core/net/ip_addr.rs
1use super::display_buffer::DisplayBuffer;
2use crate::cmp::Ordering;
3use crate::fmt::{self, Write};
4use crate::hash::{Hash, Hasher};
5use crate::iter;
6use crate::mem::transmute;
7use crate::ops::{BitAnd, BitAndAssign, BitOr, BitOrAssign, Not};
8
9/// An IP address, either IPv4 or IPv6.
10///
11/// This enum can contain either an [`Ipv4Addr`] or an [`Ipv6Addr`], see their
12/// respective documentation for more details.
13///
14/// # Examples
15///
16/// ```
17/// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
18///
19/// let localhost_v4 = IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1));
20/// let localhost_v6 = IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1));
21///
22/// assert_eq!("127.0.0.1".parse(), Ok(localhost_v4));
23/// assert_eq!("::1".parse(), Ok(localhost_v6));
24///
25/// assert_eq!(localhost_v4.is_ipv6(), false);
26/// assert_eq!(localhost_v4.is_ipv4(), true);
27/// ```
28#[rustc_diagnostic_item = "IpAddr"]
29#[stable(feature = "ip_addr", since = "1.7.0")]
30#[derive(Copy, Clone, Eq, PartialEq, Hash, PartialOrd, Ord)]
31pub enum IpAddr {
32 /// An IPv4 address.
33 #[stable(feature = "ip_addr", since = "1.7.0")]
34 V4(#[stable(feature = "ip_addr", since = "1.7.0")] Ipv4Addr),
35 /// An IPv6 address.
36 #[stable(feature = "ip_addr", since = "1.7.0")]
37 V6(#[stable(feature = "ip_addr", since = "1.7.0")] Ipv6Addr),
38}
39
40/// An IPv4 address.
41///
42/// IPv4 addresses are defined as 32-bit integers in [IETF RFC 791].
43/// They are usually represented as four octets.
44///
45/// See [`IpAddr`] for a type encompassing both IPv4 and IPv6 addresses.
46///
47/// [IETF RFC 791]: https://tools.ietf.org/html/rfc791
48///
49/// # Textual representation
50///
51/// `Ipv4Addr` provides a [`FromStr`] implementation. The four octets are in decimal
52/// notation, divided by `.` (this is called "dot-decimal notation").
53/// Notably, octal numbers (which are indicated with a leading `0`) and hexadecimal numbers (which
54/// are indicated with a leading `0x`) are not allowed per [IETF RFC 6943].
55///
56/// [IETF RFC 6943]: https://tools.ietf.org/html/rfc6943#section-3.1.1
57/// [`FromStr`]: crate::str::FromStr
58///
59/// # Examples
60///
61/// ```
62/// use std::net::Ipv4Addr;
63///
64/// let localhost = Ipv4Addr::new(127, 0, 0, 1);
65/// assert_eq!("127.0.0.1".parse(), Ok(localhost));
66/// assert_eq!(localhost.is_loopback(), true);
67/// assert!("012.004.002.000".parse::<Ipv4Addr>().is_err()); // all octets are in octal
68/// assert!("0000000.0.0.0".parse::<Ipv4Addr>().is_err()); // first octet is a zero in octal
69/// assert!("0xcb.0x0.0x71.0x00".parse::<Ipv4Addr>().is_err()); // all octets are in hex
70/// ```
71#[rustc_diagnostic_item = "Ipv4Addr"]
72#[derive(Copy, Clone, PartialEq, Eq)]
73#[stable(feature = "rust1", since = "1.0.0")]
74pub struct Ipv4Addr {
75 octets: [u8; 4],
76}
77
78#[stable(feature = "rust1", since = "1.0.0")]
79impl Hash for Ipv4Addr {
80 fn hash<H: Hasher>(&self, state: &mut H) {
81 // Hashers are often more efficient at hashing a fixed-width integer
82 // than a bytestring, so convert before hashing. We don't use to_bits()
83 // here as that may involve a byteswap which is unnecessary.
84 u32::from_ne_bytes(self.octets).hash(state);
85 }
86}
87
88/// An IPv6 address.
89///
90/// IPv6 addresses are defined as 128-bit integers in [IETF RFC 4291].
91/// They are usually represented as eight 16-bit segments.
92///
93/// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
94///
95/// # Embedding IPv4 Addresses
96///
97/// See [`IpAddr`] for a type encompassing both IPv4 and IPv6 addresses.
98///
99/// To assist in the transition from IPv4 to IPv6 two types of IPv6 addresses that embed an IPv4 address were defined:
100/// IPv4-compatible and IPv4-mapped addresses. Of these IPv4-compatible addresses have been officially deprecated.
101///
102/// Both types of addresses are not assigned any special meaning by this implementation,
103/// other than what the relevant standards prescribe. This means that an address like `::ffff:127.0.0.1`,
104/// while representing an IPv4 loopback address, is not itself an IPv6 loopback address; only `::1` is.
105/// To handle these so called "IPv4-in-IPv6" addresses, they have to first be converted to their canonical IPv4 address.
106///
107/// ### IPv4-Compatible IPv6 Addresses
108///
109/// IPv4-compatible IPv6 addresses are defined in [IETF RFC 4291 Section 2.5.5.1], and have been officially deprecated.
110/// The RFC describes the format of an "IPv4-Compatible IPv6 address" as follows:
111///
112/// ```text
113/// | 80 bits | 16 | 32 bits |
114/// +--------------------------------------+--------------------------+
115/// |0000..............................0000|0000| IPv4 address |
116/// +--------------------------------------+----+---------------------+
117/// ```
118/// So `::a.b.c.d` would be an IPv4-compatible IPv6 address representing the IPv4 address `a.b.c.d`.
119///
120/// To convert from an IPv4 address to an IPv4-compatible IPv6 address, use [`Ipv4Addr::to_ipv6_compatible`].
121/// Use [`Ipv6Addr::to_ipv4`] to convert an IPv4-compatible IPv6 address to the canonical IPv4 address.
122///
123/// [IETF RFC 4291 Section 2.5.5.1]: https://datatracker.ietf.org/doc/html/rfc4291#section-2.5.5.1
124///
125/// ### IPv4-Mapped IPv6 Addresses
126///
127/// IPv4-mapped IPv6 addresses are defined in [IETF RFC 4291 Section 2.5.5.2].
128/// The RFC describes the format of an "IPv4-Mapped IPv6 address" as follows:
129///
130/// ```text
131/// | 80 bits | 16 | 32 bits |
132/// +--------------------------------------+--------------------------+
133/// |0000..............................0000|FFFF| IPv4 address |
134/// +--------------------------------------+----+---------------------+
135/// ```
136/// So `::ffff:a.b.c.d` would be an IPv4-mapped IPv6 address representing the IPv4 address `a.b.c.d`.
137///
138/// To convert from an IPv4 address to an IPv4-mapped IPv6 address, use [`Ipv4Addr::to_ipv6_mapped`].
139/// Use [`Ipv6Addr::to_ipv4`] to convert an IPv4-mapped IPv6 address to the canonical IPv4 address.
140/// Note that this will also convert the IPv6 loopback address `::1` to `0.0.0.1`. Use
141/// [`Ipv6Addr::to_ipv4_mapped`] to avoid this.
142///
143/// [IETF RFC 4291 Section 2.5.5.2]: https://datatracker.ietf.org/doc/html/rfc4291#section-2.5.5.2
144///
145/// # Textual representation
146///
147/// `Ipv6Addr` provides a [`FromStr`] implementation. There are many ways to represent
148/// an IPv6 address in text, but in general, each segments is written in hexadecimal
149/// notation, and segments are separated by `:`. For more information, see
150/// [IETF RFC 5952].
151///
152/// [`FromStr`]: crate::str::FromStr
153/// [IETF RFC 5952]: https://tools.ietf.org/html/rfc5952
154///
155/// # Examples
156///
157/// ```
158/// use std::net::Ipv6Addr;
159///
160/// let localhost = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1);
161/// assert_eq!("::1".parse(), Ok(localhost));
162/// assert_eq!(localhost.is_loopback(), true);
163/// ```
164#[rustc_diagnostic_item = "Ipv6Addr"]
165#[derive(Copy, Clone, PartialEq, Eq)]
166#[stable(feature = "rust1", since = "1.0.0")]
167pub struct Ipv6Addr {
168 octets: [u8; 16],
169}
170
171#[stable(feature = "rust1", since = "1.0.0")]
172impl Hash for Ipv6Addr {
173 fn hash<H: Hasher>(&self, state: &mut H) {
174 // Hashers are often more efficient at hashing a fixed-width integer
175 // than a bytestring, so convert before hashing. We don't use to_bits()
176 // here as that may involve unnecessary byteswaps.
177 u128::from_ne_bytes(self.octets).hash(state);
178 }
179}
180
181/// Scope of an [IPv6 multicast address] as defined in [IETF RFC 7346 section 2].
182///
183/// # Stability Guarantees
184///
185/// Not all possible values for a multicast scope have been assigned.
186/// Future RFCs may introduce new scopes, which will be added as variants to this enum;
187/// because of this the enum is marked as `#[non_exhaustive]`.
188///
189/// # Examples
190/// ```
191/// #![feature(ip)]
192///
193/// use std::net::Ipv6Addr;
194/// use std::net::Ipv6MulticastScope::*;
195///
196/// // An IPv6 multicast address with global scope (`ff0e::`).
197/// let address = Ipv6Addr::new(0xff0e, 0, 0, 0, 0, 0, 0, 0);
198///
199/// // Will print "Global scope".
200/// match address.multicast_scope() {
201/// Some(InterfaceLocal) => println!("Interface-Local scope"),
202/// Some(LinkLocal) => println!("Link-Local scope"),
203/// Some(RealmLocal) => println!("Realm-Local scope"),
204/// Some(AdminLocal) => println!("Admin-Local scope"),
205/// Some(SiteLocal) => println!("Site-Local scope"),
206/// Some(OrganizationLocal) => println!("Organization-Local scope"),
207/// Some(Global) => println!("Global scope"),
208/// Some(_) => println!("Unknown scope"),
209/// None => println!("Not a multicast address!")
210/// }
211///
212/// ```
213///
214/// [IPv6 multicast address]: Ipv6Addr
215/// [IETF RFC 7346 section 2]: https://tools.ietf.org/html/rfc7346#section-2
216#[derive(Copy, PartialEq, Eq, Clone, Hash, Debug)]
217#[unstable(feature = "ip", issue = "27709")]
218#[non_exhaustive]
219pub enum Ipv6MulticastScope {
220 /// Interface-Local scope.
221 InterfaceLocal,
222 /// Link-Local scope.
223 LinkLocal,
224 /// Realm-Local scope.
225 RealmLocal,
226 /// Admin-Local scope.
227 AdminLocal,
228 /// Site-Local scope.
229 SiteLocal,
230 /// Organization-Local scope.
231 OrganizationLocal,
232 /// Global scope.
233 Global,
234}
235
236impl IpAddr {
237 /// Returns [`true`] for the special 'unspecified' address.
238 ///
239 /// See the documentation for [`Ipv4Addr::is_unspecified()`] and
240 /// [`Ipv6Addr::is_unspecified()`] for more details.
241 ///
242 /// # Examples
243 ///
244 /// ```
245 /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
246 ///
247 /// assert_eq!(IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)).is_unspecified(), true);
248 /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0)).is_unspecified(), true);
249 /// ```
250 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
251 #[stable(feature = "ip_shared", since = "1.12.0")]
252 #[must_use]
253 #[inline]
254 pub const fn is_unspecified(&self) -> bool {
255 match self {
256 IpAddr::V4(ip) => ip.is_unspecified(),
257 IpAddr::V6(ip) => ip.is_unspecified(),
258 }
259 }
260
261 /// Returns [`true`] if this is a loopback address.
262 ///
263 /// See the documentation for [`Ipv4Addr::is_loopback()`] and
264 /// [`Ipv6Addr::is_loopback()`] for more details.
265 ///
266 /// # Examples
267 ///
268 /// ```
269 /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
270 ///
271 /// assert_eq!(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)).is_loopback(), true);
272 /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0x1)).is_loopback(), true);
273 /// ```
274 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
275 #[stable(feature = "ip_shared", since = "1.12.0")]
276 #[must_use]
277 #[inline]
278 pub const fn is_loopback(&self) -> bool {
279 match self {
280 IpAddr::V4(ip) => ip.is_loopback(),
281 IpAddr::V6(ip) => ip.is_loopback(),
282 }
283 }
284
285 /// Returns [`true`] if the address appears to be globally routable.
286 ///
287 /// See the documentation for [`Ipv4Addr::is_global()`] and
288 /// [`Ipv6Addr::is_global()`] for more details.
289 ///
290 /// # Examples
291 ///
292 /// ```
293 /// #![feature(ip)]
294 ///
295 /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
296 ///
297 /// assert_eq!(IpAddr::V4(Ipv4Addr::new(80, 9, 12, 3)).is_global(), true);
298 /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0x1c9, 0, 0, 0xafc8, 0, 0x1)).is_global(), true);
299 /// ```
300 #[unstable(feature = "ip", issue = "27709")]
301 #[must_use]
302 #[inline]
303 pub const fn is_global(&self) -> bool {
304 match self {
305 IpAddr::V4(ip) => ip.is_global(),
306 IpAddr::V6(ip) => ip.is_global(),
307 }
308 }
309
310 /// Returns [`true`] if this is a multicast address.
311 ///
312 /// See the documentation for [`Ipv4Addr::is_multicast()`] and
313 /// [`Ipv6Addr::is_multicast()`] for more details.
314 ///
315 /// # Examples
316 ///
317 /// ```
318 /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
319 ///
320 /// assert_eq!(IpAddr::V4(Ipv4Addr::new(224, 254, 0, 0)).is_multicast(), true);
321 /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0)).is_multicast(), true);
322 /// ```
323 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
324 #[stable(feature = "ip_shared", since = "1.12.0")]
325 #[must_use]
326 #[inline]
327 pub const fn is_multicast(&self) -> bool {
328 match self {
329 IpAddr::V4(ip) => ip.is_multicast(),
330 IpAddr::V6(ip) => ip.is_multicast(),
331 }
332 }
333
334 /// Returns [`true`] if this address is in a range designated for documentation.
335 ///
336 /// See the documentation for [`Ipv4Addr::is_documentation()`] and
337 /// [`Ipv6Addr::is_documentation()`] for more details.
338 ///
339 /// # Examples
340 ///
341 /// ```
342 /// #![feature(ip)]
343 ///
344 /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
345 ///
346 /// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_documentation(), true);
347 /// assert_eq!(
348 /// IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_documentation(),
349 /// true
350 /// );
351 /// ```
352 #[unstable(feature = "ip", issue = "27709")]
353 #[must_use]
354 #[inline]
355 pub const fn is_documentation(&self) -> bool {
356 match self {
357 IpAddr::V4(ip) => ip.is_documentation(),
358 IpAddr::V6(ip) => ip.is_documentation(),
359 }
360 }
361
362 /// Returns [`true`] if this address is in a range designated for benchmarking.
363 ///
364 /// See the documentation for [`Ipv4Addr::is_benchmarking()`] and
365 /// [`Ipv6Addr::is_benchmarking()`] for more details.
366 ///
367 /// # Examples
368 ///
369 /// ```
370 /// #![feature(ip)]
371 ///
372 /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
373 ///
374 /// assert_eq!(IpAddr::V4(Ipv4Addr::new(198, 19, 255, 255)).is_benchmarking(), true);
375 /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0x2001, 0x2, 0, 0, 0, 0, 0, 0)).is_benchmarking(), true);
376 /// ```
377 #[unstable(feature = "ip", issue = "27709")]
378 #[must_use]
379 #[inline]
380 pub const fn is_benchmarking(&self) -> bool {
381 match self {
382 IpAddr::V4(ip) => ip.is_benchmarking(),
383 IpAddr::V6(ip) => ip.is_benchmarking(),
384 }
385 }
386
387 /// Returns [`true`] if this address is an [`IPv4` address], and [`false`]
388 /// otherwise.
389 ///
390 /// [`IPv4` address]: IpAddr::V4
391 ///
392 /// # Examples
393 ///
394 /// ```
395 /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
396 ///
397 /// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_ipv4(), true);
398 /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_ipv4(), false);
399 /// ```
400 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
401 #[stable(feature = "ipaddr_checker", since = "1.16.0")]
402 #[must_use]
403 #[inline]
404 pub const fn is_ipv4(&self) -> bool {
405 matches!(self, IpAddr::V4(_))
406 }
407
408 /// Returns [`true`] if this address is an [`IPv6` address], and [`false`]
409 /// otherwise.
410 ///
411 /// [`IPv6` address]: IpAddr::V6
412 ///
413 /// # Examples
414 ///
415 /// ```
416 /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
417 ///
418 /// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_ipv6(), false);
419 /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_ipv6(), true);
420 /// ```
421 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
422 #[stable(feature = "ipaddr_checker", since = "1.16.0")]
423 #[must_use]
424 #[inline]
425 pub const fn is_ipv6(&self) -> bool {
426 matches!(self, IpAddr::V6(_))
427 }
428
429 /// Converts this address to an `IpAddr::V4` if it is an IPv4-mapped IPv6
430 /// address, otherwise returns `self` as-is.
431 ///
432 /// # Examples
433 ///
434 /// ```
435 /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
436 ///
437 /// let localhost_v4 = Ipv4Addr::new(127, 0, 0, 1);
438 ///
439 /// assert_eq!(IpAddr::V4(localhost_v4).to_canonical(), localhost_v4);
440 /// assert_eq!(IpAddr::V6(localhost_v4.to_ipv6_mapped()).to_canonical(), localhost_v4);
441 /// assert_eq!(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)).to_canonical().is_loopback(), true);
442 /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x7f00, 0x1)).is_loopback(), false);
443 /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x7f00, 0x1)).to_canonical().is_loopback(), true);
444 /// ```
445 #[inline]
446 #[must_use = "this returns the result of the operation, \
447 without modifying the original"]
448 #[stable(feature = "ip_to_canonical", since = "1.75.0")]
449 #[rustc_const_stable(feature = "ip_to_canonical", since = "1.75.0")]
450 pub const fn to_canonical(&self) -> IpAddr {
451 match self {
452 IpAddr::V4(_) => *self,
453 IpAddr::V6(v6) => v6.to_canonical(),
454 }
455 }
456
457 /// Returns the eight-bit integers this address consists of as a slice.
458 ///
459 /// # Examples
460 ///
461 /// ```
462 /// #![feature(ip_as_octets)]
463 ///
464 /// use std::net::{Ipv4Addr, Ipv6Addr, IpAddr};
465 ///
466 /// assert_eq!(IpAddr::V4(Ipv4Addr::LOCALHOST).as_octets(), &[127, 0, 0, 1]);
467 /// assert_eq!(IpAddr::V6(Ipv6Addr::LOCALHOST).as_octets(),
468 /// &[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
469 /// ```
470 #[unstable(feature = "ip_as_octets", issue = "137259")]
471 #[inline]
472 pub const fn as_octets(&self) -> &[u8] {
473 match self {
474 IpAddr::V4(ip) => ip.as_octets().as_slice(),
475 IpAddr::V6(ip) => ip.as_octets().as_slice(),
476 }
477 }
478}
479
480impl Ipv4Addr {
481 /// Creates a new IPv4 address from four eight-bit octets.
482 ///
483 /// The result will represent the IP address `a`.`b`.`c`.`d`.
484 ///
485 /// # Examples
486 ///
487 /// ```
488 /// use std::net::Ipv4Addr;
489 ///
490 /// let addr = Ipv4Addr::new(127, 0, 0, 1);
491 /// ```
492 #[rustc_const_stable(feature = "const_ip_32", since = "1.32.0")]
493 #[stable(feature = "rust1", since = "1.0.0")]
494 #[must_use]
495 #[inline]
496 pub const fn new(a: u8, b: u8, c: u8, d: u8) -> Ipv4Addr {
497 Ipv4Addr { octets: [a, b, c, d] }
498 }
499
500 /// The size of an IPv4 address in bits.
501 ///
502 /// # Examples
503 ///
504 /// ```
505 /// use std::net::Ipv4Addr;
506 ///
507 /// assert_eq!(Ipv4Addr::BITS, 32);
508 /// ```
509 #[stable(feature = "ip_bits", since = "1.80.0")]
510 pub const BITS: u32 = 32;
511
512 /// Converts an IPv4 address into a `u32` representation using native byte order.
513 ///
514 /// Although IPv4 addresses are big-endian, the `u32` value will use the target platform's
515 /// native byte order. That is, the `u32` value is an integer representation of the IPv4
516 /// address and not an integer interpretation of the IPv4 address's big-endian bitstring. This
517 /// means that the `u32` value masked with `0xffffff00` will set the last octet in the address
518 /// to 0, regardless of the target platform's endianness.
519 ///
520 /// # Examples
521 ///
522 /// ```
523 /// use std::net::Ipv4Addr;
524 ///
525 /// let addr = Ipv4Addr::new(0x12, 0x34, 0x56, 0x78);
526 /// assert_eq!(0x12345678, addr.to_bits());
527 /// ```
528 ///
529 /// ```
530 /// use std::net::Ipv4Addr;
531 ///
532 /// let addr = Ipv4Addr::new(0x12, 0x34, 0x56, 0x78);
533 /// let addr_bits = addr.to_bits() & 0xffffff00;
534 /// assert_eq!(Ipv4Addr::new(0x12, 0x34, 0x56, 0x00), Ipv4Addr::from_bits(addr_bits));
535 ///
536 /// ```
537 #[rustc_const_stable(feature = "ip_bits", since = "1.80.0")]
538 #[stable(feature = "ip_bits", since = "1.80.0")]
539 #[must_use]
540 #[inline]
541 pub const fn to_bits(self) -> u32 {
542 u32::from_be_bytes(self.octets)
543 }
544
545 /// Converts a native byte order `u32` into an IPv4 address.
546 ///
547 /// See [`Ipv4Addr::to_bits`] for an explanation on endianness.
548 ///
549 /// # Examples
550 ///
551 /// ```
552 /// use std::net::Ipv4Addr;
553 ///
554 /// let addr = Ipv4Addr::from_bits(0x12345678);
555 /// assert_eq!(Ipv4Addr::new(0x12, 0x34, 0x56, 0x78), addr);
556 /// ```
557 #[rustc_const_stable(feature = "ip_bits", since = "1.80.0")]
558 #[stable(feature = "ip_bits", since = "1.80.0")]
559 #[must_use]
560 #[inline]
561 pub const fn from_bits(bits: u32) -> Ipv4Addr {
562 Ipv4Addr { octets: bits.to_be_bytes() }
563 }
564
565 /// An IPv4 address with the address pointing to localhost: `127.0.0.1`
566 ///
567 /// # Examples
568 ///
569 /// ```
570 /// use std::net::Ipv4Addr;
571 ///
572 /// let addr = Ipv4Addr::LOCALHOST;
573 /// assert_eq!(addr, Ipv4Addr::new(127, 0, 0, 1));
574 /// ```
575 #[stable(feature = "ip_constructors", since = "1.30.0")]
576 pub const LOCALHOST: Self = Ipv4Addr::new(127, 0, 0, 1);
577
578 /// An IPv4 address representing an unspecified address: `0.0.0.0`
579 ///
580 /// This corresponds to the constant `INADDR_ANY` in other languages.
581 ///
582 /// # Examples
583 ///
584 /// ```
585 /// use std::net::Ipv4Addr;
586 ///
587 /// let addr = Ipv4Addr::UNSPECIFIED;
588 /// assert_eq!(addr, Ipv4Addr::new(0, 0, 0, 0));
589 /// ```
590 #[doc(alias = "INADDR_ANY")]
591 #[stable(feature = "ip_constructors", since = "1.30.0")]
592 pub const UNSPECIFIED: Self = Ipv4Addr::new(0, 0, 0, 0);
593
594 /// An IPv4 address representing the broadcast address: `255.255.255.255`.
595 ///
596 /// # Examples
597 ///
598 /// ```
599 /// use std::net::Ipv4Addr;
600 ///
601 /// let addr = Ipv4Addr::BROADCAST;
602 /// assert_eq!(addr, Ipv4Addr::new(255, 255, 255, 255));
603 /// ```
604 #[stable(feature = "ip_constructors", since = "1.30.0")]
605 pub const BROADCAST: Self = Ipv4Addr::new(255, 255, 255, 255);
606
607 /// Returns the four eight-bit integers that make up this address.
608 ///
609 /// # Examples
610 ///
611 /// ```
612 /// use std::net::Ipv4Addr;
613 ///
614 /// let addr = Ipv4Addr::new(127, 0, 0, 1);
615 /// assert_eq!(addr.octets(), [127, 0, 0, 1]);
616 /// ```
617 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
618 #[stable(feature = "rust1", since = "1.0.0")]
619 #[must_use]
620 #[inline]
621 pub const fn octets(&self) -> [u8; 4] {
622 self.octets
623 }
624
625 /// Creates an `Ipv4Addr` from a four element byte array.
626 ///
627 /// # Examples
628 ///
629 /// ```
630 /// #![feature(ip_from)]
631 /// use std::net::Ipv4Addr;
632 ///
633 /// let addr = Ipv4Addr::from_octets([13u8, 12u8, 11u8, 10u8]);
634 /// assert_eq!(Ipv4Addr::new(13, 12, 11, 10), addr);
635 /// ```
636 #[unstable(feature = "ip_from", issue = "131360")]
637 #[must_use]
638 #[inline]
639 pub const fn from_octets(octets: [u8; 4]) -> Ipv4Addr {
640 Ipv4Addr { octets }
641 }
642
643 /// Returns the four eight-bit integers that make up this address
644 /// as a slice.
645 ///
646 /// # Examples
647 ///
648 /// ```
649 /// #![feature(ip_as_octets)]
650 ///
651 /// use std::net::Ipv4Addr;
652 ///
653 /// let addr = Ipv4Addr::new(127, 0, 0, 1);
654 /// assert_eq!(addr.as_octets(), &[127, 0, 0, 1]);
655 /// ```
656 #[unstable(feature = "ip_as_octets", issue = "137259")]
657 #[inline]
658 pub const fn as_octets(&self) -> &[u8; 4] {
659 &self.octets
660 }
661
662 /// Returns [`true`] for the special 'unspecified' address (`0.0.0.0`).
663 ///
664 /// This property is defined in _UNIX Network Programming, Second Edition_,
665 /// W. Richard Stevens, p. 891; see also [ip7].
666 ///
667 /// [ip7]: https://man7.org/linux/man-pages/man7/ip.7.html
668 ///
669 /// # Examples
670 ///
671 /// ```
672 /// use std::net::Ipv4Addr;
673 ///
674 /// assert_eq!(Ipv4Addr::new(0, 0, 0, 0).is_unspecified(), true);
675 /// assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_unspecified(), false);
676 /// ```
677 #[rustc_const_stable(feature = "const_ip_32", since = "1.32.0")]
678 #[stable(feature = "ip_shared", since = "1.12.0")]
679 #[must_use]
680 #[inline]
681 pub const fn is_unspecified(&self) -> bool {
682 u32::from_be_bytes(self.octets) == 0
683 }
684
685 /// Returns [`true`] if this is a loopback address (`127.0.0.0/8`).
686 ///
687 /// This property is defined by [IETF RFC 1122].
688 ///
689 /// [IETF RFC 1122]: https://tools.ietf.org/html/rfc1122
690 ///
691 /// # Examples
692 ///
693 /// ```
694 /// use std::net::Ipv4Addr;
695 ///
696 /// assert_eq!(Ipv4Addr::new(127, 0, 0, 1).is_loopback(), true);
697 /// assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_loopback(), false);
698 /// ```
699 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
700 #[stable(since = "1.7.0", feature = "ip_17")]
701 #[must_use]
702 #[inline]
703 pub const fn is_loopback(&self) -> bool {
704 self.octets()[0] == 127
705 }
706
707 /// Returns [`true`] if this is a private address.
708 ///
709 /// The private address ranges are defined in [IETF RFC 1918] and include:
710 ///
711 /// - `10.0.0.0/8`
712 /// - `172.16.0.0/12`
713 /// - `192.168.0.0/16`
714 ///
715 /// [IETF RFC 1918]: https://tools.ietf.org/html/rfc1918
716 ///
717 /// # Examples
718 ///
719 /// ```
720 /// use std::net::Ipv4Addr;
721 ///
722 /// assert_eq!(Ipv4Addr::new(10, 0, 0, 1).is_private(), true);
723 /// assert_eq!(Ipv4Addr::new(10, 10, 10, 10).is_private(), true);
724 /// assert_eq!(Ipv4Addr::new(172, 16, 10, 10).is_private(), true);
725 /// assert_eq!(Ipv4Addr::new(172, 29, 45, 14).is_private(), true);
726 /// assert_eq!(Ipv4Addr::new(172, 32, 0, 2).is_private(), false);
727 /// assert_eq!(Ipv4Addr::new(192, 168, 0, 2).is_private(), true);
728 /// assert_eq!(Ipv4Addr::new(192, 169, 0, 2).is_private(), false);
729 /// ```
730 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
731 #[stable(since = "1.7.0", feature = "ip_17")]
732 #[must_use]
733 #[inline]
734 pub const fn is_private(&self) -> bool {
735 match self.octets() {
736 [10, ..] => true,
737 [172, b, ..] if b >= 16 && b <= 31 => true,
738 [192, 168, ..] => true,
739 _ => false,
740 }
741 }
742
743 /// Returns [`true`] if the address is link-local (`169.254.0.0/16`).
744 ///
745 /// This property is defined by [IETF RFC 3927].
746 ///
747 /// [IETF RFC 3927]: https://tools.ietf.org/html/rfc3927
748 ///
749 /// # Examples
750 ///
751 /// ```
752 /// use std::net::Ipv4Addr;
753 ///
754 /// assert_eq!(Ipv4Addr::new(169, 254, 0, 0).is_link_local(), true);
755 /// assert_eq!(Ipv4Addr::new(169, 254, 10, 65).is_link_local(), true);
756 /// assert_eq!(Ipv4Addr::new(16, 89, 10, 65).is_link_local(), false);
757 /// ```
758 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
759 #[stable(since = "1.7.0", feature = "ip_17")]
760 #[must_use]
761 #[inline]
762 pub const fn is_link_local(&self) -> bool {
763 matches!(self.octets(), [169, 254, ..])
764 }
765
766 /// Returns [`true`] if the address appears to be globally reachable
767 /// as specified by the [IANA IPv4 Special-Purpose Address Registry].
768 ///
769 /// Whether or not an address is practically reachable will depend on your
770 /// network configuration. Most IPv4 addresses are globally reachable, unless
771 /// they are specifically defined as *not* globally reachable.
772 ///
773 /// Non-exhaustive list of notable addresses that are not globally reachable:
774 ///
775 /// - The [unspecified address] ([`is_unspecified`](Ipv4Addr::is_unspecified))
776 /// - Addresses reserved for private use ([`is_private`](Ipv4Addr::is_private))
777 /// - Addresses in the shared address space ([`is_shared`](Ipv4Addr::is_shared))
778 /// - Loopback addresses ([`is_loopback`](Ipv4Addr::is_loopback))
779 /// - Link-local addresses ([`is_link_local`](Ipv4Addr::is_link_local))
780 /// - Addresses reserved for documentation ([`is_documentation`](Ipv4Addr::is_documentation))
781 /// - Addresses reserved for benchmarking ([`is_benchmarking`](Ipv4Addr::is_benchmarking))
782 /// - Reserved addresses ([`is_reserved`](Ipv4Addr::is_reserved))
783 /// - The [broadcast address] ([`is_broadcast`](Ipv4Addr::is_broadcast))
784 ///
785 /// For the complete overview of which addresses are globally reachable, see the table at the [IANA IPv4 Special-Purpose Address Registry].
786 ///
787 /// [IANA IPv4 Special-Purpose Address Registry]: https://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml
788 /// [unspecified address]: Ipv4Addr::UNSPECIFIED
789 /// [broadcast address]: Ipv4Addr::BROADCAST
790
791 ///
792 /// # Examples
793 ///
794 /// ```
795 /// #![feature(ip)]
796 ///
797 /// use std::net::Ipv4Addr;
798 ///
799 /// // Most IPv4 addresses are globally reachable:
800 /// assert_eq!(Ipv4Addr::new(80, 9, 12, 3).is_global(), true);
801 ///
802 /// // However some addresses have been assigned a special meaning
803 /// // that makes them not globally reachable. Some examples are:
804 ///
805 /// // The unspecified address (`0.0.0.0`)
806 /// assert_eq!(Ipv4Addr::UNSPECIFIED.is_global(), false);
807 ///
808 /// // Addresses reserved for private use (`10.0.0.0/8`, `172.16.0.0/12`, 192.168.0.0/16)
809 /// assert_eq!(Ipv4Addr::new(10, 254, 0, 0).is_global(), false);
810 /// assert_eq!(Ipv4Addr::new(192, 168, 10, 65).is_global(), false);
811 /// assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_global(), false);
812 ///
813 /// // Addresses in the shared address space (`100.64.0.0/10`)
814 /// assert_eq!(Ipv4Addr::new(100, 100, 0, 0).is_global(), false);
815 ///
816 /// // The loopback addresses (`127.0.0.0/8`)
817 /// assert_eq!(Ipv4Addr::LOCALHOST.is_global(), false);
818 ///
819 /// // Link-local addresses (`169.254.0.0/16`)
820 /// assert_eq!(Ipv4Addr::new(169, 254, 45, 1).is_global(), false);
821 ///
822 /// // Addresses reserved for documentation (`192.0.2.0/24`, `198.51.100.0/24`, `203.0.113.0/24`)
823 /// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).is_global(), false);
824 /// assert_eq!(Ipv4Addr::new(198, 51, 100, 65).is_global(), false);
825 /// assert_eq!(Ipv4Addr::new(203, 0, 113, 6).is_global(), false);
826 ///
827 /// // Addresses reserved for benchmarking (`198.18.0.0/15`)
828 /// assert_eq!(Ipv4Addr::new(198, 18, 0, 0).is_global(), false);
829 ///
830 /// // Reserved addresses (`240.0.0.0/4`)
831 /// assert_eq!(Ipv4Addr::new(250, 10, 20, 30).is_global(), false);
832 ///
833 /// // The broadcast address (`255.255.255.255`)
834 /// assert_eq!(Ipv4Addr::BROADCAST.is_global(), false);
835 ///
836 /// // For a complete overview see the IANA IPv4 Special-Purpose Address Registry.
837 /// ```
838 #[unstable(feature = "ip", issue = "27709")]
839 #[must_use]
840 #[inline]
841 pub const fn is_global(&self) -> bool {
842 !(self.octets()[0] == 0 // "This network"
843 || self.is_private()
844 || self.is_shared()
845 || self.is_loopback()
846 || self.is_link_local()
847 // addresses reserved for future protocols (`192.0.0.0/24`)
848 // .9 and .10 are documented as globally reachable so they're excluded
849 || (
850 self.octets()[0] == 192 && self.octets()[1] == 0 && self.octets()[2] == 0
851 && self.octets()[3] != 9 && self.octets()[3] != 10
852 )
853 || self.is_documentation()
854 || self.is_benchmarking()
855 || self.is_reserved()
856 || self.is_broadcast())
857 }
858
859 /// Returns [`true`] if this address is part of the Shared Address Space defined in
860 /// [IETF RFC 6598] (`100.64.0.0/10`).
861 ///
862 /// [IETF RFC 6598]: https://tools.ietf.org/html/rfc6598
863 ///
864 /// # Examples
865 ///
866 /// ```
867 /// #![feature(ip)]
868 /// use std::net::Ipv4Addr;
869 ///
870 /// assert_eq!(Ipv4Addr::new(100, 64, 0, 0).is_shared(), true);
871 /// assert_eq!(Ipv4Addr::new(100, 127, 255, 255).is_shared(), true);
872 /// assert_eq!(Ipv4Addr::new(100, 128, 0, 0).is_shared(), false);
873 /// ```
874 #[unstable(feature = "ip", issue = "27709")]
875 #[must_use]
876 #[inline]
877 pub const fn is_shared(&self) -> bool {
878 self.octets()[0] == 100 && (self.octets()[1] & 0b1100_0000 == 0b0100_0000)
879 }
880
881 /// Returns [`true`] if this address part of the `198.18.0.0/15` range, which is reserved for
882 /// network devices benchmarking.
883 ///
884 /// This range is defined in [IETF RFC 2544] as `192.18.0.0` through
885 /// `198.19.255.255` but [errata 423] corrects it to `198.18.0.0/15`.
886 ///
887 /// [IETF RFC 2544]: https://tools.ietf.org/html/rfc2544
888 /// [errata 423]: https://www.rfc-editor.org/errata/eid423
889 ///
890 /// # Examples
891 ///
892 /// ```
893 /// #![feature(ip)]
894 /// use std::net::Ipv4Addr;
895 ///
896 /// assert_eq!(Ipv4Addr::new(198, 17, 255, 255).is_benchmarking(), false);
897 /// assert_eq!(Ipv4Addr::new(198, 18, 0, 0).is_benchmarking(), true);
898 /// assert_eq!(Ipv4Addr::new(198, 19, 255, 255).is_benchmarking(), true);
899 /// assert_eq!(Ipv4Addr::new(198, 20, 0, 0).is_benchmarking(), false);
900 /// ```
901 #[unstable(feature = "ip", issue = "27709")]
902 #[must_use]
903 #[inline]
904 pub const fn is_benchmarking(&self) -> bool {
905 self.octets()[0] == 198 && (self.octets()[1] & 0xfe) == 18
906 }
907
908 /// Returns [`true`] if this address is reserved by IANA for future use.
909 ///
910 /// [IETF RFC 1112] defines the block of reserved addresses as `240.0.0.0/4`.
911 /// This range normally includes the broadcast address `255.255.255.255`, but
912 /// this implementation explicitly excludes it, since it is obviously not
913 /// reserved for future use.
914 ///
915 /// [IETF RFC 1112]: https://tools.ietf.org/html/rfc1112
916 ///
917 /// # Warning
918 ///
919 /// As IANA assigns new addresses, this method will be
920 /// updated. This may result in non-reserved addresses being
921 /// treated as reserved in code that relies on an outdated version
922 /// of this method.
923 ///
924 /// # Examples
925 ///
926 /// ```
927 /// #![feature(ip)]
928 /// use std::net::Ipv4Addr;
929 ///
930 /// assert_eq!(Ipv4Addr::new(240, 0, 0, 0).is_reserved(), true);
931 /// assert_eq!(Ipv4Addr::new(255, 255, 255, 254).is_reserved(), true);
932 ///
933 /// assert_eq!(Ipv4Addr::new(239, 255, 255, 255).is_reserved(), false);
934 /// // The broadcast address is not considered as reserved for future use by this implementation
935 /// assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_reserved(), false);
936 /// ```
937 #[unstable(feature = "ip", issue = "27709")]
938 #[must_use]
939 #[inline]
940 pub const fn is_reserved(&self) -> bool {
941 self.octets()[0] & 240 == 240 && !self.is_broadcast()
942 }
943
944 /// Returns [`true`] if this is a multicast address (`224.0.0.0/4`).
945 ///
946 /// Multicast addresses have a most significant octet between `224` and `239`,
947 /// and is defined by [IETF RFC 5771].
948 ///
949 /// [IETF RFC 5771]: https://tools.ietf.org/html/rfc5771
950 ///
951 /// # Examples
952 ///
953 /// ```
954 /// use std::net::Ipv4Addr;
955 ///
956 /// assert_eq!(Ipv4Addr::new(224, 254, 0, 0).is_multicast(), true);
957 /// assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_multicast(), true);
958 /// assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_multicast(), false);
959 /// ```
960 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
961 #[stable(since = "1.7.0", feature = "ip_17")]
962 #[must_use]
963 #[inline]
964 pub const fn is_multicast(&self) -> bool {
965 self.octets()[0] >= 224 && self.octets()[0] <= 239
966 }
967
968 /// Returns [`true`] if this is a broadcast address (`255.255.255.255`).
969 ///
970 /// A broadcast address has all octets set to `255` as defined in [IETF RFC 919].
971 ///
972 /// [IETF RFC 919]: https://tools.ietf.org/html/rfc919
973 ///
974 /// # Examples
975 ///
976 /// ```
977 /// use std::net::Ipv4Addr;
978 ///
979 /// assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_broadcast(), true);
980 /// assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_broadcast(), false);
981 /// ```
982 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
983 #[stable(since = "1.7.0", feature = "ip_17")]
984 #[must_use]
985 #[inline]
986 pub const fn is_broadcast(&self) -> bool {
987 u32::from_be_bytes(self.octets()) == u32::from_be_bytes(Self::BROADCAST.octets())
988 }
989
990 /// Returns [`true`] if this address is in a range designated for documentation.
991 ///
992 /// This is defined in [IETF RFC 5737]:
993 ///
994 /// - `192.0.2.0/24` (TEST-NET-1)
995 /// - `198.51.100.0/24` (TEST-NET-2)
996 /// - `203.0.113.0/24` (TEST-NET-3)
997 ///
998 /// [IETF RFC 5737]: https://tools.ietf.org/html/rfc5737
999 ///
1000 /// # Examples
1001 ///
1002 /// ```
1003 /// use std::net::Ipv4Addr;
1004 ///
1005 /// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).is_documentation(), true);
1006 /// assert_eq!(Ipv4Addr::new(198, 51, 100, 65).is_documentation(), true);
1007 /// assert_eq!(Ipv4Addr::new(203, 0, 113, 6).is_documentation(), true);
1008 /// assert_eq!(Ipv4Addr::new(193, 34, 17, 19).is_documentation(), false);
1009 /// ```
1010 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
1011 #[stable(since = "1.7.0", feature = "ip_17")]
1012 #[must_use]
1013 #[inline]
1014 pub const fn is_documentation(&self) -> bool {
1015 matches!(self.octets(), [192, 0, 2, _] | [198, 51, 100, _] | [203, 0, 113, _])
1016 }
1017
1018 /// Converts this address to an [IPv4-compatible] [`IPv6` address].
1019 ///
1020 /// `a.b.c.d` becomes `::a.b.c.d`
1021 ///
1022 /// Note that IPv4-compatible addresses have been officially deprecated.
1023 /// If you don't explicitly need an IPv4-compatible address for legacy reasons, consider using `to_ipv6_mapped` instead.
1024 ///
1025 /// [IPv4-compatible]: Ipv6Addr#ipv4-compatible-ipv6-addresses
1026 /// [`IPv6` address]: Ipv6Addr
1027 ///
1028 /// # Examples
1029 ///
1030 /// ```
1031 /// use std::net::{Ipv4Addr, Ipv6Addr};
1032 ///
1033 /// assert_eq!(
1034 /// Ipv4Addr::new(192, 0, 2, 255).to_ipv6_compatible(),
1035 /// Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0xc000, 0x2ff)
1036 /// );
1037 /// ```
1038 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
1039 #[stable(feature = "rust1", since = "1.0.0")]
1040 #[must_use = "this returns the result of the operation, \
1041 without modifying the original"]
1042 #[inline]
1043 pub const fn to_ipv6_compatible(&self) -> Ipv6Addr {
1044 let [a, b, c, d] = self.octets();
1045 Ipv6Addr { octets: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, a, b, c, d] }
1046 }
1047
1048 /// Converts this address to an [IPv4-mapped] [`IPv6` address].
1049 ///
1050 /// `a.b.c.d` becomes `::ffff:a.b.c.d`
1051 ///
1052 /// [IPv4-mapped]: Ipv6Addr#ipv4-mapped-ipv6-addresses
1053 /// [`IPv6` address]: Ipv6Addr
1054 ///
1055 /// # Examples
1056 ///
1057 /// ```
1058 /// use std::net::{Ipv4Addr, Ipv6Addr};
1059 ///
1060 /// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).to_ipv6_mapped(),
1061 /// Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc000, 0x2ff));
1062 /// ```
1063 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
1064 #[stable(feature = "rust1", since = "1.0.0")]
1065 #[must_use = "this returns the result of the operation, \
1066 without modifying the original"]
1067 #[inline]
1068 pub const fn to_ipv6_mapped(&self) -> Ipv6Addr {
1069 let [a, b, c, d] = self.octets();
1070 Ipv6Addr { octets: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF, a, b, c, d] }
1071 }
1072}
1073
1074#[stable(feature = "ip_addr", since = "1.7.0")]
1075impl fmt::Display for IpAddr {
1076 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1077 match self {
1078 IpAddr::V4(ip) => ip.fmt(fmt),
1079 IpAddr::V6(ip) => ip.fmt(fmt),
1080 }
1081 }
1082}
1083
1084#[stable(feature = "ip_addr", since = "1.7.0")]
1085impl fmt::Debug for IpAddr {
1086 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1087 fmt::Display::fmt(self, fmt)
1088 }
1089}
1090
1091#[stable(feature = "ip_from_ip", since = "1.16.0")]
1092impl From<Ipv4Addr> for IpAddr {
1093 /// Copies this address to a new `IpAddr::V4`.
1094 ///
1095 /// # Examples
1096 ///
1097 /// ```
1098 /// use std::net::{IpAddr, Ipv4Addr};
1099 ///
1100 /// let addr = Ipv4Addr::new(127, 0, 0, 1);
1101 ///
1102 /// assert_eq!(
1103 /// IpAddr::V4(addr),
1104 /// IpAddr::from(addr)
1105 /// )
1106 /// ```
1107 #[inline]
1108 fn from(ipv4: Ipv4Addr) -> IpAddr {
1109 IpAddr::V4(ipv4)
1110 }
1111}
1112
1113#[stable(feature = "ip_from_ip", since = "1.16.0")]
1114impl From<Ipv6Addr> for IpAddr {
1115 /// Copies this address to a new `IpAddr::V6`.
1116 ///
1117 /// # Examples
1118 ///
1119 /// ```
1120 /// use std::net::{IpAddr, Ipv6Addr};
1121 ///
1122 /// let addr = Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff);
1123 ///
1124 /// assert_eq!(
1125 /// IpAddr::V6(addr),
1126 /// IpAddr::from(addr)
1127 /// );
1128 /// ```
1129 #[inline]
1130 fn from(ipv6: Ipv6Addr) -> IpAddr {
1131 IpAddr::V6(ipv6)
1132 }
1133}
1134
1135#[stable(feature = "rust1", since = "1.0.0")]
1136impl fmt::Display for Ipv4Addr {
1137 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1138 let octets = self.octets();
1139
1140 // If there are no alignment requirements, write the IP address directly to `f`.
1141 // Otherwise, write it to a local buffer and then use `f.pad`.
1142 if fmt.precision().is_none() && fmt.width().is_none() {
1143 write!(fmt, "{}.{}.{}.{}", octets[0], octets[1], octets[2], octets[3])
1144 } else {
1145 const LONGEST_IPV4_ADDR: &str = "255.255.255.255";
1146
1147 let mut buf = DisplayBuffer::<{ LONGEST_IPV4_ADDR.len() }>::new();
1148 // Buffer is long enough for the longest possible IPv4 address, so this should never fail.
1149 write!(buf, "{}.{}.{}.{}", octets[0], octets[1], octets[2], octets[3]).unwrap();
1150
1151 fmt.pad(buf.as_str())
1152 }
1153 }
1154}
1155
1156#[stable(feature = "rust1", since = "1.0.0")]
1157impl fmt::Debug for Ipv4Addr {
1158 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1159 fmt::Display::fmt(self, fmt)
1160 }
1161}
1162
1163#[stable(feature = "ip_cmp", since = "1.16.0")]
1164impl PartialEq<Ipv4Addr> for IpAddr {
1165 #[inline]
1166 fn eq(&self, other: &Ipv4Addr) -> bool {
1167 match self {
1168 IpAddr::V4(v4) => v4 == other,
1169 IpAddr::V6(_) => false,
1170 }
1171 }
1172}
1173
1174#[stable(feature = "ip_cmp", since = "1.16.0")]
1175impl PartialEq<IpAddr> for Ipv4Addr {
1176 #[inline]
1177 fn eq(&self, other: &IpAddr) -> bool {
1178 match other {
1179 IpAddr::V4(v4) => self == v4,
1180 IpAddr::V6(_) => false,
1181 }
1182 }
1183}
1184
1185#[stable(feature = "rust1", since = "1.0.0")]
1186impl PartialOrd for Ipv4Addr {
1187 #[inline]
1188 fn partial_cmp(&self, other: &Ipv4Addr) -> Option<Ordering> {
1189 Some(self.cmp(other))
1190 }
1191}
1192
1193#[stable(feature = "ip_cmp", since = "1.16.0")]
1194impl PartialOrd<Ipv4Addr> for IpAddr {
1195 #[inline]
1196 fn partial_cmp(&self, other: &Ipv4Addr) -> Option<Ordering> {
1197 match self {
1198 IpAddr::V4(v4) => v4.partial_cmp(other),
1199 IpAddr::V6(_) => Some(Ordering::Greater),
1200 }
1201 }
1202}
1203
1204#[stable(feature = "ip_cmp", since = "1.16.0")]
1205impl PartialOrd<IpAddr> for Ipv4Addr {
1206 #[inline]
1207 fn partial_cmp(&self, other: &IpAddr) -> Option<Ordering> {
1208 match other {
1209 IpAddr::V4(v4) => self.partial_cmp(v4),
1210 IpAddr::V6(_) => Some(Ordering::Less),
1211 }
1212 }
1213}
1214
1215#[stable(feature = "rust1", since = "1.0.0")]
1216impl Ord for Ipv4Addr {
1217 #[inline]
1218 fn cmp(&self, other: &Ipv4Addr) -> Ordering {
1219 self.octets.cmp(&other.octets)
1220 }
1221}
1222
1223#[stable(feature = "ip_u32", since = "1.1.0")]
1224impl From<Ipv4Addr> for u32 {
1225 /// Uses [`Ipv4Addr::to_bits`] to convert an IPv4 address to a host byte order `u32`.
1226 #[inline]
1227 fn from(ip: Ipv4Addr) -> u32 {
1228 ip.to_bits()
1229 }
1230}
1231
1232#[stable(feature = "ip_u32", since = "1.1.0")]
1233impl From<u32> for Ipv4Addr {
1234 /// Uses [`Ipv4Addr::from_bits`] to convert a host byte order `u32` into an IPv4 address.
1235 #[inline]
1236 fn from(ip: u32) -> Ipv4Addr {
1237 Ipv4Addr::from_bits(ip)
1238 }
1239}
1240
1241#[stable(feature = "from_slice_v4", since = "1.9.0")]
1242impl From<[u8; 4]> for Ipv4Addr {
1243 /// Creates an `Ipv4Addr` from a four element byte array.
1244 ///
1245 /// # Examples
1246 ///
1247 /// ```
1248 /// use std::net::Ipv4Addr;
1249 ///
1250 /// let addr = Ipv4Addr::from([13u8, 12u8, 11u8, 10u8]);
1251 /// assert_eq!(Ipv4Addr::new(13, 12, 11, 10), addr);
1252 /// ```
1253 #[inline]
1254 fn from(octets: [u8; 4]) -> Ipv4Addr {
1255 Ipv4Addr { octets }
1256 }
1257}
1258
1259#[stable(feature = "ip_from_slice", since = "1.17.0")]
1260impl From<[u8; 4]> for IpAddr {
1261 /// Creates an `IpAddr::V4` from a four element byte array.
1262 ///
1263 /// # Examples
1264 ///
1265 /// ```
1266 /// use std::net::{IpAddr, Ipv4Addr};
1267 ///
1268 /// let addr = IpAddr::from([13u8, 12u8, 11u8, 10u8]);
1269 /// assert_eq!(IpAddr::V4(Ipv4Addr::new(13, 12, 11, 10)), addr);
1270 /// ```
1271 #[inline]
1272 fn from(octets: [u8; 4]) -> IpAddr {
1273 IpAddr::V4(Ipv4Addr::from(octets))
1274 }
1275}
1276
1277impl Ipv6Addr {
1278 /// Creates a new IPv6 address from eight 16-bit segments.
1279 ///
1280 /// The result will represent the IP address `a:b:c:d:e:f:g:h`.
1281 ///
1282 /// # Examples
1283 ///
1284 /// ```
1285 /// use std::net::Ipv6Addr;
1286 ///
1287 /// let addr = Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff);
1288 /// ```
1289 #[rustc_const_stable(feature = "const_ip_32", since = "1.32.0")]
1290 #[stable(feature = "rust1", since = "1.0.0")]
1291 #[must_use]
1292 #[inline]
1293 pub const fn new(a: u16, b: u16, c: u16, d: u16, e: u16, f: u16, g: u16, h: u16) -> Ipv6Addr {
1294 let addr16 = [
1295 a.to_be(),
1296 b.to_be(),
1297 c.to_be(),
1298 d.to_be(),
1299 e.to_be(),
1300 f.to_be(),
1301 g.to_be(),
1302 h.to_be(),
1303 ];
1304 Ipv6Addr {
1305 // All elements in `addr16` are big endian.
1306 // SAFETY: `[u16; 8]` is always safe to transmute to `[u8; 16]`.
1307 octets: unsafe { transmute::<_, [u8; 16]>(addr16) },
1308 }
1309 }
1310
1311 /// The size of an IPv6 address in bits.
1312 ///
1313 /// # Examples
1314 ///
1315 /// ```
1316 /// use std::net::Ipv6Addr;
1317 ///
1318 /// assert_eq!(Ipv6Addr::BITS, 128);
1319 /// ```
1320 #[stable(feature = "ip_bits", since = "1.80.0")]
1321 pub const BITS: u32 = 128;
1322
1323 /// Converts an IPv6 address into a `u128` representation using native byte order.
1324 ///
1325 /// Although IPv6 addresses are big-endian, the `u128` value will use the target platform's
1326 /// native byte order. That is, the `u128` value is an integer representation of the IPv6
1327 /// address and not an integer interpretation of the IPv6 address's big-endian bitstring. This
1328 /// means that the `u128` value masked with `0xffffffffffffffffffffffffffff0000_u128` will set
1329 /// the last segment in the address to 0, regardless of the target platform's endianness.
1330 ///
1331 /// # Examples
1332 ///
1333 /// ```
1334 /// use std::net::Ipv6Addr;
1335 ///
1336 /// let addr = Ipv6Addr::new(
1337 /// 0x1020, 0x3040, 0x5060, 0x7080,
1338 /// 0x90A0, 0xB0C0, 0xD0E0, 0xF00D,
1339 /// );
1340 /// assert_eq!(0x102030405060708090A0B0C0D0E0F00D_u128, addr.to_bits());
1341 /// ```
1342 ///
1343 /// ```
1344 /// use std::net::Ipv6Addr;
1345 ///
1346 /// let addr = Ipv6Addr::new(
1347 /// 0x1020, 0x3040, 0x5060, 0x7080,
1348 /// 0x90A0, 0xB0C0, 0xD0E0, 0xF00D,
1349 /// );
1350 /// let addr_bits = addr.to_bits() & 0xffffffffffffffffffffffffffff0000_u128;
1351 /// assert_eq!(
1352 /// Ipv6Addr::new(
1353 /// 0x1020, 0x3040, 0x5060, 0x7080,
1354 /// 0x90A0, 0xB0C0, 0xD0E0, 0x0000,
1355 /// ),
1356 /// Ipv6Addr::from_bits(addr_bits));
1357 ///
1358 /// ```
1359 #[rustc_const_stable(feature = "ip_bits", since = "1.80.0")]
1360 #[stable(feature = "ip_bits", since = "1.80.0")]
1361 #[must_use]
1362 #[inline]
1363 pub const fn to_bits(self) -> u128 {
1364 u128::from_be_bytes(self.octets)
1365 }
1366
1367 /// Converts a native byte order `u128` into an IPv6 address.
1368 ///
1369 /// See [`Ipv6Addr::to_bits`] for an explanation on endianness.
1370 ///
1371 /// # Examples
1372 ///
1373 /// ```
1374 /// use std::net::Ipv6Addr;
1375 ///
1376 /// let addr = Ipv6Addr::from_bits(0x102030405060708090A0B0C0D0E0F00D_u128);
1377 /// assert_eq!(
1378 /// Ipv6Addr::new(
1379 /// 0x1020, 0x3040, 0x5060, 0x7080,
1380 /// 0x90A0, 0xB0C0, 0xD0E0, 0xF00D,
1381 /// ),
1382 /// addr);
1383 /// ```
1384 #[rustc_const_stable(feature = "ip_bits", since = "1.80.0")]
1385 #[stable(feature = "ip_bits", since = "1.80.0")]
1386 #[must_use]
1387 #[inline]
1388 pub const fn from_bits(bits: u128) -> Ipv6Addr {
1389 Ipv6Addr { octets: bits.to_be_bytes() }
1390 }
1391
1392 /// An IPv6 address representing localhost: `::1`.
1393 ///
1394 /// This corresponds to constant `IN6ADDR_LOOPBACK_INIT` or `in6addr_loopback` in other
1395 /// languages.
1396 ///
1397 /// # Examples
1398 ///
1399 /// ```
1400 /// use std::net::Ipv6Addr;
1401 ///
1402 /// let addr = Ipv6Addr::LOCALHOST;
1403 /// assert_eq!(addr, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1));
1404 /// ```
1405 #[doc(alias = "IN6ADDR_LOOPBACK_INIT")]
1406 #[doc(alias = "in6addr_loopback")]
1407 #[stable(feature = "ip_constructors", since = "1.30.0")]
1408 pub const LOCALHOST: Self = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1);
1409
1410 /// An IPv6 address representing the unspecified address: `::`.
1411 ///
1412 /// This corresponds to constant `IN6ADDR_ANY_INIT` or `in6addr_any` in other languages.
1413 ///
1414 /// # Examples
1415 ///
1416 /// ```
1417 /// use std::net::Ipv6Addr;
1418 ///
1419 /// let addr = Ipv6Addr::UNSPECIFIED;
1420 /// assert_eq!(addr, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0));
1421 /// ```
1422 #[doc(alias = "IN6ADDR_ANY_INIT")]
1423 #[doc(alias = "in6addr_any")]
1424 #[stable(feature = "ip_constructors", since = "1.30.0")]
1425 pub const UNSPECIFIED: Self = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0);
1426
1427 /// Returns the eight 16-bit segments that make up this address.
1428 ///
1429 /// # Examples
1430 ///
1431 /// ```
1432 /// use std::net::Ipv6Addr;
1433 ///
1434 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).segments(),
1435 /// [0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff]);
1436 /// ```
1437 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
1438 #[stable(feature = "rust1", since = "1.0.0")]
1439 #[must_use]
1440 #[inline]
1441 pub const fn segments(&self) -> [u16; 8] {
1442 // All elements in `self.octets` must be big endian.
1443 // SAFETY: `[u8; 16]` is always safe to transmute to `[u16; 8]`.
1444 let [a, b, c, d, e, f, g, h] = unsafe { transmute::<_, [u16; 8]>(self.octets) };
1445 // We want native endian u16
1446 [
1447 u16::from_be(a),
1448 u16::from_be(b),
1449 u16::from_be(c),
1450 u16::from_be(d),
1451 u16::from_be(e),
1452 u16::from_be(f),
1453 u16::from_be(g),
1454 u16::from_be(h),
1455 ]
1456 }
1457
1458 /// Creates an `Ipv6Addr` from an eight element 16-bit array.
1459 ///
1460 /// # Examples
1461 ///
1462 /// ```
1463 /// #![feature(ip_from)]
1464 /// use std::net::Ipv6Addr;
1465 ///
1466 /// let addr = Ipv6Addr::from_segments([
1467 /// 0x20du16, 0x20cu16, 0x20bu16, 0x20au16,
1468 /// 0x209u16, 0x208u16, 0x207u16, 0x206u16,
1469 /// ]);
1470 /// assert_eq!(
1471 /// Ipv6Addr::new(
1472 /// 0x20d, 0x20c, 0x20b, 0x20a,
1473 /// 0x209, 0x208, 0x207, 0x206,
1474 /// ),
1475 /// addr
1476 /// );
1477 /// ```
1478 #[unstable(feature = "ip_from", issue = "131360")]
1479 #[must_use]
1480 #[inline]
1481 pub const fn from_segments(segments: [u16; 8]) -> Ipv6Addr {
1482 let [a, b, c, d, e, f, g, h] = segments;
1483 Ipv6Addr::new(a, b, c, d, e, f, g, h)
1484 }
1485
1486 /// Returns [`true`] for the special 'unspecified' address (`::`).
1487 ///
1488 /// This property is defined in [IETF RFC 4291].
1489 ///
1490 /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
1491 ///
1492 /// # Examples
1493 ///
1494 /// ```
1495 /// use std::net::Ipv6Addr;
1496 ///
1497 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unspecified(), false);
1498 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0).is_unspecified(), true);
1499 /// ```
1500 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
1501 #[stable(since = "1.7.0", feature = "ip_17")]
1502 #[must_use]
1503 #[inline]
1504 pub const fn is_unspecified(&self) -> bool {
1505 u128::from_be_bytes(self.octets()) == u128::from_be_bytes(Ipv6Addr::UNSPECIFIED.octets())
1506 }
1507
1508 /// Returns [`true`] if this is the [loopback address] (`::1`),
1509 /// as defined in [IETF RFC 4291 section 2.5.3].
1510 ///
1511 /// Contrary to IPv4, in IPv6 there is only one loopback address.
1512 ///
1513 /// [loopback address]: Ipv6Addr::LOCALHOST
1514 /// [IETF RFC 4291 section 2.5.3]: https://tools.ietf.org/html/rfc4291#section-2.5.3
1515 ///
1516 /// # Examples
1517 ///
1518 /// ```
1519 /// use std::net::Ipv6Addr;
1520 ///
1521 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_loopback(), false);
1522 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0x1).is_loopback(), true);
1523 /// ```
1524 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
1525 #[stable(since = "1.7.0", feature = "ip_17")]
1526 #[must_use]
1527 #[inline]
1528 pub const fn is_loopback(&self) -> bool {
1529 u128::from_be_bytes(self.octets()) == u128::from_be_bytes(Ipv6Addr::LOCALHOST.octets())
1530 }
1531
1532 /// Returns [`true`] if the address appears to be globally reachable
1533 /// as specified by the [IANA IPv6 Special-Purpose Address Registry].
1534 ///
1535 /// Whether or not an address is practically reachable will depend on your
1536 /// network configuration. Most IPv6 addresses are globally reachable, unless
1537 /// they are specifically defined as *not* globally reachable.
1538 ///
1539 /// Non-exhaustive list of notable addresses that are not globally reachable:
1540 /// - The [unspecified address] ([`is_unspecified`](Ipv6Addr::is_unspecified))
1541 /// - The [loopback address] ([`is_loopback`](Ipv6Addr::is_loopback))
1542 /// - IPv4-mapped addresses
1543 /// - Addresses reserved for benchmarking ([`is_benchmarking`](Ipv6Addr::is_benchmarking))
1544 /// - Addresses reserved for documentation ([`is_documentation`](Ipv6Addr::is_documentation))
1545 /// - Unique local addresses ([`is_unique_local`](Ipv6Addr::is_unique_local))
1546 /// - Unicast addresses with link-local scope ([`is_unicast_link_local`](Ipv6Addr::is_unicast_link_local))
1547 ///
1548 /// For the complete overview of which addresses are globally reachable, see the table at the [IANA IPv6 Special-Purpose Address Registry].
1549 ///
1550 /// Note that an address having global scope is not the same as being globally reachable,
1551 /// and there is no direct relation between the two concepts: There exist addresses with global scope
1552 /// that are not globally reachable (for example unique local addresses),
1553 /// and addresses that are globally reachable without having global scope
1554 /// (multicast addresses with non-global scope).
1555 ///
1556 /// [IANA IPv6 Special-Purpose Address Registry]: https://www.iana.org/assignments/iana-ipv6-special-registry/iana-ipv6-special-registry.xhtml
1557 /// [unspecified address]: Ipv6Addr::UNSPECIFIED
1558 /// [loopback address]: Ipv6Addr::LOCALHOST
1559 ///
1560 /// # Examples
1561 ///
1562 /// ```
1563 /// #![feature(ip)]
1564 ///
1565 /// use std::net::Ipv6Addr;
1566 ///
1567 /// // Most IPv6 addresses are globally reachable:
1568 /// assert_eq!(Ipv6Addr::new(0x26, 0, 0x1c9, 0, 0, 0xafc8, 0x10, 0x1).is_global(), true);
1569 ///
1570 /// // However some addresses have been assigned a special meaning
1571 /// // that makes them not globally reachable. Some examples are:
1572 ///
1573 /// // The unspecified address (`::`)
1574 /// assert_eq!(Ipv6Addr::UNSPECIFIED.is_global(), false);
1575 ///
1576 /// // The loopback address (`::1`)
1577 /// assert_eq!(Ipv6Addr::LOCALHOST.is_global(), false);
1578 ///
1579 /// // IPv4-mapped addresses (`::ffff:0:0/96`)
1580 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_global(), false);
1581 ///
1582 /// // Addresses reserved for benchmarking (`2001:2::/48`)
1583 /// assert_eq!(Ipv6Addr::new(0x2001, 2, 0, 0, 0, 0, 0, 1,).is_global(), false);
1584 ///
1585 /// // Addresses reserved for documentation (`2001:db8::/32` and `3fff::/20`)
1586 /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 1).is_global(), false);
1587 /// assert_eq!(Ipv6Addr::new(0x3fff, 0, 0, 0, 0, 0, 0, 0).is_global(), false);
1588 ///
1589 /// // Unique local addresses (`fc00::/7`)
1590 /// assert_eq!(Ipv6Addr::new(0xfc02, 0, 0, 0, 0, 0, 0, 1).is_global(), false);
1591 ///
1592 /// // Unicast addresses with link-local scope (`fe80::/10`)
1593 /// assert_eq!(Ipv6Addr::new(0xfe81, 0, 0, 0, 0, 0, 0, 1).is_global(), false);
1594 ///
1595 /// // For a complete overview see the IANA IPv6 Special-Purpose Address Registry.
1596 /// ```
1597 #[unstable(feature = "ip", issue = "27709")]
1598 #[must_use]
1599 #[inline]
1600 pub const fn is_global(&self) -> bool {
1601 !(self.is_unspecified()
1602 || self.is_loopback()
1603 // IPv4-mapped Address (`::ffff:0:0/96`)
1604 || matches!(self.segments(), [0, 0, 0, 0, 0, 0xffff, _, _])
1605 // IPv4-IPv6 Translat. (`64:ff9b:1::/48`)
1606 || matches!(self.segments(), [0x64, 0xff9b, 1, _, _, _, _, _])
1607 // Discard-Only Address Block (`100::/64`)
1608 || matches!(self.segments(), [0x100, 0, 0, 0, _, _, _, _])
1609 // IETF Protocol Assignments (`2001::/23`)
1610 || (matches!(self.segments(), [0x2001, b, _, _, _, _, _, _] if b < 0x200)
1611 && !(
1612 // Port Control Protocol Anycast (`2001:1::1`)
1613 u128::from_be_bytes(self.octets()) == 0x2001_0001_0000_0000_0000_0000_0000_0001
1614 // Traversal Using Relays around NAT Anycast (`2001:1::2`)
1615 || u128::from_be_bytes(self.octets()) == 0x2001_0001_0000_0000_0000_0000_0000_0002
1616 // AMT (`2001:3::/32`)
1617 || matches!(self.segments(), [0x2001, 3, _, _, _, _, _, _])
1618 // AS112-v6 (`2001:4:112::/48`)
1619 || matches!(self.segments(), [0x2001, 4, 0x112, _, _, _, _, _])
1620 // ORCHIDv2 (`2001:20::/28`)
1621 // Drone Remote ID Protocol Entity Tags (DETs) Prefix (`2001:30::/28`)`
1622 || matches!(self.segments(), [0x2001, b, _, _, _, _, _, _] if b >= 0x20 && b <= 0x3F)
1623 ))
1624 // 6to4 (`2002::/16`) – it's not explicitly documented as globally reachable,
1625 // IANA says N/A.
1626 || matches!(self.segments(), [0x2002, _, _, _, _, _, _, _])
1627 || self.is_documentation()
1628 // Segment Routing (SRv6) SIDs (`5f00::/16`)
1629 || matches!(self.segments(), [0x5f00, ..])
1630 || self.is_unique_local()
1631 || self.is_unicast_link_local())
1632 }
1633
1634 /// Returns [`true`] if this is a unique local address (`fc00::/7`).
1635 ///
1636 /// This property is defined in [IETF RFC 4193].
1637 ///
1638 /// [IETF RFC 4193]: https://tools.ietf.org/html/rfc4193
1639 ///
1640 /// # Examples
1641 ///
1642 /// ```
1643 /// use std::net::Ipv6Addr;
1644 ///
1645 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unique_local(), false);
1646 /// assert_eq!(Ipv6Addr::new(0xfc02, 0, 0, 0, 0, 0, 0, 0).is_unique_local(), true);
1647 /// ```
1648 #[must_use]
1649 #[inline]
1650 #[stable(feature = "ipv6_is_unique_local", since = "1.84.0")]
1651 #[rustc_const_stable(feature = "ipv6_is_unique_local", since = "1.84.0")]
1652 pub const fn is_unique_local(&self) -> bool {
1653 (self.segments()[0] & 0xfe00) == 0xfc00
1654 }
1655
1656 /// Returns [`true`] if this is a unicast address, as defined by [IETF RFC 4291].
1657 /// Any address that is not a [multicast address] (`ff00::/8`) is unicast.
1658 ///
1659 /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
1660 /// [multicast address]: Ipv6Addr::is_multicast
1661 ///
1662 /// # Examples
1663 ///
1664 /// ```
1665 /// #![feature(ip)]
1666 ///
1667 /// use std::net::Ipv6Addr;
1668 ///
1669 /// // The unspecified and loopback addresses are unicast.
1670 /// assert_eq!(Ipv6Addr::UNSPECIFIED.is_unicast(), true);
1671 /// assert_eq!(Ipv6Addr::LOCALHOST.is_unicast(), true);
1672 ///
1673 /// // Any address that is not a multicast address (`ff00::/8`) is unicast.
1674 /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_unicast(), true);
1675 /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).is_unicast(), false);
1676 /// ```
1677 #[unstable(feature = "ip", issue = "27709")]
1678 #[must_use]
1679 #[inline]
1680 pub const fn is_unicast(&self) -> bool {
1681 !self.is_multicast()
1682 }
1683
1684 /// Returns `true` if the address is a unicast address with link-local scope,
1685 /// as defined in [RFC 4291].
1686 ///
1687 /// A unicast address has link-local scope if it has the prefix `fe80::/10`, as per [RFC 4291 section 2.4].
1688 /// Note that this encompasses more addresses than those defined in [RFC 4291 section 2.5.6],
1689 /// which describes "Link-Local IPv6 Unicast Addresses" as having the following stricter format:
1690 ///
1691 /// ```text
1692 /// | 10 bits | 54 bits | 64 bits |
1693 /// +----------+-------------------------+----------------------------+
1694 /// |1111111010| 0 | interface ID |
1695 /// +----------+-------------------------+----------------------------+
1696 /// ```
1697 /// So while currently the only addresses with link-local scope an application will encounter are all in `fe80::/64`,
1698 /// this might change in the future with the publication of new standards. More addresses in `fe80::/10` could be allocated,
1699 /// and those addresses will have link-local scope.
1700 ///
1701 /// Also note that while [RFC 4291 section 2.5.3] mentions about the [loopback address] (`::1`) that "it is treated as having Link-Local scope",
1702 /// this does not mean that the loopback address actually has link-local scope and this method will return `false` on it.
1703 ///
1704 /// [RFC 4291]: https://tools.ietf.org/html/rfc4291
1705 /// [RFC 4291 section 2.4]: https://tools.ietf.org/html/rfc4291#section-2.4
1706 /// [RFC 4291 section 2.5.3]: https://tools.ietf.org/html/rfc4291#section-2.5.3
1707 /// [RFC 4291 section 2.5.6]: https://tools.ietf.org/html/rfc4291#section-2.5.6
1708 /// [loopback address]: Ipv6Addr::LOCALHOST
1709 ///
1710 /// # Examples
1711 ///
1712 /// ```
1713 /// use std::net::Ipv6Addr;
1714 ///
1715 /// // The loopback address (`::1`) does not actually have link-local scope.
1716 /// assert_eq!(Ipv6Addr::LOCALHOST.is_unicast_link_local(), false);
1717 ///
1718 /// // Only addresses in `fe80::/10` have link-local scope.
1719 /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_unicast_link_local(), false);
1720 /// assert_eq!(Ipv6Addr::new(0xfe80, 0, 0, 0, 0, 0, 0, 0).is_unicast_link_local(), true);
1721 ///
1722 /// // Addresses outside the stricter `fe80::/64` also have link-local scope.
1723 /// assert_eq!(Ipv6Addr::new(0xfe80, 0, 0, 1, 0, 0, 0, 0).is_unicast_link_local(), true);
1724 /// assert_eq!(Ipv6Addr::new(0xfe81, 0, 0, 0, 0, 0, 0, 0).is_unicast_link_local(), true);
1725 /// ```
1726 #[must_use]
1727 #[inline]
1728 #[stable(feature = "ipv6_is_unique_local", since = "1.84.0")]
1729 #[rustc_const_stable(feature = "ipv6_is_unique_local", since = "1.84.0")]
1730 pub const fn is_unicast_link_local(&self) -> bool {
1731 (self.segments()[0] & 0xffc0) == 0xfe80
1732 }
1733
1734 /// Returns [`true`] if this is an address reserved for documentation
1735 /// (`2001:db8::/32` and `3fff::/20`).
1736 ///
1737 /// This property is defined by [IETF RFC 3849] and [IETF RFC 9637].
1738 ///
1739 /// [IETF RFC 3849]: https://tools.ietf.org/html/rfc3849
1740 /// [IETF RFC 9637]: https://tools.ietf.org/html/rfc9637
1741 ///
1742 /// # Examples
1743 ///
1744 /// ```
1745 /// #![feature(ip)]
1746 ///
1747 /// use std::net::Ipv6Addr;
1748 ///
1749 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_documentation(), false);
1750 /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_documentation(), true);
1751 /// assert_eq!(Ipv6Addr::new(0x3fff, 0, 0, 0, 0, 0, 0, 0).is_documentation(), true);
1752 /// ```
1753 #[unstable(feature = "ip", issue = "27709")]
1754 #[must_use]
1755 #[inline]
1756 pub const fn is_documentation(&self) -> bool {
1757 matches!(self.segments(), [0x2001, 0xdb8, ..] | [0x3fff, 0..=0x0fff, ..])
1758 }
1759
1760 /// Returns [`true`] if this is an address reserved for benchmarking (`2001:2::/48`).
1761 ///
1762 /// This property is defined in [IETF RFC 5180], where it is mistakenly specified as covering the range `2001:0200::/48`.
1763 /// This is corrected in [IETF RFC Errata 1752] to `2001:0002::/48`.
1764 ///
1765 /// [IETF RFC 5180]: https://tools.ietf.org/html/rfc5180
1766 /// [IETF RFC Errata 1752]: https://www.rfc-editor.org/errata_search.php?eid=1752
1767 ///
1768 /// ```
1769 /// #![feature(ip)]
1770 ///
1771 /// use std::net::Ipv6Addr;
1772 ///
1773 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc613, 0x0).is_benchmarking(), false);
1774 /// assert_eq!(Ipv6Addr::new(0x2001, 0x2, 0, 0, 0, 0, 0, 0).is_benchmarking(), true);
1775 /// ```
1776 #[unstable(feature = "ip", issue = "27709")]
1777 #[must_use]
1778 #[inline]
1779 pub const fn is_benchmarking(&self) -> bool {
1780 (self.segments()[0] == 0x2001) && (self.segments()[1] == 0x2) && (self.segments()[2] == 0)
1781 }
1782
1783 /// Returns [`true`] if the address is a globally routable unicast address.
1784 ///
1785 /// The following return false:
1786 ///
1787 /// - the loopback address
1788 /// - the link-local addresses
1789 /// - unique local addresses
1790 /// - the unspecified address
1791 /// - the address range reserved for documentation
1792 ///
1793 /// This method returns [`true`] for site-local addresses as per [RFC 4291 section 2.5.7]
1794 ///
1795 /// ```no_rust
1796 /// The special behavior of [the site-local unicast] prefix defined in [RFC3513] must no longer
1797 /// be supported in new implementations (i.e., new implementations must treat this prefix as
1798 /// Global Unicast).
1799 /// ```
1800 ///
1801 /// [RFC 4291 section 2.5.7]: https://tools.ietf.org/html/rfc4291#section-2.5.7
1802 ///
1803 /// # Examples
1804 ///
1805 /// ```
1806 /// #![feature(ip)]
1807 ///
1808 /// use std::net::Ipv6Addr;
1809 ///
1810 /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_unicast_global(), false);
1811 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unicast_global(), true);
1812 /// ```
1813 #[unstable(feature = "ip", issue = "27709")]
1814 #[must_use]
1815 #[inline]
1816 pub const fn is_unicast_global(&self) -> bool {
1817 self.is_unicast()
1818 && !self.is_loopback()
1819 && !self.is_unicast_link_local()
1820 && !self.is_unique_local()
1821 && !self.is_unspecified()
1822 && !self.is_documentation()
1823 && !self.is_benchmarking()
1824 }
1825
1826 /// Returns the address's multicast scope if the address is multicast.
1827 ///
1828 /// # Examples
1829 ///
1830 /// ```
1831 /// #![feature(ip)]
1832 ///
1833 /// use std::net::{Ipv6Addr, Ipv6MulticastScope};
1834 ///
1835 /// assert_eq!(
1836 /// Ipv6Addr::new(0xff0e, 0, 0, 0, 0, 0, 0, 0).multicast_scope(),
1837 /// Some(Ipv6MulticastScope::Global)
1838 /// );
1839 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).multicast_scope(), None);
1840 /// ```
1841 #[unstable(feature = "ip", issue = "27709")]
1842 #[must_use]
1843 #[inline]
1844 pub const fn multicast_scope(&self) -> Option<Ipv6MulticastScope> {
1845 if self.is_multicast() {
1846 match self.segments()[0] & 0x000f {
1847 1 => Some(Ipv6MulticastScope::InterfaceLocal),
1848 2 => Some(Ipv6MulticastScope::LinkLocal),
1849 3 => Some(Ipv6MulticastScope::RealmLocal),
1850 4 => Some(Ipv6MulticastScope::AdminLocal),
1851 5 => Some(Ipv6MulticastScope::SiteLocal),
1852 8 => Some(Ipv6MulticastScope::OrganizationLocal),
1853 14 => Some(Ipv6MulticastScope::Global),
1854 _ => None,
1855 }
1856 } else {
1857 None
1858 }
1859 }
1860
1861 /// Returns [`true`] if this is a multicast address (`ff00::/8`).
1862 ///
1863 /// This property is defined by [IETF RFC 4291].
1864 ///
1865 /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
1866 ///
1867 /// # Examples
1868 ///
1869 /// ```
1870 /// use std::net::Ipv6Addr;
1871 ///
1872 /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).is_multicast(), true);
1873 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_multicast(), false);
1874 /// ```
1875 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
1876 #[stable(since = "1.7.0", feature = "ip_17")]
1877 #[must_use]
1878 #[inline]
1879 pub const fn is_multicast(&self) -> bool {
1880 (self.segments()[0] & 0xff00) == 0xff00
1881 }
1882
1883 /// Returns [`true`] if the address is an IPv4-mapped address (`::ffff:0:0/96`).
1884 ///
1885 /// IPv4-mapped addresses can be converted to their canonical IPv4 address with
1886 /// [`to_ipv4_mapped`](Ipv6Addr::to_ipv4_mapped).
1887 ///
1888 /// # Examples
1889 /// ```
1890 /// #![feature(ip)]
1891 ///
1892 /// use std::net::{Ipv4Addr, Ipv6Addr};
1893 ///
1894 /// let ipv4_mapped = Ipv4Addr::new(192, 0, 2, 255).to_ipv6_mapped();
1895 /// assert_eq!(ipv4_mapped.is_ipv4_mapped(), true);
1896 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc000, 0x2ff).is_ipv4_mapped(), true);
1897 ///
1898 /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_ipv4_mapped(), false);
1899 /// ```
1900 #[unstable(feature = "ip", issue = "27709")]
1901 #[must_use]
1902 #[inline]
1903 pub const fn is_ipv4_mapped(&self) -> bool {
1904 matches!(self.segments(), [0, 0, 0, 0, 0, 0xffff, _, _])
1905 }
1906
1907 /// Converts this address to an [`IPv4` address] if it's an [IPv4-mapped] address,
1908 /// as defined in [IETF RFC 4291 section 2.5.5.2], otherwise returns [`None`].
1909 ///
1910 /// `::ffff:a.b.c.d` becomes `a.b.c.d`.
1911 /// All addresses *not* starting with `::ffff` will return `None`.
1912 ///
1913 /// [`IPv4` address]: Ipv4Addr
1914 /// [IPv4-mapped]: Ipv6Addr
1915 /// [IETF RFC 4291 section 2.5.5.2]: https://tools.ietf.org/html/rfc4291#section-2.5.5.2
1916 ///
1917 /// # Examples
1918 ///
1919 /// ```
1920 /// use std::net::{Ipv4Addr, Ipv6Addr};
1921 ///
1922 /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).to_ipv4_mapped(), None);
1923 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).to_ipv4_mapped(),
1924 /// Some(Ipv4Addr::new(192, 10, 2, 255)));
1925 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1).to_ipv4_mapped(), None);
1926 /// ```
1927 #[inline]
1928 #[must_use = "this returns the result of the operation, \
1929 without modifying the original"]
1930 #[stable(feature = "ipv6_to_ipv4_mapped", since = "1.63.0")]
1931 #[rustc_const_stable(feature = "const_ipv6_to_ipv4_mapped", since = "1.75.0")]
1932 pub const fn to_ipv4_mapped(&self) -> Option<Ipv4Addr> {
1933 match self.octets() {
1934 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff, a, b, c, d] => {
1935 Some(Ipv4Addr::new(a, b, c, d))
1936 }
1937 _ => None,
1938 }
1939 }
1940
1941 /// Converts this address to an [`IPv4` address] if it is either
1942 /// an [IPv4-compatible] address as defined in [IETF RFC 4291 section 2.5.5.1],
1943 /// or an [IPv4-mapped] address as defined in [IETF RFC 4291 section 2.5.5.2],
1944 /// otherwise returns [`None`].
1945 ///
1946 /// Note that this will return an [`IPv4` address] for the IPv6 loopback address `::1`. Use
1947 /// [`Ipv6Addr::to_ipv4_mapped`] to avoid this.
1948 ///
1949 /// `::a.b.c.d` and `::ffff:a.b.c.d` become `a.b.c.d`. `::1` becomes `0.0.0.1`.
1950 /// All addresses *not* starting with either all zeroes or `::ffff` will return `None`.
1951 ///
1952 /// [`IPv4` address]: Ipv4Addr
1953 /// [IPv4-compatible]: Ipv6Addr#ipv4-compatible-ipv6-addresses
1954 /// [IPv4-mapped]: Ipv6Addr#ipv4-mapped-ipv6-addresses
1955 /// [IETF RFC 4291 section 2.5.5.1]: https://tools.ietf.org/html/rfc4291#section-2.5.5.1
1956 /// [IETF RFC 4291 section 2.5.5.2]: https://tools.ietf.org/html/rfc4291#section-2.5.5.2
1957 ///
1958 /// # Examples
1959 ///
1960 /// ```
1961 /// use std::net::{Ipv4Addr, Ipv6Addr};
1962 ///
1963 /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).to_ipv4(), None);
1964 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).to_ipv4(),
1965 /// Some(Ipv4Addr::new(192, 10, 2, 255)));
1966 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1).to_ipv4(),
1967 /// Some(Ipv4Addr::new(0, 0, 0, 1)));
1968 /// ```
1969 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
1970 #[stable(feature = "rust1", since = "1.0.0")]
1971 #[must_use = "this returns the result of the operation, \
1972 without modifying the original"]
1973 #[inline]
1974 pub const fn to_ipv4(&self) -> Option<Ipv4Addr> {
1975 if let [0, 0, 0, 0, 0, 0 | 0xffff, ab, cd] = self.segments() {
1976 let [a, b] = ab.to_be_bytes();
1977 let [c, d] = cd.to_be_bytes();
1978 Some(Ipv4Addr::new(a, b, c, d))
1979 } else {
1980 None
1981 }
1982 }
1983
1984 /// Converts this address to an `IpAddr::V4` if it is an IPv4-mapped address,
1985 /// otherwise returns self wrapped in an `IpAddr::V6`.
1986 ///
1987 /// # Examples
1988 ///
1989 /// ```
1990 /// use std::net::Ipv6Addr;
1991 ///
1992 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x7f00, 0x1).is_loopback(), false);
1993 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x7f00, 0x1).to_canonical().is_loopback(), true);
1994 /// ```
1995 #[inline]
1996 #[must_use = "this returns the result of the operation, \
1997 without modifying the original"]
1998 #[stable(feature = "ip_to_canonical", since = "1.75.0")]
1999 #[rustc_const_stable(feature = "ip_to_canonical", since = "1.75.0")]
2000 pub const fn to_canonical(&self) -> IpAddr {
2001 if let Some(mapped) = self.to_ipv4_mapped() {
2002 return IpAddr::V4(mapped);
2003 }
2004 IpAddr::V6(*self)
2005 }
2006
2007 /// Returns the sixteen eight-bit integers the IPv6 address consists of.
2008 ///
2009 /// ```
2010 /// use std::net::Ipv6Addr;
2011 ///
2012 /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).octets(),
2013 /// [0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
2014 /// ```
2015 #[rustc_const_stable(feature = "const_ip_32", since = "1.32.0")]
2016 #[stable(feature = "ipv6_to_octets", since = "1.12.0")]
2017 #[must_use]
2018 #[inline]
2019 pub const fn octets(&self) -> [u8; 16] {
2020 self.octets
2021 }
2022
2023 /// Creates an `Ipv6Addr` from a sixteen element byte array.
2024 ///
2025 /// # Examples
2026 ///
2027 /// ```
2028 /// #![feature(ip_from)]
2029 /// use std::net::Ipv6Addr;
2030 ///
2031 /// let addr = Ipv6Addr::from_octets([
2032 /// 0x19u8, 0x18u8, 0x17u8, 0x16u8, 0x15u8, 0x14u8, 0x13u8, 0x12u8,
2033 /// 0x11u8, 0x10u8, 0x0fu8, 0x0eu8, 0x0du8, 0x0cu8, 0x0bu8, 0x0au8,
2034 /// ]);
2035 /// assert_eq!(
2036 /// Ipv6Addr::new(
2037 /// 0x1918, 0x1716, 0x1514, 0x1312,
2038 /// 0x1110, 0x0f0e, 0x0d0c, 0x0b0a,
2039 /// ),
2040 /// addr
2041 /// );
2042 /// ```
2043 #[unstable(feature = "ip_from", issue = "131360")]
2044 #[must_use]
2045 #[inline]
2046 pub const fn from_octets(octets: [u8; 16]) -> Ipv6Addr {
2047 Ipv6Addr { octets }
2048 }
2049
2050 /// Returns the sixteen eight-bit integers the IPv6 address consists of
2051 /// as a slice.
2052 ///
2053 /// # Examples
2054 ///
2055 /// ```
2056 /// #![feature(ip_as_octets)]
2057 ///
2058 /// use std::net::Ipv6Addr;
2059 ///
2060 /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).as_octets(),
2061 /// &[255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
2062 /// ```
2063 #[unstable(feature = "ip_as_octets", issue = "137259")]
2064 #[inline]
2065 pub const fn as_octets(&self) -> &[u8; 16] {
2066 &self.octets
2067 }
2068}
2069
2070/// Writes an Ipv6Addr, conforming to the canonical style described by
2071/// [RFC 5952](https://tools.ietf.org/html/rfc5952).
2072#[stable(feature = "rust1", since = "1.0.0")]
2073impl fmt::Display for Ipv6Addr {
2074 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2075 // If there are no alignment requirements, write the IP address directly to `f`.
2076 // Otherwise, write it to a local buffer and then use `f.pad`.
2077 if f.precision().is_none() && f.width().is_none() {
2078 let segments = self.segments();
2079
2080 if let Some(ipv4) = self.to_ipv4_mapped() {
2081 write!(f, "::ffff:{}", ipv4)
2082 } else {
2083 #[derive(Copy, Clone, Default)]
2084 struct Span {
2085 start: usize,
2086 len: usize,
2087 }
2088
2089 // Find the inner 0 span
2090 let zeroes = {
2091 let mut longest = Span::default();
2092 let mut current = Span::default();
2093
2094 for (i, &segment) in segments.iter().enumerate() {
2095 if segment == 0 {
2096 if current.len == 0 {
2097 current.start = i;
2098 }
2099
2100 current.len += 1;
2101
2102 if current.len > longest.len {
2103 longest = current;
2104 }
2105 } else {
2106 current = Span::default();
2107 }
2108 }
2109
2110 longest
2111 };
2112
2113 /// Writes a colon-separated part of the address.
2114 #[inline]
2115 fn fmt_subslice(f: &mut fmt::Formatter<'_>, chunk: &[u16]) -> fmt::Result {
2116 if let Some((first, tail)) = chunk.split_first() {
2117 write!(f, "{:x}", first)?;
2118 for segment in tail {
2119 f.write_char(':')?;
2120 write!(f, "{:x}", segment)?;
2121 }
2122 }
2123 Ok(())
2124 }
2125
2126 if zeroes.len > 1 {
2127 fmt_subslice(f, &segments[..zeroes.start])?;
2128 f.write_str("::")?;
2129 fmt_subslice(f, &segments[zeroes.start + zeroes.len..])
2130 } else {
2131 fmt_subslice(f, &segments)
2132 }
2133 }
2134 } else {
2135 const LONGEST_IPV6_ADDR: &str = "ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff";
2136
2137 let mut buf = DisplayBuffer::<{ LONGEST_IPV6_ADDR.len() }>::new();
2138 // Buffer is long enough for the longest possible IPv6 address, so this should never fail.
2139 write!(buf, "{}", self).unwrap();
2140
2141 f.pad(buf.as_str())
2142 }
2143 }
2144}
2145
2146#[stable(feature = "rust1", since = "1.0.0")]
2147impl fmt::Debug for Ipv6Addr {
2148 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2149 fmt::Display::fmt(self, fmt)
2150 }
2151}
2152
2153#[stable(feature = "ip_cmp", since = "1.16.0")]
2154impl PartialEq<IpAddr> for Ipv6Addr {
2155 #[inline]
2156 fn eq(&self, other: &IpAddr) -> bool {
2157 match other {
2158 IpAddr::V4(_) => false,
2159 IpAddr::V6(v6) => self == v6,
2160 }
2161 }
2162}
2163
2164#[stable(feature = "ip_cmp", since = "1.16.0")]
2165impl PartialEq<Ipv6Addr> for IpAddr {
2166 #[inline]
2167 fn eq(&self, other: &Ipv6Addr) -> bool {
2168 match self {
2169 IpAddr::V4(_) => false,
2170 IpAddr::V6(v6) => v6 == other,
2171 }
2172 }
2173}
2174
2175#[stable(feature = "rust1", since = "1.0.0")]
2176impl PartialOrd for Ipv6Addr {
2177 #[inline]
2178 fn partial_cmp(&self, other: &Ipv6Addr) -> Option<Ordering> {
2179 Some(self.cmp(other))
2180 }
2181}
2182
2183#[stable(feature = "ip_cmp", since = "1.16.0")]
2184impl PartialOrd<Ipv6Addr> for IpAddr {
2185 #[inline]
2186 fn partial_cmp(&self, other: &Ipv6Addr) -> Option<Ordering> {
2187 match self {
2188 IpAddr::V4(_) => Some(Ordering::Less),
2189 IpAddr::V6(v6) => v6.partial_cmp(other),
2190 }
2191 }
2192}
2193
2194#[stable(feature = "ip_cmp", since = "1.16.0")]
2195impl PartialOrd<IpAddr> for Ipv6Addr {
2196 #[inline]
2197 fn partial_cmp(&self, other: &IpAddr) -> Option<Ordering> {
2198 match other {
2199 IpAddr::V4(_) => Some(Ordering::Greater),
2200 IpAddr::V6(v6) => self.partial_cmp(v6),
2201 }
2202 }
2203}
2204
2205#[stable(feature = "rust1", since = "1.0.0")]
2206impl Ord for Ipv6Addr {
2207 #[inline]
2208 fn cmp(&self, other: &Ipv6Addr) -> Ordering {
2209 self.segments().cmp(&other.segments())
2210 }
2211}
2212
2213#[stable(feature = "i128", since = "1.26.0")]
2214impl From<Ipv6Addr> for u128 {
2215 /// Uses [`Ipv6Addr::to_bits`] to convert an IPv6 address to a host byte order `u128`.
2216 #[inline]
2217 fn from(ip: Ipv6Addr) -> u128 {
2218 ip.to_bits()
2219 }
2220}
2221#[stable(feature = "i128", since = "1.26.0")]
2222impl From<u128> for Ipv6Addr {
2223 /// Uses [`Ipv6Addr::from_bits`] to convert a host byte order `u128` to an IPv6 address.
2224 #[inline]
2225 fn from(ip: u128) -> Ipv6Addr {
2226 Ipv6Addr::from_bits(ip)
2227 }
2228}
2229
2230#[stable(feature = "ipv6_from_octets", since = "1.9.0")]
2231impl From<[u8; 16]> for Ipv6Addr {
2232 /// Creates an `Ipv6Addr` from a sixteen element byte array.
2233 ///
2234 /// # Examples
2235 ///
2236 /// ```
2237 /// use std::net::Ipv6Addr;
2238 ///
2239 /// let addr = Ipv6Addr::from([
2240 /// 0x19u8, 0x18u8, 0x17u8, 0x16u8, 0x15u8, 0x14u8, 0x13u8, 0x12u8,
2241 /// 0x11u8, 0x10u8, 0x0fu8, 0x0eu8, 0x0du8, 0x0cu8, 0x0bu8, 0x0au8,
2242 /// ]);
2243 /// assert_eq!(
2244 /// Ipv6Addr::new(
2245 /// 0x1918, 0x1716, 0x1514, 0x1312,
2246 /// 0x1110, 0x0f0e, 0x0d0c, 0x0b0a,
2247 /// ),
2248 /// addr
2249 /// );
2250 /// ```
2251 #[inline]
2252 fn from(octets: [u8; 16]) -> Ipv6Addr {
2253 Ipv6Addr { octets }
2254 }
2255}
2256
2257#[stable(feature = "ipv6_from_segments", since = "1.16.0")]
2258impl From<[u16; 8]> for Ipv6Addr {
2259 /// Creates an `Ipv6Addr` from an eight element 16-bit array.
2260 ///
2261 /// # Examples
2262 ///
2263 /// ```
2264 /// use std::net::Ipv6Addr;
2265 ///
2266 /// let addr = Ipv6Addr::from([
2267 /// 0x20du16, 0x20cu16, 0x20bu16, 0x20au16,
2268 /// 0x209u16, 0x208u16, 0x207u16, 0x206u16,
2269 /// ]);
2270 /// assert_eq!(
2271 /// Ipv6Addr::new(
2272 /// 0x20d, 0x20c, 0x20b, 0x20a,
2273 /// 0x209, 0x208, 0x207, 0x206,
2274 /// ),
2275 /// addr
2276 /// );
2277 /// ```
2278 #[inline]
2279 fn from(segments: [u16; 8]) -> Ipv6Addr {
2280 let [a, b, c, d, e, f, g, h] = segments;
2281 Ipv6Addr::new(a, b, c, d, e, f, g, h)
2282 }
2283}
2284
2285#[stable(feature = "ip_from_slice", since = "1.17.0")]
2286impl From<[u8; 16]> for IpAddr {
2287 /// Creates an `IpAddr::V6` from a sixteen element byte array.
2288 ///
2289 /// # Examples
2290 ///
2291 /// ```
2292 /// use std::net::{IpAddr, Ipv6Addr};
2293 ///
2294 /// let addr = IpAddr::from([
2295 /// 0x19u8, 0x18u8, 0x17u8, 0x16u8, 0x15u8, 0x14u8, 0x13u8, 0x12u8,
2296 /// 0x11u8, 0x10u8, 0x0fu8, 0x0eu8, 0x0du8, 0x0cu8, 0x0bu8, 0x0au8,
2297 /// ]);
2298 /// assert_eq!(
2299 /// IpAddr::V6(Ipv6Addr::new(
2300 /// 0x1918, 0x1716, 0x1514, 0x1312,
2301 /// 0x1110, 0x0f0e, 0x0d0c, 0x0b0a,
2302 /// )),
2303 /// addr
2304 /// );
2305 /// ```
2306 #[inline]
2307 fn from(octets: [u8; 16]) -> IpAddr {
2308 IpAddr::V6(Ipv6Addr::from(octets))
2309 }
2310}
2311
2312#[stable(feature = "ip_from_slice", since = "1.17.0")]
2313impl From<[u16; 8]> for IpAddr {
2314 /// Creates an `IpAddr::V6` from an eight element 16-bit array.
2315 ///
2316 /// # Examples
2317 ///
2318 /// ```
2319 /// use std::net::{IpAddr, Ipv6Addr};
2320 ///
2321 /// let addr = IpAddr::from([
2322 /// 0x20du16, 0x20cu16, 0x20bu16, 0x20au16,
2323 /// 0x209u16, 0x208u16, 0x207u16, 0x206u16,
2324 /// ]);
2325 /// assert_eq!(
2326 /// IpAddr::V6(Ipv6Addr::new(
2327 /// 0x20d, 0x20c, 0x20b, 0x20a,
2328 /// 0x209, 0x208, 0x207, 0x206,
2329 /// )),
2330 /// addr
2331 /// );
2332 /// ```
2333 #[inline]
2334 fn from(segments: [u16; 8]) -> IpAddr {
2335 IpAddr::V6(Ipv6Addr::from(segments))
2336 }
2337}
2338
2339#[stable(feature = "ip_bitops", since = "1.75.0")]
2340impl Not for Ipv4Addr {
2341 type Output = Ipv4Addr;
2342
2343 #[inline]
2344 fn not(mut self) -> Ipv4Addr {
2345 for octet in &mut self.octets {
2346 *octet = !*octet;
2347 }
2348 self
2349 }
2350}
2351
2352#[stable(feature = "ip_bitops", since = "1.75.0")]
2353impl Not for &'_ Ipv4Addr {
2354 type Output = Ipv4Addr;
2355
2356 #[inline]
2357 fn not(self) -> Ipv4Addr {
2358 !*self
2359 }
2360}
2361
2362#[stable(feature = "ip_bitops", since = "1.75.0")]
2363impl Not for Ipv6Addr {
2364 type Output = Ipv6Addr;
2365
2366 #[inline]
2367 fn not(mut self) -> Ipv6Addr {
2368 for octet in &mut self.octets {
2369 *octet = !*octet;
2370 }
2371 self
2372 }
2373}
2374
2375#[stable(feature = "ip_bitops", since = "1.75.0")]
2376impl Not for &'_ Ipv6Addr {
2377 type Output = Ipv6Addr;
2378
2379 #[inline]
2380 fn not(self) -> Ipv6Addr {
2381 !*self
2382 }
2383}
2384
2385macro_rules! bitop_impls {
2386 ($(
2387 $(#[$attr:meta])*
2388 impl ($BitOp:ident, $BitOpAssign:ident) for $ty:ty = ($bitop:ident, $bitop_assign:ident);
2389 )*) => {
2390 $(
2391 $(#[$attr])*
2392 impl $BitOpAssign for $ty {
2393 fn $bitop_assign(&mut self, rhs: $ty) {
2394 for (lhs, rhs) in iter::zip(&mut self.octets, rhs.octets) {
2395 lhs.$bitop_assign(rhs);
2396 }
2397 }
2398 }
2399
2400 $(#[$attr])*
2401 impl $BitOpAssign<&'_ $ty> for $ty {
2402 fn $bitop_assign(&mut self, rhs: &'_ $ty) {
2403 self.$bitop_assign(*rhs);
2404 }
2405 }
2406
2407 $(#[$attr])*
2408 impl $BitOp for $ty {
2409 type Output = $ty;
2410
2411 #[inline]
2412 fn $bitop(mut self, rhs: $ty) -> $ty {
2413 self.$bitop_assign(rhs);
2414 self
2415 }
2416 }
2417
2418 $(#[$attr])*
2419 impl $BitOp<&'_ $ty> for $ty {
2420 type Output = $ty;
2421
2422 #[inline]
2423 fn $bitop(mut self, rhs: &'_ $ty) -> $ty {
2424 self.$bitop_assign(*rhs);
2425 self
2426 }
2427 }
2428
2429 $(#[$attr])*
2430 impl $BitOp<$ty> for &'_ $ty {
2431 type Output = $ty;
2432
2433 #[inline]
2434 fn $bitop(self, rhs: $ty) -> $ty {
2435 let mut lhs = *self;
2436 lhs.$bitop_assign(rhs);
2437 lhs
2438 }
2439 }
2440
2441 $(#[$attr])*
2442 impl $BitOp<&'_ $ty> for &'_ $ty {
2443 type Output = $ty;
2444
2445 #[inline]
2446 fn $bitop(self, rhs: &'_ $ty) -> $ty {
2447 let mut lhs = *self;
2448 lhs.$bitop_assign(*rhs);
2449 lhs
2450 }
2451 }
2452 )*
2453 };
2454}
2455
2456bitop_impls! {
2457 #[stable(feature = "ip_bitops", since = "1.75.0")]
2458 impl (BitAnd, BitAndAssign) for Ipv4Addr = (bitand, bitand_assign);
2459 #[stable(feature = "ip_bitops", since = "1.75.0")]
2460 impl (BitOr, BitOrAssign) for Ipv4Addr = (bitor, bitor_assign);
2461
2462 #[stable(feature = "ip_bitops", since = "1.75.0")]
2463 impl (BitAnd, BitAndAssign) for Ipv6Addr = (bitand, bitand_assign);
2464 #[stable(feature = "ip_bitops", since = "1.75.0")]
2465 impl (BitOr, BitOrAssign) for Ipv6Addr = (bitor, bitor_assign);
2466}