core/net/
ip_addr.rs

1use super::display_buffer::DisplayBuffer;
2use crate::cmp::Ordering;
3use crate::fmt::{self, Write};
4use crate::hash::{Hash, Hasher};
5use crate::iter;
6use crate::mem::transmute;
7use crate::ops::{BitAnd, BitAndAssign, BitOr, BitOrAssign, Not};
8
9/// An IP address, either IPv4 or IPv6.
10///
11/// This enum can contain either an [`Ipv4Addr`] or an [`Ipv6Addr`], see their
12/// respective documentation for more details.
13///
14/// # Examples
15///
16/// ```
17/// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
18///
19/// let localhost_v4 = IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1));
20/// let localhost_v6 = IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1));
21///
22/// assert_eq!("127.0.0.1".parse(), Ok(localhost_v4));
23/// assert_eq!("::1".parse(), Ok(localhost_v6));
24///
25/// assert_eq!(localhost_v4.is_ipv6(), false);
26/// assert_eq!(localhost_v4.is_ipv4(), true);
27/// ```
28#[rustc_diagnostic_item = "IpAddr"]
29#[stable(feature = "ip_addr", since = "1.7.0")]
30#[derive(Copy, Clone, Eq, PartialEq, Hash, PartialOrd, Ord)]
31pub enum IpAddr {
32    /// An IPv4 address.
33    #[stable(feature = "ip_addr", since = "1.7.0")]
34    V4(#[stable(feature = "ip_addr", since = "1.7.0")] Ipv4Addr),
35    /// An IPv6 address.
36    #[stable(feature = "ip_addr", since = "1.7.0")]
37    V6(#[stable(feature = "ip_addr", since = "1.7.0")] Ipv6Addr),
38}
39
40/// An IPv4 address.
41///
42/// IPv4 addresses are defined as 32-bit integers in [IETF RFC 791].
43/// They are usually represented as four octets.
44///
45/// See [`IpAddr`] for a type encompassing both IPv4 and IPv6 addresses.
46///
47/// [IETF RFC 791]: https://tools.ietf.org/html/rfc791
48///
49/// # Textual representation
50///
51/// `Ipv4Addr` provides a [`FromStr`] implementation. The four octets are in decimal
52/// notation, divided by `.` (this is called "dot-decimal notation").
53/// Notably, octal numbers (which are indicated with a leading `0`) and hexadecimal numbers (which
54/// are indicated with a leading `0x`) are not allowed per [IETF RFC 6943].
55///
56/// [IETF RFC 6943]: https://tools.ietf.org/html/rfc6943#section-3.1.1
57/// [`FromStr`]: crate::str::FromStr
58///
59/// # Examples
60///
61/// ```
62/// use std::net::Ipv4Addr;
63///
64/// let localhost = Ipv4Addr::new(127, 0, 0, 1);
65/// assert_eq!("127.0.0.1".parse(), Ok(localhost));
66/// assert_eq!(localhost.is_loopback(), true);
67/// assert!("012.004.002.000".parse::<Ipv4Addr>().is_err()); // all octets are in octal
68/// assert!("0000000.0.0.0".parse::<Ipv4Addr>().is_err()); // first octet is a zero in octal
69/// assert!("0xcb.0x0.0x71.0x00".parse::<Ipv4Addr>().is_err()); // all octets are in hex
70/// ```
71#[derive(Copy, Clone, PartialEq, Eq)]
72#[stable(feature = "rust1", since = "1.0.0")]
73pub struct Ipv4Addr {
74    octets: [u8; 4],
75}
76
77#[stable(feature = "rust1", since = "1.0.0")]
78impl Hash for Ipv4Addr {
79    fn hash<H: Hasher>(&self, state: &mut H) {
80        // Hashers are often more efficient at hashing a fixed-width integer
81        // than a bytestring, so convert before hashing. We don't use to_bits()
82        // here as that may involve a byteswap which is unnecessary.
83        u32::from_ne_bytes(self.octets).hash(state);
84    }
85}
86
87/// An IPv6 address.
88///
89/// IPv6 addresses are defined as 128-bit integers in [IETF RFC 4291].
90/// They are usually represented as eight 16-bit segments.
91///
92/// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
93///
94/// # Embedding IPv4 Addresses
95///
96/// See [`IpAddr`] for a type encompassing both IPv4 and IPv6 addresses.
97///
98/// To assist in the transition from IPv4 to IPv6 two types of IPv6 addresses that embed an IPv4 address were defined:
99/// IPv4-compatible and IPv4-mapped addresses. Of these IPv4-compatible addresses have been officially deprecated.
100///
101/// Both types of addresses are not assigned any special meaning by this implementation,
102/// other than what the relevant standards prescribe. This means that an address like `::ffff:127.0.0.1`,
103/// while representing an IPv4 loopback address, is not itself an IPv6 loopback address; only `::1` is.
104/// To handle these so called "IPv4-in-IPv6" addresses, they have to first be converted to their canonical IPv4 address.
105///
106/// ### IPv4-Compatible IPv6 Addresses
107///
108/// IPv4-compatible IPv6 addresses are defined in [IETF RFC 4291 Section 2.5.5.1], and have been officially deprecated.
109/// The RFC describes the format of an "IPv4-Compatible IPv6 address" as follows:
110///
111/// ```text
112/// |                80 bits               | 16 |      32 bits        |
113/// +--------------------------------------+--------------------------+
114/// |0000..............................0000|0000|    IPv4 address     |
115/// +--------------------------------------+----+---------------------+
116/// ```
117/// So `::a.b.c.d` would be an IPv4-compatible IPv6 address representing the IPv4 address `a.b.c.d`.
118///
119/// To convert from an IPv4 address to an IPv4-compatible IPv6 address, use [`Ipv4Addr::to_ipv6_compatible`].
120/// Use [`Ipv6Addr::to_ipv4`] to convert an IPv4-compatible IPv6 address to the canonical IPv4 address.
121///
122/// [IETF RFC 4291 Section 2.5.5.1]: https://datatracker.ietf.org/doc/html/rfc4291#section-2.5.5.1
123///
124/// ### IPv4-Mapped IPv6 Addresses
125///
126/// IPv4-mapped IPv6 addresses are defined in [IETF RFC 4291 Section 2.5.5.2].
127/// The RFC describes the format of an "IPv4-Mapped IPv6 address" as follows:
128///
129/// ```text
130/// |                80 bits               | 16 |      32 bits        |
131/// +--------------------------------------+--------------------------+
132/// |0000..............................0000|FFFF|    IPv4 address     |
133/// +--------------------------------------+----+---------------------+
134/// ```
135/// So `::ffff:a.b.c.d` would be an IPv4-mapped IPv6 address representing the IPv4 address `a.b.c.d`.
136///
137/// To convert from an IPv4 address to an IPv4-mapped IPv6 address, use [`Ipv4Addr::to_ipv6_mapped`].
138/// Use [`Ipv6Addr::to_ipv4`] to convert an IPv4-mapped IPv6 address to the canonical IPv4 address.
139/// Note that this will also convert the IPv6 loopback address `::1` to `0.0.0.1`. Use
140/// [`Ipv6Addr::to_ipv4_mapped`] to avoid this.
141///
142/// [IETF RFC 4291 Section 2.5.5.2]: https://datatracker.ietf.org/doc/html/rfc4291#section-2.5.5.2
143///
144/// # Textual representation
145///
146/// `Ipv6Addr` provides a [`FromStr`] implementation. There are many ways to represent
147/// an IPv6 address in text, but in general, each segments is written in hexadecimal
148/// notation, and segments are separated by `:`. For more information, see
149/// [IETF RFC 5952].
150///
151/// [`FromStr`]: crate::str::FromStr
152/// [IETF RFC 5952]: https://tools.ietf.org/html/rfc5952
153///
154/// # Examples
155///
156/// ```
157/// use std::net::Ipv6Addr;
158///
159/// let localhost = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1);
160/// assert_eq!("::1".parse(), Ok(localhost));
161/// assert_eq!(localhost.is_loopback(), true);
162/// ```
163#[derive(Copy, Clone, PartialEq, Eq)]
164#[stable(feature = "rust1", since = "1.0.0")]
165pub struct Ipv6Addr {
166    octets: [u8; 16],
167}
168
169#[stable(feature = "rust1", since = "1.0.0")]
170impl Hash for Ipv6Addr {
171    fn hash<H: Hasher>(&self, state: &mut H) {
172        // Hashers are often more efficient at hashing a fixed-width integer
173        // than a bytestring, so convert before hashing. We don't use to_bits()
174        // here as that may involve unnecessary byteswaps.
175        u128::from_ne_bytes(self.octets).hash(state);
176    }
177}
178
179/// Scope of an [IPv6 multicast address] as defined in [IETF RFC 7346 section 2].
180///
181/// # Stability Guarantees
182///
183/// Not all possible values for a multicast scope have been assigned.
184/// Future RFCs may introduce new scopes, which will be added as variants to this enum;
185/// because of this the enum is marked as `#[non_exhaustive]`.
186///
187/// # Examples
188/// ```
189/// #![feature(ip)]
190///
191/// use std::net::Ipv6Addr;
192/// use std::net::Ipv6MulticastScope::*;
193///
194/// // An IPv6 multicast address with global scope (`ff0e::`).
195/// let address = Ipv6Addr::new(0xff0e, 0, 0, 0, 0, 0, 0, 0);
196///
197/// // Will print "Global scope".
198/// match address.multicast_scope() {
199///     Some(InterfaceLocal) => println!("Interface-Local scope"),
200///     Some(LinkLocal) => println!("Link-Local scope"),
201///     Some(RealmLocal) => println!("Realm-Local scope"),
202///     Some(AdminLocal) => println!("Admin-Local scope"),
203///     Some(SiteLocal) => println!("Site-Local scope"),
204///     Some(OrganizationLocal) => println!("Organization-Local scope"),
205///     Some(Global) => println!("Global scope"),
206///     Some(_) => println!("Unknown scope"),
207///     None => println!("Not a multicast address!")
208/// }
209///
210/// ```
211///
212/// [IPv6 multicast address]: Ipv6Addr
213/// [IETF RFC 7346 section 2]: https://tools.ietf.org/html/rfc7346#section-2
214#[derive(Copy, PartialEq, Eq, Clone, Hash, Debug)]
215#[unstable(feature = "ip", issue = "27709")]
216#[non_exhaustive]
217pub enum Ipv6MulticastScope {
218    /// Interface-Local scope.
219    InterfaceLocal,
220    /// Link-Local scope.
221    LinkLocal,
222    /// Realm-Local scope.
223    RealmLocal,
224    /// Admin-Local scope.
225    AdminLocal,
226    /// Site-Local scope.
227    SiteLocal,
228    /// Organization-Local scope.
229    OrganizationLocal,
230    /// Global scope.
231    Global,
232}
233
234impl IpAddr {
235    /// Returns [`true`] for the special 'unspecified' address.
236    ///
237    /// See the documentation for [`Ipv4Addr::is_unspecified()`] and
238    /// [`Ipv6Addr::is_unspecified()`] for more details.
239    ///
240    /// # Examples
241    ///
242    /// ```
243    /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
244    ///
245    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)).is_unspecified(), true);
246    /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0)).is_unspecified(), true);
247    /// ```
248    #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
249    #[stable(feature = "ip_shared", since = "1.12.0")]
250    #[must_use]
251    #[inline]
252    pub const fn is_unspecified(&self) -> bool {
253        match self {
254            IpAddr::V4(ip) => ip.is_unspecified(),
255            IpAddr::V6(ip) => ip.is_unspecified(),
256        }
257    }
258
259    /// Returns [`true`] if this is a loopback address.
260    ///
261    /// See the documentation for [`Ipv4Addr::is_loopback()`] and
262    /// [`Ipv6Addr::is_loopback()`] for more details.
263    ///
264    /// # Examples
265    ///
266    /// ```
267    /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
268    ///
269    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)).is_loopback(), true);
270    /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0x1)).is_loopback(), true);
271    /// ```
272    #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
273    #[stable(feature = "ip_shared", since = "1.12.0")]
274    #[must_use]
275    #[inline]
276    pub const fn is_loopback(&self) -> bool {
277        match self {
278            IpAddr::V4(ip) => ip.is_loopback(),
279            IpAddr::V6(ip) => ip.is_loopback(),
280        }
281    }
282
283    /// Returns [`true`] if the address appears to be globally routable.
284    ///
285    /// See the documentation for [`Ipv4Addr::is_global()`] and
286    /// [`Ipv6Addr::is_global()`] for more details.
287    ///
288    /// # Examples
289    ///
290    /// ```
291    /// #![feature(ip)]
292    ///
293    /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
294    ///
295    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(80, 9, 12, 3)).is_global(), true);
296    /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0x1c9, 0, 0, 0xafc8, 0, 0x1)).is_global(), true);
297    /// ```
298    #[unstable(feature = "ip", issue = "27709")]
299    #[must_use]
300    #[inline]
301    pub const fn is_global(&self) -> bool {
302        match self {
303            IpAddr::V4(ip) => ip.is_global(),
304            IpAddr::V6(ip) => ip.is_global(),
305        }
306    }
307
308    /// Returns [`true`] if this is a multicast address.
309    ///
310    /// See the documentation for [`Ipv4Addr::is_multicast()`] and
311    /// [`Ipv6Addr::is_multicast()`] for more details.
312    ///
313    /// # Examples
314    ///
315    /// ```
316    /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
317    ///
318    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(224, 254, 0, 0)).is_multicast(), true);
319    /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0)).is_multicast(), true);
320    /// ```
321    #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
322    #[stable(feature = "ip_shared", since = "1.12.0")]
323    #[must_use]
324    #[inline]
325    pub const fn is_multicast(&self) -> bool {
326        match self {
327            IpAddr::V4(ip) => ip.is_multicast(),
328            IpAddr::V6(ip) => ip.is_multicast(),
329        }
330    }
331
332    /// Returns [`true`] if this address is in a range designated for documentation.
333    ///
334    /// See the documentation for [`Ipv4Addr::is_documentation()`] and
335    /// [`Ipv6Addr::is_documentation()`] for more details.
336    ///
337    /// # Examples
338    ///
339    /// ```
340    /// #![feature(ip)]
341    ///
342    /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
343    ///
344    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_documentation(), true);
345    /// assert_eq!(
346    ///     IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_documentation(),
347    ///     true
348    /// );
349    /// ```
350    #[unstable(feature = "ip", issue = "27709")]
351    #[must_use]
352    #[inline]
353    pub const fn is_documentation(&self) -> bool {
354        match self {
355            IpAddr::V4(ip) => ip.is_documentation(),
356            IpAddr::V6(ip) => ip.is_documentation(),
357        }
358    }
359
360    /// Returns [`true`] if this address is in a range designated for benchmarking.
361    ///
362    /// See the documentation for [`Ipv4Addr::is_benchmarking()`] and
363    /// [`Ipv6Addr::is_benchmarking()`] for more details.
364    ///
365    /// # Examples
366    ///
367    /// ```
368    /// #![feature(ip)]
369    ///
370    /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
371    ///
372    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(198, 19, 255, 255)).is_benchmarking(), true);
373    /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0x2001, 0x2, 0, 0, 0, 0, 0, 0)).is_benchmarking(), true);
374    /// ```
375    #[unstable(feature = "ip", issue = "27709")]
376    #[must_use]
377    #[inline]
378    pub const fn is_benchmarking(&self) -> bool {
379        match self {
380            IpAddr::V4(ip) => ip.is_benchmarking(),
381            IpAddr::V6(ip) => ip.is_benchmarking(),
382        }
383    }
384
385    /// Returns [`true`] if this address is an [`IPv4` address], and [`false`]
386    /// otherwise.
387    ///
388    /// [`IPv4` address]: IpAddr::V4
389    ///
390    /// # Examples
391    ///
392    /// ```
393    /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
394    ///
395    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_ipv4(), true);
396    /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_ipv4(), false);
397    /// ```
398    #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
399    #[stable(feature = "ipaddr_checker", since = "1.16.0")]
400    #[must_use]
401    #[inline]
402    pub const fn is_ipv4(&self) -> bool {
403        matches!(self, IpAddr::V4(_))
404    }
405
406    /// Returns [`true`] if this address is an [`IPv6` address], and [`false`]
407    /// otherwise.
408    ///
409    /// [`IPv6` address]: IpAddr::V6
410    ///
411    /// # Examples
412    ///
413    /// ```
414    /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
415    ///
416    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_ipv6(), false);
417    /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_ipv6(), true);
418    /// ```
419    #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
420    #[stable(feature = "ipaddr_checker", since = "1.16.0")]
421    #[must_use]
422    #[inline]
423    pub const fn is_ipv6(&self) -> bool {
424        matches!(self, IpAddr::V6(_))
425    }
426
427    /// Converts this address to an `IpAddr::V4` if it is an IPv4-mapped IPv6
428    /// address, otherwise returns `self` as-is.
429    ///
430    /// # Examples
431    ///
432    /// ```
433    /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
434    ///
435    /// let localhost_v4 = Ipv4Addr::new(127, 0, 0, 1);
436    ///
437    /// assert_eq!(IpAddr::V4(localhost_v4).to_canonical(), localhost_v4);
438    /// assert_eq!(IpAddr::V6(localhost_v4.to_ipv6_mapped()).to_canonical(), localhost_v4);
439    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)).to_canonical().is_loopback(), true);
440    /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x7f00, 0x1)).is_loopback(), false);
441    /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x7f00, 0x1)).to_canonical().is_loopback(), true);
442    /// ```
443    #[inline]
444    #[must_use = "this returns the result of the operation, \
445                  without modifying the original"]
446    #[stable(feature = "ip_to_canonical", since = "1.75.0")]
447    #[rustc_const_stable(feature = "ip_to_canonical", since = "1.75.0")]
448    pub const fn to_canonical(&self) -> IpAddr {
449        match self {
450            IpAddr::V4(_) => *self,
451            IpAddr::V6(v6) => v6.to_canonical(),
452        }
453    }
454
455    /// Returns the eight-bit integers this address consists of as a slice.
456    ///
457    /// # Examples
458    ///
459    /// ```
460    /// #![feature(ip_as_octets)]
461    ///
462    /// use std::net::{Ipv4Addr, Ipv6Addr, IpAddr};
463    ///
464    /// assert_eq!(IpAddr::V4(Ipv4Addr::LOCALHOST).as_octets(), &[127, 0, 0, 1]);
465    /// assert_eq!(IpAddr::V6(Ipv6Addr::LOCALHOST).as_octets(),
466    ///            &[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
467    /// ```
468    #[unstable(feature = "ip_as_octets", issue = "137259")]
469    #[inline]
470    pub const fn as_octets(&self) -> &[u8] {
471        match self {
472            IpAddr::V4(ip) => ip.as_octets().as_slice(),
473            IpAddr::V6(ip) => ip.as_octets().as_slice(),
474        }
475    }
476}
477
478impl Ipv4Addr {
479    /// Creates a new IPv4 address from four eight-bit octets.
480    ///
481    /// The result will represent the IP address `a`.`b`.`c`.`d`.
482    ///
483    /// # Examples
484    ///
485    /// ```
486    /// use std::net::Ipv4Addr;
487    ///
488    /// let addr = Ipv4Addr::new(127, 0, 0, 1);
489    /// ```
490    #[rustc_const_stable(feature = "const_ip_32", since = "1.32.0")]
491    #[stable(feature = "rust1", since = "1.0.0")]
492    #[must_use]
493    #[inline]
494    pub const fn new(a: u8, b: u8, c: u8, d: u8) -> Ipv4Addr {
495        Ipv4Addr { octets: [a, b, c, d] }
496    }
497
498    /// The size of an IPv4 address in bits.
499    ///
500    /// # Examples
501    ///
502    /// ```
503    /// use std::net::Ipv4Addr;
504    ///
505    /// assert_eq!(Ipv4Addr::BITS, 32);
506    /// ```
507    #[stable(feature = "ip_bits", since = "1.80.0")]
508    pub const BITS: u32 = 32;
509
510    /// Converts an IPv4 address into a `u32` representation using native byte order.
511    ///
512    /// Although IPv4 addresses are big-endian, the `u32` value will use the target platform's
513    /// native byte order. That is, the `u32` value is an integer representation of the IPv4
514    /// address and not an integer interpretation of the IPv4 address's big-endian bitstring. This
515    /// means that the `u32` value masked with `0xffffff00` will set the last octet in the address
516    /// to 0, regardless of the target platform's endianness.
517    ///
518    /// # Examples
519    ///
520    /// ```
521    /// use std::net::Ipv4Addr;
522    ///
523    /// let addr = Ipv4Addr::new(0x12, 0x34, 0x56, 0x78);
524    /// assert_eq!(0x12345678, addr.to_bits());
525    /// ```
526    ///
527    /// ```
528    /// use std::net::Ipv4Addr;
529    ///
530    /// let addr = Ipv4Addr::new(0x12, 0x34, 0x56, 0x78);
531    /// let addr_bits = addr.to_bits() & 0xffffff00;
532    /// assert_eq!(Ipv4Addr::new(0x12, 0x34, 0x56, 0x00), Ipv4Addr::from_bits(addr_bits));
533    ///
534    /// ```
535    #[rustc_const_stable(feature = "ip_bits", since = "1.80.0")]
536    #[stable(feature = "ip_bits", since = "1.80.0")]
537    #[must_use]
538    #[inline]
539    pub const fn to_bits(self) -> u32 {
540        u32::from_be_bytes(self.octets)
541    }
542
543    /// Converts a native byte order `u32` into an IPv4 address.
544    ///
545    /// See [`Ipv4Addr::to_bits`] for an explanation on endianness.
546    ///
547    /// # Examples
548    ///
549    /// ```
550    /// use std::net::Ipv4Addr;
551    ///
552    /// let addr = Ipv4Addr::from_bits(0x12345678);
553    /// assert_eq!(Ipv4Addr::new(0x12, 0x34, 0x56, 0x78), addr);
554    /// ```
555    #[rustc_const_stable(feature = "ip_bits", since = "1.80.0")]
556    #[stable(feature = "ip_bits", since = "1.80.0")]
557    #[must_use]
558    #[inline]
559    pub const fn from_bits(bits: u32) -> Ipv4Addr {
560        Ipv4Addr { octets: bits.to_be_bytes() }
561    }
562
563    /// An IPv4 address with the address pointing to localhost: `127.0.0.1`
564    ///
565    /// # Examples
566    ///
567    /// ```
568    /// use std::net::Ipv4Addr;
569    ///
570    /// let addr = Ipv4Addr::LOCALHOST;
571    /// assert_eq!(addr, Ipv4Addr::new(127, 0, 0, 1));
572    /// ```
573    #[stable(feature = "ip_constructors", since = "1.30.0")]
574    pub const LOCALHOST: Self = Ipv4Addr::new(127, 0, 0, 1);
575
576    /// An IPv4 address representing an unspecified address: `0.0.0.0`
577    ///
578    /// This corresponds to the constant `INADDR_ANY` in other languages.
579    ///
580    /// # Examples
581    ///
582    /// ```
583    /// use std::net::Ipv4Addr;
584    ///
585    /// let addr = Ipv4Addr::UNSPECIFIED;
586    /// assert_eq!(addr, Ipv4Addr::new(0, 0, 0, 0));
587    /// ```
588    #[doc(alias = "INADDR_ANY")]
589    #[stable(feature = "ip_constructors", since = "1.30.0")]
590    pub const UNSPECIFIED: Self = Ipv4Addr::new(0, 0, 0, 0);
591
592    /// An IPv4 address representing the broadcast address: `255.255.255.255`.
593    ///
594    /// # Examples
595    ///
596    /// ```
597    /// use std::net::Ipv4Addr;
598    ///
599    /// let addr = Ipv4Addr::BROADCAST;
600    /// assert_eq!(addr, Ipv4Addr::new(255, 255, 255, 255));
601    /// ```
602    #[stable(feature = "ip_constructors", since = "1.30.0")]
603    pub const BROADCAST: Self = Ipv4Addr::new(255, 255, 255, 255);
604
605    /// Returns the four eight-bit integers that make up this address.
606    ///
607    /// # Examples
608    ///
609    /// ```
610    /// use std::net::Ipv4Addr;
611    ///
612    /// let addr = Ipv4Addr::new(127, 0, 0, 1);
613    /// assert_eq!(addr.octets(), [127, 0, 0, 1]);
614    /// ```
615    #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
616    #[stable(feature = "rust1", since = "1.0.0")]
617    #[must_use]
618    #[inline]
619    pub const fn octets(&self) -> [u8; 4] {
620        self.octets
621    }
622
623    /// Creates an `Ipv4Addr` from a four element byte array.
624    ///
625    /// # Examples
626    ///
627    /// ```
628    /// #![feature(ip_from)]
629    /// use std::net::Ipv4Addr;
630    ///
631    /// let addr = Ipv4Addr::from_octets([13u8, 12u8, 11u8, 10u8]);
632    /// assert_eq!(Ipv4Addr::new(13, 12, 11, 10), addr);
633    /// ```
634    #[unstable(feature = "ip_from", issue = "131360")]
635    #[must_use]
636    #[inline]
637    pub const fn from_octets(octets: [u8; 4]) -> Ipv4Addr {
638        Ipv4Addr { octets }
639    }
640
641    /// Returns the four eight-bit integers that make up this address
642    /// as a slice.
643    ///
644    /// # Examples
645    ///
646    /// ```
647    /// #![feature(ip_as_octets)]
648    ///
649    /// use std::net::Ipv4Addr;
650    ///
651    /// let addr = Ipv4Addr::new(127, 0, 0, 1);
652    /// assert_eq!(addr.as_octets(), &[127, 0, 0, 1]);
653    /// ```
654    #[unstable(feature = "ip_as_octets", issue = "137259")]
655    #[inline]
656    pub const fn as_octets(&self) -> &[u8; 4] {
657        &self.octets
658    }
659
660    /// Returns [`true`] for the special 'unspecified' address (`0.0.0.0`).
661    ///
662    /// This property is defined in _UNIX Network Programming, Second Edition_,
663    /// W. Richard Stevens, p. 891; see also [ip7].
664    ///
665    /// [ip7]: https://man7.org/linux/man-pages/man7/ip.7.html
666    ///
667    /// # Examples
668    ///
669    /// ```
670    /// use std::net::Ipv4Addr;
671    ///
672    /// assert_eq!(Ipv4Addr::new(0, 0, 0, 0).is_unspecified(), true);
673    /// assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_unspecified(), false);
674    /// ```
675    #[rustc_const_stable(feature = "const_ip_32", since = "1.32.0")]
676    #[stable(feature = "ip_shared", since = "1.12.0")]
677    #[must_use]
678    #[inline]
679    pub const fn is_unspecified(&self) -> bool {
680        u32::from_be_bytes(self.octets) == 0
681    }
682
683    /// Returns [`true`] if this is a loopback address (`127.0.0.0/8`).
684    ///
685    /// This property is defined by [IETF RFC 1122].
686    ///
687    /// [IETF RFC 1122]: https://tools.ietf.org/html/rfc1122
688    ///
689    /// # Examples
690    ///
691    /// ```
692    /// use std::net::Ipv4Addr;
693    ///
694    /// assert_eq!(Ipv4Addr::new(127, 0, 0, 1).is_loopback(), true);
695    /// assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_loopback(), false);
696    /// ```
697    #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
698    #[stable(since = "1.7.0", feature = "ip_17")]
699    #[must_use]
700    #[inline]
701    pub const fn is_loopback(&self) -> bool {
702        self.octets()[0] == 127
703    }
704
705    /// Returns [`true`] if this is a private address.
706    ///
707    /// The private address ranges are defined in [IETF RFC 1918] and include:
708    ///
709    ///  - `10.0.0.0/8`
710    ///  - `172.16.0.0/12`
711    ///  - `192.168.0.0/16`
712    ///
713    /// [IETF RFC 1918]: https://tools.ietf.org/html/rfc1918
714    ///
715    /// # Examples
716    ///
717    /// ```
718    /// use std::net::Ipv4Addr;
719    ///
720    /// assert_eq!(Ipv4Addr::new(10, 0, 0, 1).is_private(), true);
721    /// assert_eq!(Ipv4Addr::new(10, 10, 10, 10).is_private(), true);
722    /// assert_eq!(Ipv4Addr::new(172, 16, 10, 10).is_private(), true);
723    /// assert_eq!(Ipv4Addr::new(172, 29, 45, 14).is_private(), true);
724    /// assert_eq!(Ipv4Addr::new(172, 32, 0, 2).is_private(), false);
725    /// assert_eq!(Ipv4Addr::new(192, 168, 0, 2).is_private(), true);
726    /// assert_eq!(Ipv4Addr::new(192, 169, 0, 2).is_private(), false);
727    /// ```
728    #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
729    #[stable(since = "1.7.0", feature = "ip_17")]
730    #[must_use]
731    #[inline]
732    pub const fn is_private(&self) -> bool {
733        match self.octets() {
734            [10, ..] => true,
735            [172, b, ..] if b >= 16 && b <= 31 => true,
736            [192, 168, ..] => true,
737            _ => false,
738        }
739    }
740
741    /// Returns [`true`] if the address is link-local (`169.254.0.0/16`).
742    ///
743    /// This property is defined by [IETF RFC 3927].
744    ///
745    /// [IETF RFC 3927]: https://tools.ietf.org/html/rfc3927
746    ///
747    /// # Examples
748    ///
749    /// ```
750    /// use std::net::Ipv4Addr;
751    ///
752    /// assert_eq!(Ipv4Addr::new(169, 254, 0, 0).is_link_local(), true);
753    /// assert_eq!(Ipv4Addr::new(169, 254, 10, 65).is_link_local(), true);
754    /// assert_eq!(Ipv4Addr::new(16, 89, 10, 65).is_link_local(), false);
755    /// ```
756    #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
757    #[stable(since = "1.7.0", feature = "ip_17")]
758    #[must_use]
759    #[inline]
760    pub const fn is_link_local(&self) -> bool {
761        matches!(self.octets(), [169, 254, ..])
762    }
763
764    /// Returns [`true`] if the address appears to be globally reachable
765    /// as specified by the [IANA IPv4 Special-Purpose Address Registry].
766    ///
767    /// Whether or not an address is practically reachable will depend on your
768    /// network configuration. Most IPv4 addresses are globally reachable, unless
769    /// they are specifically defined as *not* globally reachable.
770    ///
771    /// Non-exhaustive list of notable addresses that are not globally reachable:
772    ///
773    /// - The [unspecified address] ([`is_unspecified`](Ipv4Addr::is_unspecified))
774    /// - Addresses reserved for private use ([`is_private`](Ipv4Addr::is_private))
775    /// - Addresses in the shared address space ([`is_shared`](Ipv4Addr::is_shared))
776    /// - Loopback addresses ([`is_loopback`](Ipv4Addr::is_loopback))
777    /// - Link-local addresses ([`is_link_local`](Ipv4Addr::is_link_local))
778    /// - Addresses reserved for documentation ([`is_documentation`](Ipv4Addr::is_documentation))
779    /// - Addresses reserved for benchmarking ([`is_benchmarking`](Ipv4Addr::is_benchmarking))
780    /// - Reserved addresses ([`is_reserved`](Ipv4Addr::is_reserved))
781    /// - The [broadcast address] ([`is_broadcast`](Ipv4Addr::is_broadcast))
782    ///
783    /// For the complete overview of which addresses are globally reachable, see the table at the [IANA IPv4 Special-Purpose Address Registry].
784    ///
785    /// [IANA IPv4 Special-Purpose Address Registry]: https://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml
786    /// [unspecified address]: Ipv4Addr::UNSPECIFIED
787    /// [broadcast address]: Ipv4Addr::BROADCAST
788
789    ///
790    /// # Examples
791    ///
792    /// ```
793    /// #![feature(ip)]
794    ///
795    /// use std::net::Ipv4Addr;
796    ///
797    /// // Most IPv4 addresses are globally reachable:
798    /// assert_eq!(Ipv4Addr::new(80, 9, 12, 3).is_global(), true);
799    ///
800    /// // However some addresses have been assigned a special meaning
801    /// // that makes them not globally reachable. Some examples are:
802    ///
803    /// // The unspecified address (`0.0.0.0`)
804    /// assert_eq!(Ipv4Addr::UNSPECIFIED.is_global(), false);
805    ///
806    /// // Addresses reserved for private use (`10.0.0.0/8`, `172.16.0.0/12`, 192.168.0.0/16)
807    /// assert_eq!(Ipv4Addr::new(10, 254, 0, 0).is_global(), false);
808    /// assert_eq!(Ipv4Addr::new(192, 168, 10, 65).is_global(), false);
809    /// assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_global(), false);
810    ///
811    /// // Addresses in the shared address space (`100.64.0.0/10`)
812    /// assert_eq!(Ipv4Addr::new(100, 100, 0, 0).is_global(), false);
813    ///
814    /// // The loopback addresses (`127.0.0.0/8`)
815    /// assert_eq!(Ipv4Addr::LOCALHOST.is_global(), false);
816    ///
817    /// // Link-local addresses (`169.254.0.0/16`)
818    /// assert_eq!(Ipv4Addr::new(169, 254, 45, 1).is_global(), false);
819    ///
820    /// // Addresses reserved for documentation (`192.0.2.0/24`, `198.51.100.0/24`, `203.0.113.0/24`)
821    /// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).is_global(), false);
822    /// assert_eq!(Ipv4Addr::new(198, 51, 100, 65).is_global(), false);
823    /// assert_eq!(Ipv4Addr::new(203, 0, 113, 6).is_global(), false);
824    ///
825    /// // Addresses reserved for benchmarking (`198.18.0.0/15`)
826    /// assert_eq!(Ipv4Addr::new(198, 18, 0, 0).is_global(), false);
827    ///
828    /// // Reserved addresses (`240.0.0.0/4`)
829    /// assert_eq!(Ipv4Addr::new(250, 10, 20, 30).is_global(), false);
830    ///
831    /// // The broadcast address (`255.255.255.255`)
832    /// assert_eq!(Ipv4Addr::BROADCAST.is_global(), false);
833    ///
834    /// // For a complete overview see the IANA IPv4 Special-Purpose Address Registry.
835    /// ```
836    #[unstable(feature = "ip", issue = "27709")]
837    #[must_use]
838    #[inline]
839    pub const fn is_global(&self) -> bool {
840        !(self.octets()[0] == 0 // "This network"
841            || self.is_private()
842            || self.is_shared()
843            || self.is_loopback()
844            || self.is_link_local()
845            // addresses reserved for future protocols (`192.0.0.0/24`)
846            // .9 and .10 are documented as globally reachable so they're excluded
847            || (
848                self.octets()[0] == 192 && self.octets()[1] == 0 && self.octets()[2] == 0
849                && self.octets()[3] != 9 && self.octets()[3] != 10
850            )
851            || self.is_documentation()
852            || self.is_benchmarking()
853            || self.is_reserved()
854            || self.is_broadcast())
855    }
856
857    /// Returns [`true`] if this address is part of the Shared Address Space defined in
858    /// [IETF RFC 6598] (`100.64.0.0/10`).
859    ///
860    /// [IETF RFC 6598]: https://tools.ietf.org/html/rfc6598
861    ///
862    /// # Examples
863    ///
864    /// ```
865    /// #![feature(ip)]
866    /// use std::net::Ipv4Addr;
867    ///
868    /// assert_eq!(Ipv4Addr::new(100, 64, 0, 0).is_shared(), true);
869    /// assert_eq!(Ipv4Addr::new(100, 127, 255, 255).is_shared(), true);
870    /// assert_eq!(Ipv4Addr::new(100, 128, 0, 0).is_shared(), false);
871    /// ```
872    #[unstable(feature = "ip", issue = "27709")]
873    #[must_use]
874    #[inline]
875    pub const fn is_shared(&self) -> bool {
876        self.octets()[0] == 100 && (self.octets()[1] & 0b1100_0000 == 0b0100_0000)
877    }
878
879    /// Returns [`true`] if this address part of the `198.18.0.0/15` range, which is reserved for
880    /// network devices benchmarking.
881    ///
882    /// This range is defined in [IETF RFC 2544] as `192.18.0.0` through
883    /// `198.19.255.255` but [errata 423] corrects it to `198.18.0.0/15`.
884    ///
885    /// [IETF RFC 2544]: https://tools.ietf.org/html/rfc2544
886    /// [errata 423]: https://www.rfc-editor.org/errata/eid423
887    ///
888    /// # Examples
889    ///
890    /// ```
891    /// #![feature(ip)]
892    /// use std::net::Ipv4Addr;
893    ///
894    /// assert_eq!(Ipv4Addr::new(198, 17, 255, 255).is_benchmarking(), false);
895    /// assert_eq!(Ipv4Addr::new(198, 18, 0, 0).is_benchmarking(), true);
896    /// assert_eq!(Ipv4Addr::new(198, 19, 255, 255).is_benchmarking(), true);
897    /// assert_eq!(Ipv4Addr::new(198, 20, 0, 0).is_benchmarking(), false);
898    /// ```
899    #[unstable(feature = "ip", issue = "27709")]
900    #[must_use]
901    #[inline]
902    pub const fn is_benchmarking(&self) -> bool {
903        self.octets()[0] == 198 && (self.octets()[1] & 0xfe) == 18
904    }
905
906    /// Returns [`true`] if this address is reserved by IANA for future use.
907    ///
908    /// [IETF RFC 1112] defines the block of reserved addresses as `240.0.0.0/4`.
909    /// This range normally includes the broadcast address `255.255.255.255`, but
910    /// this implementation explicitly excludes it, since it is obviously not
911    /// reserved for future use.
912    ///
913    /// [IETF RFC 1112]: https://tools.ietf.org/html/rfc1112
914    ///
915    /// # Warning
916    ///
917    /// As IANA assigns new addresses, this method will be
918    /// updated. This may result in non-reserved addresses being
919    /// treated as reserved in code that relies on an outdated version
920    /// of this method.
921    ///
922    /// # Examples
923    ///
924    /// ```
925    /// #![feature(ip)]
926    /// use std::net::Ipv4Addr;
927    ///
928    /// assert_eq!(Ipv4Addr::new(240, 0, 0, 0).is_reserved(), true);
929    /// assert_eq!(Ipv4Addr::new(255, 255, 255, 254).is_reserved(), true);
930    ///
931    /// assert_eq!(Ipv4Addr::new(239, 255, 255, 255).is_reserved(), false);
932    /// // The broadcast address is not considered as reserved for future use by this implementation
933    /// assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_reserved(), false);
934    /// ```
935    #[unstable(feature = "ip", issue = "27709")]
936    #[must_use]
937    #[inline]
938    pub const fn is_reserved(&self) -> bool {
939        self.octets()[0] & 240 == 240 && !self.is_broadcast()
940    }
941
942    /// Returns [`true`] if this is a multicast address (`224.0.0.0/4`).
943    ///
944    /// Multicast addresses have a most significant octet between `224` and `239`,
945    /// and is defined by [IETF RFC 5771].
946    ///
947    /// [IETF RFC 5771]: https://tools.ietf.org/html/rfc5771
948    ///
949    /// # Examples
950    ///
951    /// ```
952    /// use std::net::Ipv4Addr;
953    ///
954    /// assert_eq!(Ipv4Addr::new(224, 254, 0, 0).is_multicast(), true);
955    /// assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_multicast(), true);
956    /// assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_multicast(), false);
957    /// ```
958    #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
959    #[stable(since = "1.7.0", feature = "ip_17")]
960    #[must_use]
961    #[inline]
962    pub const fn is_multicast(&self) -> bool {
963        self.octets()[0] >= 224 && self.octets()[0] <= 239
964    }
965
966    /// Returns [`true`] if this is a broadcast address (`255.255.255.255`).
967    ///
968    /// A broadcast address has all octets set to `255` as defined in [IETF RFC 919].
969    ///
970    /// [IETF RFC 919]: https://tools.ietf.org/html/rfc919
971    ///
972    /// # Examples
973    ///
974    /// ```
975    /// use std::net::Ipv4Addr;
976    ///
977    /// assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_broadcast(), true);
978    /// assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_broadcast(), false);
979    /// ```
980    #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
981    #[stable(since = "1.7.0", feature = "ip_17")]
982    #[must_use]
983    #[inline]
984    pub const fn is_broadcast(&self) -> bool {
985        u32::from_be_bytes(self.octets()) == u32::from_be_bytes(Self::BROADCAST.octets())
986    }
987
988    /// Returns [`true`] if this address is in a range designated for documentation.
989    ///
990    /// This is defined in [IETF RFC 5737]:
991    ///
992    /// - `192.0.2.0/24` (TEST-NET-1)
993    /// - `198.51.100.0/24` (TEST-NET-2)
994    /// - `203.0.113.0/24` (TEST-NET-3)
995    ///
996    /// [IETF RFC 5737]: https://tools.ietf.org/html/rfc5737
997    ///
998    /// # Examples
999    ///
1000    /// ```
1001    /// use std::net::Ipv4Addr;
1002    ///
1003    /// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).is_documentation(), true);
1004    /// assert_eq!(Ipv4Addr::new(198, 51, 100, 65).is_documentation(), true);
1005    /// assert_eq!(Ipv4Addr::new(203, 0, 113, 6).is_documentation(), true);
1006    /// assert_eq!(Ipv4Addr::new(193, 34, 17, 19).is_documentation(), false);
1007    /// ```
1008    #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
1009    #[stable(since = "1.7.0", feature = "ip_17")]
1010    #[must_use]
1011    #[inline]
1012    pub const fn is_documentation(&self) -> bool {
1013        matches!(self.octets(), [192, 0, 2, _] | [198, 51, 100, _] | [203, 0, 113, _])
1014    }
1015
1016    /// Converts this address to an [IPv4-compatible] [`IPv6` address].
1017    ///
1018    /// `a.b.c.d` becomes `::a.b.c.d`
1019    ///
1020    /// Note that IPv4-compatible addresses have been officially deprecated.
1021    /// If you don't explicitly need an IPv4-compatible address for legacy reasons, consider using `to_ipv6_mapped` instead.
1022    ///
1023    /// [IPv4-compatible]: Ipv6Addr#ipv4-compatible-ipv6-addresses
1024    /// [`IPv6` address]: Ipv6Addr
1025    ///
1026    /// # Examples
1027    ///
1028    /// ```
1029    /// use std::net::{Ipv4Addr, Ipv6Addr};
1030    ///
1031    /// assert_eq!(
1032    ///     Ipv4Addr::new(192, 0, 2, 255).to_ipv6_compatible(),
1033    ///     Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0xc000, 0x2ff)
1034    /// );
1035    /// ```
1036    #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
1037    #[stable(feature = "rust1", since = "1.0.0")]
1038    #[must_use = "this returns the result of the operation, \
1039                  without modifying the original"]
1040    #[inline]
1041    pub const fn to_ipv6_compatible(&self) -> Ipv6Addr {
1042        let [a, b, c, d] = self.octets();
1043        Ipv6Addr { octets: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, a, b, c, d] }
1044    }
1045
1046    /// Converts this address to an [IPv4-mapped] [`IPv6` address].
1047    ///
1048    /// `a.b.c.d` becomes `::ffff:a.b.c.d`
1049    ///
1050    /// [IPv4-mapped]: Ipv6Addr#ipv4-mapped-ipv6-addresses
1051    /// [`IPv6` address]: Ipv6Addr
1052    ///
1053    /// # Examples
1054    ///
1055    /// ```
1056    /// use std::net::{Ipv4Addr, Ipv6Addr};
1057    ///
1058    /// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).to_ipv6_mapped(),
1059    ///            Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc000, 0x2ff));
1060    /// ```
1061    #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
1062    #[stable(feature = "rust1", since = "1.0.0")]
1063    #[must_use = "this returns the result of the operation, \
1064                  without modifying the original"]
1065    #[inline]
1066    pub const fn to_ipv6_mapped(&self) -> Ipv6Addr {
1067        let [a, b, c, d] = self.octets();
1068        Ipv6Addr { octets: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF, a, b, c, d] }
1069    }
1070}
1071
1072#[stable(feature = "ip_addr", since = "1.7.0")]
1073impl fmt::Display for IpAddr {
1074    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1075        match self {
1076            IpAddr::V4(ip) => ip.fmt(fmt),
1077            IpAddr::V6(ip) => ip.fmt(fmt),
1078        }
1079    }
1080}
1081
1082#[stable(feature = "ip_addr", since = "1.7.0")]
1083impl fmt::Debug for IpAddr {
1084    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1085        fmt::Display::fmt(self, fmt)
1086    }
1087}
1088
1089#[stable(feature = "ip_from_ip", since = "1.16.0")]
1090impl From<Ipv4Addr> for IpAddr {
1091    /// Copies this address to a new `IpAddr::V4`.
1092    ///
1093    /// # Examples
1094    ///
1095    /// ```
1096    /// use std::net::{IpAddr, Ipv4Addr};
1097    ///
1098    /// let addr = Ipv4Addr::new(127, 0, 0, 1);
1099    ///
1100    /// assert_eq!(
1101    ///     IpAddr::V4(addr),
1102    ///     IpAddr::from(addr)
1103    /// )
1104    /// ```
1105    #[inline]
1106    fn from(ipv4: Ipv4Addr) -> IpAddr {
1107        IpAddr::V4(ipv4)
1108    }
1109}
1110
1111#[stable(feature = "ip_from_ip", since = "1.16.0")]
1112impl From<Ipv6Addr> for IpAddr {
1113    /// Copies this address to a new `IpAddr::V6`.
1114    ///
1115    /// # Examples
1116    ///
1117    /// ```
1118    /// use std::net::{IpAddr, Ipv6Addr};
1119    ///
1120    /// let addr = Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff);
1121    ///
1122    /// assert_eq!(
1123    ///     IpAddr::V6(addr),
1124    ///     IpAddr::from(addr)
1125    /// );
1126    /// ```
1127    #[inline]
1128    fn from(ipv6: Ipv6Addr) -> IpAddr {
1129        IpAddr::V6(ipv6)
1130    }
1131}
1132
1133#[stable(feature = "rust1", since = "1.0.0")]
1134impl fmt::Display for Ipv4Addr {
1135    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1136        let octets = self.octets();
1137
1138        // If there are no alignment requirements, write the IP address directly to `f`.
1139        // Otherwise, write it to a local buffer and then use `f.pad`.
1140        if fmt.precision().is_none() && fmt.width().is_none() {
1141            write!(fmt, "{}.{}.{}.{}", octets[0], octets[1], octets[2], octets[3])
1142        } else {
1143            const LONGEST_IPV4_ADDR: &str = "255.255.255.255";
1144
1145            let mut buf = DisplayBuffer::<{ LONGEST_IPV4_ADDR.len() }>::new();
1146            // Buffer is long enough for the longest possible IPv4 address, so this should never fail.
1147            write!(buf, "{}.{}.{}.{}", octets[0], octets[1], octets[2], octets[3]).unwrap();
1148
1149            fmt.pad(buf.as_str())
1150        }
1151    }
1152}
1153
1154#[stable(feature = "rust1", since = "1.0.0")]
1155impl fmt::Debug for Ipv4Addr {
1156    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1157        fmt::Display::fmt(self, fmt)
1158    }
1159}
1160
1161#[stable(feature = "ip_cmp", since = "1.16.0")]
1162impl PartialEq<Ipv4Addr> for IpAddr {
1163    #[inline]
1164    fn eq(&self, other: &Ipv4Addr) -> bool {
1165        match self {
1166            IpAddr::V4(v4) => v4 == other,
1167            IpAddr::V6(_) => false,
1168        }
1169    }
1170}
1171
1172#[stable(feature = "ip_cmp", since = "1.16.0")]
1173impl PartialEq<IpAddr> for Ipv4Addr {
1174    #[inline]
1175    fn eq(&self, other: &IpAddr) -> bool {
1176        match other {
1177            IpAddr::V4(v4) => self == v4,
1178            IpAddr::V6(_) => false,
1179        }
1180    }
1181}
1182
1183#[stable(feature = "rust1", since = "1.0.0")]
1184impl PartialOrd for Ipv4Addr {
1185    #[inline]
1186    fn partial_cmp(&self, other: &Ipv4Addr) -> Option<Ordering> {
1187        Some(self.cmp(other))
1188    }
1189}
1190
1191#[stable(feature = "ip_cmp", since = "1.16.0")]
1192impl PartialOrd<Ipv4Addr> for IpAddr {
1193    #[inline]
1194    fn partial_cmp(&self, other: &Ipv4Addr) -> Option<Ordering> {
1195        match self {
1196            IpAddr::V4(v4) => v4.partial_cmp(other),
1197            IpAddr::V6(_) => Some(Ordering::Greater),
1198        }
1199    }
1200}
1201
1202#[stable(feature = "ip_cmp", since = "1.16.0")]
1203impl PartialOrd<IpAddr> for Ipv4Addr {
1204    #[inline]
1205    fn partial_cmp(&self, other: &IpAddr) -> Option<Ordering> {
1206        match other {
1207            IpAddr::V4(v4) => self.partial_cmp(v4),
1208            IpAddr::V6(_) => Some(Ordering::Less),
1209        }
1210    }
1211}
1212
1213#[stable(feature = "rust1", since = "1.0.0")]
1214impl Ord for Ipv4Addr {
1215    #[inline]
1216    fn cmp(&self, other: &Ipv4Addr) -> Ordering {
1217        self.octets.cmp(&other.octets)
1218    }
1219}
1220
1221#[stable(feature = "ip_u32", since = "1.1.0")]
1222impl From<Ipv4Addr> for u32 {
1223    /// Uses [`Ipv4Addr::to_bits`] to convert an IPv4 address to a host byte order `u32`.
1224    #[inline]
1225    fn from(ip: Ipv4Addr) -> u32 {
1226        ip.to_bits()
1227    }
1228}
1229
1230#[stable(feature = "ip_u32", since = "1.1.0")]
1231impl From<u32> for Ipv4Addr {
1232    /// Uses [`Ipv4Addr::from_bits`] to convert a host byte order `u32` into an IPv4 address.
1233    #[inline]
1234    fn from(ip: u32) -> Ipv4Addr {
1235        Ipv4Addr::from_bits(ip)
1236    }
1237}
1238
1239#[stable(feature = "from_slice_v4", since = "1.9.0")]
1240impl From<[u8; 4]> for Ipv4Addr {
1241    /// Creates an `Ipv4Addr` from a four element byte array.
1242    ///
1243    /// # Examples
1244    ///
1245    /// ```
1246    /// use std::net::Ipv4Addr;
1247    ///
1248    /// let addr = Ipv4Addr::from([13u8, 12u8, 11u8, 10u8]);
1249    /// assert_eq!(Ipv4Addr::new(13, 12, 11, 10), addr);
1250    /// ```
1251    #[inline]
1252    fn from(octets: [u8; 4]) -> Ipv4Addr {
1253        Ipv4Addr { octets }
1254    }
1255}
1256
1257#[stable(feature = "ip_from_slice", since = "1.17.0")]
1258impl From<[u8; 4]> for IpAddr {
1259    /// Creates an `IpAddr::V4` from a four element byte array.
1260    ///
1261    /// # Examples
1262    ///
1263    /// ```
1264    /// use std::net::{IpAddr, Ipv4Addr};
1265    ///
1266    /// let addr = IpAddr::from([13u8, 12u8, 11u8, 10u8]);
1267    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(13, 12, 11, 10)), addr);
1268    /// ```
1269    #[inline]
1270    fn from(octets: [u8; 4]) -> IpAddr {
1271        IpAddr::V4(Ipv4Addr::from(octets))
1272    }
1273}
1274
1275impl Ipv6Addr {
1276    /// Creates a new IPv6 address from eight 16-bit segments.
1277    ///
1278    /// The result will represent the IP address `a:b:c:d:e:f:g:h`.
1279    ///
1280    /// # Examples
1281    ///
1282    /// ```
1283    /// use std::net::Ipv6Addr;
1284    ///
1285    /// let addr = Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff);
1286    /// ```
1287    #[rustc_const_stable(feature = "const_ip_32", since = "1.32.0")]
1288    #[stable(feature = "rust1", since = "1.0.0")]
1289    #[must_use]
1290    #[inline]
1291    pub const fn new(a: u16, b: u16, c: u16, d: u16, e: u16, f: u16, g: u16, h: u16) -> Ipv6Addr {
1292        let addr16 = [
1293            a.to_be(),
1294            b.to_be(),
1295            c.to_be(),
1296            d.to_be(),
1297            e.to_be(),
1298            f.to_be(),
1299            g.to_be(),
1300            h.to_be(),
1301        ];
1302        Ipv6Addr {
1303            // All elements in `addr16` are big endian.
1304            // SAFETY: `[u16; 8]` is always safe to transmute to `[u8; 16]`.
1305            octets: unsafe { transmute::<_, [u8; 16]>(addr16) },
1306        }
1307    }
1308
1309    /// The size of an IPv6 address in bits.
1310    ///
1311    /// # Examples
1312    ///
1313    /// ```
1314    /// use std::net::Ipv6Addr;
1315    ///
1316    /// assert_eq!(Ipv6Addr::BITS, 128);
1317    /// ```
1318    #[stable(feature = "ip_bits", since = "1.80.0")]
1319    pub const BITS: u32 = 128;
1320
1321    /// Converts an IPv6 address into a `u128` representation using native byte order.
1322    ///
1323    /// Although IPv6 addresses are big-endian, the `u128` value will use the target platform's
1324    /// native byte order. That is, the `u128` value is an integer representation of the IPv6
1325    /// address and not an integer interpretation of the IPv6 address's big-endian bitstring. This
1326    /// means that the `u128` value masked with `0xffffffffffffffffffffffffffff0000_u128` will set
1327    /// the last segment in the address to 0, regardless of the target platform's endianness.
1328    ///
1329    /// # Examples
1330    ///
1331    /// ```
1332    /// use std::net::Ipv6Addr;
1333    ///
1334    /// let addr = Ipv6Addr::new(
1335    ///     0x1020, 0x3040, 0x5060, 0x7080,
1336    ///     0x90A0, 0xB0C0, 0xD0E0, 0xF00D,
1337    /// );
1338    /// assert_eq!(0x102030405060708090A0B0C0D0E0F00D_u128, addr.to_bits());
1339    /// ```
1340    ///
1341    /// ```
1342    /// use std::net::Ipv6Addr;
1343    ///
1344    /// let addr = Ipv6Addr::new(
1345    ///     0x1020, 0x3040, 0x5060, 0x7080,
1346    ///     0x90A0, 0xB0C0, 0xD0E0, 0xF00D,
1347    /// );
1348    /// let addr_bits = addr.to_bits() & 0xffffffffffffffffffffffffffff0000_u128;
1349    /// assert_eq!(
1350    ///     Ipv6Addr::new(
1351    ///         0x1020, 0x3040, 0x5060, 0x7080,
1352    ///         0x90A0, 0xB0C0, 0xD0E0, 0x0000,
1353    ///     ),
1354    ///     Ipv6Addr::from_bits(addr_bits));
1355    ///
1356    /// ```
1357    #[rustc_const_stable(feature = "ip_bits", since = "1.80.0")]
1358    #[stable(feature = "ip_bits", since = "1.80.0")]
1359    #[must_use]
1360    #[inline]
1361    pub const fn to_bits(self) -> u128 {
1362        u128::from_be_bytes(self.octets)
1363    }
1364
1365    /// Converts a native byte order `u128` into an IPv6 address.
1366    ///
1367    /// See [`Ipv6Addr::to_bits`] for an explanation on endianness.
1368    ///
1369    /// # Examples
1370    ///
1371    /// ```
1372    /// use std::net::Ipv6Addr;
1373    ///
1374    /// let addr = Ipv6Addr::from_bits(0x102030405060708090A0B0C0D0E0F00D_u128);
1375    /// assert_eq!(
1376    ///     Ipv6Addr::new(
1377    ///         0x1020, 0x3040, 0x5060, 0x7080,
1378    ///         0x90A0, 0xB0C0, 0xD0E0, 0xF00D,
1379    ///     ),
1380    ///     addr);
1381    /// ```
1382    #[rustc_const_stable(feature = "ip_bits", since = "1.80.0")]
1383    #[stable(feature = "ip_bits", since = "1.80.0")]
1384    #[must_use]
1385    #[inline]
1386    pub const fn from_bits(bits: u128) -> Ipv6Addr {
1387        Ipv6Addr { octets: bits.to_be_bytes() }
1388    }
1389
1390    /// An IPv6 address representing localhost: `::1`.
1391    ///
1392    /// This corresponds to constant `IN6ADDR_LOOPBACK_INIT` or `in6addr_loopback` in other
1393    /// languages.
1394    ///
1395    /// # Examples
1396    ///
1397    /// ```
1398    /// use std::net::Ipv6Addr;
1399    ///
1400    /// let addr = Ipv6Addr::LOCALHOST;
1401    /// assert_eq!(addr, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1));
1402    /// ```
1403    #[doc(alias = "IN6ADDR_LOOPBACK_INIT")]
1404    #[doc(alias = "in6addr_loopback")]
1405    #[stable(feature = "ip_constructors", since = "1.30.0")]
1406    pub const LOCALHOST: Self = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1);
1407
1408    /// An IPv6 address representing the unspecified address: `::`.
1409    ///
1410    /// This corresponds to constant `IN6ADDR_ANY_INIT` or `in6addr_any` in other languages.
1411    ///
1412    /// # Examples
1413    ///
1414    /// ```
1415    /// use std::net::Ipv6Addr;
1416    ///
1417    /// let addr = Ipv6Addr::UNSPECIFIED;
1418    /// assert_eq!(addr, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0));
1419    /// ```
1420    #[doc(alias = "IN6ADDR_ANY_INIT")]
1421    #[doc(alias = "in6addr_any")]
1422    #[stable(feature = "ip_constructors", since = "1.30.0")]
1423    pub const UNSPECIFIED: Self = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0);
1424
1425    /// Returns the eight 16-bit segments that make up this address.
1426    ///
1427    /// # Examples
1428    ///
1429    /// ```
1430    /// use std::net::Ipv6Addr;
1431    ///
1432    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).segments(),
1433    ///            [0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff]);
1434    /// ```
1435    #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
1436    #[stable(feature = "rust1", since = "1.0.0")]
1437    #[must_use]
1438    #[inline]
1439    pub const fn segments(&self) -> [u16; 8] {
1440        // All elements in `self.octets` must be big endian.
1441        // SAFETY: `[u8; 16]` is always safe to transmute to `[u16; 8]`.
1442        let [a, b, c, d, e, f, g, h] = unsafe { transmute::<_, [u16; 8]>(self.octets) };
1443        // We want native endian u16
1444        [
1445            u16::from_be(a),
1446            u16::from_be(b),
1447            u16::from_be(c),
1448            u16::from_be(d),
1449            u16::from_be(e),
1450            u16::from_be(f),
1451            u16::from_be(g),
1452            u16::from_be(h),
1453        ]
1454    }
1455
1456    /// Creates an `Ipv6Addr` from an eight element 16-bit array.
1457    ///
1458    /// # Examples
1459    ///
1460    /// ```
1461    /// #![feature(ip_from)]
1462    /// use std::net::Ipv6Addr;
1463    ///
1464    /// let addr = Ipv6Addr::from_segments([
1465    ///     0x20du16, 0x20cu16, 0x20bu16, 0x20au16,
1466    ///     0x209u16, 0x208u16, 0x207u16, 0x206u16,
1467    /// ]);
1468    /// assert_eq!(
1469    ///     Ipv6Addr::new(
1470    ///         0x20d, 0x20c, 0x20b, 0x20a,
1471    ///         0x209, 0x208, 0x207, 0x206,
1472    ///     ),
1473    ///     addr
1474    /// );
1475    /// ```
1476    #[unstable(feature = "ip_from", issue = "131360")]
1477    #[must_use]
1478    #[inline]
1479    pub const fn from_segments(segments: [u16; 8]) -> Ipv6Addr {
1480        let [a, b, c, d, e, f, g, h] = segments;
1481        Ipv6Addr::new(a, b, c, d, e, f, g, h)
1482    }
1483
1484    /// Returns [`true`] for the special 'unspecified' address (`::`).
1485    ///
1486    /// This property is defined in [IETF RFC 4291].
1487    ///
1488    /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
1489    ///
1490    /// # Examples
1491    ///
1492    /// ```
1493    /// use std::net::Ipv6Addr;
1494    ///
1495    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unspecified(), false);
1496    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0).is_unspecified(), true);
1497    /// ```
1498    #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
1499    #[stable(since = "1.7.0", feature = "ip_17")]
1500    #[must_use]
1501    #[inline]
1502    pub const fn is_unspecified(&self) -> bool {
1503        u128::from_be_bytes(self.octets()) == u128::from_be_bytes(Ipv6Addr::UNSPECIFIED.octets())
1504    }
1505
1506    /// Returns [`true`] if this is the [loopback address] (`::1`),
1507    /// as defined in [IETF RFC 4291 section 2.5.3].
1508    ///
1509    /// Contrary to IPv4, in IPv6 there is only one loopback address.
1510    ///
1511    /// [loopback address]: Ipv6Addr::LOCALHOST
1512    /// [IETF RFC 4291 section 2.5.3]: https://tools.ietf.org/html/rfc4291#section-2.5.3
1513    ///
1514    /// # Examples
1515    ///
1516    /// ```
1517    /// use std::net::Ipv6Addr;
1518    ///
1519    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_loopback(), false);
1520    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0x1).is_loopback(), true);
1521    /// ```
1522    #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
1523    #[stable(since = "1.7.0", feature = "ip_17")]
1524    #[must_use]
1525    #[inline]
1526    pub const fn is_loopback(&self) -> bool {
1527        u128::from_be_bytes(self.octets()) == u128::from_be_bytes(Ipv6Addr::LOCALHOST.octets())
1528    }
1529
1530    /// Returns [`true`] if the address appears to be globally reachable
1531    /// as specified by the [IANA IPv6 Special-Purpose Address Registry].
1532    ///
1533    /// Whether or not an address is practically reachable will depend on your
1534    /// network configuration. Most IPv6 addresses are globally reachable, unless
1535    /// they are specifically defined as *not* globally reachable.
1536    ///
1537    /// Non-exhaustive list of notable addresses that are not globally reachable:
1538    /// - The [unspecified address] ([`is_unspecified`](Ipv6Addr::is_unspecified))
1539    /// - The [loopback address] ([`is_loopback`](Ipv6Addr::is_loopback))
1540    /// - IPv4-mapped addresses
1541    /// - Addresses reserved for benchmarking ([`is_benchmarking`](Ipv6Addr::is_benchmarking))
1542    /// - Addresses reserved for documentation ([`is_documentation`](Ipv6Addr::is_documentation))
1543    /// - Unique local addresses ([`is_unique_local`](Ipv6Addr::is_unique_local))
1544    /// - Unicast addresses with link-local scope ([`is_unicast_link_local`](Ipv6Addr::is_unicast_link_local))
1545    ///
1546    /// For the complete overview of which addresses are globally reachable, see the table at the [IANA IPv6 Special-Purpose Address Registry].
1547    ///
1548    /// Note that an address having global scope is not the same as being globally reachable,
1549    /// and there is no direct relation between the two concepts: There exist addresses with global scope
1550    /// that are not globally reachable (for example unique local addresses),
1551    /// and addresses that are globally reachable without having global scope
1552    /// (multicast addresses with non-global scope).
1553    ///
1554    /// [IANA IPv6 Special-Purpose Address Registry]: https://www.iana.org/assignments/iana-ipv6-special-registry/iana-ipv6-special-registry.xhtml
1555    /// [unspecified address]: Ipv6Addr::UNSPECIFIED
1556    /// [loopback address]: Ipv6Addr::LOCALHOST
1557    ///
1558    /// # Examples
1559    ///
1560    /// ```
1561    /// #![feature(ip)]
1562    ///
1563    /// use std::net::Ipv6Addr;
1564    ///
1565    /// // Most IPv6 addresses are globally reachable:
1566    /// assert_eq!(Ipv6Addr::new(0x26, 0, 0x1c9, 0, 0, 0xafc8, 0x10, 0x1).is_global(), true);
1567    ///
1568    /// // However some addresses have been assigned a special meaning
1569    /// // that makes them not globally reachable. Some examples are:
1570    ///
1571    /// // The unspecified address (`::`)
1572    /// assert_eq!(Ipv6Addr::UNSPECIFIED.is_global(), false);
1573    ///
1574    /// // The loopback address (`::1`)
1575    /// assert_eq!(Ipv6Addr::LOCALHOST.is_global(), false);
1576    ///
1577    /// // IPv4-mapped addresses (`::ffff:0:0/96`)
1578    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_global(), false);
1579    ///
1580    /// // Addresses reserved for benchmarking (`2001:2::/48`)
1581    /// assert_eq!(Ipv6Addr::new(0x2001, 2, 0, 0, 0, 0, 0, 1,).is_global(), false);
1582    ///
1583    /// // Addresses reserved for documentation (`2001:db8::/32` and `3fff::/20`)
1584    /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 1).is_global(), false);
1585    /// assert_eq!(Ipv6Addr::new(0x3fff, 0, 0, 0, 0, 0, 0, 0).is_global(), false);
1586    ///
1587    /// // Unique local addresses (`fc00::/7`)
1588    /// assert_eq!(Ipv6Addr::new(0xfc02, 0, 0, 0, 0, 0, 0, 1).is_global(), false);
1589    ///
1590    /// // Unicast addresses with link-local scope (`fe80::/10`)
1591    /// assert_eq!(Ipv6Addr::new(0xfe81, 0, 0, 0, 0, 0, 0, 1).is_global(), false);
1592    ///
1593    /// // For a complete overview see the IANA IPv6 Special-Purpose Address Registry.
1594    /// ```
1595    #[unstable(feature = "ip", issue = "27709")]
1596    #[must_use]
1597    #[inline]
1598    pub const fn is_global(&self) -> bool {
1599        !(self.is_unspecified()
1600            || self.is_loopback()
1601            // IPv4-mapped Address (`::ffff:0:0/96`)
1602            || matches!(self.segments(), [0, 0, 0, 0, 0, 0xffff, _, _])
1603            // IPv4-IPv6 Translat. (`64:ff9b:1::/48`)
1604            || matches!(self.segments(), [0x64, 0xff9b, 1, _, _, _, _, _])
1605            // Discard-Only Address Block (`100::/64`)
1606            || matches!(self.segments(), [0x100, 0, 0, 0, _, _, _, _])
1607            // IETF Protocol Assignments (`2001::/23`)
1608            || (matches!(self.segments(), [0x2001, b, _, _, _, _, _, _] if b < 0x200)
1609                && !(
1610                    // Port Control Protocol Anycast (`2001:1::1`)
1611                    u128::from_be_bytes(self.octets()) == 0x2001_0001_0000_0000_0000_0000_0000_0001
1612                    // Traversal Using Relays around NAT Anycast (`2001:1::2`)
1613                    || u128::from_be_bytes(self.octets()) == 0x2001_0001_0000_0000_0000_0000_0000_0002
1614                    // AMT (`2001:3::/32`)
1615                    || matches!(self.segments(), [0x2001, 3, _, _, _, _, _, _])
1616                    // AS112-v6 (`2001:4:112::/48`)
1617                    || matches!(self.segments(), [0x2001, 4, 0x112, _, _, _, _, _])
1618                    // ORCHIDv2 (`2001:20::/28`)
1619                    // Drone Remote ID Protocol Entity Tags (DETs) Prefix (`2001:30::/28`)`
1620                    || matches!(self.segments(), [0x2001, b, _, _, _, _, _, _] if b >= 0x20 && b <= 0x3F)
1621                ))
1622            // 6to4 (`2002::/16`) – it's not explicitly documented as globally reachable,
1623            // IANA says N/A.
1624            || matches!(self.segments(), [0x2002, _, _, _, _, _, _, _])
1625            || self.is_documentation()
1626            // Segment Routing (SRv6) SIDs (`5f00::/16`)
1627            || matches!(self.segments(), [0x5f00, ..])
1628            || self.is_unique_local()
1629            || self.is_unicast_link_local())
1630    }
1631
1632    /// Returns [`true`] if this is a unique local address (`fc00::/7`).
1633    ///
1634    /// This property is defined in [IETF RFC 4193].
1635    ///
1636    /// [IETF RFC 4193]: https://tools.ietf.org/html/rfc4193
1637    ///
1638    /// # Examples
1639    ///
1640    /// ```
1641    /// use std::net::Ipv6Addr;
1642    ///
1643    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unique_local(), false);
1644    /// assert_eq!(Ipv6Addr::new(0xfc02, 0, 0, 0, 0, 0, 0, 0).is_unique_local(), true);
1645    /// ```
1646    #[must_use]
1647    #[inline]
1648    #[stable(feature = "ipv6_is_unique_local", since = "1.84.0")]
1649    #[rustc_const_stable(feature = "ipv6_is_unique_local", since = "1.84.0")]
1650    pub const fn is_unique_local(&self) -> bool {
1651        (self.segments()[0] & 0xfe00) == 0xfc00
1652    }
1653
1654    /// Returns [`true`] if this is a unicast address, as defined by [IETF RFC 4291].
1655    /// Any address that is not a [multicast address] (`ff00::/8`) is unicast.
1656    ///
1657    /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
1658    /// [multicast address]: Ipv6Addr::is_multicast
1659    ///
1660    /// # Examples
1661    ///
1662    /// ```
1663    /// #![feature(ip)]
1664    ///
1665    /// use std::net::Ipv6Addr;
1666    ///
1667    /// // The unspecified and loopback addresses are unicast.
1668    /// assert_eq!(Ipv6Addr::UNSPECIFIED.is_unicast(), true);
1669    /// assert_eq!(Ipv6Addr::LOCALHOST.is_unicast(), true);
1670    ///
1671    /// // Any address that is not a multicast address (`ff00::/8`) is unicast.
1672    /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_unicast(), true);
1673    /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).is_unicast(), false);
1674    /// ```
1675    #[unstable(feature = "ip", issue = "27709")]
1676    #[must_use]
1677    #[inline]
1678    pub const fn is_unicast(&self) -> bool {
1679        !self.is_multicast()
1680    }
1681
1682    /// Returns `true` if the address is a unicast address with link-local scope,
1683    /// as defined in [RFC 4291].
1684    ///
1685    /// A unicast address has link-local scope if it has the prefix `fe80::/10`, as per [RFC 4291 section 2.4].
1686    /// Note that this encompasses more addresses than those defined in [RFC 4291 section 2.5.6],
1687    /// which describes "Link-Local IPv6 Unicast Addresses" as having the following stricter format:
1688    ///
1689    /// ```text
1690    /// | 10 bits  |         54 bits         |          64 bits           |
1691    /// +----------+-------------------------+----------------------------+
1692    /// |1111111010|           0             |       interface ID         |
1693    /// +----------+-------------------------+----------------------------+
1694    /// ```
1695    /// So while currently the only addresses with link-local scope an application will encounter are all in `fe80::/64`,
1696    /// this might change in the future with the publication of new standards. More addresses in `fe80::/10` could be allocated,
1697    /// and those addresses will have link-local scope.
1698    ///
1699    /// Also note that while [RFC 4291 section 2.5.3] mentions about the [loopback address] (`::1`) that "it is treated as having Link-Local scope",
1700    /// this does not mean that the loopback address actually has link-local scope and this method will return `false` on it.
1701    ///
1702    /// [RFC 4291]: https://tools.ietf.org/html/rfc4291
1703    /// [RFC 4291 section 2.4]: https://tools.ietf.org/html/rfc4291#section-2.4
1704    /// [RFC 4291 section 2.5.3]: https://tools.ietf.org/html/rfc4291#section-2.5.3
1705    /// [RFC 4291 section 2.5.6]: https://tools.ietf.org/html/rfc4291#section-2.5.6
1706    /// [loopback address]: Ipv6Addr::LOCALHOST
1707    ///
1708    /// # Examples
1709    ///
1710    /// ```
1711    /// use std::net::Ipv6Addr;
1712    ///
1713    /// // The loopback address (`::1`) does not actually have link-local scope.
1714    /// assert_eq!(Ipv6Addr::LOCALHOST.is_unicast_link_local(), false);
1715    ///
1716    /// // Only addresses in `fe80::/10` have link-local scope.
1717    /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_unicast_link_local(), false);
1718    /// assert_eq!(Ipv6Addr::new(0xfe80, 0, 0, 0, 0, 0, 0, 0).is_unicast_link_local(), true);
1719    ///
1720    /// // Addresses outside the stricter `fe80::/64` also have link-local scope.
1721    /// assert_eq!(Ipv6Addr::new(0xfe80, 0, 0, 1, 0, 0, 0, 0).is_unicast_link_local(), true);
1722    /// assert_eq!(Ipv6Addr::new(0xfe81, 0, 0, 0, 0, 0, 0, 0).is_unicast_link_local(), true);
1723    /// ```
1724    #[must_use]
1725    #[inline]
1726    #[stable(feature = "ipv6_is_unique_local", since = "1.84.0")]
1727    #[rustc_const_stable(feature = "ipv6_is_unique_local", since = "1.84.0")]
1728    pub const fn is_unicast_link_local(&self) -> bool {
1729        (self.segments()[0] & 0xffc0) == 0xfe80
1730    }
1731
1732    /// Returns [`true`] if this is an address reserved for documentation
1733    /// (`2001:db8::/32` and `3fff::/20`).
1734    ///
1735    /// This property is defined by [IETF RFC 3849] and [IETF RFC 9637].
1736    ///
1737    /// [IETF RFC 3849]: https://tools.ietf.org/html/rfc3849
1738    /// [IETF RFC 9637]: https://tools.ietf.org/html/rfc9637
1739    ///
1740    /// # Examples
1741    ///
1742    /// ```
1743    /// #![feature(ip)]
1744    ///
1745    /// use std::net::Ipv6Addr;
1746    ///
1747    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_documentation(), false);
1748    /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_documentation(), true);
1749    /// assert_eq!(Ipv6Addr::new(0x3fff, 0, 0, 0, 0, 0, 0, 0).is_documentation(), true);
1750    /// ```
1751    #[unstable(feature = "ip", issue = "27709")]
1752    #[must_use]
1753    #[inline]
1754    pub const fn is_documentation(&self) -> bool {
1755        matches!(self.segments(), [0x2001, 0xdb8, ..] | [0x3fff, 0..=0x0fff, ..])
1756    }
1757
1758    /// Returns [`true`] if this is an address reserved for benchmarking (`2001:2::/48`).
1759    ///
1760    /// This property is defined in [IETF RFC 5180], where it is mistakenly specified as covering the range `2001:0200::/48`.
1761    /// This is corrected in [IETF RFC Errata 1752] to `2001:0002::/48`.
1762    ///
1763    /// [IETF RFC 5180]: https://tools.ietf.org/html/rfc5180
1764    /// [IETF RFC Errata 1752]: https://www.rfc-editor.org/errata_search.php?eid=1752
1765    ///
1766    /// ```
1767    /// #![feature(ip)]
1768    ///
1769    /// use std::net::Ipv6Addr;
1770    ///
1771    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc613, 0x0).is_benchmarking(), false);
1772    /// assert_eq!(Ipv6Addr::new(0x2001, 0x2, 0, 0, 0, 0, 0, 0).is_benchmarking(), true);
1773    /// ```
1774    #[unstable(feature = "ip", issue = "27709")]
1775    #[must_use]
1776    #[inline]
1777    pub const fn is_benchmarking(&self) -> bool {
1778        (self.segments()[0] == 0x2001) && (self.segments()[1] == 0x2) && (self.segments()[2] == 0)
1779    }
1780
1781    /// Returns [`true`] if the address is a globally routable unicast address.
1782    ///
1783    /// The following return false:
1784    ///
1785    /// - the loopback address
1786    /// - the link-local addresses
1787    /// - unique local addresses
1788    /// - the unspecified address
1789    /// - the address range reserved for documentation
1790    ///
1791    /// This method returns [`true`] for site-local addresses as per [RFC 4291 section 2.5.7]
1792    ///
1793    /// ```no_rust
1794    /// The special behavior of [the site-local unicast] prefix defined in [RFC3513] must no longer
1795    /// be supported in new implementations (i.e., new implementations must treat this prefix as
1796    /// Global Unicast).
1797    /// ```
1798    ///
1799    /// [RFC 4291 section 2.5.7]: https://tools.ietf.org/html/rfc4291#section-2.5.7
1800    ///
1801    /// # Examples
1802    ///
1803    /// ```
1804    /// #![feature(ip)]
1805    ///
1806    /// use std::net::Ipv6Addr;
1807    ///
1808    /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_unicast_global(), false);
1809    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unicast_global(), true);
1810    /// ```
1811    #[unstable(feature = "ip", issue = "27709")]
1812    #[must_use]
1813    #[inline]
1814    pub const fn is_unicast_global(&self) -> bool {
1815        self.is_unicast()
1816            && !self.is_loopback()
1817            && !self.is_unicast_link_local()
1818            && !self.is_unique_local()
1819            && !self.is_unspecified()
1820            && !self.is_documentation()
1821            && !self.is_benchmarking()
1822    }
1823
1824    /// Returns the address's multicast scope if the address is multicast.
1825    ///
1826    /// # Examples
1827    ///
1828    /// ```
1829    /// #![feature(ip)]
1830    ///
1831    /// use std::net::{Ipv6Addr, Ipv6MulticastScope};
1832    ///
1833    /// assert_eq!(
1834    ///     Ipv6Addr::new(0xff0e, 0, 0, 0, 0, 0, 0, 0).multicast_scope(),
1835    ///     Some(Ipv6MulticastScope::Global)
1836    /// );
1837    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).multicast_scope(), None);
1838    /// ```
1839    #[unstable(feature = "ip", issue = "27709")]
1840    #[must_use]
1841    #[inline]
1842    pub const fn multicast_scope(&self) -> Option<Ipv6MulticastScope> {
1843        if self.is_multicast() {
1844            match self.segments()[0] & 0x000f {
1845                1 => Some(Ipv6MulticastScope::InterfaceLocal),
1846                2 => Some(Ipv6MulticastScope::LinkLocal),
1847                3 => Some(Ipv6MulticastScope::RealmLocal),
1848                4 => Some(Ipv6MulticastScope::AdminLocal),
1849                5 => Some(Ipv6MulticastScope::SiteLocal),
1850                8 => Some(Ipv6MulticastScope::OrganizationLocal),
1851                14 => Some(Ipv6MulticastScope::Global),
1852                _ => None,
1853            }
1854        } else {
1855            None
1856        }
1857    }
1858
1859    /// Returns [`true`] if this is a multicast address (`ff00::/8`).
1860    ///
1861    /// This property is defined by [IETF RFC 4291].
1862    ///
1863    /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
1864    ///
1865    /// # Examples
1866    ///
1867    /// ```
1868    /// use std::net::Ipv6Addr;
1869    ///
1870    /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).is_multicast(), true);
1871    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_multicast(), false);
1872    /// ```
1873    #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
1874    #[stable(since = "1.7.0", feature = "ip_17")]
1875    #[must_use]
1876    #[inline]
1877    pub const fn is_multicast(&self) -> bool {
1878        (self.segments()[0] & 0xff00) == 0xff00
1879    }
1880
1881    /// Returns [`true`] if the address is an IPv4-mapped address (`::ffff:0:0/96`).
1882    ///
1883    /// IPv4-mapped addresses can be converted to their canonical IPv4 address with
1884    /// [`to_ipv4_mapped`](Ipv6Addr::to_ipv4_mapped).
1885    ///
1886    /// # Examples
1887    /// ```
1888    /// #![feature(ip)]
1889    ///
1890    /// use std::net::{Ipv4Addr, Ipv6Addr};
1891    ///
1892    /// let ipv4_mapped = Ipv4Addr::new(192, 0, 2, 255).to_ipv6_mapped();
1893    /// assert_eq!(ipv4_mapped.is_ipv4_mapped(), true);
1894    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc000, 0x2ff).is_ipv4_mapped(), true);
1895    ///
1896    /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_ipv4_mapped(), false);
1897    /// ```
1898    #[unstable(feature = "ip", issue = "27709")]
1899    #[must_use]
1900    #[inline]
1901    pub const fn is_ipv4_mapped(&self) -> bool {
1902        matches!(self.segments(), [0, 0, 0, 0, 0, 0xffff, _, _])
1903    }
1904
1905    /// Converts this address to an [`IPv4` address] if it's an [IPv4-mapped] address,
1906    /// as defined in [IETF RFC 4291 section 2.5.5.2], otherwise returns [`None`].
1907    ///
1908    /// `::ffff:a.b.c.d` becomes `a.b.c.d`.
1909    /// All addresses *not* starting with `::ffff` will return `None`.
1910    ///
1911    /// [`IPv4` address]: Ipv4Addr
1912    /// [IPv4-mapped]: Ipv6Addr
1913    /// [IETF RFC 4291 section 2.5.5.2]: https://tools.ietf.org/html/rfc4291#section-2.5.5.2
1914    ///
1915    /// # Examples
1916    ///
1917    /// ```
1918    /// use std::net::{Ipv4Addr, Ipv6Addr};
1919    ///
1920    /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).to_ipv4_mapped(), None);
1921    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).to_ipv4_mapped(),
1922    ///            Some(Ipv4Addr::new(192, 10, 2, 255)));
1923    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1).to_ipv4_mapped(), None);
1924    /// ```
1925    #[inline]
1926    #[must_use = "this returns the result of the operation, \
1927                  without modifying the original"]
1928    #[stable(feature = "ipv6_to_ipv4_mapped", since = "1.63.0")]
1929    #[rustc_const_stable(feature = "const_ipv6_to_ipv4_mapped", since = "1.75.0")]
1930    pub const fn to_ipv4_mapped(&self) -> Option<Ipv4Addr> {
1931        match self.octets() {
1932            [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff, a, b, c, d] => {
1933                Some(Ipv4Addr::new(a, b, c, d))
1934            }
1935            _ => None,
1936        }
1937    }
1938
1939    /// Converts this address to an [`IPv4` address] if it is either
1940    /// an [IPv4-compatible] address as defined in [IETF RFC 4291 section 2.5.5.1],
1941    /// or an [IPv4-mapped] address as defined in [IETF RFC 4291 section 2.5.5.2],
1942    /// otherwise returns [`None`].
1943    ///
1944    /// Note that this will return an [`IPv4` address] for the IPv6 loopback address `::1`. Use
1945    /// [`Ipv6Addr::to_ipv4_mapped`] to avoid this.
1946    ///
1947    /// `::a.b.c.d` and `::ffff:a.b.c.d` become `a.b.c.d`. `::1` becomes `0.0.0.1`.
1948    /// All addresses *not* starting with either all zeroes or `::ffff` will return `None`.
1949    ///
1950    /// [`IPv4` address]: Ipv4Addr
1951    /// [IPv4-compatible]: Ipv6Addr#ipv4-compatible-ipv6-addresses
1952    /// [IPv4-mapped]: Ipv6Addr#ipv4-mapped-ipv6-addresses
1953    /// [IETF RFC 4291 section 2.5.5.1]: https://tools.ietf.org/html/rfc4291#section-2.5.5.1
1954    /// [IETF RFC 4291 section 2.5.5.2]: https://tools.ietf.org/html/rfc4291#section-2.5.5.2
1955    ///
1956    /// # Examples
1957    ///
1958    /// ```
1959    /// use std::net::{Ipv4Addr, Ipv6Addr};
1960    ///
1961    /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).to_ipv4(), None);
1962    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).to_ipv4(),
1963    ///            Some(Ipv4Addr::new(192, 10, 2, 255)));
1964    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1).to_ipv4(),
1965    ///            Some(Ipv4Addr::new(0, 0, 0, 1)));
1966    /// ```
1967    #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
1968    #[stable(feature = "rust1", since = "1.0.0")]
1969    #[must_use = "this returns the result of the operation, \
1970                  without modifying the original"]
1971    #[inline]
1972    pub const fn to_ipv4(&self) -> Option<Ipv4Addr> {
1973        if let [0, 0, 0, 0, 0, 0 | 0xffff, ab, cd] = self.segments() {
1974            let [a, b] = ab.to_be_bytes();
1975            let [c, d] = cd.to_be_bytes();
1976            Some(Ipv4Addr::new(a, b, c, d))
1977        } else {
1978            None
1979        }
1980    }
1981
1982    /// Converts this address to an `IpAddr::V4` if it is an IPv4-mapped address,
1983    /// otherwise returns self wrapped in an `IpAddr::V6`.
1984    ///
1985    /// # Examples
1986    ///
1987    /// ```
1988    /// use std::net::Ipv6Addr;
1989    ///
1990    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x7f00, 0x1).is_loopback(), false);
1991    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x7f00, 0x1).to_canonical().is_loopback(), true);
1992    /// ```
1993    #[inline]
1994    #[must_use = "this returns the result of the operation, \
1995                  without modifying the original"]
1996    #[stable(feature = "ip_to_canonical", since = "1.75.0")]
1997    #[rustc_const_stable(feature = "ip_to_canonical", since = "1.75.0")]
1998    pub const fn to_canonical(&self) -> IpAddr {
1999        if let Some(mapped) = self.to_ipv4_mapped() {
2000            return IpAddr::V4(mapped);
2001        }
2002        IpAddr::V6(*self)
2003    }
2004
2005    /// Returns the sixteen eight-bit integers the IPv6 address consists of.
2006    ///
2007    /// ```
2008    /// use std::net::Ipv6Addr;
2009    ///
2010    /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).octets(),
2011    ///            [0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
2012    /// ```
2013    #[rustc_const_stable(feature = "const_ip_32", since = "1.32.0")]
2014    #[stable(feature = "ipv6_to_octets", since = "1.12.0")]
2015    #[must_use]
2016    #[inline]
2017    pub const fn octets(&self) -> [u8; 16] {
2018        self.octets
2019    }
2020
2021    /// Creates an `Ipv6Addr` from a sixteen element byte array.
2022    ///
2023    /// # Examples
2024    ///
2025    /// ```
2026    /// #![feature(ip_from)]
2027    /// use std::net::Ipv6Addr;
2028    ///
2029    /// let addr = Ipv6Addr::from_octets([
2030    ///     0x19u8, 0x18u8, 0x17u8, 0x16u8, 0x15u8, 0x14u8, 0x13u8, 0x12u8,
2031    ///     0x11u8, 0x10u8, 0x0fu8, 0x0eu8, 0x0du8, 0x0cu8, 0x0bu8, 0x0au8,
2032    /// ]);
2033    /// assert_eq!(
2034    ///     Ipv6Addr::new(
2035    ///         0x1918, 0x1716, 0x1514, 0x1312,
2036    ///         0x1110, 0x0f0e, 0x0d0c, 0x0b0a,
2037    ///     ),
2038    ///     addr
2039    /// );
2040    /// ```
2041    #[unstable(feature = "ip_from", issue = "131360")]
2042    #[must_use]
2043    #[inline]
2044    pub const fn from_octets(octets: [u8; 16]) -> Ipv6Addr {
2045        Ipv6Addr { octets }
2046    }
2047
2048    /// Returns the sixteen eight-bit integers the IPv6 address consists of
2049    /// as a slice.
2050    ///
2051    /// # Examples
2052    ///
2053    /// ```
2054    /// #![feature(ip_as_octets)]
2055    ///
2056    /// use std::net::Ipv6Addr;
2057    ///
2058    /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).as_octets(),
2059    ///            &[255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
2060    /// ```
2061    #[unstable(feature = "ip_as_octets", issue = "137259")]
2062    #[inline]
2063    pub const fn as_octets(&self) -> &[u8; 16] {
2064        &self.octets
2065    }
2066}
2067
2068/// Writes an Ipv6Addr, conforming to the canonical style described by
2069/// [RFC 5952](https://tools.ietf.org/html/rfc5952).
2070#[stable(feature = "rust1", since = "1.0.0")]
2071impl fmt::Display for Ipv6Addr {
2072    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2073        // If there are no alignment requirements, write the IP address directly to `f`.
2074        // Otherwise, write it to a local buffer and then use `f.pad`.
2075        if f.precision().is_none() && f.width().is_none() {
2076            let segments = self.segments();
2077
2078            if let Some(ipv4) = self.to_ipv4_mapped() {
2079                write!(f, "::ffff:{}", ipv4)
2080            } else {
2081                #[derive(Copy, Clone, Default)]
2082                struct Span {
2083                    start: usize,
2084                    len: usize,
2085                }
2086
2087                // Find the inner 0 span
2088                let zeroes = {
2089                    let mut longest = Span::default();
2090                    let mut current = Span::default();
2091
2092                    for (i, &segment) in segments.iter().enumerate() {
2093                        if segment == 0 {
2094                            if current.len == 0 {
2095                                current.start = i;
2096                            }
2097
2098                            current.len += 1;
2099
2100                            if current.len > longest.len {
2101                                longest = current;
2102                            }
2103                        } else {
2104                            current = Span::default();
2105                        }
2106                    }
2107
2108                    longest
2109                };
2110
2111                /// Writes a colon-separated part of the address.
2112                #[inline]
2113                fn fmt_subslice(f: &mut fmt::Formatter<'_>, chunk: &[u16]) -> fmt::Result {
2114                    if let Some((first, tail)) = chunk.split_first() {
2115                        write!(f, "{:x}", first)?;
2116                        for segment in tail {
2117                            f.write_char(':')?;
2118                            write!(f, "{:x}", segment)?;
2119                        }
2120                    }
2121                    Ok(())
2122                }
2123
2124                if zeroes.len > 1 {
2125                    fmt_subslice(f, &segments[..zeroes.start])?;
2126                    f.write_str("::")?;
2127                    fmt_subslice(f, &segments[zeroes.start + zeroes.len..])
2128                } else {
2129                    fmt_subslice(f, &segments)
2130                }
2131            }
2132        } else {
2133            const LONGEST_IPV6_ADDR: &str = "ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff";
2134
2135            let mut buf = DisplayBuffer::<{ LONGEST_IPV6_ADDR.len() }>::new();
2136            // Buffer is long enough for the longest possible IPv6 address, so this should never fail.
2137            write!(buf, "{}", self).unwrap();
2138
2139            f.pad(buf.as_str())
2140        }
2141    }
2142}
2143
2144#[stable(feature = "rust1", since = "1.0.0")]
2145impl fmt::Debug for Ipv6Addr {
2146    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2147        fmt::Display::fmt(self, fmt)
2148    }
2149}
2150
2151#[stable(feature = "ip_cmp", since = "1.16.0")]
2152impl PartialEq<IpAddr> for Ipv6Addr {
2153    #[inline]
2154    fn eq(&self, other: &IpAddr) -> bool {
2155        match other {
2156            IpAddr::V4(_) => false,
2157            IpAddr::V6(v6) => self == v6,
2158        }
2159    }
2160}
2161
2162#[stable(feature = "ip_cmp", since = "1.16.0")]
2163impl PartialEq<Ipv6Addr> for IpAddr {
2164    #[inline]
2165    fn eq(&self, other: &Ipv6Addr) -> bool {
2166        match self {
2167            IpAddr::V4(_) => false,
2168            IpAddr::V6(v6) => v6 == other,
2169        }
2170    }
2171}
2172
2173#[stable(feature = "rust1", since = "1.0.0")]
2174impl PartialOrd for Ipv6Addr {
2175    #[inline]
2176    fn partial_cmp(&self, other: &Ipv6Addr) -> Option<Ordering> {
2177        Some(self.cmp(other))
2178    }
2179}
2180
2181#[stable(feature = "ip_cmp", since = "1.16.0")]
2182impl PartialOrd<Ipv6Addr> for IpAddr {
2183    #[inline]
2184    fn partial_cmp(&self, other: &Ipv6Addr) -> Option<Ordering> {
2185        match self {
2186            IpAddr::V4(_) => Some(Ordering::Less),
2187            IpAddr::V6(v6) => v6.partial_cmp(other),
2188        }
2189    }
2190}
2191
2192#[stable(feature = "ip_cmp", since = "1.16.0")]
2193impl PartialOrd<IpAddr> for Ipv6Addr {
2194    #[inline]
2195    fn partial_cmp(&self, other: &IpAddr) -> Option<Ordering> {
2196        match other {
2197            IpAddr::V4(_) => Some(Ordering::Greater),
2198            IpAddr::V6(v6) => self.partial_cmp(v6),
2199        }
2200    }
2201}
2202
2203#[stable(feature = "rust1", since = "1.0.0")]
2204impl Ord for Ipv6Addr {
2205    #[inline]
2206    fn cmp(&self, other: &Ipv6Addr) -> Ordering {
2207        self.segments().cmp(&other.segments())
2208    }
2209}
2210
2211#[stable(feature = "i128", since = "1.26.0")]
2212impl From<Ipv6Addr> for u128 {
2213    /// Uses [`Ipv6Addr::to_bits`] to convert an IPv6 address to a host byte order `u128`.
2214    #[inline]
2215    fn from(ip: Ipv6Addr) -> u128 {
2216        ip.to_bits()
2217    }
2218}
2219#[stable(feature = "i128", since = "1.26.0")]
2220impl From<u128> for Ipv6Addr {
2221    /// Uses [`Ipv6Addr::from_bits`] to convert a host byte order `u128` to an IPv6 address.
2222    #[inline]
2223    fn from(ip: u128) -> Ipv6Addr {
2224        Ipv6Addr::from_bits(ip)
2225    }
2226}
2227
2228#[stable(feature = "ipv6_from_octets", since = "1.9.0")]
2229impl From<[u8; 16]> for Ipv6Addr {
2230    /// Creates an `Ipv6Addr` from a sixteen element byte array.
2231    ///
2232    /// # Examples
2233    ///
2234    /// ```
2235    /// use std::net::Ipv6Addr;
2236    ///
2237    /// let addr = Ipv6Addr::from([
2238    ///     0x19u8, 0x18u8, 0x17u8, 0x16u8, 0x15u8, 0x14u8, 0x13u8, 0x12u8,
2239    ///     0x11u8, 0x10u8, 0x0fu8, 0x0eu8, 0x0du8, 0x0cu8, 0x0bu8, 0x0au8,
2240    /// ]);
2241    /// assert_eq!(
2242    ///     Ipv6Addr::new(
2243    ///         0x1918, 0x1716, 0x1514, 0x1312,
2244    ///         0x1110, 0x0f0e, 0x0d0c, 0x0b0a,
2245    ///     ),
2246    ///     addr
2247    /// );
2248    /// ```
2249    #[inline]
2250    fn from(octets: [u8; 16]) -> Ipv6Addr {
2251        Ipv6Addr { octets }
2252    }
2253}
2254
2255#[stable(feature = "ipv6_from_segments", since = "1.16.0")]
2256impl From<[u16; 8]> for Ipv6Addr {
2257    /// Creates an `Ipv6Addr` from an eight element 16-bit array.
2258    ///
2259    /// # Examples
2260    ///
2261    /// ```
2262    /// use std::net::Ipv6Addr;
2263    ///
2264    /// let addr = Ipv6Addr::from([
2265    ///     0x20du16, 0x20cu16, 0x20bu16, 0x20au16,
2266    ///     0x209u16, 0x208u16, 0x207u16, 0x206u16,
2267    /// ]);
2268    /// assert_eq!(
2269    ///     Ipv6Addr::new(
2270    ///         0x20d, 0x20c, 0x20b, 0x20a,
2271    ///         0x209, 0x208, 0x207, 0x206,
2272    ///     ),
2273    ///     addr
2274    /// );
2275    /// ```
2276    #[inline]
2277    fn from(segments: [u16; 8]) -> Ipv6Addr {
2278        let [a, b, c, d, e, f, g, h] = segments;
2279        Ipv6Addr::new(a, b, c, d, e, f, g, h)
2280    }
2281}
2282
2283#[stable(feature = "ip_from_slice", since = "1.17.0")]
2284impl From<[u8; 16]> for IpAddr {
2285    /// Creates an `IpAddr::V6` from a sixteen element byte array.
2286    ///
2287    /// # Examples
2288    ///
2289    /// ```
2290    /// use std::net::{IpAddr, Ipv6Addr};
2291    ///
2292    /// let addr = IpAddr::from([
2293    ///     0x19u8, 0x18u8, 0x17u8, 0x16u8, 0x15u8, 0x14u8, 0x13u8, 0x12u8,
2294    ///     0x11u8, 0x10u8, 0x0fu8, 0x0eu8, 0x0du8, 0x0cu8, 0x0bu8, 0x0au8,
2295    /// ]);
2296    /// assert_eq!(
2297    ///     IpAddr::V6(Ipv6Addr::new(
2298    ///         0x1918, 0x1716, 0x1514, 0x1312,
2299    ///         0x1110, 0x0f0e, 0x0d0c, 0x0b0a,
2300    ///     )),
2301    ///     addr
2302    /// );
2303    /// ```
2304    #[inline]
2305    fn from(octets: [u8; 16]) -> IpAddr {
2306        IpAddr::V6(Ipv6Addr::from(octets))
2307    }
2308}
2309
2310#[stable(feature = "ip_from_slice", since = "1.17.0")]
2311impl From<[u16; 8]> for IpAddr {
2312    /// Creates an `IpAddr::V6` from an eight element 16-bit array.
2313    ///
2314    /// # Examples
2315    ///
2316    /// ```
2317    /// use std::net::{IpAddr, Ipv6Addr};
2318    ///
2319    /// let addr = IpAddr::from([
2320    ///     0x20du16, 0x20cu16, 0x20bu16, 0x20au16,
2321    ///     0x209u16, 0x208u16, 0x207u16, 0x206u16,
2322    /// ]);
2323    /// assert_eq!(
2324    ///     IpAddr::V6(Ipv6Addr::new(
2325    ///         0x20d, 0x20c, 0x20b, 0x20a,
2326    ///         0x209, 0x208, 0x207, 0x206,
2327    ///     )),
2328    ///     addr
2329    /// );
2330    /// ```
2331    #[inline]
2332    fn from(segments: [u16; 8]) -> IpAddr {
2333        IpAddr::V6(Ipv6Addr::from(segments))
2334    }
2335}
2336
2337#[stable(feature = "ip_bitops", since = "1.75.0")]
2338impl Not for Ipv4Addr {
2339    type Output = Ipv4Addr;
2340
2341    #[inline]
2342    fn not(mut self) -> Ipv4Addr {
2343        for octet in &mut self.octets {
2344            *octet = !*octet;
2345        }
2346        self
2347    }
2348}
2349
2350#[stable(feature = "ip_bitops", since = "1.75.0")]
2351impl Not for &'_ Ipv4Addr {
2352    type Output = Ipv4Addr;
2353
2354    #[inline]
2355    fn not(self) -> Ipv4Addr {
2356        !*self
2357    }
2358}
2359
2360#[stable(feature = "ip_bitops", since = "1.75.0")]
2361impl Not for Ipv6Addr {
2362    type Output = Ipv6Addr;
2363
2364    #[inline]
2365    fn not(mut self) -> Ipv6Addr {
2366        for octet in &mut self.octets {
2367            *octet = !*octet;
2368        }
2369        self
2370    }
2371}
2372
2373#[stable(feature = "ip_bitops", since = "1.75.0")]
2374impl Not for &'_ Ipv6Addr {
2375    type Output = Ipv6Addr;
2376
2377    #[inline]
2378    fn not(self) -> Ipv6Addr {
2379        !*self
2380    }
2381}
2382
2383macro_rules! bitop_impls {
2384    ($(
2385        $(#[$attr:meta])*
2386        impl ($BitOp:ident, $BitOpAssign:ident) for $ty:ty = ($bitop:ident, $bitop_assign:ident);
2387    )*) => {
2388        $(
2389            $(#[$attr])*
2390            impl $BitOpAssign for $ty {
2391                fn $bitop_assign(&mut self, rhs: $ty) {
2392                    for (lhs, rhs) in iter::zip(&mut self.octets, rhs.octets) {
2393                        lhs.$bitop_assign(rhs);
2394                    }
2395                }
2396            }
2397
2398            $(#[$attr])*
2399            impl $BitOpAssign<&'_ $ty> for $ty {
2400                fn $bitop_assign(&mut self, rhs: &'_ $ty) {
2401                    self.$bitop_assign(*rhs);
2402                }
2403            }
2404
2405            $(#[$attr])*
2406            impl $BitOp for $ty {
2407                type Output = $ty;
2408
2409                #[inline]
2410                fn $bitop(mut self, rhs: $ty) -> $ty {
2411                    self.$bitop_assign(rhs);
2412                    self
2413                }
2414            }
2415
2416            $(#[$attr])*
2417            impl $BitOp<&'_ $ty> for $ty {
2418                type Output = $ty;
2419
2420                #[inline]
2421                fn $bitop(mut self, rhs: &'_ $ty) -> $ty {
2422                    self.$bitop_assign(*rhs);
2423                    self
2424                }
2425            }
2426
2427            $(#[$attr])*
2428            impl $BitOp<$ty> for &'_ $ty {
2429                type Output = $ty;
2430
2431                #[inline]
2432                fn $bitop(self, rhs: $ty) -> $ty {
2433                    let mut lhs = *self;
2434                    lhs.$bitop_assign(rhs);
2435                    lhs
2436                }
2437            }
2438
2439            $(#[$attr])*
2440            impl $BitOp<&'_ $ty> for &'_ $ty {
2441                type Output = $ty;
2442
2443                #[inline]
2444                fn $bitop(self, rhs: &'_ $ty) -> $ty {
2445                    let mut lhs = *self;
2446                    lhs.$bitop_assign(*rhs);
2447                    lhs
2448                }
2449            }
2450        )*
2451    };
2452}
2453
2454bitop_impls! {
2455    #[stable(feature = "ip_bitops", since = "1.75.0")]
2456    impl (BitAnd, BitAndAssign) for Ipv4Addr = (bitand, bitand_assign);
2457    #[stable(feature = "ip_bitops", since = "1.75.0")]
2458    impl (BitOr, BitOrAssign) for Ipv4Addr = (bitor, bitor_assign);
2459
2460    #[stable(feature = "ip_bitops", since = "1.75.0")]
2461    impl (BitAnd, BitAndAssign) for Ipv6Addr = (bitand, bitand_assign);
2462    #[stable(feature = "ip_bitops", since = "1.75.0")]
2463    impl (BitOr, BitOrAssign) for Ipv6Addr = (bitor, bitor_assign);
2464}