core/num/int_macros.rs
1macro_rules! int_impl {
2 (
3 Self = $SelfT:ty,
4 ActualT = $ActualT:ident,
5 UnsignedT = $UnsignedT:ty,
6
7 // There are all for use *only* in doc comments.
8 // As such, they're all passed as literals -- passing them as a string
9 // literal is fine if they need to be multiple code tokens.
10 // In non-comments, use the associated constants rather than these.
11 BITS = $BITS:literal,
12 BITS_MINUS_ONE = $BITS_MINUS_ONE:literal,
13 Min = $Min:literal,
14 Max = $Max:literal,
15 rot = $rot:literal,
16 rot_op = $rot_op:literal,
17 rot_result = $rot_result:literal,
18 swap_op = $swap_op:literal,
19 swapped = $swapped:literal,
20 reversed = $reversed:literal,
21 le_bytes = $le_bytes:literal,
22 be_bytes = $be_bytes:literal,
23 to_xe_bytes_doc = $to_xe_bytes_doc:expr,
24 from_xe_bytes_doc = $from_xe_bytes_doc:expr,
25 bound_condition = $bound_condition:literal,
26 ) => {
27 /// The smallest value that can be represented by this integer type
28 #[doc = concat!("(−2<sup>", $BITS_MINUS_ONE, "</sup>", $bound_condition, ").")]
29 ///
30 /// # Examples
31 ///
32 /// Basic usage:
33 ///
34 /// ```
35 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN, ", stringify!($Min), ");")]
36 /// ```
37 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
38 pub const MIN: Self = !Self::MAX;
39
40 /// The largest value that can be represented by this integer type
41 #[doc = concat!("(2<sup>", $BITS_MINUS_ONE, "</sup> − 1", $bound_condition, ").")]
42 ///
43 /// # Examples
44 ///
45 /// Basic usage:
46 ///
47 /// ```
48 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX, ", stringify!($Max), ");")]
49 /// ```
50 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
51 pub const MAX: Self = (<$UnsignedT>::MAX >> 1) as Self;
52
53 /// The size of this integer type in bits.
54 ///
55 /// # Examples
56 ///
57 /// ```
58 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::BITS, ", stringify!($BITS), ");")]
59 /// ```
60 #[stable(feature = "int_bits_const", since = "1.53.0")]
61 pub const BITS: u32 = <$UnsignedT>::BITS;
62
63 /// Returns the number of ones in the binary representation of `self`.
64 ///
65 /// # Examples
66 ///
67 /// Basic usage:
68 ///
69 /// ```
70 #[doc = concat!("let n = 0b100_0000", stringify!($SelfT), ";")]
71 ///
72 /// assert_eq!(n.count_ones(), 1);
73 /// ```
74 ///
75 #[stable(feature = "rust1", since = "1.0.0")]
76 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
77 #[doc(alias = "popcount")]
78 #[doc(alias = "popcnt")]
79 #[must_use = "this returns the result of the operation, \
80 without modifying the original"]
81 #[inline(always)]
82 pub const fn count_ones(self) -> u32 { (self as $UnsignedT).count_ones() }
83
84 /// Returns the number of zeros in the binary representation of `self`.
85 ///
86 /// # Examples
87 ///
88 /// Basic usage:
89 ///
90 /// ```
91 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.count_zeros(), 1);")]
92 /// ```
93 #[stable(feature = "rust1", since = "1.0.0")]
94 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
95 #[must_use = "this returns the result of the operation, \
96 without modifying the original"]
97 #[inline(always)]
98 pub const fn count_zeros(self) -> u32 {
99 (!self).count_ones()
100 }
101
102 /// Returns the number of leading zeros in the binary representation of `self`.
103 ///
104 /// Depending on what you're doing with the value, you might also be interested in the
105 /// [`ilog2`] function which returns a consistent number, even if the type widens.
106 ///
107 /// # Examples
108 ///
109 /// Basic usage:
110 ///
111 /// ```
112 #[doc = concat!("let n = -1", stringify!($SelfT), ";")]
113 ///
114 /// assert_eq!(n.leading_zeros(), 0);
115 /// ```
116 #[doc = concat!("[`ilog2`]: ", stringify!($SelfT), "::ilog2")]
117 #[stable(feature = "rust1", since = "1.0.0")]
118 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
119 #[must_use = "this returns the result of the operation, \
120 without modifying the original"]
121 #[inline(always)]
122 pub const fn leading_zeros(self) -> u32 {
123 (self as $UnsignedT).leading_zeros()
124 }
125
126 /// Returns the number of trailing zeros in the binary representation of `self`.
127 ///
128 /// # Examples
129 ///
130 /// Basic usage:
131 ///
132 /// ```
133 #[doc = concat!("let n = -4", stringify!($SelfT), ";")]
134 ///
135 /// assert_eq!(n.trailing_zeros(), 2);
136 /// ```
137 #[stable(feature = "rust1", since = "1.0.0")]
138 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
139 #[must_use = "this returns the result of the operation, \
140 without modifying the original"]
141 #[inline(always)]
142 pub const fn trailing_zeros(self) -> u32 {
143 (self as $UnsignedT).trailing_zeros()
144 }
145
146 /// Returns the number of leading ones in the binary representation of `self`.
147 ///
148 /// # Examples
149 ///
150 /// Basic usage:
151 ///
152 /// ```
153 #[doc = concat!("let n = -1", stringify!($SelfT), ";")]
154 ///
155 #[doc = concat!("assert_eq!(n.leading_ones(), ", stringify!($BITS), ");")]
156 /// ```
157 #[stable(feature = "leading_trailing_ones", since = "1.46.0")]
158 #[rustc_const_stable(feature = "leading_trailing_ones", since = "1.46.0")]
159 #[must_use = "this returns the result of the operation, \
160 without modifying the original"]
161 #[inline(always)]
162 pub const fn leading_ones(self) -> u32 {
163 (self as $UnsignedT).leading_ones()
164 }
165
166 /// Returns the number of trailing ones in the binary representation of `self`.
167 ///
168 /// # Examples
169 ///
170 /// Basic usage:
171 ///
172 /// ```
173 #[doc = concat!("let n = 3", stringify!($SelfT), ";")]
174 ///
175 /// assert_eq!(n.trailing_ones(), 2);
176 /// ```
177 #[stable(feature = "leading_trailing_ones", since = "1.46.0")]
178 #[rustc_const_stable(feature = "leading_trailing_ones", since = "1.46.0")]
179 #[must_use = "this returns the result of the operation, \
180 without modifying the original"]
181 #[inline(always)]
182 pub const fn trailing_ones(self) -> u32 {
183 (self as $UnsignedT).trailing_ones()
184 }
185
186 /// Returns `self` with only the most significant bit set, or `0` if
187 /// the input is `0`.
188 ///
189 /// # Examples
190 ///
191 /// Basic usage:
192 ///
193 /// ```
194 /// #![feature(isolate_most_least_significant_one)]
195 ///
196 #[doc = concat!("let n: ", stringify!($SelfT), " = 0b_01100100;")]
197 ///
198 /// assert_eq!(n.isolate_most_significant_one(), 0b_01000000);
199 #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".isolate_most_significant_one(), 0);")]
200 /// ```
201 #[unstable(feature = "isolate_most_least_significant_one", issue = "136909")]
202 #[must_use = "this returns the result of the operation, \
203 without modifying the original"]
204 #[inline(always)]
205 pub const fn isolate_most_significant_one(self) -> Self {
206 self & (((1 as $SelfT) << (<$SelfT>::BITS - 1)).wrapping_shr(self.leading_zeros()))
207 }
208
209 /// Returns `self` with only the least significant bit set, or `0` if
210 /// the input is `0`.
211 ///
212 /// # Examples
213 ///
214 /// Basic usage:
215 ///
216 /// ```
217 /// #![feature(isolate_most_least_significant_one)]
218 ///
219 #[doc = concat!("let n: ", stringify!($SelfT), " = 0b_01100100;")]
220 ///
221 /// assert_eq!(n.isolate_least_significant_one(), 0b_00000100);
222 #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".isolate_least_significant_one(), 0);")]
223 /// ```
224 #[unstable(feature = "isolate_most_least_significant_one", issue = "136909")]
225 #[must_use = "this returns the result of the operation, \
226 without modifying the original"]
227 #[inline(always)]
228 pub const fn isolate_least_significant_one(self) -> Self {
229 self & self.wrapping_neg()
230 }
231
232 /// Returns the bit pattern of `self` reinterpreted as an unsigned integer of the same size.
233 ///
234 /// This produces the same result as an `as` cast, but ensures that the bit-width remains
235 /// the same.
236 ///
237 /// # Examples
238 ///
239 /// Basic usage:
240 ///
241 /// ```
242 ///
243 #[doc = concat!("let n = -1", stringify!($SelfT), ";")]
244 ///
245 #[doc = concat!("assert_eq!(n.cast_unsigned(), ", stringify!($UnsignedT), "::MAX);")]
246 /// ```
247 #[stable(feature = "integer_sign_cast", since = "CURRENT_RUSTC_VERSION")]
248 #[rustc_const_stable(feature = "integer_sign_cast", since = "CURRENT_RUSTC_VERSION")]
249 #[must_use = "this returns the result of the operation, \
250 without modifying the original"]
251 #[inline(always)]
252 pub const fn cast_unsigned(self) -> $UnsignedT {
253 self as $UnsignedT
254 }
255
256 /// Shifts the bits to the left by a specified amount, `n`,
257 /// wrapping the truncated bits to the end of the resulting integer.
258 ///
259 /// Please note this isn't the same operation as the `<<` shifting operator!
260 ///
261 /// # Examples
262 ///
263 /// Basic usage:
264 ///
265 /// ```
266 #[doc = concat!("let n = ", $rot_op, stringify!($SelfT), ";")]
267 #[doc = concat!("let m = ", $rot_result, ";")]
268 ///
269 #[doc = concat!("assert_eq!(n.rotate_left(", $rot, "), m);")]
270 /// ```
271 #[stable(feature = "rust1", since = "1.0.0")]
272 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
273 #[must_use = "this returns the result of the operation, \
274 without modifying the original"]
275 #[inline(always)]
276 pub const fn rotate_left(self, n: u32) -> Self {
277 (self as $UnsignedT).rotate_left(n) as Self
278 }
279
280 /// Shifts the bits to the right by a specified amount, `n`,
281 /// wrapping the truncated bits to the beginning of the resulting
282 /// integer.
283 ///
284 /// Please note this isn't the same operation as the `>>` shifting operator!
285 ///
286 /// # Examples
287 ///
288 /// Basic usage:
289 ///
290 /// ```
291 #[doc = concat!("let n = ", $rot_result, stringify!($SelfT), ";")]
292 #[doc = concat!("let m = ", $rot_op, ";")]
293 ///
294 #[doc = concat!("assert_eq!(n.rotate_right(", $rot, "), m);")]
295 /// ```
296 #[stable(feature = "rust1", since = "1.0.0")]
297 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
298 #[must_use = "this returns the result of the operation, \
299 without modifying the original"]
300 #[inline(always)]
301 pub const fn rotate_right(self, n: u32) -> Self {
302 (self as $UnsignedT).rotate_right(n) as Self
303 }
304
305 /// Reverses the byte order of the integer.
306 ///
307 /// # Examples
308 ///
309 /// Basic usage:
310 ///
311 /// ```
312 #[doc = concat!("let n = ", $swap_op, stringify!($SelfT), ";")]
313 ///
314 /// let m = n.swap_bytes();
315 ///
316 #[doc = concat!("assert_eq!(m, ", $swapped, ");")]
317 /// ```
318 #[stable(feature = "rust1", since = "1.0.0")]
319 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
320 #[must_use = "this returns the result of the operation, \
321 without modifying the original"]
322 #[inline(always)]
323 pub const fn swap_bytes(self) -> Self {
324 (self as $UnsignedT).swap_bytes() as Self
325 }
326
327 /// Reverses the order of bits in the integer. The least significant bit becomes the most significant bit,
328 /// second least-significant bit becomes second most-significant bit, etc.
329 ///
330 /// # Examples
331 ///
332 /// Basic usage:
333 ///
334 /// ```
335 #[doc = concat!("let n = ", $swap_op, stringify!($SelfT), ";")]
336 /// let m = n.reverse_bits();
337 ///
338 #[doc = concat!("assert_eq!(m, ", $reversed, ");")]
339 #[doc = concat!("assert_eq!(0, 0", stringify!($SelfT), ".reverse_bits());")]
340 /// ```
341 #[stable(feature = "reverse_bits", since = "1.37.0")]
342 #[rustc_const_stable(feature = "reverse_bits", since = "1.37.0")]
343 #[must_use = "this returns the result of the operation, \
344 without modifying the original"]
345 #[inline(always)]
346 pub const fn reverse_bits(self) -> Self {
347 (self as $UnsignedT).reverse_bits() as Self
348 }
349
350 /// Converts an integer from big endian to the target's endianness.
351 ///
352 /// On big endian this is a no-op. On little endian the bytes are swapped.
353 ///
354 /// # Examples
355 ///
356 /// Basic usage:
357 ///
358 /// ```
359 #[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
360 ///
361 /// if cfg!(target_endian = "big") {
362 #[doc = concat!(" assert_eq!(", stringify!($SelfT), "::from_be(n), n)")]
363 /// } else {
364 #[doc = concat!(" assert_eq!(", stringify!($SelfT), "::from_be(n), n.swap_bytes())")]
365 /// }
366 /// ```
367 #[stable(feature = "rust1", since = "1.0.0")]
368 #[rustc_const_stable(feature = "const_int_conversions", since = "1.32.0")]
369 #[must_use]
370 #[inline]
371 pub const fn from_be(x: Self) -> Self {
372 #[cfg(target_endian = "big")]
373 {
374 x
375 }
376 #[cfg(not(target_endian = "big"))]
377 {
378 x.swap_bytes()
379 }
380 }
381
382 /// Converts an integer from little endian to the target's endianness.
383 ///
384 /// On little endian this is a no-op. On big endian the bytes are swapped.
385 ///
386 /// # Examples
387 ///
388 /// Basic usage:
389 ///
390 /// ```
391 #[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
392 ///
393 /// if cfg!(target_endian = "little") {
394 #[doc = concat!(" assert_eq!(", stringify!($SelfT), "::from_le(n), n)")]
395 /// } else {
396 #[doc = concat!(" assert_eq!(", stringify!($SelfT), "::from_le(n), n.swap_bytes())")]
397 /// }
398 /// ```
399 #[stable(feature = "rust1", since = "1.0.0")]
400 #[rustc_const_stable(feature = "const_int_conversions", since = "1.32.0")]
401 #[must_use]
402 #[inline]
403 pub const fn from_le(x: Self) -> Self {
404 #[cfg(target_endian = "little")]
405 {
406 x
407 }
408 #[cfg(not(target_endian = "little"))]
409 {
410 x.swap_bytes()
411 }
412 }
413
414 /// Converts `self` to big endian from the target's endianness.
415 ///
416 /// On big endian this is a no-op. On little endian the bytes are swapped.
417 ///
418 /// # Examples
419 ///
420 /// Basic usage:
421 ///
422 /// ```
423 #[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
424 ///
425 /// if cfg!(target_endian = "big") {
426 /// assert_eq!(n.to_be(), n)
427 /// } else {
428 /// assert_eq!(n.to_be(), n.swap_bytes())
429 /// }
430 /// ```
431 #[stable(feature = "rust1", since = "1.0.0")]
432 #[rustc_const_stable(feature = "const_int_conversions", since = "1.32.0")]
433 #[must_use = "this returns the result of the operation, \
434 without modifying the original"]
435 #[inline]
436 pub const fn to_be(self) -> Self { // or not to be?
437 #[cfg(target_endian = "big")]
438 {
439 self
440 }
441 #[cfg(not(target_endian = "big"))]
442 {
443 self.swap_bytes()
444 }
445 }
446
447 /// Converts `self` to little endian from the target's endianness.
448 ///
449 /// On little endian this is a no-op. On big endian the bytes are swapped.
450 ///
451 /// # Examples
452 ///
453 /// Basic usage:
454 ///
455 /// ```
456 #[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
457 ///
458 /// if cfg!(target_endian = "little") {
459 /// assert_eq!(n.to_le(), n)
460 /// } else {
461 /// assert_eq!(n.to_le(), n.swap_bytes())
462 /// }
463 /// ```
464 #[stable(feature = "rust1", since = "1.0.0")]
465 #[rustc_const_stable(feature = "const_int_conversions", since = "1.32.0")]
466 #[must_use = "this returns the result of the operation, \
467 without modifying the original"]
468 #[inline]
469 pub const fn to_le(self) -> Self {
470 #[cfg(target_endian = "little")]
471 {
472 self
473 }
474 #[cfg(not(target_endian = "little"))]
475 {
476 self.swap_bytes()
477 }
478 }
479
480 /// Checked integer addition. Computes `self + rhs`, returning `None`
481 /// if overflow occurred.
482 ///
483 /// # Examples
484 ///
485 /// Basic usage:
486 ///
487 /// ```
488 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_add(1), Some(", stringify!($SelfT), "::MAX - 1));")]
489 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_add(3), None);")]
490 /// ```
491 #[stable(feature = "rust1", since = "1.0.0")]
492 #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
493 #[must_use = "this returns the result of the operation, \
494 without modifying the original"]
495 #[inline]
496 pub const fn checked_add(self, rhs: Self) -> Option<Self> {
497 let (a, b) = self.overflowing_add(rhs);
498 if intrinsics::unlikely(b) { None } else { Some(a) }
499 }
500
501 /// Strict integer addition. Computes `self + rhs`, panicking
502 /// if overflow occurred.
503 ///
504 /// # Panics
505 ///
506 /// ## Overflow behavior
507 ///
508 /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
509 ///
510 /// # Examples
511 ///
512 /// Basic usage:
513 ///
514 /// ```
515 /// #![feature(strict_overflow_ops)]
516 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).strict_add(1), ", stringify!($SelfT), "::MAX - 1);")]
517 /// ```
518 ///
519 /// The following panics because of overflow:
520 ///
521 /// ```should_panic
522 /// #![feature(strict_overflow_ops)]
523 #[doc = concat!("let _ = (", stringify!($SelfT), "::MAX - 2).strict_add(3);")]
524 /// ```
525 #[unstable(feature = "strict_overflow_ops", issue = "118260")]
526 #[must_use = "this returns the result of the operation, \
527 without modifying the original"]
528 #[inline]
529 #[track_caller]
530 pub const fn strict_add(self, rhs: Self) -> Self {
531 let (a, b) = self.overflowing_add(rhs);
532 if b { overflow_panic::add() } else { a }
533 }
534
535 /// Unchecked integer addition. Computes `self + rhs`, assuming overflow
536 /// cannot occur.
537 ///
538 /// Calling `x.unchecked_add(y)` is semantically equivalent to calling
539 /// `x.`[`checked_add`]`(y).`[`unwrap_unchecked`]`()`.
540 ///
541 /// If you're just trying to avoid the panic in debug mode, then **do not**
542 /// use this. Instead, you're looking for [`wrapping_add`].
543 ///
544 /// # Safety
545 ///
546 /// This results in undefined behavior when
547 #[doc = concat!("`self + rhs > ", stringify!($SelfT), "::MAX` or `self + rhs < ", stringify!($SelfT), "::MIN`,")]
548 /// i.e. when [`checked_add`] would return `None`.
549 ///
550 /// [`unwrap_unchecked`]: option/enum.Option.html#method.unwrap_unchecked
551 #[doc = concat!("[`checked_add`]: ", stringify!($SelfT), "::checked_add")]
552 #[doc = concat!("[`wrapping_add`]: ", stringify!($SelfT), "::wrapping_add")]
553 #[stable(feature = "unchecked_math", since = "1.79.0")]
554 #[rustc_const_stable(feature = "unchecked_math", since = "1.79.0")]
555 #[must_use = "this returns the result of the operation, \
556 without modifying the original"]
557 #[inline(always)]
558 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
559 pub const unsafe fn unchecked_add(self, rhs: Self) -> Self {
560 assert_unsafe_precondition!(
561 check_language_ub,
562 concat!(stringify!($SelfT), "::unchecked_add cannot overflow"),
563 (
564 lhs: $SelfT = self,
565 rhs: $SelfT = rhs,
566 ) => !lhs.overflowing_add(rhs).1,
567 );
568
569 // SAFETY: this is guaranteed to be safe by the caller.
570 unsafe {
571 intrinsics::unchecked_add(self, rhs)
572 }
573 }
574
575 /// Checked addition with an unsigned integer. Computes `self + rhs`,
576 /// returning `None` if overflow occurred.
577 ///
578 /// # Examples
579 ///
580 /// Basic usage:
581 ///
582 /// ```
583 #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_add_unsigned(2), Some(3));")]
584 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_add_unsigned(3), None);")]
585 /// ```
586 #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
587 #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
588 #[must_use = "this returns the result of the operation, \
589 without modifying the original"]
590 #[inline]
591 pub const fn checked_add_unsigned(self, rhs: $UnsignedT) -> Option<Self> {
592 let (a, b) = self.overflowing_add_unsigned(rhs);
593 if intrinsics::unlikely(b) { None } else { Some(a) }
594 }
595
596 /// Strict addition with an unsigned integer. Computes `self + rhs`,
597 /// panicking if overflow occurred.
598 ///
599 /// # Panics
600 ///
601 /// ## Overflow behavior
602 ///
603 /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
604 ///
605 /// # Examples
606 ///
607 /// Basic usage:
608 ///
609 /// ```
610 /// #![feature(strict_overflow_ops)]
611 #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".strict_add_unsigned(2), 3);")]
612 /// ```
613 ///
614 /// The following panics because of overflow:
615 ///
616 /// ```should_panic
617 /// #![feature(strict_overflow_ops)]
618 #[doc = concat!("let _ = (", stringify!($SelfT), "::MAX - 2).strict_add_unsigned(3);")]
619 /// ```
620 #[unstable(feature = "strict_overflow_ops", issue = "118260")]
621 #[must_use = "this returns the result of the operation, \
622 without modifying the original"]
623 #[inline]
624 #[track_caller]
625 pub const fn strict_add_unsigned(self, rhs: $UnsignedT) -> Self {
626 let (a, b) = self.overflowing_add_unsigned(rhs);
627 if b { overflow_panic::add() } else { a }
628 }
629
630 /// Checked integer subtraction. Computes `self - rhs`, returning `None` if
631 /// overflow occurred.
632 ///
633 /// # Examples
634 ///
635 /// Basic usage:
636 ///
637 /// ```
638 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 2).checked_sub(1), Some(", stringify!($SelfT), "::MIN + 1));")]
639 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 2).checked_sub(3), None);")]
640 /// ```
641 #[stable(feature = "rust1", since = "1.0.0")]
642 #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
643 #[must_use = "this returns the result of the operation, \
644 without modifying the original"]
645 #[inline]
646 pub const fn checked_sub(self, rhs: Self) -> Option<Self> {
647 let (a, b) = self.overflowing_sub(rhs);
648 if intrinsics::unlikely(b) { None } else { Some(a) }
649 }
650
651 /// Strict integer subtraction. Computes `self - rhs`, panicking if
652 /// overflow occurred.
653 ///
654 /// # Panics
655 ///
656 /// ## Overflow behavior
657 ///
658 /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
659 ///
660 /// # Examples
661 ///
662 /// Basic usage:
663 ///
664 /// ```
665 /// #![feature(strict_overflow_ops)]
666 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 2).strict_sub(1), ", stringify!($SelfT), "::MIN + 1);")]
667 /// ```
668 ///
669 /// The following panics because of overflow:
670 ///
671 /// ```should_panic
672 /// #![feature(strict_overflow_ops)]
673 #[doc = concat!("let _ = (", stringify!($SelfT), "::MIN + 2).strict_sub(3);")]
674 /// ```
675 #[unstable(feature = "strict_overflow_ops", issue = "118260")]
676 #[must_use = "this returns the result of the operation, \
677 without modifying the original"]
678 #[inline]
679 #[track_caller]
680 pub const fn strict_sub(self, rhs: Self) -> Self {
681 let (a, b) = self.overflowing_sub(rhs);
682 if b { overflow_panic::sub() } else { a }
683 }
684
685 /// Unchecked integer subtraction. Computes `self - rhs`, assuming overflow
686 /// cannot occur.
687 ///
688 /// Calling `x.unchecked_sub(y)` is semantically equivalent to calling
689 /// `x.`[`checked_sub`]`(y).`[`unwrap_unchecked`]`()`.
690 ///
691 /// If you're just trying to avoid the panic in debug mode, then **do not**
692 /// use this. Instead, you're looking for [`wrapping_sub`].
693 ///
694 /// # Safety
695 ///
696 /// This results in undefined behavior when
697 #[doc = concat!("`self - rhs > ", stringify!($SelfT), "::MAX` or `self - rhs < ", stringify!($SelfT), "::MIN`,")]
698 /// i.e. when [`checked_sub`] would return `None`.
699 ///
700 /// [`unwrap_unchecked`]: option/enum.Option.html#method.unwrap_unchecked
701 #[doc = concat!("[`checked_sub`]: ", stringify!($SelfT), "::checked_sub")]
702 #[doc = concat!("[`wrapping_sub`]: ", stringify!($SelfT), "::wrapping_sub")]
703 #[stable(feature = "unchecked_math", since = "1.79.0")]
704 #[rustc_const_stable(feature = "unchecked_math", since = "1.79.0")]
705 #[must_use = "this returns the result of the operation, \
706 without modifying the original"]
707 #[inline(always)]
708 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
709 pub const unsafe fn unchecked_sub(self, rhs: Self) -> Self {
710 assert_unsafe_precondition!(
711 check_language_ub,
712 concat!(stringify!($SelfT), "::unchecked_sub cannot overflow"),
713 (
714 lhs: $SelfT = self,
715 rhs: $SelfT = rhs,
716 ) => !lhs.overflowing_sub(rhs).1,
717 );
718
719 // SAFETY: this is guaranteed to be safe by the caller.
720 unsafe {
721 intrinsics::unchecked_sub(self, rhs)
722 }
723 }
724
725 /// Checked subtraction with an unsigned integer. Computes `self - rhs`,
726 /// returning `None` if overflow occurred.
727 ///
728 /// # Examples
729 ///
730 /// Basic usage:
731 ///
732 /// ```
733 #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_sub_unsigned(2), Some(-1));")]
734 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 2).checked_sub_unsigned(3), None);")]
735 /// ```
736 #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
737 #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
738 #[must_use = "this returns the result of the operation, \
739 without modifying the original"]
740 #[inline]
741 pub const fn checked_sub_unsigned(self, rhs: $UnsignedT) -> Option<Self> {
742 let (a, b) = self.overflowing_sub_unsigned(rhs);
743 if intrinsics::unlikely(b) { None } else { Some(a) }
744 }
745
746 /// Strict subtraction with an unsigned integer. Computes `self - rhs`,
747 /// panicking if overflow occurred.
748 ///
749 /// # Panics
750 ///
751 /// ## Overflow behavior
752 ///
753 /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
754 ///
755 /// # Examples
756 ///
757 /// Basic usage:
758 ///
759 /// ```
760 /// #![feature(strict_overflow_ops)]
761 #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".strict_sub_unsigned(2), -1);")]
762 /// ```
763 ///
764 /// The following panics because of overflow:
765 ///
766 /// ```should_panic
767 /// #![feature(strict_overflow_ops)]
768 #[doc = concat!("let _ = (", stringify!($SelfT), "::MIN + 2).strict_sub_unsigned(3);")]
769 /// ```
770 #[unstable(feature = "strict_overflow_ops", issue = "118260")]
771 #[must_use = "this returns the result of the operation, \
772 without modifying the original"]
773 #[inline]
774 #[track_caller]
775 pub const fn strict_sub_unsigned(self, rhs: $UnsignedT) -> Self {
776 let (a, b) = self.overflowing_sub_unsigned(rhs);
777 if b { overflow_panic::sub() } else { a }
778 }
779
780 /// Checked integer multiplication. Computes `self * rhs`, returning `None` if
781 /// overflow occurred.
782 ///
783 /// # Examples
784 ///
785 /// Basic usage:
786 ///
787 /// ```
788 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_mul(1), Some(", stringify!($SelfT), "::MAX));")]
789 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_mul(2), None);")]
790 /// ```
791 #[stable(feature = "rust1", since = "1.0.0")]
792 #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
793 #[must_use = "this returns the result of the operation, \
794 without modifying the original"]
795 #[inline]
796 pub const fn checked_mul(self, rhs: Self) -> Option<Self> {
797 let (a, b) = self.overflowing_mul(rhs);
798 if intrinsics::unlikely(b) { None } else { Some(a) }
799 }
800
801 /// Strict integer multiplication. Computes `self * rhs`, panicking if
802 /// overflow occurred.
803 ///
804 /// # Panics
805 ///
806 /// ## Overflow behavior
807 ///
808 /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
809 ///
810 /// # Examples
811 ///
812 /// Basic usage:
813 ///
814 /// ```
815 /// #![feature(strict_overflow_ops)]
816 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.strict_mul(1), ", stringify!($SelfT), "::MAX);")]
817 /// ```
818 ///
819 /// The following panics because of overflow:
820 ///
821 /// ``` should_panic
822 /// #![feature(strict_overflow_ops)]
823 #[doc = concat!("let _ = ", stringify!($SelfT), "::MAX.strict_mul(2);")]
824 /// ```
825 #[unstable(feature = "strict_overflow_ops", issue = "118260")]
826 #[must_use = "this returns the result of the operation, \
827 without modifying the original"]
828 #[inline]
829 #[track_caller]
830 pub const fn strict_mul(self, rhs: Self) -> Self {
831 let (a, b) = self.overflowing_mul(rhs);
832 if b { overflow_panic::mul() } else { a }
833 }
834
835 /// Unchecked integer multiplication. Computes `self * rhs`, assuming overflow
836 /// cannot occur.
837 ///
838 /// Calling `x.unchecked_mul(y)` is semantically equivalent to calling
839 /// `x.`[`checked_mul`]`(y).`[`unwrap_unchecked`]`()`.
840 ///
841 /// If you're just trying to avoid the panic in debug mode, then **do not**
842 /// use this. Instead, you're looking for [`wrapping_mul`].
843 ///
844 /// # Safety
845 ///
846 /// This results in undefined behavior when
847 #[doc = concat!("`self * rhs > ", stringify!($SelfT), "::MAX` or `self * rhs < ", stringify!($SelfT), "::MIN`,")]
848 /// i.e. when [`checked_mul`] would return `None`.
849 ///
850 /// [`unwrap_unchecked`]: option/enum.Option.html#method.unwrap_unchecked
851 #[doc = concat!("[`checked_mul`]: ", stringify!($SelfT), "::checked_mul")]
852 #[doc = concat!("[`wrapping_mul`]: ", stringify!($SelfT), "::wrapping_mul")]
853 #[stable(feature = "unchecked_math", since = "1.79.0")]
854 #[rustc_const_stable(feature = "unchecked_math", since = "1.79.0")]
855 #[must_use = "this returns the result of the operation, \
856 without modifying the original"]
857 #[inline(always)]
858 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
859 pub const unsafe fn unchecked_mul(self, rhs: Self) -> Self {
860 assert_unsafe_precondition!(
861 check_language_ub,
862 concat!(stringify!($SelfT), "::unchecked_mul cannot overflow"),
863 (
864 lhs: $SelfT = self,
865 rhs: $SelfT = rhs,
866 ) => !lhs.overflowing_mul(rhs).1,
867 );
868
869 // SAFETY: this is guaranteed to be safe by the caller.
870 unsafe {
871 intrinsics::unchecked_mul(self, rhs)
872 }
873 }
874
875 /// Checked integer division. Computes `self / rhs`, returning `None` if `rhs == 0`
876 /// or the division results in overflow.
877 ///
878 /// # Examples
879 ///
880 /// Basic usage:
881 ///
882 /// ```
883 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 1).checked_div(-1), Some(", stringify!($Max), "));")]
884 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.checked_div(-1), None);")]
885 #[doc = concat!("assert_eq!((1", stringify!($SelfT), ").checked_div(0), None);")]
886 /// ```
887 #[stable(feature = "rust1", since = "1.0.0")]
888 #[rustc_const_stable(feature = "const_checked_int_div", since = "1.52.0")]
889 #[must_use = "this returns the result of the operation, \
890 without modifying the original"]
891 #[inline]
892 pub const fn checked_div(self, rhs: Self) -> Option<Self> {
893 if intrinsics::unlikely(rhs == 0 || ((self == Self::MIN) && (rhs == -1))) {
894 None
895 } else {
896 // SAFETY: div by zero and by INT_MIN have been checked above
897 Some(unsafe { intrinsics::unchecked_div(self, rhs) })
898 }
899 }
900
901 /// Strict integer division. Computes `self / rhs`, panicking
902 /// if overflow occurred.
903 ///
904 /// # Panics
905 ///
906 /// This function will panic if `rhs` is zero.
907 ///
908 /// ## Overflow behavior
909 ///
910 /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
911 ///
912 /// The only case where such an overflow can occur is when one divides `MIN / -1` on a signed type (where
913 /// `MIN` is the negative minimal value for the type); this is equivalent to `-MIN`, a positive value
914 /// that is too large to represent in the type.
915 ///
916 /// # Examples
917 ///
918 /// Basic usage:
919 ///
920 /// ```
921 /// #![feature(strict_overflow_ops)]
922 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 1).strict_div(-1), ", stringify!($Max), ");")]
923 /// ```
924 ///
925 /// The following panics because of overflow:
926 ///
927 /// ```should_panic
928 /// #![feature(strict_overflow_ops)]
929 #[doc = concat!("let _ = ", stringify!($SelfT), "::MIN.strict_div(-1);")]
930 /// ```
931 ///
932 /// The following panics because of division by zero:
933 ///
934 /// ```should_panic
935 /// #![feature(strict_overflow_ops)]
936 #[doc = concat!("let _ = (1", stringify!($SelfT), ").strict_div(0);")]
937 /// ```
938 #[unstable(feature = "strict_overflow_ops", issue = "118260")]
939 #[must_use = "this returns the result of the operation, \
940 without modifying the original"]
941 #[inline]
942 #[track_caller]
943 pub const fn strict_div(self, rhs: Self) -> Self {
944 let (a, b) = self.overflowing_div(rhs);
945 if b { overflow_panic::div() } else { a }
946 }
947
948 /// Checked Euclidean division. Computes `self.div_euclid(rhs)`,
949 /// returning `None` if `rhs == 0` or the division results in overflow.
950 ///
951 /// # Examples
952 ///
953 /// Basic usage:
954 ///
955 /// ```
956 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 1).checked_div_euclid(-1), Some(", stringify!($Max), "));")]
957 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.checked_div_euclid(-1), None);")]
958 #[doc = concat!("assert_eq!((1", stringify!($SelfT), ").checked_div_euclid(0), None);")]
959 /// ```
960 #[stable(feature = "euclidean_division", since = "1.38.0")]
961 #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
962 #[must_use = "this returns the result of the operation, \
963 without modifying the original"]
964 #[inline]
965 pub const fn checked_div_euclid(self, rhs: Self) -> Option<Self> {
966 // Using `&` helps LLVM see that it is the same check made in division.
967 if intrinsics::unlikely(rhs == 0 || ((self == Self::MIN) & (rhs == -1))) {
968 None
969 } else {
970 Some(self.div_euclid(rhs))
971 }
972 }
973
974 /// Strict Euclidean division. Computes `self.div_euclid(rhs)`, panicking
975 /// if overflow occurred.
976 ///
977 /// # Panics
978 ///
979 /// This function will panic if `rhs` is zero.
980 ///
981 /// ## Overflow behavior
982 ///
983 /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
984 ///
985 /// The only case where such an overflow can occur is when one divides `MIN / -1` on a signed type (where
986 /// `MIN` is the negative minimal value for the type); this is equivalent to `-MIN`, a positive value
987 /// that is too large to represent in the type.
988 ///
989 /// # Examples
990 ///
991 /// Basic usage:
992 ///
993 /// ```
994 /// #![feature(strict_overflow_ops)]
995 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 1).strict_div_euclid(-1), ", stringify!($Max), ");")]
996 /// ```
997 ///
998 /// The following panics because of overflow:
999 ///
1000 /// ```should_panic
1001 /// #![feature(strict_overflow_ops)]
1002 #[doc = concat!("let _ = ", stringify!($SelfT), "::MIN.strict_div_euclid(-1);")]
1003 /// ```
1004 ///
1005 /// The following panics because of division by zero:
1006 ///
1007 /// ```should_panic
1008 /// #![feature(strict_overflow_ops)]
1009 #[doc = concat!("let _ = (1", stringify!($SelfT), ").strict_div_euclid(0);")]
1010 /// ```
1011 #[unstable(feature = "strict_overflow_ops", issue = "118260")]
1012 #[must_use = "this returns the result of the operation, \
1013 without modifying the original"]
1014 #[inline]
1015 #[track_caller]
1016 pub const fn strict_div_euclid(self, rhs: Self) -> Self {
1017 let (a, b) = self.overflowing_div_euclid(rhs);
1018 if b { overflow_panic::div() } else { a }
1019 }
1020
1021 /// Checked integer remainder. Computes `self % rhs`, returning `None` if
1022 /// `rhs == 0` or the division results in overflow.
1023 ///
1024 /// # Examples
1025 ///
1026 /// Basic usage:
1027 ///
1028 /// ```
1029 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem(2), Some(1));")]
1030 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem(0), None);")]
1031 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.checked_rem(-1), None);")]
1032 /// ```
1033 #[stable(feature = "wrapping", since = "1.7.0")]
1034 #[rustc_const_stable(feature = "const_checked_int_div", since = "1.52.0")]
1035 #[must_use = "this returns the result of the operation, \
1036 without modifying the original"]
1037 #[inline]
1038 pub const fn checked_rem(self, rhs: Self) -> Option<Self> {
1039 if intrinsics::unlikely(rhs == 0 || ((self == Self::MIN) && (rhs == -1))) {
1040 None
1041 } else {
1042 // SAFETY: div by zero and by INT_MIN have been checked above
1043 Some(unsafe { intrinsics::unchecked_rem(self, rhs) })
1044 }
1045 }
1046
1047 /// Strict integer remainder. Computes `self % rhs`, panicking if
1048 /// the division results in overflow.
1049 ///
1050 /// # Panics
1051 ///
1052 /// This function will panic if `rhs` is zero.
1053 ///
1054 /// ## Overflow behavior
1055 ///
1056 /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1057 ///
1058 /// The only case where such an overflow can occur is `x % y` for `MIN / -1` on a
1059 /// signed type (where `MIN` is the negative minimal value), which is invalid due to implementation artifacts.
1060 ///
1061 /// # Examples
1062 ///
1063 /// Basic usage:
1064 ///
1065 /// ```
1066 /// #![feature(strict_overflow_ops)]
1067 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".strict_rem(2), 1);")]
1068 /// ```
1069 ///
1070 /// The following panics because of division by zero:
1071 ///
1072 /// ```should_panic
1073 /// #![feature(strict_overflow_ops)]
1074 #[doc = concat!("let _ = 5", stringify!($SelfT), ".strict_rem(0);")]
1075 /// ```
1076 ///
1077 /// The following panics because of overflow:
1078 ///
1079 /// ```should_panic
1080 /// #![feature(strict_overflow_ops)]
1081 #[doc = concat!("let _ = ", stringify!($SelfT), "::MIN.strict_rem(-1);")]
1082 /// ```
1083 #[unstable(feature = "strict_overflow_ops", issue = "118260")]
1084 #[must_use = "this returns the result of the operation, \
1085 without modifying the original"]
1086 #[inline]
1087 #[track_caller]
1088 pub const fn strict_rem(self, rhs: Self) -> Self {
1089 let (a, b) = self.overflowing_rem(rhs);
1090 if b { overflow_panic::rem() } else { a }
1091 }
1092
1093 /// Checked Euclidean remainder. Computes `self.rem_euclid(rhs)`, returning `None`
1094 /// if `rhs == 0` or the division results in overflow.
1095 ///
1096 /// # Examples
1097 ///
1098 /// Basic usage:
1099 ///
1100 /// ```
1101 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem_euclid(2), Some(1));")]
1102 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem_euclid(0), None);")]
1103 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.checked_rem_euclid(-1), None);")]
1104 /// ```
1105 #[stable(feature = "euclidean_division", since = "1.38.0")]
1106 #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
1107 #[must_use = "this returns the result of the operation, \
1108 without modifying the original"]
1109 #[inline]
1110 pub const fn checked_rem_euclid(self, rhs: Self) -> Option<Self> {
1111 // Using `&` helps LLVM see that it is the same check made in division.
1112 if intrinsics::unlikely(rhs == 0 || ((self == Self::MIN) & (rhs == -1))) {
1113 None
1114 } else {
1115 Some(self.rem_euclid(rhs))
1116 }
1117 }
1118
1119 /// Strict Euclidean remainder. Computes `self.rem_euclid(rhs)`, panicking if
1120 /// the division results in overflow.
1121 ///
1122 /// # Panics
1123 ///
1124 /// This function will panic if `rhs` is zero.
1125 ///
1126 /// ## Overflow behavior
1127 ///
1128 /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1129 ///
1130 /// The only case where such an overflow can occur is `x % y` for `MIN / -1` on a
1131 /// signed type (where `MIN` is the negative minimal value), which is invalid due to implementation artifacts.
1132 ///
1133 /// # Examples
1134 ///
1135 /// Basic usage:
1136 ///
1137 /// ```
1138 /// #![feature(strict_overflow_ops)]
1139 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".strict_rem_euclid(2), 1);")]
1140 /// ```
1141 ///
1142 /// The following panics because of division by zero:
1143 ///
1144 /// ```should_panic
1145 /// #![feature(strict_overflow_ops)]
1146 #[doc = concat!("let _ = 5", stringify!($SelfT), ".strict_rem_euclid(0);")]
1147 /// ```
1148 ///
1149 /// The following panics because of overflow:
1150 ///
1151 /// ```should_panic
1152 /// #![feature(strict_overflow_ops)]
1153 #[doc = concat!("let _ = ", stringify!($SelfT), "::MIN.strict_rem_euclid(-1);")]
1154 /// ```
1155 #[unstable(feature = "strict_overflow_ops", issue = "118260")]
1156 #[must_use = "this returns the result of the operation, \
1157 without modifying the original"]
1158 #[inline]
1159 #[track_caller]
1160 pub const fn strict_rem_euclid(self, rhs: Self) -> Self {
1161 let (a, b) = self.overflowing_rem_euclid(rhs);
1162 if b { overflow_panic::rem() } else { a }
1163 }
1164
1165 /// Checked negation. Computes `-self`, returning `None` if `self == MIN`.
1166 ///
1167 /// # Examples
1168 ///
1169 /// Basic usage:
1170 ///
1171 /// ```
1172 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_neg(), Some(-5));")]
1173 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.checked_neg(), None);")]
1174 /// ```
1175 #[stable(feature = "wrapping", since = "1.7.0")]
1176 #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
1177 #[must_use = "this returns the result of the operation, \
1178 without modifying the original"]
1179 #[inline]
1180 pub const fn checked_neg(self) -> Option<Self> {
1181 let (a, b) = self.overflowing_neg();
1182 if intrinsics::unlikely(b) { None } else { Some(a) }
1183 }
1184
1185 /// Unchecked negation. Computes `-self`, assuming overflow cannot occur.
1186 ///
1187 /// # Safety
1188 ///
1189 /// This results in undefined behavior when
1190 #[doc = concat!("`self == ", stringify!($SelfT), "::MIN`,")]
1191 /// i.e. when [`checked_neg`] would return `None`.
1192 ///
1193 #[doc = concat!("[`checked_neg`]: ", stringify!($SelfT), "::checked_neg")]
1194 #[unstable(
1195 feature = "unchecked_neg",
1196 reason = "niche optimization path",
1197 issue = "85122",
1198 )]
1199 #[must_use = "this returns the result of the operation, \
1200 without modifying the original"]
1201 #[inline(always)]
1202 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1203 pub const unsafe fn unchecked_neg(self) -> Self {
1204 assert_unsafe_precondition!(
1205 check_language_ub,
1206 concat!(stringify!($SelfT), "::unchecked_neg cannot overflow"),
1207 (
1208 lhs: $SelfT = self,
1209 ) => !lhs.overflowing_neg().1,
1210 );
1211
1212 // SAFETY: this is guaranteed to be safe by the caller.
1213 unsafe {
1214 intrinsics::unchecked_sub(0, self)
1215 }
1216 }
1217
1218 /// Strict negation. Computes `-self`, panicking if `self == MIN`.
1219 ///
1220 /// # Panics
1221 ///
1222 /// ## Overflow behavior
1223 ///
1224 /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1225 ///
1226 /// # Examples
1227 ///
1228 /// Basic usage:
1229 ///
1230 /// ```
1231 /// #![feature(strict_overflow_ops)]
1232 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".strict_neg(), -5);")]
1233 /// ```
1234 ///
1235 /// The following panics because of overflow:
1236 ///
1237 /// ```should_panic
1238 /// #![feature(strict_overflow_ops)]
1239 #[doc = concat!("let _ = ", stringify!($SelfT), "::MIN.strict_neg();")]
1240 ///
1241 #[unstable(feature = "strict_overflow_ops", issue = "118260")]
1242 #[must_use = "this returns the result of the operation, \
1243 without modifying the original"]
1244 #[inline]
1245 #[track_caller]
1246 pub const fn strict_neg(self) -> Self {
1247 let (a, b) = self.overflowing_neg();
1248 if b { overflow_panic::neg() } else { a }
1249 }
1250
1251 /// Checked shift left. Computes `self << rhs`, returning `None` if `rhs` is larger
1252 /// than or equal to the number of bits in `self`.
1253 ///
1254 /// # Examples
1255 ///
1256 /// Basic usage:
1257 ///
1258 /// ```
1259 #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".checked_shl(4), Some(0x10));")]
1260 #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".checked_shl(129), None);")]
1261 #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shl(", stringify!($BITS_MINUS_ONE), "), Some(0));")]
1262 /// ```
1263 #[stable(feature = "wrapping", since = "1.7.0")]
1264 #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
1265 #[must_use = "this returns the result of the operation, \
1266 without modifying the original"]
1267 #[inline]
1268 pub const fn checked_shl(self, rhs: u32) -> Option<Self> {
1269 // Not using overflowing_shl as that's a wrapping shift
1270 if rhs < Self::BITS {
1271 // SAFETY: just checked the RHS is in-range
1272 Some(unsafe { self.unchecked_shl(rhs) })
1273 } else {
1274 None
1275 }
1276 }
1277
1278 /// Strict shift left. Computes `self << rhs`, panicking if `rhs` is larger
1279 /// than or equal to the number of bits in `self`.
1280 ///
1281 /// # Panics
1282 ///
1283 /// ## Overflow behavior
1284 ///
1285 /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1286 ///
1287 /// # Examples
1288 ///
1289 /// Basic usage:
1290 ///
1291 /// ```
1292 /// #![feature(strict_overflow_ops)]
1293 #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".strict_shl(4), 0x10);")]
1294 /// ```
1295 ///
1296 /// The following panics because of overflow:
1297 ///
1298 /// ```should_panic
1299 /// #![feature(strict_overflow_ops)]
1300 #[doc = concat!("let _ = 0x1", stringify!($SelfT), ".strict_shl(129);")]
1301 /// ```
1302 #[unstable(feature = "strict_overflow_ops", issue = "118260")]
1303 #[must_use = "this returns the result of the operation, \
1304 without modifying the original"]
1305 #[inline]
1306 #[track_caller]
1307 pub const fn strict_shl(self, rhs: u32) -> Self {
1308 let (a, b) = self.overflowing_shl(rhs);
1309 if b { overflow_panic::shl() } else { a }
1310 }
1311
1312 /// Unchecked shift left. Computes `self << rhs`, assuming that
1313 /// `rhs` is less than the number of bits in `self`.
1314 ///
1315 /// # Safety
1316 ///
1317 /// This results in undefined behavior if `rhs` is larger than
1318 /// or equal to the number of bits in `self`,
1319 /// i.e. when [`checked_shl`] would return `None`.
1320 ///
1321 #[doc = concat!("[`checked_shl`]: ", stringify!($SelfT), "::checked_shl")]
1322 #[unstable(
1323 feature = "unchecked_shifts",
1324 reason = "niche optimization path",
1325 issue = "85122",
1326 )]
1327 #[must_use = "this returns the result of the operation, \
1328 without modifying the original"]
1329 #[inline(always)]
1330 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1331 pub const unsafe fn unchecked_shl(self, rhs: u32) -> Self {
1332 assert_unsafe_precondition!(
1333 check_language_ub,
1334 concat!(stringify!($SelfT), "::unchecked_shl cannot overflow"),
1335 (
1336 rhs: u32 = rhs,
1337 ) => rhs < <$ActualT>::BITS,
1338 );
1339
1340 // SAFETY: this is guaranteed to be safe by the caller.
1341 unsafe {
1342 intrinsics::unchecked_shl(self, rhs)
1343 }
1344 }
1345
1346 /// Unbounded shift left. Computes `self << rhs`, without bounding the value of `rhs`.
1347 ///
1348 /// If `rhs` is larger or equal to the number of bits in `self`,
1349 /// the entire value is shifted out, and `0` is returned.
1350 ///
1351 /// # Examples
1352 ///
1353 /// Basic usage:
1354 /// ```
1355 #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".unbounded_shl(4), 0x10);")]
1356 #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".unbounded_shl(129), 0);")]
1357 /// ```
1358 #[stable(feature = "unbounded_shifts", since = "CURRENT_RUSTC_VERSION")]
1359 #[rustc_const_stable(feature = "unbounded_shifts", since = "CURRENT_RUSTC_VERSION")]
1360 #[must_use = "this returns the result of the operation, \
1361 without modifying the original"]
1362 #[inline]
1363 pub const fn unbounded_shl(self, rhs: u32) -> $SelfT{
1364 if rhs < Self::BITS {
1365 // SAFETY:
1366 // rhs is just checked to be in-range above
1367 unsafe { self.unchecked_shl(rhs) }
1368 } else {
1369 0
1370 }
1371 }
1372
1373 /// Checked shift right. Computes `self >> rhs`, returning `None` if `rhs` is
1374 /// larger than or equal to the number of bits in `self`.
1375 ///
1376 /// # Examples
1377 ///
1378 /// Basic usage:
1379 ///
1380 /// ```
1381 #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shr(4), Some(0x1));")]
1382 #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shr(128), None);")]
1383 /// ```
1384 #[stable(feature = "wrapping", since = "1.7.0")]
1385 #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
1386 #[must_use = "this returns the result of the operation, \
1387 without modifying the original"]
1388 #[inline]
1389 pub const fn checked_shr(self, rhs: u32) -> Option<Self> {
1390 // Not using overflowing_shr as that's a wrapping shift
1391 if rhs < Self::BITS {
1392 // SAFETY: just checked the RHS is in-range
1393 Some(unsafe { self.unchecked_shr(rhs) })
1394 } else {
1395 None
1396 }
1397 }
1398
1399 /// Strict shift right. Computes `self >> rhs`, panicking `rhs` is
1400 /// larger than or equal to the number of bits in `self`.
1401 ///
1402 /// # Panics
1403 ///
1404 /// ## Overflow behavior
1405 ///
1406 /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1407 ///
1408 /// # Examples
1409 ///
1410 /// Basic usage:
1411 ///
1412 /// ```
1413 /// #![feature(strict_overflow_ops)]
1414 #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".strict_shr(4), 0x1);")]
1415 /// ```
1416 ///
1417 /// The following panics because of overflow:
1418 ///
1419 /// ```should_panic
1420 /// #![feature(strict_overflow_ops)]
1421 #[doc = concat!("let _ = 0x10", stringify!($SelfT), ".strict_shr(128);")]
1422 /// ```
1423 #[unstable(feature = "strict_overflow_ops", issue = "118260")]
1424 #[must_use = "this returns the result of the operation, \
1425 without modifying the original"]
1426 #[inline]
1427 #[track_caller]
1428 pub const fn strict_shr(self, rhs: u32) -> Self {
1429 let (a, b) = self.overflowing_shr(rhs);
1430 if b { overflow_panic::shr() } else { a }
1431 }
1432
1433 /// Unchecked shift right. Computes `self >> rhs`, assuming that
1434 /// `rhs` is less than the number of bits in `self`.
1435 ///
1436 /// # Safety
1437 ///
1438 /// This results in undefined behavior if `rhs` is larger than
1439 /// or equal to the number of bits in `self`,
1440 /// i.e. when [`checked_shr`] would return `None`.
1441 ///
1442 #[doc = concat!("[`checked_shr`]: ", stringify!($SelfT), "::checked_shr")]
1443 #[unstable(
1444 feature = "unchecked_shifts",
1445 reason = "niche optimization path",
1446 issue = "85122",
1447 )]
1448 #[must_use = "this returns the result of the operation, \
1449 without modifying the original"]
1450 #[inline(always)]
1451 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1452 pub const unsafe fn unchecked_shr(self, rhs: u32) -> Self {
1453 assert_unsafe_precondition!(
1454 check_language_ub,
1455 concat!(stringify!($SelfT), "::unchecked_shr cannot overflow"),
1456 (
1457 rhs: u32 = rhs,
1458 ) => rhs < <$ActualT>::BITS,
1459 );
1460
1461 // SAFETY: this is guaranteed to be safe by the caller.
1462 unsafe {
1463 intrinsics::unchecked_shr(self, rhs)
1464 }
1465 }
1466
1467 /// Unbounded shift right. Computes `self >> rhs`, without bounding the value of `rhs`.
1468 ///
1469 /// If `rhs` is larger or equal to the number of bits in `self`,
1470 /// the entire value is shifted out, which yields `0` for a positive number,
1471 /// and `-1` for a negative number.
1472 ///
1473 /// # Examples
1474 ///
1475 /// Basic usage:
1476 /// ```
1477 #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".unbounded_shr(4), 0x1);")]
1478 #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".unbounded_shr(129), 0);")]
1479 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.unbounded_shr(129), -1);")]
1480 /// ```
1481 #[stable(feature = "unbounded_shifts", since = "CURRENT_RUSTC_VERSION")]
1482 #[rustc_const_stable(feature = "unbounded_shifts", since = "CURRENT_RUSTC_VERSION")]
1483 #[must_use = "this returns the result of the operation, \
1484 without modifying the original"]
1485 #[inline]
1486 pub const fn unbounded_shr(self, rhs: u32) -> $SelfT{
1487 if rhs < Self::BITS {
1488 // SAFETY:
1489 // rhs is just checked to be in-range above
1490 unsafe { self.unchecked_shr(rhs) }
1491 } else {
1492 // A shift by `Self::BITS-1` suffices for signed integers, because the sign bit is copied for each of the shifted bits.
1493
1494 // SAFETY:
1495 // `Self::BITS-1` is guaranteed to be less than `Self::BITS`
1496 unsafe { self.unchecked_shr(Self::BITS - 1) }
1497 }
1498 }
1499
1500 /// Checked absolute value. Computes `self.abs()`, returning `None` if
1501 /// `self == MIN`.
1502 ///
1503 /// # Examples
1504 ///
1505 /// Basic usage:
1506 ///
1507 /// ```
1508 #[doc = concat!("assert_eq!((-5", stringify!($SelfT), ").checked_abs(), Some(5));")]
1509 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.checked_abs(), None);")]
1510 /// ```
1511 #[stable(feature = "no_panic_abs", since = "1.13.0")]
1512 #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
1513 #[must_use = "this returns the result of the operation, \
1514 without modifying the original"]
1515 #[inline]
1516 pub const fn checked_abs(self) -> Option<Self> {
1517 if self.is_negative() {
1518 self.checked_neg()
1519 } else {
1520 Some(self)
1521 }
1522 }
1523
1524 /// Strict absolute value. Computes `self.abs()`, panicking if
1525 /// `self == MIN`.
1526 ///
1527 /// # Panics
1528 ///
1529 /// ## Overflow behavior
1530 ///
1531 /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1532 ///
1533 /// # Examples
1534 ///
1535 /// Basic usage:
1536 ///
1537 /// ```
1538 /// #![feature(strict_overflow_ops)]
1539 #[doc = concat!("assert_eq!((-5", stringify!($SelfT), ").strict_abs(), 5);")]
1540 /// ```
1541 ///
1542 /// The following panics because of overflow:
1543 ///
1544 /// ```should_panic
1545 /// #![feature(strict_overflow_ops)]
1546 #[doc = concat!("let _ = ", stringify!($SelfT), "::MIN.strict_abs();")]
1547 /// ```
1548 #[unstable(feature = "strict_overflow_ops", issue = "118260")]
1549 #[must_use = "this returns the result of the operation, \
1550 without modifying the original"]
1551 #[inline]
1552 #[track_caller]
1553 pub const fn strict_abs(self) -> Self {
1554 if self.is_negative() {
1555 self.strict_neg()
1556 } else {
1557 self
1558 }
1559 }
1560
1561 /// Checked exponentiation. Computes `self.pow(exp)`, returning `None` if
1562 /// overflow occurred.
1563 ///
1564 /// # Examples
1565 ///
1566 /// Basic usage:
1567 ///
1568 /// ```
1569 #[doc = concat!("assert_eq!(8", stringify!($SelfT), ".checked_pow(2), Some(64));")]
1570 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_pow(2), None);")]
1571 /// ```
1572
1573 #[stable(feature = "no_panic_pow", since = "1.34.0")]
1574 #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
1575 #[must_use = "this returns the result of the operation, \
1576 without modifying the original"]
1577 #[inline]
1578 pub const fn checked_pow(self, mut exp: u32) -> Option<Self> {
1579 if exp == 0 {
1580 return Some(1);
1581 }
1582 let mut base = self;
1583 let mut acc: Self = 1;
1584
1585 loop {
1586 if (exp & 1) == 1 {
1587 acc = try_opt!(acc.checked_mul(base));
1588 // since exp!=0, finally the exp must be 1.
1589 if exp == 1 {
1590 return Some(acc);
1591 }
1592 }
1593 exp /= 2;
1594 base = try_opt!(base.checked_mul(base));
1595 }
1596 }
1597
1598 /// Strict exponentiation. Computes `self.pow(exp)`, panicking if
1599 /// overflow occurred.
1600 ///
1601 /// # Panics
1602 ///
1603 /// ## Overflow behavior
1604 ///
1605 /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1606 ///
1607 /// # Examples
1608 ///
1609 /// Basic usage:
1610 ///
1611 /// ```
1612 /// #![feature(strict_overflow_ops)]
1613 #[doc = concat!("assert_eq!(8", stringify!($SelfT), ".strict_pow(2), 64);")]
1614 /// ```
1615 ///
1616 /// The following panics because of overflow:
1617 ///
1618 /// ```should_panic
1619 /// #![feature(strict_overflow_ops)]
1620 #[doc = concat!("let _ = ", stringify!($SelfT), "::MAX.strict_pow(2);")]
1621 /// ```
1622 #[unstable(feature = "strict_overflow_ops", issue = "118260")]
1623 #[must_use = "this returns the result of the operation, \
1624 without modifying the original"]
1625 #[inline]
1626 #[track_caller]
1627 pub const fn strict_pow(self, mut exp: u32) -> Self {
1628 if exp == 0 {
1629 return 1;
1630 }
1631 let mut base = self;
1632 let mut acc: Self = 1;
1633
1634 loop {
1635 if (exp & 1) == 1 {
1636 acc = acc.strict_mul(base);
1637 // since exp!=0, finally the exp must be 1.
1638 if exp == 1 {
1639 return acc;
1640 }
1641 }
1642 exp /= 2;
1643 base = base.strict_mul(base);
1644 }
1645 }
1646
1647 /// Returns the square root of the number, rounded down.
1648 ///
1649 /// Returns `None` if `self` is negative.
1650 ///
1651 /// # Examples
1652 ///
1653 /// Basic usage:
1654 /// ```
1655 #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".checked_isqrt(), Some(3));")]
1656 /// ```
1657 #[stable(feature = "isqrt", since = "1.84.0")]
1658 #[rustc_const_stable(feature = "isqrt", since = "1.84.0")]
1659 #[must_use = "this returns the result of the operation, \
1660 without modifying the original"]
1661 #[inline]
1662 pub const fn checked_isqrt(self) -> Option<Self> {
1663 if self < 0 {
1664 None
1665 } else {
1666 // SAFETY: Input is nonnegative in this `else` branch.
1667 let result = unsafe {
1668 crate::num::int_sqrt::$ActualT(self as $ActualT) as $SelfT
1669 };
1670
1671 // Inform the optimizer what the range of outputs is. If
1672 // testing `core` crashes with no panic message and a
1673 // `num::int_sqrt::i*` test failed, it's because your edits
1674 // caused these assertions to become false.
1675 //
1676 // SAFETY: Integer square root is a monotonically nondecreasing
1677 // function, which means that increasing the input will never
1678 // cause the output to decrease. Thus, since the input for
1679 // nonnegative signed integers is bounded by
1680 // `[0, <$ActualT>::MAX]`, sqrt(n) will be bounded by
1681 // `[sqrt(0), sqrt(<$ActualT>::MAX)]`.
1682 unsafe {
1683 // SAFETY: `<$ActualT>::MAX` is nonnegative.
1684 const MAX_RESULT: $SelfT = unsafe {
1685 crate::num::int_sqrt::$ActualT(<$ActualT>::MAX) as $SelfT
1686 };
1687
1688 crate::hint::assert_unchecked(result >= 0);
1689 crate::hint::assert_unchecked(result <= MAX_RESULT);
1690 }
1691
1692 Some(result)
1693 }
1694 }
1695
1696 /// Saturating integer addition. Computes `self + rhs`, saturating at the numeric
1697 /// bounds instead of overflowing.
1698 ///
1699 /// # Examples
1700 ///
1701 /// Basic usage:
1702 ///
1703 /// ```
1704 #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".saturating_add(1), 101);")]
1705 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_add(100), ", stringify!($SelfT), "::MAX);")]
1706 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_add(-1), ", stringify!($SelfT), "::MIN);")]
1707 /// ```
1708
1709 #[stable(feature = "rust1", since = "1.0.0")]
1710 #[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
1711 #[must_use = "this returns the result of the operation, \
1712 without modifying the original"]
1713 #[inline(always)]
1714 pub const fn saturating_add(self, rhs: Self) -> Self {
1715 intrinsics::saturating_add(self, rhs)
1716 }
1717
1718 /// Saturating addition with an unsigned integer. Computes `self + rhs`,
1719 /// saturating at the numeric bounds instead of overflowing.
1720 ///
1721 /// # Examples
1722 ///
1723 /// Basic usage:
1724 ///
1725 /// ```
1726 #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".saturating_add_unsigned(2), 3);")]
1727 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_add_unsigned(100), ", stringify!($SelfT), "::MAX);")]
1728 /// ```
1729 #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
1730 #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
1731 #[must_use = "this returns the result of the operation, \
1732 without modifying the original"]
1733 #[inline]
1734 pub const fn saturating_add_unsigned(self, rhs: $UnsignedT) -> Self {
1735 // Overflow can only happen at the upper bound
1736 // We cannot use `unwrap_or` here because it is not `const`
1737 match self.checked_add_unsigned(rhs) {
1738 Some(x) => x,
1739 None => Self::MAX,
1740 }
1741 }
1742
1743 /// Saturating integer subtraction. Computes `self - rhs`, saturating at the
1744 /// numeric bounds instead of overflowing.
1745 ///
1746 /// # Examples
1747 ///
1748 /// Basic usage:
1749 ///
1750 /// ```
1751 #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".saturating_sub(127), -27);")]
1752 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_sub(100), ", stringify!($SelfT), "::MIN);")]
1753 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_sub(-1), ", stringify!($SelfT), "::MAX);")]
1754 /// ```
1755 #[stable(feature = "rust1", since = "1.0.0")]
1756 #[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
1757 #[must_use = "this returns the result of the operation, \
1758 without modifying the original"]
1759 #[inline(always)]
1760 pub const fn saturating_sub(self, rhs: Self) -> Self {
1761 intrinsics::saturating_sub(self, rhs)
1762 }
1763
1764 /// Saturating subtraction with an unsigned integer. Computes `self - rhs`,
1765 /// saturating at the numeric bounds instead of overflowing.
1766 ///
1767 /// # Examples
1768 ///
1769 /// Basic usage:
1770 ///
1771 /// ```
1772 #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".saturating_sub_unsigned(127), -27);")]
1773 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_sub_unsigned(100), ", stringify!($SelfT), "::MIN);")]
1774 /// ```
1775 #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
1776 #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
1777 #[must_use = "this returns the result of the operation, \
1778 without modifying the original"]
1779 #[inline]
1780 pub const fn saturating_sub_unsigned(self, rhs: $UnsignedT) -> Self {
1781 // Overflow can only happen at the lower bound
1782 // We cannot use `unwrap_or` here because it is not `const`
1783 match self.checked_sub_unsigned(rhs) {
1784 Some(x) => x,
1785 None => Self::MIN,
1786 }
1787 }
1788
1789 /// Saturating integer negation. Computes `-self`, returning `MAX` if `self == MIN`
1790 /// instead of overflowing.
1791 ///
1792 /// # Examples
1793 ///
1794 /// Basic usage:
1795 ///
1796 /// ```
1797 #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".saturating_neg(), -100);")]
1798 #[doc = concat!("assert_eq!((-100", stringify!($SelfT), ").saturating_neg(), 100);")]
1799 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_neg(), ", stringify!($SelfT), "::MAX);")]
1800 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_neg(), ", stringify!($SelfT), "::MIN + 1);")]
1801 /// ```
1802
1803 #[stable(feature = "saturating_neg", since = "1.45.0")]
1804 #[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
1805 #[must_use = "this returns the result of the operation, \
1806 without modifying the original"]
1807 #[inline(always)]
1808 pub const fn saturating_neg(self) -> Self {
1809 intrinsics::saturating_sub(0, self)
1810 }
1811
1812 /// Saturating absolute value. Computes `self.abs()`, returning `MAX` if `self ==
1813 /// MIN` instead of overflowing.
1814 ///
1815 /// # Examples
1816 ///
1817 /// Basic usage:
1818 ///
1819 /// ```
1820 #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".saturating_abs(), 100);")]
1821 #[doc = concat!("assert_eq!((-100", stringify!($SelfT), ").saturating_abs(), 100);")]
1822 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_abs(), ", stringify!($SelfT), "::MAX);")]
1823 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 1).saturating_abs(), ", stringify!($SelfT), "::MAX);")]
1824 /// ```
1825
1826 #[stable(feature = "saturating_neg", since = "1.45.0")]
1827 #[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
1828 #[must_use = "this returns the result of the operation, \
1829 without modifying the original"]
1830 #[inline]
1831 pub const fn saturating_abs(self) -> Self {
1832 if self.is_negative() {
1833 self.saturating_neg()
1834 } else {
1835 self
1836 }
1837 }
1838
1839 /// Saturating integer multiplication. Computes `self * rhs`, saturating at the
1840 /// numeric bounds instead of overflowing.
1841 ///
1842 /// # Examples
1843 ///
1844 /// Basic usage:
1845 ///
1846 /// ```
1847 #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".saturating_mul(12), 120);")]
1848 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_mul(10), ", stringify!($SelfT), "::MAX);")]
1849 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_mul(10), ", stringify!($SelfT), "::MIN);")]
1850 /// ```
1851 #[stable(feature = "wrapping", since = "1.7.0")]
1852 #[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
1853 #[must_use = "this returns the result of the operation, \
1854 without modifying the original"]
1855 #[inline]
1856 pub const fn saturating_mul(self, rhs: Self) -> Self {
1857 match self.checked_mul(rhs) {
1858 Some(x) => x,
1859 None => if (self < 0) == (rhs < 0) {
1860 Self::MAX
1861 } else {
1862 Self::MIN
1863 }
1864 }
1865 }
1866
1867 /// Saturating integer division. Computes `self / rhs`, saturating at the
1868 /// numeric bounds instead of overflowing.
1869 ///
1870 /// # Panics
1871 ///
1872 /// This function will panic if `rhs` is zero.
1873 ///
1874 /// # Examples
1875 ///
1876 /// Basic usage:
1877 ///
1878 /// ```
1879 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".saturating_div(2), 2);")]
1880 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_div(-1), ", stringify!($SelfT), "::MIN + 1);")]
1881 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_div(-1), ", stringify!($SelfT), "::MAX);")]
1882 ///
1883 /// ```
1884 #[stable(feature = "saturating_div", since = "1.58.0")]
1885 #[rustc_const_stable(feature = "saturating_div", since = "1.58.0")]
1886 #[must_use = "this returns the result of the operation, \
1887 without modifying the original"]
1888 #[inline]
1889 pub const fn saturating_div(self, rhs: Self) -> Self {
1890 match self.overflowing_div(rhs) {
1891 (result, false) => result,
1892 (_result, true) => Self::MAX, // MIN / -1 is the only possible saturating overflow
1893 }
1894 }
1895
1896 /// Saturating integer exponentiation. Computes `self.pow(exp)`,
1897 /// saturating at the numeric bounds instead of overflowing.
1898 ///
1899 /// # Examples
1900 ///
1901 /// Basic usage:
1902 ///
1903 /// ```
1904 #[doc = concat!("assert_eq!((-4", stringify!($SelfT), ").saturating_pow(3), -64);")]
1905 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_pow(2), ", stringify!($SelfT), "::MAX);")]
1906 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_pow(3), ", stringify!($SelfT), "::MIN);")]
1907 /// ```
1908 #[stable(feature = "no_panic_pow", since = "1.34.0")]
1909 #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
1910 #[must_use = "this returns the result of the operation, \
1911 without modifying the original"]
1912 #[inline]
1913 pub const fn saturating_pow(self, exp: u32) -> Self {
1914 match self.checked_pow(exp) {
1915 Some(x) => x,
1916 None if self < 0 && exp % 2 == 1 => Self::MIN,
1917 None => Self::MAX,
1918 }
1919 }
1920
1921 /// Wrapping (modular) addition. Computes `self + rhs`, wrapping around at the
1922 /// boundary of the type.
1923 ///
1924 /// # Examples
1925 ///
1926 /// Basic usage:
1927 ///
1928 /// ```
1929 #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_add(27), 127);")]
1930 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.wrapping_add(2), ", stringify!($SelfT), "::MIN + 1);")]
1931 /// ```
1932 #[stable(feature = "rust1", since = "1.0.0")]
1933 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
1934 #[must_use = "this returns the result of the operation, \
1935 without modifying the original"]
1936 #[inline(always)]
1937 pub const fn wrapping_add(self, rhs: Self) -> Self {
1938 intrinsics::wrapping_add(self, rhs)
1939 }
1940
1941 /// Wrapping (modular) addition with an unsigned integer. Computes
1942 /// `self + rhs`, wrapping around at the boundary of the type.
1943 ///
1944 /// # Examples
1945 ///
1946 /// Basic usage:
1947 ///
1948 /// ```
1949 #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_add_unsigned(27), 127);")]
1950 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.wrapping_add_unsigned(2), ", stringify!($SelfT), "::MIN + 1);")]
1951 /// ```
1952 #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
1953 #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
1954 #[must_use = "this returns the result of the operation, \
1955 without modifying the original"]
1956 #[inline(always)]
1957 pub const fn wrapping_add_unsigned(self, rhs: $UnsignedT) -> Self {
1958 self.wrapping_add(rhs as Self)
1959 }
1960
1961 /// Wrapping (modular) subtraction. Computes `self - rhs`, wrapping around at the
1962 /// boundary of the type.
1963 ///
1964 /// # Examples
1965 ///
1966 /// Basic usage:
1967 ///
1968 /// ```
1969 #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".wrapping_sub(127), -127);")]
1970 #[doc = concat!("assert_eq!((-2", stringify!($SelfT), ").wrapping_sub(", stringify!($SelfT), "::MAX), ", stringify!($SelfT), "::MAX);")]
1971 /// ```
1972 #[stable(feature = "rust1", since = "1.0.0")]
1973 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
1974 #[must_use = "this returns the result of the operation, \
1975 without modifying the original"]
1976 #[inline(always)]
1977 pub const fn wrapping_sub(self, rhs: Self) -> Self {
1978 intrinsics::wrapping_sub(self, rhs)
1979 }
1980
1981 /// Wrapping (modular) subtraction with an unsigned integer. Computes
1982 /// `self - rhs`, wrapping around at the boundary of the type.
1983 ///
1984 /// # Examples
1985 ///
1986 /// Basic usage:
1987 ///
1988 /// ```
1989 #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".wrapping_sub_unsigned(127), -127);")]
1990 #[doc = concat!("assert_eq!((-2", stringify!($SelfT), ").wrapping_sub_unsigned(", stringify!($UnsignedT), "::MAX), -1);")]
1991 /// ```
1992 #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
1993 #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
1994 #[must_use = "this returns the result of the operation, \
1995 without modifying the original"]
1996 #[inline(always)]
1997 pub const fn wrapping_sub_unsigned(self, rhs: $UnsignedT) -> Self {
1998 self.wrapping_sub(rhs as Self)
1999 }
2000
2001 /// Wrapping (modular) multiplication. Computes `self * rhs`, wrapping around at
2002 /// the boundary of the type.
2003 ///
2004 /// # Examples
2005 ///
2006 /// Basic usage:
2007 ///
2008 /// ```
2009 #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".wrapping_mul(12), 120);")]
2010 /// assert_eq!(11i8.wrapping_mul(12), -124);
2011 /// ```
2012 #[stable(feature = "rust1", since = "1.0.0")]
2013 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2014 #[must_use = "this returns the result of the operation, \
2015 without modifying the original"]
2016 #[inline(always)]
2017 pub const fn wrapping_mul(self, rhs: Self) -> Self {
2018 intrinsics::wrapping_mul(self, rhs)
2019 }
2020
2021 /// Wrapping (modular) division. Computes `self / rhs`, wrapping around at the
2022 /// boundary of the type.
2023 ///
2024 /// The only case where such wrapping can occur is when one divides `MIN / -1` on a signed type (where
2025 /// `MIN` is the negative minimal value for the type); this is equivalent to `-MIN`, a positive value
2026 /// that is too large to represent in the type. In such a case, this function returns `MIN` itself.
2027 ///
2028 /// # Panics
2029 ///
2030 /// This function will panic if `rhs` is zero.
2031 ///
2032 /// # Examples
2033 ///
2034 /// Basic usage:
2035 ///
2036 /// ```
2037 #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_div(10), 10);")]
2038 /// assert_eq!((-128i8).wrapping_div(-1), -128);
2039 /// ```
2040 #[stable(feature = "num_wrapping", since = "1.2.0")]
2041 #[rustc_const_stable(feature = "const_wrapping_int_methods", since = "1.52.0")]
2042 #[must_use = "this returns the result of the operation, \
2043 without modifying the original"]
2044 #[inline]
2045 pub const fn wrapping_div(self, rhs: Self) -> Self {
2046 self.overflowing_div(rhs).0
2047 }
2048
2049 /// Wrapping Euclidean division. Computes `self.div_euclid(rhs)`,
2050 /// wrapping around at the boundary of the type.
2051 ///
2052 /// Wrapping will only occur in `MIN / -1` on a signed type (where `MIN` is the negative minimal value
2053 /// for the type). This is equivalent to `-MIN`, a positive value that is too large to represent in the
2054 /// type. In this case, this method returns `MIN` itself.
2055 ///
2056 /// # Panics
2057 ///
2058 /// This function will panic if `rhs` is zero.
2059 ///
2060 /// # Examples
2061 ///
2062 /// Basic usage:
2063 ///
2064 /// ```
2065 #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_div_euclid(10), 10);")]
2066 /// assert_eq!((-128i8).wrapping_div_euclid(-1), -128);
2067 /// ```
2068 #[stable(feature = "euclidean_division", since = "1.38.0")]
2069 #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
2070 #[must_use = "this returns the result of the operation, \
2071 without modifying the original"]
2072 #[inline]
2073 pub const fn wrapping_div_euclid(self, rhs: Self) -> Self {
2074 self.overflowing_div_euclid(rhs).0
2075 }
2076
2077 /// Wrapping (modular) remainder. Computes `self % rhs`, wrapping around at the
2078 /// boundary of the type.
2079 ///
2080 /// Such wrap-around never actually occurs mathematically; implementation artifacts make `x % y`
2081 /// invalid for `MIN / -1` on a signed type (where `MIN` is the negative minimal value). In such a case,
2082 /// this function returns `0`.
2083 ///
2084 /// # Panics
2085 ///
2086 /// This function will panic if `rhs` is zero.
2087 ///
2088 /// # Examples
2089 ///
2090 /// Basic usage:
2091 ///
2092 /// ```
2093 #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_rem(10), 0);")]
2094 /// assert_eq!((-128i8).wrapping_rem(-1), 0);
2095 /// ```
2096 #[stable(feature = "num_wrapping", since = "1.2.0")]
2097 #[rustc_const_stable(feature = "const_wrapping_int_methods", since = "1.52.0")]
2098 #[must_use = "this returns the result of the operation, \
2099 without modifying the original"]
2100 #[inline]
2101 pub const fn wrapping_rem(self, rhs: Self) -> Self {
2102 self.overflowing_rem(rhs).0
2103 }
2104
2105 /// Wrapping Euclidean remainder. Computes `self.rem_euclid(rhs)`, wrapping around
2106 /// at the boundary of the type.
2107 ///
2108 /// Wrapping will only occur in `MIN % -1` on a signed type (where `MIN` is the negative minimal value
2109 /// for the type). In this case, this method returns 0.
2110 ///
2111 /// # Panics
2112 ///
2113 /// This function will panic if `rhs` is zero.
2114 ///
2115 /// # Examples
2116 ///
2117 /// Basic usage:
2118 ///
2119 /// ```
2120 #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_rem_euclid(10), 0);")]
2121 /// assert_eq!((-128i8).wrapping_rem_euclid(-1), 0);
2122 /// ```
2123 #[stable(feature = "euclidean_division", since = "1.38.0")]
2124 #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
2125 #[must_use = "this returns the result of the operation, \
2126 without modifying the original"]
2127 #[inline]
2128 pub const fn wrapping_rem_euclid(self, rhs: Self) -> Self {
2129 self.overflowing_rem_euclid(rhs).0
2130 }
2131
2132 /// Wrapping (modular) negation. Computes `-self`, wrapping around at the boundary
2133 /// of the type.
2134 ///
2135 /// The only case where such wrapping can occur is when one negates `MIN` on a signed type (where `MIN`
2136 /// is the negative minimal value for the type); this is a positive value that is too large to represent
2137 /// in the type. In such a case, this function returns `MIN` itself.
2138 ///
2139 /// # Examples
2140 ///
2141 /// Basic usage:
2142 ///
2143 /// ```
2144 #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_neg(), -100);")]
2145 #[doc = concat!("assert_eq!((-100", stringify!($SelfT), ").wrapping_neg(), 100);")]
2146 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.wrapping_neg(), ", stringify!($SelfT), "::MIN);")]
2147 /// ```
2148 #[stable(feature = "num_wrapping", since = "1.2.0")]
2149 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2150 #[must_use = "this returns the result of the operation, \
2151 without modifying the original"]
2152 #[inline(always)]
2153 pub const fn wrapping_neg(self) -> Self {
2154 (0 as $SelfT).wrapping_sub(self)
2155 }
2156
2157 /// Panic-free bitwise shift-left; yields `self << mask(rhs)`, where `mask` removes
2158 /// any high-order bits of `rhs` that would cause the shift to exceed the bitwidth of the type.
2159 ///
2160 /// Note that this is *not* the same as a rotate-left; the RHS of a wrapping shift-left is restricted to
2161 /// the range of the type, rather than the bits shifted out of the LHS being returned to the other end.
2162 /// The primitive integer types all implement a [`rotate_left`](Self::rotate_left) function,
2163 /// which may be what you want instead.
2164 ///
2165 /// # Examples
2166 ///
2167 /// Basic usage:
2168 ///
2169 /// ```
2170 #[doc = concat!("assert_eq!((-1", stringify!($SelfT), ").wrapping_shl(7), -128);")]
2171 #[doc = concat!("assert_eq!((-1", stringify!($SelfT), ").wrapping_shl(128), -1);")]
2172 /// ```
2173 #[stable(feature = "num_wrapping", since = "1.2.0")]
2174 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2175 #[must_use = "this returns the result of the operation, \
2176 without modifying the original"]
2177 #[inline(always)]
2178 pub const fn wrapping_shl(self, rhs: u32) -> Self {
2179 // SAFETY: the masking by the bitsize of the type ensures that we do not shift
2180 // out of bounds
2181 unsafe {
2182 self.unchecked_shl(rhs & (Self::BITS - 1))
2183 }
2184 }
2185
2186 /// Panic-free bitwise shift-right; yields `self >> mask(rhs)`, where `mask`
2187 /// removes any high-order bits of `rhs` that would cause the shift to exceed the bitwidth of the type.
2188 ///
2189 /// Note that this is *not* the same as a rotate-right; the RHS of a wrapping shift-right is restricted
2190 /// to the range of the type, rather than the bits shifted out of the LHS being returned to the other
2191 /// end. The primitive integer types all implement a [`rotate_right`](Self::rotate_right) function,
2192 /// which may be what you want instead.
2193 ///
2194 /// # Examples
2195 ///
2196 /// Basic usage:
2197 ///
2198 /// ```
2199 #[doc = concat!("assert_eq!((-128", stringify!($SelfT), ").wrapping_shr(7), -1);")]
2200 /// assert_eq!((-128i16).wrapping_shr(64), -128);
2201 /// ```
2202 #[stable(feature = "num_wrapping", since = "1.2.0")]
2203 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2204 #[must_use = "this returns the result of the operation, \
2205 without modifying the original"]
2206 #[inline(always)]
2207 pub const fn wrapping_shr(self, rhs: u32) -> Self {
2208 // SAFETY: the masking by the bitsize of the type ensures that we do not shift
2209 // out of bounds
2210 unsafe {
2211 self.unchecked_shr(rhs & (Self::BITS - 1))
2212 }
2213 }
2214
2215 /// Wrapping (modular) absolute value. Computes `self.abs()`, wrapping around at
2216 /// the boundary of the type.
2217 ///
2218 /// The only case where such wrapping can occur is when one takes the absolute value of the negative
2219 /// minimal value for the type; this is a positive value that is too large to represent in the type. In
2220 /// such a case, this function returns `MIN` itself.
2221 ///
2222 /// # Examples
2223 ///
2224 /// Basic usage:
2225 ///
2226 /// ```
2227 #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_abs(), 100);")]
2228 #[doc = concat!("assert_eq!((-100", stringify!($SelfT), ").wrapping_abs(), 100);")]
2229 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.wrapping_abs(), ", stringify!($SelfT), "::MIN);")]
2230 /// assert_eq!((-128i8).wrapping_abs() as u8, 128);
2231 /// ```
2232 #[stable(feature = "no_panic_abs", since = "1.13.0")]
2233 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2234 #[must_use = "this returns the result of the operation, \
2235 without modifying the original"]
2236 #[allow(unused_attributes)]
2237 #[inline]
2238 pub const fn wrapping_abs(self) -> Self {
2239 if self.is_negative() {
2240 self.wrapping_neg()
2241 } else {
2242 self
2243 }
2244 }
2245
2246 /// Computes the absolute value of `self` without any wrapping
2247 /// or panicking.
2248 ///
2249 ///
2250 /// # Examples
2251 ///
2252 /// Basic usage:
2253 ///
2254 /// ```
2255 #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".unsigned_abs(), 100", stringify!($UnsignedT), ");")]
2256 #[doc = concat!("assert_eq!((-100", stringify!($SelfT), ").unsigned_abs(), 100", stringify!($UnsignedT), ");")]
2257 /// assert_eq!((-128i8).unsigned_abs(), 128u8);
2258 /// ```
2259 #[stable(feature = "unsigned_abs", since = "1.51.0")]
2260 #[rustc_const_stable(feature = "unsigned_abs", since = "1.51.0")]
2261 #[must_use = "this returns the result of the operation, \
2262 without modifying the original"]
2263 #[inline]
2264 pub const fn unsigned_abs(self) -> $UnsignedT {
2265 self.wrapping_abs() as $UnsignedT
2266 }
2267
2268 /// Wrapping (modular) exponentiation. Computes `self.pow(exp)`,
2269 /// wrapping around at the boundary of the type.
2270 ///
2271 /// # Examples
2272 ///
2273 /// Basic usage:
2274 ///
2275 /// ```
2276 #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".wrapping_pow(4), 81);")]
2277 /// assert_eq!(3i8.wrapping_pow(5), -13);
2278 /// assert_eq!(3i8.wrapping_pow(6), -39);
2279 /// ```
2280 #[stable(feature = "no_panic_pow", since = "1.34.0")]
2281 #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
2282 #[must_use = "this returns the result of the operation, \
2283 without modifying the original"]
2284 #[inline]
2285 pub const fn wrapping_pow(self, mut exp: u32) -> Self {
2286 if exp == 0 {
2287 return 1;
2288 }
2289 let mut base = self;
2290 let mut acc: Self = 1;
2291
2292 if intrinsics::is_val_statically_known(exp) {
2293 while exp > 1 {
2294 if (exp & 1) == 1 {
2295 acc = acc.wrapping_mul(base);
2296 }
2297 exp /= 2;
2298 base = base.wrapping_mul(base);
2299 }
2300
2301 // since exp!=0, finally the exp must be 1.
2302 // Deal with the final bit of the exponent separately, since
2303 // squaring the base afterwards is not necessary.
2304 acc.wrapping_mul(base)
2305 } else {
2306 // This is faster than the above when the exponent is not known
2307 // at compile time. We can't use the same code for the constant
2308 // exponent case because LLVM is currently unable to unroll
2309 // this loop.
2310 loop {
2311 if (exp & 1) == 1 {
2312 acc = acc.wrapping_mul(base);
2313 // since exp!=0, finally the exp must be 1.
2314 if exp == 1 {
2315 return acc;
2316 }
2317 }
2318 exp /= 2;
2319 base = base.wrapping_mul(base);
2320 }
2321 }
2322 }
2323
2324 /// Calculates `self` + `rhs`.
2325 ///
2326 /// Returns a tuple of the addition along with a boolean indicating
2327 /// whether an arithmetic overflow would occur. If an overflow would have
2328 /// occurred then the wrapped value is returned.
2329 ///
2330 /// # Examples
2331 ///
2332 /// Basic usage:
2333 ///
2334 /// ```
2335 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_add(2), (7, false));")]
2336 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.overflowing_add(1), (", stringify!($SelfT), "::MIN, true));")]
2337 /// ```
2338 #[stable(feature = "wrapping", since = "1.7.0")]
2339 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2340 #[must_use = "this returns the result of the operation, \
2341 without modifying the original"]
2342 #[inline(always)]
2343 pub const fn overflowing_add(self, rhs: Self) -> (Self, bool) {
2344 let (a, b) = intrinsics::add_with_overflow(self as $ActualT, rhs as $ActualT);
2345 (a as Self, b)
2346 }
2347
2348 /// Calculates `self` + `rhs` + `carry` and checks for overflow.
2349 ///
2350 /// Performs "ternary addition" of two integer operands and a carry-in
2351 /// bit, and returns a tuple of the sum along with a boolean indicating
2352 /// whether an arithmetic overflow would occur. On overflow, the wrapped
2353 /// value is returned.
2354 ///
2355 /// This allows chaining together multiple additions to create a wider
2356 /// addition, and can be useful for bignum addition. This method should
2357 /// only be used for the most significant word; for the less significant
2358 /// words the unsigned method
2359 #[doc = concat!("[`", stringify!($UnsignedT), "::carrying_add`]")]
2360 /// should be used.
2361 ///
2362 /// The output boolean returned by this method is *not* a carry flag,
2363 /// and should *not* be added to a more significant word.
2364 ///
2365 /// If the input carry is false, this method is equivalent to
2366 /// [`overflowing_add`](Self::overflowing_add).
2367 ///
2368 /// # Examples
2369 ///
2370 /// ```
2371 /// #![feature(bigint_helper_methods)]
2372 /// // Only the most significant word is signed.
2373 /// //
2374 #[doc = concat!("// 10 MAX (a = 10 × 2^", stringify!($BITS), " + 2^", stringify!($BITS), " - 1)")]
2375 #[doc = concat!("// + -5 9 (b = -5 × 2^", stringify!($BITS), " + 9)")]
2376 /// // ---------
2377 #[doc = concat!("// 6 8 (sum = 6 × 2^", stringify!($BITS), " + 8)")]
2378 ///
2379 #[doc = concat!("let (a1, a0): (", stringify!($SelfT), ", ", stringify!($UnsignedT), ") = (10, ", stringify!($UnsignedT), "::MAX);")]
2380 #[doc = concat!("let (b1, b0): (", stringify!($SelfT), ", ", stringify!($UnsignedT), ") = (-5, 9);")]
2381 /// let carry0 = false;
2382 ///
2383 #[doc = concat!("// ", stringify!($UnsignedT), "::carrying_add for the less significant words")]
2384 /// let (sum0, carry1) = a0.carrying_add(b0, carry0);
2385 /// assert_eq!(carry1, true);
2386 ///
2387 #[doc = concat!("// ", stringify!($SelfT), "::carrying_add for the most significant word")]
2388 /// let (sum1, overflow) = a1.carrying_add(b1, carry1);
2389 /// assert_eq!(overflow, false);
2390 ///
2391 /// assert_eq!((sum1, sum0), (6, 8));
2392 /// ```
2393 #[unstable(feature = "bigint_helper_methods", issue = "85532")]
2394 #[must_use = "this returns the result of the operation, \
2395 without modifying the original"]
2396 #[inline]
2397 pub const fn carrying_add(self, rhs: Self, carry: bool) -> (Self, bool) {
2398 // note: longer-term this should be done via an intrinsic.
2399 // note: no intermediate overflow is required (https://github.com/rust-lang/rust/issues/85532#issuecomment-1032214946).
2400 let (a, b) = self.overflowing_add(rhs);
2401 let (c, d) = a.overflowing_add(carry as $SelfT);
2402 (c, b != d)
2403 }
2404
2405 /// Calculates `self` + `rhs` with an unsigned `rhs`.
2406 ///
2407 /// Returns a tuple of the addition along with a boolean indicating
2408 /// whether an arithmetic overflow would occur. If an overflow would
2409 /// have occurred then the wrapped value is returned.
2410 ///
2411 /// # Examples
2412 ///
2413 /// Basic usage:
2414 ///
2415 /// ```
2416 #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".overflowing_add_unsigned(2), (3, false));")]
2417 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN).overflowing_add_unsigned(", stringify!($UnsignedT), "::MAX), (", stringify!($SelfT), "::MAX, false));")]
2418 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).overflowing_add_unsigned(3), (", stringify!($SelfT), "::MIN, true));")]
2419 /// ```
2420 #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
2421 #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
2422 #[must_use = "this returns the result of the operation, \
2423 without modifying the original"]
2424 #[inline]
2425 pub const fn overflowing_add_unsigned(self, rhs: $UnsignedT) -> (Self, bool) {
2426 let rhs = rhs as Self;
2427 let (res, overflowed) = self.overflowing_add(rhs);
2428 (res, overflowed ^ (rhs < 0))
2429 }
2430
2431 /// Calculates `self` - `rhs`.
2432 ///
2433 /// Returns a tuple of the subtraction along with a boolean indicating whether an arithmetic overflow
2434 /// would occur. If an overflow would have occurred then the wrapped value is returned.
2435 ///
2436 /// # Examples
2437 ///
2438 /// Basic usage:
2439 ///
2440 /// ```
2441 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_sub(2), (3, false));")]
2442 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.overflowing_sub(1), (", stringify!($SelfT), "::MAX, true));")]
2443 /// ```
2444 #[stable(feature = "wrapping", since = "1.7.0")]
2445 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2446 #[must_use = "this returns the result of the operation, \
2447 without modifying the original"]
2448 #[inline(always)]
2449 pub const fn overflowing_sub(self, rhs: Self) -> (Self, bool) {
2450 let (a, b) = intrinsics::sub_with_overflow(self as $ActualT, rhs as $ActualT);
2451 (a as Self, b)
2452 }
2453
2454 /// Calculates `self` − `rhs` − `borrow` and checks for
2455 /// overflow.
2456 ///
2457 /// Performs "ternary subtraction" by subtracting both an integer
2458 /// operand and a borrow-in bit from `self`, and returns a tuple of the
2459 /// difference along with a boolean indicating whether an arithmetic
2460 /// overflow would occur. On overflow, the wrapped value is returned.
2461 ///
2462 /// This allows chaining together multiple subtractions to create a
2463 /// wider subtraction, and can be useful for bignum subtraction. This
2464 /// method should only be used for the most significant word; for the
2465 /// less significant words the unsigned method
2466 #[doc = concat!("[`", stringify!($UnsignedT), "::borrowing_sub`]")]
2467 /// should be used.
2468 ///
2469 /// The output boolean returned by this method is *not* a borrow flag,
2470 /// and should *not* be subtracted from a more significant word.
2471 ///
2472 /// If the input borrow is false, this method is equivalent to
2473 /// [`overflowing_sub`](Self::overflowing_sub).
2474 ///
2475 /// # Examples
2476 ///
2477 /// ```
2478 /// #![feature(bigint_helper_methods)]
2479 /// // Only the most significant word is signed.
2480 /// //
2481 #[doc = concat!("// 6 8 (a = 6 × 2^", stringify!($BITS), " + 8)")]
2482 #[doc = concat!("// - -5 9 (b = -5 × 2^", stringify!($BITS), " + 9)")]
2483 /// // ---------
2484 #[doc = concat!("// 10 MAX (diff = 10 × 2^", stringify!($BITS), " + 2^", stringify!($BITS), " - 1)")]
2485 ///
2486 #[doc = concat!("let (a1, a0): (", stringify!($SelfT), ", ", stringify!($UnsignedT), ") = (6, 8);")]
2487 #[doc = concat!("let (b1, b0): (", stringify!($SelfT), ", ", stringify!($UnsignedT), ") = (-5, 9);")]
2488 /// let borrow0 = false;
2489 ///
2490 #[doc = concat!("// ", stringify!($UnsignedT), "::borrowing_sub for the less significant words")]
2491 /// let (diff0, borrow1) = a0.borrowing_sub(b0, borrow0);
2492 /// assert_eq!(borrow1, true);
2493 ///
2494 #[doc = concat!("// ", stringify!($SelfT), "::borrowing_sub for the most significant word")]
2495 /// let (diff1, overflow) = a1.borrowing_sub(b1, borrow1);
2496 /// assert_eq!(overflow, false);
2497 ///
2498 #[doc = concat!("assert_eq!((diff1, diff0), (10, ", stringify!($UnsignedT), "::MAX));")]
2499 /// ```
2500 #[unstable(feature = "bigint_helper_methods", issue = "85532")]
2501 #[must_use = "this returns the result of the operation, \
2502 without modifying the original"]
2503 #[inline]
2504 pub const fn borrowing_sub(self, rhs: Self, borrow: bool) -> (Self, bool) {
2505 // note: longer-term this should be done via an intrinsic.
2506 // note: no intermediate overflow is required (https://github.com/rust-lang/rust/issues/85532#issuecomment-1032214946).
2507 let (a, b) = self.overflowing_sub(rhs);
2508 let (c, d) = a.overflowing_sub(borrow as $SelfT);
2509 (c, b != d)
2510 }
2511
2512 /// Calculates `self` - `rhs` with an unsigned `rhs`.
2513 ///
2514 /// Returns a tuple of the subtraction along with a boolean indicating
2515 /// whether an arithmetic overflow would occur. If an overflow would
2516 /// have occurred then the wrapped value is returned.
2517 ///
2518 /// # Examples
2519 ///
2520 /// Basic usage:
2521 ///
2522 /// ```
2523 #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".overflowing_sub_unsigned(2), (-1, false));")]
2524 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX).overflowing_sub_unsigned(", stringify!($UnsignedT), "::MAX), (", stringify!($SelfT), "::MIN, false));")]
2525 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 2).overflowing_sub_unsigned(3), (", stringify!($SelfT), "::MAX, true));")]
2526 /// ```
2527 #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
2528 #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
2529 #[must_use = "this returns the result of the operation, \
2530 without modifying the original"]
2531 #[inline]
2532 pub const fn overflowing_sub_unsigned(self, rhs: $UnsignedT) -> (Self, bool) {
2533 let rhs = rhs as Self;
2534 let (res, overflowed) = self.overflowing_sub(rhs);
2535 (res, overflowed ^ (rhs < 0))
2536 }
2537
2538 /// Calculates the multiplication of `self` and `rhs`.
2539 ///
2540 /// Returns a tuple of the multiplication along with a boolean indicating whether an arithmetic overflow
2541 /// would occur. If an overflow would have occurred then the wrapped value is returned.
2542 ///
2543 /// # Examples
2544 ///
2545 /// Basic usage:
2546 ///
2547 /// ```
2548 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_mul(2), (10, false));")]
2549 /// assert_eq!(1_000_000_000i32.overflowing_mul(10), (1410065408, true));
2550 /// ```
2551 #[stable(feature = "wrapping", since = "1.7.0")]
2552 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2553 #[must_use = "this returns the result of the operation, \
2554 without modifying the original"]
2555 #[inline(always)]
2556 pub const fn overflowing_mul(self, rhs: Self) -> (Self, bool) {
2557 let (a, b) = intrinsics::mul_with_overflow(self as $ActualT, rhs as $ActualT);
2558 (a as Self, b)
2559 }
2560
2561 /// Calculates the complete product `self * rhs` without the possibility to overflow.
2562 ///
2563 /// This returns the low-order (wrapping) bits and the high-order (overflow) bits
2564 /// of the result as two separate values, in that order.
2565 ///
2566 /// If you also need to add a carry to the wide result, then you want
2567 /// [`Self::carrying_mul`] instead.
2568 ///
2569 /// # Examples
2570 ///
2571 /// Basic usage:
2572 ///
2573 /// Please note that this example is shared between integer types.
2574 /// Which explains why `i32` is used here.
2575 ///
2576 /// ```
2577 /// #![feature(bigint_helper_methods)]
2578 /// assert_eq!(5i32.widening_mul(-2), (4294967286, -1));
2579 /// assert_eq!(1_000_000_000i32.widening_mul(-10), (2884901888, -3));
2580 /// ```
2581 #[unstable(feature = "bigint_helper_methods", issue = "85532")]
2582 #[rustc_const_unstable(feature = "bigint_helper_methods", issue = "85532")]
2583 #[must_use = "this returns the result of the operation, \
2584 without modifying the original"]
2585 #[inline]
2586 pub const fn widening_mul(self, rhs: Self) -> ($UnsignedT, Self) {
2587 Self::carrying_mul_add(self, rhs, 0, 0)
2588 }
2589
2590 /// Calculates the "full multiplication" `self * rhs + carry`
2591 /// without the possibility to overflow.
2592 ///
2593 /// This returns the low-order (wrapping) bits and the high-order (overflow) bits
2594 /// of the result as two separate values, in that order.
2595 ///
2596 /// Performs "long multiplication" which takes in an extra amount to add, and may return an
2597 /// additional amount of overflow. This allows for chaining together multiple
2598 /// multiplications to create "big integers" which represent larger values.
2599 ///
2600 /// If you don't need the `carry`, then you can use [`Self::widening_mul`] instead.
2601 ///
2602 /// # Examples
2603 ///
2604 /// Basic usage:
2605 ///
2606 /// Please note that this example is shared between integer types.
2607 /// Which explains why `i32` is used here.
2608 ///
2609 /// ```
2610 /// #![feature(bigint_helper_methods)]
2611 /// assert_eq!(5i32.carrying_mul(-2, 0), (4294967286, -1));
2612 /// assert_eq!(5i32.carrying_mul(-2, 10), (0, 0));
2613 /// assert_eq!(1_000_000_000i32.carrying_mul(-10, 0), (2884901888, -3));
2614 /// assert_eq!(1_000_000_000i32.carrying_mul(-10, 10), (2884901898, -3));
2615 #[doc = concat!("assert_eq!(",
2616 stringify!($SelfT), "::MAX.carrying_mul(", stringify!($SelfT), "::MAX, ", stringify!($SelfT), "::MAX), ",
2617 "(", stringify!($SelfT), "::MAX.unsigned_abs() + 1, ", stringify!($SelfT), "::MAX / 2));"
2618 )]
2619 /// ```
2620 #[unstable(feature = "bigint_helper_methods", issue = "85532")]
2621 #[rustc_const_unstable(feature = "bigint_helper_methods", issue = "85532")]
2622 #[must_use = "this returns the result of the operation, \
2623 without modifying the original"]
2624 #[inline]
2625 pub const fn carrying_mul(self, rhs: Self, carry: Self) -> ($UnsignedT, Self) {
2626 Self::carrying_mul_add(self, rhs, carry, 0)
2627 }
2628
2629 /// Calculates the "full multiplication" `self * rhs + carry1 + carry2`
2630 /// without the possibility to overflow.
2631 ///
2632 /// This returns the low-order (wrapping) bits and the high-order (overflow) bits
2633 /// of the result as two separate values, in that order.
2634 ///
2635 /// Performs "long multiplication" which takes in an extra amount to add, and may return an
2636 /// additional amount of overflow. This allows for chaining together multiple
2637 /// multiplications to create "big integers" which represent larger values.
2638 ///
2639 /// If you don't need either `carry`, then you can use [`Self::widening_mul`] instead,
2640 /// and if you only need one `carry`, then you can use [`Self::carrying_mul`] instead.
2641 ///
2642 /// # Examples
2643 ///
2644 /// Basic usage:
2645 ///
2646 /// Please note that this example is shared between integer types.
2647 /// Which explains why `i32` is used here.
2648 ///
2649 /// ```
2650 /// #![feature(bigint_helper_methods)]
2651 /// assert_eq!(5i32.carrying_mul_add(-2, 0, 0), (4294967286, -1));
2652 /// assert_eq!(5i32.carrying_mul_add(-2, 10, 10), (10, 0));
2653 /// assert_eq!(1_000_000_000i32.carrying_mul_add(-10, 0, 0), (2884901888, -3));
2654 /// assert_eq!(1_000_000_000i32.carrying_mul_add(-10, 10, 10), (2884901908, -3));
2655 #[doc = concat!("assert_eq!(",
2656 stringify!($SelfT), "::MAX.carrying_mul_add(", stringify!($SelfT), "::MAX, ", stringify!($SelfT), "::MAX, ", stringify!($SelfT), "::MAX), ",
2657 "(", stringify!($UnsignedT), "::MAX, ", stringify!($SelfT), "::MAX / 2));"
2658 )]
2659 /// ```
2660 #[unstable(feature = "bigint_helper_methods", issue = "85532")]
2661 #[rustc_const_unstable(feature = "bigint_helper_methods", issue = "85532")]
2662 #[must_use = "this returns the result of the operation, \
2663 without modifying the original"]
2664 #[inline]
2665 pub const fn carrying_mul_add(self, rhs: Self, carry: Self, add: Self) -> ($UnsignedT, Self) {
2666 intrinsics::carrying_mul_add(self, rhs, carry, add)
2667 }
2668
2669 /// Calculates the divisor when `self` is divided by `rhs`.
2670 ///
2671 /// Returns a tuple of the divisor along with a boolean indicating whether an arithmetic overflow would
2672 /// occur. If an overflow would occur then self is returned.
2673 ///
2674 /// # Panics
2675 ///
2676 /// This function will panic if `rhs` is zero.
2677 ///
2678 /// # Examples
2679 ///
2680 /// Basic usage:
2681 ///
2682 /// ```
2683 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_div(2), (2, false));")]
2684 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.overflowing_div(-1), (", stringify!($SelfT), "::MIN, true));")]
2685 /// ```
2686 #[inline]
2687 #[stable(feature = "wrapping", since = "1.7.0")]
2688 #[rustc_const_stable(feature = "const_overflowing_int_methods", since = "1.52.0")]
2689 #[must_use = "this returns the result of the operation, \
2690 without modifying the original"]
2691 pub const fn overflowing_div(self, rhs: Self) -> (Self, bool) {
2692 // Using `&` helps LLVM see that it is the same check made in division.
2693 if intrinsics::unlikely((self == Self::MIN) & (rhs == -1)) {
2694 (self, true)
2695 } else {
2696 (self / rhs, false)
2697 }
2698 }
2699
2700 /// Calculates the quotient of Euclidean division `self.div_euclid(rhs)`.
2701 ///
2702 /// Returns a tuple of the divisor along with a boolean indicating whether an arithmetic overflow would
2703 /// occur. If an overflow would occur then `self` is returned.
2704 ///
2705 /// # Panics
2706 ///
2707 /// This function will panic if `rhs` is zero.
2708 ///
2709 /// # Examples
2710 ///
2711 /// Basic usage:
2712 ///
2713 /// ```
2714 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_div_euclid(2), (2, false));")]
2715 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.overflowing_div_euclid(-1), (", stringify!($SelfT), "::MIN, true));")]
2716 /// ```
2717 #[inline]
2718 #[stable(feature = "euclidean_division", since = "1.38.0")]
2719 #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
2720 #[must_use = "this returns the result of the operation, \
2721 without modifying the original"]
2722 pub const fn overflowing_div_euclid(self, rhs: Self) -> (Self, bool) {
2723 // Using `&` helps LLVM see that it is the same check made in division.
2724 if intrinsics::unlikely((self == Self::MIN) & (rhs == -1)) {
2725 (self, true)
2726 } else {
2727 (self.div_euclid(rhs), false)
2728 }
2729 }
2730
2731 /// Calculates the remainder when `self` is divided by `rhs`.
2732 ///
2733 /// Returns a tuple of the remainder after dividing along with a boolean indicating whether an
2734 /// arithmetic overflow would occur. If an overflow would occur then 0 is returned.
2735 ///
2736 /// # Panics
2737 ///
2738 /// This function will panic if `rhs` is zero.
2739 ///
2740 /// # Examples
2741 ///
2742 /// Basic usage:
2743 ///
2744 /// ```
2745 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_rem(2), (1, false));")]
2746 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.overflowing_rem(-1), (0, true));")]
2747 /// ```
2748 #[inline]
2749 #[stable(feature = "wrapping", since = "1.7.0")]
2750 #[rustc_const_stable(feature = "const_overflowing_int_methods", since = "1.52.0")]
2751 #[must_use = "this returns the result of the operation, \
2752 without modifying the original"]
2753 pub const fn overflowing_rem(self, rhs: Self) -> (Self, bool) {
2754 if intrinsics::unlikely(rhs == -1) {
2755 (0, self == Self::MIN)
2756 } else {
2757 (self % rhs, false)
2758 }
2759 }
2760
2761
2762 /// Overflowing Euclidean remainder. Calculates `self.rem_euclid(rhs)`.
2763 ///
2764 /// Returns a tuple of the remainder after dividing along with a boolean indicating whether an
2765 /// arithmetic overflow would occur. If an overflow would occur then 0 is returned.
2766 ///
2767 /// # Panics
2768 ///
2769 /// This function will panic if `rhs` is zero.
2770 ///
2771 /// # Examples
2772 ///
2773 /// Basic usage:
2774 ///
2775 /// ```
2776 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_rem_euclid(2), (1, false));")]
2777 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.overflowing_rem_euclid(-1), (0, true));")]
2778 /// ```
2779 #[stable(feature = "euclidean_division", since = "1.38.0")]
2780 #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
2781 #[must_use = "this returns the result of the operation, \
2782 without modifying the original"]
2783 #[inline]
2784 #[track_caller]
2785 pub const fn overflowing_rem_euclid(self, rhs: Self) -> (Self, bool) {
2786 if intrinsics::unlikely(rhs == -1) {
2787 (0, self == Self::MIN)
2788 } else {
2789 (self.rem_euclid(rhs), false)
2790 }
2791 }
2792
2793
2794 /// Negates self, overflowing if this is equal to the minimum value.
2795 ///
2796 /// Returns a tuple of the negated version of self along with a boolean indicating whether an overflow
2797 /// happened. If `self` is the minimum value (e.g., `i32::MIN` for values of type `i32`), then the
2798 /// minimum value will be returned again and `true` will be returned for an overflow happening.
2799 ///
2800 /// # Examples
2801 ///
2802 /// Basic usage:
2803 ///
2804 /// ```
2805 #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".overflowing_neg(), (-2, false));")]
2806 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.overflowing_neg(), (", stringify!($SelfT), "::MIN, true));")]
2807 /// ```
2808 #[inline]
2809 #[stable(feature = "wrapping", since = "1.7.0")]
2810 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2811 #[must_use = "this returns the result of the operation, \
2812 without modifying the original"]
2813 #[allow(unused_attributes)]
2814 pub const fn overflowing_neg(self) -> (Self, bool) {
2815 if intrinsics::unlikely(self == Self::MIN) {
2816 (Self::MIN, true)
2817 } else {
2818 (-self, false)
2819 }
2820 }
2821
2822 /// Shifts self left by `rhs` bits.
2823 ///
2824 /// Returns a tuple of the shifted version of self along with a boolean indicating whether the shift
2825 /// value was larger than or equal to the number of bits. If the shift value is too large, then value is
2826 /// masked (N-1) where N is the number of bits, and this value is then used to perform the shift.
2827 ///
2828 /// # Examples
2829 ///
2830 /// Basic usage:
2831 ///
2832 /// ```
2833 #[doc = concat!("assert_eq!(0x1", stringify!($SelfT),".overflowing_shl(4), (0x10, false));")]
2834 /// assert_eq!(0x1i32.overflowing_shl(36), (0x10, true));
2835 #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".overflowing_shl(", stringify!($BITS_MINUS_ONE), "), (0, false));")]
2836 /// ```
2837 #[stable(feature = "wrapping", since = "1.7.0")]
2838 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2839 #[must_use = "this returns the result of the operation, \
2840 without modifying the original"]
2841 #[inline]
2842 pub const fn overflowing_shl(self, rhs: u32) -> (Self, bool) {
2843 (self.wrapping_shl(rhs), rhs >= Self::BITS)
2844 }
2845
2846 /// Shifts self right by `rhs` bits.
2847 ///
2848 /// Returns a tuple of the shifted version of self along with a boolean indicating whether the shift
2849 /// value was larger than or equal to the number of bits. If the shift value is too large, then value is
2850 /// masked (N-1) where N is the number of bits, and this value is then used to perform the shift.
2851 ///
2852 /// # Examples
2853 ///
2854 /// Basic usage:
2855 ///
2856 /// ```
2857 #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".overflowing_shr(4), (0x1, false));")]
2858 /// assert_eq!(0x10i32.overflowing_shr(36), (0x1, true));
2859 /// ```
2860 #[stable(feature = "wrapping", since = "1.7.0")]
2861 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2862 #[must_use = "this returns the result of the operation, \
2863 without modifying the original"]
2864 #[inline]
2865 pub const fn overflowing_shr(self, rhs: u32) -> (Self, bool) {
2866 (self.wrapping_shr(rhs), rhs >= Self::BITS)
2867 }
2868
2869 /// Computes the absolute value of `self`.
2870 ///
2871 /// Returns a tuple of the absolute version of self along with a boolean indicating whether an overflow
2872 /// happened. If self is the minimum value
2873 #[doc = concat!("(e.g., ", stringify!($SelfT), "::MIN for values of type ", stringify!($SelfT), "),")]
2874 /// then the minimum value will be returned again and true will be returned
2875 /// for an overflow happening.
2876 ///
2877 /// # Examples
2878 ///
2879 /// Basic usage:
2880 ///
2881 /// ```
2882 #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".overflowing_abs(), (10, false));")]
2883 #[doc = concat!("assert_eq!((-10", stringify!($SelfT), ").overflowing_abs(), (10, false));")]
2884 #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN).overflowing_abs(), (", stringify!($SelfT), "::MIN, true));")]
2885 /// ```
2886 #[stable(feature = "no_panic_abs", since = "1.13.0")]
2887 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2888 #[must_use = "this returns the result of the operation, \
2889 without modifying the original"]
2890 #[inline]
2891 pub const fn overflowing_abs(self) -> (Self, bool) {
2892 (self.wrapping_abs(), self == Self::MIN)
2893 }
2894
2895 /// Raises self to the power of `exp`, using exponentiation by squaring.
2896 ///
2897 /// Returns a tuple of the exponentiation along with a bool indicating
2898 /// whether an overflow happened.
2899 ///
2900 /// # Examples
2901 ///
2902 /// Basic usage:
2903 ///
2904 /// ```
2905 #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".overflowing_pow(4), (81, false));")]
2906 /// assert_eq!(3i8.overflowing_pow(5), (-13, true));
2907 /// ```
2908 #[stable(feature = "no_panic_pow", since = "1.34.0")]
2909 #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
2910 #[must_use = "this returns the result of the operation, \
2911 without modifying the original"]
2912 #[inline]
2913 pub const fn overflowing_pow(self, mut exp: u32) -> (Self, bool) {
2914 if exp == 0 {
2915 return (1,false);
2916 }
2917 let mut base = self;
2918 let mut acc: Self = 1;
2919 let mut overflown = false;
2920 // Scratch space for storing results of overflowing_mul.
2921 let mut r;
2922
2923 loop {
2924 if (exp & 1) == 1 {
2925 r = acc.overflowing_mul(base);
2926 // since exp!=0, finally the exp must be 1.
2927 if exp == 1 {
2928 r.1 |= overflown;
2929 return r;
2930 }
2931 acc = r.0;
2932 overflown |= r.1;
2933 }
2934 exp /= 2;
2935 r = base.overflowing_mul(base);
2936 base = r.0;
2937 overflown |= r.1;
2938 }
2939 }
2940
2941 /// Raises self to the power of `exp`, using exponentiation by squaring.
2942 ///
2943 /// # Examples
2944 ///
2945 /// Basic usage:
2946 ///
2947 /// ```
2948 #[doc = concat!("let x: ", stringify!($SelfT), " = 2; // or any other integer type")]
2949 ///
2950 /// assert_eq!(x.pow(5), 32);
2951 /// ```
2952 #[stable(feature = "rust1", since = "1.0.0")]
2953 #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
2954 #[must_use = "this returns the result of the operation, \
2955 without modifying the original"]
2956 #[inline]
2957 #[rustc_inherit_overflow_checks]
2958 pub const fn pow(self, mut exp: u32) -> Self {
2959 if exp == 0 {
2960 return 1;
2961 }
2962 let mut base = self;
2963 let mut acc = 1;
2964
2965 if intrinsics::is_val_statically_known(exp) {
2966 while exp > 1 {
2967 if (exp & 1) == 1 {
2968 acc = acc * base;
2969 }
2970 exp /= 2;
2971 base = base * base;
2972 }
2973
2974 // since exp!=0, finally the exp must be 1.
2975 // Deal with the final bit of the exponent separately, since
2976 // squaring the base afterwards is not necessary and may cause a
2977 // needless overflow.
2978 acc * base
2979 } else {
2980 // This is faster than the above when the exponent is not known
2981 // at compile time. We can't use the same code for the constant
2982 // exponent case because LLVM is currently unable to unroll
2983 // this loop.
2984 loop {
2985 if (exp & 1) == 1 {
2986 acc = acc * base;
2987 // since exp!=0, finally the exp must be 1.
2988 if exp == 1 {
2989 return acc;
2990 }
2991 }
2992 exp /= 2;
2993 base = base * base;
2994 }
2995 }
2996 }
2997
2998 /// Returns the square root of the number, rounded down.
2999 ///
3000 /// # Panics
3001 ///
3002 /// This function will panic if `self` is negative.
3003 ///
3004 /// # Examples
3005 ///
3006 /// Basic usage:
3007 /// ```
3008 #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".isqrt(), 3);")]
3009 /// ```
3010 #[stable(feature = "isqrt", since = "1.84.0")]
3011 #[rustc_const_stable(feature = "isqrt", since = "1.84.0")]
3012 #[must_use = "this returns the result of the operation, \
3013 without modifying the original"]
3014 #[inline]
3015 #[track_caller]
3016 pub const fn isqrt(self) -> Self {
3017 match self.checked_isqrt() {
3018 Some(sqrt) => sqrt,
3019 None => crate::num::int_sqrt::panic_for_negative_argument(),
3020 }
3021 }
3022
3023 /// Calculates the quotient of Euclidean division of `self` by `rhs`.
3024 ///
3025 /// This computes the integer `q` such that `self = q * rhs + r`, with
3026 /// `r = self.rem_euclid(rhs)` and `0 <= r < abs(rhs)`.
3027 ///
3028 /// In other words, the result is `self / rhs` rounded to the integer `q`
3029 /// such that `self >= q * rhs`.
3030 /// If `self > 0`, this is equal to rounding towards zero (the default in Rust);
3031 /// if `self < 0`, this is equal to rounding away from zero (towards +/- infinity).
3032 /// If `rhs > 0`, this is equal to rounding towards -infinity;
3033 /// if `rhs < 0`, this is equal to rounding towards +infinity.
3034 ///
3035 /// # Panics
3036 ///
3037 /// This function will panic if `rhs` is zero or if `self` is `Self::MIN`
3038 /// and `rhs` is -1. This behavior is not affected by the `overflow-checks` flag.
3039 ///
3040 /// # Examples
3041 ///
3042 /// Basic usage:
3043 ///
3044 /// ```
3045 #[doc = concat!("let a: ", stringify!($SelfT), " = 7; // or any other integer type")]
3046 /// let b = 4;
3047 ///
3048 /// assert_eq!(a.div_euclid(b), 1); // 7 >= 4 * 1
3049 /// assert_eq!(a.div_euclid(-b), -1); // 7 >= -4 * -1
3050 /// assert_eq!((-a).div_euclid(b), -2); // -7 >= 4 * -2
3051 /// assert_eq!((-a).div_euclid(-b), 2); // -7 >= -4 * 2
3052 /// ```
3053 #[stable(feature = "euclidean_division", since = "1.38.0")]
3054 #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
3055 #[must_use = "this returns the result of the operation, \
3056 without modifying the original"]
3057 #[inline]
3058 #[track_caller]
3059 pub const fn div_euclid(self, rhs: Self) -> Self {
3060 let q = self / rhs;
3061 if self % rhs < 0 {
3062 return if rhs > 0 { q - 1 } else { q + 1 }
3063 }
3064 q
3065 }
3066
3067
3068 /// Calculates the least nonnegative remainder of `self (mod rhs)`.
3069 ///
3070 /// This is done as if by the Euclidean division algorithm -- given
3071 /// `r = self.rem_euclid(rhs)`, the result satisfies
3072 /// `self = rhs * self.div_euclid(rhs) + r` and `0 <= r < abs(rhs)`.
3073 ///
3074 /// # Panics
3075 ///
3076 /// This function will panic if `rhs` is zero or if `self` is `Self::MIN` and
3077 /// `rhs` is -1. This behavior is not affected by the `overflow-checks` flag.
3078 ///
3079 /// # Examples
3080 ///
3081 /// Basic usage:
3082 ///
3083 /// ```
3084 #[doc = concat!("let a: ", stringify!($SelfT), " = 7; // or any other integer type")]
3085 /// let b = 4;
3086 ///
3087 /// assert_eq!(a.rem_euclid(b), 3);
3088 /// assert_eq!((-a).rem_euclid(b), 1);
3089 /// assert_eq!(a.rem_euclid(-b), 3);
3090 /// assert_eq!((-a).rem_euclid(-b), 1);
3091 /// ```
3092 ///
3093 /// This will panic:
3094 /// ```should_panic
3095 #[doc = concat!("let _ = ", stringify!($SelfT), "::MIN.rem_euclid(-1);")]
3096 /// ```
3097 #[doc(alias = "modulo", alias = "mod")]
3098 #[stable(feature = "euclidean_division", since = "1.38.0")]
3099 #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
3100 #[must_use = "this returns the result of the operation, \
3101 without modifying the original"]
3102 #[inline]
3103 #[track_caller]
3104 pub const fn rem_euclid(self, rhs: Self) -> Self {
3105 let r = self % rhs;
3106 if r < 0 {
3107 // Semantically equivalent to `if rhs < 0 { r - rhs } else { r + rhs }`.
3108 // If `rhs` is not `Self::MIN`, then `r + abs(rhs)` will not overflow
3109 // and is clearly equivalent, because `r` is negative.
3110 // Otherwise, `rhs` is `Self::MIN`, then we have
3111 // `r.wrapping_add(Self::MIN.wrapping_abs())`, which evaluates
3112 // to `r.wrapping_add(Self::MIN)`, which is equivalent to
3113 // `r - Self::MIN`, which is what we wanted (and will not overflow
3114 // for negative `r`).
3115 r.wrapping_add(rhs.wrapping_abs())
3116 } else {
3117 r
3118 }
3119 }
3120
3121 /// Calculates the quotient of `self` and `rhs`, rounding the result towards negative infinity.
3122 ///
3123 /// # Panics
3124 ///
3125 /// This function will panic if `rhs` is zero or if `self` is `Self::MIN`
3126 /// and `rhs` is -1. This behavior is not affected by the `overflow-checks` flag.
3127 ///
3128 /// # Examples
3129 ///
3130 /// Basic usage:
3131 ///
3132 /// ```
3133 /// #![feature(int_roundings)]
3134 #[doc = concat!("let a: ", stringify!($SelfT)," = 8;")]
3135 /// let b = 3;
3136 ///
3137 /// assert_eq!(a.div_floor(b), 2);
3138 /// assert_eq!(a.div_floor(-b), -3);
3139 /// assert_eq!((-a).div_floor(b), -3);
3140 /// assert_eq!((-a).div_floor(-b), 2);
3141 /// ```
3142 #[unstable(feature = "int_roundings", issue = "88581")]
3143 #[must_use = "this returns the result of the operation, \
3144 without modifying the original"]
3145 #[inline]
3146 #[track_caller]
3147 pub const fn div_floor(self, rhs: Self) -> Self {
3148 let d = self / rhs;
3149 let r = self % rhs;
3150
3151 // If the remainder is non-zero, we need to subtract one if the
3152 // signs of self and rhs differ, as this means we rounded upwards
3153 // instead of downwards. We do this branchlessly by creating a mask
3154 // which is all-ones iff the signs differ, and 0 otherwise. Then by
3155 // adding this mask (which corresponds to the signed value -1), we
3156 // get our correction.
3157 let correction = (self ^ rhs) >> (Self::BITS - 1);
3158 if r != 0 {
3159 d + correction
3160 } else {
3161 d
3162 }
3163 }
3164
3165 /// Calculates the quotient of `self` and `rhs`, rounding the result towards positive infinity.
3166 ///
3167 /// # Panics
3168 ///
3169 /// This function will panic if `rhs` is zero or if `self` is `Self::MIN`
3170 /// and `rhs` is -1. This behavior is not affected by the `overflow-checks` flag.
3171 ///
3172 /// # Examples
3173 ///
3174 /// Basic usage:
3175 ///
3176 /// ```
3177 /// #![feature(int_roundings)]
3178 #[doc = concat!("let a: ", stringify!($SelfT)," = 8;")]
3179 /// let b = 3;
3180 ///
3181 /// assert_eq!(a.div_ceil(b), 3);
3182 /// assert_eq!(a.div_ceil(-b), -2);
3183 /// assert_eq!((-a).div_ceil(b), -2);
3184 /// assert_eq!((-a).div_ceil(-b), 3);
3185 /// ```
3186 #[unstable(feature = "int_roundings", issue = "88581")]
3187 #[must_use = "this returns the result of the operation, \
3188 without modifying the original"]
3189 #[inline]
3190 #[track_caller]
3191 pub const fn div_ceil(self, rhs: Self) -> Self {
3192 let d = self / rhs;
3193 let r = self % rhs;
3194
3195 // When remainder is non-zero we have a.div_ceil(b) == 1 + a.div_floor(b),
3196 // so we can re-use the algorithm from div_floor, just adding 1.
3197 let correction = 1 + ((self ^ rhs) >> (Self::BITS - 1));
3198 if r != 0 {
3199 d + correction
3200 } else {
3201 d
3202 }
3203 }
3204
3205 /// If `rhs` is positive, calculates the smallest value greater than or
3206 /// equal to `self` that is a multiple of `rhs`. If `rhs` is negative,
3207 /// calculates the largest value less than or equal to `self` that is a
3208 /// multiple of `rhs`.
3209 ///
3210 /// # Panics
3211 ///
3212 /// This function will panic if `rhs` is zero.
3213 ///
3214 /// ## Overflow behavior
3215 ///
3216 /// On overflow, this function will panic if overflow checks are enabled (default in debug
3217 /// mode) and wrap if overflow checks are disabled (default in release mode).
3218 ///
3219 /// # Examples
3220 ///
3221 /// Basic usage:
3222 ///
3223 /// ```
3224 /// #![feature(int_roundings)]
3225 #[doc = concat!("assert_eq!(16_", stringify!($SelfT), ".next_multiple_of(8), 16);")]
3226 #[doc = concat!("assert_eq!(23_", stringify!($SelfT), ".next_multiple_of(8), 24);")]
3227 #[doc = concat!("assert_eq!(16_", stringify!($SelfT), ".next_multiple_of(-8), 16);")]
3228 #[doc = concat!("assert_eq!(23_", stringify!($SelfT), ".next_multiple_of(-8), 16);")]
3229 #[doc = concat!("assert_eq!((-16_", stringify!($SelfT), ").next_multiple_of(8), -16);")]
3230 #[doc = concat!("assert_eq!((-23_", stringify!($SelfT), ").next_multiple_of(8), -16);")]
3231 #[doc = concat!("assert_eq!((-16_", stringify!($SelfT), ").next_multiple_of(-8), -16);")]
3232 #[doc = concat!("assert_eq!((-23_", stringify!($SelfT), ").next_multiple_of(-8), -24);")]
3233 /// ```
3234 #[unstable(feature = "int_roundings", issue = "88581")]
3235 #[must_use = "this returns the result of the operation, \
3236 without modifying the original"]
3237 #[inline]
3238 #[rustc_inherit_overflow_checks]
3239 pub const fn next_multiple_of(self, rhs: Self) -> Self {
3240 // This would otherwise fail when calculating `r` when self == T::MIN.
3241 if rhs == -1 {
3242 return self;
3243 }
3244
3245 let r = self % rhs;
3246 let m = if (r > 0 && rhs < 0) || (r < 0 && rhs > 0) {
3247 r + rhs
3248 } else {
3249 r
3250 };
3251
3252 if m == 0 {
3253 self
3254 } else {
3255 self + (rhs - m)
3256 }
3257 }
3258
3259 /// If `rhs` is positive, calculates the smallest value greater than or
3260 /// equal to `self` that is a multiple of `rhs`. If `rhs` is negative,
3261 /// calculates the largest value less than or equal to `self` that is a
3262 /// multiple of `rhs`. Returns `None` if `rhs` is zero or the operation
3263 /// would result in overflow.
3264 ///
3265 /// # Examples
3266 ///
3267 /// Basic usage:
3268 ///
3269 /// ```
3270 /// #![feature(int_roundings)]
3271 #[doc = concat!("assert_eq!(16_", stringify!($SelfT), ".checked_next_multiple_of(8), Some(16));")]
3272 #[doc = concat!("assert_eq!(23_", stringify!($SelfT), ".checked_next_multiple_of(8), Some(24));")]
3273 #[doc = concat!("assert_eq!(16_", stringify!($SelfT), ".checked_next_multiple_of(-8), Some(16));")]
3274 #[doc = concat!("assert_eq!(23_", stringify!($SelfT), ".checked_next_multiple_of(-8), Some(16));")]
3275 #[doc = concat!("assert_eq!((-16_", stringify!($SelfT), ").checked_next_multiple_of(8), Some(-16));")]
3276 #[doc = concat!("assert_eq!((-23_", stringify!($SelfT), ").checked_next_multiple_of(8), Some(-16));")]
3277 #[doc = concat!("assert_eq!((-16_", stringify!($SelfT), ").checked_next_multiple_of(-8), Some(-16));")]
3278 #[doc = concat!("assert_eq!((-23_", stringify!($SelfT), ").checked_next_multiple_of(-8), Some(-24));")]
3279 #[doc = concat!("assert_eq!(1_", stringify!($SelfT), ".checked_next_multiple_of(0), None);")]
3280 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_next_multiple_of(2), None);")]
3281 /// ```
3282 #[unstable(feature = "int_roundings", issue = "88581")]
3283 #[must_use = "this returns the result of the operation, \
3284 without modifying the original"]
3285 #[inline]
3286 pub const fn checked_next_multiple_of(self, rhs: Self) -> Option<Self> {
3287 // This would otherwise fail when calculating `r` when self == T::MIN.
3288 if rhs == -1 {
3289 return Some(self);
3290 }
3291
3292 let r = try_opt!(self.checked_rem(rhs));
3293 let m = if (r > 0 && rhs < 0) || (r < 0 && rhs > 0) {
3294 // r + rhs cannot overflow because they have opposite signs
3295 r + rhs
3296 } else {
3297 r
3298 };
3299
3300 if m == 0 {
3301 Some(self)
3302 } else {
3303 // rhs - m cannot overflow because m has the same sign as rhs
3304 self.checked_add(rhs - m)
3305 }
3306 }
3307
3308 /// Returns the logarithm of the number with respect to an arbitrary base,
3309 /// rounded down.
3310 ///
3311 /// This method might not be optimized owing to implementation details;
3312 /// `ilog2` can produce results more efficiently for base 2, and `ilog10`
3313 /// can produce results more efficiently for base 10.
3314 ///
3315 /// # Panics
3316 ///
3317 /// This function will panic if `self` is less than or equal to zero,
3318 /// or if `base` is less than 2.
3319 ///
3320 /// # Examples
3321 ///
3322 /// ```
3323 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".ilog(5), 1);")]
3324 /// ```
3325 #[stable(feature = "int_log", since = "1.67.0")]
3326 #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
3327 #[must_use = "this returns the result of the operation, \
3328 without modifying the original"]
3329 #[inline]
3330 #[track_caller]
3331 pub const fn ilog(self, base: Self) -> u32 {
3332 assert!(base >= 2, "base of integer logarithm must be at least 2");
3333 if let Some(log) = self.checked_ilog(base) {
3334 log
3335 } else {
3336 int_log10::panic_for_nonpositive_argument()
3337 }
3338 }
3339
3340 /// Returns the base 2 logarithm of the number, rounded down.
3341 ///
3342 /// # Panics
3343 ///
3344 /// This function will panic if `self` is less than or equal to zero.
3345 ///
3346 /// # Examples
3347 ///
3348 /// ```
3349 #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".ilog2(), 1);")]
3350 /// ```
3351 #[stable(feature = "int_log", since = "1.67.0")]
3352 #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
3353 #[must_use = "this returns the result of the operation, \
3354 without modifying the original"]
3355 #[inline]
3356 #[track_caller]
3357 pub const fn ilog2(self) -> u32 {
3358 if let Some(log) = self.checked_ilog2() {
3359 log
3360 } else {
3361 int_log10::panic_for_nonpositive_argument()
3362 }
3363 }
3364
3365 /// Returns the base 10 logarithm of the number, rounded down.
3366 ///
3367 /// # Panics
3368 ///
3369 /// This function will panic if `self` is less than or equal to zero.
3370 ///
3371 /// # Example
3372 ///
3373 /// ```
3374 #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".ilog10(), 1);")]
3375 /// ```
3376 #[stable(feature = "int_log", since = "1.67.0")]
3377 #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
3378 #[must_use = "this returns the result of the operation, \
3379 without modifying the original"]
3380 #[inline]
3381 #[track_caller]
3382 pub const fn ilog10(self) -> u32 {
3383 if let Some(log) = self.checked_ilog10() {
3384 log
3385 } else {
3386 int_log10::panic_for_nonpositive_argument()
3387 }
3388 }
3389
3390 /// Returns the logarithm of the number with respect to an arbitrary base,
3391 /// rounded down.
3392 ///
3393 /// Returns `None` if the number is negative or zero, or if the base is not at least 2.
3394 ///
3395 /// This method might not be optimized owing to implementation details;
3396 /// `checked_ilog2` can produce results more efficiently for base 2, and
3397 /// `checked_ilog10` can produce results more efficiently for base 10.
3398 ///
3399 /// # Examples
3400 ///
3401 /// ```
3402 #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_ilog(5), Some(1));")]
3403 /// ```
3404 #[stable(feature = "int_log", since = "1.67.0")]
3405 #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
3406 #[must_use = "this returns the result of the operation, \
3407 without modifying the original"]
3408 #[inline]
3409 pub const fn checked_ilog(self, base: Self) -> Option<u32> {
3410 if self <= 0 || base <= 1 {
3411 None
3412 } else {
3413 // Delegate to the unsigned implementation.
3414 // The condition makes sure that both casts are exact.
3415 (self as $UnsignedT).checked_ilog(base as $UnsignedT)
3416 }
3417 }
3418
3419 /// Returns the base 2 logarithm of the number, rounded down.
3420 ///
3421 /// Returns `None` if the number is negative or zero.
3422 ///
3423 /// # Examples
3424 ///
3425 /// ```
3426 #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".checked_ilog2(), Some(1));")]
3427 /// ```
3428 #[stable(feature = "int_log", since = "1.67.0")]
3429 #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
3430 #[must_use = "this returns the result of the operation, \
3431 without modifying the original"]
3432 #[inline]
3433 pub const fn checked_ilog2(self) -> Option<u32> {
3434 if self <= 0 {
3435 None
3436 } else {
3437 // SAFETY: We just checked that this number is positive
3438 let log = (Self::BITS - 1) - unsafe { intrinsics::ctlz_nonzero(self) as u32 };
3439 Some(log)
3440 }
3441 }
3442
3443 /// Returns the base 10 logarithm of the number, rounded down.
3444 ///
3445 /// Returns `None` if the number is negative or zero.
3446 ///
3447 /// # Example
3448 ///
3449 /// ```
3450 #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".checked_ilog10(), Some(1));")]
3451 /// ```
3452 #[stable(feature = "int_log", since = "1.67.0")]
3453 #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
3454 #[must_use = "this returns the result of the operation, \
3455 without modifying the original"]
3456 #[inline]
3457 pub const fn checked_ilog10(self) -> Option<u32> {
3458 if self > 0 {
3459 Some(int_log10::$ActualT(self as $ActualT))
3460 } else {
3461 None
3462 }
3463 }
3464
3465 /// Computes the absolute value of `self`.
3466 ///
3467 /// # Overflow behavior
3468 ///
3469 /// The absolute value of
3470 #[doc = concat!("`", stringify!($SelfT), "::MIN`")]
3471 /// cannot be represented as an
3472 #[doc = concat!("`", stringify!($SelfT), "`,")]
3473 /// and attempting to calculate it will cause an overflow. This means
3474 /// that code in debug mode will trigger a panic on this case and
3475 /// optimized code will return
3476 #[doc = concat!("`", stringify!($SelfT), "::MIN`")]
3477 /// without a panic. If you do not want this behavior, consider
3478 /// using [`unsigned_abs`](Self::unsigned_abs) instead.
3479 ///
3480 /// # Examples
3481 ///
3482 /// Basic usage:
3483 ///
3484 /// ```
3485 #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".abs(), 10);")]
3486 #[doc = concat!("assert_eq!((-10", stringify!($SelfT), ").abs(), 10);")]
3487 /// ```
3488 #[stable(feature = "rust1", since = "1.0.0")]
3489 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
3490 #[allow(unused_attributes)]
3491 #[must_use = "this returns the result of the operation, \
3492 without modifying the original"]
3493 #[inline]
3494 #[rustc_inherit_overflow_checks]
3495 pub const fn abs(self) -> Self {
3496 // Note that the #[rustc_inherit_overflow_checks] and #[inline]
3497 // above mean that the overflow semantics of the subtraction
3498 // depend on the crate we're being called from.
3499 if self.is_negative() {
3500 -self
3501 } else {
3502 self
3503 }
3504 }
3505
3506 /// Computes the absolute difference between `self` and `other`.
3507 ///
3508 /// This function always returns the correct answer without overflow or
3509 /// panics by returning an unsigned integer.
3510 ///
3511 /// # Examples
3512 ///
3513 /// Basic usage:
3514 ///
3515 /// ```
3516 #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".abs_diff(80), 20", stringify!($UnsignedT), ");")]
3517 #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".abs_diff(110), 10", stringify!($UnsignedT), ");")]
3518 #[doc = concat!("assert_eq!((-100", stringify!($SelfT), ").abs_diff(80), 180", stringify!($UnsignedT), ");")]
3519 #[doc = concat!("assert_eq!((-100", stringify!($SelfT), ").abs_diff(-120), 20", stringify!($UnsignedT), ");")]
3520 #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.abs_diff(", stringify!($SelfT), "::MAX), ", stringify!($UnsignedT), "::MAX);")]
3521 /// ```
3522 #[stable(feature = "int_abs_diff", since = "1.60.0")]
3523 #[rustc_const_stable(feature = "int_abs_diff", since = "1.60.0")]
3524 #[must_use = "this returns the result of the operation, \
3525 without modifying the original"]
3526 #[inline]
3527 pub const fn abs_diff(self, other: Self) -> $UnsignedT {
3528 if self < other {
3529 // Converting a non-negative x from signed to unsigned by using
3530 // `x as U` is left unchanged, but a negative x is converted
3531 // to value x + 2^N. Thus if `s` and `o` are binary variables
3532 // respectively indicating whether `self` and `other` are
3533 // negative, we are computing the mathematical value:
3534 //
3535 // (other + o*2^N) - (self + s*2^N) mod 2^N
3536 // other - self + (o-s)*2^N mod 2^N
3537 // other - self mod 2^N
3538 //
3539 // Finally, taking the mod 2^N of the mathematical value of
3540 // `other - self` does not change it as it already is
3541 // in the range [0, 2^N).
3542 (other as $UnsignedT).wrapping_sub(self as $UnsignedT)
3543 } else {
3544 (self as $UnsignedT).wrapping_sub(other as $UnsignedT)
3545 }
3546 }
3547
3548 /// Returns a number representing sign of `self`.
3549 ///
3550 /// - `0` if the number is zero
3551 /// - `1` if the number is positive
3552 /// - `-1` if the number is negative
3553 ///
3554 /// # Examples
3555 ///
3556 /// Basic usage:
3557 ///
3558 /// ```
3559 #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".signum(), 1);")]
3560 #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".signum(), 0);")]
3561 #[doc = concat!("assert_eq!((-10", stringify!($SelfT), ").signum(), -1);")]
3562 /// ```
3563 #[stable(feature = "rust1", since = "1.0.0")]
3564 #[rustc_const_stable(feature = "const_int_sign", since = "1.47.0")]
3565 #[must_use = "this returns the result of the operation, \
3566 without modifying the original"]
3567 #[inline(always)]
3568 pub const fn signum(self) -> Self {
3569 // Picking the right way to phrase this is complicated
3570 // (<https://graphics.stanford.edu/~seander/bithacks.html#CopyIntegerSign>)
3571 // so delegate it to `Ord` which is already producing -1/0/+1
3572 // exactly like we need and can be the place to deal with the complexity.
3573
3574 // FIXME(const-hack): replace with cmp
3575 if self < 0 { -1 }
3576 else if self == 0 { 0 }
3577 else { 1 }
3578 }
3579
3580 /// Returns `true` if `self` is positive and `false` if the number is zero or
3581 /// negative.
3582 ///
3583 /// # Examples
3584 ///
3585 /// Basic usage:
3586 ///
3587 /// ```
3588 #[doc = concat!("assert!(10", stringify!($SelfT), ".is_positive());")]
3589 #[doc = concat!("assert!(!(-10", stringify!($SelfT), ").is_positive());")]
3590 /// ```
3591 #[must_use]
3592 #[stable(feature = "rust1", since = "1.0.0")]
3593 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
3594 #[inline(always)]
3595 pub const fn is_positive(self) -> bool { self > 0 }
3596
3597 /// Returns `true` if `self` is negative and `false` if the number is zero or
3598 /// positive.
3599 ///
3600 /// # Examples
3601 ///
3602 /// Basic usage:
3603 ///
3604 /// ```
3605 #[doc = concat!("assert!((-10", stringify!($SelfT), ").is_negative());")]
3606 #[doc = concat!("assert!(!10", stringify!($SelfT), ".is_negative());")]
3607 /// ```
3608 #[must_use]
3609 #[stable(feature = "rust1", since = "1.0.0")]
3610 #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
3611 #[inline(always)]
3612 pub const fn is_negative(self) -> bool { self < 0 }
3613
3614 /// Returns the memory representation of this integer as a byte array in
3615 /// big-endian (network) byte order.
3616 ///
3617 #[doc = $to_xe_bytes_doc]
3618 ///
3619 /// # Examples
3620 ///
3621 /// ```
3622 #[doc = concat!("let bytes = ", $swap_op, stringify!($SelfT), ".to_be_bytes();")]
3623 #[doc = concat!("assert_eq!(bytes, ", $be_bytes, ");")]
3624 /// ```
3625 #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3626 #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3627 #[must_use = "this returns the result of the operation, \
3628 without modifying the original"]
3629 #[inline]
3630 pub const fn to_be_bytes(self) -> [u8; size_of::<Self>()] {
3631 self.to_be().to_ne_bytes()
3632 }
3633
3634 /// Returns the memory representation of this integer as a byte array in
3635 /// little-endian byte order.
3636 ///
3637 #[doc = $to_xe_bytes_doc]
3638 ///
3639 /// # Examples
3640 ///
3641 /// ```
3642 #[doc = concat!("let bytes = ", $swap_op, stringify!($SelfT), ".to_le_bytes();")]
3643 #[doc = concat!("assert_eq!(bytes, ", $le_bytes, ");")]
3644 /// ```
3645 #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3646 #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3647 #[must_use = "this returns the result of the operation, \
3648 without modifying the original"]
3649 #[inline]
3650 pub const fn to_le_bytes(self) -> [u8; size_of::<Self>()] {
3651 self.to_le().to_ne_bytes()
3652 }
3653
3654 /// Returns the memory representation of this integer as a byte array in
3655 /// native byte order.
3656 ///
3657 /// As the target platform's native endianness is used, portable code
3658 /// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate,
3659 /// instead.
3660 ///
3661 #[doc = $to_xe_bytes_doc]
3662 ///
3663 /// [`to_be_bytes`]: Self::to_be_bytes
3664 /// [`to_le_bytes`]: Self::to_le_bytes
3665 ///
3666 /// # Examples
3667 ///
3668 /// ```
3669 #[doc = concat!("let bytes = ", $swap_op, stringify!($SelfT), ".to_ne_bytes();")]
3670 /// assert_eq!(
3671 /// bytes,
3672 /// if cfg!(target_endian = "big") {
3673 #[doc = concat!(" ", $be_bytes)]
3674 /// } else {
3675 #[doc = concat!(" ", $le_bytes)]
3676 /// }
3677 /// );
3678 /// ```
3679 #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3680 #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3681 // SAFETY: const sound because integers are plain old datatypes so we can always
3682 // transmute them to arrays of bytes
3683 #[must_use = "this returns the result of the operation, \
3684 without modifying the original"]
3685 #[inline]
3686 pub const fn to_ne_bytes(self) -> [u8; size_of::<Self>()] {
3687 // SAFETY: integers are plain old datatypes so we can always transmute them to
3688 // arrays of bytes
3689 unsafe { mem::transmute(self) }
3690 }
3691
3692 /// Creates an integer value from its representation as a byte array in
3693 /// big endian.
3694 ///
3695 #[doc = $from_xe_bytes_doc]
3696 ///
3697 /// # Examples
3698 ///
3699 /// ```
3700 #[doc = concat!("let value = ", stringify!($SelfT), "::from_be_bytes(", $be_bytes, ");")]
3701 #[doc = concat!("assert_eq!(value, ", $swap_op, ");")]
3702 /// ```
3703 ///
3704 /// When starting from a slice rather than an array, fallible conversion APIs can be used:
3705 ///
3706 /// ```
3707 #[doc = concat!("fn read_be_", stringify!($SelfT), "(input: &mut &[u8]) -> ", stringify!($SelfT), " {")]
3708 #[doc = concat!(" let (int_bytes, rest) = input.split_at(size_of::<", stringify!($SelfT), ">());")]
3709 /// *input = rest;
3710 #[doc = concat!(" ", stringify!($SelfT), "::from_be_bytes(int_bytes.try_into().unwrap())")]
3711 /// }
3712 /// ```
3713 #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3714 #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3715 #[must_use]
3716 #[inline]
3717 pub const fn from_be_bytes(bytes: [u8; size_of::<Self>()]) -> Self {
3718 Self::from_be(Self::from_ne_bytes(bytes))
3719 }
3720
3721 /// Creates an integer value from its representation as a byte array in
3722 /// little endian.
3723 ///
3724 #[doc = $from_xe_bytes_doc]
3725 ///
3726 /// # Examples
3727 ///
3728 /// ```
3729 #[doc = concat!("let value = ", stringify!($SelfT), "::from_le_bytes(", $le_bytes, ");")]
3730 #[doc = concat!("assert_eq!(value, ", $swap_op, ");")]
3731 /// ```
3732 ///
3733 /// When starting from a slice rather than an array, fallible conversion APIs can be used:
3734 ///
3735 /// ```
3736 #[doc = concat!("fn read_le_", stringify!($SelfT), "(input: &mut &[u8]) -> ", stringify!($SelfT), " {")]
3737 #[doc = concat!(" let (int_bytes, rest) = input.split_at(size_of::<", stringify!($SelfT), ">());")]
3738 /// *input = rest;
3739 #[doc = concat!(" ", stringify!($SelfT), "::from_le_bytes(int_bytes.try_into().unwrap())")]
3740 /// }
3741 /// ```
3742 #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3743 #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3744 #[must_use]
3745 #[inline]
3746 pub const fn from_le_bytes(bytes: [u8; size_of::<Self>()]) -> Self {
3747 Self::from_le(Self::from_ne_bytes(bytes))
3748 }
3749
3750 /// Creates an integer value from its memory representation as a byte
3751 /// array in native endianness.
3752 ///
3753 /// As the target platform's native endianness is used, portable code
3754 /// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as
3755 /// appropriate instead.
3756 ///
3757 /// [`from_be_bytes`]: Self::from_be_bytes
3758 /// [`from_le_bytes`]: Self::from_le_bytes
3759 ///
3760 #[doc = $from_xe_bytes_doc]
3761 ///
3762 /// # Examples
3763 ///
3764 /// ```
3765 #[doc = concat!("let value = ", stringify!($SelfT), "::from_ne_bytes(if cfg!(target_endian = \"big\") {")]
3766 #[doc = concat!(" ", $be_bytes)]
3767 /// } else {
3768 #[doc = concat!(" ", $le_bytes)]
3769 /// });
3770 #[doc = concat!("assert_eq!(value, ", $swap_op, ");")]
3771 /// ```
3772 ///
3773 /// When starting from a slice rather than an array, fallible conversion APIs can be used:
3774 ///
3775 /// ```
3776 #[doc = concat!("fn read_ne_", stringify!($SelfT), "(input: &mut &[u8]) -> ", stringify!($SelfT), " {")]
3777 #[doc = concat!(" let (int_bytes, rest) = input.split_at(size_of::<", stringify!($SelfT), ">());")]
3778 /// *input = rest;
3779 #[doc = concat!(" ", stringify!($SelfT), "::from_ne_bytes(int_bytes.try_into().unwrap())")]
3780 /// }
3781 /// ```
3782 #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3783 #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3784 #[must_use]
3785 // SAFETY: const sound because integers are plain old datatypes so we can always
3786 // transmute to them
3787 #[inline]
3788 pub const fn from_ne_bytes(bytes: [u8; size_of::<Self>()]) -> Self {
3789 // SAFETY: integers are plain old datatypes so we can always transmute to them
3790 unsafe { mem::transmute(bytes) }
3791 }
3792
3793 /// New code should prefer to use
3794 #[doc = concat!("[`", stringify!($SelfT), "::MIN", "`] instead.")]
3795 ///
3796 /// Returns the smallest value that can be represented by this integer type.
3797 #[stable(feature = "rust1", since = "1.0.0")]
3798 #[inline(always)]
3799 #[rustc_promotable]
3800 #[rustc_const_stable(feature = "const_min_value", since = "1.32.0")]
3801 #[deprecated(since = "TBD", note = "replaced by the `MIN` associated constant on this type")]
3802 #[rustc_diagnostic_item = concat!(stringify!($SelfT), "_legacy_fn_min_value")]
3803 pub const fn min_value() -> Self {
3804 Self::MIN
3805 }
3806
3807 /// New code should prefer to use
3808 #[doc = concat!("[`", stringify!($SelfT), "::MAX", "`] instead.")]
3809 ///
3810 /// Returns the largest value that can be represented by this integer type.
3811 #[stable(feature = "rust1", since = "1.0.0")]
3812 #[inline(always)]
3813 #[rustc_promotable]
3814 #[rustc_const_stable(feature = "const_max_value", since = "1.32.0")]
3815 #[deprecated(since = "TBD", note = "replaced by the `MAX` associated constant on this type")]
3816 #[rustc_diagnostic_item = concat!(stringify!($SelfT), "_legacy_fn_max_value")]
3817 pub const fn max_value() -> Self {
3818 Self::MAX
3819 }
3820 }
3821}