duplicated).
1459/// In drop, `Hole` will restore the slice by filling the hole
1460/// position with the value that was originally removed.
1461struct Hole<'a, T: 'a> {
1462    data: &'a mut [T],
1463    elt: ManuallyDrop<T>,
1464    pos: usize,
1465}
1466
1467impl<'a, T> Hole<'a, T> {
1468    /// Creates a new `Hole` at index `pos`.
1469    ///
1470    /// Unsafe because pos must be within the data slice.
1471    #[inline]
1472    unsafe fn new(data: &'a mut [T], pos: usize) -> Self {
1473        debug_assert!(pos < data.len());
1474        // SAFE: pos should be inside the slice
1475        let elt = unsafe { ptr::read(data.get_unchecked(pos)) };
1476        Hole { data, elt: ManuallyDrop::new(elt), pos }
1477    }
1478
1479    #[inline]
1480    fn pos(&self) -> usize {
1481        self.pos
1482    }
1483
1484    /// Returns a reference to the element removed.
1485    #[inline]
1486    fn element(&self) -> &T {
1487        &self.elt
1488    }
1489
1490    /// Returns a reference to the element at `index`.
1491    ///
1492    /// Unsafe because index must be within the data slice and not equal to pos.
1493    #[inline]
1494    unsafe fn get(&self, index: usize) -> &T {
1495        debug_assert!(index != self.pos);
1496        debug_assert!(index < self.data.len());
1497        unsafe { self.data.get_unchecked(index) }
1498    }
1499
1500    /// Move hole to new location
1501    ///
1502    /// Unsafe because index must be within the data slice and not equal to pos.
1503    #[inline]
1504    unsafe fn move_to(&mut self, index: usize) {
1505        debug_assert!(index != self.pos);
1506        debug_assert!(index < self.data.len());
1507        unsafe {
1508            let ptr = self.data.as_mut_ptr();
1509            let index_ptr: *const _ = ptr.add(index);
1510            let hole_ptr = ptr.add(self.pos);
1511            ptr::copy_nonoverlapping(index_ptr, hole_ptr, 1);
1512        }
1513        self.pos = index;
1514    }
1515}
1516
1517impl<T> Drop for Hole<'_, T> {
1518    #[inline]
1519    fn drop(&mut self) {
1520        // fill the hole again
1521        unsafe {
1522            let pos = self.pos;
1523            ptr::copy_nonoverlapping(&*self.elt, self.data.get_unchecked_mut(pos), 1);
1524        }
1525    }
1526}
1527
1528/// An iterator over the elements of a `BinaryHeap`.
1529///
1530/// This `struct` is created by [`BinaryHeap::iter()`]. See its
1531/// documentation for more.
1532///
1533/// [`iter`]: BinaryHeap::iter
1534#[must_use = "iterators are lazy and do nothing unless consumed"]
1535#[stable(feature = "rust1", since = "1.0.0")]
1536pub struct Iter<'a, T: 'a> {
1537    iter: slice::Iter<'a, T>,
1538}
1539
1540#[stable(feature = "default_iters_sequel", since = "1.82.0")]
1541impl<T> Default for Iter<'_, T> {
1542    /// Creates an empty `binary_heap::Iter`.
1543    ///
1544    /// ```
1545    /// # use std::collections::binary_heap;
1546    /// let iter: binary_heap::Iter<'_, u8> = Default::default();
1547    /// assert_eq!(iter.len(), 0);
1548    /// ```
1549    fn default() -> Self {
1550        Iter { iter: Default::default() }
1551    }
1552}
1553
1554#[stable(feature = "collection_debug", since = "1.17.0")]
1555impl<T: fmt::Debug> fmt::Debug for Iter<'_, T> {
1556    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1557        f.debug_tuple("Iter").field(&self.iter.as_slice()).finish()
1558    }
1559}
1560
1561// FIXME(#26925) Remove in favor of `#[derive(Clone)]`
1562#[stable(feature = "rust1", since = "1.0.0")]
1563impl<T> Clone for Iter<'_, T> {
1564    fn clone(&self) -> Self {
1565        Iter { iter: self.iter.clone() }
1566    }
1567}
1568
1569#[stable(feature = "rust1", since = "1.0.0")]
1570impl<'a, T> Iterator for Iter<'a, T> {
1571    type Item = &'a T;
1572
1573    #[inline]
1574    fn next(&mut self) -> Option<&'a T> {
1575        self.iter.next()
1576    }
1577
1578    #[inline]
1579    fn size_hint(&self) -> (usize, Option<usize>) {
1580        self.iter.size_hint()
1581    }
1582
1583    #[inline]
1584    fn last(self) -> Option<&'a T> {
1585        self.iter.last()
1586    }
1587}
1588
1589#[stable(feature = "rust1", since = "1.0.0")]
1590impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
1591    #[inline]
1592    fn next_back(&mut self) -> Option<&'a T> {
1593        self.iter.next_back()
1594    }
1595}
1596
1597#[stable(feature = "rust1", since = "1.0.0")]
1598impl<T> ExactSizeIterator for Iter<'_, T> {
1599    fn is_empty(&self) -> bool {
1600        self.iter.is_empty()
1601    }
1602}
1603
1604#[stable(feature = "fused", since = "1.26.0")]
1605impl<T> FusedIterator for Iter<'_, T> {}
1606
1607/// An owning iterator over the elements of a `BinaryHeap`.
1608///
1609/// This `struct` is created by [`BinaryHeap::into_iter()`]
1610/// (provided by the [`IntoIterator`] trait). See its documentation for more.
1611///
1612/// [`into_iter`]: BinaryHeap::into_iter
1613#[stable(feature = "rust1", since = "1.0.0")]
1614#[derive(Clone)]
1615pub struct IntoIter<
1616    T,
1617    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
1618> {
1619    iter: vec::IntoIter<T, A>,
1620}
1621
1622impl<T, A: Allocator> IntoIter<T, A> {
1623    /// Returns a reference to the underlying allocator.
1624    #[unstable(feature = "allocator_api", issue = "32838")]
1625    pub fn allocator(&self) -> &A {
1626        self.iter.allocator()
1627    }
1628}
1629
1630#[stable(feature = "collection_debug", since = "1.17.0")]
1631impl<T: fmt::Debug, A: Allocator> fmt::Debug for IntoIter<T, A> {
1632    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1633        f.debug_tuple("IntoIter").field(&self.iter.as_slice()).finish()
1634    }
1635}
1636
1637#[stable(feature = "rust1", since = "1.0.0")]
1638impl<T, A: Allocator> Iterator for IntoIter<T, A> {
1639    type Item = T;
1640
1641    #[inline]
1642    fn next(&mut self) -> Option<T> {
1643        self.iter.next()
1644    }
1645
1646    #[inline]
1647    fn size_hint(&self) -> (usize, Option<usize>) {
1648        self.iter.size_hint()
1649    }
1650}
1651
1652#[stable(feature = "rust1", since = "1.0.0")]
1653impl<T, A: Allocator> DoubleEndedIterator for IntoIter<T, A> {
1654    #[inline]
1655    fn next_back(&mut self) -> Option<T> {
1656        self.iter.next_back()
1657    }
1658}
1659
1660#[stable(feature = "rust1", since = "1.0.0")]
1661impl<T, A: Allocator> ExactSizeIterator for IntoIter<T, A> {
1662    fn is_empty(&self) -> bool {
1663        self.iter.is_empty()
1664    }
1665}
1666
1667#[stable(feature = "fused", since = "1.26.0")]
1668impl<T, A: Allocator> FusedIterator for IntoIter<T, A> {}
1669
1670#[doc(hidden)]
1671#[unstable(issue = "none", feature = "trusted_fused")]
1672unsafe impl<T, A: Allocator> TrustedFused for IntoIter<T, A> {}
1673
1674#[stable(feature = "default_iters", since = "1.70.0")]
1675impl<T> Default for IntoIter<T> {
1676    /// Creates an empty `binary_heap::IntoIter`.
1677    ///
1678    /// ```
1679    /// # use std::collections::binary_heap;
1680    /// let iter: binary_heap::IntoIter<u8> = Default::default();
1681    /// assert_eq!(iter.len(), 0);
1682    /// ```
1683    fn default() -> Self {
1684        IntoIter { iter: Default::default() }
1685    }
1686}
1687
1688// In addition to the SAFETY invariants of the following three unsafe traits
1689// also refer to the vec::in_place_collect module documentation to get an overview
1690#[unstable(issue = "none", feature = "inplace_iteration")]
1691#[doc(hidden)]
1692unsafe impl<T, A: Allocator> SourceIter for IntoIter<T, A> {
1693    type Source = IntoIter<T, A>;
1694
1695    #[inline]
1696    unsafe fn as_inner(&mut self) -> &mut Self::Source {
1697        self
1698    }
1699}
1700
1701#[unstable(issue = "none", feature = "inplace_iteration")]
1702#[doc(hidden)]
1703unsafe impl<I, A: Allocator> InPlaceIterable for IntoIter<I, A> {
1704    const EXPAND_BY: Option<NonZero<usize>> = NonZero::new(1);
1705    const MERGE_BY: Option<NonZero<usize>> = NonZero::new(1);
1706}
1707
1708#[cfg(not(test))]
1709unsafe impl<I> AsVecIntoIter for IntoIter<I> {
1710    type Item = I;
1711
1712    fn as_into_iter(&mut self) -> &mut vec::IntoIter<Self::Item> {
1713        &mut self.iter
1714    }
1715}
1716
1717#[must_use = "iterators are lazy and do nothing unless consumed"]
1718#[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")]
1719#[derive(Clone, Debug)]
1720pub struct IntoIterSorted<
1721    T,
1722    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
1723> {
1724    inner: BinaryHeap<T, A>,
1725}
1726
1727impl<T, A: Allocator> IntoIterSorted<T, A> {
1728    /// Returns a reference to the underlying allocator.
1729    #[unstable(feature = "allocator_api", issue = "32838")]
1730    pub fn allocator(&self) -> &A {
1731        self.inner.allocator()
1732    }
1733}
1734
1735#[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")]
1736impl<T: Ord, A: Allocator> Iterator for IntoIterSorted<T, A> {
1737    type Item = T;
1738
1739    #[inline]
1740    fn next(&mut self) -> Option<T> {
1741        self.inner.pop()
1742    }
1743
1744    #[inline]
1745    fn size_hint(&self) -> (usize, Option<usize>) {
1746        let exact = self.inner.len();
1747        (exact, Some(exact))
1748    }
1749}
1750
1751#[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")]
1752impl<T: Ord, A: Allocator> ExactSizeIterator for IntoIterSorted<T, A> {}
1753
1754#[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")]
1755impl<T: Ord, A: Allocator> FusedIterator for IntoIterSorted<T, A> {}
1756
1757#[unstable(feature = "trusted_len", issue = "37572")]
1758unsafe impl<T: Ord, A: Allocator> TrustedLen for IntoIterSorted<T, A> {}
1759
1760/// A draining iterator over the elements of a `BinaryHeap`.
1761///
1762/// This `struct` is created by [`BinaryHeap::drain()`]. See its
1763/// documentation for more.
1764///
1765/// [`drain`]: BinaryHeap::drain
1766#[stable(feature = "drain", since = "1.6.0")]
1767#[derive(Debug)]
1768pub struct Drain<
1769    'a,
1770    T: 'a,
1771    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
1772> {
1773    iter: vec::Drain<'a, T, A>,
1774}
1775
1776impl<T, A: Allocator> Drain<'_, T, A> {
1777    /// Returns a reference to the underlying allocator.
1778    #[unstable(feature = "allocator_api", issue = "32838")]
1779    pub fn allocator(&self) -> &A {
1780        self.iter.allocator()
1781    }
1782}
1783
1784#[stable(feature = "drain", since = "1.6.0")]
1785impl<T, A: Allocator> Iterator for Drain<'_, T, A> {
1786    type Item = T;
1787
1788    #[inline]
1789    fn next(&mut self) -> Option<T> {
1790        self.iter.next()
1791    }
1792
1793    #[inline]
1794    fn size_hint(&self) -> (usize, Option<usize>) {
1795        self.iter.size_hint()
1796    }
1797}
1798
1799#[stable(feature = "drain", since = "1.6.0")]
1800impl<T, A: Allocator> DoubleEndedIterator for Drain<'_, T, A> {
1801    #[inline]
1802    fn next_back(&mut self) -> Option<T> {
1803        self.iter.next_back()
1804    }
1805}
1806
1807#[stable(feature = "drain", since = "1.6.0")]
1808impl<T, A: Allocator> ExactSizeIterator for Drain<'_, T, A> {
1809    fn is_empty(&self) -> bool {
1810        self.iter.is_empty()
1811    }
1812}
1813
1814#[stable(feature = "fused", since = "1.26.0")]
1815impl<T, A: Allocator> FusedIterator for Drain<'_, T, A> {}
1816
1817/// A draining iterator over the elements of a `BinaryHeap`.
1818///
1819/// This `struct` is created by [`BinaryHeap::drain_sorted()`]. See its
1820/// documentation for more.
1821///
1822/// [`drain_sorted`]: BinaryHeap::drain_sorted
1823#[unstable(feature = "binary_heap_drain_sorted", issue = "59278")]
1824#[derive(Debug)]
1825pub struct DrainSorted<
1826    'a,
1827    T: Ord,
1828    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
1829> {
1830    inner: &'a mut BinaryHeap<T, A>,
1831}
1832
1833impl<'a, T: Ord, A: Allocator> DrainSorted<'a, T, A> {
1834    /// Returns a reference to the underlying allocator.
1835    #[unstable(feature = "allocator_api", issue = "32838")]
1836    pub fn allocator(&self) -> &A {
1837        self.inner.allocator()
1838    }
1839}
1840
1841#[unstable(feature = "binary_heap_drain_sorted", issue = "59278")]
1842impl<'a, T: Ord, A: Allocator> Drop for DrainSorted<'a, T, A> {
1843    /// Removes heap elements in heap order.
1844    fn drop(&mut self) {
1845        struct DropGuard<'r, 'a, T: Ord, A: Allocator>(&'r mut DrainSorted<'a, T, A>);
1846
1847        impl<'r, 'a, T: Ord, A: Allocator> Drop for DropGuard<'r, 'a, T, A> {
1848            fn drop(&mut self) {
1849                while self.0.inner.pop().is_some() {}
1850            }
1851        }
1852
1853        while let Some(item) = self.inner.pop() {
1854            let guard = DropGuard(self);
1855            drop(item);
1856            mem::forget(guard);
1857        }
1858    }
1859}
1860
1861#[unstable(feature = "binary_heap_drain_sorted", issue = "59278")]
1862impl<T: Ord, A: Allocator> Iterator for DrainSorted<'_, T, A> {
1863    type Item = T;
1864
1865    #[inline]
1866    fn next(&mut self) -> Option<T> {
1867        self.inner.pop()
1868    }
1869
1870    #[inline]
1871    fn size_hint(&self) -> (usize, Option<usize>) {
1872        let exact = self.inner.len();
1873        (exact, Some(exact))
1874    }
1875}
1876
1877#[unstable(feature = "binary_heap_drain_sorted", issue = "59278")]
1878impl<T: Ord, A: Allocator> ExactSizeIterator for DrainSorted<'_, T, A> {}
1879
1880#[unstable(feature = "binary_heap_drain_sorted", issue = "59278")]
1881impl<T: Ord, A: Allocator> FusedIterator for DrainSorted<'_, T, A> {}
1882
1883#[unstable(feature = "trusted_len", issue = "37572")]
1884unsafe impl<T: Ord, A: Allocator> TrustedLen for DrainSorted<'_, T, A> {}
1885
1886#[stable(feature = "binary_heap_extras_15", since = "1.5.0")]
1887impl<T: Ord, A: Allocator> From<Vec<T, A>> for BinaryHeap<T, A> {
1888    /// Converts a `Vec<T>` into a `BinaryHeap<T>`.
1889    ///
1890    /// This conversion happens in-place, and has *O*(*n*) time complexity.
1891    fn from(vec: Vec<T, A>) -> BinaryHeap<T, A> {
1892        let mut heap = BinaryHeap { data: vec };
1893        heap.rebuild();
1894        heap
1895    }
1896}
1897
1898#[stable(feature = "std_collections_from_array", since = "1.56.0")]
1899impl<T: Ord, const N: usize> From<[T; N]> for BinaryHeap<T> {
1900    /// ```
1901    /// use std::collections::BinaryHeap;
1902    ///
1903    /// let mut h1 = BinaryHeap::from([1, 4, 2, 3]);
1904    /// let mut h2: BinaryHeap<_> = [1, 4, 2, 3].into();
1905    /// while let Some((a, b)) = h1.pop().zip(h2.pop()) {
1906    ///     assert_eq!(a, b);
1907    /// }
1908    /// ```
1909    fn from(arr: [T; N]) -> Self {
1910        Self::from_iter(arr)
1911    }
1912}
1913
1914#[stable(feature = "binary_heap_extras_15", since = "1.5.0")]
1915impl<T, A: Allocator> From<BinaryHeap<T, A>> for Vec<T, A> {
1916    /// Converts a `BinaryHeap<T>` into a `Vec<T>`.
1917    ///
1918    /// This conversion requires no data movement or allocation, and has
1919    /// constant time complexity.
1920    fn from(heap: BinaryHeap<T, A>) -> Vec<T, A> {
1921        heap.data
1922    }
1923}
1924
1925#[stable(feature = "rust1", since = "1.0.0")]
1926impl<T: Ord> FromIterator<T> for BinaryHeap<T> {
1927    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> BinaryHeap<T> {
1928        BinaryHeap::from(iter.into_iter().collect::<Vec<_>>())
1929    }
1930}
1931
1932#[stable(feature = "rust1", since = "1.0.0")]
1933impl<T, A: Allocator> IntoIterator for BinaryHeap<T, A> {
1934    type Item = T;
1935    type IntoIter = IntoIter<T, A>;
1936
1937    /// Creates a consuming iterator, that is, one that moves each value out of
1938    /// the binary heap in arbitrary order. The binary heap cannot be used
1939    /// after calling this.
1940    ///
1941    /// # Examples
1942    ///
1943    /// Basic usage:
1944    ///
1945    /// ```
1946    /// use std::collections::BinaryHeap;
1947    /// let heap = BinaryHeap::from([1, 2, 3, 4]);
1948    ///
1949    /// // Print 1, 2, 3, 4 in arbitrary order
1950    /// for x in heap.into_iter() {
1951    ///     // x has type i32, not &i32
1952    ///     println!("{x}");
1953    /// }
1954    /// ```
1955    fn into_iter(self) -> IntoIter<T, A> {
1956        IntoIter { iter: self.data.into_iter() }
1957    }
1958}
1959
1960#[stable(feature = "rust1", since = "1.0.0")]
1961impl<'a, T, A: Allocator> IntoIterator for &'a BinaryHeap<T, A> {
1962    type Item = &'a T;
1963    type IntoIter = Iter<'a, T>;
1964
1965    fn into_iter(self) -> Iter<'a, T> {
1966        self.iter()
1967    }
1968}
1969
1970#[stable(feature = "rust1", since = "1.0.0")]
1971impl<T: Ord, A: Allocator> Extend<T> for BinaryHeap<T, A> {
1972    #[inline]
1973    fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
1974        let guard = RebuildOnDrop { rebuild_from: self.len(), heap: self };
1975        guard.heap.data.extend(iter);
1976    }
1977
1978    #[inline]
1979    fn extend_one(&mut self, item: T) {
1980        self.push(item);
1981    }
1982
1983    #[inline]
1984    fn extend_reserve(&mut self, additional: usize) {
1985        self.reserve(additional);
1986    }
1987}
1988
1989#[stable(feature = "extend_ref", since = "1.2.0")]
1990impl<'a, T: 'a + Ord + Copy, A: Allocator> Extend<&'a T> for BinaryHeap<T, A> {
1991    fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
1992        self.extend(iter.into_iter().cloned());
1993    }
1994
1995    #[inline]
1996    fn extend_one(&mut self, &item: &'a T) {
1997        self.push(item);
1998    }
1999
2000    #[inline]
2001    fn extend_reserve(&mut self, additional: usize) {
2002        self.reserve(additional);
2003    }
2004}