core/macros/
mod.rs

1#[doc = include_str!("panic.md")]
2#[macro_export]
3#[rustc_builtin_macro(core_panic)]
4#[allow_internal_unstable(edition_panic)]
5#[stable(feature = "core", since = "1.6.0")]
6#[rustc_diagnostic_item = "core_panic_macro"]
7macro_rules! panic {
8    // Expands to either `$crate::panic::panic_2015` or `$crate::panic::panic_2021`
9    // depending on the edition of the caller.
10    ($($arg:tt)*) => {
11        /* compiler built-in */
12    };
13}
14
15/// Asserts that two expressions are equal to each other (using [`PartialEq`]).
16///
17/// Assertions are always checked in both debug and release builds, and cannot
18/// be disabled. See [`debug_assert_eq!`] for assertions that are disabled in
19/// release builds by default.
20///
21/// [`debug_assert_eq!`]: crate::debug_assert_eq
22///
23/// On panic, this macro will print the values of the expressions with their
24/// debug representations.
25///
26/// Like [`assert!`], this macro has a second form, where a custom
27/// panic message can be provided.
28///
29/// # Examples
30///
31/// ```
32/// let a = 3;
33/// let b = 1 + 2;
34/// assert_eq!(a, b);
35///
36/// assert_eq!(a, b, "we are testing addition with {} and {}", a, b);
37/// ```
38#[macro_export]
39#[stable(feature = "rust1", since = "1.0.0")]
40#[rustc_diagnostic_item = "assert_eq_macro"]
41#[allow_internal_unstable(panic_internals)]
42macro_rules! assert_eq {
43    ($left:expr, $right:expr $(,)?) => {
44        match (&$left, &$right) {
45            (left_val, right_val) => {
46                if !(*left_val == *right_val) {
47                    let kind = $crate::panicking::AssertKind::Eq;
48                    // The reborrows below are intentional. Without them, the stack slot for the
49                    // borrow is initialized even before the values are compared, leading to a
50                    // noticeable slow down.
51                    $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::None);
52                }
53            }
54        }
55    };
56    ($left:expr, $right:expr, $($arg:tt)+) => {
57        match (&$left, &$right) {
58            (left_val, right_val) => {
59                if !(*left_val == *right_val) {
60                    let kind = $crate::panicking::AssertKind::Eq;
61                    // The reborrows below are intentional. Without them, the stack slot for the
62                    // borrow is initialized even before the values are compared, leading to a
63                    // noticeable slow down.
64                    $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::Some($crate::format_args!($($arg)+)));
65                }
66            }
67        }
68    };
69}
70
71/// Asserts that two expressions are not equal to each other (using [`PartialEq`]).
72///
73/// Assertions are always checked in both debug and release builds, and cannot
74/// be disabled. See [`debug_assert_ne!`] for assertions that are disabled in
75/// release builds by default.
76///
77/// [`debug_assert_ne!`]: crate::debug_assert_ne
78///
79/// On panic, this macro will print the values of the expressions with their
80/// debug representations.
81///
82/// Like [`assert!`], this macro has a second form, where a custom
83/// panic message can be provided.
84///
85/// # Examples
86///
87/// ```
88/// let a = 3;
89/// let b = 2;
90/// assert_ne!(a, b);
91///
92/// assert_ne!(a, b, "we are testing that the values are not equal");
93/// ```
94#[macro_export]
95#[stable(feature = "assert_ne", since = "1.13.0")]
96#[rustc_diagnostic_item = "assert_ne_macro"]
97#[allow_internal_unstable(panic_internals)]
98macro_rules! assert_ne {
99    ($left:expr, $right:expr $(,)?) => {
100        match (&$left, &$right) {
101            (left_val, right_val) => {
102                if *left_val == *right_val {
103                    let kind = $crate::panicking::AssertKind::Ne;
104                    // The reborrows below are intentional. Without them, the stack slot for the
105                    // borrow is initialized even before the values are compared, leading to a
106                    // noticeable slow down.
107                    $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::None);
108                }
109            }
110        }
111    };
112    ($left:expr, $right:expr, $($arg:tt)+) => {
113        match (&($left), &($right)) {
114            (left_val, right_val) => {
115                if *left_val == *right_val {
116                    let kind = $crate::panicking::AssertKind::Ne;
117                    // The reborrows below are intentional. Without them, the stack slot for the
118                    // borrow is initialized even before the values are compared, leading to a
119                    // noticeable slow down.
120                    $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::Some($crate::format_args!($($arg)+)));
121                }
122            }
123        }
124    };
125}
126
127/// Asserts that an expression matches the provided pattern.
128///
129/// This macro is generally preferable to `assert!(matches!(value, pattern))`, because it can print
130/// the debug representation of the actual value shape that did not meet expectations. In contrast,
131/// using [`assert!`] will only print that expectations were not met, but not why.
132///
133/// The pattern syntax is exactly the same as found in a match arm and the `matches!` macro. The
134/// optional if guard can be used to add additional checks that must be true for the matched value,
135/// otherwise this macro will panic.
136///
137/// Assertions are always checked in both debug and release builds, and cannot
138/// be disabled. See [`debug_assert_matches!`] for assertions that are disabled in
139/// release builds by default.
140///
141/// [`debug_assert_matches!`]: crate::assert_matches::debug_assert_matches
142///
143/// On panic, this macro will print the value of the expression with its debug representation.
144///
145/// Like [`assert!`], this macro has a second form, where a custom panic message can be provided.
146///
147/// # Examples
148///
149/// ```
150/// #![feature(assert_matches)]
151///
152/// use std::assert_matches::assert_matches;
153///
154/// let a = Some(345);
155/// let b = Some(56);
156/// assert_matches!(a, Some(_));
157/// assert_matches!(b, Some(_));
158///
159/// assert_matches!(a, Some(345));
160/// assert_matches!(a, Some(345) | None);
161///
162/// // assert_matches!(a, None); // panics
163/// // assert_matches!(b, Some(345)); // panics
164/// // assert_matches!(b, Some(345) | None); // panics
165///
166/// assert_matches!(a, Some(x) if x > 100);
167/// // assert_matches!(a, Some(x) if x < 100); // panics
168/// ```
169#[unstable(feature = "assert_matches", issue = "82775")]
170#[allow_internal_unstable(panic_internals)]
171#[rustc_macro_transparency = "semitransparent"]
172pub macro assert_matches {
173    ($left:expr, $(|)? $( $pattern:pat_param )|+ $( if $guard: expr )? $(,)?) => {
174        match $left {
175            $( $pattern )|+ $( if $guard )? => {}
176            ref left_val => {
177                $crate::panicking::assert_matches_failed(
178                    left_val,
179                    $crate::stringify!($($pattern)|+ $(if $guard)?),
180                    $crate::option::Option::None
181                );
182            }
183        }
184    },
185    ($left:expr, $(|)? $( $pattern:pat_param )|+ $( if $guard: expr )?, $($arg:tt)+) => {
186        match $left {
187            $( $pattern )|+ $( if $guard )? => {}
188            ref left_val => {
189                $crate::panicking::assert_matches_failed(
190                    left_val,
191                    $crate::stringify!($($pattern)|+ $(if $guard)?),
192                    $crate::option::Option::Some($crate::format_args!($($arg)+))
193                );
194            }
195        }
196    },
197}
198
199/// Selects code at compile-time based on `cfg` predicates.
200///
201/// This macro evaluates, at compile-time, a series of `cfg` predicates,
202/// selects the first that is true, and emits the code guarded by that
203/// predicate. The code guarded by other predicates is not emitted.
204///
205/// An optional trailing `_` wildcard can be used to specify a fallback. If
206/// none of the predicates are true, a [`compile_error`] is emitted.
207///
208/// # Example
209///
210/// ```
211/// #![feature(cfg_select)]
212///
213/// cfg_select! {
214///     unix => {
215///         fn foo() { /* unix specific functionality */ }
216///     }
217///     target_pointer_width = "32" => {
218///         fn foo() { /* non-unix, 32-bit functionality */ }
219///     }
220///     _ => {
221///         fn foo() { /* fallback implementation */ }
222///     }
223/// }
224/// ```
225///
226/// The `cfg_select!` macro can also be used in expression position, with or without braces on the
227/// right-hand side:
228///
229/// ```
230/// #![feature(cfg_select)]
231///
232/// let _some_string = cfg_select! {
233///     unix => "With great power comes great electricity bills",
234///     _ => { "Behind every successful diet is an unwatched pizza" }
235/// };
236/// ```
237#[unstable(feature = "cfg_select", issue = "115585")]
238#[rustc_diagnostic_item = "cfg_select"]
239#[rustc_builtin_macro]
240pub macro cfg_select($($tt:tt)*) {
241    /* compiler built-in */
242}
243
244/// Asserts that a boolean expression is `true` at runtime.
245///
246/// This will invoke the [`panic!`] macro if the provided expression cannot be
247/// evaluated to `true` at runtime.
248///
249/// Like [`assert!`], this macro also has a second version, where a custom panic
250/// message can be provided.
251///
252/// # Uses
253///
254/// Unlike [`assert!`], `debug_assert!` statements are only enabled in non
255/// optimized builds by default. An optimized build will not execute
256/// `debug_assert!` statements unless `-C debug-assertions` is passed to the
257/// compiler. This makes `debug_assert!` useful for checks that are too
258/// expensive to be present in a release build but may be helpful during
259/// development. The result of expanding `debug_assert!` is always type checked.
260///
261/// An unchecked assertion allows a program in an inconsistent state to keep
262/// running, which might have unexpected consequences but does not introduce
263/// unsafety as long as this only happens in safe code. The performance cost
264/// of assertions, however, is not measurable in general. Replacing [`assert!`]
265/// with `debug_assert!` is thus only encouraged after thorough profiling, and
266/// more importantly, only in safe code!
267///
268/// # Examples
269///
270/// ```
271/// // the panic message for these assertions is the stringified value of the
272/// // expression given.
273/// debug_assert!(true);
274///
275/// fn some_expensive_computation() -> bool {
276///     // Some expensive computation here
277///     true
278/// }
279/// debug_assert!(some_expensive_computation());
280///
281/// // assert with a custom message
282/// let x = true;
283/// debug_assert!(x, "x wasn't true!");
284///
285/// let a = 3; let b = 27;
286/// debug_assert!(a + b == 30, "a = {}, b = {}", a, b);
287/// ```
288#[macro_export]
289#[stable(feature = "rust1", since = "1.0.0")]
290#[rustc_diagnostic_item = "debug_assert_macro"]
291#[allow_internal_unstable(edition_panic)]
292macro_rules! debug_assert {
293    ($($arg:tt)*) => {
294        if $crate::cfg!(debug_assertions) {
295            $crate::assert!($($arg)*);
296        }
297    };
298}
299
300/// Asserts that two expressions are equal to each other.
301///
302/// On panic, this macro will print the values of the expressions with their
303/// debug representations.
304///
305/// Unlike [`assert_eq!`], `debug_assert_eq!` statements are only enabled in non
306/// optimized builds by default. An optimized build will not execute
307/// `debug_assert_eq!` statements unless `-C debug-assertions` is passed to the
308/// compiler. This makes `debug_assert_eq!` useful for checks that are too
309/// expensive to be present in a release build but may be helpful during
310/// development. The result of expanding `debug_assert_eq!` is always type checked.
311///
312/// # Examples
313///
314/// ```
315/// let a = 3;
316/// let b = 1 + 2;
317/// debug_assert_eq!(a, b);
318/// ```
319#[macro_export]
320#[stable(feature = "rust1", since = "1.0.0")]
321#[rustc_diagnostic_item = "debug_assert_eq_macro"]
322macro_rules! debug_assert_eq {
323    ($($arg:tt)*) => {
324        if $crate::cfg!(debug_assertions) {
325            $crate::assert_eq!($($arg)*);
326        }
327    };
328}
329
330/// Asserts that two expressions are not equal to each other.
331///
332/// On panic, this macro will print the values of the expressions with their
333/// debug representations.
334///
335/// Unlike [`assert_ne!`], `debug_assert_ne!` statements are only enabled in non
336/// optimized builds by default. An optimized build will not execute
337/// `debug_assert_ne!` statements unless `-C debug-assertions` is passed to the
338/// compiler. This makes `debug_assert_ne!` useful for checks that are too
339/// expensive to be present in a release build but may be helpful during
340/// development. The result of expanding `debug_assert_ne!` is always type checked.
341///
342/// # Examples
343///
344/// ```
345/// let a = 3;
346/// let b = 2;
347/// debug_assert_ne!(a, b);
348/// ```
349#[macro_export]
350#[stable(feature = "assert_ne", since = "1.13.0")]
351#[rustc_diagnostic_item = "debug_assert_ne_macro"]
352macro_rules! debug_assert_ne {
353    ($($arg:tt)*) => {
354        if $crate::cfg!(debug_assertions) {
355            $crate::assert_ne!($($arg)*);
356        }
357    };
358}
359
360/// Asserts that an expression matches the provided pattern.
361///
362/// This macro is generally preferable to `debug_assert!(matches!(value, pattern))`, because it can
363/// print the debug representation of the actual value shape that did not meet expectations. In
364/// contrast, using [`debug_assert!`] will only print that expectations were not met, but not why.
365///
366/// The pattern syntax is exactly the same as found in a match arm and the `matches!` macro. The
367/// optional if guard can be used to add additional checks that must be true for the matched value,
368/// otherwise this macro will panic.
369///
370/// On panic, this macro will print the value of the expression with its debug representation.
371///
372/// Like [`assert!`], this macro has a second form, where a custom panic message can be provided.
373///
374/// Unlike [`assert_matches!`], `debug_assert_matches!` statements are only enabled in non optimized
375/// builds by default. An optimized build will not execute `debug_assert_matches!` statements unless
376/// `-C debug-assertions` is passed to the compiler. This makes `debug_assert_matches!` useful for
377/// checks that are too expensive to be present in a release build but may be helpful during
378/// development. The result of expanding `debug_assert_matches!` is always type checked.
379///
380/// # Examples
381///
382/// ```
383/// #![feature(assert_matches)]
384///
385/// use std::assert_matches::debug_assert_matches;
386///
387/// let a = Some(345);
388/// let b = Some(56);
389/// debug_assert_matches!(a, Some(_));
390/// debug_assert_matches!(b, Some(_));
391///
392/// debug_assert_matches!(a, Some(345));
393/// debug_assert_matches!(a, Some(345) | None);
394///
395/// // debug_assert_matches!(a, None); // panics
396/// // debug_assert_matches!(b, Some(345)); // panics
397/// // debug_assert_matches!(b, Some(345) | None); // panics
398///
399/// debug_assert_matches!(a, Some(x) if x > 100);
400/// // debug_assert_matches!(a, Some(x) if x < 100); // panics
401/// ```
402#[unstable(feature = "assert_matches", issue = "82775")]
403#[allow_internal_unstable(assert_matches)]
404#[rustc_macro_transparency = "semitransparent"]
405pub macro debug_assert_matches($($arg:tt)*) {
406    if $crate::cfg!(debug_assertions) {
407        $crate::assert_matches::assert_matches!($($arg)*);
408    }
409}
410
411/// Returns whether the given expression matches the provided pattern.
412///
413/// The pattern syntax is exactly the same as found in a match arm. The optional if guard can be
414/// used to add additional checks that must be true for the matched value, otherwise this macro will
415/// return `false`.
416///
417/// When testing that a value matches a pattern, it's generally preferable to use
418/// [`assert_matches!`] as it will print the debug representation of the value if the assertion
419/// fails.
420///
421/// # Examples
422///
423/// ```
424/// let foo = 'f';
425/// assert!(matches!(foo, 'A'..='Z' | 'a'..='z'));
426///
427/// let bar = Some(4);
428/// assert!(matches!(bar, Some(x) if x > 2));
429/// ```
430#[macro_export]
431#[stable(feature = "matches_macro", since = "1.42.0")]
432#[rustc_diagnostic_item = "matches_macro"]
433#[allow_internal_unstable(non_exhaustive_omitted_patterns_lint, stmt_expr_attributes)]
434macro_rules! matches {
435    ($expression:expr, $pattern:pat $(if $guard:expr)? $(,)?) => {
436        #[allow(non_exhaustive_omitted_patterns)]
437        match $expression {
438            $pattern $(if $guard)? => true,
439            _ => false
440        }
441    };
442}
443
444/// Unwraps a result or propagates its error.
445///
446/// The [`?` operator][propagating-errors] was added to replace `try!`
447/// and should be used instead. Furthermore, `try` is a reserved word
448/// in Rust 2018, so if you must use it, you will need to use the
449/// [raw-identifier syntax][ris]: `r#try`.
450///
451/// [propagating-errors]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#a-shortcut-for-propagating-errors-the--operator
452/// [ris]: https://doc.rust-lang.org/nightly/rust-by-example/compatibility/raw_identifiers.html
453///
454/// `try!` matches the given [`Result`]. In case of the `Ok` variant, the
455/// expression has the value of the wrapped value.
456///
457/// In case of the `Err` variant, it retrieves the inner error. `try!` then
458/// performs conversion using `From`. This provides automatic conversion
459/// between specialized errors and more general ones. The resulting
460/// error is then immediately returned.
461///
462/// Because of the early return, `try!` can only be used in functions that
463/// return [`Result`].
464///
465/// # Examples
466///
467/// ```
468/// use std::io;
469/// use std::fs::File;
470/// use std::io::prelude::*;
471///
472/// enum MyError {
473///     FileWriteError
474/// }
475///
476/// impl From<io::Error> for MyError {
477///     fn from(e: io::Error) -> MyError {
478///         MyError::FileWriteError
479///     }
480/// }
481///
482/// // The preferred method of quick returning Errors
483/// fn write_to_file_question() -> Result<(), MyError> {
484///     let mut file = File::create("my_best_friends.txt")?;
485///     file.write_all(b"This is a list of my best friends.")?;
486///     Ok(())
487/// }
488///
489/// // The previous method of quick returning Errors
490/// fn write_to_file_using_try() -> Result<(), MyError> {
491///     let mut file = r#try!(File::create("my_best_friends.txt"));
492///     r#try!(file.write_all(b"This is a list of my best friends."));
493///     Ok(())
494/// }
495///
496/// // This is equivalent to:
497/// fn write_to_file_using_match() -> Result<(), MyError> {
498///     let mut file = r#try!(File::create("my_best_friends.txt"));
499///     match file.write_all(b"This is a list of my best friends.") {
500///         Ok(v) => v,
501///         Err(e) => return Err(From::from(e)),
502///     }
503///     Ok(())
504/// }
505/// ```
506#[macro_export]
507#[stable(feature = "rust1", since = "1.0.0")]
508#[deprecated(since = "1.39.0", note = "use the `?` operator instead")]
509#[doc(alias = "?")]
510macro_rules! r#try {
511    ($expr:expr $(,)?) => {
512        match $expr {
513            $crate::result::Result::Ok(val) => val,
514            $crate::result::Result::Err(err) => {
515                return $crate::result::Result::Err($crate::convert::From::from(err));
516            }
517        }
518    };
519}
520
521/// Writes formatted data into a buffer.
522///
523/// This macro accepts a 'writer', a format string, and a list of arguments. Arguments will be
524/// formatted according to the specified format string and the result will be passed to the writer.
525/// The writer may be any value with a `write_fmt` method; generally this comes from an
526/// implementation of either the [`fmt::Write`] or the [`io::Write`] trait. The macro
527/// returns whatever the `write_fmt` method returns; commonly a [`fmt::Result`], or an
528/// [`io::Result`].
529///
530/// See [`std::fmt`] for more information on the format string syntax.
531///
532/// [`std::fmt`]: ../std/fmt/index.html
533/// [`fmt::Write`]: crate::fmt::Write
534/// [`io::Write`]: ../std/io/trait.Write.html
535/// [`fmt::Result`]: crate::fmt::Result
536/// [`io::Result`]: ../std/io/type.Result.html
537///
538/// # Examples
539///
540/// ```
541/// use std::io::Write;
542///
543/// fn main() -> std::io::Result<()> {
544///     let mut w = Vec::new();
545///     write!(&mut w, "test")?;
546///     write!(&mut w, "formatted {}", "arguments")?;
547///
548///     assert_eq!(w, b"testformatted arguments");
549///     Ok(())
550/// }
551/// ```
552///
553/// A module can import both `std::fmt::Write` and `std::io::Write` and call `write!` on objects
554/// implementing either, as objects do not typically implement both. However, the module must
555/// avoid conflict between the trait names, such as by importing them as `_` or otherwise renaming
556/// them:
557///
558/// ```
559/// use std::fmt::Write as _;
560/// use std::io::Write as _;
561///
562/// fn main() -> Result<(), Box<dyn std::error::Error>> {
563///     let mut s = String::new();
564///     let mut v = Vec::new();
565///
566///     write!(&mut s, "{} {}", "abc", 123)?; // uses fmt::Write::write_fmt
567///     write!(&mut v, "s = {:?}", s)?; // uses io::Write::write_fmt
568///     assert_eq!(v, b"s = \"abc 123\"");
569///     Ok(())
570/// }
571/// ```
572///
573/// If you also need the trait names themselves, such as to implement one or both on your types,
574/// import the containing module and then name them with a prefix:
575///
576/// ```
577/// # #![allow(unused_imports)]
578/// use std::fmt::{self, Write as _};
579/// use std::io::{self, Write as _};
580///
581/// struct Example;
582///
583/// impl fmt::Write for Example {
584///     fn write_str(&mut self, _s: &str) -> core::fmt::Result {
585///          unimplemented!();
586///     }
587/// }
588/// ```
589///
590/// Note: This macro can be used in `no_std` setups as well.
591/// In a `no_std` setup you are responsible for the implementation details of the components.
592///
593/// ```no_run
594/// use core::fmt::Write;
595///
596/// struct Example;
597///
598/// impl Write for Example {
599///     fn write_str(&mut self, _s: &str) -> core::fmt::Result {
600///          unimplemented!();
601///     }
602/// }
603///
604/// let mut m = Example{};
605/// write!(&mut m, "Hello World").expect("Not written");
606/// ```
607#[macro_export]
608#[stable(feature = "rust1", since = "1.0.0")]
609#[rustc_diagnostic_item = "write_macro"]
610macro_rules! write {
611    ($dst:expr, $($arg:tt)*) => {
612        $dst.write_fmt($crate::format_args!($($arg)*))
613    };
614}
615
616/// Writes formatted data into a buffer, with a newline appended.
617///
618/// On all platforms, the newline is the LINE FEED character (`\n`/`U+000A`) alone
619/// (no additional CARRIAGE RETURN (`\r`/`U+000D`).
620///
621/// For more information, see [`write!`]. For information on the format string syntax, see
622/// [`std::fmt`].
623///
624/// [`std::fmt`]: ../std/fmt/index.html
625///
626/// # Examples
627///
628/// ```
629/// use std::io::{Write, Result};
630///
631/// fn main() -> Result<()> {
632///     let mut w = Vec::new();
633///     writeln!(&mut w)?;
634///     writeln!(&mut w, "test")?;
635///     writeln!(&mut w, "formatted {}", "arguments")?;
636///
637///     assert_eq!(&w[..], "\ntest\nformatted arguments\n".as_bytes());
638///     Ok(())
639/// }
640/// ```
641#[macro_export]
642#[stable(feature = "rust1", since = "1.0.0")]
643#[rustc_diagnostic_item = "writeln_macro"]
644#[allow_internal_unstable(format_args_nl)]
645macro_rules! writeln {
646    ($dst:expr $(,)?) => {
647        $crate::write!($dst, "\n")
648    };
649    ($dst:expr, $($arg:tt)*) => {
650        $dst.write_fmt($crate::format_args_nl!($($arg)*))
651    };
652}
653
654/// Indicates unreachable code.
655///
656/// This is useful any time that the compiler can't determine that some code is unreachable. For
657/// example:
658///
659/// * Match arms with guard conditions.
660/// * Loops that dynamically terminate.
661/// * Iterators that dynamically terminate.
662///
663/// If the determination that the code is unreachable proves incorrect, the
664/// program immediately terminates with a [`panic!`].
665///
666/// The unsafe counterpart of this macro is the [`unreachable_unchecked`] function, which
667/// will cause undefined behavior if the code is reached.
668///
669/// [`unreachable_unchecked`]: crate::hint::unreachable_unchecked
670///
671/// # Panics
672///
673/// This will always [`panic!`] because `unreachable!` is just a shorthand for `panic!` with a
674/// fixed, specific message.
675///
676/// Like `panic!`, this macro has a second form for displaying custom values.
677///
678/// # Examples
679///
680/// Match arms:
681///
682/// ```
683/// # #[allow(dead_code)]
684/// fn foo(x: Option<i32>) {
685///     match x {
686///         Some(n) if n >= 0 => println!("Some(Non-negative)"),
687///         Some(n) if n <  0 => println!("Some(Negative)"),
688///         Some(_)           => unreachable!(), // compile error if commented out
689///         None              => println!("None")
690///     }
691/// }
692/// ```
693///
694/// Iterators:
695///
696/// ```
697/// # #[allow(dead_code)]
698/// fn divide_by_three(x: u32) -> u32 { // one of the poorest implementations of x/3
699///     for i in 0.. {
700///         if 3*i < i { panic!("u32 overflow"); }
701///         if x < 3*i { return i-1; }
702///     }
703///     unreachable!("The loop should always return");
704/// }
705/// ```
706#[macro_export]
707#[rustc_builtin_macro(unreachable)]
708#[allow_internal_unstable(edition_panic)]
709#[stable(feature = "rust1", since = "1.0.0")]
710#[rustc_diagnostic_item = "unreachable_macro"]
711macro_rules! unreachable {
712    // Expands to either `$crate::panic::unreachable_2015` or `$crate::panic::unreachable_2021`
713    // depending on the edition of the caller.
714    ($($arg:tt)*) => {
715        /* compiler built-in */
716    };
717}
718
719/// Indicates unimplemented code by panicking with a message of "not implemented".
720///
721/// This allows your code to type-check, which is useful if you are prototyping or
722/// implementing a trait that requires multiple methods which you don't plan to use all of.
723///
724/// The difference between `unimplemented!` and [`todo!`] is that while `todo!`
725/// conveys an intent of implementing the functionality later and the message is "not yet
726/// implemented", `unimplemented!` makes no such claims. Its message is "not implemented".
727///
728/// Also, some IDEs will mark `todo!`s.
729///
730/// # Panics
731///
732/// This will always [`panic!`] because `unimplemented!` is just a shorthand for `panic!` with a
733/// fixed, specific message.
734///
735/// Like `panic!`, this macro has a second form for displaying custom values.
736///
737/// [`todo!`]: crate::todo
738///
739/// # Examples
740///
741/// Say we have a trait `Foo`:
742///
743/// ```
744/// trait Foo {
745///     fn bar(&self) -> u8;
746///     fn baz(&self);
747///     fn qux(&self) -> Result<u64, ()>;
748/// }
749/// ```
750///
751/// We want to implement `Foo` for 'MyStruct', but for some reason it only makes sense
752/// to implement the `bar()` function. `baz()` and `qux()` will still need to be defined
753/// in our implementation of `Foo`, but we can use `unimplemented!` in their definitions
754/// to allow our code to compile.
755///
756/// We still want to have our program stop running if the unimplemented methods are
757/// reached.
758///
759/// ```
760/// # trait Foo {
761/// #     fn bar(&self) -> u8;
762/// #     fn baz(&self);
763/// #     fn qux(&self) -> Result<u64, ()>;
764/// # }
765/// struct MyStruct;
766///
767/// impl Foo for MyStruct {
768///     fn bar(&self) -> u8 {
769///         1 + 1
770///     }
771///
772///     fn baz(&self) {
773///         // It makes no sense to `baz` a `MyStruct`, so we have no logic here
774///         // at all.
775///         // This will display "thread 'main' panicked at 'not implemented'".
776///         unimplemented!();
777///     }
778///
779///     fn qux(&self) -> Result<u64, ()> {
780///         // We have some logic here,
781///         // We can add a message to unimplemented! to display our omission.
782///         // This will display:
783///         // "thread 'main' panicked at 'not implemented: MyStruct isn't quxable'".
784///         unimplemented!("MyStruct isn't quxable");
785///     }
786/// }
787///
788/// fn main() {
789///     let s = MyStruct;
790///     s.bar();
791/// }
792/// ```
793#[macro_export]
794#[stable(feature = "rust1", since = "1.0.0")]
795#[rustc_diagnostic_item = "unimplemented_macro"]
796#[allow_internal_unstable(panic_internals)]
797macro_rules! unimplemented {
798    () => {
799        $crate::panicking::panic("not implemented")
800    };
801    ($($arg:tt)+) => {
802        $crate::panic!("not implemented: {}", $crate::format_args!($($arg)+))
803    };
804}
805
806/// Indicates unfinished code.
807///
808/// This can be useful if you are prototyping and just
809/// want a placeholder to let your code pass type analysis.
810///
811/// The difference between [`unimplemented!`] and `todo!` is that while `todo!` conveys
812/// an intent of implementing the functionality later and the message is "not yet
813/// implemented", `unimplemented!` makes no such claims. Its message is "not implemented".
814///
815/// Also, some IDEs will mark `todo!`s.
816///
817/// # Panics
818///
819/// This will always [`panic!`] because `todo!` is just a shorthand for `panic!` with a
820/// fixed, specific message.
821///
822/// Like `panic!`, this macro has a second form for displaying custom values.
823///
824/// # Examples
825///
826/// Here's an example of some in-progress code. We have a trait `Foo`:
827///
828/// ```
829/// trait Foo {
830///     fn bar(&self) -> u8;
831///     fn baz(&self);
832///     fn qux(&self) -> Result<u64, ()>;
833/// }
834/// ```
835///
836/// We want to implement `Foo` on one of our types, but we also want to work on
837/// just `bar()` first. In order for our code to compile, we need to implement
838/// `baz()` and `qux()`, so we can use `todo!`:
839///
840/// ```
841/// # trait Foo {
842/// #     fn bar(&self) -> u8;
843/// #     fn baz(&self);
844/// #     fn qux(&self) -> Result<u64, ()>;
845/// # }
846/// struct MyStruct;
847///
848/// impl Foo for MyStruct {
849///     fn bar(&self) -> u8 {
850///         1 + 1
851///     }
852///
853///     fn baz(&self) {
854///         // Let's not worry about implementing baz() for now
855///         todo!();
856///     }
857///
858///     fn qux(&self) -> Result<u64, ()> {
859///         // We can add a message to todo! to display our omission.
860///         // This will display:
861///         // "thread 'main' panicked at 'not yet implemented: MyStruct is not yet quxable'".
862///         todo!("MyStruct is not yet quxable");
863///     }
864/// }
865///
866/// fn main() {
867///     let s = MyStruct;
868///     s.bar();
869///
870///     // We aren't even using baz() or qux(), so this is fine.
871/// }
872/// ```
873#[macro_export]
874#[stable(feature = "todo_macro", since = "1.40.0")]
875#[rustc_diagnostic_item = "todo_macro"]
876#[allow_internal_unstable(panic_internals)]
877macro_rules! todo {
878    () => {
879        $crate::panicking::panic("not yet implemented")
880    };
881    ($($arg:tt)+) => {
882        $crate::panic!("not yet implemented: {}", $crate::format_args!($($arg)+))
883    };
884}
885
886/// Definitions of built-in macros.
887///
888/// Most of the macro properties (stability, visibility, etc.) are taken from the source code here,
889/// with exception of expansion functions transforming macro inputs into outputs,
890/// those functions are provided by the compiler.
891pub(crate) mod builtin {
892
893    /// Causes compilation to fail with the given error message when encountered.
894    ///
895    /// This macro should be used when a crate uses a conditional compilation strategy to provide
896    /// better error messages for erroneous conditions. It's the compiler-level form of [`panic!`],
897    /// but emits an error during *compilation* rather than at *runtime*.
898    ///
899    /// # Examples
900    ///
901    /// Two such examples are macros and `#[cfg]` environments.
902    ///
903    /// Emit a better compiler error if a macro is passed invalid values. Without the final branch,
904    /// the compiler would still emit an error, but the error's message would not mention the two
905    /// valid values.
906    ///
907    /// ```compile_fail
908    /// macro_rules! give_me_foo_or_bar {
909    ///     (foo) => {};
910    ///     (bar) => {};
911    ///     ($x:ident) => {
912    ///         compile_error!("This macro only accepts `foo` or `bar`");
913    ///     }
914    /// }
915    ///
916    /// give_me_foo_or_bar!(neither);
917    /// // ^ will fail at compile time with message "This macro only accepts `foo` or `bar`"
918    /// ```
919    ///
920    /// Emit a compiler error if one of a number of features isn't available.
921    ///
922    /// ```compile_fail
923    /// #[cfg(not(any(feature = "foo", feature = "bar")))]
924    /// compile_error!("Either feature \"foo\" or \"bar\" must be enabled for this crate.");
925    /// ```
926    #[stable(feature = "compile_error_macro", since = "1.20.0")]
927    #[rustc_builtin_macro]
928    #[macro_export]
929    macro_rules! compile_error {
930        ($msg:expr $(,)?) => {{ /* compiler built-in */ }};
931    }
932
933    /// Constructs parameters for the other string-formatting macros.
934    ///
935    /// This macro functions by taking a formatting string literal containing
936    /// `{}` for each additional argument passed. `format_args!` prepares the
937    /// additional parameters to ensure the output can be interpreted as a string
938    /// and canonicalizes the arguments into a single type. Any value that implements
939    /// the [`Display`] trait can be passed to `format_args!`, as can any
940    /// [`Debug`] implementation be passed to a `{:?}` within the formatting string.
941    ///
942    /// This macro produces a value of type [`fmt::Arguments`]. This value can be
943    /// passed to the macros within [`std::fmt`] for performing useful redirection.
944    /// All other formatting macros ([`format!`], [`write!`], [`println!`], etc) are
945    /// proxied through this one. `format_args!`, unlike its derived macros, avoids
946    /// heap allocations.
947    ///
948    /// You can use the [`fmt::Arguments`] value that `format_args!` returns
949    /// in `Debug` and `Display` contexts as seen below. The example also shows
950    /// that `Debug` and `Display` format to the same thing: the interpolated
951    /// format string in `format_args!`.
952    ///
953    /// ```rust
954    /// let args = format_args!("{} foo {:?}", 1, 2);
955    /// let debug = format!("{args:?}");
956    /// let display = format!("{args}");
957    /// assert_eq!("1 foo 2", display);
958    /// assert_eq!(display, debug);
959    /// ```
960    ///
961    /// See [the formatting documentation in `std::fmt`](../std/fmt/index.html)
962    /// for details of the macro argument syntax, and further information.
963    ///
964    /// [`Display`]: crate::fmt::Display
965    /// [`Debug`]: crate::fmt::Debug
966    /// [`fmt::Arguments`]: crate::fmt::Arguments
967    /// [`std::fmt`]: ../std/fmt/index.html
968    /// [`format!`]: ../std/macro.format.html
969    /// [`println!`]: ../std/macro.println.html
970    ///
971    /// # Examples
972    ///
973    /// ```
974    /// use std::fmt;
975    ///
976    /// let s = fmt::format(format_args!("hello {}", "world"));
977    /// assert_eq!(s, format!("hello {}", "world"));
978    /// ```
979    ///
980    /// # Argument lifetimes
981    ///
982    /// Except when no formatting arguments are used,
983    /// the produced `fmt::Arguments` value borrows temporary values.
984    /// To allow it to be stored for later use, the arguments' lifetimes, as well as those of
985    /// temporaries they borrow, may be [extended] when `format_args!` appears in the initializer
986    /// expression of a `let` statement. The syntactic rules used to determine when temporaries'
987    /// lifetimes are extended are documented in the [Reference].
988    ///
989    /// [extended]: ../reference/destructors.html#temporary-lifetime-extension
990    /// [Reference]: ../reference/destructors.html#extending-based-on-expressions
991    #[stable(feature = "rust1", since = "1.0.0")]
992    #[rustc_diagnostic_item = "format_args_macro"]
993    #[allow_internal_unsafe]
994    #[allow_internal_unstable(fmt_internals)]
995    #[rustc_builtin_macro]
996    #[macro_export]
997    macro_rules! format_args {
998        ($fmt:expr) => {{ /* compiler built-in */ }};
999        ($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }};
1000    }
1001
1002    /// Same as [`format_args`], but can be used in some const contexts.
1003    ///
1004    /// This macro is used by the panic macros for the `const_panic` feature.
1005    ///
1006    /// This macro will be removed once `format_args` is allowed in const contexts.
1007    #[unstable(feature = "const_format_args", issue = "none")]
1008    #[allow_internal_unstable(fmt_internals, const_fmt_arguments_new)]
1009    #[rustc_builtin_macro]
1010    #[macro_export]
1011    macro_rules! const_format_args {
1012        ($fmt:expr) => {{ /* compiler built-in */ }};
1013        ($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }};
1014    }
1015
1016    /// Same as [`format_args`], but adds a newline in the end.
1017    #[unstable(
1018        feature = "format_args_nl",
1019        issue = "none",
1020        reason = "`format_args_nl` is only for internal \
1021                  language use and is subject to change"
1022    )]
1023    #[allow_internal_unstable(fmt_internals)]
1024    #[rustc_builtin_macro]
1025    #[doc(hidden)]
1026    #[macro_export]
1027    macro_rules! format_args_nl {
1028        ($fmt:expr) => {{ /* compiler built-in */ }};
1029        ($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }};
1030    }
1031
1032    /// Inspects an environment variable at compile time.
1033    ///
1034    /// This macro will expand to the value of the named environment variable at
1035    /// compile time, yielding an expression of type `&'static str`. Use
1036    /// [`std::env::var`] instead if you want to read the value at runtime.
1037    ///
1038    /// [`std::env::var`]: ../std/env/fn.var.html
1039    ///
1040    /// If the environment variable is not defined, then a compilation error
1041    /// will be emitted. To not emit a compile error, use the [`option_env!`]
1042    /// macro instead. A compilation error will also be emitted if the
1043    /// environment variable is not a valid Unicode string.
1044    ///
1045    /// # Examples
1046    ///
1047    /// ```
1048    /// let path: &'static str = env!("PATH");
1049    /// println!("the $PATH variable at the time of compiling was: {path}");
1050    /// ```
1051    ///
1052    /// You can customize the error message by passing a string as the second
1053    /// parameter:
1054    ///
1055    /// ```compile_fail
1056    /// let doc: &'static str = env!("documentation", "what's that?!");
1057    /// ```
1058    ///
1059    /// If the `documentation` environment variable is not defined, you'll get
1060    /// the following error:
1061    ///
1062    /// ```text
1063    /// error: what's that?!
1064    /// ```
1065    #[stable(feature = "rust1", since = "1.0.0")]
1066    #[rustc_builtin_macro]
1067    #[macro_export]
1068    #[rustc_diagnostic_item = "env_macro"] // useful for external lints
1069    macro_rules! env {
1070        ($name:expr $(,)?) => {{ /* compiler built-in */ }};
1071        ($name:expr, $error_msg:expr $(,)?) => {{ /* compiler built-in */ }};
1072    }
1073
1074    /// Optionally inspects an environment variable at compile time.
1075    ///
1076    /// If the named environment variable is present at compile time, this will
1077    /// expand into an expression of type `Option<&'static str>` whose value is
1078    /// `Some` of the value of the environment variable (a compilation error
1079    /// will be emitted if the environment variable is not a valid Unicode
1080    /// string). If the environment variable is not present, then this will
1081    /// expand to `None`. See [`Option<T>`][Option] for more information on this
1082    /// type.  Use [`std::env::var`] instead if you want to read the value at
1083    /// runtime.
1084    ///
1085    /// [`std::env::var`]: ../std/env/fn.var.html
1086    ///
1087    /// A compile time error is only emitted when using this macro if the
1088    /// environment variable exists and is not a valid Unicode string. To also
1089    /// emit a compile error if the environment variable is not present, use the
1090    /// [`env!`] macro instead.
1091    ///
1092    /// # Examples
1093    ///
1094    /// ```
1095    /// let key: Option<&'static str> = option_env!("SECRET_KEY");
1096    /// println!("the secret key might be: {key:?}");
1097    /// ```
1098    #[stable(feature = "rust1", since = "1.0.0")]
1099    #[rustc_builtin_macro]
1100    #[macro_export]
1101    #[rustc_diagnostic_item = "option_env_macro"] // useful for external lints
1102    macro_rules! option_env {
1103        ($name:expr $(,)?) => {{ /* compiler built-in */ }};
1104    }
1105
1106    /// Concatenates literals into a byte slice.
1107    ///
1108    /// This macro takes any number of comma-separated literals, and concatenates them all into
1109    /// one, yielding an expression of type `&[u8; _]`, which represents all of the literals
1110    /// concatenated left-to-right. The literals passed can be any combination of:
1111    ///
1112    /// - byte literals (`b'r'`)
1113    /// - byte strings (`b"Rust"`)
1114    /// - arrays of bytes/numbers (`[b'A', 66, b'C']`)
1115    ///
1116    /// # Examples
1117    ///
1118    /// ```
1119    /// #![feature(concat_bytes)]
1120    ///
1121    /// # fn main() {
1122    /// let s: &[u8; 6] = concat_bytes!(b'A', b"BC", [68, b'E', 70]);
1123    /// assert_eq!(s, b"ABCDEF");
1124    /// # }
1125    /// ```
1126    #[unstable(feature = "concat_bytes", issue = "87555")]
1127    #[rustc_builtin_macro]
1128    #[macro_export]
1129    macro_rules! concat_bytes {
1130        ($($e:literal),+ $(,)?) => {{ /* compiler built-in */ }};
1131    }
1132
1133    /// Concatenates literals into a static string slice.
1134    ///
1135    /// This macro takes any number of comma-separated literals, yielding an
1136    /// expression of type `&'static str` which represents all of the literals
1137    /// concatenated left-to-right.
1138    ///
1139    /// Integer and floating point literals are [stringified](core::stringify) in order to be
1140    /// concatenated.
1141    ///
1142    /// # Examples
1143    ///
1144    /// ```
1145    /// let s = concat!("test", 10, 'b', true);
1146    /// assert_eq!(s, "test10btrue");
1147    /// ```
1148    #[stable(feature = "rust1", since = "1.0.0")]
1149    #[rustc_builtin_macro]
1150    #[rustc_diagnostic_item = "macro_concat"]
1151    #[macro_export]
1152    macro_rules! concat {
1153        ($($e:expr),* $(,)?) => {{ /* compiler built-in */ }};
1154    }
1155
1156    /// Expands to the line number on which it was invoked.
1157    ///
1158    /// With [`column!`] and [`file!`], these macros provide debugging information for
1159    /// developers about the location within the source.
1160    ///
1161    /// The expanded expression has type `u32` and is 1-based, so the first line
1162    /// in each file evaluates to 1, the second to 2, etc. This is consistent
1163    /// with error messages by common compilers or popular editors.
1164    /// The returned line is *not necessarily* the line of the `line!` invocation itself,
1165    /// but rather the first macro invocation leading up to the invocation
1166    /// of the `line!` macro.
1167    ///
1168    /// # Examples
1169    ///
1170    /// ```
1171    /// let current_line = line!();
1172    /// println!("defined on line: {current_line}");
1173    /// ```
1174    #[stable(feature = "rust1", since = "1.0.0")]
1175    #[rustc_builtin_macro]
1176    #[macro_export]
1177    macro_rules! line {
1178        () => {
1179            /* compiler built-in */
1180        };
1181    }
1182
1183    /// Expands to the column number at which it was invoked.
1184    ///
1185    /// With [`line!`] and [`file!`], these macros provide debugging information for
1186    /// developers about the location within the source.
1187    ///
1188    /// The expanded expression has type `u32` and is 1-based, so the first column
1189    /// in each line evaluates to 1, the second to 2, etc. This is consistent
1190    /// with error messages by common compilers or popular editors.
1191    /// The returned column is *not necessarily* the line of the `column!` invocation itself,
1192    /// but rather the first macro invocation leading up to the invocation
1193    /// of the `column!` macro.
1194    ///
1195    /// # Examples
1196    ///
1197    /// ```
1198    /// let current_col = column!();
1199    /// println!("defined on column: {current_col}");
1200    /// ```
1201    ///
1202    /// `column!` counts Unicode code points, not bytes or graphemes. As a result, the first two
1203    /// invocations return the same value, but the third does not.
1204    ///
1205    /// ```
1206    /// let a = ("foobar", column!()).1;
1207    /// let b = ("人之初性本善", column!()).1;
1208    /// let c = ("f̅o̅o̅b̅a̅r̅", column!()).1; // Uses combining overline (U+0305)
1209    ///
1210    /// assert_eq!(a, b);
1211    /// assert_ne!(b, c);
1212    /// ```
1213    #[stable(feature = "rust1", since = "1.0.0")]
1214    #[rustc_builtin_macro]
1215    #[macro_export]
1216    macro_rules! column {
1217        () => {
1218            /* compiler built-in */
1219        };
1220    }
1221
1222    /// Expands to the file name in which it was invoked.
1223    ///
1224    /// With [`line!`] and [`column!`], these macros provide debugging information for
1225    /// developers about the location within the source.
1226    ///
1227    /// The expanded expression has type `&'static str`, and the returned file
1228    /// is not the invocation of the `file!` macro itself, but rather the
1229    /// first macro invocation leading up to the invocation of the `file!`
1230    /// macro.
1231    ///
1232    /// The file name is derived from the crate root's source path passed to the Rust compiler
1233    /// and the sequence the compiler takes to get from the crate root to the
1234    /// module containing `file!`, modified by any flags passed to the Rust compiler (e.g.
1235    /// `--remap-path-prefix`).  If the crate's source path is relative, the initial base
1236    /// directory will be the working directory of the Rust compiler.  For example, if the source
1237    /// path passed to the compiler is `./src/lib.rs` which has a `mod foo;` with a source path of
1238    /// `src/foo/mod.rs`, then calling `file!` inside `mod foo;` will return `./src/foo/mod.rs`.
1239    ///
1240    /// Future compiler options might make further changes to the behavior of `file!`,
1241    /// including potentially making it entirely empty. Code (e.g. test libraries)
1242    /// relying on `file!` producing an openable file path would be incompatible
1243    /// with such options, and might wish to recommend not using those options.
1244    ///
1245    /// # Examples
1246    ///
1247    /// ```
1248    /// let this_file = file!();
1249    /// println!("defined in file: {this_file}");
1250    /// ```
1251    #[stable(feature = "rust1", since = "1.0.0")]
1252    #[rustc_builtin_macro]
1253    #[macro_export]
1254    macro_rules! file {
1255        () => {
1256            /* compiler built-in */
1257        };
1258    }
1259
1260    /// Stringifies its arguments.
1261    ///
1262    /// This macro will yield an expression of type `&'static str` which is the
1263    /// stringification of all the tokens passed to the macro. No restrictions
1264    /// are placed on the syntax of the macro invocation itself.
1265    ///
1266    /// Note that the expanded results of the input tokens may change in the
1267    /// future. You should be careful if you rely on the output.
1268    ///
1269    /// # Examples
1270    ///
1271    /// ```
1272    /// let one_plus_one = stringify!(1 + 1);
1273    /// assert_eq!(one_plus_one, "1 + 1");
1274    /// ```
1275    #[stable(feature = "rust1", since = "1.0.0")]
1276    #[rustc_builtin_macro]
1277    #[macro_export]
1278    macro_rules! stringify {
1279        ($($t:tt)*) => {
1280            /* compiler built-in */
1281        };
1282    }
1283
1284    /// Includes a UTF-8 encoded file as a string.
1285    ///
1286    /// The file is located relative to the current file (similarly to how
1287    /// modules are found). The provided path is interpreted in a platform-specific
1288    /// way at compile time. So, for instance, an invocation with a Windows path
1289    /// containing backslashes `\` would not compile correctly on Unix.
1290    ///
1291    /// This macro will yield an expression of type `&'static str` which is the
1292    /// contents of the file.
1293    ///
1294    /// # Examples
1295    ///
1296    /// Assume there are two files in the same directory with the following
1297    /// contents:
1298    ///
1299    /// File 'spanish.in':
1300    ///
1301    /// ```text
1302    /// adiós
1303    /// ```
1304    ///
1305    /// File 'main.rs':
1306    ///
1307    /// ```ignore (cannot-doctest-external-file-dependency)
1308    /// fn main() {
1309    ///     let my_str = include_str!("spanish.in");
1310    ///     assert_eq!(my_str, "adiós\n");
1311    ///     print!("{my_str}");
1312    /// }
1313    /// ```
1314    ///
1315    /// Compiling 'main.rs' and running the resulting binary will print "adiós".
1316    #[stable(feature = "rust1", since = "1.0.0")]
1317    #[rustc_builtin_macro]
1318    #[macro_export]
1319    #[rustc_diagnostic_item = "include_str_macro"]
1320    macro_rules! include_str {
1321        ($file:expr $(,)?) => {{ /* compiler built-in */ }};
1322    }
1323
1324    /// Includes a file as a reference to a byte array.
1325    ///
1326    /// The file is located relative to the current file (similarly to how
1327    /// modules are found). The provided path is interpreted in a platform-specific
1328    /// way at compile time. So, for instance, an invocation with a Windows path
1329    /// containing backslashes `\` would not compile correctly on Unix.
1330    ///
1331    /// This macro will yield an expression of type `&'static [u8; N]` which is
1332    /// the contents of the file.
1333    ///
1334    /// # Examples
1335    ///
1336    /// Assume there are two files in the same directory with the following
1337    /// contents:
1338    ///
1339    /// File 'spanish.in':
1340    ///
1341    /// ```text
1342    /// adiós
1343    /// ```
1344    ///
1345    /// File 'main.rs':
1346    ///
1347    /// ```ignore (cannot-doctest-external-file-dependency)
1348    /// fn main() {
1349    ///     let bytes = include_bytes!("spanish.in");
1350    ///     assert_eq!(bytes, b"adi\xc3\xb3s\n");
1351    ///     print!("{}", String::from_utf8_lossy(bytes));
1352    /// }
1353    /// ```
1354    ///
1355    /// Compiling 'main.rs' and running the resulting binary will print "adiós".
1356    #[stable(feature = "rust1", since = "1.0.0")]
1357    #[rustc_builtin_macro]
1358    #[macro_export]
1359    #[rustc_diagnostic_item = "include_bytes_macro"]
1360    macro_rules! include_bytes {
1361        ($file:expr $(,)?) => {{ /* compiler built-in */ }};
1362    }
1363
1364    /// Expands to a string that represents the current module path.
1365    ///
1366    /// The current module path can be thought of as the hierarchy of modules
1367    /// leading back up to the crate root. The first component of the path
1368    /// returned is the name of the crate currently being compiled.
1369    ///
1370    /// # Examples
1371    ///
1372    /// ```
1373    /// mod test {
1374    ///     pub fn foo() {
1375    ///         assert!(module_path!().ends_with("test"));
1376    ///     }
1377    /// }
1378    ///
1379    /// test::foo();
1380    /// ```
1381    #[stable(feature = "rust1", since = "1.0.0")]
1382    #[rustc_builtin_macro]
1383    #[macro_export]
1384    macro_rules! module_path {
1385        () => {
1386            /* compiler built-in */
1387        };
1388    }
1389
1390    /// Evaluates boolean combinations of configuration flags at compile-time.
1391    ///
1392    /// In addition to the `#[cfg]` attribute, this macro is provided to allow
1393    /// boolean expression evaluation of configuration flags. This frequently
1394    /// leads to less duplicated code.
1395    ///
1396    /// The syntax given to this macro is the same syntax as the [`cfg`]
1397    /// attribute.
1398    ///
1399    /// `cfg!`, unlike `#[cfg]`, does not remove any code and only evaluates to true or false. For
1400    /// example, all blocks in an if/else expression need to be valid when `cfg!` is used for
1401    /// the condition, regardless of what `cfg!` is evaluating.
1402    ///
1403    /// [`cfg`]: ../reference/conditional-compilation.html#the-cfg-attribute
1404    ///
1405    /// # Examples
1406    ///
1407    /// ```
1408    /// let my_directory = if cfg!(windows) {
1409    ///     "windows-specific-directory"
1410    /// } else {
1411    ///     "unix-directory"
1412    /// };
1413    /// ```
1414    #[stable(feature = "rust1", since = "1.0.0")]
1415    #[rustc_builtin_macro]
1416    #[macro_export]
1417    macro_rules! cfg {
1418        ($($cfg:tt)*) => {
1419            /* compiler built-in */
1420        };
1421    }
1422
1423    /// Parses a file as an expression or an item according to the context.
1424    ///
1425    /// **Warning**: For multi-file Rust projects, the `include!` macro is probably not what you
1426    /// are looking for. Usually, multi-file Rust projects use
1427    /// [modules](https://doc.rust-lang.org/reference/items/modules.html). Multi-file projects and
1428    /// modules are explained in the Rust-by-Example book
1429    /// [here](https://doc.rust-lang.org/rust-by-example/mod/split.html) and the module system is
1430    /// explained in the Rust Book
1431    /// [here](https://doc.rust-lang.org/book/ch07-02-defining-modules-to-control-scope-and-privacy.html).
1432    ///
1433    /// The included file is placed in the surrounding code
1434    /// [unhygienically](https://doc.rust-lang.org/reference/macros-by-example.html#hygiene). If
1435    /// the included file is parsed as an expression and variables or functions share names across
1436    /// both files, it could result in variables or functions being different from what the
1437    /// included file expected.
1438    ///
1439    /// The included file is located relative to the current file (similarly to how modules are
1440    /// found). The provided path is interpreted in a platform-specific way at compile time. So,
1441    /// for instance, an invocation with a Windows path containing backslashes `\` would not
1442    /// compile correctly on Unix.
1443    ///
1444    /// # Uses
1445    ///
1446    /// The `include!` macro is primarily used for two purposes. It is used to include
1447    /// documentation that is written in a separate file and it is used to include [build artifacts
1448    /// usually as a result from the `build.rs`
1449    /// script](https://doc.rust-lang.org/cargo/reference/build-scripts.html#outputs-of-the-build-script).
1450    ///
1451    /// When using the `include` macro to include stretches of documentation, remember that the
1452    /// included file still needs to be a valid Rust syntax. It is also possible to
1453    /// use the [`include_str`] macro as `#![doc = include_str!("...")]` (at the module level) or
1454    /// `#[doc = include_str!("...")]` (at the item level) to include documentation from a plain
1455    /// text or markdown file.
1456    ///
1457    /// # Examples
1458    ///
1459    /// Assume there are two files in the same directory with the following contents:
1460    ///
1461    /// File 'monkeys.in':
1462    ///
1463    /// ```ignore (only-for-syntax-highlight)
1464    /// ['🙈', '🙊', '🙉']
1465    ///     .iter()
1466    ///     .cycle()
1467    ///     .take(6)
1468    ///     .collect::<String>()
1469    /// ```
1470    ///
1471    /// File 'main.rs':
1472    ///
1473    /// ```ignore (cannot-doctest-external-file-dependency)
1474    /// fn main() {
1475    ///     let my_string = include!("monkeys.in");
1476    ///     assert_eq!("🙈🙊🙉🙈🙊🙉", my_string);
1477    ///     println!("{my_string}");
1478    /// }
1479    /// ```
1480    ///
1481    /// Compiling 'main.rs' and running the resulting binary will print
1482    /// "🙈🙊🙉🙈🙊🙉".
1483    #[stable(feature = "rust1", since = "1.0.0")]
1484    #[rustc_builtin_macro]
1485    #[macro_export]
1486    #[rustc_diagnostic_item = "include_macro"] // useful for external lints
1487    macro_rules! include {
1488        ($file:expr $(,)?) => {{ /* compiler built-in */ }};
1489    }
1490
1491    /// This macro uses forward-mode automatic differentiation to generate a new function.
1492    /// It may only be applied to a function. The new function will compute the derivative
1493    /// of the function to which the macro was applied.
1494    ///
1495    /// The expected usage syntax is:
1496    /// `#[autodiff_forward(NAME, INPUT_ACTIVITIES, OUTPUT_ACTIVITY)]`
1497    ///
1498    /// - `NAME`: A string that represents a valid function name.
1499    /// - `INPUT_ACTIVITIES`: Specifies one valid activity for each input parameter.
1500    /// - `OUTPUT_ACTIVITY`: Must not be set if the function implicitly returns nothing
1501    ///   (or explicitly returns `-> ()`). Otherwise, it must be set to one of the allowed activities.
1502    #[unstable(feature = "autodiff", issue = "124509")]
1503    #[allow_internal_unstable(rustc_attrs)]
1504    #[allow_internal_unstable(core_intrinsics)]
1505    #[rustc_builtin_macro]
1506    pub macro autodiff_forward($item:item) {
1507        /* compiler built-in */
1508    }
1509
1510    /// This macro uses reverse-mode automatic differentiation to generate a new function.
1511    /// It may only be applied to a function. The new function will compute the derivative
1512    /// of the function to which the macro was applied.
1513    ///
1514    /// The expected usage syntax is:
1515    /// `#[autodiff_reverse(NAME, INPUT_ACTIVITIES, OUTPUT_ACTIVITY)]`
1516    ///
1517    /// - `NAME`: A string that represents a valid function name.
1518    /// - `INPUT_ACTIVITIES`: Specifies one valid activity for each input parameter.
1519    /// - `OUTPUT_ACTIVITY`: Must not be set if the function implicitly returns nothing
1520    ///   (or explicitly returns `-> ()`). Otherwise, it must be set to one of the allowed activities.
1521    #[unstable(feature = "autodiff", issue = "124509")]
1522    #[allow_internal_unstable(rustc_attrs)]
1523    #[allow_internal_unstable(core_intrinsics)]
1524    #[rustc_builtin_macro]
1525    pub macro autodiff_reverse($item:item) {
1526        /* compiler built-in */
1527    }
1528
1529    /// Asserts that a boolean expression is `true` at runtime.
1530    ///
1531    /// This will invoke the [`panic!`] macro if the provided expression cannot be
1532    /// evaluated to `true` at runtime.
1533    ///
1534    /// # Uses
1535    ///
1536    /// Assertions are always checked in both debug and release builds, and cannot
1537    /// be disabled. See [`debug_assert!`] for assertions that are not enabled in
1538    /// release builds by default.
1539    ///
1540    /// Unsafe code may rely on `assert!` to enforce run-time invariants that, if
1541    /// violated could lead to unsafety.
1542    ///
1543    /// Other use-cases of `assert!` include testing and enforcing run-time
1544    /// invariants in safe code (whose violation cannot result in unsafety).
1545    ///
1546    /// # Custom Messages
1547    ///
1548    /// This macro has a second form, where a custom panic message can
1549    /// be provided with or without arguments for formatting. See [`std::fmt`]
1550    /// for syntax for this form. Expressions used as format arguments will only
1551    /// be evaluated if the assertion fails.
1552    ///
1553    /// [`std::fmt`]: ../std/fmt/index.html
1554    ///
1555    /// # Examples
1556    ///
1557    /// ```
1558    /// // the panic message for these assertions is the stringified value of the
1559    /// // expression given.
1560    /// assert!(true);
1561    ///
1562    /// fn some_computation() -> bool {
1563    ///     // Some expensive computation here
1564    ///     true
1565    /// }
1566    ///
1567    /// assert!(some_computation());
1568    ///
1569    /// // assert with a custom message
1570    /// let x = true;
1571    /// assert!(x, "x wasn't true!");
1572    ///
1573    /// let a = 3; let b = 27;
1574    /// assert!(a + b == 30, "a = {}, b = {}", a, b);
1575    /// ```
1576    #[stable(feature = "rust1", since = "1.0.0")]
1577    #[rustc_builtin_macro]
1578    #[macro_export]
1579    #[rustc_diagnostic_item = "assert_macro"]
1580    #[allow_internal_unstable(
1581        core_intrinsics,
1582        panic_internals,
1583        edition_panic,
1584        generic_assert_internals
1585    )]
1586    macro_rules! assert {
1587        ($cond:expr $(,)?) => {{ /* compiler built-in */ }};
1588        ($cond:expr, $($arg:tt)+) => {{ /* compiler built-in */ }};
1589    }
1590
1591    /// Prints passed tokens into the standard output.
1592    #[unstable(
1593        feature = "log_syntax",
1594        issue = "29598",
1595        reason = "`log_syntax!` is not stable enough for use and is subject to change"
1596    )]
1597    #[rustc_builtin_macro]
1598    #[macro_export]
1599    macro_rules! log_syntax {
1600        ($($arg:tt)*) => {
1601            /* compiler built-in */
1602        };
1603    }
1604
1605    /// Enables or disables tracing functionality used for debugging other macros.
1606    #[unstable(
1607        feature = "trace_macros",
1608        issue = "29598",
1609        reason = "`trace_macros` is not stable enough for use and is subject to change"
1610    )]
1611    #[rustc_builtin_macro]
1612    #[macro_export]
1613    macro_rules! trace_macros {
1614        (true) => {{ /* compiler built-in */ }};
1615        (false) => {{ /* compiler built-in */ }};
1616    }
1617
1618    /// Attribute macro used to apply derive macros.
1619    ///
1620    /// See [the reference] for more info.
1621    ///
1622    /// [the reference]: ../../../reference/attributes/derive.html
1623    #[stable(feature = "rust1", since = "1.0.0")]
1624    #[rustc_builtin_macro]
1625    pub macro derive($item:item) {
1626        /* compiler built-in */
1627    }
1628
1629    /// Attribute macro used to apply derive macros for implementing traits
1630    /// in a const context.
1631    ///
1632    /// See [the reference] for more info.
1633    ///
1634    /// [the reference]: ../../../reference/attributes/derive.html
1635    #[unstable(feature = "derive_const", issue = "118304")]
1636    #[rustc_builtin_macro]
1637    pub macro derive_const($item:item) {
1638        /* compiler built-in */
1639    }
1640
1641    /// Attribute macro applied to a function to turn it into a unit test.
1642    ///
1643    /// See [the reference] for more info.
1644    ///
1645    /// [the reference]: ../../../reference/attributes/testing.html#the-test-attribute
1646    #[stable(feature = "rust1", since = "1.0.0")]
1647    #[allow_internal_unstable(test, rustc_attrs, coverage_attribute)]
1648    #[rustc_builtin_macro]
1649    pub macro test($item:item) {
1650        /* compiler built-in */
1651    }
1652
1653    /// Attribute macro applied to a function to turn it into a benchmark test.
1654    #[unstable(
1655        feature = "test",
1656        issue = "50297",
1657        reason = "`bench` is a part of custom test frameworks which are unstable"
1658    )]
1659    #[allow_internal_unstable(test, rustc_attrs, coverage_attribute)]
1660    #[rustc_builtin_macro]
1661    pub macro bench($item:item) {
1662        /* compiler built-in */
1663    }
1664
1665    /// An implementation detail of the `#[test]` and `#[bench]` macros.
1666    #[unstable(
1667        feature = "custom_test_frameworks",
1668        issue = "50297",
1669        reason = "custom test frameworks are an unstable feature"
1670    )]
1671    #[allow_internal_unstable(test, rustc_attrs)]
1672    #[rustc_builtin_macro]
1673    pub macro test_case($item:item) {
1674        /* compiler built-in */
1675    }
1676
1677    /// Attribute macro applied to a static to register it as a global allocator.
1678    ///
1679    /// See also [`std::alloc::GlobalAlloc`](../../../std/alloc/trait.GlobalAlloc.html).
1680    #[stable(feature = "global_allocator", since = "1.28.0")]
1681    #[allow_internal_unstable(rustc_attrs)]
1682    #[rustc_builtin_macro]
1683    pub macro global_allocator($item:item) {
1684        /* compiler built-in */
1685    }
1686
1687    /// Attribute macro applied to a function to give it a post-condition.
1688    ///
1689    /// The attribute carries an argument token-tree which is
1690    /// eventually parsed as a unary closure expression that is
1691    /// invoked on a reference to the return value.
1692    #[unstable(feature = "contracts", issue = "128044")]
1693    #[allow_internal_unstable(contracts_internals)]
1694    #[rustc_builtin_macro]
1695    pub macro contracts_ensures($item:item) {
1696        /* compiler built-in */
1697    }
1698
1699    /// Attribute macro applied to a function to give it a precondition.
1700    ///
1701    /// The attribute carries an argument token-tree which is
1702    /// eventually parsed as an boolean expression with access to the
1703    /// function's formal parameters
1704    #[unstable(feature = "contracts", issue = "128044")]
1705    #[allow_internal_unstable(contracts_internals)]
1706    #[rustc_builtin_macro]
1707    pub macro contracts_requires($item:item) {
1708        /* compiler built-in */
1709    }
1710
1711    /// Attribute macro applied to a function to register it as a handler for allocation failure.
1712    ///
1713    /// See also [`std::alloc::handle_alloc_error`](../../../std/alloc/fn.handle_alloc_error.html).
1714    #[unstable(feature = "alloc_error_handler", issue = "51540")]
1715    #[allow_internal_unstable(rustc_attrs)]
1716    #[rustc_builtin_macro]
1717    pub macro alloc_error_handler($item:item) {
1718        /* compiler built-in */
1719    }
1720
1721    /// Keeps the item it's applied to if the passed path is accessible, and removes it otherwise.
1722    #[unstable(
1723        feature = "cfg_accessible",
1724        issue = "64797",
1725        reason = "`cfg_accessible` is not fully implemented"
1726    )]
1727    #[rustc_builtin_macro]
1728    pub macro cfg_accessible($item:item) {
1729        /* compiler built-in */
1730    }
1731
1732    /// Expands all `#[cfg]` and `#[cfg_attr]` attributes in the code fragment it's applied to.
1733    #[unstable(
1734        feature = "cfg_eval",
1735        issue = "82679",
1736        reason = "`cfg_eval` is a recently implemented feature"
1737    )]
1738    #[rustc_builtin_macro]
1739    pub macro cfg_eval($($tt:tt)*) {
1740        /* compiler built-in */
1741    }
1742
1743    /// Provide a list of type aliases and other opaque-type-containing type definitions
1744    /// to an item with a body. This list will be used in that body to define opaque
1745    /// types' hidden types.
1746    /// Can only be applied to things that have bodies.
1747    #[unstable(
1748        feature = "type_alias_impl_trait",
1749        issue = "63063",
1750        reason = "`type_alias_impl_trait` has open design concerns"
1751    )]
1752    #[rustc_builtin_macro]
1753    pub macro define_opaque($($tt:tt)*) {
1754        /* compiler built-in */
1755    }
1756
1757    /// Unstable placeholder for type ascription.
1758    #[allow_internal_unstable(builtin_syntax)]
1759    #[unstable(
1760        feature = "type_ascription",
1761        issue = "23416",
1762        reason = "placeholder syntax for type ascription"
1763    )]
1764    #[rustfmt::skip]
1765    pub macro type_ascribe($expr:expr, $ty:ty) {
1766        builtin # type_ascribe($expr, $ty)
1767    }
1768
1769    /// Unstable placeholder for deref patterns.
1770    #[allow_internal_unstable(builtin_syntax)]
1771    #[unstable(
1772        feature = "deref_patterns",
1773        issue = "87121",
1774        reason = "placeholder syntax for deref patterns"
1775    )]
1776    pub macro deref($pat:pat) {
1777        builtin # deref($pat)
1778    }
1779
1780    /// Derive macro generating an impl of the trait `From`.
1781    /// Currently, it can only be used on single-field structs.
1782    // Note that the macro is in a different module than the `From` trait,
1783    // to avoid triggering an unstable feature being used if someone imports
1784    // `std::convert::From`.
1785    #[rustc_builtin_macro]
1786    #[unstable(feature = "derive_from", issue = "144889")]
1787    pub macro From($item: item) {
1788        /* compiler built-in */
1789    }
1790}