proc_macro/
lib.rs

1//! A support library for macro authors when defining new macros.
2//!
3//! This library, provided by the standard distribution, provides the types
4//! consumed in the interfaces of procedurally defined macro definitions such as
5//! function-like macros `#[proc_macro]`, macro attributes `#[proc_macro_attribute]` and
6//! custom derive attributes`#[proc_macro_derive]`.
7//!
8//! See [the book] for more.
9//!
10//! [the book]: ../book/ch19-06-macros.html#procedural-macros-for-generating-code-from-attributes
11
12#![stable(feature = "proc_macro_lib", since = "1.15.0")]
13#![deny(missing_docs)]
14#![doc(
15    html_playground_url = "https://play.rust-lang.org/",
16    issue_tracker_base_url = "https://github.com/rust-lang/rust/issues/",
17    test(no_crate_inject, attr(deny(warnings))),
18    test(attr(allow(dead_code, deprecated, unused_variables, unused_mut)))
19)]
20#![doc(rust_logo)]
21#![feature(rustdoc_internals)]
22#![feature(staged_api)]
23#![feature(allow_internal_unstable)]
24#![feature(decl_macro)]
25#![feature(negative_impls)]
26#![feature(panic_can_unwind)]
27#![feature(restricted_std)]
28#![feature(rustc_attrs)]
29#![feature(extend_one)]
30#![recursion_limit = "256"]
31#![allow(internal_features)]
32#![deny(ffi_unwind_calls)]
33#![allow(rustc::internal)] // Can't use FxHashMap when compiled as part of the standard library
34#![warn(rustdoc::unescaped_backticks)]
35#![warn(unreachable_pub)]
36#![deny(unsafe_op_in_unsafe_fn)]
37
38#[unstable(feature = "proc_macro_internals", issue = "27812")]
39#[doc(hidden)]
40pub mod bridge;
41
42mod diagnostic;
43mod escape;
44mod to_tokens;
45
46use core::ops::BitOr;
47use std::ffi::CStr;
48use std::ops::{Range, RangeBounds};
49use std::path::PathBuf;
50use std::str::FromStr;
51use std::{error, fmt};
52
53#[unstable(feature = "proc_macro_diagnostic", issue = "54140")]
54pub use diagnostic::{Diagnostic, Level, MultiSpan};
55#[unstable(feature = "proc_macro_value", issue = "136652")]
56pub use rustc_literal_escaper::EscapeError;
57use rustc_literal_escaper::{MixedUnit, unescape_byte_str, unescape_c_str, unescape_str};
58#[unstable(feature = "proc_macro_totokens", issue = "130977")]
59pub use to_tokens::ToTokens;
60
61use crate::escape::{EscapeOptions, escape_bytes};
62
63/// Errors returned when trying to retrieve a literal unescaped value.
64#[unstable(feature = "proc_macro_value", issue = "136652")]
65#[derive(Debug, PartialEq, Eq)]
66pub enum ConversionErrorKind {
67    /// The literal failed to be escaped, take a look at [`EscapeError`] for more information.
68    FailedToUnescape(EscapeError),
69    /// Trying to convert a literal with the wrong type.
70    InvalidLiteralKind,
71}
72
73/// Determines whether proc_macro has been made accessible to the currently
74/// running program.
75///
76/// The proc_macro crate is only intended for use inside the implementation of
77/// procedural macros. All the functions in this crate panic if invoked from
78/// outside of a procedural macro, such as from a build script or unit test or
79/// ordinary Rust binary.
80///
81/// With consideration for Rust libraries that are designed to support both
82/// macro and non-macro use cases, `proc_macro::is_available()` provides a
83/// non-panicking way to detect whether the infrastructure required to use the
84/// API of proc_macro is presently available. Returns true if invoked from
85/// inside of a procedural macro, false if invoked from any other binary.
86#[stable(feature = "proc_macro_is_available", since = "1.57.0")]
87pub fn is_available() -> bool {
88    bridge::client::is_available()
89}
90
91/// The main type provided by this crate, representing an abstract stream of
92/// tokens, or, more specifically, a sequence of token trees.
93/// The type provides interfaces for iterating over those token trees and, conversely,
94/// collecting a number of token trees into one stream.
95///
96/// This is both the input and output of `#[proc_macro]`, `#[proc_macro_attribute]`
97/// and `#[proc_macro_derive]` definitions.
98#[cfg_attr(feature = "rustc-dep-of-std", rustc_diagnostic_item = "TokenStream")]
99#[stable(feature = "proc_macro_lib", since = "1.15.0")]
100#[derive(Clone)]
101pub struct TokenStream(Option<bridge::client::TokenStream>);
102
103#[stable(feature = "proc_macro_lib", since = "1.15.0")]
104impl !Send for TokenStream {}
105#[stable(feature = "proc_macro_lib", since = "1.15.0")]
106impl !Sync for TokenStream {}
107
108/// Error returned from `TokenStream::from_str`.
109#[stable(feature = "proc_macro_lib", since = "1.15.0")]
110#[non_exhaustive]
111#[derive(Debug)]
112pub struct LexError;
113
114#[stable(feature = "proc_macro_lexerror_impls", since = "1.44.0")]
115impl fmt::Display for LexError {
116    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
117        f.write_str("cannot parse string into token stream")
118    }
119}
120
121#[stable(feature = "proc_macro_lexerror_impls", since = "1.44.0")]
122impl error::Error for LexError {}
123
124#[stable(feature = "proc_macro_lib", since = "1.15.0")]
125impl !Send for LexError {}
126#[stable(feature = "proc_macro_lib", since = "1.15.0")]
127impl !Sync for LexError {}
128
129/// Error returned from `TokenStream::expand_expr`.
130#[unstable(feature = "proc_macro_expand", issue = "90765")]
131#[non_exhaustive]
132#[derive(Debug)]
133pub struct ExpandError;
134
135#[unstable(feature = "proc_macro_expand", issue = "90765")]
136impl fmt::Display for ExpandError {
137    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
138        f.write_str("macro expansion failed")
139    }
140}
141
142#[unstable(feature = "proc_macro_expand", issue = "90765")]
143impl error::Error for ExpandError {}
144
145#[unstable(feature = "proc_macro_expand", issue = "90765")]
146impl !Send for ExpandError {}
147
148#[unstable(feature = "proc_macro_expand", issue = "90765")]
149impl !Sync for ExpandError {}
150
151impl TokenStream {
152    /// Returns an empty `TokenStream` containing no token trees.
153    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
154    pub fn new() -> TokenStream {
155        TokenStream(None)
156    }
157
158    /// Checks if this `TokenStream` is empty.
159    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
160    pub fn is_empty(&self) -> bool {
161        self.0.as_ref().map(|h| h.is_empty()).unwrap_or(true)
162    }
163
164    /// Parses this `TokenStream` as an expression and attempts to expand any
165    /// macros within it. Returns the expanded `TokenStream`.
166    ///
167    /// Currently only expressions expanding to literals will succeed, although
168    /// this may be relaxed in the future.
169    ///
170    /// NOTE: In error conditions, `expand_expr` may leave macros unexpanded,
171    /// report an error, failing compilation, and/or return an `Err(..)`. The
172    /// specific behavior for any error condition, and what conditions are
173    /// considered errors, is unspecified and may change in the future.
174    #[unstable(feature = "proc_macro_expand", issue = "90765")]
175    pub fn expand_expr(&self) -> Result<TokenStream, ExpandError> {
176        let stream = self.0.as_ref().ok_or(ExpandError)?;
177        match bridge::client::TokenStream::expand_expr(stream) {
178            Ok(stream) => Ok(TokenStream(Some(stream))),
179            Err(_) => Err(ExpandError),
180        }
181    }
182}
183
184/// Attempts to break the string into tokens and parse those tokens into a token stream.
185/// May fail for a number of reasons, for example, if the string contains unbalanced delimiters
186/// or characters not existing in the language.
187/// All tokens in the parsed stream get `Span::call_site()` spans.
188///
189/// NOTE: some errors may cause panics instead of returning `LexError`. We reserve the right to
190/// change these errors into `LexError`s later.
191#[stable(feature = "proc_macro_lib", since = "1.15.0")]
192impl FromStr for TokenStream {
193    type Err = LexError;
194
195    fn from_str(src: &str) -> Result<TokenStream, LexError> {
196        Ok(TokenStream(Some(bridge::client::TokenStream::from_str(src))))
197    }
198}
199
200/// Prints the token stream as a string that is supposed to be losslessly convertible back
201/// into the same token stream (modulo spans), except for possibly `TokenTree::Group`s
202/// with `Delimiter::None` delimiters and negative numeric literals.
203///
204/// Note: the exact form of the output is subject to change, e.g. there might
205/// be changes in the whitespace used between tokens. Therefore, you should
206/// *not* do any kind of simple substring matching on the output string (as
207/// produced by `to_string`) to implement a proc macro, because that matching
208/// might stop working if such changes happen. Instead, you should work at the
209/// `TokenTree` level, e.g. matching against `TokenTree::Ident`,
210/// `TokenTree::Punct`, or `TokenTree::Literal`.
211#[stable(feature = "proc_macro_lib", since = "1.15.0")]
212impl fmt::Display for TokenStream {
213    #[allow(clippy::recursive_format_impl)] // clippy doesn't see the specialization
214    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
215        match &self.0 {
216            Some(ts) => write!(f, "{}", ts.to_string()),
217            None => Ok(()),
218        }
219    }
220}
221
222/// Prints token in a form convenient for debugging.
223#[stable(feature = "proc_macro_lib", since = "1.15.0")]
224impl fmt::Debug for TokenStream {
225    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
226        f.write_str("TokenStream ")?;
227        f.debug_list().entries(self.clone()).finish()
228    }
229}
230
231#[stable(feature = "proc_macro_token_stream_default", since = "1.45.0")]
232impl Default for TokenStream {
233    fn default() -> Self {
234        TokenStream::new()
235    }
236}
237
238#[unstable(feature = "proc_macro_quote", issue = "54722")]
239pub use quote::{HasIterator, RepInterp, ThereIsNoIteratorInRepetition, ext, quote, quote_span};
240
241fn tree_to_bridge_tree(
242    tree: TokenTree,
243) -> bridge::TokenTree<bridge::client::TokenStream, bridge::client::Span, bridge::client::Symbol> {
244    match tree {
245        TokenTree::Group(tt) => bridge::TokenTree::Group(tt.0),
246        TokenTree::Punct(tt) => bridge::TokenTree::Punct(tt.0),
247        TokenTree::Ident(tt) => bridge::TokenTree::Ident(tt.0),
248        TokenTree::Literal(tt) => bridge::TokenTree::Literal(tt.0),
249    }
250}
251
252/// Creates a token stream containing a single token tree.
253#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
254impl From<TokenTree> for TokenStream {
255    fn from(tree: TokenTree) -> TokenStream {
256        TokenStream(Some(bridge::client::TokenStream::from_token_tree(tree_to_bridge_tree(tree))))
257    }
258}
259
260/// Non-generic helper for implementing `FromIterator<TokenTree>` and
261/// `Extend<TokenTree>` with less monomorphization in calling crates.
262struct ConcatTreesHelper {
263    trees: Vec<
264        bridge::TokenTree<
265            bridge::client::TokenStream,
266            bridge::client::Span,
267            bridge::client::Symbol,
268        >,
269    >,
270}
271
272impl ConcatTreesHelper {
273    fn new(capacity: usize) -> Self {
274        ConcatTreesHelper { trees: Vec::with_capacity(capacity) }
275    }
276
277    fn push(&mut self, tree: TokenTree) {
278        self.trees.push(tree_to_bridge_tree(tree));
279    }
280
281    fn build(self) -> TokenStream {
282        if self.trees.is_empty() {
283            TokenStream(None)
284        } else {
285            TokenStream(Some(bridge::client::TokenStream::concat_trees(None, self.trees)))
286        }
287    }
288
289    fn append_to(self, stream: &mut TokenStream) {
290        if self.trees.is_empty() {
291            return;
292        }
293        stream.0 = Some(bridge::client::TokenStream::concat_trees(stream.0.take(), self.trees))
294    }
295}
296
297/// Non-generic helper for implementing `FromIterator<TokenStream>` and
298/// `Extend<TokenStream>` with less monomorphization in calling crates.
299struct ConcatStreamsHelper {
300    streams: Vec<bridge::client::TokenStream>,
301}
302
303impl ConcatStreamsHelper {
304    fn new(capacity: usize) -> Self {
305        ConcatStreamsHelper { streams: Vec::with_capacity(capacity) }
306    }
307
308    fn push(&mut self, stream: TokenStream) {
309        if let Some(stream) = stream.0 {
310            self.streams.push(stream);
311        }
312    }
313
314    fn build(mut self) -> TokenStream {
315        if self.streams.len() <= 1 {
316            TokenStream(self.streams.pop())
317        } else {
318            TokenStream(Some(bridge::client::TokenStream::concat_streams(None, self.streams)))
319        }
320    }
321
322    fn append_to(mut self, stream: &mut TokenStream) {
323        if self.streams.is_empty() {
324            return;
325        }
326        let base = stream.0.take();
327        if base.is_none() && self.streams.len() == 1 {
328            stream.0 = self.streams.pop();
329        } else {
330            stream.0 = Some(bridge::client::TokenStream::concat_streams(base, self.streams));
331        }
332    }
333}
334
335/// Collects a number of token trees into a single stream.
336#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
337impl FromIterator<TokenTree> for TokenStream {
338    fn from_iter<I: IntoIterator<Item = TokenTree>>(trees: I) -> Self {
339        let iter = trees.into_iter();
340        let mut builder = ConcatTreesHelper::new(iter.size_hint().0);
341        iter.for_each(|tree| builder.push(tree));
342        builder.build()
343    }
344}
345
346/// A "flattening" operation on token streams, collects token trees
347/// from multiple token streams into a single stream.
348#[stable(feature = "proc_macro_lib", since = "1.15.0")]
349impl FromIterator<TokenStream> for TokenStream {
350    fn from_iter<I: IntoIterator<Item = TokenStream>>(streams: I) -> Self {
351        let iter = streams.into_iter();
352        let mut builder = ConcatStreamsHelper::new(iter.size_hint().0);
353        iter.for_each(|stream| builder.push(stream));
354        builder.build()
355    }
356}
357
358#[stable(feature = "token_stream_extend", since = "1.30.0")]
359impl Extend<TokenTree> for TokenStream {
360    fn extend<I: IntoIterator<Item = TokenTree>>(&mut self, trees: I) {
361        let iter = trees.into_iter();
362        let mut builder = ConcatTreesHelper::new(iter.size_hint().0);
363        iter.for_each(|tree| builder.push(tree));
364        builder.append_to(self);
365    }
366}
367
368#[stable(feature = "token_stream_extend", since = "1.30.0")]
369impl Extend<TokenStream> for TokenStream {
370    fn extend<I: IntoIterator<Item = TokenStream>>(&mut self, streams: I) {
371        let iter = streams.into_iter();
372        let mut builder = ConcatStreamsHelper::new(iter.size_hint().0);
373        iter.for_each(|stream| builder.push(stream));
374        builder.append_to(self);
375    }
376}
377
378macro_rules! extend_items {
379    ($($item:ident)*) => {
380        $(
381            #[stable(feature = "token_stream_extend_tt_items", since = "1.92.0")]
382            impl Extend<$item> for TokenStream {
383                fn extend<T: IntoIterator<Item = $item>>(&mut self, iter: T) {
384                    self.extend(iter.into_iter().map(TokenTree::$item));
385                }
386            }
387        )*
388    };
389}
390
391extend_items!(Group Literal Punct Ident);
392
393/// Public implementation details for the `TokenStream` type, such as iterators.
394#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
395pub mod token_stream {
396    use crate::{Group, Ident, Literal, Punct, TokenStream, TokenTree, bridge};
397
398    /// An iterator over `TokenStream`'s `TokenTree`s.
399    /// The iteration is "shallow", e.g., the iterator doesn't recurse into delimited groups,
400    /// and returns whole groups as token trees.
401    #[derive(Clone)]
402    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
403    pub struct IntoIter(
404        std::vec::IntoIter<
405            bridge::TokenTree<
406                bridge::client::TokenStream,
407                bridge::client::Span,
408                bridge::client::Symbol,
409            >,
410        >,
411    );
412
413    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
414    impl Iterator for IntoIter {
415        type Item = TokenTree;
416
417        fn next(&mut self) -> Option<TokenTree> {
418            self.0.next().map(|tree| match tree {
419                bridge::TokenTree::Group(tt) => TokenTree::Group(Group(tt)),
420                bridge::TokenTree::Punct(tt) => TokenTree::Punct(Punct(tt)),
421                bridge::TokenTree::Ident(tt) => TokenTree::Ident(Ident(tt)),
422                bridge::TokenTree::Literal(tt) => TokenTree::Literal(Literal(tt)),
423            })
424        }
425
426        fn size_hint(&self) -> (usize, Option<usize>) {
427            self.0.size_hint()
428        }
429
430        fn count(self) -> usize {
431            self.0.count()
432        }
433    }
434
435    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
436    impl IntoIterator for TokenStream {
437        type Item = TokenTree;
438        type IntoIter = IntoIter;
439
440        fn into_iter(self) -> IntoIter {
441            IntoIter(self.0.map(|v| v.into_trees()).unwrap_or_default().into_iter())
442        }
443    }
444}
445
446/// `quote!(..)` accepts arbitrary tokens and expands into a `TokenStream` describing the input.
447/// For example, `quote!(a + b)` will produce an expression, that, when evaluated, constructs
448/// the `TokenStream` `[Ident("a"), Punct('+', Alone), Ident("b")]`.
449///
450/// Unquoting is done with `$`, and works by taking the single next ident as the unquoted term.
451/// To quote `$` itself, use `$$`.
452#[unstable(feature = "proc_macro_quote", issue = "54722")]
453#[allow_internal_unstable(proc_macro_def_site, proc_macro_internals, proc_macro_totokens)]
454#[rustc_builtin_macro]
455pub macro quote($($t:tt)*) {
456    /* compiler built-in */
457}
458
459#[unstable(feature = "proc_macro_internals", issue = "27812")]
460#[doc(hidden)]
461mod quote;
462
463/// A region of source code, along with macro expansion information.
464#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
465#[derive(Copy, Clone)]
466pub struct Span(bridge::client::Span);
467
468#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
469impl !Send for Span {}
470#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
471impl !Sync for Span {}
472
473macro_rules! diagnostic_method {
474    ($name:ident, $level:expr) => {
475        /// Creates a new `Diagnostic` with the given `message` at the span
476        /// `self`.
477        #[unstable(feature = "proc_macro_diagnostic", issue = "54140")]
478        pub fn $name<T: Into<String>>(self, message: T) -> Diagnostic {
479            Diagnostic::spanned(self, $level, message)
480        }
481    };
482}
483
484impl Span {
485    /// A span that resolves at the macro definition site.
486    #[unstable(feature = "proc_macro_def_site", issue = "54724")]
487    pub fn def_site() -> Span {
488        Span(bridge::client::Span::def_site())
489    }
490
491    /// The span of the invocation of the current procedural macro.
492    /// Identifiers created with this span will be resolved as if they were written
493    /// directly at the macro call location (call-site hygiene) and other code
494    /// at the macro call site will be able to refer to them as well.
495    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
496    pub fn call_site() -> Span {
497        Span(bridge::client::Span::call_site())
498    }
499
500    /// A span that represents `macro_rules` hygiene, and sometimes resolves at the macro
501    /// definition site (local variables, labels, `$crate`) and sometimes at the macro
502    /// call site (everything else).
503    /// The span location is taken from the call-site.
504    #[stable(feature = "proc_macro_mixed_site", since = "1.45.0")]
505    pub fn mixed_site() -> Span {
506        Span(bridge::client::Span::mixed_site())
507    }
508
509    /// The `Span` for the tokens in the previous macro expansion from which
510    /// `self` was generated from, if any.
511    #[unstable(feature = "proc_macro_span", issue = "54725")]
512    pub fn parent(&self) -> Option<Span> {
513        self.0.parent().map(Span)
514    }
515
516    /// The span for the origin source code that `self` was generated from. If
517    /// this `Span` wasn't generated from other macro expansions then the return
518    /// value is the same as `*self`.
519    #[unstable(feature = "proc_macro_span", issue = "54725")]
520    pub fn source(&self) -> Span {
521        Span(self.0.source())
522    }
523
524    /// Returns the span's byte position range in the source file.
525    #[unstable(feature = "proc_macro_span", issue = "54725")]
526    pub fn byte_range(&self) -> Range<usize> {
527        self.0.byte_range()
528    }
529
530    /// Creates an empty span pointing to directly before this span.
531    #[stable(feature = "proc_macro_span_location", since = "1.88.0")]
532    pub fn start(&self) -> Span {
533        Span(self.0.start())
534    }
535
536    /// Creates an empty span pointing to directly after this span.
537    #[stable(feature = "proc_macro_span_location", since = "1.88.0")]
538    pub fn end(&self) -> Span {
539        Span(self.0.end())
540    }
541
542    /// The one-indexed line of the source file where the span starts.
543    ///
544    /// To obtain the line of the span's end, use `span.end().line()`.
545    #[stable(feature = "proc_macro_span_location", since = "1.88.0")]
546    pub fn line(&self) -> usize {
547        self.0.line()
548    }
549
550    /// The one-indexed column of the source file where the span starts.
551    ///
552    /// To obtain the column of the span's end, use `span.end().column()`.
553    #[stable(feature = "proc_macro_span_location", since = "1.88.0")]
554    pub fn column(&self) -> usize {
555        self.0.column()
556    }
557
558    /// The path to the source file in which this span occurs, for display purposes.
559    ///
560    /// This might not correspond to a valid file system path.
561    /// It might be remapped (e.g. `"/src/lib.rs"`) or an artificial path (e.g. `"<command line>"`).
562    #[stable(feature = "proc_macro_span_file", since = "1.88.0")]
563    pub fn file(&self) -> String {
564        self.0.file()
565    }
566
567    /// The path to the source file in which this span occurs on the local file system.
568    ///
569    /// This is the actual path on disk. It is unaffected by path remapping.
570    ///
571    /// This path should not be embedded in the output of the macro; prefer `file()` instead.
572    #[stable(feature = "proc_macro_span_file", since = "1.88.0")]
573    pub fn local_file(&self) -> Option<PathBuf> {
574        self.0.local_file().map(|s| PathBuf::from(s))
575    }
576
577    /// Creates a new span encompassing `self` and `other`.
578    ///
579    /// Returns `None` if `self` and `other` are from different files.
580    #[unstable(feature = "proc_macro_span", issue = "54725")]
581    pub fn join(&self, other: Span) -> Option<Span> {
582        self.0.join(other.0).map(Span)
583    }
584
585    /// Creates a new span with the same line/column information as `self` but
586    /// that resolves symbols as though it were at `other`.
587    #[stable(feature = "proc_macro_span_resolved_at", since = "1.45.0")]
588    pub fn resolved_at(&self, other: Span) -> Span {
589        Span(self.0.resolved_at(other.0))
590    }
591
592    /// Creates a new span with the same name resolution behavior as `self` but
593    /// with the line/column information of `other`.
594    #[stable(feature = "proc_macro_span_located_at", since = "1.45.0")]
595    pub fn located_at(&self, other: Span) -> Span {
596        other.resolved_at(*self)
597    }
598
599    /// Compares two spans to see if they're equal.
600    #[unstable(feature = "proc_macro_span", issue = "54725")]
601    pub fn eq(&self, other: &Span) -> bool {
602        self.0 == other.0
603    }
604
605    /// Returns the source text behind a span. This preserves the original source
606    /// code, including spaces and comments. It only returns a result if the span
607    /// corresponds to real source code.
608    ///
609    /// Note: The observable result of a macro should only rely on the tokens and
610    /// not on this source text. The result of this function is a best effort to
611    /// be used for diagnostics only.
612    #[stable(feature = "proc_macro_source_text", since = "1.66.0")]
613    pub fn source_text(&self) -> Option<String> {
614        self.0.source_text()
615    }
616
617    // Used by the implementation of `Span::quote`
618    #[doc(hidden)]
619    #[unstable(feature = "proc_macro_internals", issue = "27812")]
620    pub fn save_span(&self) -> usize {
621        self.0.save_span()
622    }
623
624    // Used by the implementation of `Span::quote`
625    #[doc(hidden)]
626    #[unstable(feature = "proc_macro_internals", issue = "27812")]
627    pub fn recover_proc_macro_span(id: usize) -> Span {
628        Span(bridge::client::Span::recover_proc_macro_span(id))
629    }
630
631    diagnostic_method!(error, Level::Error);
632    diagnostic_method!(warning, Level::Warning);
633    diagnostic_method!(note, Level::Note);
634    diagnostic_method!(help, Level::Help);
635}
636
637/// Prints a span in a form convenient for debugging.
638#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
639impl fmt::Debug for Span {
640    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
641        self.0.fmt(f)
642    }
643}
644
645/// A single token or a delimited sequence of token trees (e.g., `[1, (), ..]`).
646#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
647#[derive(Clone)]
648pub enum TokenTree {
649    /// A token stream surrounded by bracket delimiters.
650    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
651    Group(#[stable(feature = "proc_macro_lib2", since = "1.29.0")] Group),
652    /// An identifier.
653    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
654    Ident(#[stable(feature = "proc_macro_lib2", since = "1.29.0")] Ident),
655    /// A single punctuation character (`+`, `,`, `$`, etc.).
656    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
657    Punct(#[stable(feature = "proc_macro_lib2", since = "1.29.0")] Punct),
658    /// A literal character (`'a'`), string (`"hello"`), number (`2.3`), etc.
659    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
660    Literal(#[stable(feature = "proc_macro_lib2", since = "1.29.0")] Literal),
661}
662
663#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
664impl !Send for TokenTree {}
665#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
666impl !Sync for TokenTree {}
667
668impl TokenTree {
669    /// Returns the span of this tree, delegating to the `span` method of
670    /// the contained token or a delimited stream.
671    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
672    pub fn span(&self) -> Span {
673        match *self {
674            TokenTree::Group(ref t) => t.span(),
675            TokenTree::Ident(ref t) => t.span(),
676            TokenTree::Punct(ref t) => t.span(),
677            TokenTree::Literal(ref t) => t.span(),
678        }
679    }
680
681    /// Configures the span for *only this token*.
682    ///
683    /// Note that if this token is a `Group` then this method will not configure
684    /// the span of each of the internal tokens, this will simply delegate to
685    /// the `set_span` method of each variant.
686    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
687    pub fn set_span(&mut self, span: Span) {
688        match *self {
689            TokenTree::Group(ref mut t) => t.set_span(span),
690            TokenTree::Ident(ref mut t) => t.set_span(span),
691            TokenTree::Punct(ref mut t) => t.set_span(span),
692            TokenTree::Literal(ref mut t) => t.set_span(span),
693        }
694    }
695}
696
697/// Prints token tree in a form convenient for debugging.
698#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
699impl fmt::Debug for TokenTree {
700    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
701        // Each of these has the name in the struct type in the derived debug,
702        // so don't bother with an extra layer of indirection
703        match *self {
704            TokenTree::Group(ref tt) => tt.fmt(f),
705            TokenTree::Ident(ref tt) => tt.fmt(f),
706            TokenTree::Punct(ref tt) => tt.fmt(f),
707            TokenTree::Literal(ref tt) => tt.fmt(f),
708        }
709    }
710}
711
712#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
713impl From<Group> for TokenTree {
714    fn from(g: Group) -> TokenTree {
715        TokenTree::Group(g)
716    }
717}
718
719#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
720impl From<Ident> for TokenTree {
721    fn from(g: Ident) -> TokenTree {
722        TokenTree::Ident(g)
723    }
724}
725
726#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
727impl From<Punct> for TokenTree {
728    fn from(g: Punct) -> TokenTree {
729        TokenTree::Punct(g)
730    }
731}
732
733#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
734impl From<Literal> for TokenTree {
735    fn from(g: Literal) -> TokenTree {
736        TokenTree::Literal(g)
737    }
738}
739
740/// Prints the token tree as a string that is supposed to be losslessly convertible back
741/// into the same token tree (modulo spans), except for possibly `TokenTree::Group`s
742/// with `Delimiter::None` delimiters and negative numeric literals.
743///
744/// Note: the exact form of the output is subject to change, e.g. there might
745/// be changes in the whitespace used between tokens. Therefore, you should
746/// *not* do any kind of simple substring matching on the output string (as
747/// produced by `to_string`) to implement a proc macro, because that matching
748/// might stop working if such changes happen. Instead, you should work at the
749/// `TokenTree` level, e.g. matching against `TokenTree::Ident`,
750/// `TokenTree::Punct`, or `TokenTree::Literal`.
751#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
752impl fmt::Display for TokenTree {
753    #[allow(clippy::recursive_format_impl)] // clippy doesn't see the specialization
754    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
755        match self {
756            TokenTree::Group(t) => write!(f, "{t}"),
757            TokenTree::Ident(t) => write!(f, "{t}"),
758            TokenTree::Punct(t) => write!(f, "{t}"),
759            TokenTree::Literal(t) => write!(f, "{t}"),
760        }
761    }
762}
763
764/// A delimited token stream.
765///
766/// A `Group` internally contains a `TokenStream` which is surrounded by `Delimiter`s.
767#[derive(Clone)]
768#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
769pub struct Group(bridge::Group<bridge::client::TokenStream, bridge::client::Span>);
770
771#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
772impl !Send for Group {}
773#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
774impl !Sync for Group {}
775
776/// Describes how a sequence of token trees is delimited.
777#[derive(Copy, Clone, Debug, PartialEq, Eq)]
778#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
779pub enum Delimiter {
780    /// `( ... )`
781    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
782    Parenthesis,
783    /// `{ ... }`
784    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
785    Brace,
786    /// `[ ... ]`
787    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
788    Bracket,
789    /// `∅ ... ∅`
790    /// An invisible delimiter, that may, for example, appear around tokens coming from a
791    /// "macro variable" `$var`. It is important to preserve operator priorities in cases like
792    /// `$var * 3` where `$var` is `1 + 2`.
793    /// Invisible delimiters might not survive roundtrip of a token stream through a string.
794    ///
795    /// <div class="warning">
796    ///
797    /// Note: rustc currently can ignore the grouping of tokens delimited by `None` in the output
798    /// of a proc_macro. Only `None`-delimited groups created by a macro_rules macro in the input
799    /// of a proc_macro macro are preserved, and only in very specific circumstances.
800    /// Any `None`-delimited groups (re)created by a proc_macro will therefore not preserve
801    /// operator priorities as indicated above. The other `Delimiter` variants should be used
802    /// instead in this context. This is a rustc bug. For details, see
803    /// [rust-lang/rust#67062](https://github.com/rust-lang/rust/issues/67062).
804    ///
805    /// </div>
806    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
807    None,
808}
809
810impl Group {
811    /// Creates a new `Group` with the given delimiter and token stream.
812    ///
813    /// This constructor will set the span for this group to
814    /// `Span::call_site()`. To change the span you can use the `set_span`
815    /// method below.
816    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
817    pub fn new(delimiter: Delimiter, stream: TokenStream) -> Group {
818        Group(bridge::Group {
819            delimiter,
820            stream: stream.0,
821            span: bridge::DelimSpan::from_single(Span::call_site().0),
822        })
823    }
824
825    /// Returns the delimiter of this `Group`
826    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
827    pub fn delimiter(&self) -> Delimiter {
828        self.0.delimiter
829    }
830
831    /// Returns the `TokenStream` of tokens that are delimited in this `Group`.
832    ///
833    /// Note that the returned token stream does not include the delimiter
834    /// returned above.
835    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
836    pub fn stream(&self) -> TokenStream {
837        TokenStream(self.0.stream.clone())
838    }
839
840    /// Returns the span for the delimiters of this token stream, spanning the
841    /// entire `Group`.
842    ///
843    /// ```text
844    /// pub fn span(&self) -> Span {
845    ///            ^^^^^^^
846    /// ```
847    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
848    pub fn span(&self) -> Span {
849        Span(self.0.span.entire)
850    }
851
852    /// Returns the span pointing to the opening delimiter of this group.
853    ///
854    /// ```text
855    /// pub fn span_open(&self) -> Span {
856    ///                 ^
857    /// ```
858    #[stable(feature = "proc_macro_group_span", since = "1.55.0")]
859    pub fn span_open(&self) -> Span {
860        Span(self.0.span.open)
861    }
862
863    /// Returns the span pointing to the closing delimiter of this group.
864    ///
865    /// ```text
866    /// pub fn span_close(&self) -> Span {
867    ///                        ^
868    /// ```
869    #[stable(feature = "proc_macro_group_span", since = "1.55.0")]
870    pub fn span_close(&self) -> Span {
871        Span(self.0.span.close)
872    }
873
874    /// Configures the span for this `Group`'s delimiters, but not its internal
875    /// tokens.
876    ///
877    /// This method will **not** set the span of all the internal tokens spanned
878    /// by this group, but rather it will only set the span of the delimiter
879    /// tokens at the level of the `Group`.
880    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
881    pub fn set_span(&mut self, span: Span) {
882        self.0.span = bridge::DelimSpan::from_single(span.0);
883    }
884}
885
886/// Prints the group as a string that should be losslessly convertible back
887/// into the same group (modulo spans), except for possibly `TokenTree::Group`s
888/// with `Delimiter::None` delimiters.
889#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
890impl fmt::Display for Group {
891    #[allow(clippy::recursive_format_impl)] // clippy doesn't see the specialization
892    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
893        write!(f, "{}", TokenStream::from(TokenTree::from(self.clone())))
894    }
895}
896
897#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
898impl fmt::Debug for Group {
899    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
900        f.debug_struct("Group")
901            .field("delimiter", &self.delimiter())
902            .field("stream", &self.stream())
903            .field("span", &self.span())
904            .finish()
905    }
906}
907
908/// A `Punct` is a single punctuation character such as `+`, `-` or `#`.
909///
910/// Multi-character operators like `+=` are represented as two instances of `Punct` with different
911/// forms of `Spacing` returned.
912#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
913#[derive(Clone)]
914pub struct Punct(bridge::Punct<bridge::client::Span>);
915
916#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
917impl !Send for Punct {}
918#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
919impl !Sync for Punct {}
920
921/// Indicates whether a `Punct` token can join with the following token
922/// to form a multi-character operator.
923#[derive(Copy, Clone, Debug, PartialEq, Eq)]
924#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
925pub enum Spacing {
926    /// A `Punct` token can join with the following token to form a multi-character operator.
927    ///
928    /// In token streams constructed using proc macro interfaces, `Joint` punctuation tokens can be
929    /// followed by any other tokens. However, in token streams parsed from source code, the
930    /// compiler will only set spacing to `Joint` in the following cases.
931    /// - When a `Punct` is immediately followed by another `Punct` without a whitespace. E.g. `+`
932    ///   is `Joint` in `+=` and `++`.
933    /// - When a single quote `'` is immediately followed by an identifier without a whitespace.
934    ///   E.g. `'` is `Joint` in `'lifetime`.
935    ///
936    /// This list may be extended in the future to enable more token combinations.
937    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
938    Joint,
939    /// A `Punct` token cannot join with the following token to form a multi-character operator.
940    ///
941    /// `Alone` punctuation tokens can be followed by any other tokens. In token streams parsed
942    /// from source code, the compiler will set spacing to `Alone` in all cases not covered by the
943    /// conditions for `Joint` above. E.g. `+` is `Alone` in `+ =`, `+ident` and `+()`. In
944    /// particular, tokens not followed by anything will be marked as `Alone`.
945    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
946    Alone,
947}
948
949impl Punct {
950    /// Creates a new `Punct` from the given character and spacing.
951    /// The `ch` argument must be a valid punctuation character permitted by the language,
952    /// otherwise the function will panic.
953    ///
954    /// The returned `Punct` will have the default span of `Span::call_site()`
955    /// which can be further configured with the `set_span` method below.
956    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
957    pub fn new(ch: char, spacing: Spacing) -> Punct {
958        const LEGAL_CHARS: &[char] = &[
959            '=', '<', '>', '!', '~', '+', '-', '*', '/', '%', '^', '&', '|', '@', '.', ',', ';',
960            ':', '#', '$', '?', '\'',
961        ];
962        if !LEGAL_CHARS.contains(&ch) {
963            panic!("unsupported character `{:?}`", ch);
964        }
965        Punct(bridge::Punct {
966            ch: ch as u8,
967            joint: spacing == Spacing::Joint,
968            span: Span::call_site().0,
969        })
970    }
971
972    /// Returns the value of this punctuation character as `char`.
973    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
974    pub fn as_char(&self) -> char {
975        self.0.ch as char
976    }
977
978    /// Returns the spacing of this punctuation character, indicating whether it can be potentially
979    /// combined into a multi-character operator with the following token (`Joint`), or whether the
980    /// operator has definitely ended (`Alone`).
981    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
982    pub fn spacing(&self) -> Spacing {
983        if self.0.joint { Spacing::Joint } else { Spacing::Alone }
984    }
985
986    /// Returns the span for this punctuation character.
987    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
988    pub fn span(&self) -> Span {
989        Span(self.0.span)
990    }
991
992    /// Configure the span for this punctuation character.
993    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
994    pub fn set_span(&mut self, span: Span) {
995        self.0.span = span.0;
996    }
997}
998
999/// Prints the punctuation character as a string that should be losslessly convertible
1000/// back into the same character.
1001#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1002impl fmt::Display for Punct {
1003    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1004        write!(f, "{}", self.as_char())
1005    }
1006}
1007
1008#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1009impl fmt::Debug for Punct {
1010    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1011        f.debug_struct("Punct")
1012            .field("ch", &self.as_char())
1013            .field("spacing", &self.spacing())
1014            .field("span", &self.span())
1015            .finish()
1016    }
1017}
1018
1019#[stable(feature = "proc_macro_punct_eq", since = "1.50.0")]
1020impl PartialEq<char> for Punct {
1021    fn eq(&self, rhs: &char) -> bool {
1022        self.as_char() == *rhs
1023    }
1024}
1025
1026#[stable(feature = "proc_macro_punct_eq_flipped", since = "1.52.0")]
1027impl PartialEq<Punct> for char {
1028    fn eq(&self, rhs: &Punct) -> bool {
1029        *self == rhs.as_char()
1030    }
1031}
1032
1033/// An identifier (`ident`).
1034#[derive(Clone)]
1035#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1036pub struct Ident(bridge::Ident<bridge::client::Span, bridge::client::Symbol>);
1037
1038impl Ident {
1039    /// Creates a new `Ident` with the given `string` as well as the specified
1040    /// `span`.
1041    /// The `string` argument must be a valid identifier permitted by the
1042    /// language (including keywords, e.g. `self` or `fn`). Otherwise, the function will panic.
1043    ///
1044    /// Note that `span`, currently in rustc, configures the hygiene information
1045    /// for this identifier.
1046    ///
1047    /// As of this time `Span::call_site()` explicitly opts-in to "call-site" hygiene
1048    /// meaning that identifiers created with this span will be resolved as if they were written
1049    /// directly at the location of the macro call, and other code at the macro call site will be
1050    /// able to refer to them as well.
1051    ///
1052    /// Later spans like `Span::def_site()` will allow to opt-in to "definition-site" hygiene
1053    /// meaning that identifiers created with this span will be resolved at the location of the
1054    /// macro definition and other code at the macro call site will not be able to refer to them.
1055    ///
1056    /// Due to the current importance of hygiene this constructor, unlike other
1057    /// tokens, requires a `Span` to be specified at construction.
1058    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1059    pub fn new(string: &str, span: Span) -> Ident {
1060        Ident(bridge::Ident {
1061            sym: bridge::client::Symbol::new_ident(string, false),
1062            is_raw: false,
1063            span: span.0,
1064        })
1065    }
1066
1067    /// Same as `Ident::new`, but creates a raw identifier (`r#ident`).
1068    /// The `string` argument be a valid identifier permitted by the language
1069    /// (including keywords, e.g. `fn`). Keywords which are usable in path segments
1070    /// (e.g. `self`, `super`) are not supported, and will cause a panic.
1071    #[stable(feature = "proc_macro_raw_ident", since = "1.47.0")]
1072    pub fn new_raw(string: &str, span: Span) -> Ident {
1073        Ident(bridge::Ident {
1074            sym: bridge::client::Symbol::new_ident(string, true),
1075            is_raw: true,
1076            span: span.0,
1077        })
1078    }
1079
1080    /// Returns the span of this `Ident`, encompassing the entire string returned
1081    /// by [`to_string`](ToString::to_string).
1082    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1083    pub fn span(&self) -> Span {
1084        Span(self.0.span)
1085    }
1086
1087    /// Configures the span of this `Ident`, possibly changing its hygiene context.
1088    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1089    pub fn set_span(&mut self, span: Span) {
1090        self.0.span = span.0;
1091    }
1092}
1093
1094/// Prints the identifier as a string that should be losslessly convertible back
1095/// into the same identifier.
1096#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1097impl fmt::Display for Ident {
1098    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1099        if self.0.is_raw {
1100            f.write_str("r#")?;
1101        }
1102        fmt::Display::fmt(&self.0.sym, f)
1103    }
1104}
1105
1106#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1107impl fmt::Debug for Ident {
1108    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1109        f.debug_struct("Ident")
1110            .field("ident", &self.to_string())
1111            .field("span", &self.span())
1112            .finish()
1113    }
1114}
1115
1116/// A literal string (`"hello"`), byte string (`b"hello"`), C string (`c"hello"`),
1117/// character (`'a'`), byte character (`b'a'`), an integer or floating point number
1118/// with or without a suffix (`1`, `1u8`, `2.3`, `2.3f32`).
1119/// Boolean literals like `true` and `false` do not belong here, they are `Ident`s.
1120#[derive(Clone)]
1121#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1122pub struct Literal(bridge::Literal<bridge::client::Span, bridge::client::Symbol>);
1123
1124macro_rules! suffixed_int_literals {
1125    ($($name:ident => $kind:ident,)*) => ($(
1126        /// Creates a new suffixed integer literal with the specified value.
1127        ///
1128        /// This function will create an integer like `1u32` where the integer
1129        /// value specified is the first part of the token and the integral is
1130        /// also suffixed at the end.
1131        /// Literals created from negative numbers might not survive round-trips through
1132        /// `TokenStream` or strings and may be broken into two tokens (`-` and positive literal).
1133        ///
1134        /// Literals created through this method have the `Span::call_site()`
1135        /// span by default, which can be configured with the `set_span` method
1136        /// below.
1137        #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1138        pub fn $name(n: $kind) -> Literal {
1139            Literal(bridge::Literal {
1140                kind: bridge::LitKind::Integer,
1141                symbol: bridge::client::Symbol::new(&n.to_string()),
1142                suffix: Some(bridge::client::Symbol::new(stringify!($kind))),
1143                span: Span::call_site().0,
1144            })
1145        }
1146    )*)
1147}
1148
1149macro_rules! unsuffixed_int_literals {
1150    ($($name:ident => $kind:ident,)*) => ($(
1151        /// Creates a new unsuffixed integer literal with the specified value.
1152        ///
1153        /// This function will create an integer like `1` where the integer
1154        /// value specified is the first part of the token. No suffix is
1155        /// specified on this token, meaning that invocations like
1156        /// `Literal::i8_unsuffixed(1)` are equivalent to
1157        /// `Literal::u32_unsuffixed(1)`.
1158        /// Literals created from negative numbers might not survive rountrips through
1159        /// `TokenStream` or strings and may be broken into two tokens (`-` and positive literal).
1160        ///
1161        /// Literals created through this method have the `Span::call_site()`
1162        /// span by default, which can be configured with the `set_span` method
1163        /// below.
1164        #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1165        pub fn $name(n: $kind) -> Literal {
1166            Literal(bridge::Literal {
1167                kind: bridge::LitKind::Integer,
1168                symbol: bridge::client::Symbol::new(&n.to_string()),
1169                suffix: None,
1170                span: Span::call_site().0,
1171            })
1172        }
1173    )*)
1174}
1175
1176impl Literal {
1177    fn new(kind: bridge::LitKind, value: &str, suffix: Option<&str>) -> Self {
1178        Literal(bridge::Literal {
1179            kind,
1180            symbol: bridge::client::Symbol::new(value),
1181            suffix: suffix.map(bridge::client::Symbol::new),
1182            span: Span::call_site().0,
1183        })
1184    }
1185
1186    suffixed_int_literals! {
1187        u8_suffixed => u8,
1188        u16_suffixed => u16,
1189        u32_suffixed => u32,
1190        u64_suffixed => u64,
1191        u128_suffixed => u128,
1192        usize_suffixed => usize,
1193        i8_suffixed => i8,
1194        i16_suffixed => i16,
1195        i32_suffixed => i32,
1196        i64_suffixed => i64,
1197        i128_suffixed => i128,
1198        isize_suffixed => isize,
1199    }
1200
1201    unsuffixed_int_literals! {
1202        u8_unsuffixed => u8,
1203        u16_unsuffixed => u16,
1204        u32_unsuffixed => u32,
1205        u64_unsuffixed => u64,
1206        u128_unsuffixed => u128,
1207        usize_unsuffixed => usize,
1208        i8_unsuffixed => i8,
1209        i16_unsuffixed => i16,
1210        i32_unsuffixed => i32,
1211        i64_unsuffixed => i64,
1212        i128_unsuffixed => i128,
1213        isize_unsuffixed => isize,
1214    }
1215
1216    /// Creates a new unsuffixed floating-point literal.
1217    ///
1218    /// This constructor is similar to those like `Literal::i8_unsuffixed` where
1219    /// the float's value is emitted directly into the token but no suffix is
1220    /// used, so it may be inferred to be a `f64` later in the compiler.
1221    /// Literals created from negative numbers might not survive rountrips through
1222    /// `TokenStream` or strings and may be broken into two tokens (`-` and positive literal).
1223    ///
1224    /// # Panics
1225    ///
1226    /// This function requires that the specified float is finite, for
1227    /// example if it is infinity or NaN this function will panic.
1228    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1229    pub fn f32_unsuffixed(n: f32) -> Literal {
1230        if !n.is_finite() {
1231            panic!("Invalid float literal {n}");
1232        }
1233        let mut repr = n.to_string();
1234        if !repr.contains('.') {
1235            repr.push_str(".0");
1236        }
1237        Literal::new(bridge::LitKind::Float, &repr, None)
1238    }
1239
1240    /// Creates a new suffixed floating-point literal.
1241    ///
1242    /// This constructor will create a literal like `1.0f32` where the value
1243    /// specified is the preceding part of the token and `f32` is the suffix of
1244    /// the token. This token will always be inferred to be an `f32` in the
1245    /// compiler.
1246    /// Literals created from negative numbers might not survive rountrips through
1247    /// `TokenStream` or strings and may be broken into two tokens (`-` and positive literal).
1248    ///
1249    /// # Panics
1250    ///
1251    /// This function requires that the specified float is finite, for
1252    /// example if it is infinity or NaN this function will panic.
1253    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1254    pub fn f32_suffixed(n: f32) -> Literal {
1255        if !n.is_finite() {
1256            panic!("Invalid float literal {n}");
1257        }
1258        Literal::new(bridge::LitKind::Float, &n.to_string(), Some("f32"))
1259    }
1260
1261    /// Creates a new unsuffixed floating-point literal.
1262    ///
1263    /// This constructor is similar to those like `Literal::i8_unsuffixed` where
1264    /// the float's value is emitted directly into the token but no suffix is
1265    /// used, so it may be inferred to be a `f64` later in the compiler.
1266    /// Literals created from negative numbers might not survive rountrips through
1267    /// `TokenStream` or strings and may be broken into two tokens (`-` and positive literal).
1268    ///
1269    /// # Panics
1270    ///
1271    /// This function requires that the specified float is finite, for
1272    /// example if it is infinity or NaN this function will panic.
1273    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1274    pub fn f64_unsuffixed(n: f64) -> Literal {
1275        if !n.is_finite() {
1276            panic!("Invalid float literal {n}");
1277        }
1278        let mut repr = n.to_string();
1279        if !repr.contains('.') {
1280            repr.push_str(".0");
1281        }
1282        Literal::new(bridge::LitKind::Float, &repr, None)
1283    }
1284
1285    /// Creates a new suffixed floating-point literal.
1286    ///
1287    /// This constructor will create a literal like `1.0f64` where the value
1288    /// specified is the preceding part of the token and `f64` is the suffix of
1289    /// the token. This token will always be inferred to be an `f64` in the
1290    /// compiler.
1291    /// Literals created from negative numbers might not survive rountrips through
1292    /// `TokenStream` or strings and may be broken into two tokens (`-` and positive literal).
1293    ///
1294    /// # Panics
1295    ///
1296    /// This function requires that the specified float is finite, for
1297    /// example if it is infinity or NaN this function will panic.
1298    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1299    pub fn f64_suffixed(n: f64) -> Literal {
1300        if !n.is_finite() {
1301            panic!("Invalid float literal {n}");
1302        }
1303        Literal::new(bridge::LitKind::Float, &n.to_string(), Some("f64"))
1304    }
1305
1306    /// String literal.
1307    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1308    pub fn string(string: &str) -> Literal {
1309        let escape = EscapeOptions {
1310            escape_single_quote: false,
1311            escape_double_quote: true,
1312            escape_nonascii: false,
1313        };
1314        let repr = escape_bytes(string.as_bytes(), escape);
1315        Literal::new(bridge::LitKind::Str, &repr, None)
1316    }
1317
1318    /// Character literal.
1319    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1320    pub fn character(ch: char) -> Literal {
1321        let escape = EscapeOptions {
1322            escape_single_quote: true,
1323            escape_double_quote: false,
1324            escape_nonascii: false,
1325        };
1326        let repr = escape_bytes(ch.encode_utf8(&mut [0u8; 4]).as_bytes(), escape);
1327        Literal::new(bridge::LitKind::Char, &repr, None)
1328    }
1329
1330    /// Byte character literal.
1331    #[stable(feature = "proc_macro_byte_character", since = "1.79.0")]
1332    pub fn byte_character(byte: u8) -> Literal {
1333        let escape = EscapeOptions {
1334            escape_single_quote: true,
1335            escape_double_quote: false,
1336            escape_nonascii: true,
1337        };
1338        let repr = escape_bytes(&[byte], escape);
1339        Literal::new(bridge::LitKind::Byte, &repr, None)
1340    }
1341
1342    /// Byte string literal.
1343    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1344    pub fn byte_string(bytes: &[u8]) -> Literal {
1345        let escape = EscapeOptions {
1346            escape_single_quote: false,
1347            escape_double_quote: true,
1348            escape_nonascii: true,
1349        };
1350        let repr = escape_bytes(bytes, escape);
1351        Literal::new(bridge::LitKind::ByteStr, &repr, None)
1352    }
1353
1354    /// C string literal.
1355    #[stable(feature = "proc_macro_c_str_literals", since = "1.79.0")]
1356    pub fn c_string(string: &CStr) -> Literal {
1357        let escape = EscapeOptions {
1358            escape_single_quote: false,
1359            escape_double_quote: true,
1360            escape_nonascii: false,
1361        };
1362        let repr = escape_bytes(string.to_bytes(), escape);
1363        Literal::new(bridge::LitKind::CStr, &repr, None)
1364    }
1365
1366    /// Returns the span encompassing this literal.
1367    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1368    pub fn span(&self) -> Span {
1369        Span(self.0.span)
1370    }
1371
1372    /// Configures the span associated for this literal.
1373    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1374    pub fn set_span(&mut self, span: Span) {
1375        self.0.span = span.0;
1376    }
1377
1378    /// Returns a `Span` that is a subset of `self.span()` containing only the
1379    /// source bytes in range `range`. Returns `None` if the would-be trimmed
1380    /// span is outside the bounds of `self`.
1381    // FIXME(SergioBenitez): check that the byte range starts and ends at a
1382    // UTF-8 boundary of the source. otherwise, it's likely that a panic will
1383    // occur elsewhere when the source text is printed.
1384    // FIXME(SergioBenitez): there is no way for the user to know what
1385    // `self.span()` actually maps to, so this method can currently only be
1386    // called blindly. For example, `to_string()` for the character 'c' returns
1387    // "'\u{63}'"; there is no way for the user to know whether the source text
1388    // was 'c' or whether it was '\u{63}'.
1389    #[unstable(feature = "proc_macro_span", issue = "54725")]
1390    pub fn subspan<R: RangeBounds<usize>>(&self, range: R) -> Option<Span> {
1391        self.0.span.subspan(range.start_bound().cloned(), range.end_bound().cloned()).map(Span)
1392    }
1393
1394    fn with_symbol_and_suffix<R>(&self, f: impl FnOnce(&str, &str) -> R) -> R {
1395        self.0.symbol.with(|symbol| match self.0.suffix {
1396            Some(suffix) => suffix.with(|suffix| f(symbol, suffix)),
1397            None => f(symbol, ""),
1398        })
1399    }
1400
1401    /// Invokes the callback with a `&[&str]` consisting of each part of the
1402    /// literal's representation. This is done to allow the `ToString` and
1403    /// `Display` implementations to borrow references to symbol values, and
1404    /// both be optimized to reduce overhead.
1405    fn with_stringify_parts<R>(&self, f: impl FnOnce(&[&str]) -> R) -> R {
1406        /// Returns a string containing exactly `num` '#' characters.
1407        /// Uses a 256-character source string literal which is always safe to
1408        /// index with a `u8` index.
1409        fn get_hashes_str(num: u8) -> &'static str {
1410            const HASHES: &str = "\
1411            ################################################################\
1412            ################################################################\
1413            ################################################################\
1414            ################################################################\
1415            ";
1416            const _: () = assert!(HASHES.len() == 256);
1417            &HASHES[..num as usize]
1418        }
1419
1420        self.with_symbol_and_suffix(|symbol, suffix| match self.0.kind {
1421            bridge::LitKind::Byte => f(&["b'", symbol, "'", suffix]),
1422            bridge::LitKind::Char => f(&["'", symbol, "'", suffix]),
1423            bridge::LitKind::Str => f(&["\"", symbol, "\"", suffix]),
1424            bridge::LitKind::StrRaw(n) => {
1425                let hashes = get_hashes_str(n);
1426                f(&["r", hashes, "\"", symbol, "\"", hashes, suffix])
1427            }
1428            bridge::LitKind::ByteStr => f(&["b\"", symbol, "\"", suffix]),
1429            bridge::LitKind::ByteStrRaw(n) => {
1430                let hashes = get_hashes_str(n);
1431                f(&["br", hashes, "\"", symbol, "\"", hashes, suffix])
1432            }
1433            bridge::LitKind::CStr => f(&["c\"", symbol, "\"", suffix]),
1434            bridge::LitKind::CStrRaw(n) => {
1435                let hashes = get_hashes_str(n);
1436                f(&["cr", hashes, "\"", symbol, "\"", hashes, suffix])
1437            }
1438
1439            bridge::LitKind::Integer | bridge::LitKind::Float | bridge::LitKind::ErrWithGuar => {
1440                f(&[symbol, suffix])
1441            }
1442        })
1443    }
1444
1445    /// Returns the unescaped string value if the current literal is a string or a string literal.
1446    #[unstable(feature = "proc_macro_value", issue = "136652")]
1447    pub fn str_value(&self) -> Result<String, ConversionErrorKind> {
1448        self.0.symbol.with(|symbol| match self.0.kind {
1449            bridge::LitKind::Str => {
1450                if symbol.contains('\\') {
1451                    let mut buf = String::with_capacity(symbol.len());
1452                    let mut error = None;
1453                    // Force-inlining here is aggressive but the closure is
1454                    // called on every char in the string, so it can be hot in
1455                    // programs with many long strings containing escapes.
1456                    unescape_str(
1457                        symbol,
1458                        #[inline(always)]
1459                        |_, c| match c {
1460                            Ok(c) => buf.push(c),
1461                            Err(err) => {
1462                                if err.is_fatal() {
1463                                    error = Some(ConversionErrorKind::FailedToUnescape(err));
1464                                }
1465                            }
1466                        },
1467                    );
1468                    if let Some(error) = error { Err(error) } else { Ok(buf) }
1469                } else {
1470                    Ok(symbol.to_string())
1471                }
1472            }
1473            bridge::LitKind::StrRaw(_) => Ok(symbol.to_string()),
1474            _ => Err(ConversionErrorKind::InvalidLiteralKind),
1475        })
1476    }
1477
1478    /// Returns the unescaped string value if the current literal is a c-string or a c-string
1479    /// literal.
1480    #[unstable(feature = "proc_macro_value", issue = "136652")]
1481    pub fn cstr_value(&self) -> Result<Vec<u8>, ConversionErrorKind> {
1482        self.0.symbol.with(|symbol| match self.0.kind {
1483            bridge::LitKind::CStr => {
1484                let mut error = None;
1485                let mut buf = Vec::with_capacity(symbol.len());
1486
1487                unescape_c_str(symbol, |_span, res| match res {
1488                    Ok(MixedUnit::Char(c)) => {
1489                        buf.extend_from_slice(c.get().encode_utf8(&mut [0; 4]).as_bytes())
1490                    }
1491                    Ok(MixedUnit::HighByte(b)) => buf.push(b.get()),
1492                    Err(err) => {
1493                        if err.is_fatal() {
1494                            error = Some(ConversionErrorKind::FailedToUnescape(err));
1495                        }
1496                    }
1497                });
1498                if let Some(error) = error {
1499                    Err(error)
1500                } else {
1501                    buf.push(0);
1502                    Ok(buf)
1503                }
1504            }
1505            bridge::LitKind::CStrRaw(_) => {
1506                // Raw strings have no escapes so we can convert the symbol
1507                // directly to a `Lrc<u8>` after appending the terminating NUL
1508                // char.
1509                let mut buf = symbol.to_owned().into_bytes();
1510                buf.push(0);
1511                Ok(buf)
1512            }
1513            _ => Err(ConversionErrorKind::InvalidLiteralKind),
1514        })
1515    }
1516
1517    /// Returns the unescaped string value if the current literal is a byte string or a byte string
1518    /// literal.
1519    #[unstable(feature = "proc_macro_value", issue = "136652")]
1520    pub fn byte_str_value(&self) -> Result<Vec<u8>, ConversionErrorKind> {
1521        self.0.symbol.with(|symbol| match self.0.kind {
1522            bridge::LitKind::ByteStr => {
1523                let mut buf = Vec::with_capacity(symbol.len());
1524                let mut error = None;
1525
1526                unescape_byte_str(symbol, |_, res| match res {
1527                    Ok(b) => buf.push(b),
1528                    Err(err) => {
1529                        if err.is_fatal() {
1530                            error = Some(ConversionErrorKind::FailedToUnescape(err));
1531                        }
1532                    }
1533                });
1534                if let Some(error) = error { Err(error) } else { Ok(buf) }
1535            }
1536            bridge::LitKind::ByteStrRaw(_) => {
1537                // Raw strings have no escapes so we can convert the symbol
1538                // directly to a `Lrc<u8>`.
1539                Ok(symbol.to_owned().into_bytes())
1540            }
1541            _ => Err(ConversionErrorKind::InvalidLiteralKind),
1542        })
1543    }
1544}
1545
1546/// Parse a single literal from its stringified representation.
1547///
1548/// In order to parse successfully, the input string must not contain anything
1549/// but the literal token. Specifically, it must not contain whitespace or
1550/// comments in addition to the literal.
1551///
1552/// The resulting literal token will have a `Span::call_site()` span.
1553///
1554/// NOTE: some errors may cause panics instead of returning `LexError`. We
1555/// reserve the right to change these errors into `LexError`s later.
1556#[stable(feature = "proc_macro_literal_parse", since = "1.54.0")]
1557impl FromStr for Literal {
1558    type Err = LexError;
1559
1560    fn from_str(src: &str) -> Result<Self, LexError> {
1561        match bridge::client::FreeFunctions::literal_from_str(src) {
1562            Ok(literal) => Ok(Literal(literal)),
1563            Err(()) => Err(LexError),
1564        }
1565    }
1566}
1567
1568/// Prints the literal as a string that should be losslessly convertible
1569/// back into the same literal (except for possible rounding for floating point literals).
1570#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1571impl fmt::Display for Literal {
1572    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1573        self.with_stringify_parts(|parts| {
1574            for part in parts {
1575                fmt::Display::fmt(part, f)?;
1576            }
1577            Ok(())
1578        })
1579    }
1580}
1581
1582#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1583impl fmt::Debug for Literal {
1584    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1585        f.debug_struct("Literal")
1586            // format the kind on one line even in {:#?} mode
1587            .field("kind", &format_args!("{:?}", self.0.kind))
1588            .field("symbol", &self.0.symbol)
1589            // format `Some("...")` on one line even in {:#?} mode
1590            .field("suffix", &format_args!("{:?}", self.0.suffix))
1591            .field("span", &self.0.span)
1592            .finish()
1593    }
1594}
1595
1596#[unstable(
1597    feature = "proc_macro_tracked_path",
1598    issue = "99515",
1599    implied_by = "proc_macro_tracked_env"
1600)]
1601/// Functionality for adding environment state to the build dependency info.
1602pub mod tracked {
1603
1604    use std::env::{self, VarError};
1605    use std::ffi::OsStr;
1606    use std::path::Path;
1607
1608    /// Retrieve an environment variable and add it to build dependency info.
1609    /// The build system executing the compiler will know that the variable was accessed during
1610    /// compilation, and will be able to rerun the build when the value of that variable changes.
1611    /// Besides the dependency tracking this function should be equivalent to `env::var` from the
1612    /// standard library, except that the argument must be UTF-8.
1613    #[unstable(feature = "proc_macro_tracked_env", issue = "99515")]
1614    pub fn env_var<K: AsRef<OsStr> + AsRef<str>>(key: K) -> Result<String, VarError> {
1615        let key: &str = key.as_ref();
1616        let value = crate::bridge::client::FreeFunctions::injected_env_var(key)
1617            .map_or_else(|| env::var(key), Ok);
1618        crate::bridge::client::FreeFunctions::track_env_var(key, value.as_deref().ok());
1619        value
1620    }
1621
1622    /// Track a file or directory explicitly.
1623    ///
1624    /// Commonly used for tracking asset preprocessing.
1625    #[unstable(feature = "proc_macro_tracked_path", issue = "99515")]
1626    pub fn path<P: AsRef<Path>>(path: P) {
1627        let path: &str = path.as_ref().to_str().unwrap();
1628        crate::bridge::client::FreeFunctions::track_path(path);
1629    }
1630}