core/num/
int_macros.rs

1macro_rules! int_impl {
2    (
3        Self = $SelfT:ty,
4        ActualT = $ActualT:ident,
5        UnsignedT = $UnsignedT:ty,
6
7        // There are all for use *only* in doc comments.
8        // As such, they're all passed as literals -- passing them as a string
9        // literal is fine if they need to be multiple code tokens.
10        // In non-comments, use the associated constants rather than these.
11        BITS = $BITS:literal,
12        BITS_MINUS_ONE = $BITS_MINUS_ONE:literal,
13        Min = $Min:literal,
14        Max = $Max:literal,
15        rot = $rot:literal,
16        rot_op = $rot_op:literal,
17        rot_result = $rot_result:literal,
18        swap_op = $swap_op:literal,
19        swapped = $swapped:literal,
20        reversed = $reversed:literal,
21        le_bytes = $le_bytes:literal,
22        be_bytes = $be_bytes:literal,
23        to_xe_bytes_doc = $to_xe_bytes_doc:expr,
24        from_xe_bytes_doc = $from_xe_bytes_doc:expr,
25        bound_condition = $bound_condition:literal,
26    ) => {
27        /// The smallest value that can be represented by this integer type
28        #[doc = concat!("(&minus;2<sup>", $BITS_MINUS_ONE, "</sup>", $bound_condition, ").")]
29        ///
30        /// # Examples
31        ///
32        /// Basic usage:
33        ///
34        /// ```
35        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN, ", stringify!($Min), ");")]
36        /// ```
37        #[stable(feature = "assoc_int_consts", since = "1.43.0")]
38        pub const MIN: Self = !Self::MAX;
39
40        /// The largest value that can be represented by this integer type
41        #[doc = concat!("(2<sup>", $BITS_MINUS_ONE, "</sup> &minus; 1", $bound_condition, ").")]
42        ///
43        /// # Examples
44        ///
45        /// Basic usage:
46        ///
47        /// ```
48        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX, ", stringify!($Max), ");")]
49        /// ```
50        #[stable(feature = "assoc_int_consts", since = "1.43.0")]
51        pub const MAX: Self = (<$UnsignedT>::MAX >> 1) as Self;
52
53        /// The size of this integer type in bits.
54        ///
55        /// # Examples
56        ///
57        /// ```
58        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::BITS, ", stringify!($BITS), ");")]
59        /// ```
60        #[stable(feature = "int_bits_const", since = "1.53.0")]
61        pub const BITS: u32 = <$UnsignedT>::BITS;
62
63        /// Returns the number of ones in the binary representation of `self`.
64        ///
65        /// # Examples
66        ///
67        /// Basic usage:
68        ///
69        /// ```
70        #[doc = concat!("let n = 0b100_0000", stringify!($SelfT), ";")]
71        ///
72        /// assert_eq!(n.count_ones(), 1);
73        /// ```
74        ///
75        #[stable(feature = "rust1", since = "1.0.0")]
76        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
77        #[doc(alias = "popcount")]
78        #[doc(alias = "popcnt")]
79        #[must_use = "this returns the result of the operation, \
80                      without modifying the original"]
81        #[inline(always)]
82        pub const fn count_ones(self) -> u32 { (self as $UnsignedT).count_ones() }
83
84        /// Returns the number of zeros in the binary representation of `self`.
85        ///
86        /// # Examples
87        ///
88        /// Basic usage:
89        ///
90        /// ```
91        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.count_zeros(), 1);")]
92        /// ```
93        #[stable(feature = "rust1", since = "1.0.0")]
94        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
95        #[must_use = "this returns the result of the operation, \
96                      without modifying the original"]
97        #[inline(always)]
98        pub const fn count_zeros(self) -> u32 {
99            (!self).count_ones()
100        }
101
102        /// Returns the number of leading zeros in the binary representation of `self`.
103        ///
104        /// Depending on what you're doing with the value, you might also be interested in the
105        /// [`ilog2`] function which returns a consistent number, even if the type widens.
106        ///
107        /// # Examples
108        ///
109        /// Basic usage:
110        ///
111        /// ```
112        #[doc = concat!("let n = -1", stringify!($SelfT), ";")]
113        ///
114        /// assert_eq!(n.leading_zeros(), 0);
115        /// ```
116        #[doc = concat!("[`ilog2`]: ", stringify!($SelfT), "::ilog2")]
117        #[stable(feature = "rust1", since = "1.0.0")]
118        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
119        #[must_use = "this returns the result of the operation, \
120                      without modifying the original"]
121        #[inline(always)]
122        pub const fn leading_zeros(self) -> u32 {
123            (self as $UnsignedT).leading_zeros()
124        }
125
126        /// Returns the number of trailing zeros in the binary representation of `self`.
127        ///
128        /// # Examples
129        ///
130        /// Basic usage:
131        ///
132        /// ```
133        #[doc = concat!("let n = -4", stringify!($SelfT), ";")]
134        ///
135        /// assert_eq!(n.trailing_zeros(), 2);
136        /// ```
137        #[stable(feature = "rust1", since = "1.0.0")]
138        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
139        #[must_use = "this returns the result of the operation, \
140                      without modifying the original"]
141        #[inline(always)]
142        pub const fn trailing_zeros(self) -> u32 {
143            (self as $UnsignedT).trailing_zeros()
144        }
145
146        /// Returns the number of leading ones in the binary representation of `self`.
147        ///
148        /// # Examples
149        ///
150        /// Basic usage:
151        ///
152        /// ```
153        #[doc = concat!("let n = -1", stringify!($SelfT), ";")]
154        ///
155        #[doc = concat!("assert_eq!(n.leading_ones(), ", stringify!($BITS), ");")]
156        /// ```
157        #[stable(feature = "leading_trailing_ones", since = "1.46.0")]
158        #[rustc_const_stable(feature = "leading_trailing_ones", since = "1.46.0")]
159        #[must_use = "this returns the result of the operation, \
160                      without modifying the original"]
161        #[inline(always)]
162        pub const fn leading_ones(self) -> u32 {
163            (self as $UnsignedT).leading_ones()
164        }
165
166        /// Returns the number of trailing ones in the binary representation of `self`.
167        ///
168        /// # Examples
169        ///
170        /// Basic usage:
171        ///
172        /// ```
173        #[doc = concat!("let n = 3", stringify!($SelfT), ";")]
174        ///
175        /// assert_eq!(n.trailing_ones(), 2);
176        /// ```
177        #[stable(feature = "leading_trailing_ones", since = "1.46.0")]
178        #[rustc_const_stable(feature = "leading_trailing_ones", since = "1.46.0")]
179        #[must_use = "this returns the result of the operation, \
180                      without modifying the original"]
181        #[inline(always)]
182        pub const fn trailing_ones(self) -> u32 {
183            (self as $UnsignedT).trailing_ones()
184        }
185
186        /// Returns `self` with only the most significant bit set, or `0` if
187        /// the input is `0`.
188        ///
189        /// # Examples
190        ///
191        /// Basic usage:
192        ///
193        /// ```
194        /// #![feature(isolate_most_least_significant_one)]
195        ///
196        #[doc = concat!("let n: ", stringify!($SelfT), " = 0b_01100100;")]
197        ///
198        /// assert_eq!(n.isolate_most_significant_one(), 0b_01000000);
199        #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".isolate_most_significant_one(), 0);")]
200        /// ```
201        #[unstable(feature = "isolate_most_least_significant_one", issue = "136909")]
202        #[must_use = "this returns the result of the operation, \
203                      without modifying the original"]
204        #[inline(always)]
205        pub const fn isolate_most_significant_one(self) -> Self {
206            self & (((1 as $SelfT) << (<$SelfT>::BITS - 1)).wrapping_shr(self.leading_zeros()))
207        }
208
209        /// Returns `self` with only the least significant bit set, or `0` if
210        /// the input is `0`.
211        ///
212        /// # Examples
213        ///
214        /// Basic usage:
215        ///
216        /// ```
217        /// #![feature(isolate_most_least_significant_one)]
218        ///
219        #[doc = concat!("let n: ", stringify!($SelfT), " = 0b_01100100;")]
220        ///
221        /// assert_eq!(n.isolate_least_significant_one(), 0b_00000100);
222        #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".isolate_least_significant_one(), 0);")]
223        /// ```
224        #[unstable(feature = "isolate_most_least_significant_one", issue = "136909")]
225        #[must_use = "this returns the result of the operation, \
226                      without modifying the original"]
227        #[inline(always)]
228        pub const fn isolate_least_significant_one(self) -> Self {
229            self & self.wrapping_neg()
230        }
231
232        /// Returns the bit pattern of `self` reinterpreted as an unsigned integer of the same size.
233        ///
234        /// This produces the same result as an `as` cast, but ensures that the bit-width remains
235        /// the same.
236        ///
237        /// # Examples
238        ///
239        /// Basic usage:
240        ///
241        /// ```
242        ///
243        #[doc = concat!("let n = -1", stringify!($SelfT), ";")]
244        ///
245        #[doc = concat!("assert_eq!(n.cast_unsigned(), ", stringify!($UnsignedT), "::MAX);")]
246        /// ```
247        #[stable(feature = "integer_sign_cast", since = "CURRENT_RUSTC_VERSION")]
248        #[rustc_const_stable(feature = "integer_sign_cast", since = "CURRENT_RUSTC_VERSION")]
249        #[must_use = "this returns the result of the operation, \
250                      without modifying the original"]
251        #[inline(always)]
252        pub const fn cast_unsigned(self) -> $UnsignedT {
253            self as $UnsignedT
254        }
255
256        /// Shifts the bits to the left by a specified amount, `n`,
257        /// wrapping the truncated bits to the end of the resulting integer.
258        ///
259        /// Please note this isn't the same operation as the `<<` shifting operator!
260        ///
261        /// # Examples
262        ///
263        /// Basic usage:
264        ///
265        /// ```
266        #[doc = concat!("let n = ", $rot_op, stringify!($SelfT), ";")]
267        #[doc = concat!("let m = ", $rot_result, ";")]
268        ///
269        #[doc = concat!("assert_eq!(n.rotate_left(", $rot, "), m);")]
270        /// ```
271        #[stable(feature = "rust1", since = "1.0.0")]
272        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
273        #[must_use = "this returns the result of the operation, \
274                      without modifying the original"]
275        #[inline(always)]
276        pub const fn rotate_left(self, n: u32) -> Self {
277            (self as $UnsignedT).rotate_left(n) as Self
278        }
279
280        /// Shifts the bits to the right by a specified amount, `n`,
281        /// wrapping the truncated bits to the beginning of the resulting
282        /// integer.
283        ///
284        /// Please note this isn't the same operation as the `>>` shifting operator!
285        ///
286        /// # Examples
287        ///
288        /// Basic usage:
289        ///
290        /// ```
291        #[doc = concat!("let n = ", $rot_result, stringify!($SelfT), ";")]
292        #[doc = concat!("let m = ", $rot_op, ";")]
293        ///
294        #[doc = concat!("assert_eq!(n.rotate_right(", $rot, "), m);")]
295        /// ```
296        #[stable(feature = "rust1", since = "1.0.0")]
297        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
298        #[must_use = "this returns the result of the operation, \
299                      without modifying the original"]
300        #[inline(always)]
301        pub const fn rotate_right(self, n: u32) -> Self {
302            (self as $UnsignedT).rotate_right(n) as Self
303        }
304
305        /// Reverses the byte order of the integer.
306        ///
307        /// # Examples
308        ///
309        /// Basic usage:
310        ///
311        /// ```
312        #[doc = concat!("let n = ", $swap_op, stringify!($SelfT), ";")]
313        ///
314        /// let m = n.swap_bytes();
315        ///
316        #[doc = concat!("assert_eq!(m, ", $swapped, ");")]
317        /// ```
318        #[stable(feature = "rust1", since = "1.0.0")]
319        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
320        #[must_use = "this returns the result of the operation, \
321                      without modifying the original"]
322        #[inline(always)]
323        pub const fn swap_bytes(self) -> Self {
324            (self as $UnsignedT).swap_bytes() as Self
325        }
326
327        /// Reverses the order of bits in the integer. The least significant bit becomes the most significant bit,
328        ///                 second least-significant bit becomes second most-significant bit, etc.
329        ///
330        /// # Examples
331        ///
332        /// Basic usage:
333        ///
334        /// ```
335        #[doc = concat!("let n = ", $swap_op, stringify!($SelfT), ";")]
336        /// let m = n.reverse_bits();
337        ///
338        #[doc = concat!("assert_eq!(m, ", $reversed, ");")]
339        #[doc = concat!("assert_eq!(0, 0", stringify!($SelfT), ".reverse_bits());")]
340        /// ```
341        #[stable(feature = "reverse_bits", since = "1.37.0")]
342        #[rustc_const_stable(feature = "reverse_bits", since = "1.37.0")]
343        #[must_use = "this returns the result of the operation, \
344                      without modifying the original"]
345        #[inline(always)]
346        pub const fn reverse_bits(self) -> Self {
347            (self as $UnsignedT).reverse_bits() as Self
348        }
349
350        /// Converts an integer from big endian to the target's endianness.
351        ///
352        /// On big endian this is a no-op. On little endian the bytes are swapped.
353        ///
354        /// # Examples
355        ///
356        /// Basic usage:
357        ///
358        /// ```
359        #[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
360        ///
361        /// if cfg!(target_endian = "big") {
362        #[doc = concat!("    assert_eq!(", stringify!($SelfT), "::from_be(n), n)")]
363        /// } else {
364        #[doc = concat!("    assert_eq!(", stringify!($SelfT), "::from_be(n), n.swap_bytes())")]
365        /// }
366        /// ```
367        #[stable(feature = "rust1", since = "1.0.0")]
368        #[rustc_const_stable(feature = "const_int_conversions", since = "1.32.0")]
369        #[must_use]
370        #[inline]
371        pub const fn from_be(x: Self) -> Self {
372            #[cfg(target_endian = "big")]
373            {
374                x
375            }
376            #[cfg(not(target_endian = "big"))]
377            {
378                x.swap_bytes()
379            }
380        }
381
382        /// Converts an integer from little endian to the target's endianness.
383        ///
384        /// On little endian this is a no-op. On big endian the bytes are swapped.
385        ///
386        /// # Examples
387        ///
388        /// Basic usage:
389        ///
390        /// ```
391        #[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
392        ///
393        /// if cfg!(target_endian = "little") {
394        #[doc = concat!("    assert_eq!(", stringify!($SelfT), "::from_le(n), n)")]
395        /// } else {
396        #[doc = concat!("    assert_eq!(", stringify!($SelfT), "::from_le(n), n.swap_bytes())")]
397        /// }
398        /// ```
399        #[stable(feature = "rust1", since = "1.0.0")]
400        #[rustc_const_stable(feature = "const_int_conversions", since = "1.32.0")]
401        #[must_use]
402        #[inline]
403        pub const fn from_le(x: Self) -> Self {
404            #[cfg(target_endian = "little")]
405            {
406                x
407            }
408            #[cfg(not(target_endian = "little"))]
409            {
410                x.swap_bytes()
411            }
412        }
413
414        /// Converts `self` to big endian from the target's endianness.
415        ///
416        /// On big endian this is a no-op. On little endian the bytes are swapped.
417        ///
418        /// # Examples
419        ///
420        /// Basic usage:
421        ///
422        /// ```
423        #[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
424        ///
425        /// if cfg!(target_endian = "big") {
426        ///     assert_eq!(n.to_be(), n)
427        /// } else {
428        ///     assert_eq!(n.to_be(), n.swap_bytes())
429        /// }
430        /// ```
431        #[stable(feature = "rust1", since = "1.0.0")]
432        #[rustc_const_stable(feature = "const_int_conversions", since = "1.32.0")]
433        #[must_use = "this returns the result of the operation, \
434                      without modifying the original"]
435        #[inline]
436        pub const fn to_be(self) -> Self { // or not to be?
437            #[cfg(target_endian = "big")]
438            {
439                self
440            }
441            #[cfg(not(target_endian = "big"))]
442            {
443                self.swap_bytes()
444            }
445        }
446
447        /// Converts `self` to little endian from the target's endianness.
448        ///
449        /// On little endian this is a no-op. On big endian the bytes are swapped.
450        ///
451        /// # Examples
452        ///
453        /// Basic usage:
454        ///
455        /// ```
456        #[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
457        ///
458        /// if cfg!(target_endian = "little") {
459        ///     assert_eq!(n.to_le(), n)
460        /// } else {
461        ///     assert_eq!(n.to_le(), n.swap_bytes())
462        /// }
463        /// ```
464        #[stable(feature = "rust1", since = "1.0.0")]
465        #[rustc_const_stable(feature = "const_int_conversions", since = "1.32.0")]
466        #[must_use = "this returns the result of the operation, \
467                      without modifying the original"]
468        #[inline]
469        pub const fn to_le(self) -> Self {
470            #[cfg(target_endian = "little")]
471            {
472                self
473            }
474            #[cfg(not(target_endian = "little"))]
475            {
476                self.swap_bytes()
477            }
478        }
479
480        /// Checked integer addition. Computes `self + rhs`, returning `None`
481        /// if overflow occurred.
482        ///
483        /// # Examples
484        ///
485        /// Basic usage:
486        ///
487        /// ```
488        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_add(1), Some(", stringify!($SelfT), "::MAX - 1));")]
489        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_add(3), None);")]
490        /// ```
491        #[stable(feature = "rust1", since = "1.0.0")]
492        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
493        #[must_use = "this returns the result of the operation, \
494                      without modifying the original"]
495        #[inline]
496        pub const fn checked_add(self, rhs: Self) -> Option<Self> {
497            let (a, b) = self.overflowing_add(rhs);
498            if intrinsics::unlikely(b) { None } else { Some(a) }
499        }
500
501        /// Strict integer addition. Computes `self + rhs`, panicking
502        /// if overflow occurred.
503        ///
504        /// # Panics
505        ///
506        /// ## Overflow behavior
507        ///
508        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
509        ///
510        /// # Examples
511        ///
512        /// Basic usage:
513        ///
514        /// ```
515        /// #![feature(strict_overflow_ops)]
516        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).strict_add(1), ", stringify!($SelfT), "::MAX - 1);")]
517        /// ```
518        ///
519        /// The following panics because of overflow:
520        ///
521        /// ```should_panic
522        /// #![feature(strict_overflow_ops)]
523        #[doc = concat!("let _ = (", stringify!($SelfT), "::MAX - 2).strict_add(3);")]
524        /// ```
525        #[unstable(feature = "strict_overflow_ops", issue = "118260")]
526        #[must_use = "this returns the result of the operation, \
527                      without modifying the original"]
528        #[inline]
529        #[track_caller]
530        pub const fn strict_add(self, rhs: Self) -> Self {
531            let (a, b) = self.overflowing_add(rhs);
532            if b { overflow_panic::add() } else { a }
533        }
534
535        /// Unchecked integer addition. Computes `self + rhs`, assuming overflow
536        /// cannot occur.
537        ///
538        /// Calling `x.unchecked_add(y)` is semantically equivalent to calling
539        /// `x.`[`checked_add`]`(y).`[`unwrap_unchecked`]`()`.
540        ///
541        /// If you're just trying to avoid the panic in debug mode, then **do not**
542        /// use this.  Instead, you're looking for [`wrapping_add`].
543        ///
544        /// # Safety
545        ///
546        /// This results in undefined behavior when
547        #[doc = concat!("`self + rhs > ", stringify!($SelfT), "::MAX` or `self + rhs < ", stringify!($SelfT), "::MIN`,")]
548        /// i.e. when [`checked_add`] would return `None`.
549        ///
550        /// [`unwrap_unchecked`]: option/enum.Option.html#method.unwrap_unchecked
551        #[doc = concat!("[`checked_add`]: ", stringify!($SelfT), "::checked_add")]
552        #[doc = concat!("[`wrapping_add`]: ", stringify!($SelfT), "::wrapping_add")]
553        #[stable(feature = "unchecked_math", since = "1.79.0")]
554        #[rustc_const_stable(feature = "unchecked_math", since = "1.79.0")]
555        #[must_use = "this returns the result of the operation, \
556                      without modifying the original"]
557        #[inline(always)]
558        #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
559        pub const unsafe fn unchecked_add(self, rhs: Self) -> Self {
560            assert_unsafe_precondition!(
561                check_language_ub,
562                concat!(stringify!($SelfT), "::unchecked_add cannot overflow"),
563                (
564                    lhs: $SelfT = self,
565                    rhs: $SelfT = rhs,
566                ) => !lhs.overflowing_add(rhs).1,
567            );
568
569            // SAFETY: this is guaranteed to be safe by the caller.
570            unsafe {
571                intrinsics::unchecked_add(self, rhs)
572            }
573        }
574
575        /// Checked addition with an unsigned integer. Computes `self + rhs`,
576        /// returning `None` if overflow occurred.
577        ///
578        /// # Examples
579        ///
580        /// Basic usage:
581        ///
582        /// ```
583        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_add_unsigned(2), Some(3));")]
584        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_add_unsigned(3), None);")]
585        /// ```
586        #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
587        #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
588        #[must_use = "this returns the result of the operation, \
589                      without modifying the original"]
590        #[inline]
591        pub const fn checked_add_unsigned(self, rhs: $UnsignedT) -> Option<Self> {
592            let (a, b) = self.overflowing_add_unsigned(rhs);
593            if intrinsics::unlikely(b) { None } else { Some(a) }
594        }
595
596        /// Strict addition with an unsigned integer. Computes `self + rhs`,
597        /// panicking if overflow occurred.
598        ///
599        /// # Panics
600        ///
601        /// ## Overflow behavior
602        ///
603        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
604        ///
605        /// # Examples
606        ///
607        /// Basic usage:
608        ///
609        /// ```
610        /// #![feature(strict_overflow_ops)]
611        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".strict_add_unsigned(2), 3);")]
612        /// ```
613        ///
614        /// The following panics because of overflow:
615        ///
616        /// ```should_panic
617        /// #![feature(strict_overflow_ops)]
618        #[doc = concat!("let _ = (", stringify!($SelfT), "::MAX - 2).strict_add_unsigned(3);")]
619        /// ```
620        #[unstable(feature = "strict_overflow_ops", issue = "118260")]
621        #[must_use = "this returns the result of the operation, \
622                      without modifying the original"]
623        #[inline]
624        #[track_caller]
625        pub const fn strict_add_unsigned(self, rhs: $UnsignedT) -> Self {
626            let (a, b) = self.overflowing_add_unsigned(rhs);
627            if b { overflow_panic::add() } else { a }
628        }
629
630        /// Checked integer subtraction. Computes `self - rhs`, returning `None` if
631        /// overflow occurred.
632        ///
633        /// # Examples
634        ///
635        /// Basic usage:
636        ///
637        /// ```
638        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 2).checked_sub(1), Some(", stringify!($SelfT), "::MIN + 1));")]
639        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 2).checked_sub(3), None);")]
640        /// ```
641        #[stable(feature = "rust1", since = "1.0.0")]
642        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
643        #[must_use = "this returns the result of the operation, \
644                      without modifying the original"]
645        #[inline]
646        pub const fn checked_sub(self, rhs: Self) -> Option<Self> {
647            let (a, b) = self.overflowing_sub(rhs);
648            if intrinsics::unlikely(b) { None } else { Some(a) }
649        }
650
651        /// Strict integer subtraction. Computes `self - rhs`, panicking if
652        /// overflow occurred.
653        ///
654        /// # Panics
655        ///
656        /// ## Overflow behavior
657        ///
658        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
659        ///
660        /// # Examples
661        ///
662        /// Basic usage:
663        ///
664        /// ```
665        /// #![feature(strict_overflow_ops)]
666        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 2).strict_sub(1), ", stringify!($SelfT), "::MIN + 1);")]
667        /// ```
668        ///
669        /// The following panics because of overflow:
670        ///
671        /// ```should_panic
672        /// #![feature(strict_overflow_ops)]
673        #[doc = concat!("let _ = (", stringify!($SelfT), "::MIN + 2).strict_sub(3);")]
674        /// ```
675        #[unstable(feature = "strict_overflow_ops", issue = "118260")]
676        #[must_use = "this returns the result of the operation, \
677                      without modifying the original"]
678        #[inline]
679        #[track_caller]
680        pub const fn strict_sub(self, rhs: Self) -> Self {
681            let (a, b) = self.overflowing_sub(rhs);
682            if b { overflow_panic::sub() } else { a }
683        }
684
685        /// Unchecked integer subtraction. Computes `self - rhs`, assuming overflow
686        /// cannot occur.
687        ///
688        /// Calling `x.unchecked_sub(y)` is semantically equivalent to calling
689        /// `x.`[`checked_sub`]`(y).`[`unwrap_unchecked`]`()`.
690        ///
691        /// If you're just trying to avoid the panic in debug mode, then **do not**
692        /// use this.  Instead, you're looking for [`wrapping_sub`].
693        ///
694        /// # Safety
695        ///
696        /// This results in undefined behavior when
697        #[doc = concat!("`self - rhs > ", stringify!($SelfT), "::MAX` or `self - rhs < ", stringify!($SelfT), "::MIN`,")]
698        /// i.e. when [`checked_sub`] would return `None`.
699        ///
700        /// [`unwrap_unchecked`]: option/enum.Option.html#method.unwrap_unchecked
701        #[doc = concat!("[`checked_sub`]: ", stringify!($SelfT), "::checked_sub")]
702        #[doc = concat!("[`wrapping_sub`]: ", stringify!($SelfT), "::wrapping_sub")]
703        #[stable(feature = "unchecked_math", since = "1.79.0")]
704        #[rustc_const_stable(feature = "unchecked_math", since = "1.79.0")]
705        #[must_use = "this returns the result of the operation, \
706                      without modifying the original"]
707        #[inline(always)]
708        #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
709        pub const unsafe fn unchecked_sub(self, rhs: Self) -> Self {
710            assert_unsafe_precondition!(
711                check_language_ub,
712                concat!(stringify!($SelfT), "::unchecked_sub cannot overflow"),
713                (
714                    lhs: $SelfT = self,
715                    rhs: $SelfT = rhs,
716                ) => !lhs.overflowing_sub(rhs).1,
717            );
718
719            // SAFETY: this is guaranteed to be safe by the caller.
720            unsafe {
721                intrinsics::unchecked_sub(self, rhs)
722            }
723        }
724
725        /// Checked subtraction with an unsigned integer. Computes `self - rhs`,
726        /// returning `None` if overflow occurred.
727        ///
728        /// # Examples
729        ///
730        /// Basic usage:
731        ///
732        /// ```
733        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_sub_unsigned(2), Some(-1));")]
734        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 2).checked_sub_unsigned(3), None);")]
735        /// ```
736        #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
737        #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
738        #[must_use = "this returns the result of the operation, \
739                      without modifying the original"]
740        #[inline]
741        pub const fn checked_sub_unsigned(self, rhs: $UnsignedT) -> Option<Self> {
742            let (a, b) = self.overflowing_sub_unsigned(rhs);
743            if intrinsics::unlikely(b) { None } else { Some(a) }
744        }
745
746        /// Strict subtraction with an unsigned integer. Computes `self - rhs`,
747        /// panicking if overflow occurred.
748        ///
749        /// # Panics
750        ///
751        /// ## Overflow behavior
752        ///
753        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
754        ///
755        /// # Examples
756        ///
757        /// Basic usage:
758        ///
759        /// ```
760        /// #![feature(strict_overflow_ops)]
761        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".strict_sub_unsigned(2), -1);")]
762        /// ```
763        ///
764        /// The following panics because of overflow:
765        ///
766        /// ```should_panic
767        /// #![feature(strict_overflow_ops)]
768        #[doc = concat!("let _ = (", stringify!($SelfT), "::MIN + 2).strict_sub_unsigned(3);")]
769        /// ```
770        #[unstable(feature = "strict_overflow_ops", issue = "118260")]
771        #[must_use = "this returns the result of the operation, \
772                      without modifying the original"]
773        #[inline]
774        #[track_caller]
775        pub const fn strict_sub_unsigned(self, rhs: $UnsignedT) -> Self {
776            let (a, b) = self.overflowing_sub_unsigned(rhs);
777            if b { overflow_panic::sub() } else { a }
778        }
779
780        /// Checked integer multiplication. Computes `self * rhs`, returning `None` if
781        /// overflow occurred.
782        ///
783        /// # Examples
784        ///
785        /// Basic usage:
786        ///
787        /// ```
788        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_mul(1), Some(", stringify!($SelfT), "::MAX));")]
789        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_mul(2), None);")]
790        /// ```
791        #[stable(feature = "rust1", since = "1.0.0")]
792        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
793        #[must_use = "this returns the result of the operation, \
794                      without modifying the original"]
795        #[inline]
796        pub const fn checked_mul(self, rhs: Self) -> Option<Self> {
797            let (a, b) = self.overflowing_mul(rhs);
798            if intrinsics::unlikely(b) { None } else { Some(a) }
799        }
800
801        /// Strict integer multiplication. Computes `self * rhs`, panicking if
802        /// overflow occurred.
803        ///
804        /// # Panics
805        ///
806        /// ## Overflow behavior
807        ///
808        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
809        ///
810        /// # Examples
811        ///
812        /// Basic usage:
813        ///
814        /// ```
815        /// #![feature(strict_overflow_ops)]
816        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.strict_mul(1), ", stringify!($SelfT), "::MAX);")]
817        /// ```
818        ///
819        /// The following panics because of overflow:
820        ///
821        /// ``` should_panic
822        /// #![feature(strict_overflow_ops)]
823        #[doc = concat!("let _ = ", stringify!($SelfT), "::MAX.strict_mul(2);")]
824        /// ```
825        #[unstable(feature = "strict_overflow_ops", issue = "118260")]
826        #[must_use = "this returns the result of the operation, \
827                      without modifying the original"]
828        #[inline]
829        #[track_caller]
830        pub const fn strict_mul(self, rhs: Self) -> Self {
831            let (a, b) = self.overflowing_mul(rhs);
832            if b { overflow_panic::mul() } else { a }
833        }
834
835        /// Unchecked integer multiplication. Computes `self * rhs`, assuming overflow
836        /// cannot occur.
837        ///
838        /// Calling `x.unchecked_mul(y)` is semantically equivalent to calling
839        /// `x.`[`checked_mul`]`(y).`[`unwrap_unchecked`]`()`.
840        ///
841        /// If you're just trying to avoid the panic in debug mode, then **do not**
842        /// use this.  Instead, you're looking for [`wrapping_mul`].
843        ///
844        /// # Safety
845        ///
846        /// This results in undefined behavior when
847        #[doc = concat!("`self * rhs > ", stringify!($SelfT), "::MAX` or `self * rhs < ", stringify!($SelfT), "::MIN`,")]
848        /// i.e. when [`checked_mul`] would return `None`.
849        ///
850        /// [`unwrap_unchecked`]: option/enum.Option.html#method.unwrap_unchecked
851        #[doc = concat!("[`checked_mul`]: ", stringify!($SelfT), "::checked_mul")]
852        #[doc = concat!("[`wrapping_mul`]: ", stringify!($SelfT), "::wrapping_mul")]
853        #[stable(feature = "unchecked_math", since = "1.79.0")]
854        #[rustc_const_stable(feature = "unchecked_math", since = "1.79.0")]
855        #[must_use = "this returns the result of the operation, \
856                      without modifying the original"]
857        #[inline(always)]
858        #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
859        pub const unsafe fn unchecked_mul(self, rhs: Self) -> Self {
860            assert_unsafe_precondition!(
861                check_language_ub,
862                concat!(stringify!($SelfT), "::unchecked_mul cannot overflow"),
863                (
864                    lhs: $SelfT = self,
865                    rhs: $SelfT = rhs,
866                ) => !lhs.overflowing_mul(rhs).1,
867            );
868
869            // SAFETY: this is guaranteed to be safe by the caller.
870            unsafe {
871                intrinsics::unchecked_mul(self, rhs)
872            }
873        }
874
875        /// Checked integer division. Computes `self / rhs`, returning `None` if `rhs == 0`
876        /// or the division results in overflow.
877        ///
878        /// # Examples
879        ///
880        /// Basic usage:
881        ///
882        /// ```
883        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 1).checked_div(-1), Some(", stringify!($Max), "));")]
884        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.checked_div(-1), None);")]
885        #[doc = concat!("assert_eq!((1", stringify!($SelfT), ").checked_div(0), None);")]
886        /// ```
887        #[stable(feature = "rust1", since = "1.0.0")]
888        #[rustc_const_stable(feature = "const_checked_int_div", since = "1.52.0")]
889        #[must_use = "this returns the result of the operation, \
890                      without modifying the original"]
891        #[inline]
892        pub const fn checked_div(self, rhs: Self) -> Option<Self> {
893            if intrinsics::unlikely(rhs == 0 || ((self == Self::MIN) && (rhs == -1))) {
894                None
895            } else {
896                // SAFETY: div by zero and by INT_MIN have been checked above
897                Some(unsafe { intrinsics::unchecked_div(self, rhs) })
898            }
899        }
900
901        /// Strict integer division. Computes `self / rhs`, panicking
902        /// if overflow occurred.
903        ///
904        /// # Panics
905        ///
906        /// This function will panic if `rhs` is zero.
907        ///
908        /// ## Overflow behavior
909        ///
910        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
911        ///
912        /// The only case where such an overflow can occur is when one divides `MIN / -1` on a signed type (where
913        /// `MIN` is the negative minimal value for the type); this is equivalent to `-MIN`, a positive value
914        /// that is too large to represent in the type.
915        ///
916        /// # Examples
917        ///
918        /// Basic usage:
919        ///
920        /// ```
921        /// #![feature(strict_overflow_ops)]
922        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 1).strict_div(-1), ", stringify!($Max), ");")]
923        /// ```
924        ///
925        /// The following panics because of overflow:
926        ///
927        /// ```should_panic
928        /// #![feature(strict_overflow_ops)]
929        #[doc = concat!("let _ = ", stringify!($SelfT), "::MIN.strict_div(-1);")]
930        /// ```
931        ///
932        /// The following panics because of division by zero:
933        ///
934        /// ```should_panic
935        /// #![feature(strict_overflow_ops)]
936        #[doc = concat!("let _ = (1", stringify!($SelfT), ").strict_div(0);")]
937        /// ```
938        #[unstable(feature = "strict_overflow_ops", issue = "118260")]
939        #[must_use = "this returns the result of the operation, \
940                      without modifying the original"]
941        #[inline]
942        #[track_caller]
943        pub const fn strict_div(self, rhs: Self) -> Self {
944            let (a, b) = self.overflowing_div(rhs);
945            if b { overflow_panic::div() } else { a }
946        }
947
948        /// Checked Euclidean division. Computes `self.div_euclid(rhs)`,
949        /// returning `None` if `rhs == 0` or the division results in overflow.
950        ///
951        /// # Examples
952        ///
953        /// Basic usage:
954        ///
955        /// ```
956        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 1).checked_div_euclid(-1), Some(", stringify!($Max), "));")]
957        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.checked_div_euclid(-1), None);")]
958        #[doc = concat!("assert_eq!((1", stringify!($SelfT), ").checked_div_euclid(0), None);")]
959        /// ```
960        #[stable(feature = "euclidean_division", since = "1.38.0")]
961        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
962        #[must_use = "this returns the result of the operation, \
963                      without modifying the original"]
964        #[inline]
965        pub const fn checked_div_euclid(self, rhs: Self) -> Option<Self> {
966            // Using `&` helps LLVM see that it is the same check made in division.
967            if intrinsics::unlikely(rhs == 0 || ((self == Self::MIN) & (rhs == -1))) {
968                None
969            } else {
970                Some(self.div_euclid(rhs))
971            }
972        }
973
974        /// Strict Euclidean division. Computes `self.div_euclid(rhs)`, panicking
975        /// if overflow occurred.
976        ///
977        /// # Panics
978        ///
979        /// This function will panic if `rhs` is zero.
980        ///
981        /// ## Overflow behavior
982        ///
983        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
984        ///
985        /// The only case where such an overflow can occur is when one divides `MIN / -1` on a signed type (where
986        /// `MIN` is the negative minimal value for the type); this is equivalent to `-MIN`, a positive value
987        /// that is too large to represent in the type.
988        ///
989        /// # Examples
990        ///
991        /// Basic usage:
992        ///
993        /// ```
994        /// #![feature(strict_overflow_ops)]
995        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 1).strict_div_euclid(-1), ", stringify!($Max), ");")]
996        /// ```
997        ///
998        /// The following panics because of overflow:
999        ///
1000        /// ```should_panic
1001        /// #![feature(strict_overflow_ops)]
1002        #[doc = concat!("let _ = ", stringify!($SelfT), "::MIN.strict_div_euclid(-1);")]
1003        /// ```
1004        ///
1005        /// The following panics because of division by zero:
1006        ///
1007        /// ```should_panic
1008        /// #![feature(strict_overflow_ops)]
1009        #[doc = concat!("let _ = (1", stringify!($SelfT), ").strict_div_euclid(0);")]
1010        /// ```
1011        #[unstable(feature = "strict_overflow_ops", issue = "118260")]
1012        #[must_use = "this returns the result of the operation, \
1013                      without modifying the original"]
1014        #[inline]
1015        #[track_caller]
1016        pub const fn strict_div_euclid(self, rhs: Self) -> Self {
1017            let (a, b) = self.overflowing_div_euclid(rhs);
1018            if b { overflow_panic::div() } else { a }
1019        }
1020
1021        /// Checked integer remainder. Computes `self % rhs`, returning `None` if
1022        /// `rhs == 0` or the division results in overflow.
1023        ///
1024        /// # Examples
1025        ///
1026        /// Basic usage:
1027        ///
1028        /// ```
1029        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem(2), Some(1));")]
1030        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem(0), None);")]
1031        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.checked_rem(-1), None);")]
1032        /// ```
1033        #[stable(feature = "wrapping", since = "1.7.0")]
1034        #[rustc_const_stable(feature = "const_checked_int_div", since = "1.52.0")]
1035        #[must_use = "this returns the result of the operation, \
1036                      without modifying the original"]
1037        #[inline]
1038        pub const fn checked_rem(self, rhs: Self) -> Option<Self> {
1039            if intrinsics::unlikely(rhs == 0 || ((self == Self::MIN) && (rhs == -1))) {
1040                None
1041            } else {
1042                // SAFETY: div by zero and by INT_MIN have been checked above
1043                Some(unsafe { intrinsics::unchecked_rem(self, rhs) })
1044            }
1045        }
1046
1047        /// Strict integer remainder. Computes `self % rhs`, panicking if
1048        /// the division results in overflow.
1049        ///
1050        /// # Panics
1051        ///
1052        /// This function will panic if `rhs` is zero.
1053        ///
1054        /// ## Overflow behavior
1055        ///
1056        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1057        ///
1058        /// The only case where such an overflow can occur is `x % y` for `MIN / -1` on a
1059        /// signed type (where `MIN` is the negative minimal value), which is invalid due to implementation artifacts.
1060        ///
1061        /// # Examples
1062        ///
1063        /// Basic usage:
1064        ///
1065        /// ```
1066        /// #![feature(strict_overflow_ops)]
1067        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".strict_rem(2), 1);")]
1068        /// ```
1069        ///
1070        /// The following panics because of division by zero:
1071        ///
1072        /// ```should_panic
1073        /// #![feature(strict_overflow_ops)]
1074        #[doc = concat!("let _ = 5", stringify!($SelfT), ".strict_rem(0);")]
1075        /// ```
1076        ///
1077        /// The following panics because of overflow:
1078        ///
1079        /// ```should_panic
1080        /// #![feature(strict_overflow_ops)]
1081        #[doc = concat!("let _ = ", stringify!($SelfT), "::MIN.strict_rem(-1);")]
1082        /// ```
1083        #[unstable(feature = "strict_overflow_ops", issue = "118260")]
1084        #[must_use = "this returns the result of the operation, \
1085                      without modifying the original"]
1086        #[inline]
1087        #[track_caller]
1088        pub const fn strict_rem(self, rhs: Self) -> Self {
1089            let (a, b) = self.overflowing_rem(rhs);
1090            if b { overflow_panic::rem() } else { a }
1091        }
1092
1093        /// Checked Euclidean remainder. Computes `self.rem_euclid(rhs)`, returning `None`
1094        /// if `rhs == 0` or the division results in overflow.
1095        ///
1096        /// # Examples
1097        ///
1098        /// Basic usage:
1099        ///
1100        /// ```
1101        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem_euclid(2), Some(1));")]
1102        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem_euclid(0), None);")]
1103        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.checked_rem_euclid(-1), None);")]
1104        /// ```
1105        #[stable(feature = "euclidean_division", since = "1.38.0")]
1106        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
1107        #[must_use = "this returns the result of the operation, \
1108                      without modifying the original"]
1109        #[inline]
1110        pub const fn checked_rem_euclid(self, rhs: Self) -> Option<Self> {
1111            // Using `&` helps LLVM see that it is the same check made in division.
1112            if intrinsics::unlikely(rhs == 0 || ((self == Self::MIN) & (rhs == -1))) {
1113                None
1114            } else {
1115                Some(self.rem_euclid(rhs))
1116            }
1117        }
1118
1119        /// Strict Euclidean remainder. Computes `self.rem_euclid(rhs)`, panicking if
1120        /// the division results in overflow.
1121        ///
1122        /// # Panics
1123        ///
1124        /// This function will panic if `rhs` is zero.
1125        ///
1126        /// ## Overflow behavior
1127        ///
1128        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1129        ///
1130        /// The only case where such an overflow can occur is `x % y` for `MIN / -1` on a
1131        /// signed type (where `MIN` is the negative minimal value), which is invalid due to implementation artifacts.
1132        ///
1133        /// # Examples
1134        ///
1135        /// Basic usage:
1136        ///
1137        /// ```
1138        /// #![feature(strict_overflow_ops)]
1139        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".strict_rem_euclid(2), 1);")]
1140        /// ```
1141        ///
1142        /// The following panics because of division by zero:
1143        ///
1144        /// ```should_panic
1145        /// #![feature(strict_overflow_ops)]
1146        #[doc = concat!("let _ = 5", stringify!($SelfT), ".strict_rem_euclid(0);")]
1147        /// ```
1148        ///
1149        /// The following panics because of overflow:
1150        ///
1151        /// ```should_panic
1152        /// #![feature(strict_overflow_ops)]
1153        #[doc = concat!("let _ = ", stringify!($SelfT), "::MIN.strict_rem_euclid(-1);")]
1154        /// ```
1155        #[unstable(feature = "strict_overflow_ops", issue = "118260")]
1156        #[must_use = "this returns the result of the operation, \
1157                      without modifying the original"]
1158        #[inline]
1159        #[track_caller]
1160        pub const fn strict_rem_euclid(self, rhs: Self) -> Self {
1161            let (a, b) = self.overflowing_rem_euclid(rhs);
1162            if b { overflow_panic::rem() } else { a }
1163        }
1164
1165        /// Checked negation. Computes `-self`, returning `None` if `self == MIN`.
1166        ///
1167        /// # Examples
1168        ///
1169        /// Basic usage:
1170        ///
1171        /// ```
1172        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_neg(), Some(-5));")]
1173        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.checked_neg(), None);")]
1174        /// ```
1175        #[stable(feature = "wrapping", since = "1.7.0")]
1176        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
1177        #[must_use = "this returns the result of the operation, \
1178                      without modifying the original"]
1179        #[inline]
1180        pub const fn checked_neg(self) -> Option<Self> {
1181            let (a, b) = self.overflowing_neg();
1182            if intrinsics::unlikely(b) { None } else { Some(a) }
1183        }
1184
1185        /// Unchecked negation. Computes `-self`, assuming overflow cannot occur.
1186        ///
1187        /// # Safety
1188        ///
1189        /// This results in undefined behavior when
1190        #[doc = concat!("`self == ", stringify!($SelfT), "::MIN`,")]
1191        /// i.e. when [`checked_neg`] would return `None`.
1192        ///
1193        #[doc = concat!("[`checked_neg`]: ", stringify!($SelfT), "::checked_neg")]
1194        #[unstable(
1195            feature = "unchecked_neg",
1196            reason = "niche optimization path",
1197            issue = "85122",
1198        )]
1199        #[must_use = "this returns the result of the operation, \
1200                      without modifying the original"]
1201        #[inline(always)]
1202        #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1203        pub const unsafe fn unchecked_neg(self) -> Self {
1204            assert_unsafe_precondition!(
1205                check_language_ub,
1206                concat!(stringify!($SelfT), "::unchecked_neg cannot overflow"),
1207                (
1208                    lhs: $SelfT = self,
1209                ) => !lhs.overflowing_neg().1,
1210            );
1211
1212            // SAFETY: this is guaranteed to be safe by the caller.
1213            unsafe {
1214                intrinsics::unchecked_sub(0, self)
1215            }
1216        }
1217
1218        /// Strict negation. Computes `-self`, panicking if `self == MIN`.
1219        ///
1220        /// # Panics
1221        ///
1222        /// ## Overflow behavior
1223        ///
1224        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1225        ///
1226        /// # Examples
1227        ///
1228        /// Basic usage:
1229        ///
1230        /// ```
1231        /// #![feature(strict_overflow_ops)]
1232        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".strict_neg(), -5);")]
1233        /// ```
1234        ///
1235        /// The following panics because of overflow:
1236        ///
1237        /// ```should_panic
1238        /// #![feature(strict_overflow_ops)]
1239        #[doc = concat!("let _ = ", stringify!($SelfT), "::MIN.strict_neg();")]
1240        ///
1241        #[unstable(feature = "strict_overflow_ops", issue = "118260")]
1242        #[must_use = "this returns the result of the operation, \
1243                      without modifying the original"]
1244        #[inline]
1245        #[track_caller]
1246        pub const fn strict_neg(self) -> Self {
1247            let (a, b) = self.overflowing_neg();
1248            if b { overflow_panic::neg() } else { a }
1249        }
1250
1251        /// Checked shift left. Computes `self << rhs`, returning `None` if `rhs` is larger
1252        /// than or equal to the number of bits in `self`.
1253        ///
1254        /// # Examples
1255        ///
1256        /// Basic usage:
1257        ///
1258        /// ```
1259        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".checked_shl(4), Some(0x10));")]
1260        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".checked_shl(129), None);")]
1261        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shl(", stringify!($BITS_MINUS_ONE), "), Some(0));")]
1262        /// ```
1263        #[stable(feature = "wrapping", since = "1.7.0")]
1264        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
1265        #[must_use = "this returns the result of the operation, \
1266                      without modifying the original"]
1267        #[inline]
1268        pub const fn checked_shl(self, rhs: u32) -> Option<Self> {
1269            // Not using overflowing_shl as that's a wrapping shift
1270            if rhs < Self::BITS {
1271                // SAFETY: just checked the RHS is in-range
1272                Some(unsafe { self.unchecked_shl(rhs) })
1273            } else {
1274                None
1275            }
1276        }
1277
1278        /// Strict shift left. Computes `self << rhs`, panicking if `rhs` is larger
1279        /// than or equal to the number of bits in `self`.
1280        ///
1281        /// # Panics
1282        ///
1283        /// ## Overflow behavior
1284        ///
1285        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1286        ///
1287        /// # Examples
1288        ///
1289        /// Basic usage:
1290        ///
1291        /// ```
1292        /// #![feature(strict_overflow_ops)]
1293        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".strict_shl(4), 0x10);")]
1294        /// ```
1295        ///
1296        /// The following panics because of overflow:
1297        ///
1298        /// ```should_panic
1299        /// #![feature(strict_overflow_ops)]
1300        #[doc = concat!("let _ = 0x1", stringify!($SelfT), ".strict_shl(129);")]
1301        /// ```
1302        #[unstable(feature = "strict_overflow_ops", issue = "118260")]
1303        #[must_use = "this returns the result of the operation, \
1304                      without modifying the original"]
1305        #[inline]
1306        #[track_caller]
1307        pub const fn strict_shl(self, rhs: u32) -> Self {
1308            let (a, b) = self.overflowing_shl(rhs);
1309            if b { overflow_panic::shl() } else { a }
1310        }
1311
1312        /// Unchecked shift left. Computes `self << rhs`, assuming that
1313        /// `rhs` is less than the number of bits in `self`.
1314        ///
1315        /// # Safety
1316        ///
1317        /// This results in undefined behavior if `rhs` is larger than
1318        /// or equal to the number of bits in `self`,
1319        /// i.e. when [`checked_shl`] would return `None`.
1320        ///
1321        #[doc = concat!("[`checked_shl`]: ", stringify!($SelfT), "::checked_shl")]
1322        #[unstable(
1323            feature = "unchecked_shifts",
1324            reason = "niche optimization path",
1325            issue = "85122",
1326        )]
1327        #[must_use = "this returns the result of the operation, \
1328                      without modifying the original"]
1329        #[inline(always)]
1330        #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1331        pub const unsafe fn unchecked_shl(self, rhs: u32) -> Self {
1332            assert_unsafe_precondition!(
1333                check_language_ub,
1334                concat!(stringify!($SelfT), "::unchecked_shl cannot overflow"),
1335                (
1336                    rhs: u32 = rhs,
1337                ) => rhs < <$ActualT>::BITS,
1338            );
1339
1340            // SAFETY: this is guaranteed to be safe by the caller.
1341            unsafe {
1342                intrinsics::unchecked_shl(self, rhs)
1343            }
1344        }
1345
1346        /// Unbounded shift left. Computes `self << rhs`, without bounding the value of `rhs`.
1347        ///
1348        /// If `rhs` is larger or equal to the number of bits in `self`,
1349        /// the entire value is shifted out, and `0` is returned.
1350        ///
1351        /// # Examples
1352        ///
1353        /// Basic usage:
1354        /// ```
1355        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".unbounded_shl(4), 0x10);")]
1356        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".unbounded_shl(129), 0);")]
1357        /// ```
1358        #[stable(feature = "unbounded_shifts", since = "CURRENT_RUSTC_VERSION")]
1359        #[rustc_const_stable(feature = "unbounded_shifts", since = "CURRENT_RUSTC_VERSION")]
1360        #[must_use = "this returns the result of the operation, \
1361                      without modifying the original"]
1362        #[inline]
1363        pub const fn unbounded_shl(self, rhs: u32) -> $SelfT{
1364            if rhs < Self::BITS {
1365                // SAFETY:
1366                // rhs is just checked to be in-range above
1367                unsafe { self.unchecked_shl(rhs) }
1368            } else {
1369                0
1370            }
1371        }
1372
1373        /// Checked shift right. Computes `self >> rhs`, returning `None` if `rhs` is
1374        /// larger than or equal to the number of bits in `self`.
1375        ///
1376        /// # Examples
1377        ///
1378        /// Basic usage:
1379        ///
1380        /// ```
1381        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shr(4), Some(0x1));")]
1382        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shr(128), None);")]
1383        /// ```
1384        #[stable(feature = "wrapping", since = "1.7.0")]
1385        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
1386        #[must_use = "this returns the result of the operation, \
1387                      without modifying the original"]
1388        #[inline]
1389        pub const fn checked_shr(self, rhs: u32) -> Option<Self> {
1390            // Not using overflowing_shr as that's a wrapping shift
1391            if rhs < Self::BITS {
1392                // SAFETY: just checked the RHS is in-range
1393                Some(unsafe { self.unchecked_shr(rhs) })
1394            } else {
1395                None
1396            }
1397        }
1398
1399        /// Strict shift right. Computes `self >> rhs`, panicking `rhs` is
1400        /// larger than or equal to the number of bits in `self`.
1401        ///
1402        /// # Panics
1403        ///
1404        /// ## Overflow behavior
1405        ///
1406        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1407        ///
1408        /// # Examples
1409        ///
1410        /// Basic usage:
1411        ///
1412        /// ```
1413        /// #![feature(strict_overflow_ops)]
1414        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".strict_shr(4), 0x1);")]
1415        /// ```
1416        ///
1417        /// The following panics because of overflow:
1418        ///
1419        /// ```should_panic
1420        /// #![feature(strict_overflow_ops)]
1421        #[doc = concat!("let _ = 0x10", stringify!($SelfT), ".strict_shr(128);")]
1422        /// ```
1423        #[unstable(feature = "strict_overflow_ops", issue = "118260")]
1424        #[must_use = "this returns the result of the operation, \
1425                      without modifying the original"]
1426        #[inline]
1427        #[track_caller]
1428        pub const fn strict_shr(self, rhs: u32) -> Self {
1429            let (a, b) = self.overflowing_shr(rhs);
1430            if b { overflow_panic::shr() } else { a }
1431        }
1432
1433        /// Unchecked shift right. Computes `self >> rhs`, assuming that
1434        /// `rhs` is less than the number of bits in `self`.
1435        ///
1436        /// # Safety
1437        ///
1438        /// This results in undefined behavior if `rhs` is larger than
1439        /// or equal to the number of bits in `self`,
1440        /// i.e. when [`checked_shr`] would return `None`.
1441        ///
1442        #[doc = concat!("[`checked_shr`]: ", stringify!($SelfT), "::checked_shr")]
1443        #[unstable(
1444            feature = "unchecked_shifts",
1445            reason = "niche optimization path",
1446            issue = "85122",
1447        )]
1448        #[must_use = "this returns the result of the operation, \
1449                      without modifying the original"]
1450        #[inline(always)]
1451        #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1452        pub const unsafe fn unchecked_shr(self, rhs: u32) -> Self {
1453            assert_unsafe_precondition!(
1454                check_language_ub,
1455                concat!(stringify!($SelfT), "::unchecked_shr cannot overflow"),
1456                (
1457                    rhs: u32 = rhs,
1458                ) => rhs < <$ActualT>::BITS,
1459            );
1460
1461            // SAFETY: this is guaranteed to be safe by the caller.
1462            unsafe {
1463                intrinsics::unchecked_shr(self, rhs)
1464            }
1465        }
1466
1467        /// Unbounded shift right. Computes `self >> rhs`, without bounding the value of `rhs`.
1468        ///
1469        /// If `rhs` is larger or equal to the number of bits in `self`,
1470        /// the entire value is shifted out, which yields `0` for a positive number,
1471        /// and `-1` for a negative number.
1472        ///
1473        /// # Examples
1474        ///
1475        /// Basic usage:
1476        /// ```
1477        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".unbounded_shr(4), 0x1);")]
1478        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".unbounded_shr(129), 0);")]
1479        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.unbounded_shr(129), -1);")]
1480        /// ```
1481        #[stable(feature = "unbounded_shifts", since = "CURRENT_RUSTC_VERSION")]
1482        #[rustc_const_stable(feature = "unbounded_shifts", since = "CURRENT_RUSTC_VERSION")]
1483        #[must_use = "this returns the result of the operation, \
1484                      without modifying the original"]
1485        #[inline]
1486        pub const fn unbounded_shr(self, rhs: u32) -> $SelfT{
1487            if rhs < Self::BITS {
1488                // SAFETY:
1489                // rhs is just checked to be in-range above
1490                unsafe { self.unchecked_shr(rhs) }
1491            } else {
1492                // A shift by `Self::BITS-1` suffices for signed integers, because the sign bit is copied for each of the shifted bits.
1493
1494                // SAFETY:
1495                // `Self::BITS-1` is guaranteed to be less than `Self::BITS`
1496                unsafe { self.unchecked_shr(Self::BITS - 1) }
1497            }
1498        }
1499
1500        /// Checked absolute value. Computes `self.abs()`, returning `None` if
1501        /// `self == MIN`.
1502        ///
1503        /// # Examples
1504        ///
1505        /// Basic usage:
1506        ///
1507        /// ```
1508        #[doc = concat!("assert_eq!((-5", stringify!($SelfT), ").checked_abs(), Some(5));")]
1509        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.checked_abs(), None);")]
1510        /// ```
1511        #[stable(feature = "no_panic_abs", since = "1.13.0")]
1512        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
1513        #[must_use = "this returns the result of the operation, \
1514                      without modifying the original"]
1515        #[inline]
1516        pub const fn checked_abs(self) -> Option<Self> {
1517            if self.is_negative() {
1518                self.checked_neg()
1519            } else {
1520                Some(self)
1521            }
1522        }
1523
1524        /// Strict absolute value. Computes `self.abs()`, panicking if
1525        /// `self == MIN`.
1526        ///
1527        /// # Panics
1528        ///
1529        /// ## Overflow behavior
1530        ///
1531        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1532        ///
1533        /// # Examples
1534        ///
1535        /// Basic usage:
1536        ///
1537        /// ```
1538        /// #![feature(strict_overflow_ops)]
1539        #[doc = concat!("assert_eq!((-5", stringify!($SelfT), ").strict_abs(), 5);")]
1540        /// ```
1541        ///
1542        /// The following panics because of overflow:
1543        ///
1544        /// ```should_panic
1545        /// #![feature(strict_overflow_ops)]
1546        #[doc = concat!("let _ = ", stringify!($SelfT), "::MIN.strict_abs();")]
1547        /// ```
1548        #[unstable(feature = "strict_overflow_ops", issue = "118260")]
1549        #[must_use = "this returns the result of the operation, \
1550                      without modifying the original"]
1551        #[inline]
1552        #[track_caller]
1553        pub const fn strict_abs(self) -> Self {
1554            if self.is_negative() {
1555                self.strict_neg()
1556            } else {
1557                self
1558            }
1559        }
1560
1561        /// Checked exponentiation. Computes `self.pow(exp)`, returning `None` if
1562        /// overflow occurred.
1563        ///
1564        /// # Examples
1565        ///
1566        /// Basic usage:
1567        ///
1568        /// ```
1569        #[doc = concat!("assert_eq!(8", stringify!($SelfT), ".checked_pow(2), Some(64));")]
1570        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_pow(2), None);")]
1571        /// ```
1572
1573        #[stable(feature = "no_panic_pow", since = "1.34.0")]
1574        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
1575        #[must_use = "this returns the result of the operation, \
1576                      without modifying the original"]
1577        #[inline]
1578        pub const fn checked_pow(self, mut exp: u32) -> Option<Self> {
1579            if exp == 0 {
1580                return Some(1);
1581            }
1582            let mut base = self;
1583            let mut acc: Self = 1;
1584
1585            loop {
1586                if (exp & 1) == 1 {
1587                    acc = try_opt!(acc.checked_mul(base));
1588                    // since exp!=0, finally the exp must be 1.
1589                    if exp == 1 {
1590                        return Some(acc);
1591                    }
1592                }
1593                exp /= 2;
1594                base = try_opt!(base.checked_mul(base));
1595            }
1596        }
1597
1598        /// Strict exponentiation. Computes `self.pow(exp)`, panicking if
1599        /// overflow occurred.
1600        ///
1601        /// # Panics
1602        ///
1603        /// ## Overflow behavior
1604        ///
1605        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1606        ///
1607        /// # Examples
1608        ///
1609        /// Basic usage:
1610        ///
1611        /// ```
1612        /// #![feature(strict_overflow_ops)]
1613        #[doc = concat!("assert_eq!(8", stringify!($SelfT), ".strict_pow(2), 64);")]
1614        /// ```
1615        ///
1616        /// The following panics because of overflow:
1617        ///
1618        /// ```should_panic
1619        /// #![feature(strict_overflow_ops)]
1620        #[doc = concat!("let _ = ", stringify!($SelfT), "::MAX.strict_pow(2);")]
1621        /// ```
1622        #[unstable(feature = "strict_overflow_ops", issue = "118260")]
1623        #[must_use = "this returns the result of the operation, \
1624                      without modifying the original"]
1625        #[inline]
1626        #[track_caller]
1627        pub const fn strict_pow(self, mut exp: u32) -> Self {
1628            if exp == 0 {
1629                return 1;
1630            }
1631            let mut base = self;
1632            let mut acc: Self = 1;
1633
1634            loop {
1635                if (exp & 1) == 1 {
1636                    acc = acc.strict_mul(base);
1637                    // since exp!=0, finally the exp must be 1.
1638                    if exp == 1 {
1639                        return acc;
1640                    }
1641                }
1642                exp /= 2;
1643                base = base.strict_mul(base);
1644            }
1645        }
1646
1647        /// Returns the square root of the number, rounded down.
1648        ///
1649        /// Returns `None` if `self` is negative.
1650        ///
1651        /// # Examples
1652        ///
1653        /// Basic usage:
1654        /// ```
1655        #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".checked_isqrt(), Some(3));")]
1656        /// ```
1657        #[stable(feature = "isqrt", since = "1.84.0")]
1658        #[rustc_const_stable(feature = "isqrt", since = "1.84.0")]
1659        #[must_use = "this returns the result of the operation, \
1660                      without modifying the original"]
1661        #[inline]
1662        pub const fn checked_isqrt(self) -> Option<Self> {
1663            if self < 0 {
1664                None
1665            } else {
1666                // SAFETY: Input is nonnegative in this `else` branch.
1667                let result = unsafe {
1668                    crate::num::int_sqrt::$ActualT(self as $ActualT) as $SelfT
1669                };
1670
1671                // Inform the optimizer what the range of outputs is. If
1672                // testing `core` crashes with no panic message and a
1673                // `num::int_sqrt::i*` test failed, it's because your edits
1674                // caused these assertions to become false.
1675                //
1676                // SAFETY: Integer square root is a monotonically nondecreasing
1677                // function, which means that increasing the input will never
1678                // cause the output to decrease. Thus, since the input for
1679                // nonnegative signed integers is bounded by
1680                // `[0, <$ActualT>::MAX]`, sqrt(n) will be bounded by
1681                // `[sqrt(0), sqrt(<$ActualT>::MAX)]`.
1682                unsafe {
1683                    // SAFETY: `<$ActualT>::MAX` is nonnegative.
1684                    const MAX_RESULT: $SelfT = unsafe {
1685                        crate::num::int_sqrt::$ActualT(<$ActualT>::MAX) as $SelfT
1686                    };
1687
1688                    crate::hint::assert_unchecked(result >= 0);
1689                    crate::hint::assert_unchecked(result <= MAX_RESULT);
1690                }
1691
1692                Some(result)
1693            }
1694        }
1695
1696        /// Saturating integer addition. Computes `self + rhs`, saturating at the numeric
1697        /// bounds instead of overflowing.
1698        ///
1699        /// # Examples
1700        ///
1701        /// Basic usage:
1702        ///
1703        /// ```
1704        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".saturating_add(1), 101);")]
1705        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_add(100), ", stringify!($SelfT), "::MAX);")]
1706        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_add(-1), ", stringify!($SelfT), "::MIN);")]
1707        /// ```
1708
1709        #[stable(feature = "rust1", since = "1.0.0")]
1710        #[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
1711        #[must_use = "this returns the result of the operation, \
1712                      without modifying the original"]
1713        #[inline(always)]
1714        pub const fn saturating_add(self, rhs: Self) -> Self {
1715            intrinsics::saturating_add(self, rhs)
1716        }
1717
1718        /// Saturating addition with an unsigned integer. Computes `self + rhs`,
1719        /// saturating at the numeric bounds instead of overflowing.
1720        ///
1721        /// # Examples
1722        ///
1723        /// Basic usage:
1724        ///
1725        /// ```
1726        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".saturating_add_unsigned(2), 3);")]
1727        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_add_unsigned(100), ", stringify!($SelfT), "::MAX);")]
1728        /// ```
1729        #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
1730        #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
1731        #[must_use = "this returns the result of the operation, \
1732                      without modifying the original"]
1733        #[inline]
1734        pub const fn saturating_add_unsigned(self, rhs: $UnsignedT) -> Self {
1735            // Overflow can only happen at the upper bound
1736            // We cannot use `unwrap_or` here because it is not `const`
1737            match self.checked_add_unsigned(rhs) {
1738                Some(x) => x,
1739                None => Self::MAX,
1740            }
1741        }
1742
1743        /// Saturating integer subtraction. Computes `self - rhs`, saturating at the
1744        /// numeric bounds instead of overflowing.
1745        ///
1746        /// # Examples
1747        ///
1748        /// Basic usage:
1749        ///
1750        /// ```
1751        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".saturating_sub(127), -27);")]
1752        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_sub(100), ", stringify!($SelfT), "::MIN);")]
1753        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_sub(-1), ", stringify!($SelfT), "::MAX);")]
1754        /// ```
1755        #[stable(feature = "rust1", since = "1.0.0")]
1756        #[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
1757        #[must_use = "this returns the result of the operation, \
1758                      without modifying the original"]
1759        #[inline(always)]
1760        pub const fn saturating_sub(self, rhs: Self) -> Self {
1761            intrinsics::saturating_sub(self, rhs)
1762        }
1763
1764        /// Saturating subtraction with an unsigned integer. Computes `self - rhs`,
1765        /// saturating at the numeric bounds instead of overflowing.
1766        ///
1767        /// # Examples
1768        ///
1769        /// Basic usage:
1770        ///
1771        /// ```
1772        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".saturating_sub_unsigned(127), -27);")]
1773        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_sub_unsigned(100), ", stringify!($SelfT), "::MIN);")]
1774        /// ```
1775        #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
1776        #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
1777        #[must_use = "this returns the result of the operation, \
1778                      without modifying the original"]
1779        #[inline]
1780        pub const fn saturating_sub_unsigned(self, rhs: $UnsignedT) -> Self {
1781            // Overflow can only happen at the lower bound
1782            // We cannot use `unwrap_or` here because it is not `const`
1783            match self.checked_sub_unsigned(rhs) {
1784                Some(x) => x,
1785                None => Self::MIN,
1786            }
1787        }
1788
1789        /// Saturating integer negation. Computes `-self`, returning `MAX` if `self == MIN`
1790        /// instead of overflowing.
1791        ///
1792        /// # Examples
1793        ///
1794        /// Basic usage:
1795        ///
1796        /// ```
1797        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".saturating_neg(), -100);")]
1798        #[doc = concat!("assert_eq!((-100", stringify!($SelfT), ").saturating_neg(), 100);")]
1799        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_neg(), ", stringify!($SelfT), "::MAX);")]
1800        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_neg(), ", stringify!($SelfT), "::MIN + 1);")]
1801        /// ```
1802
1803        #[stable(feature = "saturating_neg", since = "1.45.0")]
1804        #[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
1805        #[must_use = "this returns the result of the operation, \
1806                      without modifying the original"]
1807        #[inline(always)]
1808        pub const fn saturating_neg(self) -> Self {
1809            intrinsics::saturating_sub(0, self)
1810        }
1811
1812        /// Saturating absolute value. Computes `self.abs()`, returning `MAX` if `self ==
1813        /// MIN` instead of overflowing.
1814        ///
1815        /// # Examples
1816        ///
1817        /// Basic usage:
1818        ///
1819        /// ```
1820        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".saturating_abs(), 100);")]
1821        #[doc = concat!("assert_eq!((-100", stringify!($SelfT), ").saturating_abs(), 100);")]
1822        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_abs(), ", stringify!($SelfT), "::MAX);")]
1823        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 1).saturating_abs(), ", stringify!($SelfT), "::MAX);")]
1824        /// ```
1825
1826        #[stable(feature = "saturating_neg", since = "1.45.0")]
1827        #[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
1828        #[must_use = "this returns the result of the operation, \
1829                      without modifying the original"]
1830        #[inline]
1831        pub const fn saturating_abs(self) -> Self {
1832            if self.is_negative() {
1833                self.saturating_neg()
1834            } else {
1835                self
1836            }
1837        }
1838
1839        /// Saturating integer multiplication. Computes `self * rhs`, saturating at the
1840        /// numeric bounds instead of overflowing.
1841        ///
1842        /// # Examples
1843        ///
1844        /// Basic usage:
1845        ///
1846        /// ```
1847        #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".saturating_mul(12), 120);")]
1848        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_mul(10), ", stringify!($SelfT), "::MAX);")]
1849        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_mul(10), ", stringify!($SelfT), "::MIN);")]
1850        /// ```
1851        #[stable(feature = "wrapping", since = "1.7.0")]
1852        #[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
1853        #[must_use = "this returns the result of the operation, \
1854                      without modifying the original"]
1855        #[inline]
1856        pub const fn saturating_mul(self, rhs: Self) -> Self {
1857            match self.checked_mul(rhs) {
1858                Some(x) => x,
1859                None => if (self < 0) == (rhs < 0) {
1860                    Self::MAX
1861                } else {
1862                    Self::MIN
1863                }
1864            }
1865        }
1866
1867        /// Saturating integer division. Computes `self / rhs`, saturating at the
1868        /// numeric bounds instead of overflowing.
1869        ///
1870        /// # Panics
1871        ///
1872        /// This function will panic if `rhs` is zero.
1873        ///
1874        /// # Examples
1875        ///
1876        /// Basic usage:
1877        ///
1878        /// ```
1879        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".saturating_div(2), 2);")]
1880        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_div(-1), ", stringify!($SelfT), "::MIN + 1);")]
1881        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_div(-1), ", stringify!($SelfT), "::MAX);")]
1882        ///
1883        /// ```
1884        #[stable(feature = "saturating_div", since = "1.58.0")]
1885        #[rustc_const_stable(feature = "saturating_div", since = "1.58.0")]
1886        #[must_use = "this returns the result of the operation, \
1887                      without modifying the original"]
1888        #[inline]
1889        pub const fn saturating_div(self, rhs: Self) -> Self {
1890            match self.overflowing_div(rhs) {
1891                (result, false) => result,
1892                (_result, true) => Self::MAX, // MIN / -1 is the only possible saturating overflow
1893            }
1894        }
1895
1896        /// Saturating integer exponentiation. Computes `self.pow(exp)`,
1897        /// saturating at the numeric bounds instead of overflowing.
1898        ///
1899        /// # Examples
1900        ///
1901        /// Basic usage:
1902        ///
1903        /// ```
1904        #[doc = concat!("assert_eq!((-4", stringify!($SelfT), ").saturating_pow(3), -64);")]
1905        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_pow(2), ", stringify!($SelfT), "::MAX);")]
1906        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_pow(3), ", stringify!($SelfT), "::MIN);")]
1907        /// ```
1908        #[stable(feature = "no_panic_pow", since = "1.34.0")]
1909        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
1910        #[must_use = "this returns the result of the operation, \
1911                      without modifying the original"]
1912        #[inline]
1913        pub const fn saturating_pow(self, exp: u32) -> Self {
1914            match self.checked_pow(exp) {
1915                Some(x) => x,
1916                None if self < 0 && exp % 2 == 1 => Self::MIN,
1917                None => Self::MAX,
1918            }
1919        }
1920
1921        /// Wrapping (modular) addition. Computes `self + rhs`, wrapping around at the
1922        /// boundary of the type.
1923        ///
1924        /// # Examples
1925        ///
1926        /// Basic usage:
1927        ///
1928        /// ```
1929        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_add(27), 127);")]
1930        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.wrapping_add(2), ", stringify!($SelfT), "::MIN + 1);")]
1931        /// ```
1932        #[stable(feature = "rust1", since = "1.0.0")]
1933        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
1934        #[must_use = "this returns the result of the operation, \
1935                      without modifying the original"]
1936        #[inline(always)]
1937        pub const fn wrapping_add(self, rhs: Self) -> Self {
1938            intrinsics::wrapping_add(self, rhs)
1939        }
1940
1941        /// Wrapping (modular) addition with an unsigned integer. Computes
1942        /// `self + rhs`, wrapping around at the boundary of the type.
1943        ///
1944        /// # Examples
1945        ///
1946        /// Basic usage:
1947        ///
1948        /// ```
1949        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_add_unsigned(27), 127);")]
1950        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.wrapping_add_unsigned(2), ", stringify!($SelfT), "::MIN + 1);")]
1951        /// ```
1952        #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
1953        #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
1954        #[must_use = "this returns the result of the operation, \
1955                      without modifying the original"]
1956        #[inline(always)]
1957        pub const fn wrapping_add_unsigned(self, rhs: $UnsignedT) -> Self {
1958            self.wrapping_add(rhs as Self)
1959        }
1960
1961        /// Wrapping (modular) subtraction. Computes `self - rhs`, wrapping around at the
1962        /// boundary of the type.
1963        ///
1964        /// # Examples
1965        ///
1966        /// Basic usage:
1967        ///
1968        /// ```
1969        #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".wrapping_sub(127), -127);")]
1970        #[doc = concat!("assert_eq!((-2", stringify!($SelfT), ").wrapping_sub(", stringify!($SelfT), "::MAX), ", stringify!($SelfT), "::MAX);")]
1971        /// ```
1972        #[stable(feature = "rust1", since = "1.0.0")]
1973        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
1974        #[must_use = "this returns the result of the operation, \
1975                      without modifying the original"]
1976        #[inline(always)]
1977        pub const fn wrapping_sub(self, rhs: Self) -> Self {
1978            intrinsics::wrapping_sub(self, rhs)
1979        }
1980
1981        /// Wrapping (modular) subtraction with an unsigned integer. Computes
1982        /// `self - rhs`, wrapping around at the boundary of the type.
1983        ///
1984        /// # Examples
1985        ///
1986        /// Basic usage:
1987        ///
1988        /// ```
1989        #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".wrapping_sub_unsigned(127), -127);")]
1990        #[doc = concat!("assert_eq!((-2", stringify!($SelfT), ").wrapping_sub_unsigned(", stringify!($UnsignedT), "::MAX), -1);")]
1991        /// ```
1992        #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
1993        #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
1994        #[must_use = "this returns the result of the operation, \
1995                      without modifying the original"]
1996        #[inline(always)]
1997        pub const fn wrapping_sub_unsigned(self, rhs: $UnsignedT) -> Self {
1998            self.wrapping_sub(rhs as Self)
1999        }
2000
2001        /// Wrapping (modular) multiplication. Computes `self * rhs`, wrapping around at
2002        /// the boundary of the type.
2003        ///
2004        /// # Examples
2005        ///
2006        /// Basic usage:
2007        ///
2008        /// ```
2009        #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".wrapping_mul(12), 120);")]
2010        /// assert_eq!(11i8.wrapping_mul(12), -124);
2011        /// ```
2012        #[stable(feature = "rust1", since = "1.0.0")]
2013        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2014        #[must_use = "this returns the result of the operation, \
2015                      without modifying the original"]
2016        #[inline(always)]
2017        pub const fn wrapping_mul(self, rhs: Self) -> Self {
2018            intrinsics::wrapping_mul(self, rhs)
2019        }
2020
2021        /// Wrapping (modular) division. Computes `self / rhs`, wrapping around at the
2022        /// boundary of the type.
2023        ///
2024        /// The only case where such wrapping can occur is when one divides `MIN / -1` on a signed type (where
2025        /// `MIN` is the negative minimal value for the type); this is equivalent to `-MIN`, a positive value
2026        /// that is too large to represent in the type. In such a case, this function returns `MIN` itself.
2027        ///
2028        /// # Panics
2029        ///
2030        /// This function will panic if `rhs` is zero.
2031        ///
2032        /// # Examples
2033        ///
2034        /// Basic usage:
2035        ///
2036        /// ```
2037        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_div(10), 10);")]
2038        /// assert_eq!((-128i8).wrapping_div(-1), -128);
2039        /// ```
2040        #[stable(feature = "num_wrapping", since = "1.2.0")]
2041        #[rustc_const_stable(feature = "const_wrapping_int_methods", since = "1.52.0")]
2042        #[must_use = "this returns the result of the operation, \
2043                      without modifying the original"]
2044        #[inline]
2045        pub const fn wrapping_div(self, rhs: Self) -> Self {
2046            self.overflowing_div(rhs).0
2047        }
2048
2049        /// Wrapping Euclidean division. Computes `self.div_euclid(rhs)`,
2050        /// wrapping around at the boundary of the type.
2051        ///
2052        /// Wrapping will only occur in `MIN / -1` on a signed type (where `MIN` is the negative minimal value
2053        /// for the type). This is equivalent to `-MIN`, a positive value that is too large to represent in the
2054        /// type. In this case, this method returns `MIN` itself.
2055        ///
2056        /// # Panics
2057        ///
2058        /// This function will panic if `rhs` is zero.
2059        ///
2060        /// # Examples
2061        ///
2062        /// Basic usage:
2063        ///
2064        /// ```
2065        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_div_euclid(10), 10);")]
2066        /// assert_eq!((-128i8).wrapping_div_euclid(-1), -128);
2067        /// ```
2068        #[stable(feature = "euclidean_division", since = "1.38.0")]
2069        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
2070        #[must_use = "this returns the result of the operation, \
2071                      without modifying the original"]
2072        #[inline]
2073        pub const fn wrapping_div_euclid(self, rhs: Self) -> Self {
2074            self.overflowing_div_euclid(rhs).0
2075        }
2076
2077        /// Wrapping (modular) remainder. Computes `self % rhs`, wrapping around at the
2078        /// boundary of the type.
2079        ///
2080        /// Such wrap-around never actually occurs mathematically; implementation artifacts make `x % y`
2081        /// invalid for `MIN / -1` on a signed type (where `MIN` is the negative minimal value). In such a case,
2082        /// this function returns `0`.
2083        ///
2084        /// # Panics
2085        ///
2086        /// This function will panic if `rhs` is zero.
2087        ///
2088        /// # Examples
2089        ///
2090        /// Basic usage:
2091        ///
2092        /// ```
2093        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_rem(10), 0);")]
2094        /// assert_eq!((-128i8).wrapping_rem(-1), 0);
2095        /// ```
2096        #[stable(feature = "num_wrapping", since = "1.2.0")]
2097        #[rustc_const_stable(feature = "const_wrapping_int_methods", since = "1.52.0")]
2098        #[must_use = "this returns the result of the operation, \
2099                      without modifying the original"]
2100        #[inline]
2101        pub const fn wrapping_rem(self, rhs: Self) -> Self {
2102            self.overflowing_rem(rhs).0
2103        }
2104
2105        /// Wrapping Euclidean remainder. Computes `self.rem_euclid(rhs)`, wrapping around
2106        /// at the boundary of the type.
2107        ///
2108        /// Wrapping will only occur in `MIN % -1` on a signed type (where `MIN` is the negative minimal value
2109        /// for the type). In this case, this method returns 0.
2110        ///
2111        /// # Panics
2112        ///
2113        /// This function will panic if `rhs` is zero.
2114        ///
2115        /// # Examples
2116        ///
2117        /// Basic usage:
2118        ///
2119        /// ```
2120        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_rem_euclid(10), 0);")]
2121        /// assert_eq!((-128i8).wrapping_rem_euclid(-1), 0);
2122        /// ```
2123        #[stable(feature = "euclidean_division", since = "1.38.0")]
2124        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
2125        #[must_use = "this returns the result of the operation, \
2126                      without modifying the original"]
2127        #[inline]
2128        pub const fn wrapping_rem_euclid(self, rhs: Self) -> Self {
2129            self.overflowing_rem_euclid(rhs).0
2130        }
2131
2132        /// Wrapping (modular) negation. Computes `-self`, wrapping around at the boundary
2133        /// of the type.
2134        ///
2135        /// The only case where such wrapping can occur is when one negates `MIN` on a signed type (where `MIN`
2136        /// is the negative minimal value for the type); this is a positive value that is too large to represent
2137        /// in the type. In such a case, this function returns `MIN` itself.
2138        ///
2139        /// # Examples
2140        ///
2141        /// Basic usage:
2142        ///
2143        /// ```
2144        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_neg(), -100);")]
2145        #[doc = concat!("assert_eq!((-100", stringify!($SelfT), ").wrapping_neg(), 100);")]
2146        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.wrapping_neg(), ", stringify!($SelfT), "::MIN);")]
2147        /// ```
2148        #[stable(feature = "num_wrapping", since = "1.2.0")]
2149        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2150        #[must_use = "this returns the result of the operation, \
2151                      without modifying the original"]
2152        #[inline(always)]
2153        pub const fn wrapping_neg(self) -> Self {
2154            (0 as $SelfT).wrapping_sub(self)
2155        }
2156
2157        /// Panic-free bitwise shift-left; yields `self << mask(rhs)`, where `mask` removes
2158        /// any high-order bits of `rhs` that would cause the shift to exceed the bitwidth of the type.
2159        ///
2160        /// Note that this is *not* the same as a rotate-left; the RHS of a wrapping shift-left is restricted to
2161        /// the range of the type, rather than the bits shifted out of the LHS being returned to the other end.
2162        /// The primitive integer types all implement a [`rotate_left`](Self::rotate_left) function,
2163        /// which may be what you want instead.
2164        ///
2165        /// # Examples
2166        ///
2167        /// Basic usage:
2168        ///
2169        /// ```
2170        #[doc = concat!("assert_eq!((-1", stringify!($SelfT), ").wrapping_shl(7), -128);")]
2171        #[doc = concat!("assert_eq!((-1", stringify!($SelfT), ").wrapping_shl(128), -1);")]
2172        /// ```
2173        #[stable(feature = "num_wrapping", since = "1.2.0")]
2174        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2175        #[must_use = "this returns the result of the operation, \
2176                      without modifying the original"]
2177        #[inline(always)]
2178        pub const fn wrapping_shl(self, rhs: u32) -> Self {
2179            // SAFETY: the masking by the bitsize of the type ensures that we do not shift
2180            // out of bounds
2181            unsafe {
2182                self.unchecked_shl(rhs & (Self::BITS - 1))
2183            }
2184        }
2185
2186        /// Panic-free bitwise shift-right; yields `self >> mask(rhs)`, where `mask`
2187        /// removes any high-order bits of `rhs` that would cause the shift to exceed the bitwidth of the type.
2188        ///
2189        /// Note that this is *not* the same as a rotate-right; the RHS of a wrapping shift-right is restricted
2190        /// to the range of the type, rather than the bits shifted out of the LHS being returned to the other
2191        /// end. The primitive integer types all implement a [`rotate_right`](Self::rotate_right) function,
2192        /// which may be what you want instead.
2193        ///
2194        /// # Examples
2195        ///
2196        /// Basic usage:
2197        ///
2198        /// ```
2199        #[doc = concat!("assert_eq!((-128", stringify!($SelfT), ").wrapping_shr(7), -1);")]
2200        /// assert_eq!((-128i16).wrapping_shr(64), -128);
2201        /// ```
2202        #[stable(feature = "num_wrapping", since = "1.2.0")]
2203        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2204        #[must_use = "this returns the result of the operation, \
2205                      without modifying the original"]
2206        #[inline(always)]
2207        pub const fn wrapping_shr(self, rhs: u32) -> Self {
2208            // SAFETY: the masking by the bitsize of the type ensures that we do not shift
2209            // out of bounds
2210            unsafe {
2211                self.unchecked_shr(rhs & (Self::BITS - 1))
2212            }
2213        }
2214
2215        /// Wrapping (modular) absolute value. Computes `self.abs()`, wrapping around at
2216        /// the boundary of the type.
2217        ///
2218        /// The only case where such wrapping can occur is when one takes the absolute value of the negative
2219        /// minimal value for the type; this is a positive value that is too large to represent in the type. In
2220        /// such a case, this function returns `MIN` itself.
2221        ///
2222        /// # Examples
2223        ///
2224        /// Basic usage:
2225        ///
2226        /// ```
2227        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_abs(), 100);")]
2228        #[doc = concat!("assert_eq!((-100", stringify!($SelfT), ").wrapping_abs(), 100);")]
2229        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.wrapping_abs(), ", stringify!($SelfT), "::MIN);")]
2230        /// assert_eq!((-128i8).wrapping_abs() as u8, 128);
2231        /// ```
2232        #[stable(feature = "no_panic_abs", since = "1.13.0")]
2233        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2234        #[must_use = "this returns the result of the operation, \
2235                      without modifying the original"]
2236        #[allow(unused_attributes)]
2237        #[inline]
2238        pub const fn wrapping_abs(self) -> Self {
2239             if self.is_negative() {
2240                 self.wrapping_neg()
2241             } else {
2242                 self
2243             }
2244        }
2245
2246        /// Computes the absolute value of `self` without any wrapping
2247        /// or panicking.
2248        ///
2249        ///
2250        /// # Examples
2251        ///
2252        /// Basic usage:
2253        ///
2254        /// ```
2255        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".unsigned_abs(), 100", stringify!($UnsignedT), ");")]
2256        #[doc = concat!("assert_eq!((-100", stringify!($SelfT), ").unsigned_abs(), 100", stringify!($UnsignedT), ");")]
2257        /// assert_eq!((-128i8).unsigned_abs(), 128u8);
2258        /// ```
2259        #[stable(feature = "unsigned_abs", since = "1.51.0")]
2260        #[rustc_const_stable(feature = "unsigned_abs", since = "1.51.0")]
2261        #[must_use = "this returns the result of the operation, \
2262                      without modifying the original"]
2263        #[inline]
2264        pub const fn unsigned_abs(self) -> $UnsignedT {
2265             self.wrapping_abs() as $UnsignedT
2266        }
2267
2268        /// Wrapping (modular) exponentiation. Computes `self.pow(exp)`,
2269        /// wrapping around at the boundary of the type.
2270        ///
2271        /// # Examples
2272        ///
2273        /// Basic usage:
2274        ///
2275        /// ```
2276        #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".wrapping_pow(4), 81);")]
2277        /// assert_eq!(3i8.wrapping_pow(5), -13);
2278        /// assert_eq!(3i8.wrapping_pow(6), -39);
2279        /// ```
2280        #[stable(feature = "no_panic_pow", since = "1.34.0")]
2281        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
2282        #[must_use = "this returns the result of the operation, \
2283                      without modifying the original"]
2284        #[inline]
2285        pub const fn wrapping_pow(self, mut exp: u32) -> Self {
2286            if exp == 0 {
2287                return 1;
2288            }
2289            let mut base = self;
2290            let mut acc: Self = 1;
2291
2292            if intrinsics::is_val_statically_known(exp) {
2293                while exp > 1 {
2294                    if (exp & 1) == 1 {
2295                        acc = acc.wrapping_mul(base);
2296                    }
2297                    exp /= 2;
2298                    base = base.wrapping_mul(base);
2299                }
2300
2301                // since exp!=0, finally the exp must be 1.
2302                // Deal with the final bit of the exponent separately, since
2303                // squaring the base afterwards is not necessary.
2304                acc.wrapping_mul(base)
2305            } else {
2306                // This is faster than the above when the exponent is not known
2307                // at compile time. We can't use the same code for the constant
2308                // exponent case because LLVM is currently unable to unroll
2309                // this loop.
2310                loop {
2311                    if (exp & 1) == 1 {
2312                        acc = acc.wrapping_mul(base);
2313                        // since exp!=0, finally the exp must be 1.
2314                        if exp == 1 {
2315                            return acc;
2316                        }
2317                    }
2318                    exp /= 2;
2319                    base = base.wrapping_mul(base);
2320                }
2321            }
2322        }
2323
2324        /// Calculates `self` + `rhs`.
2325        ///
2326        /// Returns a tuple of the addition along with a boolean indicating
2327        /// whether an arithmetic overflow would occur. If an overflow would have
2328        /// occurred then the wrapped value is returned.
2329        ///
2330        /// # Examples
2331        ///
2332        /// Basic usage:
2333        ///
2334        /// ```
2335        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_add(2), (7, false));")]
2336        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.overflowing_add(1), (", stringify!($SelfT), "::MIN, true));")]
2337        /// ```
2338        #[stable(feature = "wrapping", since = "1.7.0")]
2339        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2340        #[must_use = "this returns the result of the operation, \
2341                      without modifying the original"]
2342        #[inline(always)]
2343        pub const fn overflowing_add(self, rhs: Self) -> (Self, bool) {
2344            let (a, b) = intrinsics::add_with_overflow(self as $ActualT, rhs as $ActualT);
2345            (a as Self, b)
2346        }
2347
2348        /// Calculates `self` + `rhs` + `carry` and checks for overflow.
2349        ///
2350        /// Performs "ternary addition" of two integer operands and a carry-in
2351        /// bit, and returns a tuple of the sum along with a boolean indicating
2352        /// whether an arithmetic overflow would occur. On overflow, the wrapped
2353        /// value is returned.
2354        ///
2355        /// This allows chaining together multiple additions to create a wider
2356        /// addition, and can be useful for bignum addition. This method should
2357        /// only be used for the most significant word; for the less significant
2358        /// words the unsigned method
2359        #[doc = concat!("[`", stringify!($UnsignedT), "::carrying_add`]")]
2360        /// should be used.
2361        ///
2362        /// The output boolean returned by this method is *not* a carry flag,
2363        /// and should *not* be added to a more significant word.
2364        ///
2365        /// If the input carry is false, this method is equivalent to
2366        /// [`overflowing_add`](Self::overflowing_add).
2367        ///
2368        /// # Examples
2369        ///
2370        /// ```
2371        /// #![feature(bigint_helper_methods)]
2372        /// // Only the most significant word is signed.
2373        /// //
2374        #[doc = concat!("//   10  MAX    (a = 10 × 2^", stringify!($BITS), " + 2^", stringify!($BITS), " - 1)")]
2375        #[doc = concat!("// + -5    9    (b = -5 × 2^", stringify!($BITS), " + 9)")]
2376        /// // ---------
2377        #[doc = concat!("//    6    8    (sum = 6 × 2^", stringify!($BITS), " + 8)")]
2378        ///
2379        #[doc = concat!("let (a1, a0): (", stringify!($SelfT), ", ", stringify!($UnsignedT), ") = (10, ", stringify!($UnsignedT), "::MAX);")]
2380        #[doc = concat!("let (b1, b0): (", stringify!($SelfT), ", ", stringify!($UnsignedT), ") = (-5, 9);")]
2381        /// let carry0 = false;
2382        ///
2383        #[doc = concat!("// ", stringify!($UnsignedT), "::carrying_add for the less significant words")]
2384        /// let (sum0, carry1) = a0.carrying_add(b0, carry0);
2385        /// assert_eq!(carry1, true);
2386        ///
2387        #[doc = concat!("// ", stringify!($SelfT), "::carrying_add for the most significant word")]
2388        /// let (sum1, overflow) = a1.carrying_add(b1, carry1);
2389        /// assert_eq!(overflow, false);
2390        ///
2391        /// assert_eq!((sum1, sum0), (6, 8));
2392        /// ```
2393        #[unstable(feature = "bigint_helper_methods", issue = "85532")]
2394        #[must_use = "this returns the result of the operation, \
2395                      without modifying the original"]
2396        #[inline]
2397        pub const fn carrying_add(self, rhs: Self, carry: bool) -> (Self, bool) {
2398            // note: longer-term this should be done via an intrinsic.
2399            // note: no intermediate overflow is required (https://github.com/rust-lang/rust/issues/85532#issuecomment-1032214946).
2400            let (a, b) = self.overflowing_add(rhs);
2401            let (c, d) = a.overflowing_add(carry as $SelfT);
2402            (c, b != d)
2403        }
2404
2405        /// Calculates `self` + `rhs` with an unsigned `rhs`.
2406        ///
2407        /// Returns a tuple of the addition along with a boolean indicating
2408        /// whether an arithmetic overflow would occur. If an overflow would
2409        /// have occurred then the wrapped value is returned.
2410        ///
2411        /// # Examples
2412        ///
2413        /// Basic usage:
2414        ///
2415        /// ```
2416        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".overflowing_add_unsigned(2), (3, false));")]
2417        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN).overflowing_add_unsigned(", stringify!($UnsignedT), "::MAX), (", stringify!($SelfT), "::MAX, false));")]
2418        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).overflowing_add_unsigned(3), (", stringify!($SelfT), "::MIN, true));")]
2419        /// ```
2420        #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
2421        #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
2422        #[must_use = "this returns the result of the operation, \
2423                      without modifying the original"]
2424        #[inline]
2425        pub const fn overflowing_add_unsigned(self, rhs: $UnsignedT) -> (Self, bool) {
2426            let rhs = rhs as Self;
2427            let (res, overflowed) = self.overflowing_add(rhs);
2428            (res, overflowed ^ (rhs < 0))
2429        }
2430
2431        /// Calculates `self` - `rhs`.
2432        ///
2433        /// Returns a tuple of the subtraction along with a boolean indicating whether an arithmetic overflow
2434        /// would occur. If an overflow would have occurred then the wrapped value is returned.
2435        ///
2436        /// # Examples
2437        ///
2438        /// Basic usage:
2439        ///
2440        /// ```
2441        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_sub(2), (3, false));")]
2442        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.overflowing_sub(1), (", stringify!($SelfT), "::MAX, true));")]
2443        /// ```
2444        #[stable(feature = "wrapping", since = "1.7.0")]
2445        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2446        #[must_use = "this returns the result of the operation, \
2447                      without modifying the original"]
2448        #[inline(always)]
2449        pub const fn overflowing_sub(self, rhs: Self) -> (Self, bool) {
2450            let (a, b) = intrinsics::sub_with_overflow(self as $ActualT, rhs as $ActualT);
2451            (a as Self, b)
2452        }
2453
2454        /// Calculates `self` &minus; `rhs` &minus; `borrow` and checks for
2455        /// overflow.
2456        ///
2457        /// Performs "ternary subtraction" by subtracting both an integer
2458        /// operand and a borrow-in bit from `self`, and returns a tuple of the
2459        /// difference along with a boolean indicating whether an arithmetic
2460        /// overflow would occur. On overflow, the wrapped value is returned.
2461        ///
2462        /// This allows chaining together multiple subtractions to create a
2463        /// wider subtraction, and can be useful for bignum subtraction. This
2464        /// method should only be used for the most significant word; for the
2465        /// less significant words the unsigned method
2466        #[doc = concat!("[`", stringify!($UnsignedT), "::borrowing_sub`]")]
2467        /// should be used.
2468        ///
2469        /// The output boolean returned by this method is *not* a borrow flag,
2470        /// and should *not* be subtracted from a more significant word.
2471        ///
2472        /// If the input borrow is false, this method is equivalent to
2473        /// [`overflowing_sub`](Self::overflowing_sub).
2474        ///
2475        /// # Examples
2476        ///
2477        /// ```
2478        /// #![feature(bigint_helper_methods)]
2479        /// // Only the most significant word is signed.
2480        /// //
2481        #[doc = concat!("//    6    8    (a = 6 × 2^", stringify!($BITS), " + 8)")]
2482        #[doc = concat!("// - -5    9    (b = -5 × 2^", stringify!($BITS), " + 9)")]
2483        /// // ---------
2484        #[doc = concat!("//   10  MAX    (diff = 10 × 2^", stringify!($BITS), " + 2^", stringify!($BITS), " - 1)")]
2485        ///
2486        #[doc = concat!("let (a1, a0): (", stringify!($SelfT), ", ", stringify!($UnsignedT), ") = (6, 8);")]
2487        #[doc = concat!("let (b1, b0): (", stringify!($SelfT), ", ", stringify!($UnsignedT), ") = (-5, 9);")]
2488        /// let borrow0 = false;
2489        ///
2490        #[doc = concat!("// ", stringify!($UnsignedT), "::borrowing_sub for the less significant words")]
2491        /// let (diff0, borrow1) = a0.borrowing_sub(b0, borrow0);
2492        /// assert_eq!(borrow1, true);
2493        ///
2494        #[doc = concat!("// ", stringify!($SelfT), "::borrowing_sub for the most significant word")]
2495        /// let (diff1, overflow) = a1.borrowing_sub(b1, borrow1);
2496        /// assert_eq!(overflow, false);
2497        ///
2498        #[doc = concat!("assert_eq!((diff1, diff0), (10, ", stringify!($UnsignedT), "::MAX));")]
2499        /// ```
2500        #[unstable(feature = "bigint_helper_methods", issue = "85532")]
2501        #[must_use = "this returns the result of the operation, \
2502                      without modifying the original"]
2503        #[inline]
2504        pub const fn borrowing_sub(self, rhs: Self, borrow: bool) -> (Self, bool) {
2505            // note: longer-term this should be done via an intrinsic.
2506            // note: no intermediate overflow is required (https://github.com/rust-lang/rust/issues/85532#issuecomment-1032214946).
2507            let (a, b) = self.overflowing_sub(rhs);
2508            let (c, d) = a.overflowing_sub(borrow as $SelfT);
2509            (c, b != d)
2510        }
2511
2512        /// Calculates `self` - `rhs` with an unsigned `rhs`.
2513        ///
2514        /// Returns a tuple of the subtraction along with a boolean indicating
2515        /// whether an arithmetic overflow would occur. If an overflow would
2516        /// have occurred then the wrapped value is returned.
2517        ///
2518        /// # Examples
2519        ///
2520        /// Basic usage:
2521        ///
2522        /// ```
2523        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".overflowing_sub_unsigned(2), (-1, false));")]
2524        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX).overflowing_sub_unsigned(", stringify!($UnsignedT), "::MAX), (", stringify!($SelfT), "::MIN, false));")]
2525        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 2).overflowing_sub_unsigned(3), (", stringify!($SelfT), "::MAX, true));")]
2526        /// ```
2527        #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
2528        #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
2529        #[must_use = "this returns the result of the operation, \
2530                      without modifying the original"]
2531        #[inline]
2532        pub const fn overflowing_sub_unsigned(self, rhs: $UnsignedT) -> (Self, bool) {
2533            let rhs = rhs as Self;
2534            let (res, overflowed) = self.overflowing_sub(rhs);
2535            (res, overflowed ^ (rhs < 0))
2536        }
2537
2538        /// Calculates the multiplication of `self` and `rhs`.
2539        ///
2540        /// Returns a tuple of the multiplication along with a boolean indicating whether an arithmetic overflow
2541        /// would occur. If an overflow would have occurred then the wrapped value is returned.
2542        ///
2543        /// # Examples
2544        ///
2545        /// Basic usage:
2546        ///
2547        /// ```
2548        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_mul(2), (10, false));")]
2549        /// assert_eq!(1_000_000_000i32.overflowing_mul(10), (1410065408, true));
2550        /// ```
2551        #[stable(feature = "wrapping", since = "1.7.0")]
2552        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2553        #[must_use = "this returns the result of the operation, \
2554                      without modifying the original"]
2555        #[inline(always)]
2556        pub const fn overflowing_mul(self, rhs: Self) -> (Self, bool) {
2557            let (a, b) = intrinsics::mul_with_overflow(self as $ActualT, rhs as $ActualT);
2558            (a as Self, b)
2559        }
2560
2561        /// Calculates the complete product `self * rhs` without the possibility to overflow.
2562        ///
2563        /// This returns the low-order (wrapping) bits and the high-order (overflow) bits
2564        /// of the result as two separate values, in that order.
2565        ///
2566        /// If you also need to add a carry to the wide result, then you want
2567        /// [`Self::carrying_mul`] instead.
2568        ///
2569        /// # Examples
2570        ///
2571        /// Basic usage:
2572        ///
2573        /// Please note that this example is shared between integer types.
2574        /// Which explains why `i32` is used here.
2575        ///
2576        /// ```
2577        /// #![feature(bigint_helper_methods)]
2578        /// assert_eq!(5i32.widening_mul(-2), (4294967286, -1));
2579        /// assert_eq!(1_000_000_000i32.widening_mul(-10), (2884901888, -3));
2580        /// ```
2581        #[unstable(feature = "bigint_helper_methods", issue = "85532")]
2582        #[rustc_const_unstable(feature = "bigint_helper_methods", issue = "85532")]
2583        #[must_use = "this returns the result of the operation, \
2584                      without modifying the original"]
2585        #[inline]
2586        pub const fn widening_mul(self, rhs: Self) -> ($UnsignedT, Self) {
2587            Self::carrying_mul_add(self, rhs, 0, 0)
2588        }
2589
2590        /// Calculates the "full multiplication" `self * rhs + carry`
2591        /// without the possibility to overflow.
2592        ///
2593        /// This returns the low-order (wrapping) bits and the high-order (overflow) bits
2594        /// of the result as two separate values, in that order.
2595        ///
2596        /// Performs "long multiplication" which takes in an extra amount to add, and may return an
2597        /// additional amount of overflow. This allows for chaining together multiple
2598        /// multiplications to create "big integers" which represent larger values.
2599        ///
2600        /// If you don't need the `carry`, then you can use [`Self::widening_mul`] instead.
2601        ///
2602        /// # Examples
2603        ///
2604        /// Basic usage:
2605        ///
2606        /// Please note that this example is shared between integer types.
2607        /// Which explains why `i32` is used here.
2608        ///
2609        /// ```
2610        /// #![feature(bigint_helper_methods)]
2611        /// assert_eq!(5i32.carrying_mul(-2, 0), (4294967286, -1));
2612        /// assert_eq!(5i32.carrying_mul(-2, 10), (0, 0));
2613        /// assert_eq!(1_000_000_000i32.carrying_mul(-10, 0), (2884901888, -3));
2614        /// assert_eq!(1_000_000_000i32.carrying_mul(-10, 10), (2884901898, -3));
2615        #[doc = concat!("assert_eq!(",
2616            stringify!($SelfT), "::MAX.carrying_mul(", stringify!($SelfT), "::MAX, ", stringify!($SelfT), "::MAX), ",
2617            "(", stringify!($SelfT), "::MAX.unsigned_abs() + 1, ", stringify!($SelfT), "::MAX / 2));"
2618        )]
2619        /// ```
2620        #[unstable(feature = "bigint_helper_methods", issue = "85532")]
2621        #[rustc_const_unstable(feature = "bigint_helper_methods", issue = "85532")]
2622        #[must_use = "this returns the result of the operation, \
2623                      without modifying the original"]
2624        #[inline]
2625        pub const fn carrying_mul(self, rhs: Self, carry: Self) -> ($UnsignedT, Self) {
2626            Self::carrying_mul_add(self, rhs, carry, 0)
2627        }
2628
2629        /// Calculates the "full multiplication" `self * rhs + carry1 + carry2`
2630        /// without the possibility to overflow.
2631        ///
2632        /// This returns the low-order (wrapping) bits and the high-order (overflow) bits
2633        /// of the result as two separate values, in that order.
2634        ///
2635        /// Performs "long multiplication" which takes in an extra amount to add, and may return an
2636        /// additional amount of overflow. This allows for chaining together multiple
2637        /// multiplications to create "big integers" which represent larger values.
2638        ///
2639        /// If you don't need either `carry`, then you can use [`Self::widening_mul`] instead,
2640        /// and if you only need one `carry`, then you can use [`Self::carrying_mul`] instead.
2641        ///
2642        /// # Examples
2643        ///
2644        /// Basic usage:
2645        ///
2646        /// Please note that this example is shared between integer types.
2647        /// Which explains why `i32` is used here.
2648        ///
2649        /// ```
2650        /// #![feature(bigint_helper_methods)]
2651        /// assert_eq!(5i32.carrying_mul_add(-2, 0, 0), (4294967286, -1));
2652        /// assert_eq!(5i32.carrying_mul_add(-2, 10, 10), (10, 0));
2653        /// assert_eq!(1_000_000_000i32.carrying_mul_add(-10, 0, 0), (2884901888, -3));
2654        /// assert_eq!(1_000_000_000i32.carrying_mul_add(-10, 10, 10), (2884901908, -3));
2655        #[doc = concat!("assert_eq!(",
2656            stringify!($SelfT), "::MAX.carrying_mul_add(", stringify!($SelfT), "::MAX, ", stringify!($SelfT), "::MAX, ", stringify!($SelfT), "::MAX), ",
2657            "(", stringify!($UnsignedT), "::MAX, ", stringify!($SelfT), "::MAX / 2));"
2658        )]
2659        /// ```
2660        #[unstable(feature = "bigint_helper_methods", issue = "85532")]
2661        #[rustc_const_unstable(feature = "bigint_helper_methods", issue = "85532")]
2662        #[must_use = "this returns the result of the operation, \
2663                      without modifying the original"]
2664        #[inline]
2665        pub const fn carrying_mul_add(self, rhs: Self, carry: Self, add: Self) -> ($UnsignedT, Self) {
2666            intrinsics::carrying_mul_add(self, rhs, carry, add)
2667        }
2668
2669        /// Calculates the divisor when `self` is divided by `rhs`.
2670        ///
2671        /// Returns a tuple of the divisor along with a boolean indicating whether an arithmetic overflow would
2672        /// occur. If an overflow would occur then self is returned.
2673        ///
2674        /// # Panics
2675        ///
2676        /// This function will panic if `rhs` is zero.
2677        ///
2678        /// # Examples
2679        ///
2680        /// Basic usage:
2681        ///
2682        /// ```
2683        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_div(2), (2, false));")]
2684        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.overflowing_div(-1), (", stringify!($SelfT), "::MIN, true));")]
2685        /// ```
2686        #[inline]
2687        #[stable(feature = "wrapping", since = "1.7.0")]
2688        #[rustc_const_stable(feature = "const_overflowing_int_methods", since = "1.52.0")]
2689        #[must_use = "this returns the result of the operation, \
2690                      without modifying the original"]
2691        pub const fn overflowing_div(self, rhs: Self) -> (Self, bool) {
2692            // Using `&` helps LLVM see that it is the same check made in division.
2693            if intrinsics::unlikely((self == Self::MIN) & (rhs == -1)) {
2694                (self, true)
2695            } else {
2696                (self / rhs, false)
2697            }
2698        }
2699
2700        /// Calculates the quotient of Euclidean division `self.div_euclid(rhs)`.
2701        ///
2702        /// Returns a tuple of the divisor along with a boolean indicating whether an arithmetic overflow would
2703        /// occur. If an overflow would occur then `self` is returned.
2704        ///
2705        /// # Panics
2706        ///
2707        /// This function will panic if `rhs` is zero.
2708        ///
2709        /// # Examples
2710        ///
2711        /// Basic usage:
2712        ///
2713        /// ```
2714        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_div_euclid(2), (2, false));")]
2715        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.overflowing_div_euclid(-1), (", stringify!($SelfT), "::MIN, true));")]
2716        /// ```
2717        #[inline]
2718        #[stable(feature = "euclidean_division", since = "1.38.0")]
2719        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
2720        #[must_use = "this returns the result of the operation, \
2721                      without modifying the original"]
2722        pub const fn overflowing_div_euclid(self, rhs: Self) -> (Self, bool) {
2723            // Using `&` helps LLVM see that it is the same check made in division.
2724            if intrinsics::unlikely((self == Self::MIN) & (rhs == -1)) {
2725                (self, true)
2726            } else {
2727                (self.div_euclid(rhs), false)
2728            }
2729        }
2730
2731        /// Calculates the remainder when `self` is divided by `rhs`.
2732        ///
2733        /// Returns a tuple of the remainder after dividing along with a boolean indicating whether an
2734        /// arithmetic overflow would occur. If an overflow would occur then 0 is returned.
2735        ///
2736        /// # Panics
2737        ///
2738        /// This function will panic if `rhs` is zero.
2739        ///
2740        /// # Examples
2741        ///
2742        /// Basic usage:
2743        ///
2744        /// ```
2745        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_rem(2), (1, false));")]
2746        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.overflowing_rem(-1), (0, true));")]
2747        /// ```
2748        #[inline]
2749        #[stable(feature = "wrapping", since = "1.7.0")]
2750        #[rustc_const_stable(feature = "const_overflowing_int_methods", since = "1.52.0")]
2751        #[must_use = "this returns the result of the operation, \
2752                      without modifying the original"]
2753        pub const fn overflowing_rem(self, rhs: Self) -> (Self, bool) {
2754            if intrinsics::unlikely(rhs == -1) {
2755                (0, self == Self::MIN)
2756            } else {
2757                (self % rhs, false)
2758            }
2759        }
2760
2761
2762        /// Overflowing Euclidean remainder. Calculates `self.rem_euclid(rhs)`.
2763        ///
2764        /// Returns a tuple of the remainder after dividing along with a boolean indicating whether an
2765        /// arithmetic overflow would occur. If an overflow would occur then 0 is returned.
2766        ///
2767        /// # Panics
2768        ///
2769        /// This function will panic if `rhs` is zero.
2770        ///
2771        /// # Examples
2772        ///
2773        /// Basic usage:
2774        ///
2775        /// ```
2776        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_rem_euclid(2), (1, false));")]
2777        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.overflowing_rem_euclid(-1), (0, true));")]
2778        /// ```
2779        #[stable(feature = "euclidean_division", since = "1.38.0")]
2780        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
2781        #[must_use = "this returns the result of the operation, \
2782                      without modifying the original"]
2783        #[inline]
2784        #[track_caller]
2785        pub const fn overflowing_rem_euclid(self, rhs: Self) -> (Self, bool) {
2786            if intrinsics::unlikely(rhs == -1) {
2787                (0, self == Self::MIN)
2788            } else {
2789                (self.rem_euclid(rhs), false)
2790            }
2791        }
2792
2793
2794        /// Negates self, overflowing if this is equal to the minimum value.
2795        ///
2796        /// Returns a tuple of the negated version of self along with a boolean indicating whether an overflow
2797        /// happened. If `self` is the minimum value (e.g., `i32::MIN` for values of type `i32`), then the
2798        /// minimum value will be returned again and `true` will be returned for an overflow happening.
2799        ///
2800        /// # Examples
2801        ///
2802        /// Basic usage:
2803        ///
2804        /// ```
2805        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".overflowing_neg(), (-2, false));")]
2806        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.overflowing_neg(), (", stringify!($SelfT), "::MIN, true));")]
2807        /// ```
2808        #[inline]
2809        #[stable(feature = "wrapping", since = "1.7.0")]
2810        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2811        #[must_use = "this returns the result of the operation, \
2812                      without modifying the original"]
2813        #[allow(unused_attributes)]
2814        pub const fn overflowing_neg(self) -> (Self, bool) {
2815            if intrinsics::unlikely(self == Self::MIN) {
2816                (Self::MIN, true)
2817            } else {
2818                (-self, false)
2819            }
2820        }
2821
2822        /// Shifts self left by `rhs` bits.
2823        ///
2824        /// Returns a tuple of the shifted version of self along with a boolean indicating whether the shift
2825        /// value was larger than or equal to the number of bits. If the shift value is too large, then value is
2826        /// masked (N-1) where N is the number of bits, and this value is then used to perform the shift.
2827        ///
2828        /// # Examples
2829        ///
2830        /// Basic usage:
2831        ///
2832        /// ```
2833        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT),".overflowing_shl(4), (0x10, false));")]
2834        /// assert_eq!(0x1i32.overflowing_shl(36), (0x10, true));
2835        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".overflowing_shl(", stringify!($BITS_MINUS_ONE), "), (0, false));")]
2836        /// ```
2837        #[stable(feature = "wrapping", since = "1.7.0")]
2838        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2839        #[must_use = "this returns the result of the operation, \
2840                      without modifying the original"]
2841        #[inline]
2842        pub const fn overflowing_shl(self, rhs: u32) -> (Self, bool) {
2843            (self.wrapping_shl(rhs), rhs >= Self::BITS)
2844        }
2845
2846        /// Shifts self right by `rhs` bits.
2847        ///
2848        /// Returns a tuple of the shifted version of self along with a boolean indicating whether the shift
2849        /// value was larger than or equal to the number of bits. If the shift value is too large, then value is
2850        /// masked (N-1) where N is the number of bits, and this value is then used to perform the shift.
2851        ///
2852        /// # Examples
2853        ///
2854        /// Basic usage:
2855        ///
2856        /// ```
2857        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".overflowing_shr(4), (0x1, false));")]
2858        /// assert_eq!(0x10i32.overflowing_shr(36), (0x1, true));
2859        /// ```
2860        #[stable(feature = "wrapping", since = "1.7.0")]
2861        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2862        #[must_use = "this returns the result of the operation, \
2863                      without modifying the original"]
2864        #[inline]
2865        pub const fn overflowing_shr(self, rhs: u32) -> (Self, bool) {
2866            (self.wrapping_shr(rhs), rhs >= Self::BITS)
2867        }
2868
2869        /// Computes the absolute value of `self`.
2870        ///
2871        /// Returns a tuple of the absolute version of self along with a boolean indicating whether an overflow
2872        /// happened. If self is the minimum value
2873        #[doc = concat!("(e.g., ", stringify!($SelfT), "::MIN for values of type ", stringify!($SelfT), "),")]
2874        /// then the minimum value will be returned again and true will be returned
2875        /// for an overflow happening.
2876        ///
2877        /// # Examples
2878        ///
2879        /// Basic usage:
2880        ///
2881        /// ```
2882        #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".overflowing_abs(), (10, false));")]
2883        #[doc = concat!("assert_eq!((-10", stringify!($SelfT), ").overflowing_abs(), (10, false));")]
2884        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN).overflowing_abs(), (", stringify!($SelfT), "::MIN, true));")]
2885        /// ```
2886        #[stable(feature = "no_panic_abs", since = "1.13.0")]
2887        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2888        #[must_use = "this returns the result of the operation, \
2889                      without modifying the original"]
2890        #[inline]
2891        pub const fn overflowing_abs(self) -> (Self, bool) {
2892            (self.wrapping_abs(), self == Self::MIN)
2893        }
2894
2895        /// Raises self to the power of `exp`, using exponentiation by squaring.
2896        ///
2897        /// Returns a tuple of the exponentiation along with a bool indicating
2898        /// whether an overflow happened.
2899        ///
2900        /// # Examples
2901        ///
2902        /// Basic usage:
2903        ///
2904        /// ```
2905        #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".overflowing_pow(4), (81, false));")]
2906        /// assert_eq!(3i8.overflowing_pow(5), (-13, true));
2907        /// ```
2908        #[stable(feature = "no_panic_pow", since = "1.34.0")]
2909        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
2910        #[must_use = "this returns the result of the operation, \
2911                      without modifying the original"]
2912        #[inline]
2913        pub const fn overflowing_pow(self, mut exp: u32) -> (Self, bool) {
2914            if exp == 0 {
2915                return (1,false);
2916            }
2917            let mut base = self;
2918            let mut acc: Self = 1;
2919            let mut overflown = false;
2920            // Scratch space for storing results of overflowing_mul.
2921            let mut r;
2922
2923            loop {
2924                if (exp & 1) == 1 {
2925                    r = acc.overflowing_mul(base);
2926                    // since exp!=0, finally the exp must be 1.
2927                    if exp == 1 {
2928                        r.1 |= overflown;
2929                        return r;
2930                    }
2931                    acc = r.0;
2932                    overflown |= r.1;
2933                }
2934                exp /= 2;
2935                r = base.overflowing_mul(base);
2936                base = r.0;
2937                overflown |= r.1;
2938            }
2939        }
2940
2941        /// Raises self to the power of `exp`, using exponentiation by squaring.
2942        ///
2943        /// # Examples
2944        ///
2945        /// Basic usage:
2946        ///
2947        /// ```
2948        #[doc = concat!("let x: ", stringify!($SelfT), " = 2; // or any other integer type")]
2949        ///
2950        /// assert_eq!(x.pow(5), 32);
2951        /// ```
2952        #[stable(feature = "rust1", since = "1.0.0")]
2953        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
2954        #[must_use = "this returns the result of the operation, \
2955                      without modifying the original"]
2956        #[inline]
2957        #[rustc_inherit_overflow_checks]
2958        pub const fn pow(self, mut exp: u32) -> Self {
2959            if exp == 0 {
2960                return 1;
2961            }
2962            let mut base = self;
2963            let mut acc = 1;
2964
2965            if intrinsics::is_val_statically_known(exp) {
2966                while exp > 1 {
2967                    if (exp & 1) == 1 {
2968                        acc = acc * base;
2969                    }
2970                    exp /= 2;
2971                    base = base * base;
2972                }
2973
2974                // since exp!=0, finally the exp must be 1.
2975                // Deal with the final bit of the exponent separately, since
2976                // squaring the base afterwards is not necessary and may cause a
2977                // needless overflow.
2978                acc * base
2979            } else {
2980                // This is faster than the above when the exponent is not known
2981                // at compile time. We can't use the same code for the constant
2982                // exponent case because LLVM is currently unable to unroll
2983                // this loop.
2984                loop {
2985                    if (exp & 1) == 1 {
2986                        acc = acc * base;
2987                        // since exp!=0, finally the exp must be 1.
2988                        if exp == 1 {
2989                            return acc;
2990                        }
2991                    }
2992                    exp /= 2;
2993                    base = base * base;
2994                }
2995            }
2996        }
2997
2998        /// Returns the square root of the number, rounded down.
2999        ///
3000        /// # Panics
3001        ///
3002        /// This function will panic if `self` is negative.
3003        ///
3004        /// # Examples
3005        ///
3006        /// Basic usage:
3007        /// ```
3008        #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".isqrt(), 3);")]
3009        /// ```
3010        #[stable(feature = "isqrt", since = "1.84.0")]
3011        #[rustc_const_stable(feature = "isqrt", since = "1.84.0")]
3012        #[must_use = "this returns the result of the operation, \
3013                      without modifying the original"]
3014        #[inline]
3015        #[track_caller]
3016        pub const fn isqrt(self) -> Self {
3017            match self.checked_isqrt() {
3018                Some(sqrt) => sqrt,
3019                None => crate::num::int_sqrt::panic_for_negative_argument(),
3020            }
3021        }
3022
3023        /// Calculates the quotient of Euclidean division of `self` by `rhs`.
3024        ///
3025        /// This computes the integer `q` such that `self = q * rhs + r`, with
3026        /// `r = self.rem_euclid(rhs)` and `0 <= r < abs(rhs)`.
3027        ///
3028        /// In other words, the result is `self / rhs` rounded to the integer `q`
3029        /// such that `self >= q * rhs`.
3030        /// If `self > 0`, this is equal to rounding towards zero (the default in Rust);
3031        /// if `self < 0`, this is equal to rounding away from zero (towards +/- infinity).
3032        /// If `rhs > 0`, this is equal to rounding towards -infinity;
3033        /// if `rhs < 0`, this is equal to rounding towards +infinity.
3034        ///
3035        /// # Panics
3036        ///
3037        /// This function will panic if `rhs` is zero or if `self` is `Self::MIN`
3038        /// and `rhs` is -1. This behavior is not affected by the `overflow-checks` flag.
3039        ///
3040        /// # Examples
3041        ///
3042        /// Basic usage:
3043        ///
3044        /// ```
3045        #[doc = concat!("let a: ", stringify!($SelfT), " = 7; // or any other integer type")]
3046        /// let b = 4;
3047        ///
3048        /// assert_eq!(a.div_euclid(b), 1); // 7 >= 4 * 1
3049        /// assert_eq!(a.div_euclid(-b), -1); // 7 >= -4 * -1
3050        /// assert_eq!((-a).div_euclid(b), -2); // -7 >= 4 * -2
3051        /// assert_eq!((-a).div_euclid(-b), 2); // -7 >= -4 * 2
3052        /// ```
3053        #[stable(feature = "euclidean_division", since = "1.38.0")]
3054        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
3055        #[must_use = "this returns the result of the operation, \
3056                      without modifying the original"]
3057        #[inline]
3058        #[track_caller]
3059        pub const fn div_euclid(self, rhs: Self) -> Self {
3060            let q = self / rhs;
3061            if self % rhs < 0 {
3062                return if rhs > 0 { q - 1 } else { q + 1 }
3063            }
3064            q
3065        }
3066
3067
3068        /// Calculates the least nonnegative remainder of `self (mod rhs)`.
3069        ///
3070        /// This is done as if by the Euclidean division algorithm -- given
3071        /// `r = self.rem_euclid(rhs)`, the result satisfies
3072        /// `self = rhs * self.div_euclid(rhs) + r` and `0 <= r < abs(rhs)`.
3073        ///
3074        /// # Panics
3075        ///
3076        /// This function will panic if `rhs` is zero or if `self` is `Self::MIN` and
3077        /// `rhs` is -1. This behavior is not affected by the `overflow-checks` flag.
3078        ///
3079        /// # Examples
3080        ///
3081        /// Basic usage:
3082        ///
3083        /// ```
3084        #[doc = concat!("let a: ", stringify!($SelfT), " = 7; // or any other integer type")]
3085        /// let b = 4;
3086        ///
3087        /// assert_eq!(a.rem_euclid(b), 3);
3088        /// assert_eq!((-a).rem_euclid(b), 1);
3089        /// assert_eq!(a.rem_euclid(-b), 3);
3090        /// assert_eq!((-a).rem_euclid(-b), 1);
3091        /// ```
3092        ///
3093        /// This will panic:
3094        /// ```should_panic
3095        #[doc = concat!("let _ = ", stringify!($SelfT), "::MIN.rem_euclid(-1);")]
3096        /// ```
3097        #[doc(alias = "modulo", alias = "mod")]
3098        #[stable(feature = "euclidean_division", since = "1.38.0")]
3099        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
3100        #[must_use = "this returns the result of the operation, \
3101                      without modifying the original"]
3102        #[inline]
3103        #[track_caller]
3104        pub const fn rem_euclid(self, rhs: Self) -> Self {
3105            let r = self % rhs;
3106            if r < 0 {
3107                // Semantically equivalent to `if rhs < 0 { r - rhs } else { r + rhs }`.
3108                // If `rhs` is not `Self::MIN`, then `r + abs(rhs)` will not overflow
3109                // and is clearly equivalent, because `r` is negative.
3110                // Otherwise, `rhs` is `Self::MIN`, then we have
3111                // `r.wrapping_add(Self::MIN.wrapping_abs())`, which evaluates
3112                // to `r.wrapping_add(Self::MIN)`, which is equivalent to
3113                // `r - Self::MIN`, which is what we wanted (and will not overflow
3114                // for negative `r`).
3115                r.wrapping_add(rhs.wrapping_abs())
3116            } else {
3117                r
3118            }
3119        }
3120
3121        /// Calculates the quotient of `self` and `rhs`, rounding the result towards negative infinity.
3122        ///
3123        /// # Panics
3124        ///
3125        /// This function will panic if `rhs` is zero or if `self` is `Self::MIN`
3126        /// and `rhs` is -1. This behavior is not affected by the `overflow-checks` flag.
3127        ///
3128        /// # Examples
3129        ///
3130        /// Basic usage:
3131        ///
3132        /// ```
3133        /// #![feature(int_roundings)]
3134        #[doc = concat!("let a: ", stringify!($SelfT)," = 8;")]
3135        /// let b = 3;
3136        ///
3137        /// assert_eq!(a.div_floor(b), 2);
3138        /// assert_eq!(a.div_floor(-b), -3);
3139        /// assert_eq!((-a).div_floor(b), -3);
3140        /// assert_eq!((-a).div_floor(-b), 2);
3141        /// ```
3142        #[unstable(feature = "int_roundings", issue = "88581")]
3143        #[must_use = "this returns the result of the operation, \
3144                      without modifying the original"]
3145        #[inline]
3146        #[track_caller]
3147        pub const fn div_floor(self, rhs: Self) -> Self {
3148            let d = self / rhs;
3149            let r = self % rhs;
3150
3151            // If the remainder is non-zero, we need to subtract one if the
3152            // signs of self and rhs differ, as this means we rounded upwards
3153            // instead of downwards. We do this branchlessly by creating a mask
3154            // which is all-ones iff the signs differ, and 0 otherwise. Then by
3155            // adding this mask (which corresponds to the signed value -1), we
3156            // get our correction.
3157            let correction = (self ^ rhs) >> (Self::BITS - 1);
3158            if r != 0 {
3159                d + correction
3160            } else {
3161                d
3162            }
3163        }
3164
3165        /// Calculates the quotient of `self` and `rhs`, rounding the result towards positive infinity.
3166        ///
3167        /// # Panics
3168        ///
3169        /// This function will panic if `rhs` is zero or if `self` is `Self::MIN`
3170        /// and `rhs` is -1. This behavior is not affected by the `overflow-checks` flag.
3171        ///
3172        /// # Examples
3173        ///
3174        /// Basic usage:
3175        ///
3176        /// ```
3177        /// #![feature(int_roundings)]
3178        #[doc = concat!("let a: ", stringify!($SelfT)," = 8;")]
3179        /// let b = 3;
3180        ///
3181        /// assert_eq!(a.div_ceil(b), 3);
3182        /// assert_eq!(a.div_ceil(-b), -2);
3183        /// assert_eq!((-a).div_ceil(b), -2);
3184        /// assert_eq!((-a).div_ceil(-b), 3);
3185        /// ```
3186        #[unstable(feature = "int_roundings", issue = "88581")]
3187        #[must_use = "this returns the result of the operation, \
3188                      without modifying the original"]
3189        #[inline]
3190        #[track_caller]
3191        pub const fn div_ceil(self, rhs: Self) -> Self {
3192            let d = self / rhs;
3193            let r = self % rhs;
3194
3195            // When remainder is non-zero we have a.div_ceil(b) == 1 + a.div_floor(b),
3196            // so we can re-use the algorithm from div_floor, just adding 1.
3197            let correction = 1 + ((self ^ rhs) >> (Self::BITS - 1));
3198            if r != 0 {
3199                d + correction
3200            } else {
3201                d
3202            }
3203        }
3204
3205        /// If `rhs` is positive, calculates the smallest value greater than or
3206        /// equal to `self` that is a multiple of `rhs`. If `rhs` is negative,
3207        /// calculates the largest value less than or equal to `self` that is a
3208        /// multiple of `rhs`.
3209        ///
3210        /// # Panics
3211        ///
3212        /// This function will panic if `rhs` is zero.
3213        ///
3214        /// ## Overflow behavior
3215        ///
3216        /// On overflow, this function will panic if overflow checks are enabled (default in debug
3217        /// mode) and wrap if overflow checks are disabled (default in release mode).
3218        ///
3219        /// # Examples
3220        ///
3221        /// Basic usage:
3222        ///
3223        /// ```
3224        /// #![feature(int_roundings)]
3225        #[doc = concat!("assert_eq!(16_", stringify!($SelfT), ".next_multiple_of(8), 16);")]
3226        #[doc = concat!("assert_eq!(23_", stringify!($SelfT), ".next_multiple_of(8), 24);")]
3227        #[doc = concat!("assert_eq!(16_", stringify!($SelfT), ".next_multiple_of(-8), 16);")]
3228        #[doc = concat!("assert_eq!(23_", stringify!($SelfT), ".next_multiple_of(-8), 16);")]
3229        #[doc = concat!("assert_eq!((-16_", stringify!($SelfT), ").next_multiple_of(8), -16);")]
3230        #[doc = concat!("assert_eq!((-23_", stringify!($SelfT), ").next_multiple_of(8), -16);")]
3231        #[doc = concat!("assert_eq!((-16_", stringify!($SelfT), ").next_multiple_of(-8), -16);")]
3232        #[doc = concat!("assert_eq!((-23_", stringify!($SelfT), ").next_multiple_of(-8), -24);")]
3233        /// ```
3234        #[unstable(feature = "int_roundings", issue = "88581")]
3235        #[must_use = "this returns the result of the operation, \
3236                      without modifying the original"]
3237        #[inline]
3238        #[rustc_inherit_overflow_checks]
3239        pub const fn next_multiple_of(self, rhs: Self) -> Self {
3240            // This would otherwise fail when calculating `r` when self == T::MIN.
3241            if rhs == -1 {
3242                return self;
3243            }
3244
3245            let r = self % rhs;
3246            let m = if (r > 0 && rhs < 0) || (r < 0 && rhs > 0) {
3247                r + rhs
3248            } else {
3249                r
3250            };
3251
3252            if m == 0 {
3253                self
3254            } else {
3255                self + (rhs - m)
3256            }
3257        }
3258
3259        /// If `rhs` is positive, calculates the smallest value greater than or
3260        /// equal to `self` that is a multiple of `rhs`. If `rhs` is negative,
3261        /// calculates the largest value less than or equal to `self` that is a
3262        /// multiple of `rhs`. Returns `None` if `rhs` is zero or the operation
3263        /// would result in overflow.
3264        ///
3265        /// # Examples
3266        ///
3267        /// Basic usage:
3268        ///
3269        /// ```
3270        /// #![feature(int_roundings)]
3271        #[doc = concat!("assert_eq!(16_", stringify!($SelfT), ".checked_next_multiple_of(8), Some(16));")]
3272        #[doc = concat!("assert_eq!(23_", stringify!($SelfT), ".checked_next_multiple_of(8), Some(24));")]
3273        #[doc = concat!("assert_eq!(16_", stringify!($SelfT), ".checked_next_multiple_of(-8), Some(16));")]
3274        #[doc = concat!("assert_eq!(23_", stringify!($SelfT), ".checked_next_multiple_of(-8), Some(16));")]
3275        #[doc = concat!("assert_eq!((-16_", stringify!($SelfT), ").checked_next_multiple_of(8), Some(-16));")]
3276        #[doc = concat!("assert_eq!((-23_", stringify!($SelfT), ").checked_next_multiple_of(8), Some(-16));")]
3277        #[doc = concat!("assert_eq!((-16_", stringify!($SelfT), ").checked_next_multiple_of(-8), Some(-16));")]
3278        #[doc = concat!("assert_eq!((-23_", stringify!($SelfT), ").checked_next_multiple_of(-8), Some(-24));")]
3279        #[doc = concat!("assert_eq!(1_", stringify!($SelfT), ".checked_next_multiple_of(0), None);")]
3280        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_next_multiple_of(2), None);")]
3281        /// ```
3282        #[unstable(feature = "int_roundings", issue = "88581")]
3283        #[must_use = "this returns the result of the operation, \
3284                      without modifying the original"]
3285        #[inline]
3286        pub const fn checked_next_multiple_of(self, rhs: Self) -> Option<Self> {
3287            // This would otherwise fail when calculating `r` when self == T::MIN.
3288            if rhs == -1 {
3289                return Some(self);
3290            }
3291
3292            let r = try_opt!(self.checked_rem(rhs));
3293            let m = if (r > 0 && rhs < 0) || (r < 0 && rhs > 0) {
3294                // r + rhs cannot overflow because they have opposite signs
3295                r + rhs
3296            } else {
3297                r
3298            };
3299
3300            if m == 0 {
3301                Some(self)
3302            } else {
3303                // rhs - m cannot overflow because m has the same sign as rhs
3304                self.checked_add(rhs - m)
3305            }
3306        }
3307
3308        /// Returns the logarithm of the number with respect to an arbitrary base,
3309        /// rounded down.
3310        ///
3311        /// This method might not be optimized owing to implementation details;
3312        /// `ilog2` can produce results more efficiently for base 2, and `ilog10`
3313        /// can produce results more efficiently for base 10.
3314        ///
3315        /// # Panics
3316        ///
3317        /// This function will panic if `self` is less than or equal to zero,
3318        /// or if `base` is less than 2.
3319        ///
3320        /// # Examples
3321        ///
3322        /// ```
3323        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".ilog(5), 1);")]
3324        /// ```
3325        #[stable(feature = "int_log", since = "1.67.0")]
3326        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
3327        #[must_use = "this returns the result of the operation, \
3328                      without modifying the original"]
3329        #[inline]
3330        #[track_caller]
3331        pub const fn ilog(self, base: Self) -> u32 {
3332            assert!(base >= 2, "base of integer logarithm must be at least 2");
3333            if let Some(log) = self.checked_ilog(base) {
3334                log
3335            } else {
3336                int_log10::panic_for_nonpositive_argument()
3337            }
3338        }
3339
3340        /// Returns the base 2 logarithm of the number, rounded down.
3341        ///
3342        /// # Panics
3343        ///
3344        /// This function will panic if `self` is less than or equal to zero.
3345        ///
3346        /// # Examples
3347        ///
3348        /// ```
3349        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".ilog2(), 1);")]
3350        /// ```
3351        #[stable(feature = "int_log", since = "1.67.0")]
3352        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
3353        #[must_use = "this returns the result of the operation, \
3354                      without modifying the original"]
3355        #[inline]
3356        #[track_caller]
3357        pub const fn ilog2(self) -> u32 {
3358            if let Some(log) = self.checked_ilog2() {
3359                log
3360            } else {
3361                int_log10::panic_for_nonpositive_argument()
3362            }
3363        }
3364
3365        /// Returns the base 10 logarithm of the number, rounded down.
3366        ///
3367        /// # Panics
3368        ///
3369        /// This function will panic if `self` is less than or equal to zero.
3370        ///
3371        /// # Example
3372        ///
3373        /// ```
3374        #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".ilog10(), 1);")]
3375        /// ```
3376        #[stable(feature = "int_log", since = "1.67.0")]
3377        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
3378        #[must_use = "this returns the result of the operation, \
3379                      without modifying the original"]
3380        #[inline]
3381        #[track_caller]
3382        pub const fn ilog10(self) -> u32 {
3383            if let Some(log) = self.checked_ilog10() {
3384                log
3385            } else {
3386                int_log10::panic_for_nonpositive_argument()
3387            }
3388        }
3389
3390        /// Returns the logarithm of the number with respect to an arbitrary base,
3391        /// rounded down.
3392        ///
3393        /// Returns `None` if the number is negative or zero, or if the base is not at least 2.
3394        ///
3395        /// This method might not be optimized owing to implementation details;
3396        /// `checked_ilog2` can produce results more efficiently for base 2, and
3397        /// `checked_ilog10` can produce results more efficiently for base 10.
3398        ///
3399        /// # Examples
3400        ///
3401        /// ```
3402        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_ilog(5), Some(1));")]
3403        /// ```
3404        #[stable(feature = "int_log", since = "1.67.0")]
3405        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
3406        #[must_use = "this returns the result of the operation, \
3407                      without modifying the original"]
3408        #[inline]
3409        pub const fn checked_ilog(self, base: Self) -> Option<u32> {
3410            if self <= 0 || base <= 1 {
3411                None
3412            } else {
3413                // Delegate to the unsigned implementation.
3414                // The condition makes sure that both casts are exact.
3415                (self as $UnsignedT).checked_ilog(base as $UnsignedT)
3416            }
3417        }
3418
3419        /// Returns the base 2 logarithm of the number, rounded down.
3420        ///
3421        /// Returns `None` if the number is negative or zero.
3422        ///
3423        /// # Examples
3424        ///
3425        /// ```
3426        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".checked_ilog2(), Some(1));")]
3427        /// ```
3428        #[stable(feature = "int_log", since = "1.67.0")]
3429        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
3430        #[must_use = "this returns the result of the operation, \
3431                      without modifying the original"]
3432        #[inline]
3433        pub const fn checked_ilog2(self) -> Option<u32> {
3434            if self <= 0 {
3435                None
3436            } else {
3437                // SAFETY: We just checked that this number is positive
3438                let log = (Self::BITS - 1) - unsafe { intrinsics::ctlz_nonzero(self) as u32 };
3439                Some(log)
3440            }
3441        }
3442
3443        /// Returns the base 10 logarithm of the number, rounded down.
3444        ///
3445        /// Returns `None` if the number is negative or zero.
3446        ///
3447        /// # Example
3448        ///
3449        /// ```
3450        #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".checked_ilog10(), Some(1));")]
3451        /// ```
3452        #[stable(feature = "int_log", since = "1.67.0")]
3453        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
3454        #[must_use = "this returns the result of the operation, \
3455                      without modifying the original"]
3456        #[inline]
3457        pub const fn checked_ilog10(self) -> Option<u32> {
3458            if self > 0 {
3459                Some(int_log10::$ActualT(self as $ActualT))
3460            } else {
3461                None
3462            }
3463        }
3464
3465        /// Computes the absolute value of `self`.
3466        ///
3467        /// # Overflow behavior
3468        ///
3469        /// The absolute value of
3470        #[doc = concat!("`", stringify!($SelfT), "::MIN`")]
3471        /// cannot be represented as an
3472        #[doc = concat!("`", stringify!($SelfT), "`,")]
3473        /// and attempting to calculate it will cause an overflow. This means
3474        /// that code in debug mode will trigger a panic on this case and
3475        /// optimized code will return
3476        #[doc = concat!("`", stringify!($SelfT), "::MIN`")]
3477        /// without a panic. If you do not want this behavior, consider
3478        /// using [`unsigned_abs`](Self::unsigned_abs) instead.
3479        ///
3480        /// # Examples
3481        ///
3482        /// Basic usage:
3483        ///
3484        /// ```
3485        #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".abs(), 10);")]
3486        #[doc = concat!("assert_eq!((-10", stringify!($SelfT), ").abs(), 10);")]
3487        /// ```
3488        #[stable(feature = "rust1", since = "1.0.0")]
3489        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
3490        #[allow(unused_attributes)]
3491        #[must_use = "this returns the result of the operation, \
3492                      without modifying the original"]
3493        #[inline]
3494        #[rustc_inherit_overflow_checks]
3495        pub const fn abs(self) -> Self {
3496            // Note that the #[rustc_inherit_overflow_checks] and #[inline]
3497            // above mean that the overflow semantics of the subtraction
3498            // depend on the crate we're being called from.
3499            if self.is_negative() {
3500                -self
3501            } else {
3502                self
3503            }
3504        }
3505
3506        /// Computes the absolute difference between `self` and `other`.
3507        ///
3508        /// This function always returns the correct answer without overflow or
3509        /// panics by returning an unsigned integer.
3510        ///
3511        /// # Examples
3512        ///
3513        /// Basic usage:
3514        ///
3515        /// ```
3516        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".abs_diff(80), 20", stringify!($UnsignedT), ");")]
3517        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".abs_diff(110), 10", stringify!($UnsignedT), ");")]
3518        #[doc = concat!("assert_eq!((-100", stringify!($SelfT), ").abs_diff(80), 180", stringify!($UnsignedT), ");")]
3519        #[doc = concat!("assert_eq!((-100", stringify!($SelfT), ").abs_diff(-120), 20", stringify!($UnsignedT), ");")]
3520        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.abs_diff(", stringify!($SelfT), "::MAX), ", stringify!($UnsignedT), "::MAX);")]
3521        /// ```
3522        #[stable(feature = "int_abs_diff", since = "1.60.0")]
3523        #[rustc_const_stable(feature = "int_abs_diff", since = "1.60.0")]
3524        #[must_use = "this returns the result of the operation, \
3525                      without modifying the original"]
3526        #[inline]
3527        pub const fn abs_diff(self, other: Self) -> $UnsignedT {
3528            if self < other {
3529                // Converting a non-negative x from signed to unsigned by using
3530                // `x as U` is left unchanged, but a negative x is converted
3531                // to value x + 2^N. Thus if `s` and `o` are binary variables
3532                // respectively indicating whether `self` and `other` are
3533                // negative, we are computing the mathematical value:
3534                //
3535                //    (other + o*2^N) - (self + s*2^N)    mod  2^N
3536                //    other - self + (o-s)*2^N            mod  2^N
3537                //    other - self                        mod  2^N
3538                //
3539                // Finally, taking the mod 2^N of the mathematical value of
3540                // `other - self` does not change it as it already is
3541                // in the range [0, 2^N).
3542                (other as $UnsignedT).wrapping_sub(self as $UnsignedT)
3543            } else {
3544                (self as $UnsignedT).wrapping_sub(other as $UnsignedT)
3545            }
3546        }
3547
3548        /// Returns a number representing sign of `self`.
3549        ///
3550        ///  - `0` if the number is zero
3551        ///  - `1` if the number is positive
3552        ///  - `-1` if the number is negative
3553        ///
3554        /// # Examples
3555        ///
3556        /// Basic usage:
3557        ///
3558        /// ```
3559        #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".signum(), 1);")]
3560        #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".signum(), 0);")]
3561        #[doc = concat!("assert_eq!((-10", stringify!($SelfT), ").signum(), -1);")]
3562        /// ```
3563        #[stable(feature = "rust1", since = "1.0.0")]
3564        #[rustc_const_stable(feature = "const_int_sign", since = "1.47.0")]
3565        #[must_use = "this returns the result of the operation, \
3566                      without modifying the original"]
3567        #[inline(always)]
3568        pub const fn signum(self) -> Self {
3569            // Picking the right way to phrase this is complicated
3570            // (<https://graphics.stanford.edu/~seander/bithacks.html#CopyIntegerSign>)
3571            // so delegate it to `Ord` which is already producing -1/0/+1
3572            // exactly like we need and can be the place to deal with the complexity.
3573
3574            // FIXME(const-hack): replace with cmp
3575            if self < 0 { -1 }
3576            else if self == 0 { 0 }
3577            else { 1 }
3578        }
3579
3580        /// Returns `true` if `self` is positive and `false` if the number is zero or
3581        /// negative.
3582        ///
3583        /// # Examples
3584        ///
3585        /// Basic usage:
3586        ///
3587        /// ```
3588        #[doc = concat!("assert!(10", stringify!($SelfT), ".is_positive());")]
3589        #[doc = concat!("assert!(!(-10", stringify!($SelfT), ").is_positive());")]
3590        /// ```
3591        #[must_use]
3592        #[stable(feature = "rust1", since = "1.0.0")]
3593        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
3594        #[inline(always)]
3595        pub const fn is_positive(self) -> bool { self > 0 }
3596
3597        /// Returns `true` if `self` is negative and `false` if the number is zero or
3598        /// positive.
3599        ///
3600        /// # Examples
3601        ///
3602        /// Basic usage:
3603        ///
3604        /// ```
3605        #[doc = concat!("assert!((-10", stringify!($SelfT), ").is_negative());")]
3606        #[doc = concat!("assert!(!10", stringify!($SelfT), ".is_negative());")]
3607        /// ```
3608        #[must_use]
3609        #[stable(feature = "rust1", since = "1.0.0")]
3610        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
3611        #[inline(always)]
3612        pub const fn is_negative(self) -> bool { self < 0 }
3613
3614        /// Returns the memory representation of this integer as a byte array in
3615        /// big-endian (network) byte order.
3616        ///
3617        #[doc = $to_xe_bytes_doc]
3618        ///
3619        /// # Examples
3620        ///
3621        /// ```
3622        #[doc = concat!("let bytes = ", $swap_op, stringify!($SelfT), ".to_be_bytes();")]
3623        #[doc = concat!("assert_eq!(bytes, ", $be_bytes, ");")]
3624        /// ```
3625        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3626        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3627        #[must_use = "this returns the result of the operation, \
3628                      without modifying the original"]
3629        #[inline]
3630        pub const fn to_be_bytes(self) -> [u8; size_of::<Self>()] {
3631            self.to_be().to_ne_bytes()
3632        }
3633
3634        /// Returns the memory representation of this integer as a byte array in
3635        /// little-endian byte order.
3636        ///
3637        #[doc = $to_xe_bytes_doc]
3638        ///
3639        /// # Examples
3640        ///
3641        /// ```
3642        #[doc = concat!("let bytes = ", $swap_op, stringify!($SelfT), ".to_le_bytes();")]
3643        #[doc = concat!("assert_eq!(bytes, ", $le_bytes, ");")]
3644        /// ```
3645        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3646        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3647        #[must_use = "this returns the result of the operation, \
3648                      without modifying the original"]
3649        #[inline]
3650        pub const fn to_le_bytes(self) -> [u8; size_of::<Self>()] {
3651            self.to_le().to_ne_bytes()
3652        }
3653
3654        /// Returns the memory representation of this integer as a byte array in
3655        /// native byte order.
3656        ///
3657        /// As the target platform's native endianness is used, portable code
3658        /// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate,
3659        /// instead.
3660        ///
3661        #[doc = $to_xe_bytes_doc]
3662        ///
3663        /// [`to_be_bytes`]: Self::to_be_bytes
3664        /// [`to_le_bytes`]: Self::to_le_bytes
3665        ///
3666        /// # Examples
3667        ///
3668        /// ```
3669        #[doc = concat!("let bytes = ", $swap_op, stringify!($SelfT), ".to_ne_bytes();")]
3670        /// assert_eq!(
3671        ///     bytes,
3672        ///     if cfg!(target_endian = "big") {
3673        #[doc = concat!("        ", $be_bytes)]
3674        ///     } else {
3675        #[doc = concat!("        ", $le_bytes)]
3676        ///     }
3677        /// );
3678        /// ```
3679        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3680        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3681        // SAFETY: const sound because integers are plain old datatypes so we can always
3682        // transmute them to arrays of bytes
3683        #[must_use = "this returns the result of the operation, \
3684                      without modifying the original"]
3685        #[inline]
3686        pub const fn to_ne_bytes(self) -> [u8; size_of::<Self>()] {
3687            // SAFETY: integers are plain old datatypes so we can always transmute them to
3688            // arrays of bytes
3689            unsafe { mem::transmute(self) }
3690        }
3691
3692        /// Creates an integer value from its representation as a byte array in
3693        /// big endian.
3694        ///
3695        #[doc = $from_xe_bytes_doc]
3696        ///
3697        /// # Examples
3698        ///
3699        /// ```
3700        #[doc = concat!("let value = ", stringify!($SelfT), "::from_be_bytes(", $be_bytes, ");")]
3701        #[doc = concat!("assert_eq!(value, ", $swap_op, ");")]
3702        /// ```
3703        ///
3704        /// When starting from a slice rather than an array, fallible conversion APIs can be used:
3705        ///
3706        /// ```
3707        #[doc = concat!("fn read_be_", stringify!($SelfT), "(input: &mut &[u8]) -> ", stringify!($SelfT), " {")]
3708        #[doc = concat!("    let (int_bytes, rest) = input.split_at(size_of::<", stringify!($SelfT), ">());")]
3709        ///     *input = rest;
3710        #[doc = concat!("    ", stringify!($SelfT), "::from_be_bytes(int_bytes.try_into().unwrap())")]
3711        /// }
3712        /// ```
3713        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3714        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3715        #[must_use]
3716        #[inline]
3717        pub const fn from_be_bytes(bytes: [u8; size_of::<Self>()]) -> Self {
3718            Self::from_be(Self::from_ne_bytes(bytes))
3719        }
3720
3721        /// Creates an integer value from its representation as a byte array in
3722        /// little endian.
3723        ///
3724        #[doc = $from_xe_bytes_doc]
3725        ///
3726        /// # Examples
3727        ///
3728        /// ```
3729        #[doc = concat!("let value = ", stringify!($SelfT), "::from_le_bytes(", $le_bytes, ");")]
3730        #[doc = concat!("assert_eq!(value, ", $swap_op, ");")]
3731        /// ```
3732        ///
3733        /// When starting from a slice rather than an array, fallible conversion APIs can be used:
3734        ///
3735        /// ```
3736        #[doc = concat!("fn read_le_", stringify!($SelfT), "(input: &mut &[u8]) -> ", stringify!($SelfT), " {")]
3737        #[doc = concat!("    let (int_bytes, rest) = input.split_at(size_of::<", stringify!($SelfT), ">());")]
3738        ///     *input = rest;
3739        #[doc = concat!("    ", stringify!($SelfT), "::from_le_bytes(int_bytes.try_into().unwrap())")]
3740        /// }
3741        /// ```
3742        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3743        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3744        #[must_use]
3745        #[inline]
3746        pub const fn from_le_bytes(bytes: [u8; size_of::<Self>()]) -> Self {
3747            Self::from_le(Self::from_ne_bytes(bytes))
3748        }
3749
3750        /// Creates an integer value from its memory representation as a byte
3751        /// array in native endianness.
3752        ///
3753        /// As the target platform's native endianness is used, portable code
3754        /// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as
3755        /// appropriate instead.
3756        ///
3757        /// [`from_be_bytes`]: Self::from_be_bytes
3758        /// [`from_le_bytes`]: Self::from_le_bytes
3759        ///
3760        #[doc = $from_xe_bytes_doc]
3761        ///
3762        /// # Examples
3763        ///
3764        /// ```
3765        #[doc = concat!("let value = ", stringify!($SelfT), "::from_ne_bytes(if cfg!(target_endian = \"big\") {")]
3766        #[doc = concat!("    ", $be_bytes)]
3767        /// } else {
3768        #[doc = concat!("    ", $le_bytes)]
3769        /// });
3770        #[doc = concat!("assert_eq!(value, ", $swap_op, ");")]
3771        /// ```
3772        ///
3773        /// When starting from a slice rather than an array, fallible conversion APIs can be used:
3774        ///
3775        /// ```
3776        #[doc = concat!("fn read_ne_", stringify!($SelfT), "(input: &mut &[u8]) -> ", stringify!($SelfT), " {")]
3777        #[doc = concat!("    let (int_bytes, rest) = input.split_at(size_of::<", stringify!($SelfT), ">());")]
3778        ///     *input = rest;
3779        #[doc = concat!("    ", stringify!($SelfT), "::from_ne_bytes(int_bytes.try_into().unwrap())")]
3780        /// }
3781        /// ```
3782        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3783        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3784        #[must_use]
3785        // SAFETY: const sound because integers are plain old datatypes so we can always
3786        // transmute to them
3787        #[inline]
3788        pub const fn from_ne_bytes(bytes: [u8; size_of::<Self>()]) -> Self {
3789            // SAFETY: integers are plain old datatypes so we can always transmute to them
3790            unsafe { mem::transmute(bytes) }
3791        }
3792
3793        /// New code should prefer to use
3794        #[doc = concat!("[`", stringify!($SelfT), "::MIN", "`] instead.")]
3795        ///
3796        /// Returns the smallest value that can be represented by this integer type.
3797        #[stable(feature = "rust1", since = "1.0.0")]
3798        #[inline(always)]
3799        #[rustc_promotable]
3800        #[rustc_const_stable(feature = "const_min_value", since = "1.32.0")]
3801        #[deprecated(since = "TBD", note = "replaced by the `MIN` associated constant on this type")]
3802        #[rustc_diagnostic_item = concat!(stringify!($SelfT), "_legacy_fn_min_value")]
3803        pub const fn min_value() -> Self {
3804            Self::MIN
3805        }
3806
3807        /// New code should prefer to use
3808        #[doc = concat!("[`", stringify!($SelfT), "::MAX", "`] instead.")]
3809        ///
3810        /// Returns the largest value that can be represented by this integer type.
3811        #[stable(feature = "rust1", since = "1.0.0")]
3812        #[inline(always)]
3813        #[rustc_promotable]
3814        #[rustc_const_stable(feature = "const_max_value", since = "1.32.0")]
3815        #[deprecated(since = "TBD", note = "replaced by the `MAX` associated constant on this type")]
3816        #[rustc_diagnostic_item = concat!(stringify!($SelfT), "_legacy_fn_max_value")]
3817        pub const fn max_value() -> Self {
3818            Self::MAX
3819        }
3820    }
3821}