core/stdarch/crates/core_arch/src/x86/
sha.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
use crate::core_arch::{simd::*, x86::*};

#[allow(improper_ctypes)]
extern "C" {
    #[link_name = "llvm.x86.sha1msg1"]
    fn sha1msg1(a: i32x4, b: i32x4) -> i32x4;
    #[link_name = "llvm.x86.sha1msg2"]
    fn sha1msg2(a: i32x4, b: i32x4) -> i32x4;
    #[link_name = "llvm.x86.sha1nexte"]
    fn sha1nexte(a: i32x4, b: i32x4) -> i32x4;
    #[link_name = "llvm.x86.sha1rnds4"]
    fn sha1rnds4(a: i32x4, b: i32x4, c: i8) -> i32x4;
    #[link_name = "llvm.x86.sha256msg1"]
    fn sha256msg1(a: i32x4, b: i32x4) -> i32x4;
    #[link_name = "llvm.x86.sha256msg2"]
    fn sha256msg2(a: i32x4, b: i32x4) -> i32x4;
    #[link_name = "llvm.x86.sha256rnds2"]
    fn sha256rnds2(a: i32x4, b: i32x4, k: i32x4) -> i32x4;
}

#[cfg(test)]
use stdarch_test::assert_instr;

/// Performs an intermediate calculation for the next four SHA1 message values
/// (unsigned 32-bit integers) using previous message values from `a` and `b`,
/// and returning the result.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sha1msg1_epu32)
#[inline]
#[target_feature(enable = "sha")]
#[cfg_attr(test, assert_instr(sha1msg1))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_sha1msg1_epu32(a: __m128i, b: __m128i) -> __m128i {
    transmute(sha1msg1(a.as_i32x4(), b.as_i32x4()))
}

/// Performs the final calculation for the next four SHA1 message values
/// (unsigned 32-bit integers) using the intermediate result in `a` and the
/// previous message values in `b`, and returns the result.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sha1msg2_epu32)
#[inline]
#[target_feature(enable = "sha")]
#[cfg_attr(test, assert_instr(sha1msg2))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_sha1msg2_epu32(a: __m128i, b: __m128i) -> __m128i {
    transmute(sha1msg2(a.as_i32x4(), b.as_i32x4()))
}

/// Calculate SHA1 state variable E after four rounds of operation from the
/// current SHA1 state variable `a`, add that value to the scheduled values
/// (unsigned 32-bit integers) in `b`, and returns the result.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sha1nexte_epu32)
#[inline]
#[target_feature(enable = "sha")]
#[cfg_attr(test, assert_instr(sha1nexte))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_sha1nexte_epu32(a: __m128i, b: __m128i) -> __m128i {
    transmute(sha1nexte(a.as_i32x4(), b.as_i32x4()))
}

/// Performs four rounds of SHA1 operation using an initial SHA1 state (A,B,C,D)
/// from `a` and some pre-computed sum of the next 4 round message values
/// (unsigned 32-bit integers), and state variable E from `b`, and return the
/// updated SHA1 state (A,B,C,D). `FUNC` contains the logic functions and round
/// constants.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sha1rnds4_epu32)
#[inline]
#[target_feature(enable = "sha")]
#[cfg_attr(test, assert_instr(sha1rnds4, FUNC = 0))]
#[rustc_legacy_const_generics(2)]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_sha1rnds4_epu32<const FUNC: i32>(a: __m128i, b: __m128i) -> __m128i {
    static_assert_uimm_bits!(FUNC, 2);
    transmute(sha1rnds4(a.as_i32x4(), b.as_i32x4(), FUNC as i8))
}

/// Performs an intermediate calculation for the next four SHA256 message values
/// (unsigned 32-bit integers) using previous message values from `a` and `b`,
/// and return the result.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sha256msg1_epu32)
#[inline]
#[target_feature(enable = "sha")]
#[cfg_attr(test, assert_instr(sha256msg1))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_sha256msg1_epu32(a: __m128i, b: __m128i) -> __m128i {
    transmute(sha256msg1(a.as_i32x4(), b.as_i32x4()))
}

/// Performs the final calculation for the next four SHA256 message values
/// (unsigned 32-bit integers) using previous message values from `a` and `b`,
/// and return the result.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sha256msg2_epu32)
#[inline]
#[target_feature(enable = "sha")]
#[cfg_attr(test, assert_instr(sha256msg2))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_sha256msg2_epu32(a: __m128i, b: __m128i) -> __m128i {
    transmute(sha256msg2(a.as_i32x4(), b.as_i32x4()))
}

/// Performs 2 rounds of SHA256 operation using an initial SHA256 state
/// (C,D,G,H) from `a`, an initial SHA256 state (A,B,E,F) from `b`, and a
/// pre-computed sum of the next 2 round message values (unsigned 32-bit
/// integers) and the corresponding round constants from `k`, and store the
/// updated SHA256 state (A,B,E,F) in dst.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sha256rnds2_epu32)
#[inline]
#[target_feature(enable = "sha")]
#[cfg_attr(test, assert_instr(sha256rnds2))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_sha256rnds2_epu32(a: __m128i, b: __m128i, k: __m128i) -> __m128i {
    transmute(sha256rnds2(a.as_i32x4(), b.as_i32x4(), k.as_i32x4()))
}

#[cfg(test)]
mod tests {
    use std::{
        f32, f64,
        mem::{self, transmute},
    };

    use crate::{
        core_arch::{simd::*, x86::*},
        hint::black_box,
    };
    use stdarch_test::simd_test;

    const NAN: f64 = f64::NAN;

    #[simd_test(enable = "sha")]
    #[allow(overflowing_literals)]
    unsafe fn test_mm_sha1msg1_epu32() {
        let a = _mm_set_epi64x(0xe9b5dba5b5c0fbcf, 0x71374491428a2f98);
        let b = _mm_set_epi64x(0xab1c5ed5923f82a4, 0x59f111f13956c25b);
        let expected = _mm_set_epi64x(0x98829f34f74ad457, 0xda2b1a44d0b5ad3c);
        let r = _mm_sha1msg1_epu32(a, b);
        assert_eq_m128i(r, expected);
    }

    #[simd_test(enable = "sha")]
    #[allow(overflowing_literals)]
    unsafe fn test_mm_sha1msg2_epu32() {
        let a = _mm_set_epi64x(0xe9b5dba5b5c0fbcf, 0x71374491428a2f98);
        let b = _mm_set_epi64x(0xab1c5ed5923f82a4, 0x59f111f13956c25b);
        let expected = _mm_set_epi64x(0xf714b202d863d47d, 0x90c30d946b3d3b35);
        let r = _mm_sha1msg2_epu32(a, b);
        assert_eq_m128i(r, expected);
    }

    #[simd_test(enable = "sha")]
    #[allow(overflowing_literals)]
    unsafe fn test_mm_sha1nexte_epu32() {
        let a = _mm_set_epi64x(0xe9b5dba5b5c0fbcf, 0x71374491428a2f98);
        let b = _mm_set_epi64x(0xab1c5ed5923f82a4, 0x59f111f13956c25b);
        let expected = _mm_set_epi64x(0x2589d5be923f82a4, 0x59f111f13956c25b);
        let r = _mm_sha1nexte_epu32(a, b);
        assert_eq_m128i(r, expected);
    }

    #[simd_test(enable = "sha")]
    #[allow(overflowing_literals)]
    unsafe fn test_mm_sha1rnds4_epu32() {
        let a = _mm_set_epi64x(0xe9b5dba5b5c0fbcf, 0x71374491428a2f98);
        let b = _mm_set_epi64x(0xab1c5ed5923f82a4, 0x59f111f13956c25b);
        let expected = _mm_set_epi64x(0x32b13cd8322f5268, 0xc54420862bd9246f);
        let r = _mm_sha1rnds4_epu32::<0>(a, b);
        assert_eq_m128i(r, expected);

        let expected = _mm_set_epi64x(0x6d4c43e56a3c25d9, 0xa7e00fb775cbd3fe);
        let r = _mm_sha1rnds4_epu32::<1>(a, b);
        assert_eq_m128i(r, expected);

        let expected = _mm_set_epi64x(0xb304e383c01222f4, 0x66f6b3b1f89d8001);
        let r = _mm_sha1rnds4_epu32::<2>(a, b);
        assert_eq_m128i(r, expected);

        let expected = _mm_set_epi64x(0x8189b758bfabfa79, 0xdb08f6e78cae098b);
        let r = _mm_sha1rnds4_epu32::<3>(a, b);
        assert_eq_m128i(r, expected);
    }

    #[simd_test(enable = "sha")]
    #[allow(overflowing_literals)]
    unsafe fn test_mm_sha256msg1_epu32() {
        let a = _mm_set_epi64x(0xe9b5dba5b5c0fbcf, 0x71374491428a2f98);
        let b = _mm_set_epi64x(0xab1c5ed5923f82a4, 0x59f111f13956c25b);
        let expected = _mm_set_epi64x(0xeb84973fd5cda67d, 0x2857b88f406b09ee);
        let r = _mm_sha256msg1_epu32(a, b);
        assert_eq_m128i(r, expected);
    }

    #[simd_test(enable = "sha")]
    #[allow(overflowing_literals)]
    unsafe fn test_mm_sha256msg2_epu32() {
        let a = _mm_set_epi64x(0xe9b5dba5b5c0fbcf, 0x71374491428a2f98);
        let b = _mm_set_epi64x(0xab1c5ed5923f82a4, 0x59f111f13956c25b);
        let expected = _mm_set_epi64x(0xb58777ce887fd851, 0x15d1ec8b73ac8450);
        let r = _mm_sha256msg2_epu32(a, b);
        assert_eq_m128i(r, expected);
    }

    #[simd_test(enable = "sha")]
    #[allow(overflowing_literals)]
    unsafe fn test_mm_sha256rnds2_epu32() {
        let a = _mm_set_epi64x(0xe9b5dba5b5c0fbcf, 0x71374491428a2f98);
        let b = _mm_set_epi64x(0xab1c5ed5923f82a4, 0x59f111f13956c25b);
        let k = _mm_set_epi64x(0, 0x12835b01d807aa98);
        let expected = _mm_set_epi64x(0xd3063037effb15ea, 0x187ee3db0d6d1d19);
        let r = _mm_sha256rnds2_epu32(a, b, k);
        assert_eq_m128i(r, expected);
    }
}