core/num/f128.rs
1//! Constants for the `f128` quadruple-precision floating point type.
2//!
3//! *[See also the `f128` primitive type][f128].*
4//!
5//! Mathematically significant numbers are provided in the `consts` sub-module.
6//!
7//! For the constants defined directly in this module
8//! (as distinct from those defined in the `consts` sub-module),
9//! new code should instead use the associated constants
10//! defined directly on the `f128` type.
11
12#![unstable(feature = "f128", issue = "116909")]
13
14use crate::convert::FloatToInt;
15use crate::num::FpCategory;
16use crate::panic::const_assert;
17use crate::{intrinsics, mem};
18
19/// Basic mathematical constants.
20#[unstable(feature = "f128", issue = "116909")]
21pub mod consts {
22 // FIXME: replace with mathematical constants from cmath.
23
24 /// Archimedes' constant (π)
25 #[unstable(feature = "f128", issue = "116909")]
26 pub const PI: f128 = 3.14159265358979323846264338327950288419716939937510582097494_f128;
27
28 /// The full circle constant (τ)
29 ///
30 /// Equal to 2π.
31 #[unstable(feature = "f128", issue = "116909")]
32 pub const TAU: f128 = 6.28318530717958647692528676655900576839433879875021164194989_f128;
33
34 /// The golden ratio (φ)
35 #[unstable(feature = "f128", issue = "116909")]
36 // Also, #[unstable(feature = "more_float_constants", issue = "103883")]
37 pub const PHI: f128 = 1.61803398874989484820458683436563811772030917980576286213545_f128;
38
39 /// The Euler-Mascheroni constant (γ)
40 #[unstable(feature = "f128", issue = "116909")]
41 // Also, #[unstable(feature = "more_float_constants", issue = "103883")]
42 pub const EGAMMA: f128 = 0.577215664901532860606512090082402431042159335939923598805767_f128;
43
44 /// π/2
45 #[unstable(feature = "f128", issue = "116909")]
46 pub const FRAC_PI_2: f128 = 1.57079632679489661923132169163975144209858469968755291048747_f128;
47
48 /// π/3
49 #[unstable(feature = "f128", issue = "116909")]
50 pub const FRAC_PI_3: f128 = 1.04719755119659774615421446109316762806572313312503527365831_f128;
51
52 /// π/4
53 #[unstable(feature = "f128", issue = "116909")]
54 pub const FRAC_PI_4: f128 = 0.785398163397448309615660845819875721049292349843776455243736_f128;
55
56 /// π/6
57 #[unstable(feature = "f128", issue = "116909")]
58 pub const FRAC_PI_6: f128 = 0.523598775598298873077107230546583814032861566562517636829157_f128;
59
60 /// π/8
61 #[unstable(feature = "f128", issue = "116909")]
62 pub const FRAC_PI_8: f128 = 0.392699081698724154807830422909937860524646174921888227621868_f128;
63
64 /// 1/π
65 #[unstable(feature = "f128", issue = "116909")]
66 pub const FRAC_1_PI: f128 = 0.318309886183790671537767526745028724068919291480912897495335_f128;
67
68 /// 1/sqrt(π)
69 #[unstable(feature = "f128", issue = "116909")]
70 // Also, #[unstable(feature = "more_float_constants", issue = "103883")]
71 pub const FRAC_1_SQRT_PI: f128 =
72 0.564189583547756286948079451560772585844050629328998856844086_f128;
73
74 /// 1/sqrt(2π)
75 #[doc(alias = "FRAC_1_SQRT_TAU")]
76 #[unstable(feature = "f128", issue = "116909")]
77 // Also, #[unstable(feature = "more_float_constants", issue = "103883")]
78 pub const FRAC_1_SQRT_2PI: f128 =
79 0.398942280401432677939946059934381868475858631164934657665926_f128;
80
81 /// 2/π
82 #[unstable(feature = "f128", issue = "116909")]
83 pub const FRAC_2_PI: f128 = 0.636619772367581343075535053490057448137838582961825794990669_f128;
84
85 /// 2/sqrt(π)
86 #[unstable(feature = "f128", issue = "116909")]
87 pub const FRAC_2_SQRT_PI: f128 =
88 1.12837916709551257389615890312154517168810125865799771368817_f128;
89
90 /// sqrt(2)
91 #[unstable(feature = "f128", issue = "116909")]
92 pub const SQRT_2: f128 = 1.41421356237309504880168872420969807856967187537694807317668_f128;
93
94 /// 1/sqrt(2)
95 #[unstable(feature = "f128", issue = "116909")]
96 pub const FRAC_1_SQRT_2: f128 =
97 0.707106781186547524400844362104849039284835937688474036588340_f128;
98
99 /// sqrt(3)
100 #[unstable(feature = "f128", issue = "116909")]
101 // Also, #[unstable(feature = "more_float_constants", issue = "103883")]
102 pub const SQRT_3: f128 = 1.73205080756887729352744634150587236694280525381038062805581_f128;
103
104 /// 1/sqrt(3)
105 #[unstable(feature = "f128", issue = "116909")]
106 // Also, #[unstable(feature = "more_float_constants", issue = "103883")]
107 pub const FRAC_1_SQRT_3: f128 =
108 0.577350269189625764509148780501957455647601751270126876018602_f128;
109
110 /// Euler's number (e)
111 #[unstable(feature = "f128", issue = "116909")]
112 pub const E: f128 = 2.71828182845904523536028747135266249775724709369995957496697_f128;
113
114 /// log<sub>2</sub>(10)
115 #[unstable(feature = "f128", issue = "116909")]
116 pub const LOG2_10: f128 = 3.32192809488736234787031942948939017586483139302458061205476_f128;
117
118 /// log<sub>2</sub>(e)
119 #[unstable(feature = "f128", issue = "116909")]
120 pub const LOG2_E: f128 = 1.44269504088896340735992468100189213742664595415298593413545_f128;
121
122 /// log<sub>10</sub>(2)
123 #[unstable(feature = "f128", issue = "116909")]
124 pub const LOG10_2: f128 = 0.301029995663981195213738894724493026768189881462108541310427_f128;
125
126 /// log<sub>10</sub>(e)
127 #[unstable(feature = "f128", issue = "116909")]
128 pub const LOG10_E: f128 = 0.434294481903251827651128918916605082294397005803666566114454_f128;
129
130 /// ln(2)
131 #[unstable(feature = "f128", issue = "116909")]
132 pub const LN_2: f128 = 0.693147180559945309417232121458176568075500134360255254120680_f128;
133
134 /// ln(10)
135 #[unstable(feature = "f128", issue = "116909")]
136 pub const LN_10: f128 = 2.30258509299404568401799145468436420760110148862877297603333_f128;
137}
138
139impl f128 {
140 // FIXME(f16_f128): almost all methods in this `impl` are missing examples and a const
141 // implementation. Add these once we can run code on all platforms and have f16/f128 in CTFE.
142
143 /// The radix or base of the internal representation of `f128`.
144 #[unstable(feature = "f128", issue = "116909")]
145 pub const RADIX: u32 = 2;
146
147 /// Number of significant digits in base 2.
148 ///
149 /// Note that the size of the mantissa in the bitwise representation is one
150 /// smaller than this since the leading 1 is not stored explicitly.
151 #[unstable(feature = "f128", issue = "116909")]
152 pub const MANTISSA_DIGITS: u32 = 113;
153
154 /// Approximate number of significant digits in base 10.
155 ///
156 /// This is the maximum <i>x</i> such that any decimal number with <i>x</i>
157 /// significant digits can be converted to `f128` and back without loss.
158 ///
159 /// Equal to floor(log<sub>10</sub> 2<sup>[`MANTISSA_DIGITS`] − 1</sup>).
160 ///
161 /// [`MANTISSA_DIGITS`]: f128::MANTISSA_DIGITS
162 #[unstable(feature = "f128", issue = "116909")]
163 pub const DIGITS: u32 = 33;
164
165 /// [Machine epsilon] value for `f128`.
166 ///
167 /// This is the difference between `1.0` and the next larger representable number.
168 ///
169 /// Equal to 2<sup>1 − [`MANTISSA_DIGITS`]</sup>.
170 ///
171 /// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
172 /// [`MANTISSA_DIGITS`]: f128::MANTISSA_DIGITS
173 #[unstable(feature = "f128", issue = "116909")]
174 #[rustc_diagnostic_item = "f128_epsilon"]
175 pub const EPSILON: f128 = 1.92592994438723585305597794258492732e-34_f128;
176
177 /// Smallest finite `f128` value.
178 ///
179 /// Equal to −[`MAX`].
180 ///
181 /// [`MAX`]: f128::MAX
182 #[unstable(feature = "f128", issue = "116909")]
183 pub const MIN: f128 = -1.18973149535723176508575932662800702e+4932_f128;
184 /// Smallest positive normal `f128` value.
185 ///
186 /// Equal to 2<sup>[`MIN_EXP`] − 1</sup>.
187 ///
188 /// [`MIN_EXP`]: f128::MIN_EXP
189 #[unstable(feature = "f128", issue = "116909")]
190 pub const MIN_POSITIVE: f128 = 3.36210314311209350626267781732175260e-4932_f128;
191 /// Largest finite `f128` value.
192 ///
193 /// Equal to
194 /// (1 − 2<sup>−[`MANTISSA_DIGITS`]</sup>) 2<sup>[`MAX_EXP`]</sup>.
195 ///
196 /// [`MANTISSA_DIGITS`]: f128::MANTISSA_DIGITS
197 /// [`MAX_EXP`]: f128::MAX_EXP
198 #[unstable(feature = "f128", issue = "116909")]
199 pub const MAX: f128 = 1.18973149535723176508575932662800702e+4932_f128;
200
201 /// One greater than the minimum possible *normal* power of 2 exponent
202 /// for a significand bounded by 1 ≤ x < 2 (i.e. the IEEE definition).
203 ///
204 /// This corresponds to the exact minimum possible *normal* power of 2 exponent
205 /// for a significand bounded by 0.5 ≤ x < 1 (i.e. the C definition).
206 /// In other words, all normal numbers representable by this type are
207 /// greater than or equal to 0.5 × 2<sup><i>MIN_EXP</i></sup>.
208 #[unstable(feature = "f128", issue = "116909")]
209 pub const MIN_EXP: i32 = -16_381;
210 /// One greater than the maximum possible power of 2 exponent
211 /// for a significand bounded by 1 ≤ x < 2 (i.e. the IEEE definition).
212 ///
213 /// This corresponds to the exact maximum possible power of 2 exponent
214 /// for a significand bounded by 0.5 ≤ x < 1 (i.e. the C definition).
215 /// In other words, all numbers representable by this type are
216 /// strictly less than 2<sup><i>MAX_EXP</i></sup>.
217 #[unstable(feature = "f128", issue = "116909")]
218 pub const MAX_EXP: i32 = 16_384;
219
220 /// Minimum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
221 ///
222 /// Equal to ceil(log<sub>10</sub> [`MIN_POSITIVE`]).
223 ///
224 /// [`MIN_POSITIVE`]: f128::MIN_POSITIVE
225 #[unstable(feature = "f128", issue = "116909")]
226 pub const MIN_10_EXP: i32 = -4_931;
227 /// Maximum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
228 ///
229 /// Equal to floor(log<sub>10</sub> [`MAX`]).
230 ///
231 /// [`MAX`]: f128::MAX
232 #[unstable(feature = "f128", issue = "116909")]
233 pub const MAX_10_EXP: i32 = 4_932;
234
235 /// Not a Number (NaN).
236 ///
237 /// Note that IEEE 754 doesn't define just a single NaN value; a plethora of bit patterns are
238 /// considered to be NaN. Furthermore, the standard makes a difference between a "signaling" and
239 /// a "quiet" NaN, and allows inspecting its "payload" (the unspecified bits in the bit pattern)
240 /// and its sign. See the [specification of NaN bit patterns](f32#nan-bit-patterns) for more
241 /// info.
242 ///
243 /// This constant is guaranteed to be a quiet NaN (on targets that follow the Rust assumptions
244 /// that the quiet/signaling bit being set to 1 indicates a quiet NaN). Beyond that, nothing is
245 /// guaranteed about the specific bit pattern chosen here: both payload and sign are arbitrary.
246 /// The concrete bit pattern may change across Rust versions and target platforms.
247 #[allow(clippy::eq_op)]
248 #[rustc_diagnostic_item = "f128_nan"]
249 #[unstable(feature = "f128", issue = "116909")]
250 pub const NAN: f128 = 0.0_f128 / 0.0_f128;
251
252 /// Infinity (∞).
253 #[unstable(feature = "f128", issue = "116909")]
254 pub const INFINITY: f128 = 1.0_f128 / 0.0_f128;
255
256 /// Negative infinity (−∞).
257 #[unstable(feature = "f128", issue = "116909")]
258 pub const NEG_INFINITY: f128 = -1.0_f128 / 0.0_f128;
259
260 /// Sign bit
261 pub(crate) const SIGN_MASK: u128 = 0x8000_0000_0000_0000_0000_0000_0000_0000;
262
263 /// Exponent mask
264 pub(crate) const EXP_MASK: u128 = 0x7fff_0000_0000_0000_0000_0000_0000_0000;
265
266 /// Mantissa mask
267 pub(crate) const MAN_MASK: u128 = 0x0000_ffff_ffff_ffff_ffff_ffff_ffff_ffff;
268
269 /// Minimum representable positive value (min subnormal)
270 const TINY_BITS: u128 = 0x1;
271
272 /// Minimum representable negative value (min negative subnormal)
273 const NEG_TINY_BITS: u128 = Self::TINY_BITS | Self::SIGN_MASK;
274
275 /// Returns `true` if this value is NaN.
276 ///
277 /// ```
278 /// #![feature(f128)]
279 /// # // FIXME(f16_f128): remove when `unordtf2` is available
280 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
281 ///
282 /// let nan = f128::NAN;
283 /// let f = 7.0_f128;
284 ///
285 /// assert!(nan.is_nan());
286 /// assert!(!f.is_nan());
287 /// # }
288 /// ```
289 #[inline]
290 #[must_use]
291 #[unstable(feature = "f128", issue = "116909")]
292 #[allow(clippy::eq_op)] // > if you intended to check if the operand is NaN, use `.is_nan()` instead :)
293 pub const fn is_nan(self) -> bool {
294 self != self
295 }
296
297 /// Returns `true` if this value is positive infinity or negative infinity, and
298 /// `false` otherwise.
299 ///
300 /// ```
301 /// #![feature(f128)]
302 /// # // FIXME(f16_f128): remove when `eqtf2` is available
303 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
304 ///
305 /// let f = 7.0f128;
306 /// let inf = f128::INFINITY;
307 /// let neg_inf = f128::NEG_INFINITY;
308 /// let nan = f128::NAN;
309 ///
310 /// assert!(!f.is_infinite());
311 /// assert!(!nan.is_infinite());
312 ///
313 /// assert!(inf.is_infinite());
314 /// assert!(neg_inf.is_infinite());
315 /// # }
316 /// ```
317 #[inline]
318 #[must_use]
319 #[unstable(feature = "f128", issue = "116909")]
320 pub const fn is_infinite(self) -> bool {
321 (self == f128::INFINITY) | (self == f128::NEG_INFINITY)
322 }
323
324 /// Returns `true` if this number is neither infinite nor NaN.
325 ///
326 /// ```
327 /// #![feature(f128)]
328 /// # // FIXME(f16_f128): remove when `lttf2` is available
329 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
330 ///
331 /// let f = 7.0f128;
332 /// let inf: f128 = f128::INFINITY;
333 /// let neg_inf: f128 = f128::NEG_INFINITY;
334 /// let nan: f128 = f128::NAN;
335 ///
336 /// assert!(f.is_finite());
337 ///
338 /// assert!(!nan.is_finite());
339 /// assert!(!inf.is_finite());
340 /// assert!(!neg_inf.is_finite());
341 /// # }
342 /// ```
343 #[inline]
344 #[must_use]
345 #[unstable(feature = "f128", issue = "116909")]
346 #[rustc_const_unstable(feature = "f128", issue = "116909")]
347 pub const fn is_finite(self) -> bool {
348 // There's no need to handle NaN separately: if self is NaN,
349 // the comparison is not true, exactly as desired.
350 self.abs() < Self::INFINITY
351 }
352
353 /// Returns `true` if the number is [subnormal].
354 ///
355 /// ```
356 /// #![feature(f128)]
357 /// # // FIXME(f16_f128): remove when `eqtf2` is available
358 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
359 ///
360 /// let min = f128::MIN_POSITIVE; // 3.362103143e-4932f128
361 /// let max = f128::MAX;
362 /// let lower_than_min = 1.0e-4960_f128;
363 /// let zero = 0.0_f128;
364 ///
365 /// assert!(!min.is_subnormal());
366 /// assert!(!max.is_subnormal());
367 ///
368 /// assert!(!zero.is_subnormal());
369 /// assert!(!f128::NAN.is_subnormal());
370 /// assert!(!f128::INFINITY.is_subnormal());
371 /// // Values between `0` and `min` are Subnormal.
372 /// assert!(lower_than_min.is_subnormal());
373 /// # }
374 /// ```
375 ///
376 /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
377 #[inline]
378 #[must_use]
379 #[unstable(feature = "f128", issue = "116909")]
380 pub const fn is_subnormal(self) -> bool {
381 matches!(self.classify(), FpCategory::Subnormal)
382 }
383
384 /// Returns `true` if the number is neither zero, infinite, [subnormal], or NaN.
385 ///
386 /// ```
387 /// #![feature(f128)]
388 /// # // FIXME(f16_f128): remove when `eqtf2` is available
389 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
390 ///
391 /// let min = f128::MIN_POSITIVE; // 3.362103143e-4932f128
392 /// let max = f128::MAX;
393 /// let lower_than_min = 1.0e-4960_f128;
394 /// let zero = 0.0_f128;
395 ///
396 /// assert!(min.is_normal());
397 /// assert!(max.is_normal());
398 ///
399 /// assert!(!zero.is_normal());
400 /// assert!(!f128::NAN.is_normal());
401 /// assert!(!f128::INFINITY.is_normal());
402 /// // Values between `0` and `min` are Subnormal.
403 /// assert!(!lower_than_min.is_normal());
404 /// # }
405 /// ```
406 ///
407 /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
408 #[inline]
409 #[must_use]
410 #[unstable(feature = "f128", issue = "116909")]
411 pub const fn is_normal(self) -> bool {
412 matches!(self.classify(), FpCategory::Normal)
413 }
414
415 /// Returns the floating point category of the number. If only one property
416 /// is going to be tested, it is generally faster to use the specific
417 /// predicate instead.
418 ///
419 /// ```
420 /// #![feature(f128)]
421 /// # // FIXME(f16_f128): remove when `eqtf2` is available
422 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
423 ///
424 /// use std::num::FpCategory;
425 ///
426 /// let num = 12.4_f128;
427 /// let inf = f128::INFINITY;
428 ///
429 /// assert_eq!(num.classify(), FpCategory::Normal);
430 /// assert_eq!(inf.classify(), FpCategory::Infinite);
431 /// # }
432 /// ```
433 #[inline]
434 #[unstable(feature = "f128", issue = "116909")]
435 pub const fn classify(self) -> FpCategory {
436 let bits = self.to_bits();
437 match (bits & Self::MAN_MASK, bits & Self::EXP_MASK) {
438 (0, Self::EXP_MASK) => FpCategory::Infinite,
439 (_, Self::EXP_MASK) => FpCategory::Nan,
440 (0, 0) => FpCategory::Zero,
441 (_, 0) => FpCategory::Subnormal,
442 _ => FpCategory::Normal,
443 }
444 }
445
446 /// Returns `true` if `self` has a positive sign, including `+0.0`, NaNs with
447 /// positive sign bit and positive infinity.
448 ///
449 /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of
450 /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are
451 /// conserved over arithmetic operations, the result of `is_sign_positive` on
452 /// a NaN might produce an unexpected or non-portable result. See the [specification
453 /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == 1.0`
454 /// if you need fully portable behavior (will return `false` for all NaNs).
455 ///
456 /// ```
457 /// #![feature(f128)]
458 ///
459 /// let f = 7.0_f128;
460 /// let g = -7.0_f128;
461 ///
462 /// assert!(f.is_sign_positive());
463 /// assert!(!g.is_sign_positive());
464 /// ```
465 #[inline]
466 #[must_use]
467 #[unstable(feature = "f128", issue = "116909")]
468 pub const fn is_sign_positive(self) -> bool {
469 !self.is_sign_negative()
470 }
471
472 /// Returns `true` if `self` has a negative sign, including `-0.0`, NaNs with
473 /// negative sign bit and negative infinity.
474 ///
475 /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of
476 /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are
477 /// conserved over arithmetic operations, the result of `is_sign_negative` on
478 /// a NaN might produce an unexpected or non-portable result. See the [specification
479 /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == -1.0`
480 /// if you need fully portable behavior (will return `false` for all NaNs).
481 ///
482 /// ```
483 /// #![feature(f128)]
484 ///
485 /// let f = 7.0_f128;
486 /// let g = -7.0_f128;
487 ///
488 /// assert!(!f.is_sign_negative());
489 /// assert!(g.is_sign_negative());
490 /// ```
491 #[inline]
492 #[must_use]
493 #[unstable(feature = "f128", issue = "116909")]
494 pub const fn is_sign_negative(self) -> bool {
495 // IEEE754 says: isSignMinus(x) is true if and only if x has negative sign. isSignMinus
496 // applies to zeros and NaNs as well.
497 // SAFETY: This is just transmuting to get the sign bit, it's fine.
498 (self.to_bits() & (1 << 127)) != 0
499 }
500
501 /// Returns the least number greater than `self`.
502 ///
503 /// Let `TINY` be the smallest representable positive `f128`. Then,
504 /// - if `self.is_nan()`, this returns `self`;
505 /// - if `self` is [`NEG_INFINITY`], this returns [`MIN`];
506 /// - if `self` is `-TINY`, this returns -0.0;
507 /// - if `self` is -0.0 or +0.0, this returns `TINY`;
508 /// - if `self` is [`MAX`] or [`INFINITY`], this returns [`INFINITY`];
509 /// - otherwise the unique least value greater than `self` is returned.
510 ///
511 /// The identity `x.next_up() == -(-x).next_down()` holds for all non-NaN `x`. When `x`
512 /// is finite `x == x.next_up().next_down()` also holds.
513 ///
514 /// ```rust
515 /// #![feature(f128)]
516 /// # // FIXME(f16_f128): remove when `eqtf2` is available
517 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
518 ///
519 /// // f128::EPSILON is the difference between 1.0 and the next number up.
520 /// assert_eq!(1.0f128.next_up(), 1.0 + f128::EPSILON);
521 /// // But not for most numbers.
522 /// assert!(0.1f128.next_up() < 0.1 + f128::EPSILON);
523 /// assert_eq!(4611686018427387904f128.next_up(), 4611686018427387904.000000000000001);
524 /// # }
525 /// ```
526 ///
527 /// This operation corresponds to IEEE-754 `nextUp`.
528 ///
529 /// [`NEG_INFINITY`]: Self::NEG_INFINITY
530 /// [`INFINITY`]: Self::INFINITY
531 /// [`MIN`]: Self::MIN
532 /// [`MAX`]: Self::MAX
533 #[inline]
534 #[doc(alias = "nextUp")]
535 #[unstable(feature = "f128", issue = "116909")]
536 pub const fn next_up(self) -> Self {
537 // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing
538 // denormals to zero. This is in general unsound and unsupported, but here
539 // we do our best to still produce the correct result on such targets.
540 let bits = self.to_bits();
541 if self.is_nan() || bits == Self::INFINITY.to_bits() {
542 return self;
543 }
544
545 let abs = bits & !Self::SIGN_MASK;
546 let next_bits = if abs == 0 {
547 Self::TINY_BITS
548 } else if bits == abs {
549 bits + 1
550 } else {
551 bits - 1
552 };
553 Self::from_bits(next_bits)
554 }
555
556 /// Returns the greatest number less than `self`.
557 ///
558 /// Let `TINY` be the smallest representable positive `f128`. Then,
559 /// - if `self.is_nan()`, this returns `self`;
560 /// - if `self` is [`INFINITY`], this returns [`MAX`];
561 /// - if `self` is `TINY`, this returns 0.0;
562 /// - if `self` is -0.0 or +0.0, this returns `-TINY`;
563 /// - if `self` is [`MIN`] or [`NEG_INFINITY`], this returns [`NEG_INFINITY`];
564 /// - otherwise the unique greatest value less than `self` is returned.
565 ///
566 /// The identity `x.next_down() == -(-x).next_up()` holds for all non-NaN `x`. When `x`
567 /// is finite `x == x.next_down().next_up()` also holds.
568 ///
569 /// ```rust
570 /// #![feature(f128)]
571 /// # // FIXME(f16_f128): remove when `eqtf2` is available
572 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
573 ///
574 /// let x = 1.0f128;
575 /// // Clamp value into range [0, 1).
576 /// let clamped = x.clamp(0.0, 1.0f128.next_down());
577 /// assert!(clamped < 1.0);
578 /// assert_eq!(clamped.next_up(), 1.0);
579 /// # }
580 /// ```
581 ///
582 /// This operation corresponds to IEEE-754 `nextDown`.
583 ///
584 /// [`NEG_INFINITY`]: Self::NEG_INFINITY
585 /// [`INFINITY`]: Self::INFINITY
586 /// [`MIN`]: Self::MIN
587 /// [`MAX`]: Self::MAX
588 #[inline]
589 #[doc(alias = "nextDown")]
590 #[unstable(feature = "f128", issue = "116909")]
591 pub const fn next_down(self) -> Self {
592 // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing
593 // denormals to zero. This is in general unsound and unsupported, but here
594 // we do our best to still produce the correct result on such targets.
595 let bits = self.to_bits();
596 if self.is_nan() || bits == Self::NEG_INFINITY.to_bits() {
597 return self;
598 }
599
600 let abs = bits & !Self::SIGN_MASK;
601 let next_bits = if abs == 0 {
602 Self::NEG_TINY_BITS
603 } else if bits == abs {
604 bits - 1
605 } else {
606 bits + 1
607 };
608 Self::from_bits(next_bits)
609 }
610
611 /// Takes the reciprocal (inverse) of a number, `1/x`.
612 ///
613 /// ```
614 /// #![feature(f128)]
615 /// # // FIXME(f16_f128): remove when `eqtf2` is available
616 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
617 ///
618 /// let x = 2.0_f128;
619 /// let abs_difference = (x.recip() - (1.0 / x)).abs();
620 ///
621 /// assert!(abs_difference <= f128::EPSILON);
622 /// # }
623 /// ```
624 #[inline]
625 #[unstable(feature = "f128", issue = "116909")]
626 #[must_use = "this returns the result of the operation, without modifying the original"]
627 pub const fn recip(self) -> Self {
628 1.0 / self
629 }
630
631 /// Converts radians to degrees.
632 ///
633 /// ```
634 /// #![feature(f128)]
635 /// # // FIXME(f16_f128): remove when `eqtf2` is available
636 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
637 ///
638 /// let angle = std::f128::consts::PI;
639 ///
640 /// let abs_difference = (angle.to_degrees() - 180.0).abs();
641 /// assert!(abs_difference <= f128::EPSILON);
642 /// # }
643 /// ```
644 #[inline]
645 #[unstable(feature = "f128", issue = "116909")]
646 #[must_use = "this returns the result of the operation, without modifying the original"]
647 pub const fn to_degrees(self) -> Self {
648 // Use a literal for better precision.
649 const PIS_IN_180: f128 = 57.2957795130823208767981548141051703324054724665643215491602_f128;
650 self * PIS_IN_180
651 }
652
653 /// Converts degrees to radians.
654 ///
655 /// ```
656 /// #![feature(f128)]
657 /// # // FIXME(f16_f128): remove when `eqtf2` is available
658 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
659 ///
660 /// let angle = 180.0f128;
661 ///
662 /// let abs_difference = (angle.to_radians() - std::f128::consts::PI).abs();
663 ///
664 /// assert!(abs_difference <= 1e-30);
665 /// # }
666 /// ```
667 #[inline]
668 #[unstable(feature = "f128", issue = "116909")]
669 #[must_use = "this returns the result of the operation, without modifying the original"]
670 pub const fn to_radians(self) -> f128 {
671 // Use a literal for better precision.
672 const RADS_PER_DEG: f128 =
673 0.0174532925199432957692369076848861271344287188854172545609719_f128;
674 self * RADS_PER_DEG
675 }
676
677 /// Returns the maximum of the two numbers, ignoring NaN.
678 ///
679 /// If one of the arguments is NaN, then the other argument is returned.
680 /// This follows the IEEE 754-2008 semantics for maxNum, except for handling of signaling NaNs;
681 /// this function handles all NaNs the same way and avoids maxNum's problems with associativity.
682 /// This also matches the behavior of libm’s fmax. In particular, if the inputs compare equal
683 /// (such as for the case of `+0.0` and `-0.0`), either input may be returned non-deterministically.
684 ///
685 /// ```
686 /// #![feature(f128)]
687 /// # // Using aarch64 because `reliable_f128_math` is needed
688 /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
689 ///
690 /// let x = 1.0f128;
691 /// let y = 2.0f128;
692 ///
693 /// assert_eq!(x.max(y), y);
694 /// # }
695 /// ```
696 #[inline]
697 #[unstable(feature = "f128", issue = "116909")]
698 #[rustc_const_unstable(feature = "f128", issue = "116909")]
699 #[must_use = "this returns the result of the comparison, without modifying either input"]
700 pub const fn max(self, other: f128) -> f128 {
701 intrinsics::maxnumf128(self, other)
702 }
703
704 /// Returns the minimum of the two numbers, ignoring NaN.
705 ///
706 /// If one of the arguments is NaN, then the other argument is returned.
707 /// This follows the IEEE 754-2008 semantics for minNum, except for handling of signaling NaNs;
708 /// this function handles all NaNs the same way and avoids minNum's problems with associativity.
709 /// This also matches the behavior of libm’s fmin. In particular, if the inputs compare equal
710 /// (such as for the case of `+0.0` and `-0.0`), either input may be returned non-deterministically.
711 ///
712 /// ```
713 /// #![feature(f128)]
714 /// # // Using aarch64 because `reliable_f128_math` is needed
715 /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
716 ///
717 /// let x = 1.0f128;
718 /// let y = 2.0f128;
719 ///
720 /// assert_eq!(x.min(y), x);
721 /// # }
722 /// ```
723 #[inline]
724 #[unstable(feature = "f128", issue = "116909")]
725 #[rustc_const_unstable(feature = "f128", issue = "116909")]
726 #[must_use = "this returns the result of the comparison, without modifying either input"]
727 pub const fn min(self, other: f128) -> f128 {
728 intrinsics::minnumf128(self, other)
729 }
730
731 /// Returns the maximum of the two numbers, propagating NaN.
732 ///
733 /// This returns NaN when *either* argument is NaN, as opposed to
734 /// [`f128::max`] which only returns NaN when *both* arguments are NaN.
735 ///
736 /// ```
737 /// #![feature(f128)]
738 /// #![feature(float_minimum_maximum)]
739 /// # // Using aarch64 because `reliable_f128_math` is needed
740 /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
741 ///
742 /// let x = 1.0f128;
743 /// let y = 2.0f128;
744 ///
745 /// assert_eq!(x.maximum(y), y);
746 /// assert!(x.maximum(f128::NAN).is_nan());
747 /// # }
748 /// ```
749 ///
750 /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the greater
751 /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0.
752 /// Note that this follows the semantics specified in IEEE 754-2019.
753 ///
754 /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN
755 /// operand is conserved; see the [specification of NaN bit patterns](f32#nan-bit-patterns) for more info.
756 #[inline]
757 #[unstable(feature = "f128", issue = "116909")]
758 // #[unstable(feature = "float_minimum_maximum", issue = "91079")]
759 #[must_use = "this returns the result of the comparison, without modifying either input"]
760 pub const fn maximum(self, other: f128) -> f128 {
761 intrinsics::maximumf128(self, other)
762 }
763
764 /// Returns the minimum of the two numbers, propagating NaN.
765 ///
766 /// This returns NaN when *either* argument is NaN, as opposed to
767 /// [`f128::min`] which only returns NaN when *both* arguments are NaN.
768 ///
769 /// ```
770 /// #![feature(f128)]
771 /// #![feature(float_minimum_maximum)]
772 /// # // Using aarch64 because `reliable_f128_math` is needed
773 /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
774 ///
775 /// let x = 1.0f128;
776 /// let y = 2.0f128;
777 ///
778 /// assert_eq!(x.minimum(y), x);
779 /// assert!(x.minimum(f128::NAN).is_nan());
780 /// # }
781 /// ```
782 ///
783 /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the lesser
784 /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0.
785 /// Note that this follows the semantics specified in IEEE 754-2019.
786 ///
787 /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN
788 /// operand is conserved; see the [specification of NaN bit patterns](f32#nan-bit-patterns) for more info.
789 #[inline]
790 #[unstable(feature = "f128", issue = "116909")]
791 // #[unstable(feature = "float_minimum_maximum", issue = "91079")]
792 #[must_use = "this returns the result of the comparison, without modifying either input"]
793 pub const fn minimum(self, other: f128) -> f128 {
794 intrinsics::minimumf128(self, other)
795 }
796
797 /// Calculates the midpoint (average) between `self` and `rhs`.
798 ///
799 /// This returns NaN when *either* argument is NaN or if a combination of
800 /// +inf and -inf is provided as arguments.
801 ///
802 /// # Examples
803 ///
804 /// ```
805 /// #![feature(f128)]
806 /// # // Using aarch64 because `reliable_f128_math` is needed
807 /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
808 ///
809 /// assert_eq!(1f128.midpoint(4.0), 2.5);
810 /// assert_eq!((-5.5f128).midpoint(8.0), 1.25);
811 /// # }
812 /// ```
813 #[inline]
814 #[doc(alias = "average")]
815 #[unstable(feature = "f128", issue = "116909")]
816 #[rustc_const_unstable(feature = "f128", issue = "116909")]
817 pub const fn midpoint(self, other: f128) -> f128 {
818 const LO: f128 = f128::MIN_POSITIVE * 2.;
819 const HI: f128 = f128::MAX / 2.;
820
821 let (a, b) = (self, other);
822 let abs_a = a.abs();
823 let abs_b = b.abs();
824
825 if abs_a <= HI && abs_b <= HI {
826 // Overflow is impossible
827 (a + b) / 2.
828 } else if abs_a < LO {
829 // Not safe to halve `a` (would underflow)
830 a + (b / 2.)
831 } else if abs_b < LO {
832 // Not safe to halve `b` (would underflow)
833 (a / 2.) + b
834 } else {
835 // Safe to halve `a` and `b`
836 (a / 2.) + (b / 2.)
837 }
838 }
839
840 /// Rounds toward zero and converts to any primitive integer type,
841 /// assuming that the value is finite and fits in that type.
842 ///
843 /// ```
844 /// #![feature(f128)]
845 /// # // FIXME(f16_f128): remove when `float*itf` is available
846 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
847 ///
848 /// let value = 4.6_f128;
849 /// let rounded = unsafe { value.to_int_unchecked::<u16>() };
850 /// assert_eq!(rounded, 4);
851 ///
852 /// let value = -128.9_f128;
853 /// let rounded = unsafe { value.to_int_unchecked::<i8>() };
854 /// assert_eq!(rounded, i8::MIN);
855 /// # }
856 /// ```
857 ///
858 /// # Safety
859 ///
860 /// The value must:
861 ///
862 /// * Not be `NaN`
863 /// * Not be infinite
864 /// * Be representable in the return type `Int`, after truncating off its fractional part
865 #[inline]
866 #[unstable(feature = "f128", issue = "116909")]
867 #[must_use = "this returns the result of the operation, without modifying the original"]
868 pub unsafe fn to_int_unchecked<Int>(self) -> Int
869 where
870 Self: FloatToInt<Int>,
871 {
872 // SAFETY: the caller must uphold the safety contract for
873 // `FloatToInt::to_int_unchecked`.
874 unsafe { FloatToInt::<Int>::to_int_unchecked(self) }
875 }
876
877 /// Raw transmutation to `u128`.
878 ///
879 /// This is currently identical to `transmute::<f128, u128>(self)` on all platforms.
880 ///
881 /// See [`from_bits`](#method.from_bits) for some discussion of the
882 /// portability of this operation (there are almost no issues).
883 ///
884 /// Note that this function is distinct from `as` casting, which attempts to
885 /// preserve the *numeric* value, and not the bitwise value.
886 ///
887 /// ```
888 /// #![feature(f128)]
889 ///
890 /// # // FIXME(f16_f128): enable this once const casting works
891 /// # // assert_ne!((1f128).to_bits(), 1f128 as u128); // to_bits() is not casting!
892 /// assert_eq!((12.5f128).to_bits(), 0x40029000000000000000000000000000);
893 /// ```
894 #[inline]
895 #[unstable(feature = "f128", issue = "116909")]
896 #[must_use = "this returns the result of the operation, without modifying the original"]
897 #[allow(unnecessary_transmutes)]
898 pub const fn to_bits(self) -> u128 {
899 // SAFETY: `u128` is a plain old datatype so we can always transmute to it.
900 unsafe { mem::transmute(self) }
901 }
902
903 /// Raw transmutation from `u128`.
904 ///
905 /// This is currently identical to `transmute::<u128, f128>(v)` on all platforms.
906 /// It turns out this is incredibly portable, for two reasons:
907 ///
908 /// * Floats and Ints have the same endianness on all supported platforms.
909 /// * IEEE 754 very precisely specifies the bit layout of floats.
910 ///
911 /// However there is one caveat: prior to the 2008 version of IEEE 754, how
912 /// to interpret the NaN signaling bit wasn't actually specified. Most platforms
913 /// (notably x86 and ARM) picked the interpretation that was ultimately
914 /// standardized in 2008, but some didn't (notably MIPS). As a result, all
915 /// signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa.
916 ///
917 /// Rather than trying to preserve signaling-ness cross-platform, this
918 /// implementation favors preserving the exact bits. This means that
919 /// any payloads encoded in NaNs will be preserved even if the result of
920 /// this method is sent over the network from an x86 machine to a MIPS one.
921 ///
922 /// If the results of this method are only manipulated by the same
923 /// architecture that produced them, then there is no portability concern.
924 ///
925 /// If the input isn't NaN, then there is no portability concern.
926 ///
927 /// If you don't care about signalingness (very likely), then there is no
928 /// portability concern.
929 ///
930 /// Note that this function is distinct from `as` casting, which attempts to
931 /// preserve the *numeric* value, and not the bitwise value.
932 ///
933 /// ```
934 /// #![feature(f128)]
935 /// # // FIXME(f16_f128): remove when `eqtf2` is available
936 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
937 ///
938 /// let v = f128::from_bits(0x40029000000000000000000000000000);
939 /// assert_eq!(v, 12.5);
940 /// # }
941 /// ```
942 #[inline]
943 #[must_use]
944 #[unstable(feature = "f128", issue = "116909")]
945 #[allow(unnecessary_transmutes)]
946 pub const fn from_bits(v: u128) -> Self {
947 // It turns out the safety issues with sNaN were overblown! Hooray!
948 // SAFETY: `u128` is a plain old datatype so we can always transmute from it.
949 unsafe { mem::transmute(v) }
950 }
951
952 /// Returns the memory representation of this floating point number as a byte array in
953 /// big-endian (network) byte order.
954 ///
955 /// See [`from_bits`](Self::from_bits) for some discussion of the
956 /// portability of this operation (there are almost no issues).
957 ///
958 /// # Examples
959 ///
960 /// ```
961 /// #![feature(f128)]
962 ///
963 /// let bytes = 12.5f128.to_be_bytes();
964 /// assert_eq!(
965 /// bytes,
966 /// [0x40, 0x02, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00,
967 /// 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
968 /// );
969 /// ```
970 #[inline]
971 #[unstable(feature = "f128", issue = "116909")]
972 #[must_use = "this returns the result of the operation, without modifying the original"]
973 pub const fn to_be_bytes(self) -> [u8; 16] {
974 self.to_bits().to_be_bytes()
975 }
976
977 /// Returns the memory representation of this floating point number as a byte array in
978 /// little-endian byte order.
979 ///
980 /// See [`from_bits`](Self::from_bits) for some discussion of the
981 /// portability of this operation (there are almost no issues).
982 ///
983 /// # Examples
984 ///
985 /// ```
986 /// #![feature(f128)]
987 ///
988 /// let bytes = 12.5f128.to_le_bytes();
989 /// assert_eq!(
990 /// bytes,
991 /// [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
992 /// 0x00, 0x00, 0x00, 0x00, 0x00, 0x90, 0x02, 0x40]
993 /// );
994 /// ```
995 #[inline]
996 #[unstable(feature = "f128", issue = "116909")]
997 #[must_use = "this returns the result of the operation, without modifying the original"]
998 pub const fn to_le_bytes(self) -> [u8; 16] {
999 self.to_bits().to_le_bytes()
1000 }
1001
1002 /// Returns the memory representation of this floating point number as a byte array in
1003 /// native byte order.
1004 ///
1005 /// As the target platform's native endianness is used, portable code
1006 /// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate, instead.
1007 ///
1008 /// [`to_be_bytes`]: f128::to_be_bytes
1009 /// [`to_le_bytes`]: f128::to_le_bytes
1010 ///
1011 /// See [`from_bits`](Self::from_bits) for some discussion of the
1012 /// portability of this operation (there are almost no issues).
1013 ///
1014 /// # Examples
1015 ///
1016 /// ```
1017 /// #![feature(f128)]
1018 ///
1019 /// let bytes = 12.5f128.to_ne_bytes();
1020 /// assert_eq!(
1021 /// bytes,
1022 /// if cfg!(target_endian = "big") {
1023 /// [0x40, 0x02, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00,
1024 /// 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
1025 /// } else {
1026 /// [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
1027 /// 0x00, 0x00, 0x00, 0x00, 0x00, 0x90, 0x02, 0x40]
1028 /// }
1029 /// );
1030 /// ```
1031 #[inline]
1032 #[unstable(feature = "f128", issue = "116909")]
1033 #[must_use = "this returns the result of the operation, without modifying the original"]
1034 pub const fn to_ne_bytes(self) -> [u8; 16] {
1035 self.to_bits().to_ne_bytes()
1036 }
1037
1038 /// Creates a floating point value from its representation as a byte array in big endian.
1039 ///
1040 /// See [`from_bits`](Self::from_bits) for some discussion of the
1041 /// portability of this operation (there are almost no issues).
1042 ///
1043 /// # Examples
1044 ///
1045 /// ```
1046 /// #![feature(f128)]
1047 /// # // FIXME(f16_f128): remove when `eqtf2` is available
1048 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1049 ///
1050 /// let value = f128::from_be_bytes(
1051 /// [0x40, 0x02, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00,
1052 /// 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
1053 /// );
1054 /// assert_eq!(value, 12.5);
1055 /// # }
1056 /// ```
1057 #[inline]
1058 #[must_use]
1059 #[unstable(feature = "f128", issue = "116909")]
1060 pub const fn from_be_bytes(bytes: [u8; 16]) -> Self {
1061 Self::from_bits(u128::from_be_bytes(bytes))
1062 }
1063
1064 /// Creates a floating point value from its representation as a byte array in little endian.
1065 ///
1066 /// See [`from_bits`](Self::from_bits) for some discussion of the
1067 /// portability of this operation (there are almost no issues).
1068 ///
1069 /// # Examples
1070 ///
1071 /// ```
1072 /// #![feature(f128)]
1073 /// # // FIXME(f16_f128): remove when `eqtf2` is available
1074 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1075 ///
1076 /// let value = f128::from_le_bytes(
1077 /// [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
1078 /// 0x00, 0x00, 0x00, 0x00, 0x00, 0x90, 0x02, 0x40]
1079 /// );
1080 /// assert_eq!(value, 12.5);
1081 /// # }
1082 /// ```
1083 #[inline]
1084 #[must_use]
1085 #[unstable(feature = "f128", issue = "116909")]
1086 pub const fn from_le_bytes(bytes: [u8; 16]) -> Self {
1087 Self::from_bits(u128::from_le_bytes(bytes))
1088 }
1089
1090 /// Creates a floating point value from its representation as a byte array in native endian.
1091 ///
1092 /// As the target platform's native endianness is used, portable code
1093 /// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as
1094 /// appropriate instead.
1095 ///
1096 /// [`from_be_bytes`]: f128::from_be_bytes
1097 /// [`from_le_bytes`]: f128::from_le_bytes
1098 ///
1099 /// See [`from_bits`](Self::from_bits) for some discussion of the
1100 /// portability of this operation (there are almost no issues).
1101 ///
1102 /// # Examples
1103 ///
1104 /// ```
1105 /// #![feature(f128)]
1106 /// # // FIXME(f16_f128): remove when `eqtf2` is available
1107 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1108 ///
1109 /// let value = f128::from_ne_bytes(if cfg!(target_endian = "big") {
1110 /// [0x40, 0x02, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00,
1111 /// 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
1112 /// } else {
1113 /// [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
1114 /// 0x00, 0x00, 0x00, 0x00, 0x00, 0x90, 0x02, 0x40]
1115 /// });
1116 /// assert_eq!(value, 12.5);
1117 /// # }
1118 /// ```
1119 #[inline]
1120 #[must_use]
1121 #[unstable(feature = "f128", issue = "116909")]
1122 pub const fn from_ne_bytes(bytes: [u8; 16]) -> Self {
1123 Self::from_bits(u128::from_ne_bytes(bytes))
1124 }
1125
1126 /// Returns the ordering between `self` and `other`.
1127 ///
1128 /// Unlike the standard partial comparison between floating point numbers,
1129 /// this comparison always produces an ordering in accordance to
1130 /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision)
1131 /// floating point standard. The values are ordered in the following sequence:
1132 ///
1133 /// - negative quiet NaN
1134 /// - negative signaling NaN
1135 /// - negative infinity
1136 /// - negative numbers
1137 /// - negative subnormal numbers
1138 /// - negative zero
1139 /// - positive zero
1140 /// - positive subnormal numbers
1141 /// - positive numbers
1142 /// - positive infinity
1143 /// - positive signaling NaN
1144 /// - positive quiet NaN.
1145 ///
1146 /// The ordering established by this function does not always agree with the
1147 /// [`PartialOrd`] and [`PartialEq`] implementations of `f128`. For example,
1148 /// they consider negative and positive zero equal, while `total_cmp`
1149 /// doesn't.
1150 ///
1151 /// The interpretation of the signaling NaN bit follows the definition in
1152 /// the IEEE 754 standard, which may not match the interpretation by some of
1153 /// the older, non-conformant (e.g. MIPS) hardware implementations.
1154 ///
1155 /// # Example
1156 ///
1157 /// ```
1158 /// #![feature(f128)]
1159 ///
1160 /// struct GoodBoy {
1161 /// name: &'static str,
1162 /// weight: f128,
1163 /// }
1164 ///
1165 /// let mut bois = vec![
1166 /// GoodBoy { name: "Pucci", weight: 0.1 },
1167 /// GoodBoy { name: "Woofer", weight: 99.0 },
1168 /// GoodBoy { name: "Yapper", weight: 10.0 },
1169 /// GoodBoy { name: "Chonk", weight: f128::INFINITY },
1170 /// GoodBoy { name: "Abs. Unit", weight: f128::NAN },
1171 /// GoodBoy { name: "Floaty", weight: -5.0 },
1172 /// ];
1173 ///
1174 /// bois.sort_by(|a, b| a.weight.total_cmp(&b.weight));
1175 ///
1176 /// // `f128::NAN` could be positive or negative, which will affect the sort order.
1177 /// if f128::NAN.is_sign_negative() {
1178 /// bois.into_iter().map(|b| b.weight)
1179 /// .zip([f128::NAN, -5.0, 0.1, 10.0, 99.0, f128::INFINITY].iter())
1180 /// .for_each(|(a, b)| assert_eq!(a.to_bits(), b.to_bits()))
1181 /// } else {
1182 /// bois.into_iter().map(|b| b.weight)
1183 /// .zip([-5.0, 0.1, 10.0, 99.0, f128::INFINITY, f128::NAN].iter())
1184 /// .for_each(|(a, b)| assert_eq!(a.to_bits(), b.to_bits()))
1185 /// }
1186 /// ```
1187 #[inline]
1188 #[must_use]
1189 #[unstable(feature = "f128", issue = "116909")]
1190 pub fn total_cmp(&self, other: &Self) -> crate::cmp::Ordering {
1191 let mut left = self.to_bits() as i128;
1192 let mut right = other.to_bits() as i128;
1193
1194 // In case of negatives, flip all the bits except the sign
1195 // to achieve a similar layout as two's complement integers
1196 //
1197 // Why does this work? IEEE 754 floats consist of three fields:
1198 // Sign bit, exponent and mantissa. The set of exponent and mantissa
1199 // fields as a whole have the property that their bitwise order is
1200 // equal to the numeric magnitude where the magnitude is defined.
1201 // The magnitude is not normally defined on NaN values, but
1202 // IEEE 754 totalOrder defines the NaN values also to follow the
1203 // bitwise order. This leads to order explained in the doc comment.
1204 // However, the representation of magnitude is the same for negative
1205 // and positive numbers – only the sign bit is different.
1206 // To easily compare the floats as signed integers, we need to
1207 // flip the exponent and mantissa bits in case of negative numbers.
1208 // We effectively convert the numbers to "two's complement" form.
1209 //
1210 // To do the flipping, we construct a mask and XOR against it.
1211 // We branchlessly calculate an "all-ones except for the sign bit"
1212 // mask from negative-signed values: right shifting sign-extends
1213 // the integer, so we "fill" the mask with sign bits, and then
1214 // convert to unsigned to push one more zero bit.
1215 // On positive values, the mask is all zeros, so it's a no-op.
1216 left ^= (((left >> 127) as u128) >> 1) as i128;
1217 right ^= (((right >> 127) as u128) >> 1) as i128;
1218
1219 left.cmp(&right)
1220 }
1221
1222 /// Restrict a value to a certain interval unless it is NaN.
1223 ///
1224 /// Returns `max` if `self` is greater than `max`, and `min` if `self` is
1225 /// less than `min`. Otherwise this returns `self`.
1226 ///
1227 /// Note that this function returns NaN if the initial value was NaN as
1228 /// well.
1229 ///
1230 /// # Panics
1231 ///
1232 /// Panics if `min > max`, `min` is NaN, or `max` is NaN.
1233 ///
1234 /// # Examples
1235 ///
1236 /// ```
1237 /// #![feature(f128)]
1238 /// # // FIXME(f16_f128): remove when `{eq,gt,unord}tf` are available
1239 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1240 ///
1241 /// assert!((-3.0f128).clamp(-2.0, 1.0) == -2.0);
1242 /// assert!((0.0f128).clamp(-2.0, 1.0) == 0.0);
1243 /// assert!((2.0f128).clamp(-2.0, 1.0) == 1.0);
1244 /// assert!((f128::NAN).clamp(-2.0, 1.0).is_nan());
1245 /// # }
1246 /// ```
1247 #[inline]
1248 #[unstable(feature = "f128", issue = "116909")]
1249 #[must_use = "method returns a new number and does not mutate the original value"]
1250 pub const fn clamp(mut self, min: f128, max: f128) -> f128 {
1251 const_assert!(
1252 min <= max,
1253 "min > max, or either was NaN",
1254 "min > max, or either was NaN. min = {min:?}, max = {max:?}",
1255 min: f128,
1256 max: f128,
1257 );
1258
1259 if self < min {
1260 self = min;
1261 }
1262 if self > max {
1263 self = max;
1264 }
1265 self
1266 }
1267
1268 /// Computes the absolute value of `self`.
1269 ///
1270 /// This function always returns the precise result.
1271 ///
1272 /// # Examples
1273 ///
1274 /// ```
1275 /// #![feature(f128)]
1276 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1277 ///
1278 /// let x = 3.5_f128;
1279 /// let y = -3.5_f128;
1280 ///
1281 /// assert_eq!(x.abs(), x);
1282 /// assert_eq!(y.abs(), -y);
1283 ///
1284 /// assert!(f128::NAN.abs().is_nan());
1285 /// # }
1286 /// ```
1287 #[inline]
1288 #[unstable(feature = "f128", issue = "116909")]
1289 #[rustc_const_unstable(feature = "f128", issue = "116909")]
1290 #[must_use = "method returns a new number and does not mutate the original value"]
1291 pub const fn abs(self) -> Self {
1292 // FIXME(f16_f128): replace with `intrinsics::fabsf128` when available
1293 // We don't do this now because LLVM has lowering bugs for f128 math.
1294 Self::from_bits(self.to_bits() & !(1 << 127))
1295 }
1296
1297 /// Returns a number that represents the sign of `self`.
1298 ///
1299 /// - `1.0` if the number is positive, `+0.0` or `INFINITY`
1300 /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
1301 /// - NaN if the number is NaN
1302 ///
1303 /// # Examples
1304 ///
1305 /// ```
1306 /// #![feature(f128)]
1307 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1308 ///
1309 /// let f = 3.5_f128;
1310 ///
1311 /// assert_eq!(f.signum(), 1.0);
1312 /// assert_eq!(f128::NEG_INFINITY.signum(), -1.0);
1313 ///
1314 /// assert!(f128::NAN.signum().is_nan());
1315 /// # }
1316 /// ```
1317 #[inline]
1318 #[unstable(feature = "f128", issue = "116909")]
1319 #[rustc_const_unstable(feature = "f128", issue = "116909")]
1320 #[must_use = "method returns a new number and does not mutate the original value"]
1321 pub const fn signum(self) -> f128 {
1322 if self.is_nan() { Self::NAN } else { 1.0_f128.copysign(self) }
1323 }
1324
1325 /// Returns a number composed of the magnitude of `self` and the sign of
1326 /// `sign`.
1327 ///
1328 /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`.
1329 /// If `self` is a NaN, then a NaN with the same payload as `self` and the sign bit of `sign` is
1330 /// returned.
1331 ///
1332 /// If `sign` is a NaN, then this operation will still carry over its sign into the result. Note
1333 /// that IEEE 754 doesn't assign any meaning to the sign bit in case of a NaN, and as Rust
1334 /// doesn't guarantee that the bit pattern of NaNs are conserved over arithmetic operations, the
1335 /// result of `copysign` with `sign` being a NaN might produce an unexpected or non-portable
1336 /// result. See the [specification of NaN bit patterns](primitive@f32#nan-bit-patterns) for more
1337 /// info.
1338 ///
1339 /// # Examples
1340 ///
1341 /// ```
1342 /// #![feature(f128)]
1343 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1344 ///
1345 /// let f = 3.5_f128;
1346 ///
1347 /// assert_eq!(f.copysign(0.42), 3.5_f128);
1348 /// assert_eq!(f.copysign(-0.42), -3.5_f128);
1349 /// assert_eq!((-f).copysign(0.42), 3.5_f128);
1350 /// assert_eq!((-f).copysign(-0.42), -3.5_f128);
1351 ///
1352 /// assert!(f128::NAN.copysign(1.0).is_nan());
1353 /// # }
1354 /// ```
1355 #[inline]
1356 #[unstable(feature = "f128", issue = "116909")]
1357 #[rustc_const_unstable(feature = "f128", issue = "116909")]
1358 #[must_use = "method returns a new number and does not mutate the original value"]
1359 pub const fn copysign(self, sign: f128) -> f128 {
1360 // SAFETY: this is actually a safe intrinsic
1361 unsafe { intrinsics::copysignf128(self, sign) }
1362 }
1363
1364 /// Float addition that allows optimizations based on algebraic rules.
1365 ///
1366 /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1367 #[must_use = "method returns a new number and does not mutate the original value"]
1368 #[unstable(feature = "float_algebraic", issue = "136469")]
1369 #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1370 #[inline]
1371 pub const fn algebraic_add(self, rhs: f128) -> f128 {
1372 intrinsics::fadd_algebraic(self, rhs)
1373 }
1374
1375 /// Float subtraction that allows optimizations based on algebraic rules.
1376 ///
1377 /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1378 #[must_use = "method returns a new number and does not mutate the original value"]
1379 #[unstable(feature = "float_algebraic", issue = "136469")]
1380 #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1381 #[inline]
1382 pub const fn algebraic_sub(self, rhs: f128) -> f128 {
1383 intrinsics::fsub_algebraic(self, rhs)
1384 }
1385
1386 /// Float multiplication that allows optimizations based on algebraic rules.
1387 ///
1388 /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1389 #[must_use = "method returns a new number and does not mutate the original value"]
1390 #[unstable(feature = "float_algebraic", issue = "136469")]
1391 #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1392 #[inline]
1393 pub const fn algebraic_mul(self, rhs: f128) -> f128 {
1394 intrinsics::fmul_algebraic(self, rhs)
1395 }
1396
1397 /// Float division that allows optimizations based on algebraic rules.
1398 ///
1399 /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1400 #[must_use = "method returns a new number and does not mutate the original value"]
1401 #[unstable(feature = "float_algebraic", issue = "136469")]
1402 #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1403 #[inline]
1404 pub const fn algebraic_div(self, rhs: f128) -> f128 {
1405 intrinsics::fdiv_algebraic(self, rhs)
1406 }
1407
1408 /// Float remainder that allows optimizations based on algebraic rules.
1409 ///
1410 /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1411 #[must_use = "method returns a new number and does not mutate the original value"]
1412 #[unstable(feature = "float_algebraic", issue = "136469")]
1413 #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1414 #[inline]
1415 pub const fn algebraic_rem(self, rhs: f128) -> f128 {
1416 intrinsics::frem_algebraic(self, rhs)
1417 }
1418}
1419
1420// Functions in this module fall into `core_float_math`
1421// FIXME(f16_f128): all doctests must be gated to platforms that have `long double` === `_Float128`
1422// due to https://github.com/llvm/llvm-project/issues/44744. aarch64 linux matches this.
1423// #[unstable(feature = "core_float_math", issue = "137578")]
1424#[cfg(not(test))]
1425#[doc(test(attr(feature(cfg_target_has_reliable_f16_f128), expect(internal_features))))]
1426impl f128 {
1427 /// Returns the largest integer less than or equal to `self`.
1428 ///
1429 /// This function always returns the precise result.
1430 ///
1431 /// # Examples
1432 ///
1433 /// ```
1434 /// #![feature(f128)]
1435 /// # #[cfg(not(miri))]
1436 /// # #[cfg(target_has_reliable_f128_math)] {
1437 ///
1438 /// let f = 3.7_f128;
1439 /// let g = 3.0_f128;
1440 /// let h = -3.7_f128;
1441 ///
1442 /// assert_eq!(f.floor(), 3.0);
1443 /// assert_eq!(g.floor(), 3.0);
1444 /// assert_eq!(h.floor(), -4.0);
1445 /// # }
1446 /// ```
1447 #[inline]
1448 #[rustc_allow_incoherent_impl]
1449 #[unstable(feature = "f128", issue = "116909")]
1450 #[rustc_const_unstable(feature = "f128", issue = "116909")]
1451 // #[rustc_const_unstable(feature = "const_float_round_methods", issue = "141555")]
1452 #[must_use = "method returns a new number and does not mutate the original value"]
1453 pub const fn floor(self) -> f128 {
1454 // SAFETY: intrinsic with no preconditions
1455 unsafe { intrinsics::floorf128(self) }
1456 }
1457
1458 /// Returns the smallest integer greater than or equal to `self`.
1459 ///
1460 /// This function always returns the precise result.
1461 ///
1462 /// # Examples
1463 ///
1464 /// ```
1465 /// #![feature(f128)]
1466 /// # #[cfg(not(miri))]
1467 /// # #[cfg(target_has_reliable_f128_math)] {
1468 ///
1469 /// let f = 3.01_f128;
1470 /// let g = 4.0_f128;
1471 ///
1472 /// assert_eq!(f.ceil(), 4.0);
1473 /// assert_eq!(g.ceil(), 4.0);
1474 /// # }
1475 /// ```
1476 #[inline]
1477 #[doc(alias = "ceiling")]
1478 #[rustc_allow_incoherent_impl]
1479 #[unstable(feature = "f128", issue = "116909")]
1480 #[rustc_const_unstable(feature = "f128", issue = "116909")]
1481 // #[rustc_const_unstable(feature = "const_float_round_methods", issue = "141555")]
1482 #[must_use = "method returns a new number and does not mutate the original value"]
1483 pub const fn ceil(self) -> f128 {
1484 // SAFETY: intrinsic with no preconditions
1485 unsafe { intrinsics::ceilf128(self) }
1486 }
1487
1488 /// Returns the nearest integer to `self`. If a value is half-way between two
1489 /// integers, round away from `0.0`.
1490 ///
1491 /// This function always returns the precise result.
1492 ///
1493 /// # Examples
1494 ///
1495 /// ```
1496 /// #![feature(f128)]
1497 /// # #[cfg(not(miri))]
1498 /// # #[cfg(target_has_reliable_f128_math)] {
1499 ///
1500 /// let f = 3.3_f128;
1501 /// let g = -3.3_f128;
1502 /// let h = -3.7_f128;
1503 /// let i = 3.5_f128;
1504 /// let j = 4.5_f128;
1505 ///
1506 /// assert_eq!(f.round(), 3.0);
1507 /// assert_eq!(g.round(), -3.0);
1508 /// assert_eq!(h.round(), -4.0);
1509 /// assert_eq!(i.round(), 4.0);
1510 /// assert_eq!(j.round(), 5.0);
1511 /// # }
1512 /// ```
1513 #[inline]
1514 #[rustc_allow_incoherent_impl]
1515 #[unstable(feature = "f128", issue = "116909")]
1516 #[rustc_const_unstable(feature = "f128", issue = "116909")]
1517 // #[rustc_const_unstable(feature = "const_float_round_methods", issue = "141555")]
1518 #[must_use = "method returns a new number and does not mutate the original value"]
1519 pub const fn round(self) -> f128 {
1520 // SAFETY: intrinsic with no preconditions
1521 unsafe { intrinsics::roundf128(self) }
1522 }
1523
1524 /// Returns the nearest integer to a number. Rounds half-way cases to the number
1525 /// with an even least significant digit.
1526 ///
1527 /// This function always returns the precise result.
1528 ///
1529 /// # Examples
1530 ///
1531 /// ```
1532 /// #![feature(f128)]
1533 /// # #[cfg(not(miri))]
1534 /// # #[cfg(target_has_reliable_f128_math)] {
1535 ///
1536 /// let f = 3.3_f128;
1537 /// let g = -3.3_f128;
1538 /// let h = 3.5_f128;
1539 /// let i = 4.5_f128;
1540 ///
1541 /// assert_eq!(f.round_ties_even(), 3.0);
1542 /// assert_eq!(g.round_ties_even(), -3.0);
1543 /// assert_eq!(h.round_ties_even(), 4.0);
1544 /// assert_eq!(i.round_ties_even(), 4.0);
1545 /// # }
1546 /// ```
1547 #[inline]
1548 #[rustc_allow_incoherent_impl]
1549 #[unstable(feature = "f128", issue = "116909")]
1550 #[rustc_const_unstable(feature = "f128", issue = "116909")]
1551 // #[rustc_const_unstable(feature = "const_float_round_methods", issue = "141555")]
1552 #[must_use = "method returns a new number and does not mutate the original value"]
1553 pub const fn round_ties_even(self) -> f128 {
1554 intrinsics::round_ties_even_f128(self)
1555 }
1556
1557 /// Returns the integer part of `self`.
1558 /// This means that non-integer numbers are always truncated towards zero.
1559 ///
1560 /// This function always returns the precise result.
1561 ///
1562 /// # Examples
1563 ///
1564 /// ```
1565 /// #![feature(f128)]
1566 /// # #[cfg(not(miri))]
1567 /// # #[cfg(target_has_reliable_f128_math)] {
1568 ///
1569 /// let f = 3.7_f128;
1570 /// let g = 3.0_f128;
1571 /// let h = -3.7_f128;
1572 ///
1573 /// assert_eq!(f.trunc(), 3.0);
1574 /// assert_eq!(g.trunc(), 3.0);
1575 /// assert_eq!(h.trunc(), -3.0);
1576 /// # }
1577 /// ```
1578 #[inline]
1579 #[doc(alias = "truncate")]
1580 #[rustc_allow_incoherent_impl]
1581 #[unstable(feature = "f128", issue = "116909")]
1582 #[rustc_const_unstable(feature = "f128", issue = "116909")]
1583 // #[rustc_const_unstable(feature = "const_float_round_methods", issue = "141555")]
1584 #[must_use = "method returns a new number and does not mutate the original value"]
1585 pub const fn trunc(self) -> f128 {
1586 // SAFETY: intrinsic with no preconditions
1587 unsafe { intrinsics::truncf128(self) }
1588 }
1589
1590 /// Returns the fractional part of `self`.
1591 ///
1592 /// This function always returns the precise result.
1593 ///
1594 /// # Examples
1595 ///
1596 /// ```
1597 /// #![feature(f128)]
1598 /// # #[cfg(not(miri))]
1599 /// # #[cfg(target_has_reliable_f128_math)] {
1600 ///
1601 /// let x = 3.6_f128;
1602 /// let y = -3.6_f128;
1603 /// let abs_difference_x = (x.fract() - 0.6).abs();
1604 /// let abs_difference_y = (y.fract() - (-0.6)).abs();
1605 ///
1606 /// assert!(abs_difference_x <= f128::EPSILON);
1607 /// assert!(abs_difference_y <= f128::EPSILON);
1608 /// # }
1609 /// ```
1610 #[inline]
1611 #[rustc_allow_incoherent_impl]
1612 #[unstable(feature = "f128", issue = "116909")]
1613 #[rustc_const_unstable(feature = "f128", issue = "116909")]
1614 // #[rustc_const_unstable(feature = "const_float_round_methods", issue = "141555")]
1615 #[must_use = "method returns a new number and does not mutate the original value"]
1616 pub const fn fract(self) -> f128 {
1617 self - self.trunc()
1618 }
1619
1620 /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
1621 /// error, yielding a more accurate result than an unfused multiply-add.
1622 ///
1623 /// Using `mul_add` *may* be more performant than an unfused multiply-add if
1624 /// the target architecture has a dedicated `fma` CPU instruction. However,
1625 /// this is not always true, and will be heavily dependant on designing
1626 /// algorithms with specific target hardware in mind.
1627 ///
1628 /// # Precision
1629 ///
1630 /// The result of this operation is guaranteed to be the rounded
1631 /// infinite-precision result. It is specified by IEEE 754 as
1632 /// `fusedMultiplyAdd` and guaranteed not to change.
1633 ///
1634 /// # Examples
1635 ///
1636 /// ```
1637 /// #![feature(f128)]
1638 /// # #[cfg(not(miri))]
1639 /// # #[cfg(target_has_reliable_f128_math)] {
1640 ///
1641 /// let m = 10.0_f128;
1642 /// let x = 4.0_f128;
1643 /// let b = 60.0_f128;
1644 ///
1645 /// assert_eq!(m.mul_add(x, b), 100.0);
1646 /// assert_eq!(m * x + b, 100.0);
1647 ///
1648 /// let one_plus_eps = 1.0_f128 + f128::EPSILON;
1649 /// let one_minus_eps = 1.0_f128 - f128::EPSILON;
1650 /// let minus_one = -1.0_f128;
1651 ///
1652 /// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps.
1653 /// assert_eq!(one_plus_eps.mul_add(one_minus_eps, minus_one), -f128::EPSILON * f128::EPSILON);
1654 /// // Different rounding with the non-fused multiply and add.
1655 /// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0);
1656 /// # }
1657 /// ```
1658 #[inline]
1659 #[rustc_allow_incoherent_impl]
1660 #[doc(alias = "fmaf128", alias = "fusedMultiplyAdd")]
1661 #[unstable(feature = "f128", issue = "116909")]
1662 #[must_use = "method returns a new number and does not mutate the original value"]
1663 pub fn mul_add(self, a: f128, b: f128) -> f128 {
1664 // SAFETY: intrinsic with no preconditions
1665 unsafe { intrinsics::fmaf128(self, a, b) }
1666 }
1667
1668 /// Calculates Euclidean division, the matching method for `rem_euclid`.
1669 ///
1670 /// This computes the integer `n` such that
1671 /// `self = n * rhs + self.rem_euclid(rhs)`.
1672 /// In other words, the result is `self / rhs` rounded to the integer `n`
1673 /// such that `self >= n * rhs`.
1674 ///
1675 /// # Precision
1676 ///
1677 /// The result of this operation is guaranteed to be the rounded
1678 /// infinite-precision result.
1679 ///
1680 /// # Examples
1681 ///
1682 /// ```
1683 /// #![feature(f128)]
1684 /// # #[cfg(not(miri))]
1685 /// # #[cfg(target_has_reliable_f128_math)] {
1686 ///
1687 /// let a: f128 = 7.0;
1688 /// let b = 4.0;
1689 /// assert_eq!(a.div_euclid(b), 1.0); // 7.0 > 4.0 * 1.0
1690 /// assert_eq!((-a).div_euclid(b), -2.0); // -7.0 >= 4.0 * -2.0
1691 /// assert_eq!(a.div_euclid(-b), -1.0); // 7.0 >= -4.0 * -1.0
1692 /// assert_eq!((-a).div_euclid(-b), 2.0); // -7.0 >= -4.0 * 2.0
1693 /// # }
1694 /// ```
1695 #[inline]
1696 #[rustc_allow_incoherent_impl]
1697 #[unstable(feature = "f128", issue = "116909")]
1698 #[must_use = "method returns a new number and does not mutate the original value"]
1699 pub fn div_euclid(self, rhs: f128) -> f128 {
1700 let q = (self / rhs).trunc();
1701 if self % rhs < 0.0 {
1702 return if rhs > 0.0 { q - 1.0 } else { q + 1.0 };
1703 }
1704 q
1705 }
1706
1707 /// Calculates the least nonnegative remainder of `self (mod rhs)`.
1708 ///
1709 /// In particular, the return value `r` satisfies `0.0 <= r < rhs.abs()` in
1710 /// most cases. However, due to a floating point round-off error it can
1711 /// result in `r == rhs.abs()`, violating the mathematical definition, if
1712 /// `self` is much smaller than `rhs.abs()` in magnitude and `self < 0.0`.
1713 /// This result is not an element of the function's codomain, but it is the
1714 /// closest floating point number in the real numbers and thus fulfills the
1715 /// property `self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)`
1716 /// approximately.
1717 ///
1718 /// # Precision
1719 ///
1720 /// The result of this operation is guaranteed to be the rounded
1721 /// infinite-precision result.
1722 ///
1723 /// # Examples
1724 ///
1725 /// ```
1726 /// #![feature(f128)]
1727 /// # #[cfg(not(miri))]
1728 /// # #[cfg(target_has_reliable_f128_math)] {
1729 ///
1730 /// let a: f128 = 7.0;
1731 /// let b = 4.0;
1732 /// assert_eq!(a.rem_euclid(b), 3.0);
1733 /// assert_eq!((-a).rem_euclid(b), 1.0);
1734 /// assert_eq!(a.rem_euclid(-b), 3.0);
1735 /// assert_eq!((-a).rem_euclid(-b), 1.0);
1736 /// // limitation due to round-off error
1737 /// assert!((-f128::EPSILON).rem_euclid(3.0) != 0.0);
1738 /// # }
1739 /// ```
1740 #[inline]
1741 #[rustc_allow_incoherent_impl]
1742 #[doc(alias = "modulo", alias = "mod")]
1743 #[unstable(feature = "f128", issue = "116909")]
1744 #[must_use = "method returns a new number and does not mutate the original value"]
1745 pub fn rem_euclid(self, rhs: f128) -> f128 {
1746 let r = self % rhs;
1747 if r < 0.0 { r + rhs.abs() } else { r }
1748 }
1749
1750 /// Raises a number to an integer power.
1751 ///
1752 /// Using this function is generally faster than using `powf`.
1753 /// It might have a different sequence of rounding operations than `powf`,
1754 /// so the results are not guaranteed to agree.
1755 ///
1756 /// # Unspecified precision
1757 ///
1758 /// The precision of this function is non-deterministic. This means it varies by platform,
1759 /// Rust version, and can even differ within the same execution from one invocation to the next.
1760 ///
1761 /// # Examples
1762 ///
1763 /// ```
1764 /// #![feature(f128)]
1765 /// # #[cfg(not(miri))]
1766 /// # #[cfg(target_has_reliable_f128_math)] {
1767 ///
1768 /// let x = 2.0_f128;
1769 /// let abs_difference = (x.powi(2) - (x * x)).abs();
1770 /// assert!(abs_difference <= f128::EPSILON);
1771 ///
1772 /// assert_eq!(f128::powi(f128::NAN, 0), 1.0);
1773 /// # }
1774 /// ```
1775 #[inline]
1776 #[rustc_allow_incoherent_impl]
1777 #[unstable(feature = "f128", issue = "116909")]
1778 #[must_use = "method returns a new number and does not mutate the original value"]
1779 pub fn powi(self, n: i32) -> f128 {
1780 // SAFETY: intrinsic with no preconditions
1781 unsafe { intrinsics::powif128(self, n) }
1782 }
1783
1784 /// Returns the square root of a number.
1785 ///
1786 /// Returns NaN if `self` is a negative number other than `-0.0`.
1787 ///
1788 /// # Precision
1789 ///
1790 /// The result of this operation is guaranteed to be the rounded
1791 /// infinite-precision result. It is specified by IEEE 754 as `squareRoot`
1792 /// and guaranteed not to change.
1793 ///
1794 /// # Examples
1795 ///
1796 /// ```
1797 /// #![feature(f128)]
1798 /// # #[cfg(not(miri))]
1799 /// # #[cfg(target_has_reliable_f128_math)] {
1800 ///
1801 /// let positive = 4.0_f128;
1802 /// let negative = -4.0_f128;
1803 /// let negative_zero = -0.0_f128;
1804 ///
1805 /// assert_eq!(positive.sqrt(), 2.0);
1806 /// assert!(negative.sqrt().is_nan());
1807 /// assert!(negative_zero.sqrt() == negative_zero);
1808 /// # }
1809 /// ```
1810 #[inline]
1811 #[doc(alias = "squareRoot")]
1812 #[rustc_allow_incoherent_impl]
1813 #[unstable(feature = "f128", issue = "116909")]
1814 #[must_use = "method returns a new number and does not mutate the original value"]
1815 pub fn sqrt(self) -> f128 {
1816 // SAFETY: intrinsic with no preconditions
1817 unsafe { intrinsics::sqrtf128(self) }
1818 }
1819}