proc_macro/
lib.rs

1//! A support library for macro authors when defining new macros.
2//!
3//! This library, provided by the standard distribution, provides the types
4//! consumed in the interfaces of procedurally defined macro definitions such as
5//! function-like macros `#[proc_macro]`, macro attributes `#[proc_macro_attribute]` and
6//! custom derive attributes `#[proc_macro_derive]`.
7//!
8//! See [the book] for more.
9//!
10//! [the book]: ../book/ch19-06-macros.html#procedural-macros-for-generating-code-from-attributes
11
12#![stable(feature = "proc_macro_lib", since = "1.15.0")]
13#![deny(missing_docs)]
14#![doc(
15    html_playground_url = "https://play.rust-lang.org/",
16    issue_tracker_base_url = "https://github.com/rust-lang/rust/issues/",
17    test(no_crate_inject, attr(deny(warnings))),
18    test(attr(allow(dead_code, deprecated, unused_variables, unused_mut)))
19)]
20#![doc(rust_logo)]
21#![feature(rustdoc_internals)]
22#![feature(staged_api)]
23#![feature(allow_internal_unstable)]
24#![feature(decl_macro)]
25#![feature(negative_impls)]
26#![feature(panic_can_unwind)]
27#![feature(restricted_std)]
28#![feature(rustc_attrs)]
29#![feature(extend_one)]
30#![recursion_limit = "256"]
31#![allow(internal_features)]
32#![deny(ffi_unwind_calls)]
33#![allow(rustc::internal)] // Can't use FxHashMap when compiled as part of the standard library
34#![warn(rustdoc::unescaped_backticks)]
35#![warn(unreachable_pub)]
36#![deny(unsafe_op_in_unsafe_fn)]
37
38#[unstable(feature = "proc_macro_internals", issue = "27812")]
39#[doc(hidden)]
40pub mod bridge;
41
42mod diagnostic;
43mod escape;
44mod to_tokens;
45
46use core::ops::BitOr;
47use std::ffi::CStr;
48use std::ops::{Range, RangeBounds};
49use std::path::PathBuf;
50use std::str::FromStr;
51use std::{error, fmt};
52
53#[unstable(feature = "proc_macro_diagnostic", issue = "54140")]
54pub use diagnostic::{Diagnostic, Level, MultiSpan};
55#[unstable(feature = "proc_macro_value", issue = "136652")]
56pub use rustc_literal_escaper::EscapeError;
57use rustc_literal_escaper::{MixedUnit, unescape_byte_str, unescape_c_str, unescape_str};
58#[unstable(feature = "proc_macro_totokens", issue = "130977")]
59pub use to_tokens::ToTokens;
60
61use crate::escape::{EscapeOptions, escape_bytes};
62
63/// Errors returned when trying to retrieve a literal unescaped value.
64#[unstable(feature = "proc_macro_value", issue = "136652")]
65#[derive(Debug, PartialEq, Eq)]
66pub enum ConversionErrorKind {
67    /// The literal failed to be escaped, take a look at [`EscapeError`] for more information.
68    FailedToUnescape(EscapeError),
69    /// Trying to convert a literal with the wrong type.
70    InvalidLiteralKind,
71}
72
73/// Determines whether proc_macro has been made accessible to the currently
74/// running program.
75///
76/// The proc_macro crate is only intended for use inside the implementation of
77/// procedural macros. All the functions in this crate panic if invoked from
78/// outside of a procedural macro, such as from a build script or unit test or
79/// ordinary Rust binary.
80///
81/// With consideration for Rust libraries that are designed to support both
82/// macro and non-macro use cases, `proc_macro::is_available()` provides a
83/// non-panicking way to detect whether the infrastructure required to use the
84/// API of proc_macro is presently available. Returns true if invoked from
85/// inside of a procedural macro, false if invoked from any other binary.
86#[stable(feature = "proc_macro_is_available", since = "1.57.0")]
87pub fn is_available() -> bool {
88    bridge::client::is_available()
89}
90
91/// The main type provided by this crate, representing an abstract stream of
92/// tokens, or, more specifically, a sequence of token trees.
93/// The type provides interfaces for iterating over those token trees and, conversely,
94/// collecting a number of token trees into one stream.
95///
96/// This is both the input and output of `#[proc_macro]`, `#[proc_macro_attribute]`
97/// and `#[proc_macro_derive]` definitions.
98#[cfg_attr(feature = "rustc-dep-of-std", rustc_diagnostic_item = "TokenStream")]
99#[stable(feature = "proc_macro_lib", since = "1.15.0")]
100#[derive(Clone)]
101pub struct TokenStream(Option<bridge::client::TokenStream>);
102
103#[stable(feature = "proc_macro_lib", since = "1.15.0")]
104impl !Send for TokenStream {}
105#[stable(feature = "proc_macro_lib", since = "1.15.0")]
106impl !Sync for TokenStream {}
107
108/// Error returned from `TokenStream::from_str`.
109#[stable(feature = "proc_macro_lib", since = "1.15.0")]
110#[non_exhaustive]
111#[derive(Debug)]
112pub struct LexError;
113
114#[stable(feature = "proc_macro_lexerror_impls", since = "1.44.0")]
115impl fmt::Display for LexError {
116    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
117        f.write_str("cannot parse string into token stream")
118    }
119}
120
121#[stable(feature = "proc_macro_lexerror_impls", since = "1.44.0")]
122impl error::Error for LexError {}
123
124#[stable(feature = "proc_macro_lib", since = "1.15.0")]
125impl !Send for LexError {}
126#[stable(feature = "proc_macro_lib", since = "1.15.0")]
127impl !Sync for LexError {}
128
129/// Error returned from `TokenStream::expand_expr`.
130#[unstable(feature = "proc_macro_expand", issue = "90765")]
131#[non_exhaustive]
132#[derive(Debug)]
133pub struct ExpandError;
134
135#[unstable(feature = "proc_macro_expand", issue = "90765")]
136impl fmt::Display for ExpandError {
137    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
138        f.write_str("macro expansion failed")
139    }
140}
141
142#[unstable(feature = "proc_macro_expand", issue = "90765")]
143impl error::Error for ExpandError {}
144
145#[unstable(feature = "proc_macro_expand", issue = "90765")]
146impl !Send for ExpandError {}
147
148#[unstable(feature = "proc_macro_expand", issue = "90765")]
149impl !Sync for ExpandError {}
150
151impl TokenStream {
152    /// Returns an empty `TokenStream` containing no token trees.
153    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
154    pub fn new() -> TokenStream {
155        TokenStream(None)
156    }
157
158    /// Checks if this `TokenStream` is empty.
159    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
160    pub fn is_empty(&self) -> bool {
161        self.0.as_ref().map(|h| h.is_empty()).unwrap_or(true)
162    }
163
164    /// Parses this `TokenStream` as an expression and attempts to expand any
165    /// macros within it. Returns the expanded `TokenStream`.
166    ///
167    /// Currently only expressions expanding to literals will succeed, although
168    /// this may be relaxed in the future.
169    ///
170    /// NOTE: In error conditions, `expand_expr` may leave macros unexpanded,
171    /// report an error, failing compilation, and/or return an `Err(..)`. The
172    /// specific behavior for any error condition, and what conditions are
173    /// considered errors, is unspecified and may change in the future.
174    #[unstable(feature = "proc_macro_expand", issue = "90765")]
175    pub fn expand_expr(&self) -> Result<TokenStream, ExpandError> {
176        let stream = self.0.as_ref().ok_or(ExpandError)?;
177        match bridge::client::TokenStream::expand_expr(stream) {
178            Ok(stream) => Ok(TokenStream(Some(stream))),
179            Err(_) => Err(ExpandError),
180        }
181    }
182}
183
184/// Attempts to break the string into tokens and parse those tokens into a token stream.
185/// May fail for a number of reasons, for example, if the string contains unbalanced delimiters
186/// or characters not existing in the language.
187/// All tokens in the parsed stream get `Span::call_site()` spans.
188///
189/// NOTE: some errors may cause panics instead of returning `LexError`. We reserve the right to
190/// change these errors into `LexError`s later.
191#[stable(feature = "proc_macro_lib", since = "1.15.0")]
192impl FromStr for TokenStream {
193    type Err = LexError;
194
195    fn from_str(src: &str) -> Result<TokenStream, LexError> {
196        Ok(TokenStream(Some(bridge::client::TokenStream::from_str(src))))
197    }
198}
199
200/// Prints the token stream as a string that is supposed to be losslessly convertible back
201/// into the same token stream (modulo spans), except for possibly `TokenTree::Group`s
202/// with `Delimiter::None` delimiters and negative numeric literals.
203///
204/// Note: the exact form of the output is subject to change, e.g. there might
205/// be changes in the whitespace used between tokens. Therefore, you should
206/// *not* do any kind of simple substring matching on the output string (as
207/// produced by `to_string`) to implement a proc macro, because that matching
208/// might stop working if such changes happen. Instead, you should work at the
209/// `TokenTree` level, e.g. matching against `TokenTree::Ident`,
210/// `TokenTree::Punct`, or `TokenTree::Literal`.
211#[stable(feature = "proc_macro_lib", since = "1.15.0")]
212impl fmt::Display for TokenStream {
213    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
214        match &self.0 {
215            Some(ts) => write!(f, "{}", ts.to_string()),
216            None => Ok(()),
217        }
218    }
219}
220
221/// Prints tokens in a form convenient for debugging.
222#[stable(feature = "proc_macro_lib", since = "1.15.0")]
223impl fmt::Debug for TokenStream {
224    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
225        f.write_str("TokenStream ")?;
226        f.debug_list().entries(self.clone()).finish()
227    }
228}
229
230#[stable(feature = "proc_macro_token_stream_default", since = "1.45.0")]
231impl Default for TokenStream {
232    fn default() -> Self {
233        TokenStream::new()
234    }
235}
236
237#[unstable(feature = "proc_macro_quote", issue = "54722")]
238pub use quote::{HasIterator, RepInterp, ThereIsNoIteratorInRepetition, ext, quote, quote_span};
239
240fn tree_to_bridge_tree(
241    tree: TokenTree,
242) -> bridge::TokenTree<bridge::client::TokenStream, bridge::client::Span, bridge::client::Symbol> {
243    match tree {
244        TokenTree::Group(tt) => bridge::TokenTree::Group(tt.0),
245        TokenTree::Punct(tt) => bridge::TokenTree::Punct(tt.0),
246        TokenTree::Ident(tt) => bridge::TokenTree::Ident(tt.0),
247        TokenTree::Literal(tt) => bridge::TokenTree::Literal(tt.0),
248    }
249}
250
251/// Creates a token stream containing a single token tree.
252#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
253impl From<TokenTree> for TokenStream {
254    fn from(tree: TokenTree) -> TokenStream {
255        TokenStream(Some(bridge::client::TokenStream::from_token_tree(tree_to_bridge_tree(tree))))
256    }
257}
258
259/// Non-generic helper for implementing `FromIterator<TokenTree>` and
260/// `Extend<TokenTree>` with less monomorphization in calling crates.
261struct ConcatTreesHelper {
262    trees: Vec<
263        bridge::TokenTree<
264            bridge::client::TokenStream,
265            bridge::client::Span,
266            bridge::client::Symbol,
267        >,
268    >,
269}
270
271impl ConcatTreesHelper {
272    fn new(capacity: usize) -> Self {
273        ConcatTreesHelper { trees: Vec::with_capacity(capacity) }
274    }
275
276    fn push(&mut self, tree: TokenTree) {
277        self.trees.push(tree_to_bridge_tree(tree));
278    }
279
280    fn build(self) -> TokenStream {
281        if self.trees.is_empty() {
282            TokenStream(None)
283        } else {
284            TokenStream(Some(bridge::client::TokenStream::concat_trees(None, self.trees)))
285        }
286    }
287
288    fn append_to(self, stream: &mut TokenStream) {
289        if self.trees.is_empty() {
290            return;
291        }
292        stream.0 = Some(bridge::client::TokenStream::concat_trees(stream.0.take(), self.trees))
293    }
294}
295
296/// Non-generic helper for implementing `FromIterator<TokenStream>` and
297/// `Extend<TokenStream>` with less monomorphization in calling crates.
298struct ConcatStreamsHelper {
299    streams: Vec<bridge::client::TokenStream>,
300}
301
302impl ConcatStreamsHelper {
303    fn new(capacity: usize) -> Self {
304        ConcatStreamsHelper { streams: Vec::with_capacity(capacity) }
305    }
306
307    fn push(&mut self, stream: TokenStream) {
308        if let Some(stream) = stream.0 {
309            self.streams.push(stream);
310        }
311    }
312
313    fn build(mut self) -> TokenStream {
314        if self.streams.len() <= 1 {
315            TokenStream(self.streams.pop())
316        } else {
317            TokenStream(Some(bridge::client::TokenStream::concat_streams(None, self.streams)))
318        }
319    }
320
321    fn append_to(mut self, stream: &mut TokenStream) {
322        if self.streams.is_empty() {
323            return;
324        }
325        let base = stream.0.take();
326        if base.is_none() && self.streams.len() == 1 {
327            stream.0 = self.streams.pop();
328        } else {
329            stream.0 = Some(bridge::client::TokenStream::concat_streams(base, self.streams));
330        }
331    }
332}
333
334/// Collects a number of token trees into a single stream.
335#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
336impl FromIterator<TokenTree> for TokenStream {
337    fn from_iter<I: IntoIterator<Item = TokenTree>>(trees: I) -> Self {
338        let iter = trees.into_iter();
339        let mut builder = ConcatTreesHelper::new(iter.size_hint().0);
340        iter.for_each(|tree| builder.push(tree));
341        builder.build()
342    }
343}
344
345/// A "flattening" operation on token streams, collects token trees
346/// from multiple token streams into a single stream.
347#[stable(feature = "proc_macro_lib", since = "1.15.0")]
348impl FromIterator<TokenStream> for TokenStream {
349    fn from_iter<I: IntoIterator<Item = TokenStream>>(streams: I) -> Self {
350        let iter = streams.into_iter();
351        let mut builder = ConcatStreamsHelper::new(iter.size_hint().0);
352        iter.for_each(|stream| builder.push(stream));
353        builder.build()
354    }
355}
356
357#[stable(feature = "token_stream_extend", since = "1.30.0")]
358impl Extend<TokenTree> for TokenStream {
359    fn extend<I: IntoIterator<Item = TokenTree>>(&mut self, trees: I) {
360        let iter = trees.into_iter();
361        let mut builder = ConcatTreesHelper::new(iter.size_hint().0);
362        iter.for_each(|tree| builder.push(tree));
363        builder.append_to(self);
364    }
365}
366
367#[stable(feature = "token_stream_extend", since = "1.30.0")]
368impl Extend<TokenStream> for TokenStream {
369    fn extend<I: IntoIterator<Item = TokenStream>>(&mut self, streams: I) {
370        let iter = streams.into_iter();
371        let mut builder = ConcatStreamsHelper::new(iter.size_hint().0);
372        iter.for_each(|stream| builder.push(stream));
373        builder.append_to(self);
374    }
375}
376
377macro_rules! extend_items {
378    ($($item:ident)*) => {
379        $(
380            #[stable(feature = "token_stream_extend_tt_items", since = "1.92.0")]
381            impl Extend<$item> for TokenStream {
382                fn extend<T: IntoIterator<Item = $item>>(&mut self, iter: T) {
383                    self.extend(iter.into_iter().map(TokenTree::$item));
384                }
385            }
386        )*
387    };
388}
389
390extend_items!(Group Literal Punct Ident);
391
392/// Public implementation details for the `TokenStream` type, such as iterators.
393#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
394pub mod token_stream {
395    use crate::{Group, Ident, Literal, Punct, TokenStream, TokenTree, bridge};
396
397    /// An iterator over `TokenStream`'s `TokenTree`s.
398    /// The iteration is "shallow", e.g., the iterator doesn't recurse into delimited groups,
399    /// and returns whole groups as token trees.
400    #[derive(Clone)]
401    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
402    pub struct IntoIter(
403        std::vec::IntoIter<
404            bridge::TokenTree<
405                bridge::client::TokenStream,
406                bridge::client::Span,
407                bridge::client::Symbol,
408            >,
409        >,
410    );
411
412    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
413    impl Iterator for IntoIter {
414        type Item = TokenTree;
415
416        fn next(&mut self) -> Option<TokenTree> {
417            self.0.next().map(|tree| match tree {
418                bridge::TokenTree::Group(tt) => TokenTree::Group(Group(tt)),
419                bridge::TokenTree::Punct(tt) => TokenTree::Punct(Punct(tt)),
420                bridge::TokenTree::Ident(tt) => TokenTree::Ident(Ident(tt)),
421                bridge::TokenTree::Literal(tt) => TokenTree::Literal(Literal(tt)),
422            })
423        }
424
425        fn size_hint(&self) -> (usize, Option<usize>) {
426            self.0.size_hint()
427        }
428
429        fn count(self) -> usize {
430            self.0.count()
431        }
432    }
433
434    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
435    impl IntoIterator for TokenStream {
436        type Item = TokenTree;
437        type IntoIter = IntoIter;
438
439        fn into_iter(self) -> IntoIter {
440            IntoIter(self.0.map(|v| v.into_trees()).unwrap_or_default().into_iter())
441        }
442    }
443}
444
445/// `quote!(..)` accepts arbitrary tokens and expands into a `TokenStream` describing the input.
446/// For example, `quote!(a + b)` will produce an expression, that, when evaluated, constructs
447/// the `TokenStream` `[Ident("a"), Punct('+', Alone), Ident("b")]`.
448///
449/// Unquoting is done with `$`, and works by taking the single next ident as the unquoted term.
450/// To quote `$` itself, use `$$`.
451#[unstable(feature = "proc_macro_quote", issue = "54722")]
452#[allow_internal_unstable(proc_macro_def_site, proc_macro_internals, proc_macro_totokens)]
453#[rustc_builtin_macro]
454pub macro quote($($t:tt)*) {
455    /* compiler built-in */
456}
457
458#[unstable(feature = "proc_macro_internals", issue = "27812")]
459#[doc(hidden)]
460mod quote;
461
462/// A region of source code, along with macro expansion information.
463#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
464#[derive(Copy, Clone)]
465pub struct Span(bridge::client::Span);
466
467#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
468impl !Send for Span {}
469#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
470impl !Sync for Span {}
471
472macro_rules! diagnostic_method {
473    ($name:ident, $level:expr) => {
474        /// Creates a new `Diagnostic` with the given `message` at the span
475        /// `self`.
476        #[unstable(feature = "proc_macro_diagnostic", issue = "54140")]
477        pub fn $name<T: Into<String>>(self, message: T) -> Diagnostic {
478            Diagnostic::spanned(self, $level, message)
479        }
480    };
481}
482
483impl Span {
484    /// A span that resolves at the macro definition site.
485    #[unstable(feature = "proc_macro_def_site", issue = "54724")]
486    pub fn def_site() -> Span {
487        Span(bridge::client::Span::def_site())
488    }
489
490    /// The span of the invocation of the current procedural macro.
491    /// Identifiers created with this span will be resolved as if they were written
492    /// directly at the macro call location (call-site hygiene) and other code
493    /// at the macro call site will be able to refer to them as well.
494    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
495    pub fn call_site() -> Span {
496        Span(bridge::client::Span::call_site())
497    }
498
499    /// A span that represents `macro_rules` hygiene, and sometimes resolves at the macro
500    /// definition site (local variables, labels, `$crate`) and sometimes at the macro
501    /// call site (everything else).
502    /// The span location is taken from the call-site.
503    #[stable(feature = "proc_macro_mixed_site", since = "1.45.0")]
504    pub fn mixed_site() -> Span {
505        Span(bridge::client::Span::mixed_site())
506    }
507
508    /// The `Span` for the tokens in the previous macro expansion from which
509    /// `self` was generated from, if any.
510    #[unstable(feature = "proc_macro_span", issue = "54725")]
511    pub fn parent(&self) -> Option<Span> {
512        self.0.parent().map(Span)
513    }
514
515    /// The span for the origin source code that `self` was generated from. If
516    /// this `Span` wasn't generated from other macro expansions then the return
517    /// value is the same as `*self`.
518    #[unstable(feature = "proc_macro_span", issue = "54725")]
519    pub fn source(&self) -> Span {
520        Span(self.0.source())
521    }
522
523    /// Returns the span's byte position range in the source file.
524    #[unstable(feature = "proc_macro_span", issue = "54725")]
525    pub fn byte_range(&self) -> Range<usize> {
526        self.0.byte_range()
527    }
528
529    /// Creates an empty span pointing to directly before this span.
530    #[stable(feature = "proc_macro_span_location", since = "1.88.0")]
531    pub fn start(&self) -> Span {
532        Span(self.0.start())
533    }
534
535    /// Creates an empty span pointing to directly after this span.
536    #[stable(feature = "proc_macro_span_location", since = "1.88.0")]
537    pub fn end(&self) -> Span {
538        Span(self.0.end())
539    }
540
541    /// The one-indexed line of the source file where the span starts.
542    ///
543    /// To obtain the line of the span's end, use `span.end().line()`.
544    #[stable(feature = "proc_macro_span_location", since = "1.88.0")]
545    pub fn line(&self) -> usize {
546        self.0.line()
547    }
548
549    /// The one-indexed column of the source file where the span starts.
550    ///
551    /// To obtain the column of the span's end, use `span.end().column()`.
552    #[stable(feature = "proc_macro_span_location", since = "1.88.0")]
553    pub fn column(&self) -> usize {
554        self.0.column()
555    }
556
557    /// The path to the source file in which this span occurs, for display purposes.
558    ///
559    /// This might not correspond to a valid file system path.
560    /// It might be remapped (e.g. `"/src/lib.rs"`) or an artificial path (e.g. `"<command line>"`).
561    #[stable(feature = "proc_macro_span_file", since = "1.88.0")]
562    pub fn file(&self) -> String {
563        self.0.file()
564    }
565
566    /// The path to the source file in which this span occurs on the local file system.
567    ///
568    /// This is the actual path on disk. It is unaffected by path remapping.
569    ///
570    /// This path should not be embedded in the output of the macro; prefer `file()` instead.
571    #[stable(feature = "proc_macro_span_file", since = "1.88.0")]
572    pub fn local_file(&self) -> Option<PathBuf> {
573        self.0.local_file().map(PathBuf::from)
574    }
575
576    /// Creates a new span encompassing `self` and `other`.
577    ///
578    /// Returns `None` if `self` and `other` are from different files.
579    #[unstable(feature = "proc_macro_span", issue = "54725")]
580    pub fn join(&self, other: Span) -> Option<Span> {
581        self.0.join(other.0).map(Span)
582    }
583
584    /// Creates a new span with the same line/column information as `self` but
585    /// that resolves symbols as though it were at `other`.
586    #[stable(feature = "proc_macro_span_resolved_at", since = "1.45.0")]
587    pub fn resolved_at(&self, other: Span) -> Span {
588        Span(self.0.resolved_at(other.0))
589    }
590
591    /// Creates a new span with the same name resolution behavior as `self` but
592    /// with the line/column information of `other`.
593    #[stable(feature = "proc_macro_span_located_at", since = "1.45.0")]
594    pub fn located_at(&self, other: Span) -> Span {
595        other.resolved_at(*self)
596    }
597
598    /// Compares two spans to see if they're equal.
599    #[unstable(feature = "proc_macro_span", issue = "54725")]
600    pub fn eq(&self, other: &Span) -> bool {
601        self.0 == other.0
602    }
603
604    /// Returns the source text behind a span. This preserves the original source
605    /// code, including spaces and comments. It only returns a result if the span
606    /// corresponds to real source code.
607    ///
608    /// Note: The observable result of a macro should only rely on the tokens and
609    /// not on this source text. The result of this function is a best effort to
610    /// be used for diagnostics only.
611    #[stable(feature = "proc_macro_source_text", since = "1.66.0")]
612    pub fn source_text(&self) -> Option<String> {
613        self.0.source_text()
614    }
615
616    // Used by the implementation of `Span::quote`
617    #[doc(hidden)]
618    #[unstable(feature = "proc_macro_internals", issue = "27812")]
619    pub fn save_span(&self) -> usize {
620        self.0.save_span()
621    }
622
623    // Used by the implementation of `Span::quote`
624    #[doc(hidden)]
625    #[unstable(feature = "proc_macro_internals", issue = "27812")]
626    pub fn recover_proc_macro_span(id: usize) -> Span {
627        Span(bridge::client::Span::recover_proc_macro_span(id))
628    }
629
630    diagnostic_method!(error, Level::Error);
631    diagnostic_method!(warning, Level::Warning);
632    diagnostic_method!(note, Level::Note);
633    diagnostic_method!(help, Level::Help);
634}
635
636/// Prints a span in a form convenient for debugging.
637#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
638impl fmt::Debug for Span {
639    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
640        self.0.fmt(f)
641    }
642}
643
644/// A single token or a delimited sequence of token trees (e.g., `[1, (), ..]`).
645#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
646#[derive(Clone)]
647pub enum TokenTree {
648    /// A token stream surrounded by bracket delimiters.
649    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
650    Group(#[stable(feature = "proc_macro_lib2", since = "1.29.0")] Group),
651    /// An identifier.
652    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
653    Ident(#[stable(feature = "proc_macro_lib2", since = "1.29.0")] Ident),
654    /// A single punctuation character (`+`, `,`, `$`, etc.).
655    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
656    Punct(#[stable(feature = "proc_macro_lib2", since = "1.29.0")] Punct),
657    /// A literal character (`'a'`), string (`"hello"`), number (`2.3`), etc.
658    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
659    Literal(#[stable(feature = "proc_macro_lib2", since = "1.29.0")] Literal),
660}
661
662#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
663impl !Send for TokenTree {}
664#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
665impl !Sync for TokenTree {}
666
667impl TokenTree {
668    /// Returns the span of this tree, delegating to the `span` method of
669    /// the contained token or a delimited stream.
670    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
671    pub fn span(&self) -> Span {
672        match *self {
673            TokenTree::Group(ref t) => t.span(),
674            TokenTree::Ident(ref t) => t.span(),
675            TokenTree::Punct(ref t) => t.span(),
676            TokenTree::Literal(ref t) => t.span(),
677        }
678    }
679
680    /// Configures the span for *only this token*.
681    ///
682    /// Note that if this token is a `Group` then this method will not configure
683    /// the span of each of the internal tokens, this will simply delegate to
684    /// the `set_span` method of each variant.
685    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
686    pub fn set_span(&mut self, span: Span) {
687        match *self {
688            TokenTree::Group(ref mut t) => t.set_span(span),
689            TokenTree::Ident(ref mut t) => t.set_span(span),
690            TokenTree::Punct(ref mut t) => t.set_span(span),
691            TokenTree::Literal(ref mut t) => t.set_span(span),
692        }
693    }
694}
695
696/// Prints token tree in a form convenient for debugging.
697#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
698impl fmt::Debug for TokenTree {
699    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
700        // Each of these has the name in the struct type in the derived debug,
701        // so don't bother with an extra layer of indirection
702        match *self {
703            TokenTree::Group(ref tt) => tt.fmt(f),
704            TokenTree::Ident(ref tt) => tt.fmt(f),
705            TokenTree::Punct(ref tt) => tt.fmt(f),
706            TokenTree::Literal(ref tt) => tt.fmt(f),
707        }
708    }
709}
710
711#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
712impl From<Group> for TokenTree {
713    fn from(g: Group) -> TokenTree {
714        TokenTree::Group(g)
715    }
716}
717
718#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
719impl From<Ident> for TokenTree {
720    fn from(g: Ident) -> TokenTree {
721        TokenTree::Ident(g)
722    }
723}
724
725#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
726impl From<Punct> for TokenTree {
727    fn from(g: Punct) -> TokenTree {
728        TokenTree::Punct(g)
729    }
730}
731
732#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
733impl From<Literal> for TokenTree {
734    fn from(g: Literal) -> TokenTree {
735        TokenTree::Literal(g)
736    }
737}
738
739/// Prints the token tree as a string that is supposed to be losslessly convertible back
740/// into the same token tree (modulo spans), except for possibly `TokenTree::Group`s
741/// with `Delimiter::None` delimiters and negative numeric literals.
742///
743/// Note: the exact form of the output is subject to change, e.g. there might
744/// be changes in the whitespace used between tokens. Therefore, you should
745/// *not* do any kind of simple substring matching on the output string (as
746/// produced by `to_string`) to implement a proc macro, because that matching
747/// might stop working if such changes happen. Instead, you should work at the
748/// `TokenTree` level, e.g. matching against `TokenTree::Ident`,
749/// `TokenTree::Punct`, or `TokenTree::Literal`.
750#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
751impl fmt::Display for TokenTree {
752    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
753        match self {
754            TokenTree::Group(t) => write!(f, "{t}"),
755            TokenTree::Ident(t) => write!(f, "{t}"),
756            TokenTree::Punct(t) => write!(f, "{t}"),
757            TokenTree::Literal(t) => write!(f, "{t}"),
758        }
759    }
760}
761
762/// A delimited token stream.
763///
764/// A `Group` internally contains a `TokenStream` which is surrounded by `Delimiter`s.
765#[derive(Clone)]
766#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
767pub struct Group(bridge::Group<bridge::client::TokenStream, bridge::client::Span>);
768
769#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
770impl !Send for Group {}
771#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
772impl !Sync for Group {}
773
774/// Describes how a sequence of token trees is delimited.
775#[derive(Copy, Clone, Debug, PartialEq, Eq)]
776#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
777pub enum Delimiter {
778    /// `( ... )`
779    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
780    Parenthesis,
781    /// `{ ... }`
782    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
783    Brace,
784    /// `[ ... ]`
785    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
786    Bracket,
787    /// `∅ ... ∅`
788    /// An invisible delimiter, that may, for example, appear around tokens coming from a
789    /// "macro variable" `$var`. It is important to preserve operator priorities in cases like
790    /// `$var * 3` where `$var` is `1 + 2`.
791    /// Invisible delimiters might not survive roundtrip of a token stream through a string.
792    ///
793    /// <div class="warning">
794    ///
795    /// Note: rustc currently can ignore the grouping of tokens delimited by `None` in the output
796    /// of a proc_macro. Only `None`-delimited groups created by a macro_rules macro in the input
797    /// of a proc_macro macro are preserved, and only in very specific circumstances.
798    /// Any `None`-delimited groups (re)created by a proc_macro will therefore not preserve
799    /// operator priorities as indicated above. The other `Delimiter` variants should be used
800    /// instead in this context. This is a rustc bug. For details, see
801    /// [rust-lang/rust#67062](https://github.com/rust-lang/rust/issues/67062).
802    ///
803    /// </div>
804    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
805    None,
806}
807
808impl Group {
809    /// Creates a new `Group` with the given delimiter and token stream.
810    ///
811    /// This constructor will set the span for this group to
812    /// `Span::call_site()`. To change the span you can use the `set_span`
813    /// method below.
814    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
815    pub fn new(delimiter: Delimiter, stream: TokenStream) -> Group {
816        Group(bridge::Group {
817            delimiter,
818            stream: stream.0,
819            span: bridge::DelimSpan::from_single(Span::call_site().0),
820        })
821    }
822
823    /// Returns the delimiter of this `Group`
824    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
825    pub fn delimiter(&self) -> Delimiter {
826        self.0.delimiter
827    }
828
829    /// Returns the `TokenStream` of tokens that are delimited in this `Group`.
830    ///
831    /// Note that the returned token stream does not include the delimiter
832    /// returned above.
833    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
834    pub fn stream(&self) -> TokenStream {
835        TokenStream(self.0.stream.clone())
836    }
837
838    /// Returns the span for the delimiters of this token stream, spanning the
839    /// entire `Group`.
840    ///
841    /// ```text
842    /// pub fn span(&self) -> Span {
843    ///            ^^^^^^^
844    /// ```
845    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
846    pub fn span(&self) -> Span {
847        Span(self.0.span.entire)
848    }
849
850    /// Returns the span pointing to the opening delimiter of this group.
851    ///
852    /// ```text
853    /// pub fn span_open(&self) -> Span {
854    ///                 ^
855    /// ```
856    #[stable(feature = "proc_macro_group_span", since = "1.55.0")]
857    pub fn span_open(&self) -> Span {
858        Span(self.0.span.open)
859    }
860
861    /// Returns the span pointing to the closing delimiter of this group.
862    ///
863    /// ```text
864    /// pub fn span_close(&self) -> Span {
865    ///                        ^
866    /// ```
867    #[stable(feature = "proc_macro_group_span", since = "1.55.0")]
868    pub fn span_close(&self) -> Span {
869        Span(self.0.span.close)
870    }
871
872    /// Configures the span for this `Group`'s delimiters, but not its internal
873    /// tokens.
874    ///
875    /// This method will **not** set the span of all the internal tokens spanned
876    /// by this group, but rather it will only set the span of the delimiter
877    /// tokens at the level of the `Group`.
878    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
879    pub fn set_span(&mut self, span: Span) {
880        self.0.span = bridge::DelimSpan::from_single(span.0);
881    }
882}
883
884/// Prints the group as a string that should be losslessly convertible back
885/// into the same group (modulo spans), except for possibly `TokenTree::Group`s
886/// with `Delimiter::None` delimiters.
887#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
888impl fmt::Display for Group {
889    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
890        write!(f, "{}", TokenStream::from(TokenTree::from(self.clone())))
891    }
892}
893
894#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
895impl fmt::Debug for Group {
896    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
897        f.debug_struct("Group")
898            .field("delimiter", &self.delimiter())
899            .field("stream", &self.stream())
900            .field("span", &self.span())
901            .finish()
902    }
903}
904
905/// A `Punct` is a single punctuation character such as `+`, `-` or `#`.
906///
907/// Multi-character operators like `+=` are represented as two instances of `Punct` with different
908/// forms of `Spacing` returned.
909#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
910#[derive(Clone)]
911pub struct Punct(bridge::Punct<bridge::client::Span>);
912
913#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
914impl !Send for Punct {}
915#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
916impl !Sync for Punct {}
917
918/// Indicates whether a `Punct` token can join with the following token
919/// to form a multi-character operator.
920#[derive(Copy, Clone, Debug, PartialEq, Eq)]
921#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
922pub enum Spacing {
923    /// A `Punct` token can join with the following token to form a multi-character operator.
924    ///
925    /// In token streams constructed using proc macro interfaces, `Joint` punctuation tokens can be
926    /// followed by any other tokens. However, in token streams parsed from source code, the
927    /// compiler will only set spacing to `Joint` in the following cases.
928    /// - When a `Punct` is immediately followed by another `Punct` without a whitespace. E.g. `+`
929    ///   is `Joint` in `+=` and `++`.
930    /// - When a single quote `'` is immediately followed by an identifier without a whitespace.
931    ///   E.g. `'` is `Joint` in `'lifetime`.
932    ///
933    /// This list may be extended in the future to enable more token combinations.
934    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
935    Joint,
936    /// A `Punct` token cannot join with the following token to form a multi-character operator.
937    ///
938    /// `Alone` punctuation tokens can be followed by any other tokens. In token streams parsed
939    /// from source code, the compiler will set spacing to `Alone` in all cases not covered by the
940    /// conditions for `Joint` above. E.g. `+` is `Alone` in `+ =`, `+ident` and `+()`. In
941    /// particular, tokens not followed by anything will be marked as `Alone`.
942    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
943    Alone,
944}
945
946impl Punct {
947    /// Creates a new `Punct` from the given character and spacing.
948    /// The `ch` argument must be a valid punctuation character permitted by the language,
949    /// otherwise the function will panic.
950    ///
951    /// The returned `Punct` will have the default span of `Span::call_site()`
952    /// which can be further configured with the `set_span` method below.
953    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
954    pub fn new(ch: char, spacing: Spacing) -> Punct {
955        const LEGAL_CHARS: &[char] = &[
956            '=', '<', '>', '!', '~', '+', '-', '*', '/', '%', '^', '&', '|', '@', '.', ',', ';',
957            ':', '#', '$', '?', '\'',
958        ];
959        if !LEGAL_CHARS.contains(&ch) {
960            panic!("unsupported character `{:?}`", ch);
961        }
962        Punct(bridge::Punct {
963            ch: ch as u8,
964            joint: spacing == Spacing::Joint,
965            span: Span::call_site().0,
966        })
967    }
968
969    /// Returns the value of this punctuation character as `char`.
970    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
971    pub fn as_char(&self) -> char {
972        self.0.ch as char
973    }
974
975    /// Returns the spacing of this punctuation character, indicating whether it can be potentially
976    /// combined into a multi-character operator with the following token (`Joint`), or whether the
977    /// operator has definitely ended (`Alone`).
978    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
979    pub fn spacing(&self) -> Spacing {
980        if self.0.joint { Spacing::Joint } else { Spacing::Alone }
981    }
982
983    /// Returns the span for this punctuation character.
984    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
985    pub fn span(&self) -> Span {
986        Span(self.0.span)
987    }
988
989    /// Configure the span for this punctuation character.
990    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
991    pub fn set_span(&mut self, span: Span) {
992        self.0.span = span.0;
993    }
994}
995
996/// Prints the punctuation character as a string that should be losslessly convertible
997/// back into the same character.
998#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
999impl fmt::Display for Punct {
1000    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1001        write!(f, "{}", self.as_char())
1002    }
1003}
1004
1005#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1006impl fmt::Debug for Punct {
1007    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1008        f.debug_struct("Punct")
1009            .field("ch", &self.as_char())
1010            .field("spacing", &self.spacing())
1011            .field("span", &self.span())
1012            .finish()
1013    }
1014}
1015
1016#[stable(feature = "proc_macro_punct_eq", since = "1.50.0")]
1017impl PartialEq<char> for Punct {
1018    fn eq(&self, rhs: &char) -> bool {
1019        self.as_char() == *rhs
1020    }
1021}
1022
1023#[stable(feature = "proc_macro_punct_eq_flipped", since = "1.52.0")]
1024impl PartialEq<Punct> for char {
1025    fn eq(&self, rhs: &Punct) -> bool {
1026        *self == rhs.as_char()
1027    }
1028}
1029
1030/// An identifier (`ident`).
1031#[derive(Clone)]
1032#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1033pub struct Ident(bridge::Ident<bridge::client::Span, bridge::client::Symbol>);
1034
1035impl Ident {
1036    /// Creates a new `Ident` with the given `string` as well as the specified
1037    /// `span`.
1038    /// The `string` argument must be a valid identifier permitted by the
1039    /// language (including keywords, e.g. `self` or `fn`). Otherwise, the function will panic.
1040    ///
1041    /// Note that `span`, currently in rustc, configures the hygiene information
1042    /// for this identifier.
1043    ///
1044    /// As of this time `Span::call_site()` explicitly opts-in to "call-site" hygiene
1045    /// meaning that identifiers created with this span will be resolved as if they were written
1046    /// directly at the location of the macro call, and other code at the macro call site will be
1047    /// able to refer to them as well.
1048    ///
1049    /// Later spans like `Span::def_site()` will allow to opt-in to "definition-site" hygiene
1050    /// meaning that identifiers created with this span will be resolved at the location of the
1051    /// macro definition and other code at the macro call site will not be able to refer to them.
1052    ///
1053    /// Due to the current importance of hygiene this constructor, unlike other
1054    /// tokens, requires a `Span` to be specified at construction.
1055    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1056    pub fn new(string: &str, span: Span) -> Ident {
1057        Ident(bridge::Ident {
1058            sym: bridge::client::Symbol::new_ident(string, false),
1059            is_raw: false,
1060            span: span.0,
1061        })
1062    }
1063
1064    /// Same as `Ident::new`, but creates a raw identifier (`r#ident`).
1065    /// The `string` argument be a valid identifier permitted by the language
1066    /// (including keywords, e.g. `fn`). Keywords which are usable in path segments
1067    /// (e.g. `self`, `super`) are not supported, and will cause a panic.
1068    #[stable(feature = "proc_macro_raw_ident", since = "1.47.0")]
1069    pub fn new_raw(string: &str, span: Span) -> Ident {
1070        Ident(bridge::Ident {
1071            sym: bridge::client::Symbol::new_ident(string, true),
1072            is_raw: true,
1073            span: span.0,
1074        })
1075    }
1076
1077    /// Returns the span of this `Ident`, encompassing the entire string returned
1078    /// by [`to_string`](ToString::to_string).
1079    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1080    pub fn span(&self) -> Span {
1081        Span(self.0.span)
1082    }
1083
1084    /// Configures the span of this `Ident`, possibly changing its hygiene context.
1085    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1086    pub fn set_span(&mut self, span: Span) {
1087        self.0.span = span.0;
1088    }
1089}
1090
1091/// Prints the identifier as a string that should be losslessly convertible back
1092/// into the same identifier.
1093#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1094impl fmt::Display for Ident {
1095    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1096        if self.0.is_raw {
1097            f.write_str("r#")?;
1098        }
1099        fmt::Display::fmt(&self.0.sym, f)
1100    }
1101}
1102
1103#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1104impl fmt::Debug for Ident {
1105    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1106        f.debug_struct("Ident")
1107            .field("ident", &self.to_string())
1108            .field("span", &self.span())
1109            .finish()
1110    }
1111}
1112
1113/// A literal string (`"hello"`), byte string (`b"hello"`), C string (`c"hello"`),
1114/// character (`'a'`), byte character (`b'a'`), an integer or floating point number
1115/// with or without a suffix (`1`, `1u8`, `2.3`, `2.3f32`).
1116/// Boolean literals like `true` and `false` do not belong here, they are `Ident`s.
1117#[derive(Clone)]
1118#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1119pub struct Literal(bridge::Literal<bridge::client::Span, bridge::client::Symbol>);
1120
1121macro_rules! suffixed_int_literals {
1122    ($($name:ident => $kind:ident,)*) => ($(
1123        /// Creates a new suffixed integer literal with the specified value.
1124        ///
1125        /// This function will create an integer like `1u32` where the integer
1126        /// value specified is the first part of the token and the integral is
1127        /// also suffixed at the end.
1128        /// Literals created from negative numbers might not survive round-trips through
1129        /// `TokenStream` or strings and may be broken into two tokens (`-` and positive literal).
1130        ///
1131        /// Literals created through this method have the `Span::call_site()`
1132        /// span by default, which can be configured with the `set_span` method
1133        /// below.
1134        #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1135        pub fn $name(n: $kind) -> Literal {
1136            Literal(bridge::Literal {
1137                kind: bridge::LitKind::Integer,
1138                symbol: bridge::client::Symbol::new(&n.to_string()),
1139                suffix: Some(bridge::client::Symbol::new(stringify!($kind))),
1140                span: Span::call_site().0,
1141            })
1142        }
1143    )*)
1144}
1145
1146macro_rules! unsuffixed_int_literals {
1147    ($($name:ident => $kind:ident,)*) => ($(
1148        /// Creates a new unsuffixed integer literal with the specified value.
1149        ///
1150        /// This function will create an integer like `1` where the integer
1151        /// value specified is the first part of the token. No suffix is
1152        /// specified on this token, meaning that invocations like
1153        /// `Literal::i8_unsuffixed(1)` are equivalent to
1154        /// `Literal::u32_unsuffixed(1)`.
1155        /// Literals created from negative numbers might not survive rountrips through
1156        /// `TokenStream` or strings and may be broken into two tokens (`-` and positive literal).
1157        ///
1158        /// Literals created through this method have the `Span::call_site()`
1159        /// span by default, which can be configured with the `set_span` method
1160        /// below.
1161        #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1162        pub fn $name(n: $kind) -> Literal {
1163            Literal(bridge::Literal {
1164                kind: bridge::LitKind::Integer,
1165                symbol: bridge::client::Symbol::new(&n.to_string()),
1166                suffix: None,
1167                span: Span::call_site().0,
1168            })
1169        }
1170    )*)
1171}
1172
1173impl Literal {
1174    fn new(kind: bridge::LitKind, value: &str, suffix: Option<&str>) -> Self {
1175        Literal(bridge::Literal {
1176            kind,
1177            symbol: bridge::client::Symbol::new(value),
1178            suffix: suffix.map(bridge::client::Symbol::new),
1179            span: Span::call_site().0,
1180        })
1181    }
1182
1183    suffixed_int_literals! {
1184        u8_suffixed => u8,
1185        u16_suffixed => u16,
1186        u32_suffixed => u32,
1187        u64_suffixed => u64,
1188        u128_suffixed => u128,
1189        usize_suffixed => usize,
1190        i8_suffixed => i8,
1191        i16_suffixed => i16,
1192        i32_suffixed => i32,
1193        i64_suffixed => i64,
1194        i128_suffixed => i128,
1195        isize_suffixed => isize,
1196    }
1197
1198    unsuffixed_int_literals! {
1199        u8_unsuffixed => u8,
1200        u16_unsuffixed => u16,
1201        u32_unsuffixed => u32,
1202        u64_unsuffixed => u64,
1203        u128_unsuffixed => u128,
1204        usize_unsuffixed => usize,
1205        i8_unsuffixed => i8,
1206        i16_unsuffixed => i16,
1207        i32_unsuffixed => i32,
1208        i64_unsuffixed => i64,
1209        i128_unsuffixed => i128,
1210        isize_unsuffixed => isize,
1211    }
1212
1213    /// Creates a new unsuffixed floating-point literal.
1214    ///
1215    /// This constructor is similar to those like `Literal::i8_unsuffixed` where
1216    /// the float's value is emitted directly into the token but no suffix is
1217    /// used, so it may be inferred to be a `f64` later in the compiler.
1218    /// Literals created from negative numbers might not survive rountrips through
1219    /// `TokenStream` or strings and may be broken into two tokens (`-` and positive literal).
1220    ///
1221    /// # Panics
1222    ///
1223    /// This function requires that the specified float is finite, for
1224    /// example if it is infinity or NaN this function will panic.
1225    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1226    pub fn f32_unsuffixed(n: f32) -> Literal {
1227        if !n.is_finite() {
1228            panic!("Invalid float literal {n}");
1229        }
1230        let mut repr = n.to_string();
1231        if !repr.contains('.') {
1232            repr.push_str(".0");
1233        }
1234        Literal::new(bridge::LitKind::Float, &repr, None)
1235    }
1236
1237    /// Creates a new suffixed floating-point literal.
1238    ///
1239    /// This constructor will create a literal like `1.0f32` where the value
1240    /// specified is the preceding part of the token and `f32` is the suffix of
1241    /// the token. This token will always be inferred to be an `f32` in the
1242    /// compiler.
1243    /// Literals created from negative numbers might not survive rountrips through
1244    /// `TokenStream` or strings and may be broken into two tokens (`-` and positive literal).
1245    ///
1246    /// # Panics
1247    ///
1248    /// This function requires that the specified float is finite, for
1249    /// example if it is infinity or NaN this function will panic.
1250    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1251    pub fn f32_suffixed(n: f32) -> Literal {
1252        if !n.is_finite() {
1253            panic!("Invalid float literal {n}");
1254        }
1255        Literal::new(bridge::LitKind::Float, &n.to_string(), Some("f32"))
1256    }
1257
1258    /// Creates a new unsuffixed floating-point literal.
1259    ///
1260    /// This constructor is similar to those like `Literal::i8_unsuffixed` where
1261    /// the float's value is emitted directly into the token but no suffix is
1262    /// used, so it may be inferred to be a `f64` later in the compiler.
1263    /// Literals created from negative numbers might not survive rountrips through
1264    /// `TokenStream` or strings and may be broken into two tokens (`-` and positive literal).
1265    ///
1266    /// # Panics
1267    ///
1268    /// This function requires that the specified float is finite, for
1269    /// example if it is infinity or NaN this function will panic.
1270    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1271    pub fn f64_unsuffixed(n: f64) -> Literal {
1272        if !n.is_finite() {
1273            panic!("Invalid float literal {n}");
1274        }
1275        let mut repr = n.to_string();
1276        if !repr.contains('.') {
1277            repr.push_str(".0");
1278        }
1279        Literal::new(bridge::LitKind::Float, &repr, None)
1280    }
1281
1282    /// Creates a new suffixed floating-point literal.
1283    ///
1284    /// This constructor will create a literal like `1.0f64` where the value
1285    /// specified is the preceding part of the token and `f64` is the suffix of
1286    /// the token. This token will always be inferred to be an `f64` in the
1287    /// compiler.
1288    /// Literals created from negative numbers might not survive rountrips through
1289    /// `TokenStream` or strings and may be broken into two tokens (`-` and positive literal).
1290    ///
1291    /// # Panics
1292    ///
1293    /// This function requires that the specified float is finite, for
1294    /// example if it is infinity or NaN this function will panic.
1295    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1296    pub fn f64_suffixed(n: f64) -> Literal {
1297        if !n.is_finite() {
1298            panic!("Invalid float literal {n}");
1299        }
1300        Literal::new(bridge::LitKind::Float, &n.to_string(), Some("f64"))
1301    }
1302
1303    /// String literal.
1304    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1305    pub fn string(string: &str) -> Literal {
1306        let escape = EscapeOptions {
1307            escape_single_quote: false,
1308            escape_double_quote: true,
1309            escape_nonascii: false,
1310        };
1311        let repr = escape_bytes(string.as_bytes(), escape);
1312        Literal::new(bridge::LitKind::Str, &repr, None)
1313    }
1314
1315    /// Character literal.
1316    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1317    pub fn character(ch: char) -> Literal {
1318        let escape = EscapeOptions {
1319            escape_single_quote: true,
1320            escape_double_quote: false,
1321            escape_nonascii: false,
1322        };
1323        let repr = escape_bytes(ch.encode_utf8(&mut [0u8; 4]).as_bytes(), escape);
1324        Literal::new(bridge::LitKind::Char, &repr, None)
1325    }
1326
1327    /// Byte character literal.
1328    #[stable(feature = "proc_macro_byte_character", since = "1.79.0")]
1329    pub fn byte_character(byte: u8) -> Literal {
1330        let escape = EscapeOptions {
1331            escape_single_quote: true,
1332            escape_double_quote: false,
1333            escape_nonascii: true,
1334        };
1335        let repr = escape_bytes(&[byte], escape);
1336        Literal::new(bridge::LitKind::Byte, &repr, None)
1337    }
1338
1339    /// Byte string literal.
1340    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1341    pub fn byte_string(bytes: &[u8]) -> Literal {
1342        let escape = EscapeOptions {
1343            escape_single_quote: false,
1344            escape_double_quote: true,
1345            escape_nonascii: true,
1346        };
1347        let repr = escape_bytes(bytes, escape);
1348        Literal::new(bridge::LitKind::ByteStr, &repr, None)
1349    }
1350
1351    /// C string literal.
1352    #[stable(feature = "proc_macro_c_str_literals", since = "1.79.0")]
1353    pub fn c_string(string: &CStr) -> Literal {
1354        let escape = EscapeOptions {
1355            escape_single_quote: false,
1356            escape_double_quote: true,
1357            escape_nonascii: false,
1358        };
1359        let repr = escape_bytes(string.to_bytes(), escape);
1360        Literal::new(bridge::LitKind::CStr, &repr, None)
1361    }
1362
1363    /// Returns the span encompassing this literal.
1364    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1365    pub fn span(&self) -> Span {
1366        Span(self.0.span)
1367    }
1368
1369    /// Configures the span associated for this literal.
1370    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1371    pub fn set_span(&mut self, span: Span) {
1372        self.0.span = span.0;
1373    }
1374
1375    /// Returns a `Span` that is a subset of `self.span()` containing only the
1376    /// source bytes in range `range`. Returns `None` if the would-be trimmed
1377    /// span is outside the bounds of `self`.
1378    // FIXME(SergioBenitez): check that the byte range starts and ends at a
1379    // UTF-8 boundary of the source. otherwise, it's likely that a panic will
1380    // occur elsewhere when the source text is printed.
1381    // FIXME(SergioBenitez): there is no way for the user to know what
1382    // `self.span()` actually maps to, so this method can currently only be
1383    // called blindly. For example, `to_string()` for the character 'c' returns
1384    // "'\u{63}'"; there is no way for the user to know whether the source text
1385    // was 'c' or whether it was '\u{63}'.
1386    #[unstable(feature = "proc_macro_span", issue = "54725")]
1387    pub fn subspan<R: RangeBounds<usize>>(&self, range: R) -> Option<Span> {
1388        self.0.span.subspan(range.start_bound().cloned(), range.end_bound().cloned()).map(Span)
1389    }
1390
1391    fn with_symbol_and_suffix<R>(&self, f: impl FnOnce(&str, &str) -> R) -> R {
1392        self.0.symbol.with(|symbol| match self.0.suffix {
1393            Some(suffix) => suffix.with(|suffix| f(symbol, suffix)),
1394            None => f(symbol, ""),
1395        })
1396    }
1397
1398    /// Invokes the callback with a `&[&str]` consisting of each part of the
1399    /// literal's representation. This is done to allow the `ToString` and
1400    /// `Display` implementations to borrow references to symbol values, and
1401    /// both be optimized to reduce overhead.
1402    fn with_stringify_parts<R>(&self, f: impl FnOnce(&[&str]) -> R) -> R {
1403        /// Returns a string containing exactly `num` '#' characters.
1404        /// Uses a 256-character source string literal which is always safe to
1405        /// index with a `u8` index.
1406        fn get_hashes_str(num: u8) -> &'static str {
1407            const HASHES: &str = "\
1408            ################################################################\
1409            ################################################################\
1410            ################################################################\
1411            ################################################################\
1412            ";
1413            const _: () = assert!(HASHES.len() == 256);
1414            &HASHES[..num as usize]
1415        }
1416
1417        self.with_symbol_and_suffix(|symbol, suffix| match self.0.kind {
1418            bridge::LitKind::Byte => f(&["b'", symbol, "'", suffix]),
1419            bridge::LitKind::Char => f(&["'", symbol, "'", suffix]),
1420            bridge::LitKind::Str => f(&["\"", symbol, "\"", suffix]),
1421            bridge::LitKind::StrRaw(n) => {
1422                let hashes = get_hashes_str(n);
1423                f(&["r", hashes, "\"", symbol, "\"", hashes, suffix])
1424            }
1425            bridge::LitKind::ByteStr => f(&["b\"", symbol, "\"", suffix]),
1426            bridge::LitKind::ByteStrRaw(n) => {
1427                let hashes = get_hashes_str(n);
1428                f(&["br", hashes, "\"", symbol, "\"", hashes, suffix])
1429            }
1430            bridge::LitKind::CStr => f(&["c\"", symbol, "\"", suffix]),
1431            bridge::LitKind::CStrRaw(n) => {
1432                let hashes = get_hashes_str(n);
1433                f(&["cr", hashes, "\"", symbol, "\"", hashes, suffix])
1434            }
1435
1436            bridge::LitKind::Integer | bridge::LitKind::Float | bridge::LitKind::ErrWithGuar => {
1437                f(&[symbol, suffix])
1438            }
1439        })
1440    }
1441
1442    /// Returns the unescaped string value if the current literal is a string or a string literal.
1443    #[unstable(feature = "proc_macro_value", issue = "136652")]
1444    pub fn str_value(&self) -> Result<String, ConversionErrorKind> {
1445        self.0.symbol.with(|symbol| match self.0.kind {
1446            bridge::LitKind::Str => {
1447                if symbol.contains('\\') {
1448                    let mut buf = String::with_capacity(symbol.len());
1449                    let mut error = None;
1450                    // Force-inlining here is aggressive but the closure is
1451                    // called on every char in the string, so it can be hot in
1452                    // programs with many long strings containing escapes.
1453                    unescape_str(
1454                        symbol,
1455                        #[inline(always)]
1456                        |_, c| match c {
1457                            Ok(c) => buf.push(c),
1458                            Err(err) => {
1459                                if err.is_fatal() {
1460                                    error = Some(ConversionErrorKind::FailedToUnescape(err));
1461                                }
1462                            }
1463                        },
1464                    );
1465                    if let Some(error) = error { Err(error) } else { Ok(buf) }
1466                } else {
1467                    Ok(symbol.to_string())
1468                }
1469            }
1470            bridge::LitKind::StrRaw(_) => Ok(symbol.to_string()),
1471            _ => Err(ConversionErrorKind::InvalidLiteralKind),
1472        })
1473    }
1474
1475    /// Returns the unescaped string value if the current literal is a c-string or a c-string
1476    /// literal.
1477    #[unstable(feature = "proc_macro_value", issue = "136652")]
1478    pub fn cstr_value(&self) -> Result<Vec<u8>, ConversionErrorKind> {
1479        self.0.symbol.with(|symbol| match self.0.kind {
1480            bridge::LitKind::CStr => {
1481                let mut error = None;
1482                let mut buf = Vec::with_capacity(symbol.len());
1483
1484                unescape_c_str(symbol, |_span, res| match res {
1485                    Ok(MixedUnit::Char(c)) => {
1486                        buf.extend_from_slice(c.get().encode_utf8(&mut [0; 4]).as_bytes())
1487                    }
1488                    Ok(MixedUnit::HighByte(b)) => buf.push(b.get()),
1489                    Err(err) => {
1490                        if err.is_fatal() {
1491                            error = Some(ConversionErrorKind::FailedToUnescape(err));
1492                        }
1493                    }
1494                });
1495                if let Some(error) = error {
1496                    Err(error)
1497                } else {
1498                    buf.push(0);
1499                    Ok(buf)
1500                }
1501            }
1502            bridge::LitKind::CStrRaw(_) => {
1503                // Raw strings have no escapes so we can convert the symbol
1504                // directly to a `Lrc<u8>` after appending the terminating NUL
1505                // char.
1506                let mut buf = symbol.to_owned().into_bytes();
1507                buf.push(0);
1508                Ok(buf)
1509            }
1510            _ => Err(ConversionErrorKind::InvalidLiteralKind),
1511        })
1512    }
1513
1514    /// Returns the unescaped string value if the current literal is a byte string or a byte string
1515    /// literal.
1516    #[unstable(feature = "proc_macro_value", issue = "136652")]
1517    pub fn byte_str_value(&self) -> Result<Vec<u8>, ConversionErrorKind> {
1518        self.0.symbol.with(|symbol| match self.0.kind {
1519            bridge::LitKind::ByteStr => {
1520                let mut buf = Vec::with_capacity(symbol.len());
1521                let mut error = None;
1522
1523                unescape_byte_str(symbol, |_, res| match res {
1524                    Ok(b) => buf.push(b),
1525                    Err(err) => {
1526                        if err.is_fatal() {
1527                            error = Some(ConversionErrorKind::FailedToUnescape(err));
1528                        }
1529                    }
1530                });
1531                if let Some(error) = error { Err(error) } else { Ok(buf) }
1532            }
1533            bridge::LitKind::ByteStrRaw(_) => {
1534                // Raw strings have no escapes so we can convert the symbol
1535                // directly to a `Lrc<u8>`.
1536                Ok(symbol.to_owned().into_bytes())
1537            }
1538            _ => Err(ConversionErrorKind::InvalidLiteralKind),
1539        })
1540    }
1541}
1542
1543/// Parse a single literal from its stringified representation.
1544///
1545/// In order to parse successfully, the input string must not contain anything
1546/// but the literal token. Specifically, it must not contain whitespace or
1547/// comments in addition to the literal.
1548///
1549/// The resulting literal token will have a `Span::call_site()` span.
1550///
1551/// NOTE: some errors may cause panics instead of returning `LexError`. We
1552/// reserve the right to change these errors into `LexError`s later.
1553#[stable(feature = "proc_macro_literal_parse", since = "1.54.0")]
1554impl FromStr for Literal {
1555    type Err = LexError;
1556
1557    fn from_str(src: &str) -> Result<Self, LexError> {
1558        match bridge::client::FreeFunctions::literal_from_str(src) {
1559            Ok(literal) => Ok(Literal(literal)),
1560            Err(()) => Err(LexError),
1561        }
1562    }
1563}
1564
1565/// Prints the literal as a string that should be losslessly convertible
1566/// back into the same literal (except for possible rounding for floating point literals).
1567#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1568impl fmt::Display for Literal {
1569    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1570        self.with_stringify_parts(|parts| {
1571            for part in parts {
1572                fmt::Display::fmt(part, f)?;
1573            }
1574            Ok(())
1575        })
1576    }
1577}
1578
1579#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1580impl fmt::Debug for Literal {
1581    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1582        f.debug_struct("Literal")
1583            // format the kind on one line even in {:#?} mode
1584            .field("kind", &format_args!("{:?}", self.0.kind))
1585            .field("symbol", &self.0.symbol)
1586            // format `Some("...")` on one line even in {:#?} mode
1587            .field("suffix", &format_args!("{:?}", self.0.suffix))
1588            .field("span", &self.0.span)
1589            .finish()
1590    }
1591}
1592
1593#[unstable(
1594    feature = "proc_macro_tracked_path",
1595    issue = "99515",
1596    implied_by = "proc_macro_tracked_env"
1597)]
1598/// Functionality for adding environment state to the build dependency info.
1599pub mod tracked {
1600
1601    use std::env::{self, VarError};
1602    use std::ffi::OsStr;
1603    use std::path::Path;
1604
1605    /// Retrieve an environment variable and add it to build dependency info.
1606    /// The build system executing the compiler will know that the variable was accessed during
1607    /// compilation, and will be able to rerun the build when the value of that variable changes.
1608    /// Besides the dependency tracking this function should be equivalent to `env::var` from the
1609    /// standard library, except that the argument must be UTF-8.
1610    #[unstable(feature = "proc_macro_tracked_env", issue = "99515")]
1611    pub fn env_var<K: AsRef<OsStr> + AsRef<str>>(key: K) -> Result<String, VarError> {
1612        let key: &str = key.as_ref();
1613        let value = crate::bridge::client::FreeFunctions::injected_env_var(key)
1614            .map_or_else(|| env::var(key), Ok);
1615        crate::bridge::client::FreeFunctions::track_env_var(key, value.as_deref().ok());
1616        value
1617    }
1618
1619    /// Track a file or directory explicitly.
1620    ///
1621    /// Commonly used for tracking asset preprocessing.
1622    #[unstable(feature = "proc_macro_tracked_path", issue = "99515")]
1623    pub fn path<P: AsRef<Path>>(path: P) {
1624        let path: &str = path.as_ref().to_str().unwrap();
1625        crate::bridge::client::FreeFunctions::track_path(path);
1626    }
1627}