core/option.rs
1//! Optional values.
2//!
3//! Type [`Option`] represents an optional value: every [`Option`]
4//! is either [`Some`] and contains a value, or [`None`], and
5//! does not. [`Option`] types are very common in Rust code, as
6//! they have a number of uses:
7//!
8//! * Initial values
9//! * Return values for functions that are not defined
10//! over their entire input range (partial functions)
11//! * Return value for otherwise reporting simple errors, where [`None`] is
12//! returned on error
13//! * Optional struct fields
14//! * Struct fields that can be loaned or "taken"
15//! * Optional function arguments
16//! * Nullable pointers
17//! * Swapping things out of difficult situations
18//!
19//! [`Option`]s are commonly paired with pattern matching to query the presence
20//! of a value and take action, always accounting for the [`None`] case.
21//!
22//! ```
23//! fn divide(numerator: f64, denominator: f64) -> Option<f64> {
24//! if denominator == 0.0 {
25//! None
26//! } else {
27//! Some(numerator / denominator)
28//! }
29//! }
30//!
31//! // The return value of the function is an option
32//! let result = divide(2.0, 3.0);
33//!
34//! // Pattern match to retrieve the value
35//! match result {
36//! // The division was valid
37//! Some(x) => println!("Result: {x}"),
38//! // The division was invalid
39//! None => println!("Cannot divide by 0"),
40//! }
41//! ```
42//!
43//
44// FIXME: Show how `Option` is used in practice, with lots of methods
45//
46//! # Options and pointers ("nullable" pointers)
47//!
48//! Rust's pointer types must always point to a valid location; there are
49//! no "null" references. Instead, Rust has *optional* pointers, like
50//! the optional owned box, <code>[Option]<[Box\<T>]></code>.
51//!
52//! [Box\<T>]: ../../std/boxed/struct.Box.html
53//!
54//! The following example uses [`Option`] to create an optional box of
55//! [`i32`]. Notice that in order to use the inner [`i32`] value, the
56//! `check_optional` function first needs to use pattern matching to
57//! determine whether the box has a value (i.e., it is [`Some(...)`][`Some`]) or
58//! not ([`None`]).
59//!
60//! ```
61//! let optional = None;
62//! check_optional(optional);
63//!
64//! let optional = Some(Box::new(9000));
65//! check_optional(optional);
66//!
67//! fn check_optional(optional: Option<Box<i32>>) {
68//! match optional {
69//! Some(p) => println!("has value {p}"),
70//! None => println!("has no value"),
71//! }
72//! }
73//! ```
74//!
75//! # The question mark operator, `?`
76//!
77//! Similar to the [`Result`] type, when writing code that calls many functions that return the
78//! [`Option`] type, handling `Some`/`None` can be tedious. The question mark
79//! operator, [`?`], hides some of the boilerplate of propagating values
80//! up the call stack.
81//!
82//! It replaces this:
83//!
84//! ```
85//! # #![allow(dead_code)]
86//! fn add_last_numbers(stack: &mut Vec<i32>) -> Option<i32> {
87//! let a = stack.pop();
88//! let b = stack.pop();
89//!
90//! match (a, b) {
91//! (Some(x), Some(y)) => Some(x + y),
92//! _ => None,
93//! }
94//! }
95//!
96//! ```
97//!
98//! With this:
99//!
100//! ```
101//! # #![allow(dead_code)]
102//! fn add_last_numbers(stack: &mut Vec<i32>) -> Option<i32> {
103//! Some(stack.pop()? + stack.pop()?)
104//! }
105//! ```
106//!
107//! *It's much nicer!*
108//!
109//! Ending the expression with [`?`] will result in the [`Some`]'s unwrapped value, unless the
110//! result is [`None`], in which case [`None`] is returned early from the enclosing function.
111//!
112//! [`?`] can be used in functions that return [`Option`] because of the
113//! early return of [`None`] that it provides.
114//!
115//! [`?`]: crate::ops::Try
116//! [`Some`]: Some
117//! [`None`]: None
118//!
119//! # Representation
120//!
121//! Rust guarantees to optimize the following types `T` such that
122//! [`Option<T>`] has the same size, alignment, and [function call ABI] as `T`. In some
123//! of these cases, Rust further guarantees that
124//! `transmute::<_, Option<T>>([0u8; size_of::<T>()])` is sound and
125//! produces `Option::<T>::None`. These cases are identified by the
126//! second column:
127//!
128//! | `T` | `transmute::<_, Option<T>>([0u8; size_of::<T>()])` sound? |
129//! |---------------------------------------------------------------------|----------------------------------------------------------------------|
130//! | [`Box<U>`] (specifically, only `Box<U, Global>`) | when `U: Sized` |
131//! | `&U` | when `U: Sized` |
132//! | `&mut U` | when `U: Sized` |
133//! | `fn`, `extern "C" fn`[^extern_fn] | always |
134//! | [`num::NonZero*`] | always |
135//! | [`ptr::NonNull<U>`] | when `U: Sized` |
136//! | `#[repr(transparent)]` struct around one of the types in this list. | when it holds for the inner type |
137//!
138//! [^extern_fn]: this remains true for any argument/return types and any other ABI: `extern "abi" fn` (_e.g._, `extern "system" fn`)
139//!
140//! Under some conditions the above types `T` are also null pointer optimized when wrapped in a [`Result`][result_repr].
141//!
142//! [`Box<U>`]: ../../std/boxed/struct.Box.html
143//! [`num::NonZero*`]: crate::num
144//! [`ptr::NonNull<U>`]: crate::ptr::NonNull
145//! [function call ABI]: ../primitive.fn.html#abi-compatibility
146//! [result_repr]: crate::result#representation
147//!
148//! This is called the "null pointer optimization" or NPO.
149//!
150//! It is further guaranteed that, for the cases above, one can
151//! [`mem::transmute`] from all valid values of `T` to `Option<T>` and
152//! from `Some::<T>(_)` to `T` (but transmuting `None::<T>` to `T`
153//! is undefined behavior).
154//!
155//! # Method overview
156//!
157//! In addition to working with pattern matching, [`Option`] provides a wide
158//! variety of different methods.
159//!
160//! ## Querying the variant
161//!
162//! The [`is_some`] and [`is_none`] methods return [`true`] if the [`Option`]
163//! is [`Some`] or [`None`], respectively.
164//!
165//! [`is_none`]: Option::is_none
166//! [`is_some`]: Option::is_some
167//!
168//! ## Adapters for working with references
169//!
170//! * [`as_ref`] converts from <code>[&][][Option]\<T></code> to <code>[Option]<[&]T></code>
171//! * [`as_mut`] converts from <code>[&mut] [Option]\<T></code> to <code>[Option]<[&mut] T></code>
172//! * [`as_deref`] converts from <code>[&][][Option]\<T></code> to
173//! <code>[Option]<[&]T::[Target]></code>
174//! * [`as_deref_mut`] converts from <code>[&mut] [Option]\<T></code> to
175//! <code>[Option]<[&mut] T::[Target]></code>
176//! * [`as_pin_ref`] converts from <code>[Pin]<[&][][Option]\<T>></code> to
177//! <code>[Option]<[Pin]<[&]T>></code>
178//! * [`as_pin_mut`] converts from <code>[Pin]<[&mut] [Option]\<T>></code> to
179//! <code>[Option]<[Pin]<[&mut] T>></code>
180//!
181//! [&]: reference "shared reference"
182//! [&mut]: reference "mutable reference"
183//! [Target]: Deref::Target "ops::Deref::Target"
184//! [`as_deref`]: Option::as_deref
185//! [`as_deref_mut`]: Option::as_deref_mut
186//! [`as_mut`]: Option::as_mut
187//! [`as_pin_mut`]: Option::as_pin_mut
188//! [`as_pin_ref`]: Option::as_pin_ref
189//! [`as_ref`]: Option::as_ref
190//!
191//! ## Extracting the contained value
192//!
193//! These methods extract the contained value in an [`Option<T>`] when it
194//! is the [`Some`] variant. If the [`Option`] is [`None`]:
195//!
196//! * [`expect`] panics with a provided custom message
197//! * [`unwrap`] panics with a generic message
198//! * [`unwrap_or`] returns the provided default value
199//! * [`unwrap_or_default`] returns the default value of the type `T`
200//! (which must implement the [`Default`] trait)
201//! * [`unwrap_or_else`] returns the result of evaluating the provided
202//! function
203//!
204//! [`expect`]: Option::expect
205//! [`unwrap`]: Option::unwrap
206//! [`unwrap_or`]: Option::unwrap_or
207//! [`unwrap_or_default`]: Option::unwrap_or_default
208//! [`unwrap_or_else`]: Option::unwrap_or_else
209//!
210//! ## Transforming contained values
211//!
212//! These methods transform [`Option`] to [`Result`]:
213//!
214//! * [`ok_or`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to
215//! [`Err(err)`] using the provided default `err` value
216//! * [`ok_or_else`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to
217//! a value of [`Err`] using the provided function
218//! * [`transpose`] transposes an [`Option`] of a [`Result`] into a
219//! [`Result`] of an [`Option`]
220//!
221//! [`Err(err)`]: Err
222//! [`Ok(v)`]: Ok
223//! [`Some(v)`]: Some
224//! [`ok_or`]: Option::ok_or
225//! [`ok_or_else`]: Option::ok_or_else
226//! [`transpose`]: Option::transpose
227//!
228//! These methods transform the [`Some`] variant:
229//!
230//! * [`filter`] calls the provided predicate function on the contained
231//! value `t` if the [`Option`] is [`Some(t)`], and returns [`Some(t)`]
232//! if the function returns `true`; otherwise, returns [`None`]
233//! * [`flatten`] removes one level of nesting from an
234//! [`Option<Option<T>>`]
235//! * [`map`] transforms [`Option<T>`] to [`Option<U>`] by applying the
236//! provided function to the contained value of [`Some`] and leaving
237//! [`None`] values unchanged
238//!
239//! [`Some(t)`]: Some
240//! [`filter`]: Option::filter
241//! [`flatten`]: Option::flatten
242//! [`map`]: Option::map
243//!
244//! These methods transform [`Option<T>`] to a value of a possibly
245//! different type `U`:
246//!
247//! * [`map_or`] applies the provided function to the contained value of
248//! [`Some`], or returns the provided default value if the [`Option`] is
249//! [`None`]
250//! * [`map_or_else`] applies the provided function to the contained value
251//! of [`Some`], or returns the result of evaluating the provided
252//! fallback function if the [`Option`] is [`None`]
253//!
254//! [`map_or`]: Option::map_or
255//! [`map_or_else`]: Option::map_or_else
256//!
257//! These methods combine the [`Some`] variants of two [`Option`] values:
258//!
259//! * [`zip`] returns [`Some((s, o))`] if `self` is [`Some(s)`] and the
260//! provided [`Option`] value is [`Some(o)`]; otherwise, returns [`None`]
261//! * [`zip_with`] calls the provided function `f` and returns
262//! [`Some(f(s, o))`] if `self` is [`Some(s)`] and the provided
263//! [`Option`] value is [`Some(o)`]; otherwise, returns [`None`]
264//!
265//! [`Some(f(s, o))`]: Some
266//! [`Some(o)`]: Some
267//! [`Some(s)`]: Some
268//! [`Some((s, o))`]: Some
269//! [`zip`]: Option::zip
270//! [`zip_with`]: Option::zip_with
271//!
272//! ## Boolean operators
273//!
274//! These methods treat the [`Option`] as a boolean value, where [`Some`]
275//! acts like [`true`] and [`None`] acts like [`false`]. There are two
276//! categories of these methods: ones that take an [`Option`] as input, and
277//! ones that take a function as input (to be lazily evaluated).
278//!
279//! The [`and`], [`or`], and [`xor`] methods take another [`Option`] as
280//! input, and produce an [`Option`] as output. Only the [`and`] method can
281//! produce an [`Option<U>`] value having a different inner type `U` than
282//! [`Option<T>`].
283//!
284//! | method | self | input | output |
285//! |---------|-----------|-----------|-----------|
286//! | [`and`] | `None` | (ignored) | `None` |
287//! | [`and`] | `Some(x)` | `None` | `None` |
288//! | [`and`] | `Some(x)` | `Some(y)` | `Some(y)` |
289//! | [`or`] | `None` | `None` | `None` |
290//! | [`or`] | `None` | `Some(y)` | `Some(y)` |
291//! | [`or`] | `Some(x)` | (ignored) | `Some(x)` |
292//! | [`xor`] | `None` | `None` | `None` |
293//! | [`xor`] | `None` | `Some(y)` | `Some(y)` |
294//! | [`xor`] | `Some(x)` | `None` | `Some(x)` |
295//! | [`xor`] | `Some(x)` | `Some(y)` | `None` |
296//!
297//! [`and`]: Option::and
298//! [`or`]: Option::or
299//! [`xor`]: Option::xor
300//!
301//! The [`and_then`] and [`or_else`] methods take a function as input, and
302//! only evaluate the function when they need to produce a new value. Only
303//! the [`and_then`] method can produce an [`Option<U>`] value having a
304//! different inner type `U` than [`Option<T>`].
305//!
306//! | method | self | function input | function result | output |
307//! |--------------|-----------|----------------|-----------------|-----------|
308//! | [`and_then`] | `None` | (not provided) | (not evaluated) | `None` |
309//! | [`and_then`] | `Some(x)` | `x` | `None` | `None` |
310//! | [`and_then`] | `Some(x)` | `x` | `Some(y)` | `Some(y)` |
311//! | [`or_else`] | `None` | (not provided) | `None` | `None` |
312//! | [`or_else`] | `None` | (not provided) | `Some(y)` | `Some(y)` |
313//! | [`or_else`] | `Some(x)` | (not provided) | (not evaluated) | `Some(x)` |
314//!
315//! [`and_then`]: Option::and_then
316//! [`or_else`]: Option::or_else
317//!
318//! This is an example of using methods like [`and_then`] and [`or`] in a
319//! pipeline of method calls. Early stages of the pipeline pass failure
320//! values ([`None`]) through unchanged, and continue processing on
321//! success values ([`Some`]). Toward the end, [`or`] substitutes an error
322//! message if it receives [`None`].
323//!
324//! ```
325//! # use std::collections::BTreeMap;
326//! let mut bt = BTreeMap::new();
327//! bt.insert(20u8, "foo");
328//! bt.insert(42u8, "bar");
329//! let res = [0u8, 1, 11, 200, 22]
330//! .into_iter()
331//! .map(|x| {
332//! // `checked_sub()` returns `None` on error
333//! x.checked_sub(1)
334//! // same with `checked_mul()`
335//! .and_then(|x| x.checked_mul(2))
336//! // `BTreeMap::get` returns `None` on error
337//! .and_then(|x| bt.get(&x))
338//! // Substitute an error message if we have `None` so far
339//! .or(Some(&"error!"))
340//! .copied()
341//! // Won't panic because we unconditionally used `Some` above
342//! .unwrap()
343//! })
344//! .collect::<Vec<_>>();
345//! assert_eq!(res, ["error!", "error!", "foo", "error!", "bar"]);
346//! ```
347//!
348//! ## Comparison operators
349//!
350//! If `T` implements [`PartialOrd`] then [`Option<T>`] will derive its
351//! [`PartialOrd`] implementation. With this order, [`None`] compares as
352//! less than any [`Some`], and two [`Some`] compare the same way as their
353//! contained values would in `T`. If `T` also implements
354//! [`Ord`], then so does [`Option<T>`].
355//!
356//! ```
357//! assert!(None < Some(0));
358//! assert!(Some(0) < Some(1));
359//! ```
360//!
361//! ## Iterating over `Option`
362//!
363//! An [`Option`] can be iterated over. This can be helpful if you need an
364//! iterator that is conditionally empty. The iterator will either produce
365//! a single value (when the [`Option`] is [`Some`]), or produce no values
366//! (when the [`Option`] is [`None`]). For example, [`into_iter`] acts like
367//! [`once(v)`] if the [`Option`] is [`Some(v)`], and like [`empty()`] if
368//! the [`Option`] is [`None`].
369//!
370//! [`Some(v)`]: Some
371//! [`empty()`]: crate::iter::empty
372//! [`once(v)`]: crate::iter::once
373//!
374//! Iterators over [`Option<T>`] come in three types:
375//!
376//! * [`into_iter`] consumes the [`Option`] and produces the contained
377//! value
378//! * [`iter`] produces an immutable reference of type `&T` to the
379//! contained value
380//! * [`iter_mut`] produces a mutable reference of type `&mut T` to the
381//! contained value
382//!
383//! [`into_iter`]: Option::into_iter
384//! [`iter`]: Option::iter
385//! [`iter_mut`]: Option::iter_mut
386//!
387//! An iterator over [`Option`] can be useful when chaining iterators, for
388//! example, to conditionally insert items. (It's not always necessary to
389//! explicitly call an iterator constructor: many [`Iterator`] methods that
390//! accept other iterators will also accept iterable types that implement
391//! [`IntoIterator`], which includes [`Option`].)
392//!
393//! ```
394//! let yep = Some(42);
395//! let nope = None;
396//! // chain() already calls into_iter(), so we don't have to do so
397//! let nums: Vec<i32> = (0..4).chain(yep).chain(4..8).collect();
398//! assert_eq!(nums, [0, 1, 2, 3, 42, 4, 5, 6, 7]);
399//! let nums: Vec<i32> = (0..4).chain(nope).chain(4..8).collect();
400//! assert_eq!(nums, [0, 1, 2, 3, 4, 5, 6, 7]);
401//! ```
402//!
403//! One reason to chain iterators in this way is that a function returning
404//! `impl Iterator` must have all possible return values be of the same
405//! concrete type. Chaining an iterated [`Option`] can help with that.
406//!
407//! ```
408//! fn make_iter(do_insert: bool) -> impl Iterator<Item = i32> {
409//! // Explicit returns to illustrate return types matching
410//! match do_insert {
411//! true => return (0..4).chain(Some(42)).chain(4..8),
412//! false => return (0..4).chain(None).chain(4..8),
413//! }
414//! }
415//! println!("{:?}", make_iter(true).collect::<Vec<_>>());
416//! println!("{:?}", make_iter(false).collect::<Vec<_>>());
417//! ```
418//!
419//! If we try to do the same thing, but using [`once()`] and [`empty()`],
420//! we can't return `impl Iterator` anymore because the concrete types of
421//! the return values differ.
422//!
423//! [`empty()`]: crate::iter::empty
424//! [`once()`]: crate::iter::once
425//!
426//! ```compile_fail,E0308
427//! # use std::iter::{empty, once};
428//! // This won't compile because all possible returns from the function
429//! // must have the same concrete type.
430//! fn make_iter(do_insert: bool) -> impl Iterator<Item = i32> {
431//! // Explicit returns to illustrate return types not matching
432//! match do_insert {
433//! true => return (0..4).chain(once(42)).chain(4..8),
434//! false => return (0..4).chain(empty()).chain(4..8),
435//! }
436//! }
437//! ```
438//!
439//! ## Collecting into `Option`
440//!
441//! [`Option`] implements the [`FromIterator`][impl-FromIterator] trait,
442//! which allows an iterator over [`Option`] values to be collected into an
443//! [`Option`] of a collection of each contained value of the original
444//! [`Option`] values, or [`None`] if any of the elements was [`None`].
445//!
446//! [impl-FromIterator]: Option#impl-FromIterator%3COption%3CA%3E%3E-for-Option%3CV%3E
447//!
448//! ```
449//! let v = [Some(2), Some(4), None, Some(8)];
450//! let res: Option<Vec<_>> = v.into_iter().collect();
451//! assert_eq!(res, None);
452//! let v = [Some(2), Some(4), Some(8)];
453//! let res: Option<Vec<_>> = v.into_iter().collect();
454//! assert_eq!(res, Some(vec![2, 4, 8]));
455//! ```
456//!
457//! [`Option`] also implements the [`Product`][impl-Product] and
458//! [`Sum`][impl-Sum] traits, allowing an iterator over [`Option`] values
459//! to provide the [`product`][Iterator::product] and
460//! [`sum`][Iterator::sum] methods.
461//!
462//! [impl-Product]: Option#impl-Product%3COption%3CU%3E%3E-for-Option%3CT%3E
463//! [impl-Sum]: Option#impl-Sum%3COption%3CU%3E%3E-for-Option%3CT%3E
464//!
465//! ```
466//! let v = [None, Some(1), Some(2), Some(3)];
467//! let res: Option<i32> = v.into_iter().sum();
468//! assert_eq!(res, None);
469//! let v = [Some(1), Some(2), Some(21)];
470//! let res: Option<i32> = v.into_iter().product();
471//! assert_eq!(res, Some(42));
472//! ```
473//!
474//! ## Modifying an [`Option`] in-place
475//!
476//! These methods return a mutable reference to the contained value of an
477//! [`Option<T>`]:
478//!
479//! * [`insert`] inserts a value, dropping any old contents
480//! * [`get_or_insert`] gets the current value, inserting a provided
481//! default value if it is [`None`]
482//! * [`get_or_insert_default`] gets the current value, inserting the
483//! default value of type `T` (which must implement [`Default`]) if it is
484//! [`None`]
485//! * [`get_or_insert_with`] gets the current value, inserting a default
486//! computed by the provided function if it is [`None`]
487//!
488//! [`get_or_insert`]: Option::get_or_insert
489//! [`get_or_insert_default`]: Option::get_or_insert_default
490//! [`get_or_insert_with`]: Option::get_or_insert_with
491//! [`insert`]: Option::insert
492//!
493//! These methods transfer ownership of the contained value of an
494//! [`Option`]:
495//!
496//! * [`take`] takes ownership of the contained value of an [`Option`], if
497//! any, replacing the [`Option`] with [`None`]
498//! * [`replace`] takes ownership of the contained value of an [`Option`],
499//! if any, replacing the [`Option`] with a [`Some`] containing the
500//! provided value
501//!
502//! [`replace`]: Option::replace
503//! [`take`]: Option::take
504//!
505//! # Examples
506//!
507//! Basic pattern matching on [`Option`]:
508//!
509//! ```
510//! let msg = Some("howdy");
511//!
512//! // Take a reference to the contained string
513//! if let Some(m) = &msg {
514//! println!("{}", *m);
515//! }
516//!
517//! // Remove the contained string, destroying the Option
518//! let unwrapped_msg = msg.unwrap_or("default message");
519//! ```
520//!
521//! Initialize a result to [`None`] before a loop:
522//!
523//! ```
524//! enum Kingdom { Plant(u32, &'static str), Animal(u32, &'static str) }
525//!
526//! // A list of data to search through.
527//! let all_the_big_things = [
528//! Kingdom::Plant(250, "redwood"),
529//! Kingdom::Plant(230, "noble fir"),
530//! Kingdom::Plant(229, "sugar pine"),
531//! Kingdom::Animal(25, "blue whale"),
532//! Kingdom::Animal(19, "fin whale"),
533//! Kingdom::Animal(15, "north pacific right whale"),
534//! ];
535//!
536//! // We're going to search for the name of the biggest animal,
537//! // but to start with we've just got `None`.
538//! let mut name_of_biggest_animal = None;
539//! let mut size_of_biggest_animal = 0;
540//! for big_thing in &all_the_big_things {
541//! match *big_thing {
542//! Kingdom::Animal(size, name) if size > size_of_biggest_animal => {
543//! // Now we've found the name of some big animal
544//! size_of_biggest_animal = size;
545//! name_of_biggest_animal = Some(name);
546//! }
547//! Kingdom::Animal(..) | Kingdom::Plant(..) => ()
548//! }
549//! }
550//!
551//! match name_of_biggest_animal {
552//! Some(name) => println!("the biggest animal is {name}"),
553//! None => println!("there are no animals :("),
554//! }
555//! ```
556
557#![stable(feature = "rust1", since = "1.0.0")]
558
559use crate::iter::{self, FusedIterator, TrustedLen};
560use crate::ops::{self, ControlFlow, Deref, DerefMut};
561use crate::panicking::{panic, panic_display};
562use crate::pin::Pin;
563use crate::{cmp, convert, hint, mem, slice};
564
565/// The `Option` type. See [the module level documentation](self) for more.
566#[doc(search_unbox)]
567#[derive(Copy, Eq, Debug, Hash)]
568#[rustc_diagnostic_item = "Option"]
569#[lang = "Option"]
570#[stable(feature = "rust1", since = "1.0.0")]
571#[allow(clippy::derived_hash_with_manual_eq)] // PartialEq is manually implemented equivalently
572pub enum Option<T> {
573 /// No value.
574 #[lang = "None"]
575 #[stable(feature = "rust1", since = "1.0.0")]
576 None,
577 /// Some value of type `T`.
578 #[lang = "Some"]
579 #[stable(feature = "rust1", since = "1.0.0")]
580 Some(#[stable(feature = "rust1", since = "1.0.0")] T),
581}
582
583/////////////////////////////////////////////////////////////////////////////
584// Type implementation
585/////////////////////////////////////////////////////////////////////////////
586
587impl<T> Option<T> {
588 /////////////////////////////////////////////////////////////////////////
589 // Querying the contained values
590 /////////////////////////////////////////////////////////////////////////
591
592 /// Returns `true` if the option is a [`Some`] value.
593 ///
594 /// # Examples
595 ///
596 /// ```
597 /// let x: Option<u32> = Some(2);
598 /// assert_eq!(x.is_some(), true);
599 ///
600 /// let x: Option<u32> = None;
601 /// assert_eq!(x.is_some(), false);
602 /// ```
603 #[must_use = "if you intended to assert that this has a value, consider `.unwrap()` instead"]
604 #[inline]
605 #[stable(feature = "rust1", since = "1.0.0")]
606 #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
607 pub const fn is_some(&self) -> bool {
608 matches!(*self, Some(_))
609 }
610
611 /// Returns `true` if the option is a [`Some`] and the value inside of it matches a predicate.
612 ///
613 /// # Examples
614 ///
615 /// ```
616 /// let x: Option<u32> = Some(2);
617 /// assert_eq!(x.is_some_and(|x| x > 1), true);
618 ///
619 /// let x: Option<u32> = Some(0);
620 /// assert_eq!(x.is_some_and(|x| x > 1), false);
621 ///
622 /// let x: Option<u32> = None;
623 /// assert_eq!(x.is_some_and(|x| x > 1), false);
624 /// ```
625 #[must_use]
626 #[inline]
627 #[stable(feature = "is_some_and", since = "1.70.0")]
628 pub fn is_some_and(self, f: impl FnOnce(T) -> bool) -> bool {
629 match self {
630 None => false,
631 Some(x) => f(x),
632 }
633 }
634
635 /// Returns `true` if the option is a [`None`] value.
636 ///
637 /// # Examples
638 ///
639 /// ```
640 /// let x: Option<u32> = Some(2);
641 /// assert_eq!(x.is_none(), false);
642 ///
643 /// let x: Option<u32> = None;
644 /// assert_eq!(x.is_none(), true);
645 /// ```
646 #[must_use = "if you intended to assert that this doesn't have a value, consider \
647 wrapping this in an `assert!()` instead"]
648 #[inline]
649 #[stable(feature = "rust1", since = "1.0.0")]
650 #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
651 pub const fn is_none(&self) -> bool {
652 !self.is_some()
653 }
654
655 /// Returns `true` if the option is a [`None`] or the value inside of it matches a predicate.
656 ///
657 /// # Examples
658 ///
659 /// ```
660 /// let x: Option<u32> = Some(2);
661 /// assert_eq!(x.is_none_or(|x| x > 1), true);
662 ///
663 /// let x: Option<u32> = Some(0);
664 /// assert_eq!(x.is_none_or(|x| x > 1), false);
665 ///
666 /// let x: Option<u32> = None;
667 /// assert_eq!(x.is_none_or(|x| x > 1), true);
668 /// ```
669 #[must_use]
670 #[inline]
671 #[stable(feature = "is_none_or", since = "1.82.0")]
672 pub fn is_none_or(self, f: impl FnOnce(T) -> bool) -> bool {
673 match self {
674 None => true,
675 Some(x) => f(x),
676 }
677 }
678
679 /////////////////////////////////////////////////////////////////////////
680 // Adapter for working with references
681 /////////////////////////////////////////////////////////////////////////
682
683 /// Converts from `&Option<T>` to `Option<&T>`.
684 ///
685 /// # Examples
686 ///
687 /// Calculates the length of an <code>Option<[String]></code> as an <code>Option<[usize]></code>
688 /// without moving the [`String`]. The [`map`] method takes the `self` argument by value,
689 /// consuming the original, so this technique uses `as_ref` to first take an `Option` to a
690 /// reference to the value inside the original.
691 ///
692 /// [`map`]: Option::map
693 /// [String]: ../../std/string/struct.String.html "String"
694 /// [`String`]: ../../std/string/struct.String.html "String"
695 ///
696 /// ```
697 /// let text: Option<String> = Some("Hello, world!".to_string());
698 /// // First, cast `Option<String>` to `Option<&String>` with `as_ref`,
699 /// // then consume *that* with `map`, leaving `text` on the stack.
700 /// let text_length: Option<usize> = text.as_ref().map(|s| s.len());
701 /// println!("still can print text: {text:?}");
702 /// ```
703 #[inline]
704 #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
705 #[stable(feature = "rust1", since = "1.0.0")]
706 pub const fn as_ref(&self) -> Option<&T> {
707 match *self {
708 Some(ref x) => Some(x),
709 None => None,
710 }
711 }
712
713 /// Converts from `&mut Option<T>` to `Option<&mut T>`.
714 ///
715 /// # Examples
716 ///
717 /// ```
718 /// let mut x = Some(2);
719 /// match x.as_mut() {
720 /// Some(v) => *v = 42,
721 /// None => {},
722 /// }
723 /// assert_eq!(x, Some(42));
724 /// ```
725 #[inline]
726 #[stable(feature = "rust1", since = "1.0.0")]
727 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
728 pub const fn as_mut(&mut self) -> Option<&mut T> {
729 match *self {
730 Some(ref mut x) => Some(x),
731 None => None,
732 }
733 }
734
735 /// Converts from <code>[Pin]<[&]Option\<T>></code> to <code>Option<[Pin]<[&]T>></code>.
736 ///
737 /// [&]: reference "shared reference"
738 #[inline]
739 #[must_use]
740 #[stable(feature = "pin", since = "1.33.0")]
741 #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
742 pub const fn as_pin_ref(self: Pin<&Self>) -> Option<Pin<&T>> {
743 // FIXME(const-hack): use `map` once that is possible
744 match Pin::get_ref(self).as_ref() {
745 // SAFETY: `x` is guaranteed to be pinned because it comes from `self`
746 // which is pinned.
747 Some(x) => unsafe { Some(Pin::new_unchecked(x)) },
748 None => None,
749 }
750 }
751
752 /// Converts from <code>[Pin]<[&mut] Option\<T>></code> to <code>Option<[Pin]<[&mut] T>></code>.
753 ///
754 /// [&mut]: reference "mutable reference"
755 #[inline]
756 #[must_use]
757 #[stable(feature = "pin", since = "1.33.0")]
758 #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
759 pub const fn as_pin_mut(self: Pin<&mut Self>) -> Option<Pin<&mut T>> {
760 // SAFETY: `get_unchecked_mut` is never used to move the `Option` inside `self`.
761 // `x` is guaranteed to be pinned because it comes from `self` which is pinned.
762 unsafe {
763 // FIXME(const-hack): use `map` once that is possible
764 match Pin::get_unchecked_mut(self).as_mut() {
765 Some(x) => Some(Pin::new_unchecked(x)),
766 None => None,
767 }
768 }
769 }
770
771 #[inline]
772 const fn len(&self) -> usize {
773 // Using the intrinsic avoids emitting a branch to get the 0 or 1.
774 let discriminant: isize = crate::intrinsics::discriminant_value(self);
775 discriminant as usize
776 }
777
778 /// Returns a slice of the contained value, if any. If this is `None`, an
779 /// empty slice is returned. This can be useful to have a single type of
780 /// iterator over an `Option` or slice.
781 ///
782 /// Note: Should you have an `Option<&T>` and wish to get a slice of `T`,
783 /// you can unpack it via `opt.map_or(&[], std::slice::from_ref)`.
784 ///
785 /// # Examples
786 ///
787 /// ```rust
788 /// assert_eq!(
789 /// [Some(1234).as_slice(), None.as_slice()],
790 /// [&[1234][..], &[][..]],
791 /// );
792 /// ```
793 ///
794 /// The inverse of this function is (discounting
795 /// borrowing) [`[_]::first`](slice::first):
796 ///
797 /// ```rust
798 /// for i in [Some(1234_u16), None] {
799 /// assert_eq!(i.as_ref(), i.as_slice().first());
800 /// }
801 /// ```
802 #[inline]
803 #[must_use]
804 #[stable(feature = "option_as_slice", since = "1.75.0")]
805 #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
806 pub const fn as_slice(&self) -> &[T] {
807 // SAFETY: When the `Option` is `Some`, we're using the actual pointer
808 // to the payload, with a length of 1, so this is equivalent to
809 // `slice::from_ref`, and thus is safe.
810 // When the `Option` is `None`, the length used is 0, so to be safe it
811 // just needs to be aligned, which it is because `&self` is aligned and
812 // the offset used is a multiple of alignment.
813 //
814 // In the new version, the intrinsic always returns a pointer to an
815 // in-bounds and correctly aligned position for a `T` (even if in the
816 // `None` case it's just padding).
817 unsafe {
818 slice::from_raw_parts(
819 (self as *const Self).byte_add(core::mem::offset_of!(Self, Some.0)).cast(),
820 self.len(),
821 )
822 }
823 }
824
825 /// Returns a mutable slice of the contained value, if any. If this is
826 /// `None`, an empty slice is returned. This can be useful to have a
827 /// single type of iterator over an `Option` or slice.
828 ///
829 /// Note: Should you have an `Option<&mut T>` instead of a
830 /// `&mut Option<T>`, which this method takes, you can obtain a mutable
831 /// slice via `opt.map_or(&mut [], std::slice::from_mut)`.
832 ///
833 /// # Examples
834 ///
835 /// ```rust
836 /// assert_eq!(
837 /// [Some(1234).as_mut_slice(), None.as_mut_slice()],
838 /// [&mut [1234][..], &mut [][..]],
839 /// );
840 /// ```
841 ///
842 /// The result is a mutable slice of zero or one items that points into
843 /// our original `Option`:
844 ///
845 /// ```rust
846 /// let mut x = Some(1234);
847 /// x.as_mut_slice()[0] += 1;
848 /// assert_eq!(x, Some(1235));
849 /// ```
850 ///
851 /// The inverse of this method (discounting borrowing)
852 /// is [`[_]::first_mut`](slice::first_mut):
853 ///
854 /// ```rust
855 /// assert_eq!(Some(123).as_mut_slice().first_mut(), Some(&mut 123))
856 /// ```
857 #[inline]
858 #[must_use]
859 #[stable(feature = "option_as_slice", since = "1.75.0")]
860 #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
861 pub const fn as_mut_slice(&mut self) -> &mut [T] {
862 // SAFETY: When the `Option` is `Some`, we're using the actual pointer
863 // to the payload, with a length of 1, so this is equivalent to
864 // `slice::from_mut`, and thus is safe.
865 // When the `Option` is `None`, the length used is 0, so to be safe it
866 // just needs to be aligned, which it is because `&self` is aligned and
867 // the offset used is a multiple of alignment.
868 //
869 // In the new version, the intrinsic creates a `*const T` from a
870 // mutable reference so it is safe to cast back to a mutable pointer
871 // here. As with `as_slice`, the intrinsic always returns a pointer to
872 // an in-bounds and correctly aligned position for a `T` (even if in
873 // the `None` case it's just padding).
874 unsafe {
875 slice::from_raw_parts_mut(
876 (self as *mut Self).byte_add(core::mem::offset_of!(Self, Some.0)).cast(),
877 self.len(),
878 )
879 }
880 }
881
882 /////////////////////////////////////////////////////////////////////////
883 // Getting to contained values
884 /////////////////////////////////////////////////////////////////////////
885
886 /// Returns the contained [`Some`] value, consuming the `self` value.
887 ///
888 /// # Panics
889 ///
890 /// Panics if the value is a [`None`] with a custom panic message provided by
891 /// `msg`.
892 ///
893 /// # Examples
894 ///
895 /// ```
896 /// let x = Some("value");
897 /// assert_eq!(x.expect("fruits are healthy"), "value");
898 /// ```
899 ///
900 /// ```should_panic
901 /// let x: Option<&str> = None;
902 /// x.expect("fruits are healthy"); // panics with `fruits are healthy`
903 /// ```
904 ///
905 /// # Recommended Message Style
906 ///
907 /// We recommend that `expect` messages are used to describe the reason you
908 /// _expect_ the `Option` should be `Some`.
909 ///
910 /// ```should_panic
911 /// # let slice: &[u8] = &[];
912 /// let item = slice.get(0)
913 /// .expect("slice should not be empty");
914 /// ```
915 ///
916 /// **Hint**: If you're having trouble remembering how to phrase expect
917 /// error messages remember to focus on the word "should" as in "env
918 /// variable should be set by blah" or "the given binary should be available
919 /// and executable by the current user".
920 ///
921 /// For more detail on expect message styles and the reasoning behind our
922 /// recommendation please refer to the section on ["Common Message
923 /// Styles"](../../std/error/index.html#common-message-styles) in the [`std::error`](../../std/error/index.html) module docs.
924 #[inline]
925 #[track_caller]
926 #[stable(feature = "rust1", since = "1.0.0")]
927 #[rustc_diagnostic_item = "option_expect"]
928 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
929 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
930 pub const fn expect(self, msg: &str) -> T {
931 match self {
932 Some(val) => val,
933 None => expect_failed(msg),
934 }
935 }
936
937 /// Returns the contained [`Some`] value, consuming the `self` value.
938 ///
939 /// Because this function may panic, its use is generally discouraged.
940 /// Panics are meant for unrecoverable errors, and
941 /// [may abort the entire program][panic-abort].
942 ///
943 /// Instead, prefer to use pattern matching and handle the [`None`]
944 /// case explicitly, or call [`unwrap_or`], [`unwrap_or_else`], or
945 /// [`unwrap_or_default`]. In functions returning `Option`, you can use
946 /// [the `?` (try) operator][try-option].
947 ///
948 /// [panic-abort]: https://doc.rust-lang.org/book/ch09-01-unrecoverable-errors-with-panic.html
949 /// [try-option]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#where-the--operator-can-be-used
950 /// [`unwrap_or`]: Option::unwrap_or
951 /// [`unwrap_or_else`]: Option::unwrap_or_else
952 /// [`unwrap_or_default`]: Option::unwrap_or_default
953 ///
954 /// # Panics
955 ///
956 /// Panics if the self value equals [`None`].
957 ///
958 /// # Examples
959 ///
960 /// ```
961 /// let x = Some("air");
962 /// assert_eq!(x.unwrap(), "air");
963 /// ```
964 ///
965 /// ```should_panic
966 /// let x: Option<&str> = None;
967 /// assert_eq!(x.unwrap(), "air"); // fails
968 /// ```
969 #[inline(always)]
970 #[track_caller]
971 #[stable(feature = "rust1", since = "1.0.0")]
972 #[rustc_diagnostic_item = "option_unwrap"]
973 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
974 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
975 pub const fn unwrap(self) -> T {
976 match self {
977 Some(val) => val,
978 None => unwrap_failed(),
979 }
980 }
981
982 /// Returns the contained [`Some`] value or a provided default.
983 ///
984 /// Arguments passed to `unwrap_or` are eagerly evaluated; if you are passing
985 /// the result of a function call, it is recommended to use [`unwrap_or_else`],
986 /// which is lazily evaluated.
987 ///
988 /// [`unwrap_or_else`]: Option::unwrap_or_else
989 ///
990 /// # Examples
991 ///
992 /// ```
993 /// assert_eq!(Some("car").unwrap_or("bike"), "car");
994 /// assert_eq!(None.unwrap_or("bike"), "bike");
995 /// ```
996 #[inline]
997 #[stable(feature = "rust1", since = "1.0.0")]
998 pub fn unwrap_or(self, default: T) -> T {
999 match self {
1000 Some(x) => x,
1001 None => default,
1002 }
1003 }
1004
1005 /// Returns the contained [`Some`] value or computes it from a closure.
1006 ///
1007 /// # Examples
1008 ///
1009 /// ```
1010 /// let k = 10;
1011 /// assert_eq!(Some(4).unwrap_or_else(|| 2 * k), 4);
1012 /// assert_eq!(None.unwrap_or_else(|| 2 * k), 20);
1013 /// ```
1014 #[inline]
1015 #[track_caller]
1016 #[stable(feature = "rust1", since = "1.0.0")]
1017 pub fn unwrap_or_else<F>(self, f: F) -> T
1018 where
1019 F: FnOnce() -> T,
1020 {
1021 match self {
1022 Some(x) => x,
1023 None => f(),
1024 }
1025 }
1026
1027 /// Returns the contained [`Some`] value or a default.
1028 ///
1029 /// Consumes the `self` argument then, if [`Some`], returns the contained
1030 /// value, otherwise if [`None`], returns the [default value] for that
1031 /// type.
1032 ///
1033 /// # Examples
1034 ///
1035 /// ```
1036 /// let x: Option<u32> = None;
1037 /// let y: Option<u32> = Some(12);
1038 ///
1039 /// assert_eq!(x.unwrap_or_default(), 0);
1040 /// assert_eq!(y.unwrap_or_default(), 12);
1041 /// ```
1042 ///
1043 /// [default value]: Default::default
1044 /// [`parse`]: str::parse
1045 /// [`FromStr`]: crate::str::FromStr
1046 #[inline]
1047 #[stable(feature = "rust1", since = "1.0.0")]
1048 pub fn unwrap_or_default(self) -> T
1049 where
1050 T: Default,
1051 {
1052 match self {
1053 Some(x) => x,
1054 None => T::default(),
1055 }
1056 }
1057
1058 /// Returns the contained [`Some`] value, consuming the `self` value,
1059 /// without checking that the value is not [`None`].
1060 ///
1061 /// # Safety
1062 ///
1063 /// Calling this method on [`None`] is *[undefined behavior]*.
1064 ///
1065 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1066 ///
1067 /// # Examples
1068 ///
1069 /// ```
1070 /// let x = Some("air");
1071 /// assert_eq!(unsafe { x.unwrap_unchecked() }, "air");
1072 /// ```
1073 ///
1074 /// ```no_run
1075 /// let x: Option<&str> = None;
1076 /// assert_eq!(unsafe { x.unwrap_unchecked() }, "air"); // Undefined behavior!
1077 /// ```
1078 #[inline]
1079 #[track_caller]
1080 #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1081 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1082 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1083 pub const unsafe fn unwrap_unchecked(self) -> T {
1084 match self {
1085 Some(val) => val,
1086 // SAFETY: the safety contract must be upheld by the caller.
1087 None => unsafe { hint::unreachable_unchecked() },
1088 }
1089 }
1090
1091 /////////////////////////////////////////////////////////////////////////
1092 // Transforming contained values
1093 /////////////////////////////////////////////////////////////////////////
1094
1095 /// Maps an `Option<T>` to `Option<U>` by applying a function to a contained value (if `Some`) or returns `None` (if `None`).
1096 ///
1097 /// # Examples
1098 ///
1099 /// Calculates the length of an <code>Option<[String]></code> as an
1100 /// <code>Option<[usize]></code>, consuming the original:
1101 ///
1102 /// [String]: ../../std/string/struct.String.html "String"
1103 /// ```
1104 /// let maybe_some_string = Some(String::from("Hello, World!"));
1105 /// // `Option::map` takes self *by value*, consuming `maybe_some_string`
1106 /// let maybe_some_len = maybe_some_string.map(|s| s.len());
1107 /// assert_eq!(maybe_some_len, Some(13));
1108 ///
1109 /// let x: Option<&str> = None;
1110 /// assert_eq!(x.map(|s| s.len()), None);
1111 /// ```
1112 #[inline]
1113 #[stable(feature = "rust1", since = "1.0.0")]
1114 pub fn map<U, F>(self, f: F) -> Option<U>
1115 where
1116 F: FnOnce(T) -> U,
1117 {
1118 match self {
1119 Some(x) => Some(f(x)),
1120 None => None,
1121 }
1122 }
1123
1124 /// Calls a function with a reference to the contained value if [`Some`].
1125 ///
1126 /// Returns the original option.
1127 ///
1128 /// # Examples
1129 ///
1130 /// ```
1131 /// let list = vec![1, 2, 3];
1132 ///
1133 /// // prints "got: 2"
1134 /// let x = list
1135 /// .get(1)
1136 /// .inspect(|x| println!("got: {x}"))
1137 /// .expect("list should be long enough");
1138 ///
1139 /// // prints nothing
1140 /// list.get(5).inspect(|x| println!("got: {x}"));
1141 /// ```
1142 #[inline]
1143 #[stable(feature = "result_option_inspect", since = "1.76.0")]
1144 pub fn inspect<F: FnOnce(&T)>(self, f: F) -> Self {
1145 if let Some(ref x) = self {
1146 f(x);
1147 }
1148
1149 self
1150 }
1151
1152 /// Returns the provided default result (if none),
1153 /// or applies a function to the contained value (if any).
1154 ///
1155 /// Arguments passed to `map_or` are eagerly evaluated; if you are passing
1156 /// the result of a function call, it is recommended to use [`map_or_else`],
1157 /// which is lazily evaluated.
1158 ///
1159 /// [`map_or_else`]: Option::map_or_else
1160 ///
1161 /// # Examples
1162 ///
1163 /// ```
1164 /// let x = Some("foo");
1165 /// assert_eq!(x.map_or(42, |v| v.len()), 3);
1166 ///
1167 /// let x: Option<&str> = None;
1168 /// assert_eq!(x.map_or(42, |v| v.len()), 42);
1169 /// ```
1170 #[inline]
1171 #[stable(feature = "rust1", since = "1.0.0")]
1172 #[must_use = "if you don't need the returned value, use `if let` instead"]
1173 pub fn map_or<U, F>(self, default: U, f: F) -> U
1174 where
1175 F: FnOnce(T) -> U,
1176 {
1177 match self {
1178 Some(t) => f(t),
1179 None => default,
1180 }
1181 }
1182
1183 /// Computes a default function result (if none), or
1184 /// applies a different function to the contained value (if any).
1185 ///
1186 /// # Basic examples
1187 ///
1188 /// ```
1189 /// let k = 21;
1190 ///
1191 /// let x = Some("foo");
1192 /// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 3);
1193 ///
1194 /// let x: Option<&str> = None;
1195 /// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 42);
1196 /// ```
1197 ///
1198 /// # Handling a Result-based fallback
1199 ///
1200 /// A somewhat common occurrence when dealing with optional values
1201 /// in combination with [`Result<T, E>`] is the case where one wants to invoke
1202 /// a fallible fallback if the option is not present. This example
1203 /// parses a command line argument (if present), or the contents of a file to
1204 /// an integer. However, unlike accessing the command line argument, reading
1205 /// the file is fallible, so it must be wrapped with `Ok`.
1206 ///
1207 /// ```no_run
1208 /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
1209 /// let v: u64 = std::env::args()
1210 /// .nth(1)
1211 /// .map_or_else(|| std::fs::read_to_string("/etc/someconfig.conf"), Ok)?
1212 /// .parse()?;
1213 /// # Ok(())
1214 /// # }
1215 /// ```
1216 #[inline]
1217 #[stable(feature = "rust1", since = "1.0.0")]
1218 pub fn map_or_else<U, D, F>(self, default: D, f: F) -> U
1219 where
1220 D: FnOnce() -> U,
1221 F: FnOnce(T) -> U,
1222 {
1223 match self {
1224 Some(t) => f(t),
1225 None => default(),
1226 }
1227 }
1228
1229 /// Transforms the `Option<T>` into a [`Result<T, E>`], mapping [`Some(v)`] to
1230 /// [`Ok(v)`] and [`None`] to [`Err(err)`].
1231 ///
1232 /// Arguments passed to `ok_or` are eagerly evaluated; if you are passing the
1233 /// result of a function call, it is recommended to use [`ok_or_else`], which is
1234 /// lazily evaluated.
1235 ///
1236 /// [`Ok(v)`]: Ok
1237 /// [`Err(err)`]: Err
1238 /// [`Some(v)`]: Some
1239 /// [`ok_or_else`]: Option::ok_or_else
1240 ///
1241 /// # Examples
1242 ///
1243 /// ```
1244 /// let x = Some("foo");
1245 /// assert_eq!(x.ok_or(0), Ok("foo"));
1246 ///
1247 /// let x: Option<&str> = None;
1248 /// assert_eq!(x.ok_or(0), Err(0));
1249 /// ```
1250 #[inline]
1251 #[stable(feature = "rust1", since = "1.0.0")]
1252 pub fn ok_or<E>(self, err: E) -> Result<T, E> {
1253 match self {
1254 Some(v) => Ok(v),
1255 None => Err(err),
1256 }
1257 }
1258
1259 /// Transforms the `Option<T>` into a [`Result<T, E>`], mapping [`Some(v)`] to
1260 /// [`Ok(v)`] and [`None`] to [`Err(err())`].
1261 ///
1262 /// [`Ok(v)`]: Ok
1263 /// [`Err(err())`]: Err
1264 /// [`Some(v)`]: Some
1265 ///
1266 /// # Examples
1267 ///
1268 /// ```
1269 /// let x = Some("foo");
1270 /// assert_eq!(x.ok_or_else(|| 0), Ok("foo"));
1271 ///
1272 /// let x: Option<&str> = None;
1273 /// assert_eq!(x.ok_or_else(|| 0), Err(0));
1274 /// ```
1275 #[inline]
1276 #[stable(feature = "rust1", since = "1.0.0")]
1277 pub fn ok_or_else<E, F>(self, err: F) -> Result<T, E>
1278 where
1279 F: FnOnce() -> E,
1280 {
1281 match self {
1282 Some(v) => Ok(v),
1283 None => Err(err()),
1284 }
1285 }
1286
1287 /// Converts from `Option<T>` (or `&Option<T>`) to `Option<&T::Target>`.
1288 ///
1289 /// Leaves the original Option in-place, creating a new one with a reference
1290 /// to the original one, additionally coercing the contents via [`Deref`].
1291 ///
1292 /// # Examples
1293 ///
1294 /// ```
1295 /// let x: Option<String> = Some("hey".to_owned());
1296 /// assert_eq!(x.as_deref(), Some("hey"));
1297 ///
1298 /// let x: Option<String> = None;
1299 /// assert_eq!(x.as_deref(), None);
1300 /// ```
1301 #[inline]
1302 #[stable(feature = "option_deref", since = "1.40.0")]
1303 pub fn as_deref(&self) -> Option<&T::Target>
1304 where
1305 T: Deref,
1306 {
1307 self.as_ref().map(|t| t.deref())
1308 }
1309
1310 /// Converts from `Option<T>` (or `&mut Option<T>`) to `Option<&mut T::Target>`.
1311 ///
1312 /// Leaves the original `Option` in-place, creating a new one containing a mutable reference to
1313 /// the inner type's [`Deref::Target`] type.
1314 ///
1315 /// # Examples
1316 ///
1317 /// ```
1318 /// let mut x: Option<String> = Some("hey".to_owned());
1319 /// assert_eq!(x.as_deref_mut().map(|x| {
1320 /// x.make_ascii_uppercase();
1321 /// x
1322 /// }), Some("HEY".to_owned().as_mut_str()));
1323 /// ```
1324 #[inline]
1325 #[stable(feature = "option_deref", since = "1.40.0")]
1326 pub fn as_deref_mut(&mut self) -> Option<&mut T::Target>
1327 where
1328 T: DerefMut,
1329 {
1330 self.as_mut().map(|t| t.deref_mut())
1331 }
1332
1333 /////////////////////////////////////////////////////////////////////////
1334 // Iterator constructors
1335 /////////////////////////////////////////////////////////////////////////
1336
1337 /// Returns an iterator over the possibly contained value.
1338 ///
1339 /// # Examples
1340 ///
1341 /// ```
1342 /// let x = Some(4);
1343 /// assert_eq!(x.iter().next(), Some(&4));
1344 ///
1345 /// let x: Option<u32> = None;
1346 /// assert_eq!(x.iter().next(), None);
1347 /// ```
1348 #[inline]
1349 #[stable(feature = "rust1", since = "1.0.0")]
1350 pub fn iter(&self) -> Iter<'_, T> {
1351 Iter { inner: Item { opt: self.as_ref() } }
1352 }
1353
1354 /// Returns a mutable iterator over the possibly contained value.
1355 ///
1356 /// # Examples
1357 ///
1358 /// ```
1359 /// let mut x = Some(4);
1360 /// match x.iter_mut().next() {
1361 /// Some(v) => *v = 42,
1362 /// None => {},
1363 /// }
1364 /// assert_eq!(x, Some(42));
1365 ///
1366 /// let mut x: Option<u32> = None;
1367 /// assert_eq!(x.iter_mut().next(), None);
1368 /// ```
1369 #[inline]
1370 #[stable(feature = "rust1", since = "1.0.0")]
1371 pub fn iter_mut(&mut self) -> IterMut<'_, T> {
1372 IterMut { inner: Item { opt: self.as_mut() } }
1373 }
1374
1375 /////////////////////////////////////////////////////////////////////////
1376 // Boolean operations on the values, eager and lazy
1377 /////////////////////////////////////////////////////////////////////////
1378
1379 /// Returns [`None`] if the option is [`None`], otherwise returns `optb`.
1380 ///
1381 /// Arguments passed to `and` are eagerly evaluated; if you are passing the
1382 /// result of a function call, it is recommended to use [`and_then`], which is
1383 /// lazily evaluated.
1384 ///
1385 /// [`and_then`]: Option::and_then
1386 ///
1387 /// # Examples
1388 ///
1389 /// ```
1390 /// let x = Some(2);
1391 /// let y: Option<&str> = None;
1392 /// assert_eq!(x.and(y), None);
1393 ///
1394 /// let x: Option<u32> = None;
1395 /// let y = Some("foo");
1396 /// assert_eq!(x.and(y), None);
1397 ///
1398 /// let x = Some(2);
1399 /// let y = Some("foo");
1400 /// assert_eq!(x.and(y), Some("foo"));
1401 ///
1402 /// let x: Option<u32> = None;
1403 /// let y: Option<&str> = None;
1404 /// assert_eq!(x.and(y), None);
1405 /// ```
1406 #[inline]
1407 #[stable(feature = "rust1", since = "1.0.0")]
1408 pub fn and<U>(self, optb: Option<U>) -> Option<U> {
1409 match self {
1410 Some(_) => optb,
1411 None => None,
1412 }
1413 }
1414
1415 /// Returns [`None`] if the option is [`None`], otherwise calls `f` with the
1416 /// wrapped value and returns the result.
1417 ///
1418 /// Some languages call this operation flatmap.
1419 ///
1420 /// # Examples
1421 ///
1422 /// ```
1423 /// fn sq_then_to_string(x: u32) -> Option<String> {
1424 /// x.checked_mul(x).map(|sq| sq.to_string())
1425 /// }
1426 ///
1427 /// assert_eq!(Some(2).and_then(sq_then_to_string), Some(4.to_string()));
1428 /// assert_eq!(Some(1_000_000).and_then(sq_then_to_string), None); // overflowed!
1429 /// assert_eq!(None.and_then(sq_then_to_string), None);
1430 /// ```
1431 ///
1432 /// Often used to chain fallible operations that may return [`None`].
1433 ///
1434 /// ```
1435 /// let arr_2d = [["A0", "A1"], ["B0", "B1"]];
1436 ///
1437 /// let item_0_1 = arr_2d.get(0).and_then(|row| row.get(1));
1438 /// assert_eq!(item_0_1, Some(&"A1"));
1439 ///
1440 /// let item_2_0 = arr_2d.get(2).and_then(|row| row.get(0));
1441 /// assert_eq!(item_2_0, None);
1442 /// ```
1443 #[doc(alias = "flatmap")]
1444 #[inline]
1445 #[stable(feature = "rust1", since = "1.0.0")]
1446 #[rustc_confusables("flat_map", "flatmap")]
1447 pub fn and_then<U, F>(self, f: F) -> Option<U>
1448 where
1449 F: FnOnce(T) -> Option<U>,
1450 {
1451 match self {
1452 Some(x) => f(x),
1453 None => None,
1454 }
1455 }
1456
1457 /// Returns [`None`] if the option is [`None`], otherwise calls `predicate`
1458 /// with the wrapped value and returns:
1459 ///
1460 /// - [`Some(t)`] if `predicate` returns `true` (where `t` is the wrapped
1461 /// value), and
1462 /// - [`None`] if `predicate` returns `false`.
1463 ///
1464 /// This function works similar to [`Iterator::filter()`]. You can imagine
1465 /// the `Option<T>` being an iterator over one or zero elements. `filter()`
1466 /// lets you decide which elements to keep.
1467 ///
1468 /// # Examples
1469 ///
1470 /// ```rust
1471 /// fn is_even(n: &i32) -> bool {
1472 /// n % 2 == 0
1473 /// }
1474 ///
1475 /// assert_eq!(None.filter(is_even), None);
1476 /// assert_eq!(Some(3).filter(is_even), None);
1477 /// assert_eq!(Some(4).filter(is_even), Some(4));
1478 /// ```
1479 ///
1480 /// [`Some(t)`]: Some
1481 #[inline]
1482 #[stable(feature = "option_filter", since = "1.27.0")]
1483 pub fn filter<P>(self, predicate: P) -> Self
1484 where
1485 P: FnOnce(&T) -> bool,
1486 {
1487 if let Some(x) = self {
1488 if predicate(&x) {
1489 return Some(x);
1490 }
1491 }
1492 None
1493 }
1494
1495 /// Returns the option if it contains a value, otherwise returns `optb`.
1496 ///
1497 /// Arguments passed to `or` are eagerly evaluated; if you are passing the
1498 /// result of a function call, it is recommended to use [`or_else`], which is
1499 /// lazily evaluated.
1500 ///
1501 /// [`or_else`]: Option::or_else
1502 ///
1503 /// # Examples
1504 ///
1505 /// ```
1506 /// let x = Some(2);
1507 /// let y = None;
1508 /// assert_eq!(x.or(y), Some(2));
1509 ///
1510 /// let x = None;
1511 /// let y = Some(100);
1512 /// assert_eq!(x.or(y), Some(100));
1513 ///
1514 /// let x = Some(2);
1515 /// let y = Some(100);
1516 /// assert_eq!(x.or(y), Some(2));
1517 ///
1518 /// let x: Option<u32> = None;
1519 /// let y = None;
1520 /// assert_eq!(x.or(y), None);
1521 /// ```
1522 #[inline]
1523 #[stable(feature = "rust1", since = "1.0.0")]
1524 pub fn or(self, optb: Option<T>) -> Option<T> {
1525 match self {
1526 x @ Some(_) => x,
1527 None => optb,
1528 }
1529 }
1530
1531 /// Returns the option if it contains a value, otherwise calls `f` and
1532 /// returns the result.
1533 ///
1534 /// # Examples
1535 ///
1536 /// ```
1537 /// fn nobody() -> Option<&'static str> { None }
1538 /// fn vikings() -> Option<&'static str> { Some("vikings") }
1539 ///
1540 /// assert_eq!(Some("barbarians").or_else(vikings), Some("barbarians"));
1541 /// assert_eq!(None.or_else(vikings), Some("vikings"));
1542 /// assert_eq!(None.or_else(nobody), None);
1543 /// ```
1544 #[inline]
1545 #[stable(feature = "rust1", since = "1.0.0")]
1546 pub fn or_else<F>(self, f: F) -> Option<T>
1547 where
1548 F: FnOnce() -> Option<T>,
1549 {
1550 match self {
1551 x @ Some(_) => x,
1552 None => f(),
1553 }
1554 }
1555
1556 /// Returns [`Some`] if exactly one of `self`, `optb` is [`Some`], otherwise returns [`None`].
1557 ///
1558 /// # Examples
1559 ///
1560 /// ```
1561 /// let x = Some(2);
1562 /// let y: Option<u32> = None;
1563 /// assert_eq!(x.xor(y), Some(2));
1564 ///
1565 /// let x: Option<u32> = None;
1566 /// let y = Some(2);
1567 /// assert_eq!(x.xor(y), Some(2));
1568 ///
1569 /// let x = Some(2);
1570 /// let y = Some(2);
1571 /// assert_eq!(x.xor(y), None);
1572 ///
1573 /// let x: Option<u32> = None;
1574 /// let y: Option<u32> = None;
1575 /// assert_eq!(x.xor(y), None);
1576 /// ```
1577 #[inline]
1578 #[stable(feature = "option_xor", since = "1.37.0")]
1579 pub fn xor(self, optb: Option<T>) -> Option<T> {
1580 match (self, optb) {
1581 (a @ Some(_), None) => a,
1582 (None, b @ Some(_)) => b,
1583 _ => None,
1584 }
1585 }
1586
1587 /////////////////////////////////////////////////////////////////////////
1588 // Entry-like operations to insert a value and return a reference
1589 /////////////////////////////////////////////////////////////////////////
1590
1591 /// Inserts `value` into the option, then returns a mutable reference to it.
1592 ///
1593 /// If the option already contains a value, the old value is dropped.
1594 ///
1595 /// See also [`Option::get_or_insert`], which doesn't update the value if
1596 /// the option already contains [`Some`].
1597 ///
1598 /// # Example
1599 ///
1600 /// ```
1601 /// let mut opt = None;
1602 /// let val = opt.insert(1);
1603 /// assert_eq!(*val, 1);
1604 /// assert_eq!(opt.unwrap(), 1);
1605 /// let val = opt.insert(2);
1606 /// assert_eq!(*val, 2);
1607 /// *val = 3;
1608 /// assert_eq!(opt.unwrap(), 3);
1609 /// ```
1610 #[must_use = "if you intended to set a value, consider assignment instead"]
1611 #[inline]
1612 #[stable(feature = "option_insert", since = "1.53.0")]
1613 pub fn insert(&mut self, value: T) -> &mut T {
1614 *self = Some(value);
1615
1616 // SAFETY: the code above just filled the option
1617 unsafe { self.as_mut().unwrap_unchecked() }
1618 }
1619
1620 /// Inserts `value` into the option if it is [`None`], then
1621 /// returns a mutable reference to the contained value.
1622 ///
1623 /// See also [`Option::insert`], which updates the value even if
1624 /// the option already contains [`Some`].
1625 ///
1626 /// # Examples
1627 ///
1628 /// ```
1629 /// let mut x = None;
1630 ///
1631 /// {
1632 /// let y: &mut u32 = x.get_or_insert(5);
1633 /// assert_eq!(y, &5);
1634 ///
1635 /// *y = 7;
1636 /// }
1637 ///
1638 /// assert_eq!(x, Some(7));
1639 /// ```
1640 #[inline]
1641 #[stable(feature = "option_entry", since = "1.20.0")]
1642 pub fn get_or_insert(&mut self, value: T) -> &mut T {
1643 self.get_or_insert_with(|| value)
1644 }
1645
1646 /// Inserts the default value into the option if it is [`None`], then
1647 /// returns a mutable reference to the contained value.
1648 ///
1649 /// # Examples
1650 ///
1651 /// ```
1652 /// let mut x = None;
1653 ///
1654 /// {
1655 /// let y: &mut u32 = x.get_or_insert_default();
1656 /// assert_eq!(y, &0);
1657 ///
1658 /// *y = 7;
1659 /// }
1660 ///
1661 /// assert_eq!(x, Some(7));
1662 /// ```
1663 #[inline]
1664 #[stable(feature = "option_get_or_insert_default", since = "1.83.0")]
1665 pub fn get_or_insert_default(&mut self) -> &mut T
1666 where
1667 T: Default,
1668 {
1669 self.get_or_insert_with(T::default)
1670 }
1671
1672 /// Inserts a value computed from `f` into the option if it is [`None`],
1673 /// then returns a mutable reference to the contained value.
1674 ///
1675 /// # Examples
1676 ///
1677 /// ```
1678 /// let mut x = None;
1679 ///
1680 /// {
1681 /// let y: &mut u32 = x.get_or_insert_with(|| 5);
1682 /// assert_eq!(y, &5);
1683 ///
1684 /// *y = 7;
1685 /// }
1686 ///
1687 /// assert_eq!(x, Some(7));
1688 /// ```
1689 #[inline]
1690 #[stable(feature = "option_entry", since = "1.20.0")]
1691 pub fn get_or_insert_with<F>(&mut self, f: F) -> &mut T
1692 where
1693 F: FnOnce() -> T,
1694 {
1695 if let None = self {
1696 *self = Some(f());
1697 }
1698
1699 // SAFETY: a `None` variant for `self` would have been replaced by a `Some`
1700 // variant in the code above.
1701 unsafe { self.as_mut().unwrap_unchecked() }
1702 }
1703
1704 /////////////////////////////////////////////////////////////////////////
1705 // Misc
1706 /////////////////////////////////////////////////////////////////////////
1707
1708 /// Takes the value out of the option, leaving a [`None`] in its place.
1709 ///
1710 /// # Examples
1711 ///
1712 /// ```
1713 /// let mut x = Some(2);
1714 /// let y = x.take();
1715 /// assert_eq!(x, None);
1716 /// assert_eq!(y, Some(2));
1717 ///
1718 /// let mut x: Option<u32> = None;
1719 /// let y = x.take();
1720 /// assert_eq!(x, None);
1721 /// assert_eq!(y, None);
1722 /// ```
1723 #[inline]
1724 #[stable(feature = "rust1", since = "1.0.0")]
1725 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1726 pub const fn take(&mut self) -> Option<T> {
1727 // FIXME(const-hack) replace `mem::replace` by `mem::take` when the latter is const ready
1728 mem::replace(self, None)
1729 }
1730
1731 /// Takes the value out of the option, but only if the predicate evaluates to
1732 /// `true` on a mutable reference to the value.
1733 ///
1734 /// In other words, replaces `self` with `None` if the predicate returns `true`.
1735 /// This method operates similar to [`Option::take`] but conditional.
1736 ///
1737 /// # Examples
1738 ///
1739 /// ```
1740 /// let mut x = Some(42);
1741 ///
1742 /// let prev = x.take_if(|v| if *v == 42 {
1743 /// *v += 1;
1744 /// false
1745 /// } else {
1746 /// false
1747 /// });
1748 /// assert_eq!(x, Some(43));
1749 /// assert_eq!(prev, None);
1750 ///
1751 /// let prev = x.take_if(|v| *v == 43);
1752 /// assert_eq!(x, None);
1753 /// assert_eq!(prev, Some(43));
1754 /// ```
1755 #[inline]
1756 #[stable(feature = "option_take_if", since = "1.80.0")]
1757 pub fn take_if<P>(&mut self, predicate: P) -> Option<T>
1758 where
1759 P: FnOnce(&mut T) -> bool,
1760 {
1761 if self.as_mut().map_or(false, predicate) { self.take() } else { None }
1762 }
1763
1764 /// Replaces the actual value in the option by the value given in parameter,
1765 /// returning the old value if present,
1766 /// leaving a [`Some`] in its place without deinitializing either one.
1767 ///
1768 /// # Examples
1769 ///
1770 /// ```
1771 /// let mut x = Some(2);
1772 /// let old = x.replace(5);
1773 /// assert_eq!(x, Some(5));
1774 /// assert_eq!(old, Some(2));
1775 ///
1776 /// let mut x = None;
1777 /// let old = x.replace(3);
1778 /// assert_eq!(x, Some(3));
1779 /// assert_eq!(old, None);
1780 /// ```
1781 #[inline]
1782 #[stable(feature = "option_replace", since = "1.31.0")]
1783 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1784 pub const fn replace(&mut self, value: T) -> Option<T> {
1785 mem::replace(self, Some(value))
1786 }
1787
1788 /// Zips `self` with another `Option`.
1789 ///
1790 /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some((s, o))`.
1791 /// Otherwise, `None` is returned.
1792 ///
1793 /// # Examples
1794 ///
1795 /// ```
1796 /// let x = Some(1);
1797 /// let y = Some("hi");
1798 /// let z = None::<u8>;
1799 ///
1800 /// assert_eq!(x.zip(y), Some((1, "hi")));
1801 /// assert_eq!(x.zip(z), None);
1802 /// ```
1803 #[stable(feature = "option_zip_option", since = "1.46.0")]
1804 pub fn zip<U>(self, other: Option<U>) -> Option<(T, U)> {
1805 match (self, other) {
1806 (Some(a), Some(b)) => Some((a, b)),
1807 _ => None,
1808 }
1809 }
1810
1811 /// Zips `self` and another `Option` with function `f`.
1812 ///
1813 /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some(f(s, o))`.
1814 /// Otherwise, `None` is returned.
1815 ///
1816 /// # Examples
1817 ///
1818 /// ```
1819 /// #![feature(option_zip)]
1820 ///
1821 /// #[derive(Debug, PartialEq)]
1822 /// struct Point {
1823 /// x: f64,
1824 /// y: f64,
1825 /// }
1826 ///
1827 /// impl Point {
1828 /// fn new(x: f64, y: f64) -> Self {
1829 /// Self { x, y }
1830 /// }
1831 /// }
1832 ///
1833 /// let x = Some(17.5);
1834 /// let y = Some(42.7);
1835 ///
1836 /// assert_eq!(x.zip_with(y, Point::new), Some(Point { x: 17.5, y: 42.7 }));
1837 /// assert_eq!(x.zip_with(None, Point::new), None);
1838 /// ```
1839 #[unstable(feature = "option_zip", issue = "70086")]
1840 pub fn zip_with<U, F, R>(self, other: Option<U>, f: F) -> Option<R>
1841 where
1842 F: FnOnce(T, U) -> R,
1843 {
1844 match (self, other) {
1845 (Some(a), Some(b)) => Some(f(a, b)),
1846 _ => None,
1847 }
1848 }
1849}
1850
1851impl<T, U> Option<(T, U)> {
1852 /// Unzips an option containing a tuple of two options.
1853 ///
1854 /// If `self` is `Some((a, b))` this method returns `(Some(a), Some(b))`.
1855 /// Otherwise, `(None, None)` is returned.
1856 ///
1857 /// # Examples
1858 ///
1859 /// ```
1860 /// let x = Some((1, "hi"));
1861 /// let y = None::<(u8, u32)>;
1862 ///
1863 /// assert_eq!(x.unzip(), (Some(1), Some("hi")));
1864 /// assert_eq!(y.unzip(), (None, None));
1865 /// ```
1866 #[inline]
1867 #[stable(feature = "unzip_option", since = "1.66.0")]
1868 pub fn unzip(self) -> (Option<T>, Option<U>) {
1869 match self {
1870 Some((a, b)) => (Some(a), Some(b)),
1871 None => (None, None),
1872 }
1873 }
1874}
1875
1876impl<T> Option<&T> {
1877 /// Maps an `Option<&T>` to an `Option<T>` by copying the contents of the
1878 /// option.
1879 ///
1880 /// # Examples
1881 ///
1882 /// ```
1883 /// let x = 12;
1884 /// let opt_x = Some(&x);
1885 /// assert_eq!(opt_x, Some(&12));
1886 /// let copied = opt_x.copied();
1887 /// assert_eq!(copied, Some(12));
1888 /// ```
1889 #[must_use = "`self` will be dropped if the result is not used"]
1890 #[stable(feature = "copied", since = "1.35.0")]
1891 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1892 pub const fn copied(self) -> Option<T>
1893 where
1894 T: Copy,
1895 {
1896 // FIXME(const-hack): this implementation, which sidesteps using `Option::map` since it's not const
1897 // ready yet, should be reverted when possible to avoid code repetition
1898 match self {
1899 Some(&v) => Some(v),
1900 None => None,
1901 }
1902 }
1903
1904 /// Maps an `Option<&T>` to an `Option<T>` by cloning the contents of the
1905 /// option.
1906 ///
1907 /// # Examples
1908 ///
1909 /// ```
1910 /// let x = 12;
1911 /// let opt_x = Some(&x);
1912 /// assert_eq!(opt_x, Some(&12));
1913 /// let cloned = opt_x.cloned();
1914 /// assert_eq!(cloned, Some(12));
1915 /// ```
1916 #[must_use = "`self` will be dropped if the result is not used"]
1917 #[stable(feature = "rust1", since = "1.0.0")]
1918 pub fn cloned(self) -> Option<T>
1919 where
1920 T: Clone,
1921 {
1922 match self {
1923 Some(t) => Some(t.clone()),
1924 None => None,
1925 }
1926 }
1927}
1928
1929impl<T> Option<&mut T> {
1930 /// Maps an `Option<&mut T>` to an `Option<T>` by copying the contents of the
1931 /// option.
1932 ///
1933 /// # Examples
1934 ///
1935 /// ```
1936 /// let mut x = 12;
1937 /// let opt_x = Some(&mut x);
1938 /// assert_eq!(opt_x, Some(&mut 12));
1939 /// let copied = opt_x.copied();
1940 /// assert_eq!(copied, Some(12));
1941 /// ```
1942 #[must_use = "`self` will be dropped if the result is not used"]
1943 #[stable(feature = "copied", since = "1.35.0")]
1944 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1945 pub const fn copied(self) -> Option<T>
1946 where
1947 T: Copy,
1948 {
1949 match self {
1950 Some(&mut t) => Some(t),
1951 None => None,
1952 }
1953 }
1954
1955 /// Maps an `Option<&mut T>` to an `Option<T>` by cloning the contents of the
1956 /// option.
1957 ///
1958 /// # Examples
1959 ///
1960 /// ```
1961 /// let mut x = 12;
1962 /// let opt_x = Some(&mut x);
1963 /// assert_eq!(opt_x, Some(&mut 12));
1964 /// let cloned = opt_x.cloned();
1965 /// assert_eq!(cloned, Some(12));
1966 /// ```
1967 #[must_use = "`self` will be dropped if the result is not used"]
1968 #[stable(since = "1.26.0", feature = "option_ref_mut_cloned")]
1969 pub fn cloned(self) -> Option<T>
1970 where
1971 T: Clone,
1972 {
1973 match self {
1974 Some(t) => Some(t.clone()),
1975 None => None,
1976 }
1977 }
1978}
1979
1980impl<T, E> Option<Result<T, E>> {
1981 /// Transposes an `Option` of a [`Result`] into a [`Result`] of an `Option`.
1982 ///
1983 /// [`None`] will be mapped to <code>[Ok]\([None])</code>.
1984 /// <code>[Some]\([Ok]\(\_))</code> and <code>[Some]\([Err]\(\_))</code> will be mapped to
1985 /// <code>[Ok]\([Some]\(\_))</code> and <code>[Err]\(\_)</code>.
1986 ///
1987 /// # Examples
1988 ///
1989 /// ```
1990 /// #[derive(Debug, Eq, PartialEq)]
1991 /// struct SomeErr;
1992 ///
1993 /// let x: Result<Option<i32>, SomeErr> = Ok(Some(5));
1994 /// let y: Option<Result<i32, SomeErr>> = Some(Ok(5));
1995 /// assert_eq!(x, y.transpose());
1996 /// ```
1997 #[inline]
1998 #[stable(feature = "transpose_result", since = "1.33.0")]
1999 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2000 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2001 pub const fn transpose(self) -> Result<Option<T>, E> {
2002 match self {
2003 Some(Ok(x)) => Ok(Some(x)),
2004 Some(Err(e)) => Err(e),
2005 None => Ok(None),
2006 }
2007 }
2008}
2009
2010#[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
2011#[cfg_attr(feature = "panic_immediate_abort", inline)]
2012#[cold]
2013#[track_caller]
2014const fn unwrap_failed() -> ! {
2015 panic("called `Option::unwrap()` on a `None` value")
2016}
2017
2018// This is a separate function to reduce the code size of .expect() itself.
2019#[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
2020#[cfg_attr(feature = "panic_immediate_abort", inline)]
2021#[cold]
2022#[track_caller]
2023const fn expect_failed(msg: &str) -> ! {
2024 panic_display(&msg)
2025}
2026
2027/////////////////////////////////////////////////////////////////////////////
2028// Trait implementations
2029/////////////////////////////////////////////////////////////////////////////
2030
2031#[stable(feature = "rust1", since = "1.0.0")]
2032impl<T> Clone for Option<T>
2033where
2034 T: Clone,
2035{
2036 #[inline]
2037 fn clone(&self) -> Self {
2038 match self {
2039 Some(x) => Some(x.clone()),
2040 None => None,
2041 }
2042 }
2043
2044 #[inline]
2045 fn clone_from(&mut self, source: &Self) {
2046 match (self, source) {
2047 (Some(to), Some(from)) => to.clone_from(from),
2048 (to, from) => *to = from.clone(),
2049 }
2050 }
2051}
2052
2053#[unstable(feature = "ergonomic_clones", issue = "132290")]
2054impl<T> crate::clone::UseCloned for Option<T> where T: crate::clone::UseCloned {}
2055
2056#[stable(feature = "rust1", since = "1.0.0")]
2057impl<T> Default for Option<T> {
2058 /// Returns [`None`][Option::None].
2059 ///
2060 /// # Examples
2061 ///
2062 /// ```
2063 /// let opt: Option<u32> = Option::default();
2064 /// assert!(opt.is_none());
2065 /// ```
2066 #[inline]
2067 fn default() -> Option<T> {
2068 None
2069 }
2070}
2071
2072#[stable(feature = "rust1", since = "1.0.0")]
2073impl<T> IntoIterator for Option<T> {
2074 type Item = T;
2075 type IntoIter = IntoIter<T>;
2076
2077 /// Returns a consuming iterator over the possibly contained value.
2078 ///
2079 /// # Examples
2080 ///
2081 /// ```
2082 /// let x = Some("string");
2083 /// let v: Vec<&str> = x.into_iter().collect();
2084 /// assert_eq!(v, ["string"]);
2085 ///
2086 /// let x = None;
2087 /// let v: Vec<&str> = x.into_iter().collect();
2088 /// assert!(v.is_empty());
2089 /// ```
2090 #[inline]
2091 fn into_iter(self) -> IntoIter<T> {
2092 IntoIter { inner: Item { opt: self } }
2093 }
2094}
2095
2096#[stable(since = "1.4.0", feature = "option_iter")]
2097impl<'a, T> IntoIterator for &'a Option<T> {
2098 type Item = &'a T;
2099 type IntoIter = Iter<'a, T>;
2100
2101 fn into_iter(self) -> Iter<'a, T> {
2102 self.iter()
2103 }
2104}
2105
2106#[stable(since = "1.4.0", feature = "option_iter")]
2107impl<'a, T> IntoIterator for &'a mut Option<T> {
2108 type Item = &'a mut T;
2109 type IntoIter = IterMut<'a, T>;
2110
2111 fn into_iter(self) -> IterMut<'a, T> {
2112 self.iter_mut()
2113 }
2114}
2115
2116#[stable(since = "1.12.0", feature = "option_from")]
2117impl<T> From<T> for Option<T> {
2118 /// Moves `val` into a new [`Some`].
2119 ///
2120 /// # Examples
2121 ///
2122 /// ```
2123 /// let o: Option<u8> = Option::from(67);
2124 ///
2125 /// assert_eq!(Some(67), o);
2126 /// ```
2127 fn from(val: T) -> Option<T> {
2128 Some(val)
2129 }
2130}
2131
2132#[stable(feature = "option_ref_from_ref_option", since = "1.30.0")]
2133impl<'a, T> From<&'a Option<T>> for Option<&'a T> {
2134 /// Converts from `&Option<T>` to `Option<&T>`.
2135 ///
2136 /// # Examples
2137 ///
2138 /// Converts an <code>[Option]<[String]></code> into an <code>[Option]<[usize]></code>, preserving
2139 /// the original. The [`map`] method takes the `self` argument by value, consuming the original,
2140 /// so this technique uses `from` to first take an [`Option`] to a reference
2141 /// to the value inside the original.
2142 ///
2143 /// [`map`]: Option::map
2144 /// [String]: ../../std/string/struct.String.html "String"
2145 ///
2146 /// ```
2147 /// let s: Option<String> = Some(String::from("Hello, Rustaceans!"));
2148 /// let o: Option<usize> = Option::from(&s).map(|ss: &String| ss.len());
2149 ///
2150 /// println!("Can still print s: {s:?}");
2151 ///
2152 /// assert_eq!(o, Some(18));
2153 /// ```
2154 fn from(o: &'a Option<T>) -> Option<&'a T> {
2155 o.as_ref()
2156 }
2157}
2158
2159#[stable(feature = "option_ref_from_ref_option", since = "1.30.0")]
2160impl<'a, T> From<&'a mut Option<T>> for Option<&'a mut T> {
2161 /// Converts from `&mut Option<T>` to `Option<&mut T>`
2162 ///
2163 /// # Examples
2164 ///
2165 /// ```
2166 /// let mut s = Some(String::from("Hello"));
2167 /// let o: Option<&mut String> = Option::from(&mut s);
2168 ///
2169 /// match o {
2170 /// Some(t) => *t = String::from("Hello, Rustaceans!"),
2171 /// None => (),
2172 /// }
2173 ///
2174 /// assert_eq!(s, Some(String::from("Hello, Rustaceans!")));
2175 /// ```
2176 fn from(o: &'a mut Option<T>) -> Option<&'a mut T> {
2177 o.as_mut()
2178 }
2179}
2180
2181// Ideally, LLVM should be able to optimize our derive code to this.
2182// Once https://github.com/llvm/llvm-project/issues/52622 is fixed, we can
2183// go back to deriving `PartialEq`.
2184#[stable(feature = "rust1", since = "1.0.0")]
2185impl<T> crate::marker::StructuralPartialEq for Option<T> {}
2186#[stable(feature = "rust1", since = "1.0.0")]
2187impl<T: PartialEq> PartialEq for Option<T> {
2188 #[inline]
2189 fn eq(&self, other: &Self) -> bool {
2190 // Spelling out the cases explicitly optimizes better than
2191 // `_ => false`
2192 match (self, other) {
2193 (Some(l), Some(r)) => *l == *r,
2194 (Some(_), None) => false,
2195 (None, Some(_)) => false,
2196 (None, None) => true,
2197 }
2198 }
2199}
2200
2201// Manually implementing here somewhat improves codegen for
2202// https://github.com/rust-lang/rust/issues/49892, although still
2203// not optimal.
2204#[stable(feature = "rust1", since = "1.0.0")]
2205impl<T: PartialOrd> PartialOrd for Option<T> {
2206 #[inline]
2207 fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
2208 match (self, other) {
2209 (Some(l), Some(r)) => l.partial_cmp(r),
2210 (Some(_), None) => Some(cmp::Ordering::Greater),
2211 (None, Some(_)) => Some(cmp::Ordering::Less),
2212 (None, None) => Some(cmp::Ordering::Equal),
2213 }
2214 }
2215}
2216
2217#[stable(feature = "rust1", since = "1.0.0")]
2218impl<T: Ord> Ord for Option<T> {
2219 #[inline]
2220 fn cmp(&self, other: &Self) -> cmp::Ordering {
2221 match (self, other) {
2222 (Some(l), Some(r)) => l.cmp(r),
2223 (Some(_), None) => cmp::Ordering::Greater,
2224 (None, Some(_)) => cmp::Ordering::Less,
2225 (None, None) => cmp::Ordering::Equal,
2226 }
2227 }
2228}
2229
2230/////////////////////////////////////////////////////////////////////////////
2231// The Option Iterators
2232/////////////////////////////////////////////////////////////////////////////
2233
2234#[derive(Clone, Debug)]
2235struct Item<A> {
2236 opt: Option<A>,
2237}
2238
2239impl<A> Iterator for Item<A> {
2240 type Item = A;
2241
2242 #[inline]
2243 fn next(&mut self) -> Option<A> {
2244 self.opt.take()
2245 }
2246
2247 #[inline]
2248 fn size_hint(&self) -> (usize, Option<usize>) {
2249 let len = self.len();
2250 (len, Some(len))
2251 }
2252}
2253
2254impl<A> DoubleEndedIterator for Item<A> {
2255 #[inline]
2256 fn next_back(&mut self) -> Option<A> {
2257 self.opt.take()
2258 }
2259}
2260
2261impl<A> ExactSizeIterator for Item<A> {
2262 #[inline]
2263 fn len(&self) -> usize {
2264 self.opt.len()
2265 }
2266}
2267impl<A> FusedIterator for Item<A> {}
2268unsafe impl<A> TrustedLen for Item<A> {}
2269
2270/// An iterator over a reference to the [`Some`] variant of an [`Option`].
2271///
2272/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2273///
2274/// This `struct` is created by the [`Option::iter`] function.
2275#[stable(feature = "rust1", since = "1.0.0")]
2276#[derive(Debug)]
2277pub struct Iter<'a, A: 'a> {
2278 inner: Item<&'a A>,
2279}
2280
2281#[stable(feature = "rust1", since = "1.0.0")]
2282impl<'a, A> Iterator for Iter<'a, A> {
2283 type Item = &'a A;
2284
2285 #[inline]
2286 fn next(&mut self) -> Option<&'a A> {
2287 self.inner.next()
2288 }
2289 #[inline]
2290 fn size_hint(&self) -> (usize, Option<usize>) {
2291 self.inner.size_hint()
2292 }
2293}
2294
2295#[stable(feature = "rust1", since = "1.0.0")]
2296impl<'a, A> DoubleEndedIterator for Iter<'a, A> {
2297 #[inline]
2298 fn next_back(&mut self) -> Option<&'a A> {
2299 self.inner.next_back()
2300 }
2301}
2302
2303#[stable(feature = "rust1", since = "1.0.0")]
2304impl<A> ExactSizeIterator for Iter<'_, A> {}
2305
2306#[stable(feature = "fused", since = "1.26.0")]
2307impl<A> FusedIterator for Iter<'_, A> {}
2308
2309#[unstable(feature = "trusted_len", issue = "37572")]
2310unsafe impl<A> TrustedLen for Iter<'_, A> {}
2311
2312#[stable(feature = "rust1", since = "1.0.0")]
2313impl<A> Clone for Iter<'_, A> {
2314 #[inline]
2315 fn clone(&self) -> Self {
2316 Iter { inner: self.inner.clone() }
2317 }
2318}
2319
2320/// An iterator over a mutable reference to the [`Some`] variant of an [`Option`].
2321///
2322/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2323///
2324/// This `struct` is created by the [`Option::iter_mut`] function.
2325#[stable(feature = "rust1", since = "1.0.0")]
2326#[derive(Debug)]
2327pub struct IterMut<'a, A: 'a> {
2328 inner: Item<&'a mut A>,
2329}
2330
2331#[stable(feature = "rust1", since = "1.0.0")]
2332impl<'a, A> Iterator for IterMut<'a, A> {
2333 type Item = &'a mut A;
2334
2335 #[inline]
2336 fn next(&mut self) -> Option<&'a mut A> {
2337 self.inner.next()
2338 }
2339 #[inline]
2340 fn size_hint(&self) -> (usize, Option<usize>) {
2341 self.inner.size_hint()
2342 }
2343}
2344
2345#[stable(feature = "rust1", since = "1.0.0")]
2346impl<'a, A> DoubleEndedIterator for IterMut<'a, A> {
2347 #[inline]
2348 fn next_back(&mut self) -> Option<&'a mut A> {
2349 self.inner.next_back()
2350 }
2351}
2352
2353#[stable(feature = "rust1", since = "1.0.0")]
2354impl<A> ExactSizeIterator for IterMut<'_, A> {}
2355
2356#[stable(feature = "fused", since = "1.26.0")]
2357impl<A> FusedIterator for IterMut<'_, A> {}
2358#[unstable(feature = "trusted_len", issue = "37572")]
2359unsafe impl<A> TrustedLen for IterMut<'_, A> {}
2360
2361/// An iterator over the value in [`Some`] variant of an [`Option`].
2362///
2363/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2364///
2365/// This `struct` is created by the [`Option::into_iter`] function.
2366#[derive(Clone, Debug)]
2367#[stable(feature = "rust1", since = "1.0.0")]
2368pub struct IntoIter<A> {
2369 inner: Item<A>,
2370}
2371
2372#[stable(feature = "rust1", since = "1.0.0")]
2373impl<A> Iterator for IntoIter<A> {
2374 type Item = A;
2375
2376 #[inline]
2377 fn next(&mut self) -> Option<A> {
2378 self.inner.next()
2379 }
2380 #[inline]
2381 fn size_hint(&self) -> (usize, Option<usize>) {
2382 self.inner.size_hint()
2383 }
2384}
2385
2386#[stable(feature = "rust1", since = "1.0.0")]
2387impl<A> DoubleEndedIterator for IntoIter<A> {
2388 #[inline]
2389 fn next_back(&mut self) -> Option<A> {
2390 self.inner.next_back()
2391 }
2392}
2393
2394#[stable(feature = "rust1", since = "1.0.0")]
2395impl<A> ExactSizeIterator for IntoIter<A> {}
2396
2397#[stable(feature = "fused", since = "1.26.0")]
2398impl<A> FusedIterator for IntoIter<A> {}
2399
2400#[unstable(feature = "trusted_len", issue = "37572")]
2401unsafe impl<A> TrustedLen for IntoIter<A> {}
2402
2403/////////////////////////////////////////////////////////////////////////////
2404// FromIterator
2405/////////////////////////////////////////////////////////////////////////////
2406
2407#[stable(feature = "rust1", since = "1.0.0")]
2408impl<A, V: FromIterator<A>> FromIterator<Option<A>> for Option<V> {
2409 /// Takes each element in the [`Iterator`]: if it is [`None`][Option::None],
2410 /// no further elements are taken, and the [`None`][Option::None] is
2411 /// returned. Should no [`None`][Option::None] occur, a container of type
2412 /// `V` containing the values of each [`Option`] is returned.
2413 ///
2414 /// # Examples
2415 ///
2416 /// Here is an example which increments every integer in a vector.
2417 /// We use the checked variant of `add` that returns `None` when the
2418 /// calculation would result in an overflow.
2419 ///
2420 /// ```
2421 /// let items = vec![0_u16, 1, 2];
2422 ///
2423 /// let res: Option<Vec<u16>> = items
2424 /// .iter()
2425 /// .map(|x| x.checked_add(1))
2426 /// .collect();
2427 ///
2428 /// assert_eq!(res, Some(vec![1, 2, 3]));
2429 /// ```
2430 ///
2431 /// As you can see, this will return the expected, valid items.
2432 ///
2433 /// Here is another example that tries to subtract one from another list
2434 /// of integers, this time checking for underflow:
2435 ///
2436 /// ```
2437 /// let items = vec![2_u16, 1, 0];
2438 ///
2439 /// let res: Option<Vec<u16>> = items
2440 /// .iter()
2441 /// .map(|x| x.checked_sub(1))
2442 /// .collect();
2443 ///
2444 /// assert_eq!(res, None);
2445 /// ```
2446 ///
2447 /// Since the last element is zero, it would underflow. Thus, the resulting
2448 /// value is `None`.
2449 ///
2450 /// Here is a variation on the previous example, showing that no
2451 /// further elements are taken from `iter` after the first `None`.
2452 ///
2453 /// ```
2454 /// let items = vec![3_u16, 2, 1, 10];
2455 ///
2456 /// let mut shared = 0;
2457 ///
2458 /// let res: Option<Vec<u16>> = items
2459 /// .iter()
2460 /// .map(|x| { shared += x; x.checked_sub(2) })
2461 /// .collect();
2462 ///
2463 /// assert_eq!(res, None);
2464 /// assert_eq!(shared, 6);
2465 /// ```
2466 ///
2467 /// Since the third element caused an underflow, no further elements were taken,
2468 /// so the final value of `shared` is 6 (= `3 + 2 + 1`), not 16.
2469 #[inline]
2470 fn from_iter<I: IntoIterator<Item = Option<A>>>(iter: I) -> Option<V> {
2471 // FIXME(#11084): This could be replaced with Iterator::scan when this
2472 // performance bug is closed.
2473
2474 iter::try_process(iter.into_iter(), |i| i.collect())
2475 }
2476}
2477
2478#[unstable(feature = "try_trait_v2", issue = "84277")]
2479impl<T> ops::Try for Option<T> {
2480 type Output = T;
2481 type Residual = Option<convert::Infallible>;
2482
2483 #[inline]
2484 fn from_output(output: Self::Output) -> Self {
2485 Some(output)
2486 }
2487
2488 #[inline]
2489 fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
2490 match self {
2491 Some(v) => ControlFlow::Continue(v),
2492 None => ControlFlow::Break(None),
2493 }
2494 }
2495}
2496
2497#[unstable(feature = "try_trait_v2", issue = "84277")]
2498// Note: manually specifying the residual type instead of using the default to work around
2499// https://github.com/rust-lang/rust/issues/99940
2500impl<T> ops::FromResidual<Option<convert::Infallible>> for Option<T> {
2501 #[inline]
2502 fn from_residual(residual: Option<convert::Infallible>) -> Self {
2503 match residual {
2504 None => None,
2505 }
2506 }
2507}
2508
2509#[diagnostic::do_not_recommend]
2510#[unstable(feature = "try_trait_v2_yeet", issue = "96374")]
2511impl<T> ops::FromResidual<ops::Yeet<()>> for Option<T> {
2512 #[inline]
2513 fn from_residual(ops::Yeet(()): ops::Yeet<()>) -> Self {
2514 None
2515 }
2516}
2517
2518#[unstable(feature = "try_trait_v2_residual", issue = "91285")]
2519impl<T> ops::Residual<T> for Option<convert::Infallible> {
2520 type TryType = Option<T>;
2521}
2522
2523impl<T> Option<Option<T>> {
2524 /// Converts from `Option<Option<T>>` to `Option<T>`.
2525 ///
2526 /// # Examples
2527 ///
2528 /// Basic usage:
2529 ///
2530 /// ```
2531 /// let x: Option<Option<u32>> = Some(Some(6));
2532 /// assert_eq!(Some(6), x.flatten());
2533 ///
2534 /// let x: Option<Option<u32>> = Some(None);
2535 /// assert_eq!(None, x.flatten());
2536 ///
2537 /// let x: Option<Option<u32>> = None;
2538 /// assert_eq!(None, x.flatten());
2539 /// ```
2540 ///
2541 /// Flattening only removes one level of nesting at a time:
2542 ///
2543 /// ```
2544 /// let x: Option<Option<Option<u32>>> = Some(Some(Some(6)));
2545 /// assert_eq!(Some(Some(6)), x.flatten());
2546 /// assert_eq!(Some(6), x.flatten().flatten());
2547 /// ```
2548 #[inline]
2549 #[stable(feature = "option_flattening", since = "1.40.0")]
2550 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2551 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2552 pub const fn flatten(self) -> Option<T> {
2553 // FIXME(const-hack): could be written with `and_then`
2554 match self {
2555 Some(inner) => inner,
2556 None => None,
2557 }
2558 }
2559}
2560
2561impl<T, const N: usize> [Option<T>; N] {
2562 /// Transposes a `[Option<T>; N]` into a `Option<[T; N]>`.
2563 ///
2564 /// # Examples
2565 ///
2566 /// ```
2567 /// #![feature(option_array_transpose)]
2568 /// # use std::option::Option;
2569 ///
2570 /// let data = [Some(0); 1000];
2571 /// let data: Option<[u8; 1000]> = data.transpose();
2572 /// assert_eq!(data, Some([0; 1000]));
2573 ///
2574 /// let data = [Some(0), None];
2575 /// let data: Option<[u8; 2]> = data.transpose();
2576 /// assert_eq!(data, None);
2577 /// ```
2578 #[inline]
2579 #[unstable(feature = "option_array_transpose", issue = "130828")]
2580 pub fn transpose(self) -> Option<[T; N]> {
2581 self.try_map(core::convert::identity)
2582 }
2583}