core/num/f128.rs
1//! Constants for the `f128` quadruple-precision floating point type.
2//!
3//! *[See also the `f128` primitive type][f128].*
4//!
5//! Mathematically significant numbers are provided in the `consts` sub-module.
6//!
7//! For the constants defined directly in this module
8//! (as distinct from those defined in the `consts` sub-module),
9//! new code should instead use the associated constants
10//! defined directly on the `f128` type.
11
12#![unstable(feature = "f128", issue = "116909")]
13
14use crate::convert::FloatToInt;
15use crate::num::FpCategory;
16use crate::panic::const_assert;
17use crate::{intrinsics, mem};
18
19/// Basic mathematical constants.
20#[unstable(feature = "f128", issue = "116909")]
21pub mod consts {
22 // FIXME: replace with mathematical constants from cmath.
23
24 /// Archimedes' constant (π)
25 #[unstable(feature = "f128", issue = "116909")]
26 pub const PI: f128 = 3.14159265358979323846264338327950288419716939937510582097494_f128;
27
28 /// The full circle constant (τ)
29 ///
30 /// Equal to 2π.
31 #[unstable(feature = "f128", issue = "116909")]
32 pub const TAU: f128 = 6.28318530717958647692528676655900576839433879875021164194989_f128;
33
34 /// The golden ratio (φ)
35 #[unstable(feature = "f128", issue = "116909")]
36 // Also, #[unstable(feature = "more_float_constants", issue = "103883")]
37 pub const PHI: f128 = 1.61803398874989484820458683436563811772030917980576286213545_f128;
38
39 /// The Euler-Mascheroni constant (γ)
40 #[unstable(feature = "f128", issue = "116909")]
41 // Also, #[unstable(feature = "more_float_constants", issue = "103883")]
42 pub const EGAMMA: f128 = 0.577215664901532860606512090082402431042159335939923598805767_f128;
43
44 /// π/2
45 #[unstable(feature = "f128", issue = "116909")]
46 pub const FRAC_PI_2: f128 = 1.57079632679489661923132169163975144209858469968755291048747_f128;
47
48 /// π/3
49 #[unstable(feature = "f128", issue = "116909")]
50 pub const FRAC_PI_3: f128 = 1.04719755119659774615421446109316762806572313312503527365831_f128;
51
52 /// π/4
53 #[unstable(feature = "f128", issue = "116909")]
54 pub const FRAC_PI_4: f128 = 0.785398163397448309615660845819875721049292349843776455243736_f128;
55
56 /// π/6
57 #[unstable(feature = "f128", issue = "116909")]
58 pub const FRAC_PI_6: f128 = 0.523598775598298873077107230546583814032861566562517636829157_f128;
59
60 /// π/8
61 #[unstable(feature = "f128", issue = "116909")]
62 pub const FRAC_PI_8: f128 = 0.392699081698724154807830422909937860524646174921888227621868_f128;
63
64 /// 1/π
65 #[unstable(feature = "f128", issue = "116909")]
66 pub const FRAC_1_PI: f128 = 0.318309886183790671537767526745028724068919291480912897495335_f128;
67
68 /// 1/sqrt(π)
69 #[unstable(feature = "f128", issue = "116909")]
70 // Also, #[unstable(feature = "more_float_constants", issue = "103883")]
71 pub const FRAC_1_SQRT_PI: f128 =
72 0.564189583547756286948079451560772585844050629328998856844086_f128;
73
74 /// 1/sqrt(2π)
75 #[doc(alias = "FRAC_1_SQRT_TAU")]
76 #[unstable(feature = "f128", issue = "116909")]
77 // Also, #[unstable(feature = "more_float_constants", issue = "103883")]
78 pub const FRAC_1_SQRT_2PI: f128 =
79 0.398942280401432677939946059934381868475858631164934657665926_f128;
80
81 /// 2/π
82 #[unstable(feature = "f128", issue = "116909")]
83 pub const FRAC_2_PI: f128 = 0.636619772367581343075535053490057448137838582961825794990669_f128;
84
85 /// 2/sqrt(π)
86 #[unstable(feature = "f128", issue = "116909")]
87 pub const FRAC_2_SQRT_PI: f128 =
88 1.12837916709551257389615890312154517168810125865799771368817_f128;
89
90 /// sqrt(2)
91 #[unstable(feature = "f128", issue = "116909")]
92 pub const SQRT_2: f128 = 1.41421356237309504880168872420969807856967187537694807317668_f128;
93
94 /// 1/sqrt(2)
95 #[unstable(feature = "f128", issue = "116909")]
96 pub const FRAC_1_SQRT_2: f128 =
97 0.707106781186547524400844362104849039284835937688474036588340_f128;
98
99 /// sqrt(3)
100 #[unstable(feature = "f128", issue = "116909")]
101 // Also, #[unstable(feature = "more_float_constants", issue = "103883")]
102 pub const SQRT_3: f128 = 1.73205080756887729352744634150587236694280525381038062805581_f128;
103
104 /// 1/sqrt(3)
105 #[unstable(feature = "f128", issue = "116909")]
106 // Also, #[unstable(feature = "more_float_constants", issue = "103883")]
107 pub const FRAC_1_SQRT_3: f128 =
108 0.577350269189625764509148780501957455647601751270126876018602_f128;
109
110 /// Euler's number (e)
111 #[unstable(feature = "f128", issue = "116909")]
112 pub const E: f128 = 2.71828182845904523536028747135266249775724709369995957496697_f128;
113
114 /// log<sub>2</sub>(10)
115 #[unstable(feature = "f128", issue = "116909")]
116 pub const LOG2_10: f128 = 3.32192809488736234787031942948939017586483139302458061205476_f128;
117
118 /// log<sub>2</sub>(e)
119 #[unstable(feature = "f128", issue = "116909")]
120 pub const LOG2_E: f128 = 1.44269504088896340735992468100189213742664595415298593413545_f128;
121
122 /// log<sub>10</sub>(2)
123 #[unstable(feature = "f128", issue = "116909")]
124 pub const LOG10_2: f128 = 0.301029995663981195213738894724493026768189881462108541310427_f128;
125
126 /// log<sub>10</sub>(e)
127 #[unstable(feature = "f128", issue = "116909")]
128 pub const LOG10_E: f128 = 0.434294481903251827651128918916605082294397005803666566114454_f128;
129
130 /// ln(2)
131 #[unstable(feature = "f128", issue = "116909")]
132 pub const LN_2: f128 = 0.693147180559945309417232121458176568075500134360255254120680_f128;
133
134 /// ln(10)
135 #[unstable(feature = "f128", issue = "116909")]
136 pub const LN_10: f128 = 2.30258509299404568401799145468436420760110148862877297603333_f128;
137}
138
139impl f128 {
140 // FIXME(f16_f128): almost all methods in this `impl` are missing examples and a const
141 // implementation. Add these once we can run code on all platforms and have f16/f128 in CTFE.
142
143 /// The radix or base of the internal representation of `f128`.
144 #[unstable(feature = "f128", issue = "116909")]
145 pub const RADIX: u32 = 2;
146
147 /// Number of significant digits in base 2.
148 #[unstable(feature = "f128", issue = "116909")]
149 pub const MANTISSA_DIGITS: u32 = 113;
150
151 /// Approximate number of significant digits in base 10.
152 ///
153 /// This is the maximum <i>x</i> such that any decimal number with <i>x</i>
154 /// significant digits can be converted to `f128` and back without loss.
155 ///
156 /// Equal to floor(log<sub>10</sub> 2<sup>[`MANTISSA_DIGITS`] − 1</sup>).
157 ///
158 /// [`MANTISSA_DIGITS`]: f128::MANTISSA_DIGITS
159 #[unstable(feature = "f128", issue = "116909")]
160 pub const DIGITS: u32 = 33;
161
162 /// [Machine epsilon] value for `f128`.
163 ///
164 /// This is the difference between `1.0` and the next larger representable number.
165 ///
166 /// Equal to 2<sup>1 − [`MANTISSA_DIGITS`]</sup>.
167 ///
168 /// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
169 /// [`MANTISSA_DIGITS`]: f128::MANTISSA_DIGITS
170 #[unstable(feature = "f128", issue = "116909")]
171 pub const EPSILON: f128 = 1.92592994438723585305597794258492732e-34_f128;
172
173 /// Smallest finite `f128` value.
174 ///
175 /// Equal to −[`MAX`].
176 ///
177 /// [`MAX`]: f128::MAX
178 #[unstable(feature = "f128", issue = "116909")]
179 pub const MIN: f128 = -1.18973149535723176508575932662800702e+4932_f128;
180 /// Smallest positive normal `f128` value.
181 ///
182 /// Equal to 2<sup>[`MIN_EXP`] − 1</sup>.
183 ///
184 /// [`MIN_EXP`]: f128::MIN_EXP
185 #[unstable(feature = "f128", issue = "116909")]
186 pub const MIN_POSITIVE: f128 = 3.36210314311209350626267781732175260e-4932_f128;
187 /// Largest finite `f128` value.
188 ///
189 /// Equal to
190 /// (1 − 2<sup>−[`MANTISSA_DIGITS`]</sup>) 2<sup>[`MAX_EXP`]</sup>.
191 ///
192 /// [`MANTISSA_DIGITS`]: f128::MANTISSA_DIGITS
193 /// [`MAX_EXP`]: f128::MAX_EXP
194 #[unstable(feature = "f128", issue = "116909")]
195 pub const MAX: f128 = 1.18973149535723176508575932662800702e+4932_f128;
196
197 /// One greater than the minimum possible normal power of 2 exponent.
198 ///
199 /// If <i>x</i> = `MIN_EXP`, then normal numbers
200 /// ≥ 0.5 × 2<sup><i>x</i></sup>.
201 #[unstable(feature = "f128", issue = "116909")]
202 pub const MIN_EXP: i32 = -16_381;
203 /// Maximum possible power of 2 exponent.
204 ///
205 /// If <i>x</i> = `MAX_EXP`, then normal numbers
206 /// < 1 × 2<sup><i>x</i></sup>.
207 #[unstable(feature = "f128", issue = "116909")]
208 pub const MAX_EXP: i32 = 16_384;
209
210 /// Minimum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
211 ///
212 /// Equal to ceil(log<sub>10</sub> [`MIN_POSITIVE`]).
213 ///
214 /// [`MIN_POSITIVE`]: f128::MIN_POSITIVE
215 #[unstable(feature = "f128", issue = "116909")]
216 pub const MIN_10_EXP: i32 = -4_931;
217 /// Maximum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
218 ///
219 /// Equal to floor(log<sub>10</sub> [`MAX`]).
220 ///
221 /// [`MAX`]: f128::MAX
222 #[unstable(feature = "f128", issue = "116909")]
223 pub const MAX_10_EXP: i32 = 4_932;
224
225 /// Not a Number (NaN).
226 ///
227 /// Note that IEEE 754 doesn't define just a single NaN value; a plethora of bit patterns are
228 /// considered to be NaN. Furthermore, the standard makes a difference between a "signaling" and
229 /// a "quiet" NaN, and allows inspecting its "payload" (the unspecified bits in the bit pattern)
230 /// and its sign. See the [specification of NaN bit patterns](f32#nan-bit-patterns) for more
231 /// info.
232 ///
233 /// This constant is guaranteed to be a quiet NaN (on targets that follow the Rust assumptions
234 /// that the quiet/signaling bit being set to 1 indicates a quiet NaN). Beyond that, nothing is
235 /// guaranteed about the specific bit pattern chosen here: both payload and sign are arbitrary.
236 /// The concrete bit pattern may change across Rust versions and target platforms.
237 #[allow(clippy::eq_op)]
238 #[rustc_diagnostic_item = "f128_nan"]
239 #[unstable(feature = "f128", issue = "116909")]
240 pub const NAN: f128 = 0.0_f128 / 0.0_f128;
241
242 /// Infinity (∞).
243 #[unstable(feature = "f128", issue = "116909")]
244 pub const INFINITY: f128 = 1.0_f128 / 0.0_f128;
245
246 /// Negative infinity (−∞).
247 #[unstable(feature = "f128", issue = "116909")]
248 pub const NEG_INFINITY: f128 = -1.0_f128 / 0.0_f128;
249
250 /// Sign bit
251 pub(crate) const SIGN_MASK: u128 = 0x8000_0000_0000_0000_0000_0000_0000_0000;
252
253 /// Exponent mask
254 pub(crate) const EXP_MASK: u128 = 0x7fff_0000_0000_0000_0000_0000_0000_0000;
255
256 /// Mantissa mask
257 pub(crate) const MAN_MASK: u128 = 0x0000_ffff_ffff_ffff_ffff_ffff_ffff_ffff;
258
259 /// Minimum representable positive value (min subnormal)
260 const TINY_BITS: u128 = 0x1;
261
262 /// Minimum representable negative value (min negative subnormal)
263 const NEG_TINY_BITS: u128 = Self::TINY_BITS | Self::SIGN_MASK;
264
265 /// Returns `true` if this value is NaN.
266 ///
267 /// ```
268 /// #![feature(f128)]
269 /// # // FIXME(f16_f128): remove when `unordtf2` is available
270 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
271 ///
272 /// let nan = f128::NAN;
273 /// let f = 7.0_f128;
274 ///
275 /// assert!(nan.is_nan());
276 /// assert!(!f.is_nan());
277 /// # }
278 /// ```
279 #[inline]
280 #[must_use]
281 #[unstable(feature = "f128", issue = "116909")]
282 #[allow(clippy::eq_op)] // > if you intended to check if the operand is NaN, use `.is_nan()` instead :)
283 pub const fn is_nan(self) -> bool {
284 self != self
285 }
286
287 /// Returns `true` if this value is positive infinity or negative infinity, and
288 /// `false` otherwise.
289 ///
290 /// ```
291 /// #![feature(f128)]
292 /// # // FIXME(f16_f128): remove when `eqtf2` is available
293 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
294 ///
295 /// let f = 7.0f128;
296 /// let inf = f128::INFINITY;
297 /// let neg_inf = f128::NEG_INFINITY;
298 /// let nan = f128::NAN;
299 ///
300 /// assert!(!f.is_infinite());
301 /// assert!(!nan.is_infinite());
302 ///
303 /// assert!(inf.is_infinite());
304 /// assert!(neg_inf.is_infinite());
305 /// # }
306 /// ```
307 #[inline]
308 #[must_use]
309 #[unstable(feature = "f128", issue = "116909")]
310 pub const fn is_infinite(self) -> bool {
311 (self == f128::INFINITY) | (self == f128::NEG_INFINITY)
312 }
313
314 /// Returns `true` if this number is neither infinite nor NaN.
315 ///
316 /// ```
317 /// #![feature(f128)]
318 /// # // FIXME(f16_f128): remove when `lttf2` is available
319 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
320 ///
321 /// let f = 7.0f128;
322 /// let inf: f128 = f128::INFINITY;
323 /// let neg_inf: f128 = f128::NEG_INFINITY;
324 /// let nan: f128 = f128::NAN;
325 ///
326 /// assert!(f.is_finite());
327 ///
328 /// assert!(!nan.is_finite());
329 /// assert!(!inf.is_finite());
330 /// assert!(!neg_inf.is_finite());
331 /// # }
332 /// ```
333 #[inline]
334 #[must_use]
335 #[unstable(feature = "f128", issue = "116909")]
336 #[rustc_const_unstable(feature = "f128", issue = "116909")]
337 pub const fn is_finite(self) -> bool {
338 // There's no need to handle NaN separately: if self is NaN,
339 // the comparison is not true, exactly as desired.
340 self.abs() < Self::INFINITY
341 }
342
343 /// Returns `true` if the number is [subnormal].
344 ///
345 /// ```
346 /// #![feature(f128)]
347 /// # // FIXME(f16_f128): remove when `eqtf2` is available
348 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
349 ///
350 /// let min = f128::MIN_POSITIVE; // 3.362103143e-4932f128
351 /// let max = f128::MAX;
352 /// let lower_than_min = 1.0e-4960_f128;
353 /// let zero = 0.0_f128;
354 ///
355 /// assert!(!min.is_subnormal());
356 /// assert!(!max.is_subnormal());
357 ///
358 /// assert!(!zero.is_subnormal());
359 /// assert!(!f128::NAN.is_subnormal());
360 /// assert!(!f128::INFINITY.is_subnormal());
361 /// // Values between `0` and `min` are Subnormal.
362 /// assert!(lower_than_min.is_subnormal());
363 /// # }
364 /// ```
365 ///
366 /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
367 #[inline]
368 #[must_use]
369 #[unstable(feature = "f128", issue = "116909")]
370 pub const fn is_subnormal(self) -> bool {
371 matches!(self.classify(), FpCategory::Subnormal)
372 }
373
374 /// Returns `true` if the number is neither zero, infinite, [subnormal], or NaN.
375 ///
376 /// ```
377 /// #![feature(f128)]
378 /// # // FIXME(f16_f128): remove when `eqtf2` is available
379 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
380 ///
381 /// let min = f128::MIN_POSITIVE; // 3.362103143e-4932f128
382 /// let max = f128::MAX;
383 /// let lower_than_min = 1.0e-4960_f128;
384 /// let zero = 0.0_f128;
385 ///
386 /// assert!(min.is_normal());
387 /// assert!(max.is_normal());
388 ///
389 /// assert!(!zero.is_normal());
390 /// assert!(!f128::NAN.is_normal());
391 /// assert!(!f128::INFINITY.is_normal());
392 /// // Values between `0` and `min` are Subnormal.
393 /// assert!(!lower_than_min.is_normal());
394 /// # }
395 /// ```
396 ///
397 /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
398 #[inline]
399 #[must_use]
400 #[unstable(feature = "f128", issue = "116909")]
401 pub const fn is_normal(self) -> bool {
402 matches!(self.classify(), FpCategory::Normal)
403 }
404
405 /// Returns the floating point category of the number. If only one property
406 /// is going to be tested, it is generally faster to use the specific
407 /// predicate instead.
408 ///
409 /// ```
410 /// #![feature(f128)]
411 /// # // FIXME(f16_f128): remove when `eqtf2` is available
412 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
413 ///
414 /// use std::num::FpCategory;
415 ///
416 /// let num = 12.4_f128;
417 /// let inf = f128::INFINITY;
418 ///
419 /// assert_eq!(num.classify(), FpCategory::Normal);
420 /// assert_eq!(inf.classify(), FpCategory::Infinite);
421 /// # }
422 /// ```
423 #[inline]
424 #[unstable(feature = "f128", issue = "116909")]
425 pub const fn classify(self) -> FpCategory {
426 let bits = self.to_bits();
427 match (bits & Self::MAN_MASK, bits & Self::EXP_MASK) {
428 (0, Self::EXP_MASK) => FpCategory::Infinite,
429 (_, Self::EXP_MASK) => FpCategory::Nan,
430 (0, 0) => FpCategory::Zero,
431 (_, 0) => FpCategory::Subnormal,
432 _ => FpCategory::Normal,
433 }
434 }
435
436 /// Returns `true` if `self` has a positive sign, including `+0.0`, NaNs with
437 /// positive sign bit and positive infinity.
438 ///
439 /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of
440 /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are
441 /// conserved over arithmetic operations, the result of `is_sign_positive` on
442 /// a NaN might produce an unexpected or non-portable result. See the [specification
443 /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == 1.0`
444 /// if you need fully portable behavior (will return `false` for all NaNs).
445 ///
446 /// ```
447 /// #![feature(f128)]
448 ///
449 /// let f = 7.0_f128;
450 /// let g = -7.0_f128;
451 ///
452 /// assert!(f.is_sign_positive());
453 /// assert!(!g.is_sign_positive());
454 /// ```
455 #[inline]
456 #[must_use]
457 #[unstable(feature = "f128", issue = "116909")]
458 pub const fn is_sign_positive(self) -> bool {
459 !self.is_sign_negative()
460 }
461
462 /// Returns `true` if `self` has a negative sign, including `-0.0`, NaNs with
463 /// negative sign bit and negative infinity.
464 ///
465 /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of
466 /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are
467 /// conserved over arithmetic operations, the result of `is_sign_negative` on
468 /// a NaN might produce an unexpected or non-portable result. See the [specification
469 /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == -1.0`
470 /// if you need fully portable behavior (will return `false` for all NaNs).
471 ///
472 /// ```
473 /// #![feature(f128)]
474 ///
475 /// let f = 7.0_f128;
476 /// let g = -7.0_f128;
477 ///
478 /// assert!(!f.is_sign_negative());
479 /// assert!(g.is_sign_negative());
480 /// ```
481 #[inline]
482 #[must_use]
483 #[unstable(feature = "f128", issue = "116909")]
484 pub const fn is_sign_negative(self) -> bool {
485 // IEEE754 says: isSignMinus(x) is true if and only if x has negative sign. isSignMinus
486 // applies to zeros and NaNs as well.
487 // SAFETY: This is just transmuting to get the sign bit, it's fine.
488 (self.to_bits() & (1 << 127)) != 0
489 }
490
491 /// Returns the least number greater than `self`.
492 ///
493 /// Let `TINY` be the smallest representable positive `f128`. Then,
494 /// - if `self.is_nan()`, this returns `self`;
495 /// - if `self` is [`NEG_INFINITY`], this returns [`MIN`];
496 /// - if `self` is `-TINY`, this returns -0.0;
497 /// - if `self` is -0.0 or +0.0, this returns `TINY`;
498 /// - if `self` is [`MAX`] or [`INFINITY`], this returns [`INFINITY`];
499 /// - otherwise the unique least value greater than `self` is returned.
500 ///
501 /// The identity `x.next_up() == -(-x).next_down()` holds for all non-NaN `x`. When `x`
502 /// is finite `x == x.next_up().next_down()` also holds.
503 ///
504 /// ```rust
505 /// #![feature(f128)]
506 /// # // FIXME(f16_f128): remove when `eqtf2` is available
507 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
508 ///
509 /// // f128::EPSILON is the difference between 1.0 and the next number up.
510 /// assert_eq!(1.0f128.next_up(), 1.0 + f128::EPSILON);
511 /// // But not for most numbers.
512 /// assert!(0.1f128.next_up() < 0.1 + f128::EPSILON);
513 /// assert_eq!(4611686018427387904f128.next_up(), 4611686018427387904.000000000000001);
514 /// # }
515 /// ```
516 ///
517 /// This operation corresponds to IEEE-754 `nextUp`.
518 ///
519 /// [`NEG_INFINITY`]: Self::NEG_INFINITY
520 /// [`INFINITY`]: Self::INFINITY
521 /// [`MIN`]: Self::MIN
522 /// [`MAX`]: Self::MAX
523 #[inline]
524 #[doc(alias = "nextUp")]
525 #[unstable(feature = "f128", issue = "116909")]
526 pub const fn next_up(self) -> Self {
527 // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing
528 // denormals to zero. This is in general unsound and unsupported, but here
529 // we do our best to still produce the correct result on such targets.
530 let bits = self.to_bits();
531 if self.is_nan() || bits == Self::INFINITY.to_bits() {
532 return self;
533 }
534
535 let abs = bits & !Self::SIGN_MASK;
536 let next_bits = if abs == 0 {
537 Self::TINY_BITS
538 } else if bits == abs {
539 bits + 1
540 } else {
541 bits - 1
542 };
543 Self::from_bits(next_bits)
544 }
545
546 /// Returns the greatest number less than `self`.
547 ///
548 /// Let `TINY` be the smallest representable positive `f128`. Then,
549 /// - if `self.is_nan()`, this returns `self`;
550 /// - if `self` is [`INFINITY`], this returns [`MAX`];
551 /// - if `self` is `TINY`, this returns 0.0;
552 /// - if `self` is -0.0 or +0.0, this returns `-TINY`;
553 /// - if `self` is [`MIN`] or [`NEG_INFINITY`], this returns [`NEG_INFINITY`];
554 /// - otherwise the unique greatest value less than `self` is returned.
555 ///
556 /// The identity `x.next_down() == -(-x).next_up()` holds for all non-NaN `x`. When `x`
557 /// is finite `x == x.next_down().next_up()` also holds.
558 ///
559 /// ```rust
560 /// #![feature(f128)]
561 /// # // FIXME(f16_f128): remove when `eqtf2` is available
562 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
563 ///
564 /// let x = 1.0f128;
565 /// // Clamp value into range [0, 1).
566 /// let clamped = x.clamp(0.0, 1.0f128.next_down());
567 /// assert!(clamped < 1.0);
568 /// assert_eq!(clamped.next_up(), 1.0);
569 /// # }
570 /// ```
571 ///
572 /// This operation corresponds to IEEE-754 `nextDown`.
573 ///
574 /// [`NEG_INFINITY`]: Self::NEG_INFINITY
575 /// [`INFINITY`]: Self::INFINITY
576 /// [`MIN`]: Self::MIN
577 /// [`MAX`]: Self::MAX
578 #[inline]
579 #[doc(alias = "nextDown")]
580 #[unstable(feature = "f128", issue = "116909")]
581 pub const fn next_down(self) -> Self {
582 // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing
583 // denormals to zero. This is in general unsound and unsupported, but here
584 // we do our best to still produce the correct result on such targets.
585 let bits = self.to_bits();
586 if self.is_nan() || bits == Self::NEG_INFINITY.to_bits() {
587 return self;
588 }
589
590 let abs = bits & !Self::SIGN_MASK;
591 let next_bits = if abs == 0 {
592 Self::NEG_TINY_BITS
593 } else if bits == abs {
594 bits - 1
595 } else {
596 bits + 1
597 };
598 Self::from_bits(next_bits)
599 }
600
601 /// Takes the reciprocal (inverse) of a number, `1/x`.
602 ///
603 /// ```
604 /// #![feature(f128)]
605 /// # // FIXME(f16_f128): remove when `eqtf2` is available
606 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
607 ///
608 /// let x = 2.0_f128;
609 /// let abs_difference = (x.recip() - (1.0 / x)).abs();
610 ///
611 /// assert!(abs_difference <= f128::EPSILON);
612 /// # }
613 /// ```
614 #[inline]
615 #[unstable(feature = "f128", issue = "116909")]
616 #[must_use = "this returns the result of the operation, without modifying the original"]
617 pub const fn recip(self) -> Self {
618 1.0 / self
619 }
620
621 /// Converts radians to degrees.
622 ///
623 /// ```
624 /// #![feature(f128)]
625 /// # // FIXME(f16_f128): remove when `eqtf2` is available
626 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
627 ///
628 /// let angle = std::f128::consts::PI;
629 ///
630 /// let abs_difference = (angle.to_degrees() - 180.0).abs();
631 /// assert!(abs_difference <= f128::EPSILON);
632 /// # }
633 /// ```
634 #[inline]
635 #[unstable(feature = "f128", issue = "116909")]
636 #[must_use = "this returns the result of the operation, without modifying the original"]
637 pub const fn to_degrees(self) -> Self {
638 // Use a literal for better precision.
639 const PIS_IN_180: f128 = 57.2957795130823208767981548141051703324054724665643215491602_f128;
640 self * PIS_IN_180
641 }
642
643 /// Converts degrees to radians.
644 ///
645 /// ```
646 /// #![feature(f128)]
647 /// # // FIXME(f16_f128): remove when `eqtf2` is available
648 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
649 ///
650 /// let angle = 180.0f128;
651 ///
652 /// let abs_difference = (angle.to_radians() - std::f128::consts::PI).abs();
653 ///
654 /// assert!(abs_difference <= 1e-30);
655 /// # }
656 /// ```
657 #[inline]
658 #[unstable(feature = "f128", issue = "116909")]
659 #[must_use = "this returns the result of the operation, without modifying the original"]
660 pub const fn to_radians(self) -> f128 {
661 // Use a literal for better precision.
662 const RADS_PER_DEG: f128 =
663 0.0174532925199432957692369076848861271344287188854172545609719_f128;
664 self * RADS_PER_DEG
665 }
666
667 /// Returns the maximum of the two numbers, ignoring NaN.
668 ///
669 /// If one of the arguments is NaN, then the other argument is returned.
670 /// This follows the IEEE 754-2008 semantics for maxNum, except for handling of signaling NaNs;
671 /// this function handles all NaNs the same way and avoids maxNum's problems with associativity.
672 /// This also matches the behavior of libm’s fmax. In particular, if the inputs compare equal
673 /// (such as for the case of `+0.0` and `-0.0`), either input may be returned non-deterministically.
674 ///
675 /// ```
676 /// #![feature(f128)]
677 /// # // Using aarch64 because `reliable_f128_math` is needed
678 /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
679 ///
680 /// let x = 1.0f128;
681 /// let y = 2.0f128;
682 ///
683 /// assert_eq!(x.max(y), y);
684 /// # }
685 /// ```
686 #[inline]
687 #[unstable(feature = "f128", issue = "116909")]
688 #[rustc_const_unstable(feature = "f128", issue = "116909")]
689 #[must_use = "this returns the result of the comparison, without modifying either input"]
690 pub const fn max(self, other: f128) -> f128 {
691 intrinsics::maxnumf128(self, other)
692 }
693
694 /// Returns the minimum of the two numbers, ignoring NaN.
695 ///
696 /// If one of the arguments is NaN, then the other argument is returned.
697 /// This follows the IEEE 754-2008 semantics for minNum, except for handling of signaling NaNs;
698 /// this function handles all NaNs the same way and avoids minNum's problems with associativity.
699 /// This also matches the behavior of libm’s fmin. In particular, if the inputs compare equal
700 /// (such as for the case of `+0.0` and `-0.0`), either input may be returned non-deterministically.
701 ///
702 /// ```
703 /// #![feature(f128)]
704 /// # // Using aarch64 because `reliable_f128_math` is needed
705 /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
706 ///
707 /// let x = 1.0f128;
708 /// let y = 2.0f128;
709 ///
710 /// assert_eq!(x.min(y), x);
711 /// # }
712 /// ```
713 #[inline]
714 #[unstable(feature = "f128", issue = "116909")]
715 #[rustc_const_unstable(feature = "f128", issue = "116909")]
716 #[must_use = "this returns the result of the comparison, without modifying either input"]
717 pub const fn min(self, other: f128) -> f128 {
718 intrinsics::minnumf128(self, other)
719 }
720
721 /// Returns the maximum of the two numbers, propagating NaN.
722 ///
723 /// This returns NaN when *either* argument is NaN, as opposed to
724 /// [`f128::max`] which only returns NaN when *both* arguments are NaN.
725 ///
726 /// ```
727 /// #![feature(f128)]
728 /// #![feature(float_minimum_maximum)]
729 /// # // Using aarch64 because `reliable_f128_math` is needed
730 /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
731 ///
732 /// let x = 1.0f128;
733 /// let y = 2.0f128;
734 ///
735 /// assert_eq!(x.maximum(y), y);
736 /// assert!(x.maximum(f128::NAN).is_nan());
737 /// # }
738 /// ```
739 ///
740 /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the greater
741 /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0.
742 /// Note that this follows the semantics specified in IEEE 754-2019.
743 ///
744 /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN
745 /// operand is conserved; see the [specification of NaN bit patterns](f32#nan-bit-patterns) for more info.
746 #[inline]
747 #[unstable(feature = "f128", issue = "116909")]
748 // #[unstable(feature = "float_minimum_maximum", issue = "91079")]
749 #[must_use = "this returns the result of the comparison, without modifying either input"]
750 pub const fn maximum(self, other: f128) -> f128 {
751 if self > other {
752 self
753 } else if other > self {
754 other
755 } else if self == other {
756 if self.is_sign_positive() && other.is_sign_negative() { self } else { other }
757 } else {
758 self + other
759 }
760 }
761
762 /// Returns the minimum of the two numbers, propagating NaN.
763 ///
764 /// This returns NaN when *either* argument is NaN, as opposed to
765 /// [`f128::min`] which only returns NaN when *both* arguments are NaN.
766 ///
767 /// ```
768 /// #![feature(f128)]
769 /// #![feature(float_minimum_maximum)]
770 /// # // Using aarch64 because `reliable_f128_math` is needed
771 /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
772 ///
773 /// let x = 1.0f128;
774 /// let y = 2.0f128;
775 ///
776 /// assert_eq!(x.minimum(y), x);
777 /// assert!(x.minimum(f128::NAN).is_nan());
778 /// # }
779 /// ```
780 ///
781 /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the lesser
782 /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0.
783 /// Note that this follows the semantics specified in IEEE 754-2019.
784 ///
785 /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN
786 /// operand is conserved; see the [specification of NaN bit patterns](f32#nan-bit-patterns) for more info.
787 #[inline]
788 #[unstable(feature = "f128", issue = "116909")]
789 // #[unstable(feature = "float_minimum_maximum", issue = "91079")]
790 #[must_use = "this returns the result of the comparison, without modifying either input"]
791 pub const fn minimum(self, other: f128) -> f128 {
792 if self < other {
793 self
794 } else if other < self {
795 other
796 } else if self == other {
797 if self.is_sign_negative() && other.is_sign_positive() { self } else { other }
798 } else {
799 // At least one input is NaN. Use `+` to perform NaN propagation and quieting.
800 self + other
801 }
802 }
803
804 /// Calculates the middle point of `self` and `rhs`.
805 ///
806 /// This returns NaN when *either* argument is NaN or if a combination of
807 /// +inf and -inf is provided as arguments.
808 ///
809 /// # Examples
810 ///
811 /// ```
812 /// #![feature(f128)]
813 /// # // Using aarch64 because `reliable_f128_math` is needed
814 /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
815 ///
816 /// assert_eq!(1f128.midpoint(4.0), 2.5);
817 /// assert_eq!((-5.5f128).midpoint(8.0), 1.25);
818 /// # }
819 /// ```
820 #[inline]
821 #[unstable(feature = "f128", issue = "116909")]
822 #[rustc_const_unstable(feature = "f128", issue = "116909")]
823 pub const fn midpoint(self, other: f128) -> f128 {
824 const LO: f128 = f128::MIN_POSITIVE * 2.;
825 const HI: f128 = f128::MAX / 2.;
826
827 let (a, b) = (self, other);
828 let abs_a = a.abs();
829 let abs_b = b.abs();
830
831 if abs_a <= HI && abs_b <= HI {
832 // Overflow is impossible
833 (a + b) / 2.
834 } else if abs_a < LO {
835 // Not safe to halve `a` (would underflow)
836 a + (b / 2.)
837 } else if abs_b < LO {
838 // Not safe to halve `b` (would underflow)
839 (a / 2.) + b
840 } else {
841 // Safe to halve `a` and `b`
842 (a / 2.) + (b / 2.)
843 }
844 }
845
846 /// Rounds toward zero and converts to any primitive integer type,
847 /// assuming that the value is finite and fits in that type.
848 ///
849 /// ```
850 /// #![feature(f128)]
851 /// # // FIXME(f16_f128): remove when `float*itf` is available
852 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
853 ///
854 /// let value = 4.6_f128;
855 /// let rounded = unsafe { value.to_int_unchecked::<u16>() };
856 /// assert_eq!(rounded, 4);
857 ///
858 /// let value = -128.9_f128;
859 /// let rounded = unsafe { value.to_int_unchecked::<i8>() };
860 /// assert_eq!(rounded, i8::MIN);
861 /// # }
862 /// ```
863 ///
864 /// # Safety
865 ///
866 /// The value must:
867 ///
868 /// * Not be `NaN`
869 /// * Not be infinite
870 /// * Be representable in the return type `Int`, after truncating off its fractional part
871 #[inline]
872 #[unstable(feature = "f128", issue = "116909")]
873 #[must_use = "this returns the result of the operation, without modifying the original"]
874 pub unsafe fn to_int_unchecked<Int>(self) -> Int
875 where
876 Self: FloatToInt<Int>,
877 {
878 // SAFETY: the caller must uphold the safety contract for
879 // `FloatToInt::to_int_unchecked`.
880 unsafe { FloatToInt::<Int>::to_int_unchecked(self) }
881 }
882
883 /// Raw transmutation to `u128`.
884 ///
885 /// This is currently identical to `transmute::<f128, u128>(self)` on all platforms.
886 ///
887 /// See [`from_bits`](#method.from_bits) for some discussion of the
888 /// portability of this operation (there are almost no issues).
889 ///
890 /// Note that this function is distinct from `as` casting, which attempts to
891 /// preserve the *numeric* value, and not the bitwise value.
892 ///
893 /// ```
894 /// #![feature(f128)]
895 ///
896 /// # // FIXME(f16_f128): enable this once const casting works
897 /// # // assert_ne!((1f128).to_bits(), 1f128 as u128); // to_bits() is not casting!
898 /// assert_eq!((12.5f128).to_bits(), 0x40029000000000000000000000000000);
899 /// ```
900 #[inline]
901 #[unstable(feature = "f128", issue = "116909")]
902 #[must_use = "this returns the result of the operation, without modifying the original"]
903 pub const fn to_bits(self) -> u128 {
904 // SAFETY: `u128` is a plain old datatype so we can always transmute to it.
905 unsafe { mem::transmute(self) }
906 }
907
908 /// Raw transmutation from `u128`.
909 ///
910 /// This is currently identical to `transmute::<u128, f128>(v)` on all platforms.
911 /// It turns out this is incredibly portable, for two reasons:
912 ///
913 /// * Floats and Ints have the same endianness on all supported platforms.
914 /// * IEEE 754 very precisely specifies the bit layout of floats.
915 ///
916 /// However there is one caveat: prior to the 2008 version of IEEE 754, how
917 /// to interpret the NaN signaling bit wasn't actually specified. Most platforms
918 /// (notably x86 and ARM) picked the interpretation that was ultimately
919 /// standardized in 2008, but some didn't (notably MIPS). As a result, all
920 /// signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa.
921 ///
922 /// Rather than trying to preserve signaling-ness cross-platform, this
923 /// implementation favors preserving the exact bits. This means that
924 /// any payloads encoded in NaNs will be preserved even if the result of
925 /// this method is sent over the network from an x86 machine to a MIPS one.
926 ///
927 /// If the results of this method are only manipulated by the same
928 /// architecture that produced them, then there is no portability concern.
929 ///
930 /// If the input isn't NaN, then there is no portability concern.
931 ///
932 /// If you don't care about signalingness (very likely), then there is no
933 /// portability concern.
934 ///
935 /// Note that this function is distinct from `as` casting, which attempts to
936 /// preserve the *numeric* value, and not the bitwise value.
937 ///
938 /// ```
939 /// #![feature(f128)]
940 /// # // FIXME(f16_f128): remove when `eqtf2` is available
941 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
942 ///
943 /// let v = f128::from_bits(0x40029000000000000000000000000000);
944 /// assert_eq!(v, 12.5);
945 /// # }
946 /// ```
947 #[inline]
948 #[must_use]
949 #[unstable(feature = "f128", issue = "116909")]
950 pub const fn from_bits(v: u128) -> Self {
951 // It turns out the safety issues with sNaN were overblown! Hooray!
952 // SAFETY: `u128` is a plain old datatype so we can always transmute from it.
953 unsafe { mem::transmute(v) }
954 }
955
956 /// Returns the memory representation of this floating point number as a byte array in
957 /// big-endian (network) byte order.
958 ///
959 /// See [`from_bits`](Self::from_bits) for some discussion of the
960 /// portability of this operation (there are almost no issues).
961 ///
962 /// # Examples
963 ///
964 /// ```
965 /// #![feature(f128)]
966 ///
967 /// let bytes = 12.5f128.to_be_bytes();
968 /// assert_eq!(
969 /// bytes,
970 /// [0x40, 0x02, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00,
971 /// 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
972 /// );
973 /// ```
974 #[inline]
975 #[unstable(feature = "f128", issue = "116909")]
976 #[must_use = "this returns the result of the operation, without modifying the original"]
977 pub const fn to_be_bytes(self) -> [u8; 16] {
978 self.to_bits().to_be_bytes()
979 }
980
981 /// Returns the memory representation of this floating point number as a byte array in
982 /// little-endian byte order.
983 ///
984 /// See [`from_bits`](Self::from_bits) for some discussion of the
985 /// portability of this operation (there are almost no issues).
986 ///
987 /// # Examples
988 ///
989 /// ```
990 /// #![feature(f128)]
991 ///
992 /// let bytes = 12.5f128.to_le_bytes();
993 /// assert_eq!(
994 /// bytes,
995 /// [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
996 /// 0x00, 0x00, 0x00, 0x00, 0x00, 0x90, 0x02, 0x40]
997 /// );
998 /// ```
999 #[inline]
1000 #[unstable(feature = "f128", issue = "116909")]
1001 #[must_use = "this returns the result of the operation, without modifying the original"]
1002 pub const fn to_le_bytes(self) -> [u8; 16] {
1003 self.to_bits().to_le_bytes()
1004 }
1005
1006 /// Returns the memory representation of this floating point number as a byte array in
1007 /// native byte order.
1008 ///
1009 /// As the target platform's native endianness is used, portable code
1010 /// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate, instead.
1011 ///
1012 /// [`to_be_bytes`]: f128::to_be_bytes
1013 /// [`to_le_bytes`]: f128::to_le_bytes
1014 ///
1015 /// See [`from_bits`](Self::from_bits) for some discussion of the
1016 /// portability of this operation (there are almost no issues).
1017 ///
1018 /// # Examples
1019 ///
1020 /// ```
1021 /// #![feature(f128)]
1022 ///
1023 /// let bytes = 12.5f128.to_ne_bytes();
1024 /// assert_eq!(
1025 /// bytes,
1026 /// if cfg!(target_endian = "big") {
1027 /// [0x40, 0x02, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00,
1028 /// 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
1029 /// } else {
1030 /// [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
1031 /// 0x00, 0x00, 0x00, 0x00, 0x00, 0x90, 0x02, 0x40]
1032 /// }
1033 /// );
1034 /// ```
1035 #[inline]
1036 #[unstable(feature = "f128", issue = "116909")]
1037 #[must_use = "this returns the result of the operation, without modifying the original"]
1038 pub const fn to_ne_bytes(self) -> [u8; 16] {
1039 self.to_bits().to_ne_bytes()
1040 }
1041
1042 /// Creates a floating point value from its representation as a byte array in big endian.
1043 ///
1044 /// See [`from_bits`](Self::from_bits) for some discussion of the
1045 /// portability of this operation (there are almost no issues).
1046 ///
1047 /// # Examples
1048 ///
1049 /// ```
1050 /// #![feature(f128)]
1051 /// # // FIXME(f16_f128): remove when `eqtf2` is available
1052 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1053 ///
1054 /// let value = f128::from_be_bytes(
1055 /// [0x40, 0x02, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00,
1056 /// 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
1057 /// );
1058 /// assert_eq!(value, 12.5);
1059 /// # }
1060 /// ```
1061 #[inline]
1062 #[must_use]
1063 #[unstable(feature = "f128", issue = "116909")]
1064 pub const fn from_be_bytes(bytes: [u8; 16]) -> Self {
1065 Self::from_bits(u128::from_be_bytes(bytes))
1066 }
1067
1068 /// Creates a floating point value from its representation as a byte array in little endian.
1069 ///
1070 /// See [`from_bits`](Self::from_bits) for some discussion of the
1071 /// portability of this operation (there are almost no issues).
1072 ///
1073 /// # Examples
1074 ///
1075 /// ```
1076 /// #![feature(f128)]
1077 /// # // FIXME(f16_f128): remove when `eqtf2` is available
1078 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1079 ///
1080 /// let value = f128::from_le_bytes(
1081 /// [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
1082 /// 0x00, 0x00, 0x00, 0x00, 0x00, 0x90, 0x02, 0x40]
1083 /// );
1084 /// assert_eq!(value, 12.5);
1085 /// # }
1086 /// ```
1087 #[inline]
1088 #[must_use]
1089 #[unstable(feature = "f128", issue = "116909")]
1090 pub const fn from_le_bytes(bytes: [u8; 16]) -> Self {
1091 Self::from_bits(u128::from_le_bytes(bytes))
1092 }
1093
1094 /// Creates a floating point value from its representation as a byte array in native endian.
1095 ///
1096 /// As the target platform's native endianness is used, portable code
1097 /// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as
1098 /// appropriate instead.
1099 ///
1100 /// [`from_be_bytes`]: f128::from_be_bytes
1101 /// [`from_le_bytes`]: f128::from_le_bytes
1102 ///
1103 /// See [`from_bits`](Self::from_bits) for some discussion of the
1104 /// portability of this operation (there are almost no issues).
1105 ///
1106 /// # Examples
1107 ///
1108 /// ```
1109 /// #![feature(f128)]
1110 /// # // FIXME(f16_f128): remove when `eqtf2` is available
1111 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1112 ///
1113 /// let value = f128::from_ne_bytes(if cfg!(target_endian = "big") {
1114 /// [0x40, 0x02, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00,
1115 /// 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
1116 /// } else {
1117 /// [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
1118 /// 0x00, 0x00, 0x00, 0x00, 0x00, 0x90, 0x02, 0x40]
1119 /// });
1120 /// assert_eq!(value, 12.5);
1121 /// # }
1122 /// ```
1123 #[inline]
1124 #[must_use]
1125 #[unstable(feature = "f128", issue = "116909")]
1126 pub const fn from_ne_bytes(bytes: [u8; 16]) -> Self {
1127 Self::from_bits(u128::from_ne_bytes(bytes))
1128 }
1129
1130 /// Returns the ordering between `self` and `other`.
1131 ///
1132 /// Unlike the standard partial comparison between floating point numbers,
1133 /// this comparison always produces an ordering in accordance to
1134 /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision)
1135 /// floating point standard. The values are ordered in the following sequence:
1136 ///
1137 /// - negative quiet NaN
1138 /// - negative signaling NaN
1139 /// - negative infinity
1140 /// - negative numbers
1141 /// - negative subnormal numbers
1142 /// - negative zero
1143 /// - positive zero
1144 /// - positive subnormal numbers
1145 /// - positive numbers
1146 /// - positive infinity
1147 /// - positive signaling NaN
1148 /// - positive quiet NaN.
1149 ///
1150 /// The ordering established by this function does not always agree with the
1151 /// [`PartialOrd`] and [`PartialEq`] implementations of `f128`. For example,
1152 /// they consider negative and positive zero equal, while `total_cmp`
1153 /// doesn't.
1154 ///
1155 /// The interpretation of the signaling NaN bit follows the definition in
1156 /// the IEEE 754 standard, which may not match the interpretation by some of
1157 /// the older, non-conformant (e.g. MIPS) hardware implementations.
1158 ///
1159 /// # Example
1160 ///
1161 /// ```
1162 /// #![feature(f128)]
1163 ///
1164 /// struct GoodBoy {
1165 /// name: &'static str,
1166 /// weight: f128,
1167 /// }
1168 ///
1169 /// let mut bois = vec![
1170 /// GoodBoy { name: "Pucci", weight: 0.1 },
1171 /// GoodBoy { name: "Woofer", weight: 99.0 },
1172 /// GoodBoy { name: "Yapper", weight: 10.0 },
1173 /// GoodBoy { name: "Chonk", weight: f128::INFINITY },
1174 /// GoodBoy { name: "Abs. Unit", weight: f128::NAN },
1175 /// GoodBoy { name: "Floaty", weight: -5.0 },
1176 /// ];
1177 ///
1178 /// bois.sort_by(|a, b| a.weight.total_cmp(&b.weight));
1179 ///
1180 /// // `f128::NAN` could be positive or negative, which will affect the sort order.
1181 /// if f128::NAN.is_sign_negative() {
1182 /// bois.into_iter().map(|b| b.weight)
1183 /// .zip([f128::NAN, -5.0, 0.1, 10.0, 99.0, f128::INFINITY].iter())
1184 /// .for_each(|(a, b)| assert_eq!(a.to_bits(), b.to_bits()))
1185 /// } else {
1186 /// bois.into_iter().map(|b| b.weight)
1187 /// .zip([-5.0, 0.1, 10.0, 99.0, f128::INFINITY, f128::NAN].iter())
1188 /// .for_each(|(a, b)| assert_eq!(a.to_bits(), b.to_bits()))
1189 /// }
1190 /// ```
1191 #[inline]
1192 #[must_use]
1193 #[unstable(feature = "f128", issue = "116909")]
1194 pub fn total_cmp(&self, other: &Self) -> crate::cmp::Ordering {
1195 let mut left = self.to_bits() as i128;
1196 let mut right = other.to_bits() as i128;
1197
1198 // In case of negatives, flip all the bits except the sign
1199 // to achieve a similar layout as two's complement integers
1200 //
1201 // Why does this work? IEEE 754 floats consist of three fields:
1202 // Sign bit, exponent and mantissa. The set of exponent and mantissa
1203 // fields as a whole have the property that their bitwise order is
1204 // equal to the numeric magnitude where the magnitude is defined.
1205 // The magnitude is not normally defined on NaN values, but
1206 // IEEE 754 totalOrder defines the NaN values also to follow the
1207 // bitwise order. This leads to order explained in the doc comment.
1208 // However, the representation of magnitude is the same for negative
1209 // and positive numbers – only the sign bit is different.
1210 // To easily compare the floats as signed integers, we need to
1211 // flip the exponent and mantissa bits in case of negative numbers.
1212 // We effectively convert the numbers to "two's complement" form.
1213 //
1214 // To do the flipping, we construct a mask and XOR against it.
1215 // We branchlessly calculate an "all-ones except for the sign bit"
1216 // mask from negative-signed values: right shifting sign-extends
1217 // the integer, so we "fill" the mask with sign bits, and then
1218 // convert to unsigned to push one more zero bit.
1219 // On positive values, the mask is all zeros, so it's a no-op.
1220 left ^= (((left >> 127) as u128) >> 1) as i128;
1221 right ^= (((right >> 127) as u128) >> 1) as i128;
1222
1223 left.cmp(&right)
1224 }
1225
1226 /// Restrict a value to a certain interval unless it is NaN.
1227 ///
1228 /// Returns `max` if `self` is greater than `max`, and `min` if `self` is
1229 /// less than `min`. Otherwise this returns `self`.
1230 ///
1231 /// Note that this function returns NaN if the initial value was NaN as
1232 /// well.
1233 ///
1234 /// # Panics
1235 ///
1236 /// Panics if `min > max`, `min` is NaN, or `max` is NaN.
1237 ///
1238 /// # Examples
1239 ///
1240 /// ```
1241 /// #![feature(f128)]
1242 /// # // FIXME(f16_f128): remove when `{eq,gt,unord}tf` are available
1243 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1244 ///
1245 /// assert!((-3.0f128).clamp(-2.0, 1.0) == -2.0);
1246 /// assert!((0.0f128).clamp(-2.0, 1.0) == 0.0);
1247 /// assert!((2.0f128).clamp(-2.0, 1.0) == 1.0);
1248 /// assert!((f128::NAN).clamp(-2.0, 1.0).is_nan());
1249 /// # }
1250 /// ```
1251 #[inline]
1252 #[unstable(feature = "f128", issue = "116909")]
1253 #[must_use = "method returns a new number and does not mutate the original value"]
1254 pub const fn clamp(mut self, min: f128, max: f128) -> f128 {
1255 const_assert!(
1256 min <= max,
1257 "min > max, or either was NaN",
1258 "min > max, or either was NaN. min = {min:?}, max = {max:?}",
1259 min: f128,
1260 max: f128,
1261 );
1262
1263 if self < min {
1264 self = min;
1265 }
1266 if self > max {
1267 self = max;
1268 }
1269 self
1270 }
1271
1272 /// Computes the absolute value of `self`.
1273 ///
1274 /// This function always returns the precise result.
1275 ///
1276 /// # Examples
1277 ///
1278 /// ```
1279 /// #![feature(f128)]
1280 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1281 ///
1282 /// let x = 3.5_f128;
1283 /// let y = -3.5_f128;
1284 ///
1285 /// assert_eq!(x.abs(), x);
1286 /// assert_eq!(y.abs(), -y);
1287 ///
1288 /// assert!(f128::NAN.abs().is_nan());
1289 /// # }
1290 /// ```
1291 #[inline]
1292 #[unstable(feature = "f128", issue = "116909")]
1293 #[rustc_const_unstable(feature = "f128", issue = "116909")]
1294 #[must_use = "method returns a new number and does not mutate the original value"]
1295 pub const fn abs(self) -> Self {
1296 // FIXME(f16_f128): replace with `intrinsics::fabsf128` when available
1297 // We don't do this now because LLVM has lowering bugs for f128 math.
1298 Self::from_bits(self.to_bits() & !(1 << 127))
1299 }
1300
1301 /// Returns a number that represents the sign of `self`.
1302 ///
1303 /// - `1.0` if the number is positive, `+0.0` or `INFINITY`
1304 /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
1305 /// - NaN if the number is NaN
1306 ///
1307 /// # Examples
1308 ///
1309 /// ```
1310 /// #![feature(f128)]
1311 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1312 ///
1313 /// let f = 3.5_f128;
1314 ///
1315 /// assert_eq!(f.signum(), 1.0);
1316 /// assert_eq!(f128::NEG_INFINITY.signum(), -1.0);
1317 ///
1318 /// assert!(f128::NAN.signum().is_nan());
1319 /// # }
1320 /// ```
1321 #[inline]
1322 #[unstable(feature = "f128", issue = "116909")]
1323 #[rustc_const_unstable(feature = "f128", issue = "116909")]
1324 #[must_use = "method returns a new number and does not mutate the original value"]
1325 pub const fn signum(self) -> f128 {
1326 if self.is_nan() { Self::NAN } else { 1.0_f128.copysign(self) }
1327 }
1328
1329 /// Returns a number composed of the magnitude of `self` and the sign of
1330 /// `sign`.
1331 ///
1332 /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`.
1333 /// If `self` is a NaN, then a NaN with the same payload as `self` and the sign bit of `sign` is
1334 /// returned.
1335 ///
1336 /// If `sign` is a NaN, then this operation will still carry over its sign into the result. Note
1337 /// that IEEE 754 doesn't assign any meaning to the sign bit in case of a NaN, and as Rust
1338 /// doesn't guarantee that the bit pattern of NaNs are conserved over arithmetic operations, the
1339 /// result of `copysign` with `sign` being a NaN might produce an unexpected or non-portable
1340 /// result. See the [specification of NaN bit patterns](primitive@f32#nan-bit-patterns) for more
1341 /// info.
1342 ///
1343 /// # Examples
1344 ///
1345 /// ```
1346 /// #![feature(f128)]
1347 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1348 ///
1349 /// let f = 3.5_f128;
1350 ///
1351 /// assert_eq!(f.copysign(0.42), 3.5_f128);
1352 /// assert_eq!(f.copysign(-0.42), -3.5_f128);
1353 /// assert_eq!((-f).copysign(0.42), 3.5_f128);
1354 /// assert_eq!((-f).copysign(-0.42), -3.5_f128);
1355 ///
1356 /// assert!(f128::NAN.copysign(1.0).is_nan());
1357 /// # }
1358 /// ```
1359 #[inline]
1360 #[unstable(feature = "f128", issue = "116909")]
1361 #[rustc_const_unstable(feature = "f128", issue = "116909")]
1362 #[must_use = "method returns a new number and does not mutate the original value"]
1363 pub const fn copysign(self, sign: f128) -> f128 {
1364 // SAFETY: this is actually a safe intrinsic
1365 unsafe { intrinsics::copysignf128(self, sign) }
1366 }
1367
1368 /// Float addition that allows optimizations based on algebraic rules.
1369 ///
1370 /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1371 #[must_use = "method returns a new number and does not mutate the original value"]
1372 #[unstable(feature = "float_algebraic", issue = "136469")]
1373 #[inline]
1374 pub fn algebraic_add(self, rhs: f128) -> f128 {
1375 intrinsics::fadd_algebraic(self, rhs)
1376 }
1377
1378 /// Float subtraction that allows optimizations based on algebraic rules.
1379 ///
1380 /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1381 #[must_use = "method returns a new number and does not mutate the original value"]
1382 #[unstable(feature = "float_algebraic", issue = "136469")]
1383 #[inline]
1384 pub fn algebraic_sub(self, rhs: f128) -> f128 {
1385 intrinsics::fsub_algebraic(self, rhs)
1386 }
1387
1388 /// Float multiplication that allows optimizations based on algebraic rules.
1389 ///
1390 /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1391 #[must_use = "method returns a new number and does not mutate the original value"]
1392 #[unstable(feature = "float_algebraic", issue = "136469")]
1393 #[inline]
1394 pub fn algebraic_mul(self, rhs: f128) -> f128 {
1395 intrinsics::fmul_algebraic(self, rhs)
1396 }
1397
1398 /// Float division that allows optimizations based on algebraic rules.
1399 ///
1400 /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1401 #[must_use = "method returns a new number and does not mutate the original value"]
1402 #[unstable(feature = "float_algebraic", issue = "136469")]
1403 #[inline]
1404 pub fn algebraic_div(self, rhs: f128) -> f128 {
1405 intrinsics::fdiv_algebraic(self, rhs)
1406 }
1407
1408 /// Float remainder that allows optimizations based on algebraic rules.
1409 ///
1410 /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1411 #[must_use = "method returns a new number and does not mutate the original value"]
1412 #[unstable(feature = "float_algebraic", issue = "136469")]
1413 #[inline]
1414 pub fn algebraic_rem(self, rhs: f128) -> f128 {
1415 intrinsics::frem_algebraic(self, rhs)
1416 }
1417}