core/any.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
//! Utilities for dynamic typing or type reflection.
//!
//! # `Any` and `TypeId`
//!
//! `Any` itself can be used to get a `TypeId`, and has more features when used
//! as a trait object. As `&dyn Any` (a borrowed trait object), it has the `is`
//! and `downcast_ref` methods, to test if the contained value is of a given type,
//! and to get a reference to the inner value as a type. As `&mut dyn Any`, there
//! is also the `downcast_mut` method, for getting a mutable reference to the
//! inner value. `Box<dyn Any>` adds the `downcast` method, which attempts to
//! convert to a `Box<T>`. See the [`Box`] documentation for the full details.
//!
//! Note that `&dyn Any` is limited to testing whether a value is of a specified
//! concrete type, and cannot be used to test whether a type implements a trait.
//!
//! [`Box`]: ../../std/boxed/struct.Box.html
//!
//! # Smart pointers and `dyn Any`
//!
//! One piece of behavior to keep in mind when using `Any` as a trait object,
//! especially with types like `Box<dyn Any>` or `Arc<dyn Any>`, is that simply
//! calling `.type_id()` on the value will produce the `TypeId` of the
//! *container*, not the underlying trait object. This can be avoided by
//! converting the smart pointer into a `&dyn Any` instead, which will return
//! the object's `TypeId`. For example:
//!
//! ```
//! use std::any::{Any, TypeId};
//!
//! let boxed: Box<dyn Any> = Box::new(3_i32);
//!
//! // You're more likely to want this:
//! let actual_id = (&*boxed).type_id();
//! // ... than this:
//! let boxed_id = boxed.type_id();
//!
//! assert_eq!(actual_id, TypeId::of::<i32>());
//! assert_eq!(boxed_id, TypeId::of::<Box<dyn Any>>());
//! ```
//!
//! ## Examples
//!
//! Consider a situation where we want to log a value passed to a function.
//! We know the value we're working on implements `Debug`, but we don't know its
//! concrete type. We want to give special treatment to certain types: in this
//! case printing out the length of `String` values prior to their value.
//! We don't know the concrete type of our value at compile time, so we need to
//! use runtime reflection instead.
//!
//! ```rust
//! use std::fmt::Debug;
//! use std::any::Any;
//!
//! // Logger function for any type that implements `Debug`.
//! fn log<T: Any + Debug>(value: &T) {
//! let value_any = value as &dyn Any;
//!
//! // Try to convert our value to a `String`. If successful, we want to
//! // output the `String`'s length as well as its value. If not, it's a
//! // different type: just print it out unadorned.
//! match value_any.downcast_ref::<String>() {
//! Some(as_string) => {
//! println!("String ({}): {}", as_string.len(), as_string);
//! }
//! None => {
//! println!("{value:?}");
//! }
//! }
//! }
//!
//! // This function wants to log its parameter out prior to doing work with it.
//! fn do_work<T: Any + Debug>(value: &T) {
//! log(value);
//! // ...do some other work
//! }
//!
//! fn main() {
//! let my_string = "Hello World".to_string();
//! do_work(&my_string);
//!
//! let my_i8: i8 = 100;
//! do_work(&my_i8);
//! }
//! ```
//!
#![stable(feature = "rust1", since = "1.0.0")]
use crate::{fmt, hash, intrinsics};
///////////////////////////////////////////////////////////////////////////////
// Any trait
///////////////////////////////////////////////////////////////////////////////
/// A trait to emulate dynamic typing.
///
/// Most types implement `Any`. However, any type which contains a non-`'static` reference does not.
/// See the [module-level documentation][mod] for more details.
///
/// [mod]: crate::any
// This trait is not unsafe, though we rely on the specifics of it's sole impl's
// `type_id` function in unsafe code (e.g., `downcast`). Normally, that would be
// a problem, but because the only impl of `Any` is a blanket implementation, no
// other code can implement `Any`.
//
// We could plausibly make this trait unsafe -- it would not cause breakage,
// since we control all the implementations -- but we choose not to as that's
// both not really necessary and may confuse users about the distinction of
// unsafe traits and unsafe methods (i.e., `type_id` would still be safe to call,
// but we would likely want to indicate as such in documentation).
#[stable(feature = "rust1", since = "1.0.0")]
#[cfg_attr(not(test), rustc_diagnostic_item = "Any")]
pub trait Any: 'static {
/// Gets the `TypeId` of `self`.
///
/// If called on a `dyn Any` trait object
/// (or a trait object of a subtrait of `Any`),
/// this returns the `TypeId` of the underlying
/// concrete type, not that of `dyn Any` itself.
///
/// # Examples
///
/// ```
/// use std::any::{Any, TypeId};
///
/// fn is_string(s: &dyn Any) -> bool {
/// TypeId::of::<String>() == s.type_id()
/// }
///
/// assert_eq!(is_string(&0), false);
/// assert_eq!(is_string(&"cookie monster".to_string()), true);
/// ```
#[stable(feature = "get_type_id", since = "1.34.0")]
fn type_id(&self) -> TypeId;
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: 'static + ?Sized> Any for T {
fn type_id(&self) -> TypeId {
TypeId::of::<T>()
}
}
///////////////////////////////////////////////////////////////////////////////
// Extension methods for Any trait objects.
///////////////////////////////////////////////////////////////////////////////
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Debug for dyn Any {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Any").finish_non_exhaustive()
}
}
// Ensure that the result of e.g., joining a thread can be printed and
// hence used with `unwrap`. May eventually no longer be needed if
// dispatch works with upcasting.
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Debug for dyn Any + Send {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Any").finish_non_exhaustive()
}
}
#[stable(feature = "any_send_sync_methods", since = "1.28.0")]
impl fmt::Debug for dyn Any + Send + Sync {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Any").finish_non_exhaustive()
}
}
impl dyn Any {
/// Returns `true` if the inner type is the same as `T`.
///
/// # Examples
///
/// ```
/// use std::any::Any;
///
/// fn is_string(s: &dyn Any) {
/// if s.is::<String>() {
/// println!("It's a string!");
/// } else {
/// println!("Not a string...");
/// }
/// }
///
/// is_string(&0);
/// is_string(&"cookie monster".to_string());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn is<T: Any>(&self) -> bool {
// Get `TypeId` of the type this function is instantiated with.
let t = TypeId::of::<T>();
// Get `TypeId` of the type in the trait object (`self`).
let concrete = self.type_id();
// Compare both `TypeId`s on equality.
t == concrete
}
/// Returns some reference to the inner value if it is of type `T`, or
/// `None` if it isn't.
///
/// # Examples
///
/// ```
/// use std::any::Any;
///
/// fn print_if_string(s: &dyn Any) {
/// if let Some(string) = s.downcast_ref::<String>() {
/// println!("It's a string({}): '{}'", string.len(), string);
/// } else {
/// println!("Not a string...");
/// }
/// }
///
/// print_if_string(&0);
/// print_if_string(&"cookie monster".to_string());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn downcast_ref<T: Any>(&self) -> Option<&T> {
if self.is::<T>() {
// SAFETY: just checked whether we are pointing to the correct type, and we can rely on
// that check for memory safety because we have implemented Any for all types; no other
// impls can exist as they would conflict with our impl.
unsafe { Some(self.downcast_ref_unchecked()) }
} else {
None
}
}
/// Returns some mutable reference to the inner value if it is of type `T`, or
/// `None` if it isn't.
///
/// # Examples
///
/// ```
/// use std::any::Any;
///
/// fn modify_if_u32(s: &mut dyn Any) {
/// if let Some(num) = s.downcast_mut::<u32>() {
/// *num = 42;
/// }
/// }
///
/// let mut x = 10u32;
/// let mut s = "starlord".to_string();
///
/// modify_if_u32(&mut x);
/// modify_if_u32(&mut s);
///
/// assert_eq!(x, 42);
/// assert_eq!(&s, "starlord");
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn downcast_mut<T: Any>(&mut self) -> Option<&mut T> {
if self.is::<T>() {
// SAFETY: just checked whether we are pointing to the correct type, and we can rely on
// that check for memory safety because we have implemented Any for all types; no other
// impls can exist as they would conflict with our impl.
unsafe { Some(self.downcast_mut_unchecked()) }
} else {
None
}
}
/// Returns a reference to the inner value as type `dyn T`.
///
/// # Examples
///
/// ```
/// #![feature(downcast_unchecked)]
///
/// use std::any::Any;
///
/// let x: Box<dyn Any> = Box::new(1_usize);
///
/// unsafe {
/// assert_eq!(*x.downcast_ref_unchecked::<usize>(), 1);
/// }
/// ```
///
/// # Safety
///
/// The contained value must be of type `T`. Calling this method
/// with the incorrect type is *undefined behavior*.
#[unstable(feature = "downcast_unchecked", issue = "90850")]
#[inline]
pub unsafe fn downcast_ref_unchecked<T: Any>(&self) -> &T {
debug_assert!(self.is::<T>());
// SAFETY: caller guarantees that T is the correct type
unsafe { &*(self as *const dyn Any as *const T) }
}
/// Returns a mutable reference to the inner value as type `dyn T`.
///
/// # Examples
///
/// ```
/// #![feature(downcast_unchecked)]
///
/// use std::any::Any;
///
/// let mut x: Box<dyn Any> = Box::new(1_usize);
///
/// unsafe {
/// *x.downcast_mut_unchecked::<usize>() += 1;
/// }
///
/// assert_eq!(*x.downcast_ref::<usize>().unwrap(), 2);
/// ```
///
/// # Safety
///
/// The contained value must be of type `T`. Calling this method
/// with the incorrect type is *undefined behavior*.
#[unstable(feature = "downcast_unchecked", issue = "90850")]
#[inline]
pub unsafe fn downcast_mut_unchecked<T: Any>(&mut self) -> &mut T {
debug_assert!(self.is::<T>());
// SAFETY: caller guarantees that T is the correct type
unsafe { &mut *(self as *mut dyn Any as *mut T) }
}
}
impl dyn Any + Send {
/// Forwards to the method defined on the type `dyn Any`.
///
/// # Examples
///
/// ```
/// use std::any::Any;
///
/// fn is_string(s: &(dyn Any + Send)) {
/// if s.is::<String>() {
/// println!("It's a string!");
/// } else {
/// println!("Not a string...");
/// }
/// }
///
/// is_string(&0);
/// is_string(&"cookie monster".to_string());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn is<T: Any>(&self) -> bool {
<dyn Any>::is::<T>(self)
}
/// Forwards to the method defined on the type `dyn Any`.
///
/// # Examples
///
/// ```
/// use std::any::Any;
///
/// fn print_if_string(s: &(dyn Any + Send)) {
/// if let Some(string) = s.downcast_ref::<String>() {
/// println!("It's a string({}): '{}'", string.len(), string);
/// } else {
/// println!("Not a string...");
/// }
/// }
///
/// print_if_string(&0);
/// print_if_string(&"cookie monster".to_string());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn downcast_ref<T: Any>(&self) -> Option<&T> {
<dyn Any>::downcast_ref::<T>(self)
}
/// Forwards to the method defined on the type `dyn Any`.
///
/// # Examples
///
/// ```
/// use std::any::Any;
///
/// fn modify_if_u32(s: &mut (dyn Any + Send)) {
/// if let Some(num) = s.downcast_mut::<u32>() {
/// *num = 42;
/// }
/// }
///
/// let mut x = 10u32;
/// let mut s = "starlord".to_string();
///
/// modify_if_u32(&mut x);
/// modify_if_u32(&mut s);
///
/// assert_eq!(x, 42);
/// assert_eq!(&s, "starlord");
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn downcast_mut<T: Any>(&mut self) -> Option<&mut T> {
<dyn Any>::downcast_mut::<T>(self)
}
/// Forwards to the method defined on the type `dyn Any`.
///
/// # Examples
///
/// ```
/// #![feature(downcast_unchecked)]
///
/// use std::any::Any;
///
/// let x: Box<dyn Any> = Box::new(1_usize);
///
/// unsafe {
/// assert_eq!(*x.downcast_ref_unchecked::<usize>(), 1);
/// }
/// ```
///
/// # Safety
///
/// The contained value must be of type `T`. Calling this method
/// with the incorrect type is *undefined behavior*.
#[unstable(feature = "downcast_unchecked", issue = "90850")]
#[inline]
pub unsafe fn downcast_ref_unchecked<T: Any>(&self) -> &T {
// SAFETY: guaranteed by caller
unsafe { <dyn Any>::downcast_ref_unchecked::<T>(self) }
}
/// Forwards to the method defined on the type `dyn Any`.
///
/// # Examples
///
/// ```
/// #![feature(downcast_unchecked)]
///
/// use std::any::Any;
///
/// let mut x: Box<dyn Any> = Box::new(1_usize);
///
/// unsafe {
/// *x.downcast_mut_unchecked::<usize>() += 1;
/// }
///
/// assert_eq!(*x.downcast_ref::<usize>().unwrap(), 2);
/// ```
///
/// # Safety
///
/// The contained value must be of type `T`. Calling this method
/// with the incorrect type is *undefined behavior*.
#[unstable(feature = "downcast_unchecked", issue = "90850")]
#[inline]
pub unsafe fn downcast_mut_unchecked<T: Any>(&mut self) -> &mut T {
// SAFETY: guaranteed by caller
unsafe { <dyn Any>::downcast_mut_unchecked::<T>(self) }
}
}
impl dyn Any + Send + Sync {
/// Forwards to the method defined on the type `Any`.
///
/// # Examples
///
/// ```
/// use std::any::Any;
///
/// fn is_string(s: &(dyn Any + Send + Sync)) {
/// if s.is::<String>() {
/// println!("It's a string!");
/// } else {
/// println!("Not a string...");
/// }
/// }
///
/// is_string(&0);
/// is_string(&"cookie monster".to_string());
/// ```
#[stable(feature = "any_send_sync_methods", since = "1.28.0")]
#[inline]
pub fn is<T: Any>(&self) -> bool {
<dyn Any>::is::<T>(self)
}
/// Forwards to the method defined on the type `Any`.
///
/// # Examples
///
/// ```
/// use std::any::Any;
///
/// fn print_if_string(s: &(dyn Any + Send + Sync)) {
/// if let Some(string) = s.downcast_ref::<String>() {
/// println!("It's a string({}): '{}'", string.len(), string);
/// } else {
/// println!("Not a string...");
/// }
/// }
///
/// print_if_string(&0);
/// print_if_string(&"cookie monster".to_string());
/// ```
#[stable(feature = "any_send_sync_methods", since = "1.28.0")]
#[inline]
pub fn downcast_ref<T: Any>(&self) -> Option<&T> {
<dyn Any>::downcast_ref::<T>(self)
}
/// Forwards to the method defined on the type `Any`.
///
/// # Examples
///
/// ```
/// use std::any::Any;
///
/// fn modify_if_u32(s: &mut (dyn Any + Send + Sync)) {
/// if let Some(num) = s.downcast_mut::<u32>() {
/// *num = 42;
/// }
/// }
///
/// let mut x = 10u32;
/// let mut s = "starlord".to_string();
///
/// modify_if_u32(&mut x);
/// modify_if_u32(&mut s);
///
/// assert_eq!(x, 42);
/// assert_eq!(&s, "starlord");
/// ```
#[stable(feature = "any_send_sync_methods", since = "1.28.0")]
#[inline]
pub fn downcast_mut<T: Any>(&mut self) -> Option<&mut T> {
<dyn Any>::downcast_mut::<T>(self)
}
/// Forwards to the method defined on the type `Any`.
///
/// # Examples
///
/// ```
/// #![feature(downcast_unchecked)]
///
/// use std::any::Any;
///
/// let x: Box<dyn Any> = Box::new(1_usize);
///
/// unsafe {
/// assert_eq!(*x.downcast_ref_unchecked::<usize>(), 1);
/// }
/// ```
/// # Safety
///
/// The contained value must be of type `T`. Calling this method
/// with the incorrect type is *undefined behavior*.
#[unstable(feature = "downcast_unchecked", issue = "90850")]
#[inline]
pub unsafe fn downcast_ref_unchecked<T: Any>(&self) -> &T {
// SAFETY: guaranteed by caller
unsafe { <dyn Any>::downcast_ref_unchecked::<T>(self) }
}
/// Forwards to the method defined on the type `Any`.
///
/// # Examples
///
/// ```
/// #![feature(downcast_unchecked)]
///
/// use std::any::Any;
///
/// let mut x: Box<dyn Any> = Box::new(1_usize);
///
/// unsafe {
/// *x.downcast_mut_unchecked::<usize>() += 1;
/// }
///
/// assert_eq!(*x.downcast_ref::<usize>().unwrap(), 2);
/// ```
/// # Safety
///
/// The contained value must be of type `T`. Calling this method
/// with the incorrect type is *undefined behavior*.
#[unstable(feature = "downcast_unchecked", issue = "90850")]
#[inline]
pub unsafe fn downcast_mut_unchecked<T: Any>(&mut self) -> &mut T {
// SAFETY: guaranteed by caller
unsafe { <dyn Any>::downcast_mut_unchecked::<T>(self) }
}
}
///////////////////////////////////////////////////////////////////////////////
// TypeID and its methods
///////////////////////////////////////////////////////////////////////////////
/// A `TypeId` represents a globally unique identifier for a type.
///
/// Each `TypeId` is an opaque object which does not allow inspection of what's
/// inside but does allow basic operations such as cloning, comparison,
/// printing, and showing.
///
/// A `TypeId` is currently only available for types which ascribe to `'static`,
/// but this limitation may be removed in the future.
///
/// While `TypeId` implements `Hash`, `PartialOrd`, and `Ord`, it is worth
/// noting that the hashes and ordering will vary between Rust releases. Beware
/// of relying on them inside of your code!
#[derive(Clone, Copy, Eq, PartialOrd, Ord)]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct TypeId {
// We avoid using `u128` because that imposes higher alignment requirements on many platforms.
// See issue #115620 for more information.
t: (u64, u64),
}
#[stable(feature = "rust1", since = "1.0.0")]
impl PartialEq for TypeId {
#[inline]
fn eq(&self, other: &Self) -> bool {
self.t == other.t
}
}
impl TypeId {
/// Returns the `TypeId` of the type this generic function has been
/// instantiated with.
///
/// # Examples
///
/// ```
/// use std::any::{Any, TypeId};
///
/// fn is_string<T: ?Sized + Any>(_s: &T) -> bool {
/// TypeId::of::<String>() == TypeId::of::<T>()
/// }
///
/// assert_eq!(is_string(&0), false);
/// assert_eq!(is_string(&"cookie monster".to_string()), true);
/// ```
#[must_use]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_type_id", issue = "77125")]
pub const fn of<T: ?Sized + 'static>() -> TypeId {
let t: u128 = intrinsics::type_id::<T>();
let t1 = (t >> 64) as u64;
let t2 = t as u64;
TypeId { t: (t1, t2) }
}
fn as_u128(self) -> u128 {
u128::from(self.t.0) << 64 | u128::from(self.t.1)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl hash::Hash for TypeId {
#[inline]
fn hash<H: hash::Hasher>(&self, state: &mut H) {
// We only hash the lower 64 bits of our (128 bit) internal numeric ID,
// because:
// - The hashing algorithm which backs `TypeId` is expected to be
// unbiased and high quality, meaning further mixing would be somewhat
// redundant compared to choosing (the lower) 64 bits arbitrarily.
// - `Hasher::finish` returns a u64 anyway, so the extra entropy we'd
// get from hashing the full value would probably not be useful
// (especially given the previous point about the lower 64 bits being
// high quality on their own).
// - It is correct to do so -- only hashing a subset of `self` is still
// with an `Eq` implementation that considers the entire value, as
// ours does.
self.t.1.hash(state);
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Debug for TypeId {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
write!(f, "TypeId({:#034x})", self.as_u128())
}
}
/// Returns the name of a type as a string slice.
///
/// # Note
///
/// This is intended for diagnostic use. The exact contents and format of the
/// string returned are not specified, other than being a best-effort
/// description of the type. For example, amongst the strings
/// that `type_name::<Option<String>>()` might return are `"Option<String>"` and
/// `"std::option::Option<std::string::String>"`.
///
/// The returned string must not be considered to be a unique identifier of a
/// type as multiple types may map to the same type name. Similarly, there is no
/// guarantee that all parts of a type will appear in the returned string: for
/// example, lifetime specifiers are currently not included. In addition, the
/// output may change between versions of the compiler.
///
/// The current implementation uses the same infrastructure as compiler
/// diagnostics and debuginfo, but this is not guaranteed.
///
/// # Examples
///
/// ```rust
/// assert_eq!(
/// std::any::type_name::<Option<String>>(),
/// "core::option::Option<alloc::string::String>",
/// );
/// ```
#[must_use]
#[stable(feature = "type_name", since = "1.38.0")]
#[rustc_const_unstable(feature = "const_type_name", issue = "63084")]
pub const fn type_name<T: ?Sized>() -> &'static str {
intrinsics::type_name::<T>()
}
/// Returns the type name of the pointed-to value as a string slice.
///
/// This is the same as `type_name::<T>()`, but can be used where the type of a
/// variable is not easily available.
///
/// # Note
///
/// Like [`type_name`], this is intended for diagnostic use and the exact output is not
/// guaranteed. It provides a best-effort description, but the output may change between
/// versions of the compiler.
///
/// In short: use this for debugging, avoid using the output to affect program behavior. More
/// information is available at [`type_name`].
///
/// Additionally, this function does not resolve trait objects. This means that
/// `type_name_of_val(&7u32 as &dyn Debug)` may return `"dyn Debug"`, but will not return `"u32"`
/// at this time.
///
/// # Examples
///
/// Prints the default integer and float types.
///
/// ```rust
/// use std::any::type_name_of_val;
///
/// let s = "foo";
/// let x: i32 = 1;
/// let y: f32 = 1.0;
///
/// assert!(type_name_of_val(&s).contains("str"));
/// assert!(type_name_of_val(&x).contains("i32"));
/// assert!(type_name_of_val(&y).contains("f32"));
/// ```
#[must_use]
#[stable(feature = "type_name_of_val", since = "1.76.0")]
#[rustc_const_unstable(feature = "const_type_name", issue = "63084")]
pub const fn type_name_of_val<T: ?Sized>(_val: &T) -> &'static str {
type_name::<T>()
}