core/cell/lazy.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
use super::UnsafeCell;
use crate::hint::unreachable_unchecked;
use crate::ops::Deref;
use crate::{fmt, mem};
enum State<T, F> {
Uninit(F),
Init(T),
Poisoned,
}
/// A value which is initialized on the first access.
///
/// For a thread-safe version of this struct, see [`std::sync::LazyLock`].
///
/// [`std::sync::LazyLock`]: ../../std/sync/struct.LazyLock.html
///
/// # Examples
///
/// ```
/// use std::cell::LazyCell;
///
/// let lazy: LazyCell<i32> = LazyCell::new(|| {
/// println!("initializing");
/// 92
/// });
/// println!("ready");
/// println!("{}", *lazy);
/// println!("{}", *lazy);
///
/// // Prints:
/// // ready
/// // initializing
/// // 92
/// // 92
/// ```
#[stable(feature = "lazy_cell", since = "1.80.0")]
pub struct LazyCell<T, F = fn() -> T> {
state: UnsafeCell<State<T, F>>,
}
impl<T, F: FnOnce() -> T> LazyCell<T, F> {
/// Creates a new lazy value with the given initializing function.
///
/// # Examples
///
/// ```
/// use std::cell::LazyCell;
///
/// let hello = "Hello, World!".to_string();
///
/// let lazy = LazyCell::new(|| hello.to_uppercase());
///
/// assert_eq!(&*lazy, "HELLO, WORLD!");
/// ```
#[inline]
#[stable(feature = "lazy_cell", since = "1.80.0")]
#[rustc_const_stable(feature = "lazy_cell", since = "1.80.0")]
pub const fn new(f: F) -> LazyCell<T, F> {
LazyCell { state: UnsafeCell::new(State::Uninit(f)) }
}
/// Consumes this `LazyCell` returning the stored value.
///
/// Returns `Ok(value)` if `Lazy` is initialized and `Err(f)` otherwise.
///
/// # Examples
///
/// ```
/// #![feature(lazy_cell_into_inner)]
///
/// use std::cell::LazyCell;
///
/// let hello = "Hello, World!".to_string();
///
/// let lazy = LazyCell::new(|| hello.to_uppercase());
///
/// assert_eq!(&*lazy, "HELLO, WORLD!");
/// assert_eq!(LazyCell::into_inner(lazy).ok(), Some("HELLO, WORLD!".to_string()));
/// ```
#[unstable(feature = "lazy_cell_into_inner", issue = "125623")]
#[rustc_const_unstable(feature = "lazy_cell_into_inner", issue = "125623")]
pub const fn into_inner(this: Self) -> Result<T, F> {
match this.state.into_inner() {
State::Init(data) => Ok(data),
State::Uninit(f) => Err(f),
State::Poisoned => panic_poisoned(),
}
}
/// Forces the evaluation of this lazy value and returns a reference to
/// the result.
///
/// This is equivalent to the `Deref` impl, but is explicit.
///
/// # Examples
///
/// ```
/// use std::cell::LazyCell;
///
/// let lazy = LazyCell::new(|| 92);
///
/// assert_eq!(LazyCell::force(&lazy), &92);
/// assert_eq!(&*lazy, &92);
/// ```
#[inline]
#[stable(feature = "lazy_cell", since = "1.80.0")]
pub fn force(this: &LazyCell<T, F>) -> &T {
// SAFETY:
// This invalidates any mutable references to the data. The resulting
// reference lives either until the end of the borrow of `this` (in the
// initialized case) or is invalidated in `really_init` (in the
// uninitialized case; `really_init` will create and return a fresh reference).
let state = unsafe { &*this.state.get() };
match state {
State::Init(data) => data,
// SAFETY: The state is uninitialized.
State::Uninit(_) => unsafe { LazyCell::really_init(this) },
State::Poisoned => panic_poisoned(),
}
}
/// Forces the evaluation of this lazy value and returns a mutable reference to
/// the result.
///
/// # Examples
///
/// ```
/// #![feature(lazy_get)]
/// use std::cell::LazyCell;
///
/// let mut lazy = LazyCell::new(|| 92);
///
/// let p = LazyCell::force_mut(&mut lazy);
/// assert_eq!(*p, 92);
/// *p = 44;
/// assert_eq!(*lazy, 44);
/// ```
#[inline]
#[unstable(feature = "lazy_get", issue = "129333")]
pub fn force_mut(this: &mut LazyCell<T, F>) -> &mut T {
#[cold]
/// # Safety
/// May only be called when the state is `Uninit`.
unsafe fn really_init_mut<T, F: FnOnce() -> T>(state: &mut State<T, F>) -> &mut T {
// INVARIANT: Always valid, but the value may not be dropped.
struct PoisonOnPanic<T, F>(*mut State<T, F>);
impl<T, F> Drop for PoisonOnPanic<T, F> {
#[inline]
fn drop(&mut self) {
// SAFETY: Invariant states it is valid, and we don't drop the old value.
unsafe {
self.0.write(State::Poisoned);
}
}
}
let State::Uninit(f) = state else {
// `unreachable!()` here won't optimize out because the function is cold.
// SAFETY: Precondition.
unsafe { unreachable_unchecked() };
};
// SAFETY: We never drop the state after we read `f`, and we write a valid value back
// in any case, panic or success. `f` can't access the `LazyCell` because it is mutably
// borrowed.
let f = unsafe { core::ptr::read(f) };
// INVARIANT: Initiated from mutable reference, don't drop because we read it.
let guard = PoisonOnPanic(state);
let data = f();
// SAFETY: `PoisonOnPanic` invariant, and we don't drop the old value.
unsafe {
core::ptr::write(guard.0, State::Init(data));
}
core::mem::forget(guard);
let State::Init(data) = state else { unreachable!() };
data
}
let state = this.state.get_mut();
match state {
State::Init(data) => data,
// SAFETY: `state` is `Uninit`.
State::Uninit(_) => unsafe { really_init_mut(state) },
State::Poisoned => panic_poisoned(),
}
}
/// # Safety
/// May only be called when the state is `Uninit`.
#[cold]
unsafe fn really_init(this: &LazyCell<T, F>) -> &T {
// SAFETY:
// This function is only called when the state is uninitialized,
// so no references to `state` can exist except for the reference
// in `force`, which is invalidated here and not accessed again.
let state = unsafe { &mut *this.state.get() };
// Temporarily mark the state as poisoned. This prevents reentrant
// accesses and correctly poisons the cell if the closure panicked.
let State::Uninit(f) = mem::replace(state, State::Poisoned) else { unreachable!() };
let data = f();
// SAFETY:
// If the closure accessed the cell through something like a reentrant
// mutex, but caught the panic resulting from the state being poisoned,
// the mutable borrow for `state` will be invalidated, so we need to
// go through the `UnsafeCell` pointer here. The state can only be
// poisoned at this point, so using `write` to skip the destructor
// of `State` should help the optimizer.
unsafe { this.state.get().write(State::Init(data)) };
// SAFETY:
// The previous references were invalidated by the `write` call above,
// so do a new shared borrow of the state instead.
let state = unsafe { &*this.state.get() };
let State::Init(data) = state else { unreachable!() };
data
}
}
impl<T, F> LazyCell<T, F> {
/// Returns a reference to the value if initialized, or `None` if not.
///
/// # Examples
///
/// ```
/// #![feature(lazy_get)]
///
/// use std::cell::LazyCell;
///
/// let mut lazy = LazyCell::new(|| 92);
///
/// assert_eq!(LazyCell::get_mut(&mut lazy), None);
/// let _ = LazyCell::force(&lazy);
/// *LazyCell::get_mut(&mut lazy).unwrap() = 44;
/// assert_eq!(*lazy, 44);
/// ```
#[inline]
#[unstable(feature = "lazy_get", issue = "129333")]
pub fn get_mut(this: &mut LazyCell<T, F>) -> Option<&mut T> {
let state = this.state.get_mut();
match state {
State::Init(data) => Some(data),
_ => None,
}
}
/// Returns a mutable reference to the value if initialized, or `None` if not.
///
/// # Examples
///
/// ```
/// #![feature(lazy_get)]
///
/// use std::cell::LazyCell;
///
/// let lazy = LazyCell::new(|| 92);
///
/// assert_eq!(LazyCell::get(&lazy), None);
/// let _ = LazyCell::force(&lazy);
/// assert_eq!(LazyCell::get(&lazy), Some(&92));
/// ```
#[inline]
#[unstable(feature = "lazy_get", issue = "129333")]
pub fn get(this: &LazyCell<T, F>) -> Option<&T> {
// SAFETY:
// This is sound for the same reason as in `force`: once the state is
// initialized, it will not be mutably accessed again, so this reference
// will stay valid for the duration of the borrow to `self`.
let state = unsafe { &*this.state.get() };
match state {
State::Init(data) => Some(data),
_ => None,
}
}
}
#[stable(feature = "lazy_cell", since = "1.80.0")]
impl<T, F: FnOnce() -> T> Deref for LazyCell<T, F> {
type Target = T;
#[inline]
fn deref(&self) -> &T {
LazyCell::force(self)
}
}
#[stable(feature = "lazy_cell", since = "1.80.0")]
impl<T: Default> Default for LazyCell<T> {
/// Creates a new lazy value using `Default` as the initializing function.
#[inline]
fn default() -> LazyCell<T> {
LazyCell::new(T::default)
}
}
#[stable(feature = "lazy_cell", since = "1.80.0")]
impl<T: fmt::Debug, F> fmt::Debug for LazyCell<T, F> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let mut d = f.debug_tuple("LazyCell");
match LazyCell::get(self) {
Some(data) => d.field(data),
None => d.field(&format_args!("<uninit>")),
};
d.finish()
}
}
#[cold]
#[inline(never)]
const fn panic_poisoned() -> ! {
panic!("LazyCell instance has previously been poisoned")
}