1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
use crate::ops::{Mul, Add};
use crate::num::Wrapping;

/// Trait to represent types that can be created by summing up an iterator.
///
/// This trait is used to implement the [`sum`] method on iterators. Types which
/// implement the trait can be generated by the [`sum`] method. Like
/// [`FromIterator`] this trait should rarely be called directly and instead
/// interacted with through [`Iterator::sum`].
///
/// [`sum`]: ../../std/iter/trait.Sum.html#tymethod.sum
/// [`FromIterator`]: ../../std/iter/trait.FromIterator.html
/// [`Iterator::sum`]: ../../std/iter/trait.Iterator.html#method.sum
#[stable(feature = "iter_arith_traits", since = "1.12.0")]
pub trait Sum<A = Self>: Sized {
    /// Method which takes an iterator and generates `Self` from the elements by
    /// "summing up" the items.
    #[stable(feature = "iter_arith_traits", since = "1.12.0")]
    fn sum<I: Iterator<Item=A>>(iter: I) -> Self;
}

/// Trait to represent types that can be created by multiplying elements of an
/// iterator.
///
/// This trait is used to implement the [`product`] method on iterators. Types
/// which implement the trait can be generated by the [`product`] method. Like
/// [`FromIterator`] this trait should rarely be called directly and instead
/// interacted with through [`Iterator::product`].
///
/// [`product`]: ../../std/iter/trait.Product.html#tymethod.product
/// [`FromIterator`]: ../../std/iter/trait.FromIterator.html
/// [`Iterator::product`]: ../../std/iter/trait.Iterator.html#method.product
#[stable(feature = "iter_arith_traits", since = "1.12.0")]
pub trait Product<A = Self>: Sized {
    /// Method which takes an iterator and generates `Self` from the elements by
    /// multiplying the items.
    #[stable(feature = "iter_arith_traits", since = "1.12.0")]
    fn product<I: Iterator<Item=A>>(iter: I) -> Self;
}

// N.B., explicitly use Add and Mul here to inherit overflow checks
macro_rules! integer_sum_product {
    (@impls $zero:expr, $one:expr, #[$attr:meta], $($a:ty)*) => ($(
        #[$attr]
        impl Sum for $a {
            fn sum<I: Iterator<Item=$a>>(iter: I) -> $a {
                iter.fold($zero, Add::add)
            }
        }

        #[$attr]
        impl Product for $a {
            fn product<I: Iterator<Item=$a>>(iter: I) -> $a {
                iter.fold($one, Mul::mul)
            }
        }

        #[$attr]
        impl<'a> Sum<&'a $a> for $a {
            fn sum<I: Iterator<Item=&'a $a>>(iter: I) -> $a {
                iter.fold($zero, Add::add)
            }
        }

        #[$attr]
        impl<'a> Product<&'a $a> for $a {
            fn product<I: Iterator<Item=&'a $a>>(iter: I) -> $a {
                iter.fold($one, Mul::mul)
            }
        }
    )*);
    ($($a:ty)*) => (
        integer_sum_product!(@impls 0, 1,
                #[stable(feature = "iter_arith_traits", since = "1.12.0")],
                $($a)*);
        integer_sum_product!(@impls Wrapping(0), Wrapping(1),
                #[stable(feature = "wrapping_iter_arith", since = "1.14.0")],
                $(Wrapping<$a>)*);
    );
}

macro_rules! float_sum_product {
    ($($a:ident)*) => ($(
        #[stable(feature = "iter_arith_traits", since = "1.12.0")]
        impl Sum for $a {
            fn sum<I: Iterator<Item=$a>>(iter: I) -> $a {
                iter.fold(0.0, |a, b| a + b)
            }
        }

        #[stable(feature = "iter_arith_traits", since = "1.12.0")]
        impl Product for $a {
            fn product<I: Iterator<Item=$a>>(iter: I) -> $a {
                iter.fold(1.0, |a, b| a * b)
            }
        }

        #[stable(feature = "iter_arith_traits", since = "1.12.0")]
        impl<'a> Sum<&'a $a> for $a {
            fn sum<I: Iterator<Item=&'a $a>>(iter: I) -> $a {
                iter.fold(0.0, |a, b| a + *b)
            }
        }

        #[stable(feature = "iter_arith_traits", since = "1.12.0")]
        impl<'a> Product<&'a $a> for $a {
            fn product<I: Iterator<Item=&'a $a>>(iter: I) -> $a {
                iter.fold(1.0, |a, b| a * *b)
            }
        }
    )*)
}

integer_sum_product! { i8 i16 i32 i64 i128 isize u8 u16 u32 u64 u128 usize }
float_sum_product! { f32 f64 }

/// An iterator adapter that produces output as long as the underlying
/// iterator produces `Result::Ok` values.
///
/// If an error is encountered, the iterator stops and the error is
/// stored. The error may be recovered later via `reconstruct`.
struct ResultShunt<I, E> {
    iter: I,
    error: Option<E>,
}

impl<I, T, E> ResultShunt<I, E>
    where I: Iterator<Item = Result<T, E>>
{
    /// Process the given iterator as if it yielded a `T` instead of a
    /// `Result<T, _>`. Any errors will stop the inner iterator and
    /// the overall result will be an error.
    pub fn process<F, U>(iter: I, mut f: F) -> Result<U, E>
        where F: FnMut(&mut Self) -> U
    {
        let mut shunt = ResultShunt::new(iter);
        let value = f(shunt.by_ref());
        shunt.reconstruct(value)
    }

    fn new(iter: I) -> Self {
        ResultShunt {
            iter,
            error: None,
        }
    }

    /// Consume the adapter and rebuild a `Result` value. This should
    /// *always* be called, otherwise any potential error would be
    /// lost.
    fn reconstruct<U>(self, val: U) -> Result<U, E> {
        match self.error {
            None => Ok(val),
            Some(e) => Err(e),
        }
    }
}

impl<I, T, E> Iterator for ResultShunt<I, E>
    where I: Iterator<Item = Result<T, E>>
{
    type Item = T;

    fn next(&mut self) -> Option<Self::Item> {
        match self.iter.next() {
            Some(Ok(v)) => Some(v),
            Some(Err(e)) => {
                self.error = Some(e);
                None
            }
            None => None,
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        if self.error.is_some() {
            (0, Some(0))
        } else {
            let (_, upper) = self.iter.size_hint();
            (0, upper)
        }
    }
}

#[stable(feature = "iter_arith_traits_result", since="1.16.0")]
impl<T, U, E> Sum<Result<U, E>> for Result<T, E>
    where T: Sum<U>,
{
    /// Takes each element in the `Iterator`: if it is an `Err`, no further
    /// elements are taken, and the `Err` is returned. Should no `Err` occur,
    /// the sum of all elements is returned.
    ///
    /// # Examples
    ///
    /// This sums up every integer in a vector, rejecting the sum if a negative
    /// element is encountered:
    ///
    /// ```
    /// let v = vec![1, 2];
    /// let res: Result<i32, &'static str> = v.iter().map(|&x: &i32|
    ///     if x < 0 { Err("Negative element found") }
    ///     else { Ok(x) }
    /// ).sum();
    /// assert_eq!(res, Ok(3));
    /// ```
    fn sum<I>(iter: I) -> Result<T, E>
        where I: Iterator<Item = Result<U, E>>,
    {
        ResultShunt::process(iter, |i| i.sum())
    }
}

#[stable(feature = "iter_arith_traits_result", since="1.16.0")]
impl<T, U, E> Product<Result<U, E>> for Result<T, E>
    where T: Product<U>,
{
    /// Takes each element in the `Iterator`: if it is an `Err`, no further
    /// elements are taken, and the `Err` is returned. Should no `Err` occur,
    /// the product of all elements is returned.
    fn product<I>(iter: I) -> Result<T, E>
        where I: Iterator<Item = Result<U, E>>,
    {
        ResultShunt::process(iter, |i| i.product())
    }
}

/// An iterator adapter that produces output as long as the underlying
/// iterator produces `Option::Some` values.
struct OptionShunt<I> {
    iter: I,
    exited_early: bool,
}

impl<I, T> OptionShunt<I>
where
    I: Iterator<Item = Option<T>>,
{
    /// Process the given iterator as if it yielded a `T` instead of a
    /// `Option<T>`. Any `None` value will stop the inner iterator and
    /// the overall result will be a `None`.
    pub fn process<F, U>(iter: I, mut f: F) -> Option<U>
    where
        F: FnMut(&mut Self) -> U,
    {
        let mut shunt = OptionShunt::new(iter);
        let value = f(shunt.by_ref());
        shunt.reconstruct(value)
    }

    fn new(iter: I) -> Self {
        OptionShunt {
            iter,
            exited_early: false,
        }
    }

    /// Consume the adapter and rebuild a `Option` value.
    fn reconstruct<U>(self, val: U) -> Option<U> {
        if self.exited_early {
            None
        } else {
            Some(val)
        }
    }
}

impl<I, T> Iterator for OptionShunt<I>
where
    I: Iterator<Item = Option<T>>,
{
    type Item = T;

    fn next(&mut self) -> Option<Self::Item> {
        match self.iter.next() {
            Some(Some(v)) => Some(v),
            Some(None) => {
                self.exited_early = true;
                None
            }
            None => None,
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        if self.exited_early {
            (0, Some(0))
        } else {
            let (_, upper) = self.iter.size_hint();
            (0, upper)
        }
    }
}

#[stable(feature = "iter_arith_traits_option", since = "1.37.0")]
impl<T, U> Sum<Option<U>> for Option<T>
where
    T: Sum<U>,
{
    /// Takes each element in the `Iterator`: if it is a `None`, no further
    /// elements are taken, and the `None` is returned. Should no `None` occur,
    /// the sum of all elements is returned.
    ///
    /// # Examples
    ///
    /// This sums up the position of the character 'a' in a vector of strings,
    /// if a word did not have the character 'a' the operation returns `None`:
    ///
    /// ```
    /// let words = vec!["have", "a", "great", "day"];
    /// let total: Option<usize> = words.iter().map(|w| w.find('a')).sum();
    /// assert_eq!(total, Some(5));
    /// ```
    fn sum<I>(iter: I) -> Option<T>
    where
        I: Iterator<Item = Option<U>>,
    {
        OptionShunt::process(iter, |i| i.sum())
    }
}

#[stable(feature = "iter_arith_traits_option", since = "1.37.0")]
impl<T, U> Product<Option<U>> for Option<T>
where
    T: Product<U>,
{
    /// Takes each element in the `Iterator`: if it is a `None`, no further
    /// elements are taken, and the `None` is returned. Should no `None` occur,
    /// the product of all elements is returned.
    fn product<I>(iter: I) -> Option<T>
    where
        I: Iterator<Item = Option<U>>,
    {
        OptionShunt::process(iter, |i| i.product())
    }
}