core/num/f128.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
//! Constants for the `f128` quadruple-precision floating point type.
//!
//! *[See also the `f128` primitive type][f128].*
//!
//! Mathematically significant numbers are provided in the `consts` sub-module.
//!
//! For the constants defined directly in this module
//! (as distinct from those defined in the `consts` sub-module),
//! new code should instead use the associated constants
//! defined directly on the `f128` type.
#![unstable(feature = "f128", issue = "116909")]
use crate::convert::FloatToInt;
#[cfg(not(test))]
use crate::intrinsics;
use crate::mem;
use crate::num::FpCategory;
use crate::panic::const_assert;
/// Basic mathematical constants.
#[unstable(feature = "f128", issue = "116909")]
pub mod consts {
// FIXME: replace with mathematical constants from cmath.
/// Archimedes' constant (π)
#[unstable(feature = "f128", issue = "116909")]
pub const PI: f128 = 3.14159265358979323846264338327950288419716939937510582097494_f128;
/// The full circle constant (τ)
///
/// Equal to 2π.
#[unstable(feature = "f128", issue = "116909")]
pub const TAU: f128 = 6.28318530717958647692528676655900576839433879875021164194989_f128;
/// The golden ratio (φ)
#[unstable(feature = "f128", issue = "116909")]
// Also, #[unstable(feature = "more_float_constants", issue = "103883")]
pub const PHI: f128 = 1.61803398874989484820458683436563811772030917980576286213545_f128;
/// The Euler-Mascheroni constant (γ)
#[unstable(feature = "f128", issue = "116909")]
// Also, #[unstable(feature = "more_float_constants", issue = "103883")]
pub const EGAMMA: f128 = 0.577215664901532860606512090082402431042159335939923598805767_f128;
/// π/2
#[unstable(feature = "f128", issue = "116909")]
pub const FRAC_PI_2: f128 = 1.57079632679489661923132169163975144209858469968755291048747_f128;
/// π/3
#[unstable(feature = "f128", issue = "116909")]
pub const FRAC_PI_3: f128 = 1.04719755119659774615421446109316762806572313312503527365831_f128;
/// π/4
#[unstable(feature = "f128", issue = "116909")]
pub const FRAC_PI_4: f128 = 0.785398163397448309615660845819875721049292349843776455243736_f128;
/// π/6
#[unstable(feature = "f128", issue = "116909")]
pub const FRAC_PI_6: f128 = 0.523598775598298873077107230546583814032861566562517636829157_f128;
/// π/8
#[unstable(feature = "f128", issue = "116909")]
pub const FRAC_PI_8: f128 = 0.392699081698724154807830422909937860524646174921888227621868_f128;
/// 1/π
#[unstable(feature = "f128", issue = "116909")]
pub const FRAC_1_PI: f128 = 0.318309886183790671537767526745028724068919291480912897495335_f128;
/// 1/sqrt(π)
#[unstable(feature = "f128", issue = "116909")]
// Also, #[unstable(feature = "more_float_constants", issue = "103883")]
pub const FRAC_1_SQRT_PI: f128 =
0.564189583547756286948079451560772585844050629328998856844086_f128;
/// 1/sqrt(2π)
#[doc(alias = "FRAC_1_SQRT_TAU")]
#[unstable(feature = "f128", issue = "116909")]
// Also, #[unstable(feature = "more_float_constants", issue = "103883")]
pub const FRAC_1_SQRT_2PI: f128 =
0.398942280401432677939946059934381868475858631164934657665926_f128;
/// 2/π
#[unstable(feature = "f128", issue = "116909")]
pub const FRAC_2_PI: f128 = 0.636619772367581343075535053490057448137838582961825794990669_f128;
/// 2/sqrt(π)
#[unstable(feature = "f128", issue = "116909")]
pub const FRAC_2_SQRT_PI: f128 =
1.12837916709551257389615890312154517168810125865799771368817_f128;
/// sqrt(2)
#[unstable(feature = "f128", issue = "116909")]
pub const SQRT_2: f128 = 1.41421356237309504880168872420969807856967187537694807317668_f128;
/// 1/sqrt(2)
#[unstable(feature = "f128", issue = "116909")]
pub const FRAC_1_SQRT_2: f128 =
0.707106781186547524400844362104849039284835937688474036588340_f128;
/// sqrt(3)
#[unstable(feature = "f128", issue = "116909")]
// Also, #[unstable(feature = "more_float_constants", issue = "103883")]
pub const SQRT_3: f128 = 1.73205080756887729352744634150587236694280525381038062805581_f128;
/// 1/sqrt(3)
#[unstable(feature = "f128", issue = "116909")]
// Also, #[unstable(feature = "more_float_constants", issue = "103883")]
pub const FRAC_1_SQRT_3: f128 =
0.577350269189625764509148780501957455647601751270126876018602_f128;
/// Euler's number (e)
#[unstable(feature = "f128", issue = "116909")]
pub const E: f128 = 2.71828182845904523536028747135266249775724709369995957496697_f128;
/// log<sub>2</sub>(10)
#[unstable(feature = "f128", issue = "116909")]
pub const LOG2_10: f128 = 3.32192809488736234787031942948939017586483139302458061205476_f128;
/// log<sub>2</sub>(e)
#[unstable(feature = "f128", issue = "116909")]
pub const LOG2_E: f128 = 1.44269504088896340735992468100189213742664595415298593413545_f128;
/// log<sub>10</sub>(2)
#[unstable(feature = "f128", issue = "116909")]
pub const LOG10_2: f128 = 0.301029995663981195213738894724493026768189881462108541310427_f128;
/// log<sub>10</sub>(e)
#[unstable(feature = "f128", issue = "116909")]
pub const LOG10_E: f128 = 0.434294481903251827651128918916605082294397005803666566114454_f128;
/// ln(2)
#[unstable(feature = "f128", issue = "116909")]
pub const LN_2: f128 = 0.693147180559945309417232121458176568075500134360255254120680_f128;
/// ln(10)
#[unstable(feature = "f128", issue = "116909")]
pub const LN_10: f128 = 2.30258509299404568401799145468436420760110148862877297603333_f128;
}
#[cfg(not(test))]
impl f128 {
// FIXME(f16_f128): almost all methods in this `impl` are missing examples and a const
// implementation. Add these once we can run code on all platforms and have f16/f128 in CTFE.
/// The radix or base of the internal representation of `f128`.
#[unstable(feature = "f128", issue = "116909")]
pub const RADIX: u32 = 2;
/// Number of significant digits in base 2.
#[unstable(feature = "f128", issue = "116909")]
pub const MANTISSA_DIGITS: u32 = 113;
/// Approximate number of significant digits in base 10.
///
/// This is the maximum <i>x</i> such that any decimal number with <i>x</i>
/// significant digits can be converted to `f128` and back without loss.
///
/// Equal to floor(log<sub>10</sub> 2<sup>[`MANTISSA_DIGITS`] − 1</sup>).
///
/// [`MANTISSA_DIGITS`]: f128::MANTISSA_DIGITS
#[unstable(feature = "f128", issue = "116909")]
pub const DIGITS: u32 = 33;
/// [Machine epsilon] value for `f128`.
///
/// This is the difference between `1.0` and the next larger representable number.
///
/// Equal to 2<sup>1 − [`MANTISSA_DIGITS`]</sup>.
///
/// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
/// [`MANTISSA_DIGITS`]: f128::MANTISSA_DIGITS
#[unstable(feature = "f128", issue = "116909")]
pub const EPSILON: f128 = 1.92592994438723585305597794258492732e-34_f128;
/// Smallest finite `f128` value.
///
/// Equal to −[`MAX`].
///
/// [`MAX`]: f128::MAX
#[unstable(feature = "f128", issue = "116909")]
pub const MIN: f128 = -1.18973149535723176508575932662800702e+4932_f128;
/// Smallest positive normal `f128` value.
///
/// Equal to 2<sup>[`MIN_EXP`] − 1</sup>.
///
/// [`MIN_EXP`]: f128::MIN_EXP
#[unstable(feature = "f128", issue = "116909")]
pub const MIN_POSITIVE: f128 = 3.36210314311209350626267781732175260e-4932_f128;
/// Largest finite `f128` value.
///
/// Equal to
/// (1 − 2<sup>−[`MANTISSA_DIGITS`]</sup>) 2<sup>[`MAX_EXP`]</sup>.
///
/// [`MANTISSA_DIGITS`]: f128::MANTISSA_DIGITS
/// [`MAX_EXP`]: f128::MAX_EXP
#[unstable(feature = "f128", issue = "116909")]
pub const MAX: f128 = 1.18973149535723176508575932662800702e+4932_f128;
/// One greater than the minimum possible normal power of 2 exponent.
///
/// If <i>x</i> = `MIN_EXP`, then normal numbers
/// ≥ 0.5 × 2<sup><i>x</i></sup>.
#[unstable(feature = "f128", issue = "116909")]
pub const MIN_EXP: i32 = -16_381;
/// Maximum possible power of 2 exponent.
///
/// If <i>x</i> = `MAX_EXP`, then normal numbers
/// < 1 × 2<sup><i>x</i></sup>.
#[unstable(feature = "f128", issue = "116909")]
pub const MAX_EXP: i32 = 16_384;
/// Minimum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
///
/// Equal to ceil(log<sub>10</sub> [`MIN_POSITIVE`]).
///
/// [`MIN_POSITIVE`]: f128::MIN_POSITIVE
#[unstable(feature = "f128", issue = "116909")]
pub const MIN_10_EXP: i32 = -4_931;
/// Maximum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
///
/// Equal to floor(log<sub>10</sub> [`MAX`]).
///
/// [`MAX`]: f128::MAX
#[unstable(feature = "f128", issue = "116909")]
pub const MAX_10_EXP: i32 = 4_932;
/// Not a Number (NaN).
///
/// Note that IEEE 754 doesn't define just a single NaN value;
/// a plethora of bit patterns are considered to be NaN.
/// Furthermore, the standard makes a difference
/// between a "signaling" and a "quiet" NaN,
/// and allows inspecting its "payload" (the unspecified bits in the bit pattern).
/// This constant isn't guaranteed to equal to any specific NaN bitpattern,
/// and the stability of its representation over Rust versions
/// and target platforms isn't guaranteed.
#[allow(clippy::eq_op)]
#[rustc_diagnostic_item = "f128_nan"]
#[unstable(feature = "f128", issue = "116909")]
pub const NAN: f128 = 0.0_f128 / 0.0_f128;
/// Infinity (∞).
#[unstable(feature = "f128", issue = "116909")]
pub const INFINITY: f128 = 1.0_f128 / 0.0_f128;
/// Negative infinity (−∞).
#[unstable(feature = "f128", issue = "116909")]
pub const NEG_INFINITY: f128 = -1.0_f128 / 0.0_f128;
/// Sign bit
pub(crate) const SIGN_MASK: u128 = 0x8000_0000_0000_0000_0000_0000_0000_0000;
/// Exponent mask
pub(crate) const EXP_MASK: u128 = 0x7fff_0000_0000_0000_0000_0000_0000_0000;
/// Mantissa mask
pub(crate) const MAN_MASK: u128 = 0x0000_ffff_ffff_ffff_ffff_ffff_ffff_ffff;
/// Minimum representable positive value (min subnormal)
const TINY_BITS: u128 = 0x1;
/// Minimum representable negative value (min negative subnormal)
const NEG_TINY_BITS: u128 = Self::TINY_BITS | Self::SIGN_MASK;
/// Returns `true` if this value is NaN.
///
/// ```
/// #![feature(f128)]
/// # // FIXME(f16_f128): remove when `unordtf2` is available
/// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
///
/// let nan = f128::NAN;
/// let f = 7.0_f128;
///
/// assert!(nan.is_nan());
/// assert!(!f.is_nan());
/// # }
/// ```
#[inline]
#[must_use]
#[unstable(feature = "f128", issue = "116909")]
#[allow(clippy::eq_op)] // > if you intended to check if the operand is NaN, use `.is_nan()` instead :)
pub const fn is_nan(self) -> bool {
self != self
}
/// Returns `true` if this value is positive infinity or negative infinity, and
/// `false` otherwise.
///
/// ```
/// #![feature(f128)]
/// # // FIXME(f16_f128): remove when `eqtf2` is available
/// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
///
/// let f = 7.0f128;
/// let inf = f128::INFINITY;
/// let neg_inf = f128::NEG_INFINITY;
/// let nan = f128::NAN;
///
/// assert!(!f.is_infinite());
/// assert!(!nan.is_infinite());
///
/// assert!(inf.is_infinite());
/// assert!(neg_inf.is_infinite());
/// # }
/// ```
#[inline]
#[must_use]
#[unstable(feature = "f128", issue = "116909")]
pub const fn is_infinite(self) -> bool {
(self == f128::INFINITY) | (self == f128::NEG_INFINITY)
}
/// Returns `true` if this number is neither infinite nor NaN.
///
/// ```
/// #![feature(f128)]
/// # // FIXME(f16_f128): remove when `lttf2` is available
/// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
///
/// let f = 7.0f128;
/// let inf: f128 = f128::INFINITY;
/// let neg_inf: f128 = f128::NEG_INFINITY;
/// let nan: f128 = f128::NAN;
///
/// assert!(f.is_finite());
///
/// assert!(!nan.is_finite());
/// assert!(!inf.is_finite());
/// assert!(!neg_inf.is_finite());
/// # }
/// ```
#[inline]
#[must_use]
#[unstable(feature = "f128", issue = "116909")]
#[rustc_const_unstable(feature = "f128", issue = "116909")]
pub const fn is_finite(self) -> bool {
// There's no need to handle NaN separately: if self is NaN,
// the comparison is not true, exactly as desired.
self.abs() < Self::INFINITY
}
/// Returns `true` if the number is [subnormal].
///
/// ```
/// #![feature(f128)]
/// # // FIXME(f16_f128): remove when `eqtf2` is available
/// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
///
/// let min = f128::MIN_POSITIVE; // 3.362103143e-4932f128
/// let max = f128::MAX;
/// let lower_than_min = 1.0e-4960_f128;
/// let zero = 0.0_f128;
///
/// assert!(!min.is_subnormal());
/// assert!(!max.is_subnormal());
///
/// assert!(!zero.is_subnormal());
/// assert!(!f128::NAN.is_subnormal());
/// assert!(!f128::INFINITY.is_subnormal());
/// // Values between `0` and `min` are Subnormal.
/// assert!(lower_than_min.is_subnormal());
/// # }
/// ```
///
/// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
#[inline]
#[must_use]
#[unstable(feature = "f128", issue = "116909")]
pub const fn is_subnormal(self) -> bool {
matches!(self.classify(), FpCategory::Subnormal)
}
/// Returns `true` if the number is neither zero, infinite, [subnormal], or NaN.
///
/// ```
/// #![feature(f128)]
/// # // FIXME(f16_f128): remove when `eqtf2` is available
/// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
///
/// let min = f128::MIN_POSITIVE; // 3.362103143e-4932f128
/// let max = f128::MAX;
/// let lower_than_min = 1.0e-4960_f128;
/// let zero = 0.0_f128;
///
/// assert!(min.is_normal());
/// assert!(max.is_normal());
///
/// assert!(!zero.is_normal());
/// assert!(!f128::NAN.is_normal());
/// assert!(!f128::INFINITY.is_normal());
/// // Values between `0` and `min` are Subnormal.
/// assert!(!lower_than_min.is_normal());
/// # }
/// ```
///
/// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
#[inline]
#[must_use]
#[unstable(feature = "f128", issue = "116909")]
pub const fn is_normal(self) -> bool {
matches!(self.classify(), FpCategory::Normal)
}
/// Returns the floating point category of the number. If only one property
/// is going to be tested, it is generally faster to use the specific
/// predicate instead.
///
/// ```
/// #![feature(f128)]
/// # // FIXME(f16_f128): remove when `eqtf2` is available
/// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
///
/// use std::num::FpCategory;
///
/// let num = 12.4_f128;
/// let inf = f128::INFINITY;
///
/// assert_eq!(num.classify(), FpCategory::Normal);
/// assert_eq!(inf.classify(), FpCategory::Infinite);
/// # }
/// ```
#[inline]
#[unstable(feature = "f128", issue = "116909")]
pub const fn classify(self) -> FpCategory {
let bits = self.to_bits();
match (bits & Self::MAN_MASK, bits & Self::EXP_MASK) {
(0, Self::EXP_MASK) => FpCategory::Infinite,
(_, Self::EXP_MASK) => FpCategory::Nan,
(0, 0) => FpCategory::Zero,
(_, 0) => FpCategory::Subnormal,
_ => FpCategory::Normal,
}
}
/// Returns `true` if `self` has a positive sign, including `+0.0`, NaNs with
/// positive sign bit and positive infinity.
///
/// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of
/// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are
/// conserved over arithmetic operations, the result of `is_sign_positive` on
/// a NaN might produce an unexpected or non-portable result. See the [specification
/// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == 1.0`
/// if you need fully portable behavior (will return `false` for all NaNs).
///
/// ```
/// #![feature(f128)]
///
/// let f = 7.0_f128;
/// let g = -7.0_f128;
///
/// assert!(f.is_sign_positive());
/// assert!(!g.is_sign_positive());
/// ```
#[inline]
#[must_use]
#[unstable(feature = "f128", issue = "116909")]
pub const fn is_sign_positive(self) -> bool {
!self.is_sign_negative()
}
/// Returns `true` if `self` has a negative sign, including `-0.0`, NaNs with
/// negative sign bit and negative infinity.
///
/// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of
/// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are
/// conserved over arithmetic operations, the result of `is_sign_negative` on
/// a NaN might produce an unexpected or non-portable result. See the [specification
/// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == -1.0`
/// if you need fully portable behavior (will return `false` for all NaNs).
///
/// ```
/// #![feature(f128)]
///
/// let f = 7.0_f128;
/// let g = -7.0_f128;
///
/// assert!(!f.is_sign_negative());
/// assert!(g.is_sign_negative());
/// ```
#[inline]
#[must_use]
#[unstable(feature = "f128", issue = "116909")]
pub const fn is_sign_negative(self) -> bool {
// IEEE754 says: isSignMinus(x) is true if and only if x has negative sign. isSignMinus
// applies to zeros and NaNs as well.
// SAFETY: This is just transmuting to get the sign bit, it's fine.
(self.to_bits() & (1 << 127)) != 0
}
/// Returns the least number greater than `self`.
///
/// Let `TINY` be the smallest representable positive `f128`. Then,
/// - if `self.is_nan()`, this returns `self`;
/// - if `self` is [`NEG_INFINITY`], this returns [`MIN`];
/// - if `self` is `-TINY`, this returns -0.0;
/// - if `self` is -0.0 or +0.0, this returns `TINY`;
/// - if `self` is [`MAX`] or [`INFINITY`], this returns [`INFINITY`];
/// - otherwise the unique least value greater than `self` is returned.
///
/// The identity `x.next_up() == -(-x).next_down()` holds for all non-NaN `x`. When `x`
/// is finite `x == x.next_up().next_down()` also holds.
///
/// ```rust
/// #![feature(f128)]
/// #![feature(float_next_up_down)]
/// # // FIXME(f16_f128): remove when `eqtf2` is available
/// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
///
/// // f128::EPSILON is the difference between 1.0 and the next number up.
/// assert_eq!(1.0f128.next_up(), 1.0 + f128::EPSILON);
/// // But not for most numbers.
/// assert!(0.1f128.next_up() < 0.1 + f128::EPSILON);
/// assert_eq!(4611686018427387904f128.next_up(), 4611686018427387904.000000000000001);
/// # }
/// ```
///
/// [`NEG_INFINITY`]: Self::NEG_INFINITY
/// [`INFINITY`]: Self::INFINITY
/// [`MIN`]: Self::MIN
/// [`MAX`]: Self::MAX
#[inline]
#[unstable(feature = "f128", issue = "116909")]
// #[unstable(feature = "float_next_up_down", issue = "91399")]
pub const fn next_up(self) -> Self {
// Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing
// denormals to zero. This is in general unsound and unsupported, but here
// we do our best to still produce the correct result on such targets.
let bits = self.to_bits();
if self.is_nan() || bits == Self::INFINITY.to_bits() {
return self;
}
let abs = bits & !Self::SIGN_MASK;
let next_bits = if abs == 0 {
Self::TINY_BITS
} else if bits == abs {
bits + 1
} else {
bits - 1
};
Self::from_bits(next_bits)
}
/// Returns the greatest number less than `self`.
///
/// Let `TINY` be the smallest representable positive `f128`. Then,
/// - if `self.is_nan()`, this returns `self`;
/// - if `self` is [`INFINITY`], this returns [`MAX`];
/// - if `self` is `TINY`, this returns 0.0;
/// - if `self` is -0.0 or +0.0, this returns `-TINY`;
/// - if `self` is [`MIN`] or [`NEG_INFINITY`], this returns [`NEG_INFINITY`];
/// - otherwise the unique greatest value less than `self` is returned.
///
/// The identity `x.next_down() == -(-x).next_up()` holds for all non-NaN `x`. When `x`
/// is finite `x == x.next_down().next_up()` also holds.
///
/// ```rust
/// #![feature(f128)]
/// #![feature(float_next_up_down)]
/// # // FIXME(f16_f128): remove when `eqtf2` is available
/// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
///
/// let x = 1.0f128;
/// // Clamp value into range [0, 1).
/// let clamped = x.clamp(0.0, 1.0f128.next_down());
/// assert!(clamped < 1.0);
/// assert_eq!(clamped.next_up(), 1.0);
/// # }
/// ```
///
/// [`NEG_INFINITY`]: Self::NEG_INFINITY
/// [`INFINITY`]: Self::INFINITY
/// [`MIN`]: Self::MIN
/// [`MAX`]: Self::MAX
#[inline]
#[unstable(feature = "f128", issue = "116909")]
// #[unstable(feature = "float_next_up_down", issue = "91399")]
pub const fn next_down(self) -> Self {
// Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing
// denormals to zero. This is in general unsound and unsupported, but here
// we do our best to still produce the correct result on such targets.
let bits = self.to_bits();
if self.is_nan() || bits == Self::NEG_INFINITY.to_bits() {
return self;
}
let abs = bits & !Self::SIGN_MASK;
let next_bits = if abs == 0 {
Self::NEG_TINY_BITS
} else if bits == abs {
bits - 1
} else {
bits + 1
};
Self::from_bits(next_bits)
}
/// Takes the reciprocal (inverse) of a number, `1/x`.
///
/// ```
/// #![feature(f128)]
/// # // FIXME(f16_f128): remove when `eqtf2` is available
/// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
///
/// let x = 2.0_f128;
/// let abs_difference = (x.recip() - (1.0 / x)).abs();
///
/// assert!(abs_difference <= f128::EPSILON);
/// # }
/// ```
#[inline]
#[unstable(feature = "f128", issue = "116909")]
#[must_use = "this returns the result of the operation, without modifying the original"]
pub const fn recip(self) -> Self {
1.0 / self
}
/// Converts radians to degrees.
///
/// ```
/// #![feature(f128)]
/// # // FIXME(f16_f128): remove when `eqtf2` is available
/// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
///
/// let angle = std::f128::consts::PI;
///
/// let abs_difference = (angle.to_degrees() - 180.0).abs();
/// assert!(abs_difference <= f128::EPSILON);
/// # }
/// ```
#[inline]
#[unstable(feature = "f128", issue = "116909")]
#[must_use = "this returns the result of the operation, without modifying the original"]
pub const fn to_degrees(self) -> Self {
// Use a literal for better precision.
const PIS_IN_180: f128 = 57.2957795130823208767981548141051703324054724665643215491602_f128;
self * PIS_IN_180
}
/// Converts degrees to radians.
///
/// ```
/// #![feature(f128)]
/// # // FIXME(f16_f128): remove when `eqtf2` is available
/// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
///
/// let angle = 180.0f128;
///
/// let abs_difference = (angle.to_radians() - std::f128::consts::PI).abs();
///
/// assert!(abs_difference <= 1e-30);
/// # }
/// ```
#[inline]
#[unstable(feature = "f128", issue = "116909")]
#[must_use = "this returns the result of the operation, without modifying the original"]
pub const fn to_radians(self) -> f128 {
// Use a literal for better precision.
const RADS_PER_DEG: f128 =
0.0174532925199432957692369076848861271344287188854172545609719_f128;
self * RADS_PER_DEG
}
/// Returns the maximum of the two numbers, ignoring NaN.
///
/// If one of the arguments is NaN, then the other argument is returned.
/// This follows the IEEE 754-2008 semantics for maxNum, except for handling of signaling NaNs;
/// this function handles all NaNs the same way and avoids maxNum's problems with associativity.
/// This also matches the behavior of libm’s fmax.
///
/// ```
/// #![feature(f128)]
/// # // Using aarch64 because `reliable_f128_math` is needed
/// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
///
/// let x = 1.0f128;
/// let y = 2.0f128;
///
/// assert_eq!(x.max(y), y);
/// # }
/// ```
#[inline]
#[unstable(feature = "f128", issue = "116909")]
#[rustc_const_unstable(feature = "f128", issue = "116909")]
#[must_use = "this returns the result of the comparison, without modifying either input"]
pub const fn max(self, other: f128) -> f128 {
intrinsics::maxnumf128(self, other)
}
/// Returns the minimum of the two numbers, ignoring NaN.
///
/// If one of the arguments is NaN, then the other argument is returned.
/// This follows the IEEE 754-2008 semantics for minNum, except for handling of signaling NaNs;
/// this function handles all NaNs the same way and avoids minNum's problems with associativity.
/// This also matches the behavior of libm’s fmin.
///
/// ```
/// #![feature(f128)]
/// # // Using aarch64 because `reliable_f128_math` is needed
/// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
///
/// let x = 1.0f128;
/// let y = 2.0f128;
///
/// assert_eq!(x.min(y), x);
/// # }
/// ```
#[inline]
#[unstable(feature = "f128", issue = "116909")]
#[rustc_const_unstable(feature = "f128", issue = "116909")]
#[must_use = "this returns the result of the comparison, without modifying either input"]
pub const fn min(self, other: f128) -> f128 {
intrinsics::minnumf128(self, other)
}
/// Returns the maximum of the two numbers, propagating NaN.
///
/// This returns NaN when *either* argument is NaN, as opposed to
/// [`f128::max`] which only returns NaN when *both* arguments are NaN.
///
/// ```
/// #![feature(f128)]
/// #![feature(float_minimum_maximum)]
/// # // Using aarch64 because `reliable_f128_math` is needed
/// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
///
/// let x = 1.0f128;
/// let y = 2.0f128;
///
/// assert_eq!(x.maximum(y), y);
/// assert!(x.maximum(f128::NAN).is_nan());
/// # }
/// ```
///
/// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the greater
/// of the two numbers. For this operation, -0.0 is considered to be less than +0.0.
/// Note that this follows the semantics specified in IEEE 754-2019.
///
/// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN
/// operand is conserved; see the [specification of NaN bit patterns](f32#nan-bit-patterns) for more info.
#[inline]
#[unstable(feature = "f128", issue = "116909")]
// #[unstable(feature = "float_minimum_maximum", issue = "91079")]
#[must_use = "this returns the result of the comparison, without modifying either input"]
pub const fn maximum(self, other: f128) -> f128 {
if self > other {
self
} else if other > self {
other
} else if self == other {
if self.is_sign_positive() && other.is_sign_negative() { self } else { other }
} else {
self + other
}
}
/// Returns the minimum of the two numbers, propagating NaN.
///
/// This returns NaN when *either* argument is NaN, as opposed to
/// [`f128::min`] which only returns NaN when *both* arguments are NaN.
///
/// ```
/// #![feature(f128)]
/// #![feature(float_minimum_maximum)]
/// # // Using aarch64 because `reliable_f128_math` is needed
/// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
///
/// let x = 1.0f128;
/// let y = 2.0f128;
///
/// assert_eq!(x.minimum(y), x);
/// assert!(x.minimum(f128::NAN).is_nan());
/// # }
/// ```
///
/// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the lesser
/// of the two numbers. For this operation, -0.0 is considered to be less than +0.0.
/// Note that this follows the semantics specified in IEEE 754-2019.
///
/// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN
/// operand is conserved; see the [specification of NaN bit patterns](f32#nan-bit-patterns) for more info.
#[inline]
#[unstable(feature = "f128", issue = "116909")]
// #[unstable(feature = "float_minimum_maximum", issue = "91079")]
#[must_use = "this returns the result of the comparison, without modifying either input"]
pub const fn minimum(self, other: f128) -> f128 {
if self < other {
self
} else if other < self {
other
} else if self == other {
if self.is_sign_negative() && other.is_sign_positive() { self } else { other }
} else {
// At least one input is NaN. Use `+` to perform NaN propagation and quieting.
self + other
}
}
/// Calculates the middle point of `self` and `rhs`.
///
/// This returns NaN when *either* argument is NaN or if a combination of
/// +inf and -inf is provided as arguments.
///
/// # Examples
///
/// ```
/// #![feature(f128)]
/// # // Using aarch64 because `reliable_f128_math` is needed
/// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
///
/// assert_eq!(1f128.midpoint(4.0), 2.5);
/// assert_eq!((-5.5f128).midpoint(8.0), 1.25);
/// # }
/// ```
#[inline]
#[unstable(feature = "f128", issue = "116909")]
#[rustc_const_unstable(feature = "f128", issue = "116909")]
pub const fn midpoint(self, other: f128) -> f128 {
const LO: f128 = f128::MIN_POSITIVE * 2.;
const HI: f128 = f128::MAX / 2.;
let (a, b) = (self, other);
let abs_a = a.abs();
let abs_b = b.abs();
if abs_a <= HI && abs_b <= HI {
// Overflow is impossible
(a + b) / 2.
} else if abs_a < LO {
// Not safe to halve `a` (would underflow)
a + (b / 2.)
} else if abs_b < LO {
// Not safe to halve `b` (would underflow)
(a / 2.) + b
} else {
// Safe to halve `a` and `b`
(a / 2.) + (b / 2.)
}
}
/// Rounds toward zero and converts to any primitive integer type,
/// assuming that the value is finite and fits in that type.
///
/// ```
/// #![feature(f128)]
/// # // FIXME(f16_f128): remove when `float*itf` is available
/// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
///
/// let value = 4.6_f128;
/// let rounded = unsafe { value.to_int_unchecked::<u16>() };
/// assert_eq!(rounded, 4);
///
/// let value = -128.9_f128;
/// let rounded = unsafe { value.to_int_unchecked::<i8>() };
/// assert_eq!(rounded, i8::MIN);
/// # }
/// ```
///
/// # Safety
///
/// The value must:
///
/// * Not be `NaN`
/// * Not be infinite
/// * Be representable in the return type `Int`, after truncating off its fractional part
#[inline]
#[unstable(feature = "f128", issue = "116909")]
#[must_use = "this returns the result of the operation, without modifying the original"]
pub unsafe fn to_int_unchecked<Int>(self) -> Int
where
Self: FloatToInt<Int>,
{
// SAFETY: the caller must uphold the safety contract for
// `FloatToInt::to_int_unchecked`.
unsafe { FloatToInt::<Int>::to_int_unchecked(self) }
}
/// Raw transmutation to `u128`.
///
/// This is currently identical to `transmute::<f128, u128>(self)` on all platforms.
///
/// See [`from_bits`](#method.from_bits) for some discussion of the
/// portability of this operation (there are almost no issues).
///
/// Note that this function is distinct from `as` casting, which attempts to
/// preserve the *numeric* value, and not the bitwise value.
///
/// ```
/// #![feature(f128)]
///
/// # // FIXME(f16_f128): enable this once const casting works
/// # // assert_ne!((1f128).to_bits(), 1f128 as u128); // to_bits() is not casting!
/// assert_eq!((12.5f128).to_bits(), 0x40029000000000000000000000000000);
/// ```
#[inline]
#[unstable(feature = "f128", issue = "116909")]
#[must_use = "this returns the result of the operation, without modifying the original"]
pub const fn to_bits(self) -> u128 {
// SAFETY: `u128` is a plain old datatype so we can always transmute to it.
unsafe { mem::transmute(self) }
}
/// Raw transmutation from `u128`.
///
/// This is currently identical to `transmute::<u128, f128>(v)` on all platforms.
/// It turns out this is incredibly portable, for two reasons:
///
/// * Floats and Ints have the same endianness on all supported platforms.
/// * IEEE 754 very precisely specifies the bit layout of floats.
///
/// However there is one caveat: prior to the 2008 version of IEEE 754, how
/// to interpret the NaN signaling bit wasn't actually specified. Most platforms
/// (notably x86 and ARM) picked the interpretation that was ultimately
/// standardized in 2008, but some didn't (notably MIPS). As a result, all
/// signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa.
///
/// Rather than trying to preserve signaling-ness cross-platform, this
/// implementation favors preserving the exact bits. This means that
/// any payloads encoded in NaNs will be preserved even if the result of
/// this method is sent over the network from an x86 machine to a MIPS one.
///
/// If the results of this method are only manipulated by the same
/// architecture that produced them, then there is no portability concern.
///
/// If the input isn't NaN, then there is no portability concern.
///
/// If you don't care about signalingness (very likely), then there is no
/// portability concern.
///
/// Note that this function is distinct from `as` casting, which attempts to
/// preserve the *numeric* value, and not the bitwise value.
///
/// ```
/// #![feature(f128)]
/// # // FIXME(f16_f128): remove when `eqtf2` is available
/// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
///
/// let v = f128::from_bits(0x40029000000000000000000000000000);
/// assert_eq!(v, 12.5);
/// # }
/// ```
#[inline]
#[must_use]
#[unstable(feature = "f128", issue = "116909")]
pub const fn from_bits(v: u128) -> Self {
// It turns out the safety issues with sNaN were overblown! Hooray!
// SAFETY: `u128` is a plain old datatype so we can always transmute from it.
unsafe { mem::transmute(v) }
}
/// Returns the memory representation of this floating point number as a byte array in
/// big-endian (network) byte order.
///
/// See [`from_bits`](Self::from_bits) for some discussion of the
/// portability of this operation (there are almost no issues).
///
/// # Examples
///
/// ```
/// #![feature(f128)]
///
/// let bytes = 12.5f128.to_be_bytes();
/// assert_eq!(
/// bytes,
/// [0x40, 0x02, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00,
/// 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
/// );
/// ```
#[inline]
#[unstable(feature = "f128", issue = "116909")]
#[must_use = "this returns the result of the operation, without modifying the original"]
pub const fn to_be_bytes(self) -> [u8; 16] {
self.to_bits().to_be_bytes()
}
/// Returns the memory representation of this floating point number as a byte array in
/// little-endian byte order.
///
/// See [`from_bits`](Self::from_bits) for some discussion of the
/// portability of this operation (there are almost no issues).
///
/// # Examples
///
/// ```
/// #![feature(f128)]
///
/// let bytes = 12.5f128.to_le_bytes();
/// assert_eq!(
/// bytes,
/// [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/// 0x00, 0x00, 0x00, 0x00, 0x00, 0x90, 0x02, 0x40]
/// );
/// ```
#[inline]
#[unstable(feature = "f128", issue = "116909")]
#[must_use = "this returns the result of the operation, without modifying the original"]
pub const fn to_le_bytes(self) -> [u8; 16] {
self.to_bits().to_le_bytes()
}
/// Returns the memory representation of this floating point number as a byte array in
/// native byte order.
///
/// As the target platform's native endianness is used, portable code
/// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate, instead.
///
/// [`to_be_bytes`]: f128::to_be_bytes
/// [`to_le_bytes`]: f128::to_le_bytes
///
/// See [`from_bits`](Self::from_bits) for some discussion of the
/// portability of this operation (there are almost no issues).
///
/// # Examples
///
/// ```
/// #![feature(f128)]
///
/// let bytes = 12.5f128.to_ne_bytes();
/// assert_eq!(
/// bytes,
/// if cfg!(target_endian = "big") {
/// [0x40, 0x02, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00,
/// 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
/// } else {
/// [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/// 0x00, 0x00, 0x00, 0x00, 0x00, 0x90, 0x02, 0x40]
/// }
/// );
/// ```
#[inline]
#[unstable(feature = "f128", issue = "116909")]
#[must_use = "this returns the result of the operation, without modifying the original"]
pub const fn to_ne_bytes(self) -> [u8; 16] {
self.to_bits().to_ne_bytes()
}
/// Creates a floating point value from its representation as a byte array in big endian.
///
/// See [`from_bits`](Self::from_bits) for some discussion of the
/// portability of this operation (there are almost no issues).
///
/// # Examples
///
/// ```
/// #![feature(f128)]
/// # // FIXME(f16_f128): remove when `eqtf2` is available
/// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
///
/// let value = f128::from_be_bytes(
/// [0x40, 0x02, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00,
/// 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
/// );
/// assert_eq!(value, 12.5);
/// # }
/// ```
#[inline]
#[must_use]
#[unstable(feature = "f128", issue = "116909")]
pub const fn from_be_bytes(bytes: [u8; 16]) -> Self {
Self::from_bits(u128::from_be_bytes(bytes))
}
/// Creates a floating point value from its representation as a byte array in little endian.
///
/// See [`from_bits`](Self::from_bits) for some discussion of the
/// portability of this operation (there are almost no issues).
///
/// # Examples
///
/// ```
/// #![feature(f128)]
/// # // FIXME(f16_f128): remove when `eqtf2` is available
/// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
///
/// let value = f128::from_le_bytes(
/// [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/// 0x00, 0x00, 0x00, 0x00, 0x00, 0x90, 0x02, 0x40]
/// );
/// assert_eq!(value, 12.5);
/// # }
/// ```
#[inline]
#[must_use]
#[unstable(feature = "f128", issue = "116909")]
pub const fn from_le_bytes(bytes: [u8; 16]) -> Self {
Self::from_bits(u128::from_le_bytes(bytes))
}
/// Creates a floating point value from its representation as a byte array in native endian.
///
/// As the target platform's native endianness is used, portable code
/// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as
/// appropriate instead.
///
/// [`from_be_bytes`]: f128::from_be_bytes
/// [`from_le_bytes`]: f128::from_le_bytes
///
/// See [`from_bits`](Self::from_bits) for some discussion of the
/// portability of this operation (there are almost no issues).
///
/// # Examples
///
/// ```
/// #![feature(f128)]
/// # // FIXME(f16_f128): remove when `eqtf2` is available
/// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
///
/// let value = f128::from_ne_bytes(if cfg!(target_endian = "big") {
/// [0x40, 0x02, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00,
/// 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
/// } else {
/// [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/// 0x00, 0x00, 0x00, 0x00, 0x00, 0x90, 0x02, 0x40]
/// });
/// assert_eq!(value, 12.5);
/// # }
/// ```
#[inline]
#[must_use]
#[unstable(feature = "f128", issue = "116909")]
pub const fn from_ne_bytes(bytes: [u8; 16]) -> Self {
Self::from_bits(u128::from_ne_bytes(bytes))
}
/// Returns the ordering between `self` and `other`.
///
/// Unlike the standard partial comparison between floating point numbers,
/// this comparison always produces an ordering in accordance to
/// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision)
/// floating point standard. The values are ordered in the following sequence:
///
/// - negative quiet NaN
/// - negative signaling NaN
/// - negative infinity
/// - negative numbers
/// - negative subnormal numbers
/// - negative zero
/// - positive zero
/// - positive subnormal numbers
/// - positive numbers
/// - positive infinity
/// - positive signaling NaN
/// - positive quiet NaN.
///
/// The ordering established by this function does not always agree with the
/// [`PartialOrd`] and [`PartialEq`] implementations of `f128`. For example,
/// they consider negative and positive zero equal, while `total_cmp`
/// doesn't.
///
/// The interpretation of the signaling NaN bit follows the definition in
/// the IEEE 754 standard, which may not match the interpretation by some of
/// the older, non-conformant (e.g. MIPS) hardware implementations.
///
/// # Example
///
/// ```
/// #![feature(f128)]
///
/// struct GoodBoy {
/// name: &'static str,
/// weight: f128,
/// }
///
/// let mut bois = vec![
/// GoodBoy { name: "Pucci", weight: 0.1 },
/// GoodBoy { name: "Woofer", weight: 99.0 },
/// GoodBoy { name: "Yapper", weight: 10.0 },
/// GoodBoy { name: "Chonk", weight: f128::INFINITY },
/// GoodBoy { name: "Abs. Unit", weight: f128::NAN },
/// GoodBoy { name: "Floaty", weight: -5.0 },
/// ];
///
/// bois.sort_by(|a, b| a.weight.total_cmp(&b.weight));
///
/// // `f128::NAN` could be positive or negative, which will affect the sort order.
/// if f128::NAN.is_sign_negative() {
/// bois.into_iter().map(|b| b.weight)
/// .zip([f128::NAN, -5.0, 0.1, 10.0, 99.0, f128::INFINITY].iter())
/// .for_each(|(a, b)| assert_eq!(a.to_bits(), b.to_bits()))
/// } else {
/// bois.into_iter().map(|b| b.weight)
/// .zip([-5.0, 0.1, 10.0, 99.0, f128::INFINITY, f128::NAN].iter())
/// .for_each(|(a, b)| assert_eq!(a.to_bits(), b.to_bits()))
/// }
/// ```
#[inline]
#[must_use]
#[unstable(feature = "f128", issue = "116909")]
pub fn total_cmp(&self, other: &Self) -> crate::cmp::Ordering {
let mut left = self.to_bits() as i128;
let mut right = other.to_bits() as i128;
// In case of negatives, flip all the bits except the sign
// to achieve a similar layout as two's complement integers
//
// Why does this work? IEEE 754 floats consist of three fields:
// Sign bit, exponent and mantissa. The set of exponent and mantissa
// fields as a whole have the property that their bitwise order is
// equal to the numeric magnitude where the magnitude is defined.
// The magnitude is not normally defined on NaN values, but
// IEEE 754 totalOrder defines the NaN values also to follow the
// bitwise order. This leads to order explained in the doc comment.
// However, the representation of magnitude is the same for negative
// and positive numbers – only the sign bit is different.
// To easily compare the floats as signed integers, we need to
// flip the exponent and mantissa bits in case of negative numbers.
// We effectively convert the numbers to "two's complement" form.
//
// To do the flipping, we construct a mask and XOR against it.
// We branchlessly calculate an "all-ones except for the sign bit"
// mask from negative-signed values: right shifting sign-extends
// the integer, so we "fill" the mask with sign bits, and then
// convert to unsigned to push one more zero bit.
// On positive values, the mask is all zeros, so it's a no-op.
left ^= (((left >> 127) as u128) >> 1) as i128;
right ^= (((right >> 127) as u128) >> 1) as i128;
left.cmp(&right)
}
/// Restrict a value to a certain interval unless it is NaN.
///
/// Returns `max` if `self` is greater than `max`, and `min` if `self` is
/// less than `min`. Otherwise this returns `self`.
///
/// Note that this function returns NaN if the initial value was NaN as
/// well.
///
/// # Panics
///
/// Panics if `min > max`, `min` is NaN, or `max` is NaN.
///
/// # Examples
///
/// ```
/// #![feature(f128)]
/// # // FIXME(f16_f128): remove when `{eq,gt,unord}tf` are available
/// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
///
/// assert!((-3.0f128).clamp(-2.0, 1.0) == -2.0);
/// assert!((0.0f128).clamp(-2.0, 1.0) == 0.0);
/// assert!((2.0f128).clamp(-2.0, 1.0) == 1.0);
/// assert!((f128::NAN).clamp(-2.0, 1.0).is_nan());
/// # }
/// ```
#[inline]
#[unstable(feature = "f128", issue = "116909")]
#[must_use = "method returns a new number and does not mutate the original value"]
pub const fn clamp(mut self, min: f128, max: f128) -> f128 {
const_assert!(
min <= max,
"min > max, or either was NaN",
"min > max, or either was NaN. min = {min:?}, max = {max:?}",
min: f128,
max: f128,
);
if self < min {
self = min;
}
if self > max {
self = max;
}
self
}
/// Computes the absolute value of `self`.
///
/// This function always returns the precise result.
///
/// # Examples
///
/// ```
/// #![feature(f128)]
/// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
///
/// let x = 3.5_f128;
/// let y = -3.5_f128;
///
/// assert_eq!(x.abs(), x);
/// assert_eq!(y.abs(), -y);
///
/// assert!(f128::NAN.abs().is_nan());
/// # }
/// ```
#[inline]
#[unstable(feature = "f128", issue = "116909")]
#[rustc_const_unstable(feature = "f128", issue = "116909")]
#[must_use = "method returns a new number and does not mutate the original value"]
pub const fn abs(self) -> Self {
// FIXME(f16_f128): replace with `intrinsics::fabsf128` when available
// We don't do this now because LLVM has lowering bugs for f128 math.
Self::from_bits(self.to_bits() & !(1 << 127))
}
/// Returns a number that represents the sign of `self`.
///
/// - `1.0` if the number is positive, `+0.0` or `INFINITY`
/// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
/// - NaN if the number is NaN
///
/// # Examples
///
/// ```
/// #![feature(f128)]
/// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
///
/// let f = 3.5_f128;
///
/// assert_eq!(f.signum(), 1.0);
/// assert_eq!(f128::NEG_INFINITY.signum(), -1.0);
///
/// assert!(f128::NAN.signum().is_nan());
/// # }
/// ```
#[inline]
#[unstable(feature = "f128", issue = "116909")]
#[rustc_const_unstable(feature = "f128", issue = "116909")]
#[must_use = "method returns a new number and does not mutate the original value"]
pub const fn signum(self) -> f128 {
if self.is_nan() { Self::NAN } else { 1.0_f128.copysign(self) }
}
/// Returns a number composed of the magnitude of `self` and the sign of
/// `sign`.
///
/// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`.
/// If `self` is a NaN, then a NaN with the same payload as `self` and the sign bit of `sign` is
/// returned.
///
/// If `sign` is a NaN, then this operation will still carry over its sign into the result. Note
/// that IEEE 754 doesn't assign any meaning to the sign bit in case of a NaN, and as Rust
/// doesn't guarantee that the bit pattern of NaNs are conserved over arithmetic operations, the
/// result of `copysign` with `sign` being a NaN might produce an unexpected or non-portable
/// result. See the [specification of NaN bit patterns](primitive@f32#nan-bit-patterns) for more
/// info.
///
/// # Examples
///
/// ```
/// #![feature(f128)]
/// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
///
/// let f = 3.5_f128;
///
/// assert_eq!(f.copysign(0.42), 3.5_f128);
/// assert_eq!(f.copysign(-0.42), -3.5_f128);
/// assert_eq!((-f).copysign(0.42), 3.5_f128);
/// assert_eq!((-f).copysign(-0.42), -3.5_f128);
///
/// assert!(f128::NAN.copysign(1.0).is_nan());
/// # }
/// ```
#[inline]
#[unstable(feature = "f128", issue = "116909")]
#[rustc_const_unstable(feature = "f128", issue = "116909")]
#[must_use = "method returns a new number and does not mutate the original value"]
pub const fn copysign(self, sign: f128) -> f128 {
// SAFETY: this is actually a safe intrinsic
unsafe { intrinsics::copysignf128(self, sign) }
}
}