core/num/
f128.rs

1//! Constants for the `f128` quadruple-precision floating point type.
2//!
3//! *[See also the `f128` primitive type][f128].*
4//!
5//! Mathematically significant numbers are provided in the `consts` sub-module.
6//!
7//! For the constants defined directly in this module
8//! (as distinct from those defined in the `consts` sub-module),
9//! new code should instead use the associated constants
10//! defined directly on the `f128` type.
11
12#![unstable(feature = "f128", issue = "116909")]
13
14use crate::convert::FloatToInt;
15use crate::num::FpCategory;
16use crate::panic::const_assert;
17use crate::{intrinsics, mem};
18
19/// Basic mathematical constants.
20#[unstable(feature = "f128", issue = "116909")]
21#[rustc_diagnostic_item = "f128_consts_mod"]
22pub mod consts {
23    // FIXME: replace with mathematical constants from cmath.
24
25    /// Archimedes' constant (π)
26    #[unstable(feature = "f128", issue = "116909")]
27    pub const PI: f128 = 3.14159265358979323846264338327950288419716939937510582097494_f128;
28
29    /// The full circle constant (τ)
30    ///
31    /// Equal to 2π.
32    #[unstable(feature = "f128", issue = "116909")]
33    pub const TAU: f128 = 6.28318530717958647692528676655900576839433879875021164194989_f128;
34
35    /// The golden ratio (φ)
36    #[unstable(feature = "f128", issue = "116909")]
37    // Also, #[unstable(feature = "more_float_constants", issue = "146939")]
38    pub const PHI: f128 = 1.61803398874989484820458683436563811772030917980576286213545_f128;
39
40    /// The Euler-Mascheroni constant (γ)
41    #[unstable(feature = "f128", issue = "116909")]
42    // Also, #[unstable(feature = "more_float_constants", issue = "146939")]
43    pub const EGAMMA: f128 = 0.577215664901532860606512090082402431042159335939923598805767_f128;
44
45    /// π/2
46    #[unstable(feature = "f128", issue = "116909")]
47    pub const FRAC_PI_2: f128 = 1.57079632679489661923132169163975144209858469968755291048747_f128;
48
49    /// π/3
50    #[unstable(feature = "f128", issue = "116909")]
51    pub const FRAC_PI_3: f128 = 1.04719755119659774615421446109316762806572313312503527365831_f128;
52
53    /// π/4
54    #[unstable(feature = "f128", issue = "116909")]
55    pub const FRAC_PI_4: f128 = 0.785398163397448309615660845819875721049292349843776455243736_f128;
56
57    /// π/6
58    #[unstable(feature = "f128", issue = "116909")]
59    pub const FRAC_PI_6: f128 = 0.523598775598298873077107230546583814032861566562517636829157_f128;
60
61    /// π/8
62    #[unstable(feature = "f128", issue = "116909")]
63    pub const FRAC_PI_8: f128 = 0.392699081698724154807830422909937860524646174921888227621868_f128;
64
65    /// 1/π
66    #[unstable(feature = "f128", issue = "116909")]
67    pub const FRAC_1_PI: f128 = 0.318309886183790671537767526745028724068919291480912897495335_f128;
68
69    /// 1/sqrt(π)
70    #[unstable(feature = "f128", issue = "116909")]
71    // Also, #[unstable(feature = "more_float_constants", issue = "146939")]
72    pub const FRAC_1_SQRT_PI: f128 =
73        0.564189583547756286948079451560772585844050629328998856844086_f128;
74
75    /// 1/sqrt(2π)
76    #[doc(alias = "FRAC_1_SQRT_TAU")]
77    #[unstable(feature = "f128", issue = "116909")]
78    // Also, #[unstable(feature = "more_float_constants", issue = "146939")]
79    pub const FRAC_1_SQRT_2PI: f128 =
80        0.398942280401432677939946059934381868475858631164934657665926_f128;
81
82    /// 2/π
83    #[unstable(feature = "f128", issue = "116909")]
84    pub const FRAC_2_PI: f128 = 0.636619772367581343075535053490057448137838582961825794990669_f128;
85
86    /// 2/sqrt(π)
87    #[unstable(feature = "f128", issue = "116909")]
88    pub const FRAC_2_SQRT_PI: f128 =
89        1.12837916709551257389615890312154517168810125865799771368817_f128;
90
91    /// sqrt(2)
92    #[unstable(feature = "f128", issue = "116909")]
93    pub const SQRT_2: f128 = 1.41421356237309504880168872420969807856967187537694807317668_f128;
94
95    /// 1/sqrt(2)
96    #[unstable(feature = "f128", issue = "116909")]
97    pub const FRAC_1_SQRT_2: f128 =
98        0.707106781186547524400844362104849039284835937688474036588340_f128;
99
100    /// sqrt(3)
101    #[unstable(feature = "f128", issue = "116909")]
102    // Also, #[unstable(feature = "more_float_constants", issue = "146939")]
103    pub const SQRT_3: f128 = 1.73205080756887729352744634150587236694280525381038062805581_f128;
104
105    /// 1/sqrt(3)
106    #[unstable(feature = "f128", issue = "116909")]
107    // Also, #[unstable(feature = "more_float_constants", issue = "146939")]
108    pub const FRAC_1_SQRT_3: f128 =
109        0.577350269189625764509148780501957455647601751270126876018602_f128;
110
111    /// Euler's number (e)
112    #[unstable(feature = "f128", issue = "116909")]
113    pub const E: f128 = 2.71828182845904523536028747135266249775724709369995957496697_f128;
114
115    /// log<sub>2</sub>(10)
116    #[unstable(feature = "f128", issue = "116909")]
117    pub const LOG2_10: f128 = 3.32192809488736234787031942948939017586483139302458061205476_f128;
118
119    /// log<sub>2</sub>(e)
120    #[unstable(feature = "f128", issue = "116909")]
121    pub const LOG2_E: f128 = 1.44269504088896340735992468100189213742664595415298593413545_f128;
122
123    /// log<sub>10</sub>(2)
124    #[unstable(feature = "f128", issue = "116909")]
125    pub const LOG10_2: f128 = 0.301029995663981195213738894724493026768189881462108541310427_f128;
126
127    /// log<sub>10</sub>(e)
128    #[unstable(feature = "f128", issue = "116909")]
129    pub const LOG10_E: f128 = 0.434294481903251827651128918916605082294397005803666566114454_f128;
130
131    /// ln(2)
132    #[unstable(feature = "f128", issue = "116909")]
133    pub const LN_2: f128 = 0.693147180559945309417232121458176568075500134360255254120680_f128;
134
135    /// ln(10)
136    #[unstable(feature = "f128", issue = "116909")]
137    pub const LN_10: f128 = 2.30258509299404568401799145468436420760110148862877297603333_f128;
138}
139
140impl f128 {
141    // FIXME(f16_f128): almost all methods in this `impl` are missing examples and a const
142    // implementation. Add these once we can run code on all platforms and have f16/f128 in CTFE.
143
144    /// The radix or base of the internal representation of `f128`.
145    #[unstable(feature = "f128", issue = "116909")]
146    pub const RADIX: u32 = 2;
147
148    /// Number of significant digits in base 2.
149    ///
150    /// Note that the size of the mantissa in the bitwise representation is one
151    /// smaller than this since the leading 1 is not stored explicitly.
152    #[unstable(feature = "f128", issue = "116909")]
153    pub const MANTISSA_DIGITS: u32 = 113;
154
155    /// Approximate number of significant digits in base 10.
156    ///
157    /// This is the maximum <i>x</i> such that any decimal number with <i>x</i>
158    /// significant digits can be converted to `f128` and back without loss.
159    ///
160    /// Equal to floor(log<sub>10</sub>&nbsp;2<sup>[`MANTISSA_DIGITS`]&nbsp;&minus;&nbsp;1</sup>).
161    ///
162    /// [`MANTISSA_DIGITS`]: f128::MANTISSA_DIGITS
163    #[unstable(feature = "f128", issue = "116909")]
164    pub const DIGITS: u32 = 33;
165
166    /// [Machine epsilon] value for `f128`.
167    ///
168    /// This is the difference between `1.0` and the next larger representable number.
169    ///
170    /// Equal to 2<sup>1&nbsp;&minus;&nbsp;[`MANTISSA_DIGITS`]</sup>.
171    ///
172    /// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
173    /// [`MANTISSA_DIGITS`]: f128::MANTISSA_DIGITS
174    #[unstable(feature = "f128", issue = "116909")]
175    #[rustc_diagnostic_item = "f128_epsilon"]
176    pub const EPSILON: f128 = 1.92592994438723585305597794258492732e-34_f128;
177
178    /// Smallest finite `f128` value.
179    ///
180    /// Equal to &minus;[`MAX`].
181    ///
182    /// [`MAX`]: f128::MAX
183    #[unstable(feature = "f128", issue = "116909")]
184    pub const MIN: f128 = -1.18973149535723176508575932662800702e+4932_f128;
185    /// Smallest positive normal `f128` value.
186    ///
187    /// Equal to 2<sup>[`MIN_EXP`]&nbsp;&minus;&nbsp;1</sup>.
188    ///
189    /// [`MIN_EXP`]: f128::MIN_EXP
190    #[unstable(feature = "f128", issue = "116909")]
191    pub const MIN_POSITIVE: f128 = 3.36210314311209350626267781732175260e-4932_f128;
192    /// Largest finite `f128` value.
193    ///
194    /// Equal to
195    /// (1&nbsp;&minus;&nbsp;2<sup>&minus;[`MANTISSA_DIGITS`]</sup>)&nbsp;2<sup>[`MAX_EXP`]</sup>.
196    ///
197    /// [`MANTISSA_DIGITS`]: f128::MANTISSA_DIGITS
198    /// [`MAX_EXP`]: f128::MAX_EXP
199    #[unstable(feature = "f128", issue = "116909")]
200    pub const MAX: f128 = 1.18973149535723176508575932662800702e+4932_f128;
201
202    /// One greater than the minimum possible *normal* power of 2 exponent
203    /// for a significand bounded by 1 ≤ x < 2 (i.e. the IEEE definition).
204    ///
205    /// This corresponds to the exact minimum possible *normal* power of 2 exponent
206    /// for a significand bounded by 0.5 ≤ x < 1 (i.e. the C definition).
207    /// In other words, all normal numbers representable by this type are
208    /// greater than or equal to 0.5&nbsp;×&nbsp;2<sup><i>MIN_EXP</i></sup>.
209    #[unstable(feature = "f128", issue = "116909")]
210    pub const MIN_EXP: i32 = -16_381;
211    /// One greater than the maximum possible power of 2 exponent
212    /// for a significand bounded by 1 ≤ x < 2 (i.e. the IEEE definition).
213    ///
214    /// This corresponds to the exact maximum possible power of 2 exponent
215    /// for a significand bounded by 0.5 ≤ x < 1 (i.e. the C definition).
216    /// In other words, all numbers representable by this type are
217    /// strictly less than 2<sup><i>MAX_EXP</i></sup>.
218    #[unstable(feature = "f128", issue = "116909")]
219    pub const MAX_EXP: i32 = 16_384;
220
221    /// Minimum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
222    ///
223    /// Equal to ceil(log<sub>10</sub>&nbsp;[`MIN_POSITIVE`]).
224    ///
225    /// [`MIN_POSITIVE`]: f128::MIN_POSITIVE
226    #[unstable(feature = "f128", issue = "116909")]
227    pub const MIN_10_EXP: i32 = -4_931;
228    /// Maximum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
229    ///
230    /// Equal to floor(log<sub>10</sub>&nbsp;[`MAX`]).
231    ///
232    /// [`MAX`]: f128::MAX
233    #[unstable(feature = "f128", issue = "116909")]
234    pub const MAX_10_EXP: i32 = 4_932;
235
236    /// Not a Number (NaN).
237    ///
238    /// Note that IEEE 754 doesn't define just a single NaN value; a plethora of bit patterns are
239    /// considered to be NaN. Furthermore, the standard makes a difference between a "signaling" and
240    /// a "quiet" NaN, and allows inspecting its "payload" (the unspecified bits in the bit pattern)
241    /// and its sign. See the [specification of NaN bit patterns](f32#nan-bit-patterns) for more
242    /// info.
243    ///
244    /// This constant is guaranteed to be a quiet NaN (on targets that follow the Rust assumptions
245    /// that the quiet/signaling bit being set to 1 indicates a quiet NaN). Beyond that, nothing is
246    /// guaranteed about the specific bit pattern chosen here: both payload and sign are arbitrary.
247    /// The concrete bit pattern may change across Rust versions and target platforms.
248    #[allow(clippy::eq_op)]
249    #[rustc_diagnostic_item = "f128_nan"]
250    #[unstable(feature = "f128", issue = "116909")]
251    pub const NAN: f128 = 0.0_f128 / 0.0_f128;
252
253    /// Infinity (∞).
254    #[unstable(feature = "f128", issue = "116909")]
255    pub const INFINITY: f128 = 1.0_f128 / 0.0_f128;
256
257    /// Negative infinity (−∞).
258    #[unstable(feature = "f128", issue = "116909")]
259    pub const NEG_INFINITY: f128 = -1.0_f128 / 0.0_f128;
260
261    /// Sign bit
262    pub(crate) const SIGN_MASK: u128 = 0x8000_0000_0000_0000_0000_0000_0000_0000;
263
264    /// Exponent mask
265    pub(crate) const EXP_MASK: u128 = 0x7fff_0000_0000_0000_0000_0000_0000_0000;
266
267    /// Mantissa mask
268    pub(crate) const MAN_MASK: u128 = 0x0000_ffff_ffff_ffff_ffff_ffff_ffff_ffff;
269
270    /// Minimum representable positive value (min subnormal)
271    const TINY_BITS: u128 = 0x1;
272
273    /// Minimum representable negative value (min negative subnormal)
274    const NEG_TINY_BITS: u128 = Self::TINY_BITS | Self::SIGN_MASK;
275
276    /// Returns `true` if this value is NaN.
277    ///
278    /// ```
279    /// #![feature(f128)]
280    /// # // FIXME(f16_f128): remove when `unordtf2` is available
281    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
282    ///
283    /// let nan = f128::NAN;
284    /// let f = 7.0_f128;
285    ///
286    /// assert!(nan.is_nan());
287    /// assert!(!f.is_nan());
288    /// # }
289    /// ```
290    #[inline]
291    #[must_use]
292    #[unstable(feature = "f128", issue = "116909")]
293    #[allow(clippy::eq_op)] // > if you intended to check if the operand is NaN, use `.is_nan()` instead :)
294    pub const fn is_nan(self) -> bool {
295        self != self
296    }
297
298    /// Returns `true` if this value is positive infinity or negative infinity, and
299    /// `false` otherwise.
300    ///
301    /// ```
302    /// #![feature(f128)]
303    /// # // FIXME(f16_f128): remove when `eqtf2` is available
304    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
305    ///
306    /// let f = 7.0f128;
307    /// let inf = f128::INFINITY;
308    /// let neg_inf = f128::NEG_INFINITY;
309    /// let nan = f128::NAN;
310    ///
311    /// assert!(!f.is_infinite());
312    /// assert!(!nan.is_infinite());
313    ///
314    /// assert!(inf.is_infinite());
315    /// assert!(neg_inf.is_infinite());
316    /// # }
317    /// ```
318    #[inline]
319    #[must_use]
320    #[unstable(feature = "f128", issue = "116909")]
321    pub const fn is_infinite(self) -> bool {
322        (self == f128::INFINITY) | (self == f128::NEG_INFINITY)
323    }
324
325    /// Returns `true` if this number is neither infinite nor NaN.
326    ///
327    /// ```
328    /// #![feature(f128)]
329    /// # // FIXME(f16_f128): remove when `lttf2` is available
330    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
331    ///
332    /// let f = 7.0f128;
333    /// let inf: f128 = f128::INFINITY;
334    /// let neg_inf: f128 = f128::NEG_INFINITY;
335    /// let nan: f128 = f128::NAN;
336    ///
337    /// assert!(f.is_finite());
338    ///
339    /// assert!(!nan.is_finite());
340    /// assert!(!inf.is_finite());
341    /// assert!(!neg_inf.is_finite());
342    /// # }
343    /// ```
344    #[inline]
345    #[must_use]
346    #[unstable(feature = "f128", issue = "116909")]
347    #[rustc_const_unstable(feature = "f128", issue = "116909")]
348    pub const fn is_finite(self) -> bool {
349        // There's no need to handle NaN separately: if self is NaN,
350        // the comparison is not true, exactly as desired.
351        self.abs() < Self::INFINITY
352    }
353
354    /// Returns `true` if the number is [subnormal].
355    ///
356    /// ```
357    /// #![feature(f128)]
358    /// # // FIXME(f16_f128): remove when `eqtf2` is available
359    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
360    ///
361    /// let min = f128::MIN_POSITIVE; // 3.362103143e-4932f128
362    /// let max = f128::MAX;
363    /// let lower_than_min = 1.0e-4960_f128;
364    /// let zero = 0.0_f128;
365    ///
366    /// assert!(!min.is_subnormal());
367    /// assert!(!max.is_subnormal());
368    ///
369    /// assert!(!zero.is_subnormal());
370    /// assert!(!f128::NAN.is_subnormal());
371    /// assert!(!f128::INFINITY.is_subnormal());
372    /// // Values between `0` and `min` are Subnormal.
373    /// assert!(lower_than_min.is_subnormal());
374    /// # }
375    /// ```
376    ///
377    /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
378    #[inline]
379    #[must_use]
380    #[unstable(feature = "f128", issue = "116909")]
381    pub const fn is_subnormal(self) -> bool {
382        matches!(self.classify(), FpCategory::Subnormal)
383    }
384
385    /// Returns `true` if the number is neither zero, infinite, [subnormal], or NaN.
386    ///
387    /// ```
388    /// #![feature(f128)]
389    /// # // FIXME(f16_f128): remove when `eqtf2` is available
390    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
391    ///
392    /// let min = f128::MIN_POSITIVE; // 3.362103143e-4932f128
393    /// let max = f128::MAX;
394    /// let lower_than_min = 1.0e-4960_f128;
395    /// let zero = 0.0_f128;
396    ///
397    /// assert!(min.is_normal());
398    /// assert!(max.is_normal());
399    ///
400    /// assert!(!zero.is_normal());
401    /// assert!(!f128::NAN.is_normal());
402    /// assert!(!f128::INFINITY.is_normal());
403    /// // Values between `0` and `min` are Subnormal.
404    /// assert!(!lower_than_min.is_normal());
405    /// # }
406    /// ```
407    ///
408    /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
409    #[inline]
410    #[must_use]
411    #[unstable(feature = "f128", issue = "116909")]
412    pub const fn is_normal(self) -> bool {
413        matches!(self.classify(), FpCategory::Normal)
414    }
415
416    /// Returns the floating point category of the number. If only one property
417    /// is going to be tested, it is generally faster to use the specific
418    /// predicate instead.
419    ///
420    /// ```
421    /// #![feature(f128)]
422    /// # // FIXME(f16_f128): remove when `eqtf2` is available
423    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
424    ///
425    /// use std::num::FpCategory;
426    ///
427    /// let num = 12.4_f128;
428    /// let inf = f128::INFINITY;
429    ///
430    /// assert_eq!(num.classify(), FpCategory::Normal);
431    /// assert_eq!(inf.classify(), FpCategory::Infinite);
432    /// # }
433    /// ```
434    #[inline]
435    #[unstable(feature = "f128", issue = "116909")]
436    pub const fn classify(self) -> FpCategory {
437        let bits = self.to_bits();
438        match (bits & Self::MAN_MASK, bits & Self::EXP_MASK) {
439            (0, Self::EXP_MASK) => FpCategory::Infinite,
440            (_, Self::EXP_MASK) => FpCategory::Nan,
441            (0, 0) => FpCategory::Zero,
442            (_, 0) => FpCategory::Subnormal,
443            _ => FpCategory::Normal,
444        }
445    }
446
447    /// Returns `true` if `self` has a positive sign, including `+0.0`, NaNs with
448    /// positive sign bit and positive infinity.
449    ///
450    /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of
451    /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are
452    /// conserved over arithmetic operations, the result of `is_sign_positive` on
453    /// a NaN might produce an unexpected or non-portable result. See the [specification
454    /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == 1.0`
455    /// if you need fully portable behavior (will return `false` for all NaNs).
456    ///
457    /// ```
458    /// #![feature(f128)]
459    ///
460    /// let f = 7.0_f128;
461    /// let g = -7.0_f128;
462    ///
463    /// assert!(f.is_sign_positive());
464    /// assert!(!g.is_sign_positive());
465    /// ```
466    #[inline]
467    #[must_use]
468    #[unstable(feature = "f128", issue = "116909")]
469    pub const fn is_sign_positive(self) -> bool {
470        !self.is_sign_negative()
471    }
472
473    /// Returns `true` if `self` has a negative sign, including `-0.0`, NaNs with
474    /// negative sign bit and negative infinity.
475    ///
476    /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of
477    /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are
478    /// conserved over arithmetic operations, the result of `is_sign_negative` on
479    /// a NaN might produce an unexpected or non-portable result. See the [specification
480    /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == -1.0`
481    /// if you need fully portable behavior (will return `false` for all NaNs).
482    ///
483    /// ```
484    /// #![feature(f128)]
485    ///
486    /// let f = 7.0_f128;
487    /// let g = -7.0_f128;
488    ///
489    /// assert!(!f.is_sign_negative());
490    /// assert!(g.is_sign_negative());
491    /// ```
492    #[inline]
493    #[must_use]
494    #[unstable(feature = "f128", issue = "116909")]
495    pub const fn is_sign_negative(self) -> bool {
496        // IEEE754 says: isSignMinus(x) is true if and only if x has negative sign. isSignMinus
497        // applies to zeros and NaNs as well.
498        // SAFETY: This is just transmuting to get the sign bit, it's fine.
499        (self.to_bits() & (1 << 127)) != 0
500    }
501
502    /// Returns the least number greater than `self`.
503    ///
504    /// Let `TINY` be the smallest representable positive `f128`. Then,
505    ///  - if `self.is_nan()`, this returns `self`;
506    ///  - if `self` is [`NEG_INFINITY`], this returns [`MIN`];
507    ///  - if `self` is `-TINY`, this returns -0.0;
508    ///  - if `self` is -0.0 or +0.0, this returns `TINY`;
509    ///  - if `self` is [`MAX`] or [`INFINITY`], this returns [`INFINITY`];
510    ///  - otherwise the unique least value greater than `self` is returned.
511    ///
512    /// The identity `x.next_up() == -(-x).next_down()` holds for all non-NaN `x`. When `x`
513    /// is finite `x == x.next_up().next_down()` also holds.
514    ///
515    /// ```rust
516    /// #![feature(f128)]
517    /// # // FIXME(f16_f128): remove when `eqtf2` is available
518    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
519    ///
520    /// // f128::EPSILON is the difference between 1.0 and the next number up.
521    /// assert_eq!(1.0f128.next_up(), 1.0 + f128::EPSILON);
522    /// // But not for most numbers.
523    /// assert!(0.1f128.next_up() < 0.1 + f128::EPSILON);
524    /// assert_eq!(4611686018427387904f128.next_up(), 4611686018427387904.000000000000001);
525    /// # }
526    /// ```
527    ///
528    /// This operation corresponds to IEEE-754 `nextUp`.
529    ///
530    /// [`NEG_INFINITY`]: Self::NEG_INFINITY
531    /// [`INFINITY`]: Self::INFINITY
532    /// [`MIN`]: Self::MIN
533    /// [`MAX`]: Self::MAX
534    #[inline]
535    #[doc(alias = "nextUp")]
536    #[unstable(feature = "f128", issue = "116909")]
537    pub const fn next_up(self) -> Self {
538        // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing
539        // denormals to zero. This is in general unsound and unsupported, but here
540        // we do our best to still produce the correct result on such targets.
541        let bits = self.to_bits();
542        if self.is_nan() || bits == Self::INFINITY.to_bits() {
543            return self;
544        }
545
546        let abs = bits & !Self::SIGN_MASK;
547        let next_bits = if abs == 0 {
548            Self::TINY_BITS
549        } else if bits == abs {
550            bits + 1
551        } else {
552            bits - 1
553        };
554        Self::from_bits(next_bits)
555    }
556
557    /// Returns the greatest number less than `self`.
558    ///
559    /// Let `TINY` be the smallest representable positive `f128`. Then,
560    ///  - if `self.is_nan()`, this returns `self`;
561    ///  - if `self` is [`INFINITY`], this returns [`MAX`];
562    ///  - if `self` is `TINY`, this returns 0.0;
563    ///  - if `self` is -0.0 or +0.0, this returns `-TINY`;
564    ///  - if `self` is [`MIN`] or [`NEG_INFINITY`], this returns [`NEG_INFINITY`];
565    ///  - otherwise the unique greatest value less than `self` is returned.
566    ///
567    /// The identity `x.next_down() == -(-x).next_up()` holds for all non-NaN `x`. When `x`
568    /// is finite `x == x.next_down().next_up()` also holds.
569    ///
570    /// ```rust
571    /// #![feature(f128)]
572    /// # // FIXME(f16_f128): remove when `eqtf2` is available
573    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
574    ///
575    /// let x = 1.0f128;
576    /// // Clamp value into range [0, 1).
577    /// let clamped = x.clamp(0.0, 1.0f128.next_down());
578    /// assert!(clamped < 1.0);
579    /// assert_eq!(clamped.next_up(), 1.0);
580    /// # }
581    /// ```
582    ///
583    /// This operation corresponds to IEEE-754 `nextDown`.
584    ///
585    /// [`NEG_INFINITY`]: Self::NEG_INFINITY
586    /// [`INFINITY`]: Self::INFINITY
587    /// [`MIN`]: Self::MIN
588    /// [`MAX`]: Self::MAX
589    #[inline]
590    #[doc(alias = "nextDown")]
591    #[unstable(feature = "f128", issue = "116909")]
592    pub const fn next_down(self) -> Self {
593        // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing
594        // denormals to zero. This is in general unsound and unsupported, but here
595        // we do our best to still produce the correct result on such targets.
596        let bits = self.to_bits();
597        if self.is_nan() || bits == Self::NEG_INFINITY.to_bits() {
598            return self;
599        }
600
601        let abs = bits & !Self::SIGN_MASK;
602        let next_bits = if abs == 0 {
603            Self::NEG_TINY_BITS
604        } else if bits == abs {
605            bits - 1
606        } else {
607            bits + 1
608        };
609        Self::from_bits(next_bits)
610    }
611
612    /// Takes the reciprocal (inverse) of a number, `1/x`.
613    ///
614    /// ```
615    /// #![feature(f128)]
616    /// # // FIXME(f16_f128): remove when `eqtf2` is available
617    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
618    ///
619    /// let x = 2.0_f128;
620    /// let abs_difference = (x.recip() - (1.0 / x)).abs();
621    ///
622    /// assert!(abs_difference <= f128::EPSILON);
623    /// # }
624    /// ```
625    #[inline]
626    #[unstable(feature = "f128", issue = "116909")]
627    #[must_use = "this returns the result of the operation, without modifying the original"]
628    pub const fn recip(self) -> Self {
629        1.0 / self
630    }
631
632    /// Converts radians to degrees.
633    ///
634    /// # Unspecified precision
635    ///
636    /// The precision of this function is non-deterministic. This means it varies by platform,
637    /// Rust version, and can even differ within the same execution from one invocation to the next.
638    ///
639    /// # Examples
640    ///
641    /// ```
642    /// #![feature(f128)]
643    /// # // FIXME(f16_f128): remove when `eqtf2` is available
644    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
645    ///
646    /// let angle = std::f128::consts::PI;
647    ///
648    /// let abs_difference = (angle.to_degrees() - 180.0).abs();
649    /// assert!(abs_difference <= f128::EPSILON);
650    /// # }
651    /// ```
652    #[inline]
653    #[unstable(feature = "f128", issue = "116909")]
654    #[must_use = "this returns the result of the operation, without modifying the original"]
655    pub const fn to_degrees(self) -> Self {
656        // The division here is correctly rounded with respect to the true value of 180/π.
657        // Although π is irrational and already rounded, the double rounding happens
658        // to produce correct result for f128.
659        const PIS_IN_180: f128 = 180.0 / consts::PI;
660        self * PIS_IN_180
661    }
662
663    /// Converts degrees to radians.
664    ///
665    /// # Unspecified precision
666    ///
667    /// The precision of this function is non-deterministic. This means it varies by platform,
668    /// Rust version, and can even differ within the same execution from one invocation to the next.
669    ///
670    /// # Examples
671    ///
672    /// ```
673    /// #![feature(f128)]
674    /// # // FIXME(f16_f128): remove when `eqtf2` is available
675    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
676    ///
677    /// let angle = 180.0f128;
678    ///
679    /// let abs_difference = (angle.to_radians() - std::f128::consts::PI).abs();
680    ///
681    /// assert!(abs_difference <= 1e-30);
682    /// # }
683    /// ```
684    #[inline]
685    #[unstable(feature = "f128", issue = "116909")]
686    #[must_use = "this returns the result of the operation, without modifying the original"]
687    pub const fn to_radians(self) -> f128 {
688        // Use a literal to avoid double rounding, consts::PI is already rounded,
689        // and dividing would round again.
690        const RADS_PER_DEG: f128 =
691            0.0174532925199432957692369076848861271344287188854172545609719_f128;
692        self * RADS_PER_DEG
693    }
694
695    /// Returns the maximum of the two numbers, ignoring NaN.
696    ///
697    /// If one of the arguments is NaN, then the other argument is returned.
698    /// This follows the IEEE 754-2008 semantics for maxNum, except for handling of signaling NaNs;
699    /// this function handles all NaNs the same way and avoids maxNum's problems with associativity.
700    /// This also matches the behavior of libm’s fmax. In particular, if the inputs compare equal
701    /// (such as for the case of `+0.0` and `-0.0`), either input may be returned non-deterministically.
702    ///
703    /// ```
704    /// #![feature(f128)]
705    /// # // Using aarch64 because `reliable_f128_math` is needed
706    /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
707    ///
708    /// let x = 1.0f128;
709    /// let y = 2.0f128;
710    ///
711    /// assert_eq!(x.max(y), y);
712    /// # }
713    /// ```
714    #[inline]
715    #[unstable(feature = "f128", issue = "116909")]
716    #[rustc_const_unstable(feature = "f128", issue = "116909")]
717    #[must_use = "this returns the result of the comparison, without modifying either input"]
718    pub const fn max(self, other: f128) -> f128 {
719        intrinsics::maxnumf128(self, other)
720    }
721
722    /// Returns the minimum of the two numbers, ignoring NaN.
723    ///
724    /// If one of the arguments is NaN, then the other argument is returned.
725    /// This follows the IEEE 754-2008 semantics for minNum, except for handling of signaling NaNs;
726    /// this function handles all NaNs the same way and avoids minNum's problems with associativity.
727    /// This also matches the behavior of libm’s fmin. In particular, if the inputs compare equal
728    /// (such as for the case of `+0.0` and `-0.0`), either input may be returned non-deterministically.
729    ///
730    /// ```
731    /// #![feature(f128)]
732    /// # // Using aarch64 because `reliable_f128_math` is needed
733    /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
734    ///
735    /// let x = 1.0f128;
736    /// let y = 2.0f128;
737    ///
738    /// assert_eq!(x.min(y), x);
739    /// # }
740    /// ```
741    #[inline]
742    #[unstable(feature = "f128", issue = "116909")]
743    #[rustc_const_unstable(feature = "f128", issue = "116909")]
744    #[must_use = "this returns the result of the comparison, without modifying either input"]
745    pub const fn min(self, other: f128) -> f128 {
746        intrinsics::minnumf128(self, other)
747    }
748
749    /// Returns the maximum of the two numbers, propagating NaN.
750    ///
751    /// This returns NaN when *either* argument is NaN, as opposed to
752    /// [`f128::max`] which only returns NaN when *both* arguments are NaN.
753    ///
754    /// ```
755    /// #![feature(f128)]
756    /// #![feature(float_minimum_maximum)]
757    /// # // Using aarch64 because `reliable_f128_math` is needed
758    /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
759    ///
760    /// let x = 1.0f128;
761    /// let y = 2.0f128;
762    ///
763    /// assert_eq!(x.maximum(y), y);
764    /// assert!(x.maximum(f128::NAN).is_nan());
765    /// # }
766    /// ```
767    ///
768    /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the greater
769    /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0.
770    /// Note that this follows the semantics specified in IEEE 754-2019.
771    ///
772    /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN
773    /// operand is conserved; see the [specification of NaN bit patterns](f32#nan-bit-patterns) for more info.
774    #[inline]
775    #[unstable(feature = "f128", issue = "116909")]
776    // #[unstable(feature = "float_minimum_maximum", issue = "91079")]
777    #[must_use = "this returns the result of the comparison, without modifying either input"]
778    pub const fn maximum(self, other: f128) -> f128 {
779        intrinsics::maximumf128(self, other)
780    }
781
782    /// Returns the minimum of the two numbers, propagating NaN.
783    ///
784    /// This returns NaN when *either* argument is NaN, as opposed to
785    /// [`f128::min`] which only returns NaN when *both* arguments are NaN.
786    ///
787    /// ```
788    /// #![feature(f128)]
789    /// #![feature(float_minimum_maximum)]
790    /// # // Using aarch64 because `reliable_f128_math` is needed
791    /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
792    ///
793    /// let x = 1.0f128;
794    /// let y = 2.0f128;
795    ///
796    /// assert_eq!(x.minimum(y), x);
797    /// assert!(x.minimum(f128::NAN).is_nan());
798    /// # }
799    /// ```
800    ///
801    /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the lesser
802    /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0.
803    /// Note that this follows the semantics specified in IEEE 754-2019.
804    ///
805    /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN
806    /// operand is conserved; see the [specification of NaN bit patterns](f32#nan-bit-patterns) for more info.
807    #[inline]
808    #[unstable(feature = "f128", issue = "116909")]
809    // #[unstable(feature = "float_minimum_maximum", issue = "91079")]
810    #[must_use = "this returns the result of the comparison, without modifying either input"]
811    pub const fn minimum(self, other: f128) -> f128 {
812        intrinsics::minimumf128(self, other)
813    }
814
815    /// Calculates the midpoint (average) between `self` and `rhs`.
816    ///
817    /// This returns NaN when *either* argument is NaN or if a combination of
818    /// +inf and -inf is provided as arguments.
819    ///
820    /// # Examples
821    ///
822    /// ```
823    /// #![feature(f128)]
824    /// # // Using aarch64 because `reliable_f128_math` is needed
825    /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
826    ///
827    /// assert_eq!(1f128.midpoint(4.0), 2.5);
828    /// assert_eq!((-5.5f128).midpoint(8.0), 1.25);
829    /// # }
830    /// ```
831    #[inline]
832    #[doc(alias = "average")]
833    #[unstable(feature = "f128", issue = "116909")]
834    #[rustc_const_unstable(feature = "f128", issue = "116909")]
835    pub const fn midpoint(self, other: f128) -> f128 {
836        const HI: f128 = f128::MAX / 2.;
837
838        let (a, b) = (self, other);
839        let abs_a = a.abs();
840        let abs_b = b.abs();
841
842        if abs_a <= HI && abs_b <= HI {
843            // Overflow is impossible
844            (a + b) / 2.
845        } else {
846            (a / 2.) + (b / 2.)
847        }
848    }
849
850    /// Rounds toward zero and converts to any primitive integer type,
851    /// assuming that the value is finite and fits in that type.
852    ///
853    /// ```
854    /// #![feature(f128)]
855    /// # // FIXME(f16_f128): remove when `float*itf` is available
856    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
857    ///
858    /// let value = 4.6_f128;
859    /// let rounded = unsafe { value.to_int_unchecked::<u16>() };
860    /// assert_eq!(rounded, 4);
861    ///
862    /// let value = -128.9_f128;
863    /// let rounded = unsafe { value.to_int_unchecked::<i8>() };
864    /// assert_eq!(rounded, i8::MIN);
865    /// # }
866    /// ```
867    ///
868    /// # Safety
869    ///
870    /// The value must:
871    ///
872    /// * Not be `NaN`
873    /// * Not be infinite
874    /// * Be representable in the return type `Int`, after truncating off its fractional part
875    #[inline]
876    #[unstable(feature = "f128", issue = "116909")]
877    #[must_use = "this returns the result of the operation, without modifying the original"]
878    pub unsafe fn to_int_unchecked<Int>(self) -> Int
879    where
880        Self: FloatToInt<Int>,
881    {
882        // SAFETY: the caller must uphold the safety contract for
883        // `FloatToInt::to_int_unchecked`.
884        unsafe { FloatToInt::<Int>::to_int_unchecked(self) }
885    }
886
887    /// Raw transmutation to `u128`.
888    ///
889    /// This is currently identical to `transmute::<f128, u128>(self)` on all platforms.
890    ///
891    /// See [`from_bits`](#method.from_bits) for some discussion of the
892    /// portability of this operation (there are almost no issues).
893    ///
894    /// Note that this function is distinct from `as` casting, which attempts to
895    /// preserve the *numeric* value, and not the bitwise value.
896    ///
897    /// ```
898    /// #![feature(f128)]
899    ///
900    /// # // FIXME(f16_f128): enable this once const casting works
901    /// # // assert_ne!((1f128).to_bits(), 1f128 as u128); // to_bits() is not casting!
902    /// assert_eq!((12.5f128).to_bits(), 0x40029000000000000000000000000000);
903    /// ```
904    #[inline]
905    #[unstable(feature = "f128", issue = "116909")]
906    #[must_use = "this returns the result of the operation, without modifying the original"]
907    #[allow(unnecessary_transmutes)]
908    pub const fn to_bits(self) -> u128 {
909        // SAFETY: `u128` is a plain old datatype so we can always transmute to it.
910        unsafe { mem::transmute(self) }
911    }
912
913    /// Raw transmutation from `u128`.
914    ///
915    /// This is currently identical to `transmute::<u128, f128>(v)` on all platforms.
916    /// It turns out this is incredibly portable, for two reasons:
917    ///
918    /// * Floats and Ints have the same endianness on all supported platforms.
919    /// * IEEE 754 very precisely specifies the bit layout of floats.
920    ///
921    /// However there is one caveat: prior to the 2008 version of IEEE 754, how
922    /// to interpret the NaN signaling bit wasn't actually specified. Most platforms
923    /// (notably x86 and ARM) picked the interpretation that was ultimately
924    /// standardized in 2008, but some didn't (notably MIPS). As a result, all
925    /// signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa.
926    ///
927    /// Rather than trying to preserve signaling-ness cross-platform, this
928    /// implementation favors preserving the exact bits. This means that
929    /// any payloads encoded in NaNs will be preserved even if the result of
930    /// this method is sent over the network from an x86 machine to a MIPS one.
931    ///
932    /// If the results of this method are only manipulated by the same
933    /// architecture that produced them, then there is no portability concern.
934    ///
935    /// If the input isn't NaN, then there is no portability concern.
936    ///
937    /// If you don't care about signalingness (very likely), then there is no
938    /// portability concern.
939    ///
940    /// Note that this function is distinct from `as` casting, which attempts to
941    /// preserve the *numeric* value, and not the bitwise value.
942    ///
943    /// ```
944    /// #![feature(f128)]
945    /// #  // FIXME(f16_f128): remove when `eqtf2` is available
946    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
947    ///
948    /// let v = f128::from_bits(0x40029000000000000000000000000000);
949    /// assert_eq!(v, 12.5);
950    /// # }
951    /// ```
952    #[inline]
953    #[must_use]
954    #[unstable(feature = "f128", issue = "116909")]
955    #[allow(unnecessary_transmutes)]
956    pub const fn from_bits(v: u128) -> Self {
957        // It turns out the safety issues with sNaN were overblown! Hooray!
958        // SAFETY: `u128` is a plain old datatype so we can always transmute from it.
959        unsafe { mem::transmute(v) }
960    }
961
962    /// Returns the memory representation of this floating point number as a byte array in
963    /// big-endian (network) byte order.
964    ///
965    /// See [`from_bits`](Self::from_bits) for some discussion of the
966    /// portability of this operation (there are almost no issues).
967    ///
968    /// # Examples
969    ///
970    /// ```
971    /// #![feature(f128)]
972    ///
973    /// let bytes = 12.5f128.to_be_bytes();
974    /// assert_eq!(
975    ///     bytes,
976    ///     [0x40, 0x02, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00,
977    ///      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
978    /// );
979    /// ```
980    #[inline]
981    #[unstable(feature = "f128", issue = "116909")]
982    #[must_use = "this returns the result of the operation, without modifying the original"]
983    pub const fn to_be_bytes(self) -> [u8; 16] {
984        self.to_bits().to_be_bytes()
985    }
986
987    /// Returns the memory representation of this floating point number as a byte array in
988    /// little-endian byte order.
989    ///
990    /// See [`from_bits`](Self::from_bits) for some discussion of the
991    /// portability of this operation (there are almost no issues).
992    ///
993    /// # Examples
994    ///
995    /// ```
996    /// #![feature(f128)]
997    ///
998    /// let bytes = 12.5f128.to_le_bytes();
999    /// assert_eq!(
1000    ///     bytes,
1001    ///     [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
1002    ///      0x00, 0x00, 0x00, 0x00, 0x00, 0x90, 0x02, 0x40]
1003    /// );
1004    /// ```
1005    #[inline]
1006    #[unstable(feature = "f128", issue = "116909")]
1007    #[must_use = "this returns the result of the operation, without modifying the original"]
1008    pub const fn to_le_bytes(self) -> [u8; 16] {
1009        self.to_bits().to_le_bytes()
1010    }
1011
1012    /// Returns the memory representation of this floating point number as a byte array in
1013    /// native byte order.
1014    ///
1015    /// As the target platform's native endianness is used, portable code
1016    /// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate, instead.
1017    ///
1018    /// [`to_be_bytes`]: f128::to_be_bytes
1019    /// [`to_le_bytes`]: f128::to_le_bytes
1020    ///
1021    /// See [`from_bits`](Self::from_bits) for some discussion of the
1022    /// portability of this operation (there are almost no issues).
1023    ///
1024    /// # Examples
1025    ///
1026    /// ```
1027    /// #![feature(f128)]
1028    ///
1029    /// let bytes = 12.5f128.to_ne_bytes();
1030    /// assert_eq!(
1031    ///     bytes,
1032    ///     if cfg!(target_endian = "big") {
1033    ///         [0x40, 0x02, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00,
1034    ///          0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
1035    ///     } else {
1036    ///         [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
1037    ///          0x00, 0x00, 0x00, 0x00, 0x00, 0x90, 0x02, 0x40]
1038    ///     }
1039    /// );
1040    /// ```
1041    #[inline]
1042    #[unstable(feature = "f128", issue = "116909")]
1043    #[must_use = "this returns the result of the operation, without modifying the original"]
1044    pub const fn to_ne_bytes(self) -> [u8; 16] {
1045        self.to_bits().to_ne_bytes()
1046    }
1047
1048    /// Creates a floating point value from its representation as a byte array in big endian.
1049    ///
1050    /// See [`from_bits`](Self::from_bits) for some discussion of the
1051    /// portability of this operation (there are almost no issues).
1052    ///
1053    /// # Examples
1054    ///
1055    /// ```
1056    /// #![feature(f128)]
1057    /// # // FIXME(f16_f128): remove when `eqtf2` is available
1058    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1059    ///
1060    /// let value = f128::from_be_bytes(
1061    ///     [0x40, 0x02, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00,
1062    ///      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
1063    /// );
1064    /// assert_eq!(value, 12.5);
1065    /// # }
1066    /// ```
1067    #[inline]
1068    #[must_use]
1069    #[unstable(feature = "f128", issue = "116909")]
1070    pub const fn from_be_bytes(bytes: [u8; 16]) -> Self {
1071        Self::from_bits(u128::from_be_bytes(bytes))
1072    }
1073
1074    /// Creates a floating point value from its representation as a byte array in little endian.
1075    ///
1076    /// See [`from_bits`](Self::from_bits) for some discussion of the
1077    /// portability of this operation (there are almost no issues).
1078    ///
1079    /// # Examples
1080    ///
1081    /// ```
1082    /// #![feature(f128)]
1083    /// # // FIXME(f16_f128): remove when `eqtf2` is available
1084    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1085    ///
1086    /// let value = f128::from_le_bytes(
1087    ///     [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
1088    ///      0x00, 0x00, 0x00, 0x00, 0x00, 0x90, 0x02, 0x40]
1089    /// );
1090    /// assert_eq!(value, 12.5);
1091    /// # }
1092    /// ```
1093    #[inline]
1094    #[must_use]
1095    #[unstable(feature = "f128", issue = "116909")]
1096    pub const fn from_le_bytes(bytes: [u8; 16]) -> Self {
1097        Self::from_bits(u128::from_le_bytes(bytes))
1098    }
1099
1100    /// Creates a floating point value from its representation as a byte array in native endian.
1101    ///
1102    /// As the target platform's native endianness is used, portable code
1103    /// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as
1104    /// appropriate instead.
1105    ///
1106    /// [`from_be_bytes`]: f128::from_be_bytes
1107    /// [`from_le_bytes`]: f128::from_le_bytes
1108    ///
1109    /// See [`from_bits`](Self::from_bits) for some discussion of the
1110    /// portability of this operation (there are almost no issues).
1111    ///
1112    /// # Examples
1113    ///
1114    /// ```
1115    /// #![feature(f128)]
1116    /// # // FIXME(f16_f128): remove when `eqtf2` is available
1117    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1118    ///
1119    /// let value = f128::from_ne_bytes(if cfg!(target_endian = "big") {
1120    ///     [0x40, 0x02, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00,
1121    ///      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
1122    /// } else {
1123    ///     [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
1124    ///      0x00, 0x00, 0x00, 0x00, 0x00, 0x90, 0x02, 0x40]
1125    /// });
1126    /// assert_eq!(value, 12.5);
1127    /// # }
1128    /// ```
1129    #[inline]
1130    #[must_use]
1131    #[unstable(feature = "f128", issue = "116909")]
1132    pub const fn from_ne_bytes(bytes: [u8; 16]) -> Self {
1133        Self::from_bits(u128::from_ne_bytes(bytes))
1134    }
1135
1136    /// Returns the ordering between `self` and `other`.
1137    ///
1138    /// Unlike the standard partial comparison between floating point numbers,
1139    /// this comparison always produces an ordering in accordance to
1140    /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision)
1141    /// floating point standard. The values are ordered in the following sequence:
1142    ///
1143    /// - negative quiet NaN
1144    /// - negative signaling NaN
1145    /// - negative infinity
1146    /// - negative numbers
1147    /// - negative subnormal numbers
1148    /// - negative zero
1149    /// - positive zero
1150    /// - positive subnormal numbers
1151    /// - positive numbers
1152    /// - positive infinity
1153    /// - positive signaling NaN
1154    /// - positive quiet NaN.
1155    ///
1156    /// The ordering established by this function does not always agree with the
1157    /// [`PartialOrd`] and [`PartialEq`] implementations of `f128`. For example,
1158    /// they consider negative and positive zero equal, while `total_cmp`
1159    /// doesn't.
1160    ///
1161    /// The interpretation of the signaling NaN bit follows the definition in
1162    /// the IEEE 754 standard, which may not match the interpretation by some of
1163    /// the older, non-conformant (e.g. MIPS) hardware implementations.
1164    ///
1165    /// # Example
1166    ///
1167    /// ```
1168    /// #![feature(f128)]
1169    ///
1170    /// struct GoodBoy {
1171    ///     name: &'static str,
1172    ///     weight: f128,
1173    /// }
1174    ///
1175    /// let mut bois = vec![
1176    ///     GoodBoy { name: "Pucci", weight: 0.1 },
1177    ///     GoodBoy { name: "Woofer", weight: 99.0 },
1178    ///     GoodBoy { name: "Yapper", weight: 10.0 },
1179    ///     GoodBoy { name: "Chonk", weight: f128::INFINITY },
1180    ///     GoodBoy { name: "Abs. Unit", weight: f128::NAN },
1181    ///     GoodBoy { name: "Floaty", weight: -5.0 },
1182    /// ];
1183    ///
1184    /// bois.sort_by(|a, b| a.weight.total_cmp(&b.weight));
1185    ///
1186    /// // `f128::NAN` could be positive or negative, which will affect the sort order.
1187    /// if f128::NAN.is_sign_negative() {
1188    ///     bois.into_iter().map(|b| b.weight)
1189    ///         .zip([f128::NAN, -5.0, 0.1, 10.0, 99.0, f128::INFINITY].iter())
1190    ///         .for_each(|(a, b)| assert_eq!(a.to_bits(), b.to_bits()))
1191    /// } else {
1192    ///     bois.into_iter().map(|b| b.weight)
1193    ///         .zip([-5.0, 0.1, 10.0, 99.0, f128::INFINITY, f128::NAN].iter())
1194    ///         .for_each(|(a, b)| assert_eq!(a.to_bits(), b.to_bits()))
1195    /// }
1196    /// ```
1197    #[inline]
1198    #[must_use]
1199    #[unstable(feature = "f128", issue = "116909")]
1200    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1201    pub const fn total_cmp(&self, other: &Self) -> crate::cmp::Ordering {
1202        let mut left = self.to_bits() as i128;
1203        let mut right = other.to_bits() as i128;
1204
1205        // In case of negatives, flip all the bits except the sign
1206        // to achieve a similar layout as two's complement integers
1207        //
1208        // Why does this work? IEEE 754 floats consist of three fields:
1209        // Sign bit, exponent and mantissa. The set of exponent and mantissa
1210        // fields as a whole have the property that their bitwise order is
1211        // equal to the numeric magnitude where the magnitude is defined.
1212        // The magnitude is not normally defined on NaN values, but
1213        // IEEE 754 totalOrder defines the NaN values also to follow the
1214        // bitwise order. This leads to order explained in the doc comment.
1215        // However, the representation of magnitude is the same for negative
1216        // and positive numbers – only the sign bit is different.
1217        // To easily compare the floats as signed integers, we need to
1218        // flip the exponent and mantissa bits in case of negative numbers.
1219        // We effectively convert the numbers to "two's complement" form.
1220        //
1221        // To do the flipping, we construct a mask and XOR against it.
1222        // We branchlessly calculate an "all-ones except for the sign bit"
1223        // mask from negative-signed values: right shifting sign-extends
1224        // the integer, so we "fill" the mask with sign bits, and then
1225        // convert to unsigned to push one more zero bit.
1226        // On positive values, the mask is all zeros, so it's a no-op.
1227        left ^= (((left >> 127) as u128) >> 1) as i128;
1228        right ^= (((right >> 127) as u128) >> 1) as i128;
1229
1230        left.cmp(&right)
1231    }
1232
1233    /// Restrict a value to a certain interval unless it is NaN.
1234    ///
1235    /// Returns `max` if `self` is greater than `max`, and `min` if `self` is
1236    /// less than `min`. Otherwise this returns `self`.
1237    ///
1238    /// Note that this function returns NaN if the initial value was NaN as
1239    /// well.
1240    ///
1241    /// # Panics
1242    ///
1243    /// Panics if `min > max`, `min` is NaN, or `max` is NaN.
1244    ///
1245    /// # Examples
1246    ///
1247    /// ```
1248    /// #![feature(f128)]
1249    /// # // FIXME(f16_f128): remove when `{eq,gt,unord}tf` are available
1250    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1251    ///
1252    /// assert!((-3.0f128).clamp(-2.0, 1.0) == -2.0);
1253    /// assert!((0.0f128).clamp(-2.0, 1.0) == 0.0);
1254    /// assert!((2.0f128).clamp(-2.0, 1.0) == 1.0);
1255    /// assert!((f128::NAN).clamp(-2.0, 1.0).is_nan());
1256    /// # }
1257    /// ```
1258    #[inline]
1259    #[unstable(feature = "f128", issue = "116909")]
1260    #[must_use = "method returns a new number and does not mutate the original value"]
1261    pub const fn clamp(mut self, min: f128, max: f128) -> f128 {
1262        const_assert!(
1263            min <= max,
1264            "min > max, or either was NaN",
1265            "min > max, or either was NaN. min = {min:?}, max = {max:?}",
1266            min: f128,
1267            max: f128,
1268        );
1269
1270        if self < min {
1271            self = min;
1272        }
1273        if self > max {
1274            self = max;
1275        }
1276        self
1277    }
1278
1279    /// Computes the absolute value of `self`.
1280    ///
1281    /// This function always returns the precise result.
1282    ///
1283    /// # Examples
1284    ///
1285    /// ```
1286    /// #![feature(f128)]
1287    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1288    ///
1289    /// let x = 3.5_f128;
1290    /// let y = -3.5_f128;
1291    ///
1292    /// assert_eq!(x.abs(), x);
1293    /// assert_eq!(y.abs(), -y);
1294    ///
1295    /// assert!(f128::NAN.abs().is_nan());
1296    /// # }
1297    /// ```
1298    #[inline]
1299    #[unstable(feature = "f128", issue = "116909")]
1300    #[rustc_const_unstable(feature = "f128", issue = "116909")]
1301    #[must_use = "method returns a new number and does not mutate the original value"]
1302    pub const fn abs(self) -> Self {
1303        // FIXME(f16_f128): replace with `intrinsics::fabsf128` when available
1304        // We don't do this now because LLVM has lowering bugs for f128 math.
1305        Self::from_bits(self.to_bits() & !(1 << 127))
1306    }
1307
1308    /// Returns a number that represents the sign of `self`.
1309    ///
1310    /// - `1.0` if the number is positive, `+0.0` or `INFINITY`
1311    /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
1312    /// - NaN if the number is NaN
1313    ///
1314    /// # Examples
1315    ///
1316    /// ```
1317    /// #![feature(f128)]
1318    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1319    ///
1320    /// let f = 3.5_f128;
1321    ///
1322    /// assert_eq!(f.signum(), 1.0);
1323    /// assert_eq!(f128::NEG_INFINITY.signum(), -1.0);
1324    ///
1325    /// assert!(f128::NAN.signum().is_nan());
1326    /// # }
1327    /// ```
1328    #[inline]
1329    #[unstable(feature = "f128", issue = "116909")]
1330    #[rustc_const_unstable(feature = "f128", issue = "116909")]
1331    #[must_use = "method returns a new number and does not mutate the original value"]
1332    pub const fn signum(self) -> f128 {
1333        if self.is_nan() { Self::NAN } else { 1.0_f128.copysign(self) }
1334    }
1335
1336    /// Returns a number composed of the magnitude of `self` and the sign of
1337    /// `sign`.
1338    ///
1339    /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`.
1340    /// If `self` is a NaN, then a NaN with the same payload as `self` and the sign bit of `sign` is
1341    /// returned.
1342    ///
1343    /// If `sign` is a NaN, then this operation will still carry over its sign into the result. Note
1344    /// that IEEE 754 doesn't assign any meaning to the sign bit in case of a NaN, and as Rust
1345    /// doesn't guarantee that the bit pattern of NaNs are conserved over arithmetic operations, the
1346    /// result of `copysign` with `sign` being a NaN might produce an unexpected or non-portable
1347    /// result. See the [specification of NaN bit patterns](primitive@f32#nan-bit-patterns) for more
1348    /// info.
1349    ///
1350    /// # Examples
1351    ///
1352    /// ```
1353    /// #![feature(f128)]
1354    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1355    ///
1356    /// let f = 3.5_f128;
1357    ///
1358    /// assert_eq!(f.copysign(0.42), 3.5_f128);
1359    /// assert_eq!(f.copysign(-0.42), -3.5_f128);
1360    /// assert_eq!((-f).copysign(0.42), 3.5_f128);
1361    /// assert_eq!((-f).copysign(-0.42), -3.5_f128);
1362    ///
1363    /// assert!(f128::NAN.copysign(1.0).is_nan());
1364    /// # }
1365    /// ```
1366    #[inline]
1367    #[unstable(feature = "f128", issue = "116909")]
1368    #[rustc_const_unstable(feature = "f128", issue = "116909")]
1369    #[must_use = "method returns a new number and does not mutate the original value"]
1370    pub const fn copysign(self, sign: f128) -> f128 {
1371        intrinsics::copysignf128(self, sign)
1372    }
1373
1374    /// Float addition that allows optimizations based on algebraic rules.
1375    ///
1376    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1377    #[must_use = "method returns a new number and does not mutate the original value"]
1378    #[unstable(feature = "float_algebraic", issue = "136469")]
1379    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1380    #[inline]
1381    pub const fn algebraic_add(self, rhs: f128) -> f128 {
1382        intrinsics::fadd_algebraic(self, rhs)
1383    }
1384
1385    /// Float subtraction that allows optimizations based on algebraic rules.
1386    ///
1387    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1388    #[must_use = "method returns a new number and does not mutate the original value"]
1389    #[unstable(feature = "float_algebraic", issue = "136469")]
1390    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1391    #[inline]
1392    pub const fn algebraic_sub(self, rhs: f128) -> f128 {
1393        intrinsics::fsub_algebraic(self, rhs)
1394    }
1395
1396    /// Float multiplication that allows optimizations based on algebraic rules.
1397    ///
1398    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1399    #[must_use = "method returns a new number and does not mutate the original value"]
1400    #[unstable(feature = "float_algebraic", issue = "136469")]
1401    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1402    #[inline]
1403    pub const fn algebraic_mul(self, rhs: f128) -> f128 {
1404        intrinsics::fmul_algebraic(self, rhs)
1405    }
1406
1407    /// Float division that allows optimizations based on algebraic rules.
1408    ///
1409    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1410    #[must_use = "method returns a new number and does not mutate the original value"]
1411    #[unstable(feature = "float_algebraic", issue = "136469")]
1412    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1413    #[inline]
1414    pub const fn algebraic_div(self, rhs: f128) -> f128 {
1415        intrinsics::fdiv_algebraic(self, rhs)
1416    }
1417
1418    /// Float remainder that allows optimizations based on algebraic rules.
1419    ///
1420    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1421    #[must_use = "method returns a new number and does not mutate the original value"]
1422    #[unstable(feature = "float_algebraic", issue = "136469")]
1423    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1424    #[inline]
1425    pub const fn algebraic_rem(self, rhs: f128) -> f128 {
1426        intrinsics::frem_algebraic(self, rhs)
1427    }
1428}
1429
1430// Functions in this module fall into `core_float_math`
1431// FIXME(f16_f128): all doctests must be gated to platforms that have `long double` === `_Float128`
1432// due to https://github.com/llvm/llvm-project/issues/44744. aarch64 linux matches this.
1433// #[unstable(feature = "core_float_math", issue = "137578")]
1434#[cfg(not(test))]
1435#[doc(test(attr(feature(cfg_target_has_reliable_f16_f128), expect(internal_features))))]
1436impl f128 {
1437    /// Returns the largest integer less than or equal to `self`.
1438    ///
1439    /// This function always returns the precise result.
1440    ///
1441    /// # Examples
1442    ///
1443    /// ```
1444    /// #![feature(f128)]
1445    /// # #[cfg(not(miri))]
1446    /// # #[cfg(target_has_reliable_f128_math)] {
1447    ///
1448    /// let f = 3.7_f128;
1449    /// let g = 3.0_f128;
1450    /// let h = -3.7_f128;
1451    ///
1452    /// assert_eq!(f.floor(), 3.0);
1453    /// assert_eq!(g.floor(), 3.0);
1454    /// assert_eq!(h.floor(), -4.0);
1455    /// # }
1456    /// ```
1457    #[inline]
1458    #[rustc_allow_incoherent_impl]
1459    #[unstable(feature = "f128", issue = "116909")]
1460    #[rustc_const_unstable(feature = "f128", issue = "116909")]
1461    #[must_use = "method returns a new number and does not mutate the original value"]
1462    pub const fn floor(self) -> f128 {
1463        intrinsics::floorf128(self)
1464    }
1465
1466    /// Returns the smallest integer greater than or equal to `self`.
1467    ///
1468    /// This function always returns the precise result.
1469    ///
1470    /// # Examples
1471    ///
1472    /// ```
1473    /// #![feature(f128)]
1474    /// # #[cfg(not(miri))]
1475    /// # #[cfg(target_has_reliable_f128_math)] {
1476    ///
1477    /// let f = 3.01_f128;
1478    /// let g = 4.0_f128;
1479    ///
1480    /// assert_eq!(f.ceil(), 4.0);
1481    /// assert_eq!(g.ceil(), 4.0);
1482    /// # }
1483    /// ```
1484    #[inline]
1485    #[doc(alias = "ceiling")]
1486    #[rustc_allow_incoherent_impl]
1487    #[unstable(feature = "f128", issue = "116909")]
1488    #[rustc_const_unstable(feature = "f128", issue = "116909")]
1489    #[must_use = "method returns a new number and does not mutate the original value"]
1490    pub const fn ceil(self) -> f128 {
1491        intrinsics::ceilf128(self)
1492    }
1493
1494    /// Returns the nearest integer to `self`. If a value is half-way between two
1495    /// integers, round away from `0.0`.
1496    ///
1497    /// This function always returns the precise result.
1498    ///
1499    /// # Examples
1500    ///
1501    /// ```
1502    /// #![feature(f128)]
1503    /// # #[cfg(not(miri))]
1504    /// # #[cfg(target_has_reliable_f128_math)] {
1505    ///
1506    /// let f = 3.3_f128;
1507    /// let g = -3.3_f128;
1508    /// let h = -3.7_f128;
1509    /// let i = 3.5_f128;
1510    /// let j = 4.5_f128;
1511    ///
1512    /// assert_eq!(f.round(), 3.0);
1513    /// assert_eq!(g.round(), -3.0);
1514    /// assert_eq!(h.round(), -4.0);
1515    /// assert_eq!(i.round(), 4.0);
1516    /// assert_eq!(j.round(), 5.0);
1517    /// # }
1518    /// ```
1519    #[inline]
1520    #[rustc_allow_incoherent_impl]
1521    #[unstable(feature = "f128", issue = "116909")]
1522    #[rustc_const_unstable(feature = "f128", issue = "116909")]
1523    #[must_use = "method returns a new number and does not mutate the original value"]
1524    pub const fn round(self) -> f128 {
1525        intrinsics::roundf128(self)
1526    }
1527
1528    /// Returns the nearest integer to a number. Rounds half-way cases to the number
1529    /// with an even least significant digit.
1530    ///
1531    /// This function always returns the precise result.
1532    ///
1533    /// # Examples
1534    ///
1535    /// ```
1536    /// #![feature(f128)]
1537    /// # #[cfg(not(miri))]
1538    /// # #[cfg(target_has_reliable_f128_math)] {
1539    ///
1540    /// let f = 3.3_f128;
1541    /// let g = -3.3_f128;
1542    /// let h = 3.5_f128;
1543    /// let i = 4.5_f128;
1544    ///
1545    /// assert_eq!(f.round_ties_even(), 3.0);
1546    /// assert_eq!(g.round_ties_even(), -3.0);
1547    /// assert_eq!(h.round_ties_even(), 4.0);
1548    /// assert_eq!(i.round_ties_even(), 4.0);
1549    /// # }
1550    /// ```
1551    #[inline]
1552    #[rustc_allow_incoherent_impl]
1553    #[unstable(feature = "f128", issue = "116909")]
1554    #[rustc_const_unstable(feature = "f128", issue = "116909")]
1555    #[must_use = "method returns a new number and does not mutate the original value"]
1556    pub const fn round_ties_even(self) -> f128 {
1557        intrinsics::round_ties_even_f128(self)
1558    }
1559
1560    /// Returns the integer part of `self`.
1561    /// This means that non-integer numbers are always truncated towards zero.
1562    ///
1563    /// This function always returns the precise result.
1564    ///
1565    /// # Examples
1566    ///
1567    /// ```
1568    /// #![feature(f128)]
1569    /// # #[cfg(not(miri))]
1570    /// # #[cfg(target_has_reliable_f128_math)] {
1571    ///
1572    /// let f = 3.7_f128;
1573    /// let g = 3.0_f128;
1574    /// let h = -3.7_f128;
1575    ///
1576    /// assert_eq!(f.trunc(), 3.0);
1577    /// assert_eq!(g.trunc(), 3.0);
1578    /// assert_eq!(h.trunc(), -3.0);
1579    /// # }
1580    /// ```
1581    #[inline]
1582    #[doc(alias = "truncate")]
1583    #[rustc_allow_incoherent_impl]
1584    #[unstable(feature = "f128", issue = "116909")]
1585    #[rustc_const_unstable(feature = "f128", issue = "116909")]
1586    #[must_use = "method returns a new number and does not mutate the original value"]
1587    pub const fn trunc(self) -> f128 {
1588        intrinsics::truncf128(self)
1589    }
1590
1591    /// Returns the fractional part of `self`.
1592    ///
1593    /// This function always returns the precise result.
1594    ///
1595    /// # Examples
1596    ///
1597    /// ```
1598    /// #![feature(f128)]
1599    /// # #[cfg(not(miri))]
1600    /// # #[cfg(target_has_reliable_f128_math)] {
1601    ///
1602    /// let x = 3.6_f128;
1603    /// let y = -3.6_f128;
1604    /// let abs_difference_x = (x.fract() - 0.6).abs();
1605    /// let abs_difference_y = (y.fract() - (-0.6)).abs();
1606    ///
1607    /// assert!(abs_difference_x <= f128::EPSILON);
1608    /// assert!(abs_difference_y <= f128::EPSILON);
1609    /// # }
1610    /// ```
1611    #[inline]
1612    #[rustc_allow_incoherent_impl]
1613    #[unstable(feature = "f128", issue = "116909")]
1614    #[rustc_const_unstable(feature = "f128", issue = "116909")]
1615    #[must_use = "method returns a new number and does not mutate the original value"]
1616    pub const fn fract(self) -> f128 {
1617        self - self.trunc()
1618    }
1619
1620    /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
1621    /// error, yielding a more accurate result than an unfused multiply-add.
1622    ///
1623    /// Using `mul_add` *may* be more performant than an unfused multiply-add if
1624    /// the target architecture has a dedicated `fma` CPU instruction. However,
1625    /// this is not always true, and will be heavily dependant on designing
1626    /// algorithms with specific target hardware in mind.
1627    ///
1628    /// # Precision
1629    ///
1630    /// The result of this operation is guaranteed to be the rounded
1631    /// infinite-precision result. It is specified by IEEE 754 as
1632    /// `fusedMultiplyAdd` and guaranteed not to change.
1633    ///
1634    /// # Examples
1635    ///
1636    /// ```
1637    /// #![feature(f128)]
1638    /// # #[cfg(not(miri))]
1639    /// # #[cfg(target_has_reliable_f128_math)] {
1640    ///
1641    /// let m = 10.0_f128;
1642    /// let x = 4.0_f128;
1643    /// let b = 60.0_f128;
1644    ///
1645    /// assert_eq!(m.mul_add(x, b), 100.0);
1646    /// assert_eq!(m * x + b, 100.0);
1647    ///
1648    /// let one_plus_eps = 1.0_f128 + f128::EPSILON;
1649    /// let one_minus_eps = 1.0_f128 - f128::EPSILON;
1650    /// let minus_one = -1.0_f128;
1651    ///
1652    /// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps.
1653    /// assert_eq!(one_plus_eps.mul_add(one_minus_eps, minus_one), -f128::EPSILON * f128::EPSILON);
1654    /// // Different rounding with the non-fused multiply and add.
1655    /// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0);
1656    /// # }
1657    /// ```
1658    #[inline]
1659    #[rustc_allow_incoherent_impl]
1660    #[doc(alias = "fmaf128", alias = "fusedMultiplyAdd")]
1661    #[unstable(feature = "f128", issue = "116909")]
1662    #[must_use = "method returns a new number and does not mutate the original value"]
1663    #[rustc_const_unstable(feature = "const_mul_add", issue = "146724")]
1664    pub const fn mul_add(self, a: f128, b: f128) -> f128 {
1665        intrinsics::fmaf128(self, a, b)
1666    }
1667
1668    /// Calculates Euclidean division, the matching method for `rem_euclid`.
1669    ///
1670    /// This computes the integer `n` such that
1671    /// `self = n * rhs + self.rem_euclid(rhs)`.
1672    /// In other words, the result is `self / rhs` rounded to the integer `n`
1673    /// such that `self >= n * rhs`.
1674    ///
1675    /// # Precision
1676    ///
1677    /// The result of this operation is guaranteed to be the rounded
1678    /// infinite-precision result.
1679    ///
1680    /// # Examples
1681    ///
1682    /// ```
1683    /// #![feature(f128)]
1684    /// # #[cfg(not(miri))]
1685    /// # #[cfg(target_has_reliable_f128_math)] {
1686    ///
1687    /// let a: f128 = 7.0;
1688    /// let b = 4.0;
1689    /// assert_eq!(a.div_euclid(b), 1.0); // 7.0 > 4.0 * 1.0
1690    /// assert_eq!((-a).div_euclid(b), -2.0); // -7.0 >= 4.0 * -2.0
1691    /// assert_eq!(a.div_euclid(-b), -1.0); // 7.0 >= -4.0 * -1.0
1692    /// assert_eq!((-a).div_euclid(-b), 2.0); // -7.0 >= -4.0 * 2.0
1693    /// # }
1694    /// ```
1695    #[inline]
1696    #[rustc_allow_incoherent_impl]
1697    #[unstable(feature = "f128", issue = "116909")]
1698    #[must_use = "method returns a new number and does not mutate the original value"]
1699    pub fn div_euclid(self, rhs: f128) -> f128 {
1700        let q = (self / rhs).trunc();
1701        if self % rhs < 0.0 {
1702            return if rhs > 0.0 { q - 1.0 } else { q + 1.0 };
1703        }
1704        q
1705    }
1706
1707    /// Calculates the least nonnegative remainder of `self (mod rhs)`.
1708    ///
1709    /// In particular, the return value `r` satisfies `0.0 <= r < rhs.abs()` in
1710    /// most cases. However, due to a floating point round-off error it can
1711    /// result in `r == rhs.abs()`, violating the mathematical definition, if
1712    /// `self` is much smaller than `rhs.abs()` in magnitude and `self < 0.0`.
1713    /// This result is not an element of the function's codomain, but it is the
1714    /// closest floating point number in the real numbers and thus fulfills the
1715    /// property `self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)`
1716    /// approximately.
1717    ///
1718    /// # Precision
1719    ///
1720    /// The result of this operation is guaranteed to be the rounded
1721    /// infinite-precision result.
1722    ///
1723    /// # Examples
1724    ///
1725    /// ```
1726    /// #![feature(f128)]
1727    /// # #[cfg(not(miri))]
1728    /// # #[cfg(target_has_reliable_f128_math)] {
1729    ///
1730    /// let a: f128 = 7.0;
1731    /// let b = 4.0;
1732    /// assert_eq!(a.rem_euclid(b), 3.0);
1733    /// assert_eq!((-a).rem_euclid(b), 1.0);
1734    /// assert_eq!(a.rem_euclid(-b), 3.0);
1735    /// assert_eq!((-a).rem_euclid(-b), 1.0);
1736    /// // limitation due to round-off error
1737    /// assert!((-f128::EPSILON).rem_euclid(3.0) != 0.0);
1738    /// # }
1739    /// ```
1740    #[inline]
1741    #[rustc_allow_incoherent_impl]
1742    #[doc(alias = "modulo", alias = "mod")]
1743    #[unstable(feature = "f128", issue = "116909")]
1744    #[must_use = "method returns a new number and does not mutate the original value"]
1745    pub fn rem_euclid(self, rhs: f128) -> f128 {
1746        let r = self % rhs;
1747        if r < 0.0 { r + rhs.abs() } else { r }
1748    }
1749
1750    /// Raises a number to an integer power.
1751    ///
1752    /// Using this function is generally faster than using `powf`.
1753    /// It might have a different sequence of rounding operations than `powf`,
1754    /// so the results are not guaranteed to agree.
1755    ///
1756    /// # Unspecified precision
1757    ///
1758    /// The precision of this function is non-deterministic. This means it varies by platform,
1759    /// Rust version, and can even differ within the same execution from one invocation to the next.
1760    ///
1761    /// # Examples
1762    ///
1763    /// ```
1764    /// #![feature(f128)]
1765    /// # #[cfg(not(miri))]
1766    /// # #[cfg(target_has_reliable_f128_math)] {
1767    ///
1768    /// let x = 2.0_f128;
1769    /// let abs_difference = (x.powi(2) - (x * x)).abs();
1770    /// assert!(abs_difference <= f128::EPSILON);
1771    ///
1772    /// assert_eq!(f128::powi(f128::NAN, 0), 1.0);
1773    /// # }
1774    /// ```
1775    #[inline]
1776    #[rustc_allow_incoherent_impl]
1777    #[unstable(feature = "f128", issue = "116909")]
1778    #[must_use = "method returns a new number and does not mutate the original value"]
1779    pub fn powi(self, n: i32) -> f128 {
1780        intrinsics::powif128(self, n)
1781    }
1782
1783    /// Returns the square root of a number.
1784    ///
1785    /// Returns NaN if `self` is a negative number other than `-0.0`.
1786    ///
1787    /// # Precision
1788    ///
1789    /// The result of this operation is guaranteed to be the rounded
1790    /// infinite-precision result. It is specified by IEEE 754 as `squareRoot`
1791    /// and guaranteed not to change.
1792    ///
1793    /// # Examples
1794    ///
1795    /// ```
1796    /// #![feature(f128)]
1797    /// # #[cfg(not(miri))]
1798    /// # #[cfg(target_has_reliable_f128_math)] {
1799    ///
1800    /// let positive = 4.0_f128;
1801    /// let negative = -4.0_f128;
1802    /// let negative_zero = -0.0_f128;
1803    ///
1804    /// assert_eq!(positive.sqrt(), 2.0);
1805    /// assert!(negative.sqrt().is_nan());
1806    /// assert!(negative_zero.sqrt() == negative_zero);
1807    /// # }
1808    /// ```
1809    #[inline]
1810    #[doc(alias = "squareRoot")]
1811    #[rustc_allow_incoherent_impl]
1812    #[unstable(feature = "f128", issue = "116909")]
1813    #[must_use = "method returns a new number and does not mutate the original value"]
1814    pub fn sqrt(self) -> f128 {
1815        intrinsics::sqrtf128(self)
1816    }
1817}