core/
option.rs

1//! Optional values.
2//!
3//! Type [`Option`] represents an optional value: every [`Option`]
4//! is either [`Some`] and contains a value, or [`None`], and
5//! does not. [`Option`] types are very common in Rust code, as
6//! they have a number of uses:
7//!
8//! * Initial values
9//! * Return values for functions that are not defined
10//!   over their entire input range (partial functions)
11//! * Return value for otherwise reporting simple errors, where [`None`] is
12//!   returned on error
13//! * Optional struct fields
14//! * Struct fields that can be loaned or "taken"
15//! * Optional function arguments
16//! * Nullable pointers
17//! * Swapping things out of difficult situations
18//!
19//! [`Option`]s are commonly paired with pattern matching to query the presence
20//! of a value and take action, always accounting for the [`None`] case.
21//!
22//! ```
23//! fn divide(numerator: f64, denominator: f64) -> Option<f64> {
24//!     if denominator == 0.0 {
25//!         None
26//!     } else {
27//!         Some(numerator / denominator)
28//!     }
29//! }
30//!
31//! // The return value of the function is an option
32//! let result = divide(2.0, 3.0);
33//!
34//! // Pattern match to retrieve the value
35//! match result {
36//!     // The division was valid
37//!     Some(x) => println!("Result: {x}"),
38//!     // The division was invalid
39//!     None    => println!("Cannot divide by 0"),
40//! }
41//! ```
42//!
43//
44// FIXME: Show how `Option` is used in practice, with lots of methods
45//
46//! # Options and pointers ("nullable" pointers)
47//!
48//! Rust's pointer types must always point to a valid location; there are
49//! no "null" references. Instead, Rust has *optional* pointers, like
50//! the optional owned box, <code>[Option]<[Box\<T>]></code>.
51//!
52//! [Box\<T>]: ../../std/boxed/struct.Box.html
53//!
54//! The following example uses [`Option`] to create an optional box of
55//! [`i32`]. Notice that in order to use the inner [`i32`] value, the
56//! `check_optional` function first needs to use pattern matching to
57//! determine whether the box has a value (i.e., it is [`Some(...)`][`Some`]) or
58//! not ([`None`]).
59//!
60//! ```
61//! let optional = None;
62//! check_optional(optional);
63//!
64//! let optional = Some(Box::new(9000));
65//! check_optional(optional);
66//!
67//! fn check_optional(optional: Option<Box<i32>>) {
68//!     match optional {
69//!         Some(p) => println!("has value {p}"),
70//!         None => println!("has no value"),
71//!     }
72//! }
73//! ```
74//!
75//! # The question mark operator, `?`
76//!
77//! Similar to the [`Result`] type, when writing code that calls many functions that return the
78//! [`Option`] type, handling `Some`/`None` can be tedious. The question mark
79//! operator, [`?`], hides some of the boilerplate of propagating values
80//! up the call stack.
81//!
82//! It replaces this:
83//!
84//! ```
85//! # #![allow(dead_code)]
86//! fn add_last_numbers(stack: &mut Vec<i32>) -> Option<i32> {
87//!     let a = stack.pop();
88//!     let b = stack.pop();
89//!
90//!     match (a, b) {
91//!         (Some(x), Some(y)) => Some(x + y),
92//!         _ => None,
93//!     }
94//! }
95//!
96//! ```
97//!
98//! With this:
99//!
100//! ```
101//! # #![allow(dead_code)]
102//! fn add_last_numbers(stack: &mut Vec<i32>) -> Option<i32> {
103//!     Some(stack.pop()? + stack.pop()?)
104//! }
105//! ```
106//!
107//! *It's much nicer!*
108//!
109//! Ending the expression with [`?`] will result in the [`Some`]'s unwrapped value, unless the
110//! result is [`None`], in which case [`None`] is returned early from the enclosing function.
111//!
112//! [`?`] can be used in functions that return [`Option`] because of the
113//! early return of [`None`] that it provides.
114//!
115//! [`?`]: crate::ops::Try
116//! [`Some`]: Some
117//! [`None`]: None
118//!
119//! # Representation
120//!
121//! Rust guarantees to optimize the following types `T` such that
122//! [`Option<T>`] has the same size, alignment, and [function call ABI] as `T`. In some
123//! of these cases, Rust further guarantees that
124//! `transmute::<_, Option<T>>([0u8; size_of::<T>()])` is sound and
125//! produces `Option::<T>::None`. These cases are identified by the
126//! second column:
127//!
128//! | `T`                                                                 | `transmute::<_, Option<T>>([0u8; size_of::<T>()])` sound? |
129//! |---------------------------------------------------------------------|----------------------------------------------------------------------|
130//! | [`Box<U>`] (specifically, only `Box<U, Global>`)                    | when `U: Sized`                                                      |
131//! | `&U`                                                                | when `U: Sized`                                                      |
132//! | `&mut U`                                                            | when `U: Sized`                                                      |
133//! | `fn`, `extern "C" fn`[^extern_fn]                                   | always                                                               |
134//! | [`num::NonZero*`]                                                   | always                                                               |
135//! | [`ptr::NonNull<U>`]                                                 | when `U: Sized`                                                      |
136//! | `#[repr(transparent)]` struct around one of the types in this list. | when it holds for the inner type                                     |
137//!
138//! [^extern_fn]: this remains true for any argument/return types and any other ABI: `extern "abi" fn` (_e.g._, `extern "system" fn`)
139//!
140//! Under some conditions the above types `T` are also null pointer optimized when wrapped in a [`Result`][result_repr].
141//!
142//! [`Box<U>`]: ../../std/boxed/struct.Box.html
143//! [`num::NonZero*`]: crate::num
144//! [`ptr::NonNull<U>`]: crate::ptr::NonNull
145//! [function call ABI]: ../primitive.fn.html#abi-compatibility
146//! [result_repr]: crate::result#representation
147//!
148//! This is called the "null pointer optimization" or NPO.
149//!
150//! It is further guaranteed that, for the cases above, one can
151//! [`mem::transmute`] from all valid values of `T` to `Option<T>` and
152//! from `Some::<T>(_)` to `T` (but transmuting `None::<T>` to `T`
153//! is undefined behavior).
154//!
155//! # Method overview
156//!
157//! In addition to working with pattern matching, [`Option`] provides a wide
158//! variety of different methods.
159//!
160//! ## Querying the variant
161//!
162//! The [`is_some`] and [`is_none`] methods return [`true`] if the [`Option`]
163//! is [`Some`] or [`None`], respectively.
164//!
165//! [`is_none`]: Option::is_none
166//! [`is_some`]: Option::is_some
167//!
168//! ## Adapters for working with references
169//!
170//! * [`as_ref`] converts from <code>[&][][Option]\<T></code> to <code>[Option]<[&]T></code>
171//! * [`as_mut`] converts from <code>[&mut] [Option]\<T></code> to <code>[Option]<[&mut] T></code>
172//! * [`as_deref`] converts from <code>[&][][Option]\<T></code> to
173//!   <code>[Option]<[&]T::[Target]></code>
174//! * [`as_deref_mut`] converts from <code>[&mut] [Option]\<T></code> to
175//!   <code>[Option]<[&mut] T::[Target]></code>
176//! * [`as_pin_ref`] converts from <code>[Pin]<[&][][Option]\<T>></code> to
177//!   <code>[Option]<[Pin]<[&]T>></code>
178//! * [`as_pin_mut`] converts from <code>[Pin]<[&mut] [Option]\<T>></code> to
179//!   <code>[Option]<[Pin]<[&mut] T>></code>
180//!
181//! [&]: reference "shared reference"
182//! [&mut]: reference "mutable reference"
183//! [Target]: Deref::Target "ops::Deref::Target"
184//! [`as_deref`]: Option::as_deref
185//! [`as_deref_mut`]: Option::as_deref_mut
186//! [`as_mut`]: Option::as_mut
187//! [`as_pin_mut`]: Option::as_pin_mut
188//! [`as_pin_ref`]: Option::as_pin_ref
189//! [`as_ref`]: Option::as_ref
190//!
191//! ## Extracting the contained value
192//!
193//! These methods extract the contained value in an [`Option<T>`] when it
194//! is the [`Some`] variant. If the [`Option`] is [`None`]:
195//!
196//! * [`expect`] panics with a provided custom message
197//! * [`unwrap`] panics with a generic message
198//! * [`unwrap_or`] returns the provided default value
199//! * [`unwrap_or_default`] returns the default value of the type `T`
200//!   (which must implement the [`Default`] trait)
201//! * [`unwrap_or_else`] returns the result of evaluating the provided
202//!   function
203//!
204//! [`expect`]: Option::expect
205//! [`unwrap`]: Option::unwrap
206//! [`unwrap_or`]: Option::unwrap_or
207//! [`unwrap_or_default`]: Option::unwrap_or_default
208//! [`unwrap_or_else`]: Option::unwrap_or_else
209//!
210//! ## Transforming contained values
211//!
212//! These methods transform [`Option`] to [`Result`]:
213//!
214//! * [`ok_or`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to
215//!   [`Err(err)`] using the provided default `err` value
216//! * [`ok_or_else`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to
217//!   a value of [`Err`] using the provided function
218//! * [`transpose`] transposes an [`Option`] of a [`Result`] into a
219//!   [`Result`] of an [`Option`]
220//!
221//! [`Err(err)`]: Err
222//! [`Ok(v)`]: Ok
223//! [`Some(v)`]: Some
224//! [`ok_or`]: Option::ok_or
225//! [`ok_or_else`]: Option::ok_or_else
226//! [`transpose`]: Option::transpose
227//!
228//! These methods transform the [`Some`] variant:
229//!
230//! * [`filter`] calls the provided predicate function on the contained
231//!   value `t` if the [`Option`] is [`Some(t)`], and returns [`Some(t)`]
232//!   if the function returns `true`; otherwise, returns [`None`]
233//! * [`flatten`] removes one level of nesting from an
234//!   [`Option<Option<T>>`]
235//! * [`map`] transforms [`Option<T>`] to [`Option<U>`] by applying the
236//!   provided function to the contained value of [`Some`] and leaving
237//!   [`None`] values unchanged
238//!
239//! [`Some(t)`]: Some
240//! [`filter`]: Option::filter
241//! [`flatten`]: Option::flatten
242//! [`map`]: Option::map
243//!
244//! These methods transform [`Option<T>`] to a value of a possibly
245//! different type `U`:
246//!
247//! * [`map_or`] applies the provided function to the contained value of
248//!   [`Some`], or returns the provided default value if the [`Option`] is
249//!   [`None`]
250//! * [`map_or_else`] applies the provided function to the contained value
251//!   of [`Some`], or returns the result of evaluating the provided
252//!   fallback function if the [`Option`] is [`None`]
253//!
254//! [`map_or`]: Option::map_or
255//! [`map_or_else`]: Option::map_or_else
256//!
257//! These methods combine the [`Some`] variants of two [`Option`] values:
258//!
259//! * [`zip`] returns [`Some((s, o))`] if `self` is [`Some(s)`] and the
260//!   provided [`Option`] value is [`Some(o)`]; otherwise, returns [`None`]
261//! * [`zip_with`] calls the provided function `f` and returns
262//!   [`Some(f(s, o))`] if `self` is [`Some(s)`] and the provided
263//!   [`Option`] value is [`Some(o)`]; otherwise, returns [`None`]
264//!
265//! [`Some(f(s, o))`]: Some
266//! [`Some(o)`]: Some
267//! [`Some(s)`]: Some
268//! [`Some((s, o))`]: Some
269//! [`zip`]: Option::zip
270//! [`zip_with`]: Option::zip_with
271//!
272//! ## Boolean operators
273//!
274//! These methods treat the [`Option`] as a boolean value, where [`Some`]
275//! acts like [`true`] and [`None`] acts like [`false`]. There are two
276//! categories of these methods: ones that take an [`Option`] as input, and
277//! ones that take a function as input (to be lazily evaluated).
278//!
279//! The [`and`], [`or`], and [`xor`] methods take another [`Option`] as
280//! input, and produce an [`Option`] as output. Only the [`and`] method can
281//! produce an [`Option<U>`] value having a different inner type `U` than
282//! [`Option<T>`].
283//!
284//! | method  | self      | input     | output    |
285//! |---------|-----------|-----------|-----------|
286//! | [`and`] | `None`    | (ignored) | `None`    |
287//! | [`and`] | `Some(x)` | `None`    | `None`    |
288//! | [`and`] | `Some(x)` | `Some(y)` | `Some(y)` |
289//! | [`or`]  | `None`    | `None`    | `None`    |
290//! | [`or`]  | `None`    | `Some(y)` | `Some(y)` |
291//! | [`or`]  | `Some(x)` | (ignored) | `Some(x)` |
292//! | [`xor`] | `None`    | `None`    | `None`    |
293//! | [`xor`] | `None`    | `Some(y)` | `Some(y)` |
294//! | [`xor`] | `Some(x)` | `None`    | `Some(x)` |
295//! | [`xor`] | `Some(x)` | `Some(y)` | `None`    |
296//!
297//! [`and`]: Option::and
298//! [`or`]: Option::or
299//! [`xor`]: Option::xor
300//!
301//! The [`and_then`] and [`or_else`] methods take a function as input, and
302//! only evaluate the function when they need to produce a new value. Only
303//! the [`and_then`] method can produce an [`Option<U>`] value having a
304//! different inner type `U` than [`Option<T>`].
305//!
306//! | method       | self      | function input | function result | output    |
307//! |--------------|-----------|----------------|-----------------|-----------|
308//! | [`and_then`] | `None`    | (not provided) | (not evaluated) | `None`    |
309//! | [`and_then`] | `Some(x)` | `x`            | `None`          | `None`    |
310//! | [`and_then`] | `Some(x)` | `x`            | `Some(y)`       | `Some(y)` |
311//! | [`or_else`]  | `None`    | (not provided) | `None`          | `None`    |
312//! | [`or_else`]  | `None`    | (not provided) | `Some(y)`       | `Some(y)` |
313//! | [`or_else`]  | `Some(x)` | (not provided) | (not evaluated) | `Some(x)` |
314//!
315//! [`and_then`]: Option::and_then
316//! [`or_else`]: Option::or_else
317//!
318//! This is an example of using methods like [`and_then`] and [`or`] in a
319//! pipeline of method calls. Early stages of the pipeline pass failure
320//! values ([`None`]) through unchanged, and continue processing on
321//! success values ([`Some`]). Toward the end, [`or`] substitutes an error
322//! message if it receives [`None`].
323//!
324//! ```
325//! # use std::collections::BTreeMap;
326//! let mut bt = BTreeMap::new();
327//! bt.insert(20u8, "foo");
328//! bt.insert(42u8, "bar");
329//! let res = [0u8, 1, 11, 200, 22]
330//!     .into_iter()
331//!     .map(|x| {
332//!         // `checked_sub()` returns `None` on error
333//!         x.checked_sub(1)
334//!             // same with `checked_mul()`
335//!             .and_then(|x| x.checked_mul(2))
336//!             // `BTreeMap::get` returns `None` on error
337//!             .and_then(|x| bt.get(&x))
338//!             // Substitute an error message if we have `None` so far
339//!             .or(Some(&"error!"))
340//!             .copied()
341//!             // Won't panic because we unconditionally used `Some` above
342//!             .unwrap()
343//!     })
344//!     .collect::<Vec<_>>();
345//! assert_eq!(res, ["error!", "error!", "foo", "error!", "bar"]);
346//! ```
347//!
348//! ## Comparison operators
349//!
350//! If `T` implements [`PartialOrd`] then [`Option<T>`] will derive its
351//! [`PartialOrd`] implementation.  With this order, [`None`] compares as
352//! less than any [`Some`], and two [`Some`] compare the same way as their
353//! contained values would in `T`.  If `T` also implements
354//! [`Ord`], then so does [`Option<T>`].
355//!
356//! ```
357//! assert!(None < Some(0));
358//! assert!(Some(0) < Some(1));
359//! ```
360//!
361//! ## Iterating over `Option`
362//!
363//! An [`Option`] can be iterated over. This can be helpful if you need an
364//! iterator that is conditionally empty. The iterator will either produce
365//! a single value (when the [`Option`] is [`Some`]), or produce no values
366//! (when the [`Option`] is [`None`]). For example, [`into_iter`] acts like
367//! [`once(v)`] if the [`Option`] is [`Some(v)`], and like [`empty()`] if
368//! the [`Option`] is [`None`].
369//!
370//! [`Some(v)`]: Some
371//! [`empty()`]: crate::iter::empty
372//! [`once(v)`]: crate::iter::once
373//!
374//! Iterators over [`Option<T>`] come in three types:
375//!
376//! * [`into_iter`] consumes the [`Option`] and produces the contained
377//!   value
378//! * [`iter`] produces an immutable reference of type `&T` to the
379//!   contained value
380//! * [`iter_mut`] produces a mutable reference of type `&mut T` to the
381//!   contained value
382//!
383//! [`into_iter`]: Option::into_iter
384//! [`iter`]: Option::iter
385//! [`iter_mut`]: Option::iter_mut
386//!
387//! An iterator over [`Option`] can be useful when chaining iterators, for
388//! example, to conditionally insert items. (It's not always necessary to
389//! explicitly call an iterator constructor: many [`Iterator`] methods that
390//! accept other iterators will also accept iterable types that implement
391//! [`IntoIterator`], which includes [`Option`].)
392//!
393//! ```
394//! let yep = Some(42);
395//! let nope = None;
396//! // chain() already calls into_iter(), so we don't have to do so
397//! let nums: Vec<i32> = (0..4).chain(yep).chain(4..8).collect();
398//! assert_eq!(nums, [0, 1, 2, 3, 42, 4, 5, 6, 7]);
399//! let nums: Vec<i32> = (0..4).chain(nope).chain(4..8).collect();
400//! assert_eq!(nums, [0, 1, 2, 3, 4, 5, 6, 7]);
401//! ```
402//!
403//! One reason to chain iterators in this way is that a function returning
404//! `impl Iterator` must have all possible return values be of the same
405//! concrete type. Chaining an iterated [`Option`] can help with that.
406//!
407//! ```
408//! fn make_iter(do_insert: bool) -> impl Iterator<Item = i32> {
409//!     // Explicit returns to illustrate return types matching
410//!     match do_insert {
411//!         true => return (0..4).chain(Some(42)).chain(4..8),
412//!         false => return (0..4).chain(None).chain(4..8),
413//!     }
414//! }
415//! println!("{:?}", make_iter(true).collect::<Vec<_>>());
416//! println!("{:?}", make_iter(false).collect::<Vec<_>>());
417//! ```
418//!
419//! If we try to do the same thing, but using [`once()`] and [`empty()`],
420//! we can't return `impl Iterator` anymore because the concrete types of
421//! the return values differ.
422//!
423//! [`empty()`]: crate::iter::empty
424//! [`once()`]: crate::iter::once
425//!
426//! ```compile_fail,E0308
427//! # use std::iter::{empty, once};
428//! // This won't compile because all possible returns from the function
429//! // must have the same concrete type.
430//! fn make_iter(do_insert: bool) -> impl Iterator<Item = i32> {
431//!     // Explicit returns to illustrate return types not matching
432//!     match do_insert {
433//!         true => return (0..4).chain(once(42)).chain(4..8),
434//!         false => return (0..4).chain(empty()).chain(4..8),
435//!     }
436//! }
437//! ```
438//!
439//! ## Collecting into `Option`
440//!
441//! [`Option`] implements the [`FromIterator`][impl-FromIterator] trait,
442//! which allows an iterator over [`Option`] values to be collected into an
443//! [`Option`] of a collection of each contained value of the original
444//! [`Option`] values, or [`None`] if any of the elements was [`None`].
445//!
446//! [impl-FromIterator]: Option#impl-FromIterator%3COption%3CA%3E%3E-for-Option%3CV%3E
447//!
448//! ```
449//! let v = [Some(2), Some(4), None, Some(8)];
450//! let res: Option<Vec<_>> = v.into_iter().collect();
451//! assert_eq!(res, None);
452//! let v = [Some(2), Some(4), Some(8)];
453//! let res: Option<Vec<_>> = v.into_iter().collect();
454//! assert_eq!(res, Some(vec![2, 4, 8]));
455//! ```
456//!
457//! [`Option`] also implements the [`Product`][impl-Product] and
458//! [`Sum`][impl-Sum] traits, allowing an iterator over [`Option`] values
459//! to provide the [`product`][Iterator::product] and
460//! [`sum`][Iterator::sum] methods.
461//!
462//! [impl-Product]: Option#impl-Product%3COption%3CU%3E%3E-for-Option%3CT%3E
463//! [impl-Sum]: Option#impl-Sum%3COption%3CU%3E%3E-for-Option%3CT%3E
464//!
465//! ```
466//! let v = [None, Some(1), Some(2), Some(3)];
467//! let res: Option<i32> = v.into_iter().sum();
468//! assert_eq!(res, None);
469//! let v = [Some(1), Some(2), Some(21)];
470//! let res: Option<i32> = v.into_iter().product();
471//! assert_eq!(res, Some(42));
472//! ```
473//!
474//! ## Modifying an [`Option`] in-place
475//!
476//! These methods return a mutable reference to the contained value of an
477//! [`Option<T>`]:
478//!
479//! * [`insert`] inserts a value, dropping any old contents
480//! * [`get_or_insert`] gets the current value, inserting a provided
481//!   default value if it is [`None`]
482//! * [`get_or_insert_default`] gets the current value, inserting the
483//!   default value of type `T` (which must implement [`Default`]) if it is
484//!   [`None`]
485//! * [`get_or_insert_with`] gets the current value, inserting a default
486//!   computed by the provided function if it is [`None`]
487//!
488//! [`get_or_insert`]: Option::get_or_insert
489//! [`get_or_insert_default`]: Option::get_or_insert_default
490//! [`get_or_insert_with`]: Option::get_or_insert_with
491//! [`insert`]: Option::insert
492//!
493//! These methods transfer ownership of the contained value of an
494//! [`Option`]:
495//!
496//! * [`take`] takes ownership of the contained value of an [`Option`], if
497//!   any, replacing the [`Option`] with [`None`]
498//! * [`replace`] takes ownership of the contained value of an [`Option`],
499//!   if any, replacing the [`Option`] with a [`Some`] containing the
500//!   provided value
501//!
502//! [`replace`]: Option::replace
503//! [`take`]: Option::take
504//!
505//! # Examples
506//!
507//! Basic pattern matching on [`Option`]:
508//!
509//! ```
510//! let msg = Some("howdy");
511//!
512//! // Take a reference to the contained string
513//! if let Some(m) = &msg {
514//!     println!("{}", *m);
515//! }
516//!
517//! // Remove the contained string, destroying the Option
518//! let unwrapped_msg = msg.unwrap_or("default message");
519//! ```
520//!
521//! Initialize a result to [`None`] before a loop:
522//!
523//! ```
524//! enum Kingdom { Plant(u32, &'static str), Animal(u32, &'static str) }
525//!
526//! // A list of data to search through.
527//! let all_the_big_things = [
528//!     Kingdom::Plant(250, "redwood"),
529//!     Kingdom::Plant(230, "noble fir"),
530//!     Kingdom::Plant(229, "sugar pine"),
531//!     Kingdom::Animal(25, "blue whale"),
532//!     Kingdom::Animal(19, "fin whale"),
533//!     Kingdom::Animal(15, "north pacific right whale"),
534//! ];
535//!
536//! // We're going to search for the name of the biggest animal,
537//! // but to start with we've just got `None`.
538//! let mut name_of_biggest_animal = None;
539//! let mut size_of_biggest_animal = 0;
540//! for big_thing in &all_the_big_things {
541//!     match *big_thing {
542//!         Kingdom::Animal(size, name) if size > size_of_biggest_animal => {
543//!             // Now we've found the name of some big animal
544//!             size_of_biggest_animal = size;
545//!             name_of_biggest_animal = Some(name);
546//!         }
547//!         Kingdom::Animal(..) | Kingdom::Plant(..) => ()
548//!     }
549//! }
550//!
551//! match name_of_biggest_animal {
552//!     Some(name) => println!("the biggest animal is {name}"),
553//!     None => println!("there are no animals :("),
554//! }
555//! ```
556
557#![stable(feature = "rust1", since = "1.0.0")]
558
559use crate::iter::{self, FusedIterator, TrustedLen};
560use crate::ops::{self, ControlFlow, Deref, DerefMut};
561use crate::panicking::{panic, panic_display};
562use crate::pin::Pin;
563use crate::{cmp, convert, hint, mem, slice};
564
565/// The `Option` type. See [the module level documentation](self) for more.
566#[doc(search_unbox)]
567#[derive(Copy, Eq, Debug, Hash)]
568#[rustc_diagnostic_item = "Option"]
569#[lang = "Option"]
570#[stable(feature = "rust1", since = "1.0.0")]
571#[allow(clippy::derived_hash_with_manual_eq)] // PartialEq is manually implemented equivalently
572pub enum Option<T> {
573    /// No value.
574    #[lang = "None"]
575    #[stable(feature = "rust1", since = "1.0.0")]
576    None,
577    /// Some value of type `T`.
578    #[lang = "Some"]
579    #[stable(feature = "rust1", since = "1.0.0")]
580    Some(#[stable(feature = "rust1", since = "1.0.0")] T),
581}
582
583/////////////////////////////////////////////////////////////////////////////
584// Type implementation
585/////////////////////////////////////////////////////////////////////////////
586
587impl<T> Option<T> {
588    /////////////////////////////////////////////////////////////////////////
589    // Querying the contained values
590    /////////////////////////////////////////////////////////////////////////
591
592    /// Returns `true` if the option is a [`Some`] value.
593    ///
594    /// # Examples
595    ///
596    /// ```
597    /// let x: Option<u32> = Some(2);
598    /// assert_eq!(x.is_some(), true);
599    ///
600    /// let x: Option<u32> = None;
601    /// assert_eq!(x.is_some(), false);
602    /// ```
603    #[must_use = "if you intended to assert that this has a value, consider `.unwrap()` instead"]
604    #[inline]
605    #[stable(feature = "rust1", since = "1.0.0")]
606    #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
607    pub const fn is_some(&self) -> bool {
608        matches!(*self, Some(_))
609    }
610
611    /// Returns `true` if the option is a [`Some`] and the value inside of it matches a predicate.
612    ///
613    /// # Examples
614    ///
615    /// ```
616    /// let x: Option<u32> = Some(2);
617    /// assert_eq!(x.is_some_and(|x| x > 1), true);
618    ///
619    /// let x: Option<u32> = Some(0);
620    /// assert_eq!(x.is_some_and(|x| x > 1), false);
621    ///
622    /// let x: Option<u32> = None;
623    /// assert_eq!(x.is_some_and(|x| x > 1), false);
624    /// ```
625    #[must_use]
626    #[inline]
627    #[stable(feature = "is_some_and", since = "1.70.0")]
628    pub fn is_some_and(self, f: impl FnOnce(T) -> bool) -> bool {
629        match self {
630            None => false,
631            Some(x) => f(x),
632        }
633    }
634
635    /// Returns `true` if the option is a [`None`] value.
636    ///
637    /// # Examples
638    ///
639    /// ```
640    /// let x: Option<u32> = Some(2);
641    /// assert_eq!(x.is_none(), false);
642    ///
643    /// let x: Option<u32> = None;
644    /// assert_eq!(x.is_none(), true);
645    /// ```
646    #[must_use = "if you intended to assert that this doesn't have a value, consider \
647                  wrapping this in an `assert!()` instead"]
648    #[inline]
649    #[stable(feature = "rust1", since = "1.0.0")]
650    #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
651    pub const fn is_none(&self) -> bool {
652        !self.is_some()
653    }
654
655    /// Returns `true` if the option is a [`None`] or the value inside of it matches a predicate.
656    ///
657    /// # Examples
658    ///
659    /// ```
660    /// let x: Option<u32> = Some(2);
661    /// assert_eq!(x.is_none_or(|x| x > 1), true);
662    ///
663    /// let x: Option<u32> = Some(0);
664    /// assert_eq!(x.is_none_or(|x| x > 1), false);
665    ///
666    /// let x: Option<u32> = None;
667    /// assert_eq!(x.is_none_or(|x| x > 1), true);
668    /// ```
669    #[must_use]
670    #[inline]
671    #[stable(feature = "is_none_or", since = "1.82.0")]
672    pub fn is_none_or(self, f: impl FnOnce(T) -> bool) -> bool {
673        match self {
674            None => true,
675            Some(x) => f(x),
676        }
677    }
678
679    /////////////////////////////////////////////////////////////////////////
680    // Adapter for working with references
681    /////////////////////////////////////////////////////////////////////////
682
683    /// Converts from `&Option<T>` to `Option<&T>`.
684    ///
685    /// # Examples
686    ///
687    /// Calculates the length of an <code>Option<[String]></code> as an <code>Option<[usize]></code>
688    /// without moving the [`String`]. The [`map`] method takes the `self` argument by value,
689    /// consuming the original, so this technique uses `as_ref` to first take an `Option` to a
690    /// reference to the value inside the original.
691    ///
692    /// [`map`]: Option::map
693    /// [String]: ../../std/string/struct.String.html "String"
694    /// [`String`]: ../../std/string/struct.String.html "String"
695    ///
696    /// ```
697    /// let text: Option<String> = Some("Hello, world!".to_string());
698    /// // First, cast `Option<String>` to `Option<&String>` with `as_ref`,
699    /// // then consume *that* with `map`, leaving `text` on the stack.
700    /// let text_length: Option<usize> = text.as_ref().map(|s| s.len());
701    /// println!("still can print text: {text:?}");
702    /// ```
703    #[inline]
704    #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
705    #[stable(feature = "rust1", since = "1.0.0")]
706    pub const fn as_ref(&self) -> Option<&T> {
707        match *self {
708            Some(ref x) => Some(x),
709            None => None,
710        }
711    }
712
713    /// Converts from `&mut Option<T>` to `Option<&mut T>`.
714    ///
715    /// # Examples
716    ///
717    /// ```
718    /// let mut x = Some(2);
719    /// match x.as_mut() {
720    ///     Some(v) => *v = 42,
721    ///     None => {},
722    /// }
723    /// assert_eq!(x, Some(42));
724    /// ```
725    #[inline]
726    #[stable(feature = "rust1", since = "1.0.0")]
727    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
728    pub const fn as_mut(&mut self) -> Option<&mut T> {
729        match *self {
730            Some(ref mut x) => Some(x),
731            None => None,
732        }
733    }
734
735    /// Converts from <code>[Pin]<[&]Option\<T>></code> to <code>Option<[Pin]<[&]T>></code>.
736    ///
737    /// [&]: reference "shared reference"
738    #[inline]
739    #[must_use]
740    #[stable(feature = "pin", since = "1.33.0")]
741    #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
742    pub const fn as_pin_ref(self: Pin<&Self>) -> Option<Pin<&T>> {
743        // FIXME(const-hack): use `map` once that is possible
744        match Pin::get_ref(self).as_ref() {
745            // SAFETY: `x` is guaranteed to be pinned because it comes from `self`
746            // which is pinned.
747            Some(x) => unsafe { Some(Pin::new_unchecked(x)) },
748            None => None,
749        }
750    }
751
752    /// Converts from <code>[Pin]<[&mut] Option\<T>></code> to <code>Option<[Pin]<[&mut] T>></code>.
753    ///
754    /// [&mut]: reference "mutable reference"
755    #[inline]
756    #[must_use]
757    #[stable(feature = "pin", since = "1.33.0")]
758    #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
759    pub const fn as_pin_mut(self: Pin<&mut Self>) -> Option<Pin<&mut T>> {
760        // SAFETY: `get_unchecked_mut` is never used to move the `Option` inside `self`.
761        // `x` is guaranteed to be pinned because it comes from `self` which is pinned.
762        unsafe {
763            // FIXME(const-hack): use `map` once that is possible
764            match Pin::get_unchecked_mut(self).as_mut() {
765                Some(x) => Some(Pin::new_unchecked(x)),
766                None => None,
767            }
768        }
769    }
770
771    #[inline]
772    const fn len(&self) -> usize {
773        // Using the intrinsic avoids emitting a branch to get the 0 or 1.
774        let discriminant: isize = crate::intrinsics::discriminant_value(self);
775        discriminant as usize
776    }
777
778    /// Returns a slice of the contained value, if any. If this is `None`, an
779    /// empty slice is returned. This can be useful to have a single type of
780    /// iterator over an `Option` or slice.
781    ///
782    /// Note: Should you have an `Option<&T>` and wish to get a slice of `T`,
783    /// you can unpack it via `opt.map_or(&[], std::slice::from_ref)`.
784    ///
785    /// # Examples
786    ///
787    /// ```rust
788    /// assert_eq!(
789    ///     [Some(1234).as_slice(), None.as_slice()],
790    ///     [&[1234][..], &[][..]],
791    /// );
792    /// ```
793    ///
794    /// The inverse of this function is (discounting
795    /// borrowing) [`[_]::first`](slice::first):
796    ///
797    /// ```rust
798    /// for i in [Some(1234_u16), None] {
799    ///     assert_eq!(i.as_ref(), i.as_slice().first());
800    /// }
801    /// ```
802    #[inline]
803    #[must_use]
804    #[stable(feature = "option_as_slice", since = "1.75.0")]
805    #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
806    pub const fn as_slice(&self) -> &[T] {
807        // SAFETY: When the `Option` is `Some`, we're using the actual pointer
808        // to the payload, with a length of 1, so this is equivalent to
809        // `slice::from_ref`, and thus is safe.
810        // When the `Option` is `None`, the length used is 0, so to be safe it
811        // just needs to be aligned, which it is because `&self` is aligned and
812        // the offset used is a multiple of alignment.
813        //
814        // In the new version, the intrinsic always returns a pointer to an
815        // in-bounds and correctly aligned position for a `T` (even if in the
816        // `None` case it's just padding).
817        unsafe {
818            slice::from_raw_parts(
819                (self as *const Self).byte_add(core::mem::offset_of!(Self, Some.0)).cast(),
820                self.len(),
821            )
822        }
823    }
824
825    /// Returns a mutable slice of the contained value, if any. If this is
826    /// `None`, an empty slice is returned. This can be useful to have a
827    /// single type of iterator over an `Option` or slice.
828    ///
829    /// Note: Should you have an `Option<&mut T>` instead of a
830    /// `&mut Option<T>`, which this method takes, you can obtain a mutable
831    /// slice via `opt.map_or(&mut [], std::slice::from_mut)`.
832    ///
833    /// # Examples
834    ///
835    /// ```rust
836    /// assert_eq!(
837    ///     [Some(1234).as_mut_slice(), None.as_mut_slice()],
838    ///     [&mut [1234][..], &mut [][..]],
839    /// );
840    /// ```
841    ///
842    /// The result is a mutable slice of zero or one items that points into
843    /// our original `Option`:
844    ///
845    /// ```rust
846    /// let mut x = Some(1234);
847    /// x.as_mut_slice()[0] += 1;
848    /// assert_eq!(x, Some(1235));
849    /// ```
850    ///
851    /// The inverse of this method (discounting borrowing)
852    /// is [`[_]::first_mut`](slice::first_mut):
853    ///
854    /// ```rust
855    /// assert_eq!(Some(123).as_mut_slice().first_mut(), Some(&mut 123))
856    /// ```
857    #[inline]
858    #[must_use]
859    #[stable(feature = "option_as_slice", since = "1.75.0")]
860    #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
861    pub const fn as_mut_slice(&mut self) -> &mut [T] {
862        // SAFETY: When the `Option` is `Some`, we're using the actual pointer
863        // to the payload, with a length of 1, so this is equivalent to
864        // `slice::from_mut`, and thus is safe.
865        // When the `Option` is `None`, the length used is 0, so to be safe it
866        // just needs to be aligned, which it is because `&self` is aligned and
867        // the offset used is a multiple of alignment.
868        //
869        // In the new version, the intrinsic creates a `*const T` from a
870        // mutable reference  so it is safe to cast back to a mutable pointer
871        // here. As with `as_slice`, the intrinsic always returns a pointer to
872        // an in-bounds and correctly aligned position for a `T` (even if in
873        // the `None` case it's just padding).
874        unsafe {
875            slice::from_raw_parts_mut(
876                (self as *mut Self).byte_add(core::mem::offset_of!(Self, Some.0)).cast(),
877                self.len(),
878            )
879        }
880    }
881
882    /////////////////////////////////////////////////////////////////////////
883    // Getting to contained values
884    /////////////////////////////////////////////////////////////////////////
885
886    /// Returns the contained [`Some`] value, consuming the `self` value.
887    ///
888    /// # Panics
889    ///
890    /// Panics if the value is a [`None`] with a custom panic message provided by
891    /// `msg`.
892    ///
893    /// # Examples
894    ///
895    /// ```
896    /// let x = Some("value");
897    /// assert_eq!(x.expect("fruits are healthy"), "value");
898    /// ```
899    ///
900    /// ```should_panic
901    /// let x: Option<&str> = None;
902    /// x.expect("fruits are healthy"); // panics with `fruits are healthy`
903    /// ```
904    ///
905    /// # Recommended Message Style
906    ///
907    /// We recommend that `expect` messages are used to describe the reason you
908    /// _expect_ the `Option` should be `Some`.
909    ///
910    /// ```should_panic
911    /// # let slice: &[u8] = &[];
912    /// let item = slice.get(0)
913    ///     .expect("slice should not be empty");
914    /// ```
915    ///
916    /// **Hint**: If you're having trouble remembering how to phrase expect
917    /// error messages remember to focus on the word "should" as in "env
918    /// variable should be set by blah" or "the given binary should be available
919    /// and executable by the current user".
920    ///
921    /// For more detail on expect message styles and the reasoning behind our
922    /// recommendation please refer to the section on ["Common Message
923    /// Styles"](../../std/error/index.html#common-message-styles) in the [`std::error`](../../std/error/index.html) module docs.
924    #[inline]
925    #[track_caller]
926    #[stable(feature = "rust1", since = "1.0.0")]
927    #[rustc_diagnostic_item = "option_expect"]
928    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
929    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
930    pub const fn expect(self, msg: &str) -> T {
931        match self {
932            Some(val) => val,
933            None => expect_failed(msg),
934        }
935    }
936
937    /// Returns the contained [`Some`] value, consuming the `self` value.
938    ///
939    /// Because this function may panic, its use is generally discouraged.
940    /// Panics are meant for unrecoverable errors, and
941    /// [may abort the entire program][panic-abort].
942    ///
943    /// Instead, prefer to use pattern matching and handle the [`None`]
944    /// case explicitly, or call [`unwrap_or`], [`unwrap_or_else`], or
945    /// [`unwrap_or_default`]. In functions returning `Option`, you can use
946    /// [the `?` (try) operator][try-option].
947    ///
948    /// [panic-abort]: https://doc.rust-lang.org/book/ch09-01-unrecoverable-errors-with-panic.html
949    /// [try-option]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#where-the--operator-can-be-used
950    /// [`unwrap_or`]: Option::unwrap_or
951    /// [`unwrap_or_else`]: Option::unwrap_or_else
952    /// [`unwrap_or_default`]: Option::unwrap_or_default
953    ///
954    /// # Panics
955    ///
956    /// Panics if the self value equals [`None`].
957    ///
958    /// # Examples
959    ///
960    /// ```
961    /// let x = Some("air");
962    /// assert_eq!(x.unwrap(), "air");
963    /// ```
964    ///
965    /// ```should_panic
966    /// let x: Option<&str> = None;
967    /// assert_eq!(x.unwrap(), "air"); // fails
968    /// ```
969    #[inline(always)]
970    #[track_caller]
971    #[stable(feature = "rust1", since = "1.0.0")]
972    #[rustc_diagnostic_item = "option_unwrap"]
973    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
974    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
975    pub const fn unwrap(self) -> T {
976        match self {
977            Some(val) => val,
978            None => unwrap_failed(),
979        }
980    }
981
982    /// Returns the contained [`Some`] value or a provided default.
983    ///
984    /// Arguments passed to `unwrap_or` are eagerly evaluated; if you are passing
985    /// the result of a function call, it is recommended to use [`unwrap_or_else`],
986    /// which is lazily evaluated.
987    ///
988    /// [`unwrap_or_else`]: Option::unwrap_or_else
989    ///
990    /// # Examples
991    ///
992    /// ```
993    /// assert_eq!(Some("car").unwrap_or("bike"), "car");
994    /// assert_eq!(None.unwrap_or("bike"), "bike");
995    /// ```
996    #[inline]
997    #[stable(feature = "rust1", since = "1.0.0")]
998    pub fn unwrap_or(self, default: T) -> T {
999        match self {
1000            Some(x) => x,
1001            None => default,
1002        }
1003    }
1004
1005    /// Returns the contained [`Some`] value or computes it from a closure.
1006    ///
1007    /// # Examples
1008    ///
1009    /// ```
1010    /// let k = 10;
1011    /// assert_eq!(Some(4).unwrap_or_else(|| 2 * k), 4);
1012    /// assert_eq!(None.unwrap_or_else(|| 2 * k), 20);
1013    /// ```
1014    #[inline]
1015    #[track_caller]
1016    #[stable(feature = "rust1", since = "1.0.0")]
1017    pub fn unwrap_or_else<F>(self, f: F) -> T
1018    where
1019        F: FnOnce() -> T,
1020    {
1021        match self {
1022            Some(x) => x,
1023            None => f(),
1024        }
1025    }
1026
1027    /// Returns the contained [`Some`] value or a default.
1028    ///
1029    /// Consumes the `self` argument then, if [`Some`], returns the contained
1030    /// value, otherwise if [`None`], returns the [default value] for that
1031    /// type.
1032    ///
1033    /// # Examples
1034    ///
1035    /// ```
1036    /// let x: Option<u32> = None;
1037    /// let y: Option<u32> = Some(12);
1038    ///
1039    /// assert_eq!(x.unwrap_or_default(), 0);
1040    /// assert_eq!(y.unwrap_or_default(), 12);
1041    /// ```
1042    ///
1043    /// [default value]: Default::default
1044    /// [`parse`]: str::parse
1045    /// [`FromStr`]: crate::str::FromStr
1046    #[inline]
1047    #[stable(feature = "rust1", since = "1.0.0")]
1048    pub fn unwrap_or_default(self) -> T
1049    where
1050        T: Default,
1051    {
1052        match self {
1053            Some(x) => x,
1054            None => T::default(),
1055        }
1056    }
1057
1058    /// Returns the contained [`Some`] value, consuming the `self` value,
1059    /// without checking that the value is not [`None`].
1060    ///
1061    /// # Safety
1062    ///
1063    /// Calling this method on [`None`] is *[undefined behavior]*.
1064    ///
1065    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1066    ///
1067    /// # Examples
1068    ///
1069    /// ```
1070    /// let x = Some("air");
1071    /// assert_eq!(unsafe { x.unwrap_unchecked() }, "air");
1072    /// ```
1073    ///
1074    /// ```no_run
1075    /// let x: Option<&str> = None;
1076    /// assert_eq!(unsafe { x.unwrap_unchecked() }, "air"); // Undefined behavior!
1077    /// ```
1078    #[inline]
1079    #[track_caller]
1080    #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1081    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1082    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1083    pub const unsafe fn unwrap_unchecked(self) -> T {
1084        match self {
1085            Some(val) => val,
1086            // SAFETY: the safety contract must be upheld by the caller.
1087            None => unsafe { hint::unreachable_unchecked() },
1088        }
1089    }
1090
1091    /////////////////////////////////////////////////////////////////////////
1092    // Transforming contained values
1093    /////////////////////////////////////////////////////////////////////////
1094
1095    /// Maps an `Option<T>` to `Option<U>` by applying a function to a contained value (if `Some`) or returns `None` (if `None`).
1096    ///
1097    /// # Examples
1098    ///
1099    /// Calculates the length of an <code>Option<[String]></code> as an
1100    /// <code>Option<[usize]></code>, consuming the original:
1101    ///
1102    /// [String]: ../../std/string/struct.String.html "String"
1103    /// ```
1104    /// let maybe_some_string = Some(String::from("Hello, World!"));
1105    /// // `Option::map` takes self *by value*, consuming `maybe_some_string`
1106    /// let maybe_some_len = maybe_some_string.map(|s| s.len());
1107    /// assert_eq!(maybe_some_len, Some(13));
1108    ///
1109    /// let x: Option<&str> = None;
1110    /// assert_eq!(x.map(|s| s.len()), None);
1111    /// ```
1112    #[inline]
1113    #[stable(feature = "rust1", since = "1.0.0")]
1114    pub fn map<U, F>(self, f: F) -> Option<U>
1115    where
1116        F: FnOnce(T) -> U,
1117    {
1118        match self {
1119            Some(x) => Some(f(x)),
1120            None => None,
1121        }
1122    }
1123
1124    /// Calls a function with a reference to the contained value if [`Some`].
1125    ///
1126    /// Returns the original option.
1127    ///
1128    /// # Examples
1129    ///
1130    /// ```
1131    /// let list = vec![1, 2, 3];
1132    ///
1133    /// // prints "got: 2"
1134    /// let x = list
1135    ///     .get(1)
1136    ///     .inspect(|x| println!("got: {x}"))
1137    ///     .expect("list should be long enough");
1138    ///
1139    /// // prints nothing
1140    /// list.get(5).inspect(|x| println!("got: {x}"));
1141    /// ```
1142    #[inline]
1143    #[stable(feature = "result_option_inspect", since = "1.76.0")]
1144    pub fn inspect<F: FnOnce(&T)>(self, f: F) -> Self {
1145        if let Some(ref x) = self {
1146            f(x);
1147        }
1148
1149        self
1150    }
1151
1152    /// Returns the provided default result (if none),
1153    /// or applies a function to the contained value (if any).
1154    ///
1155    /// Arguments passed to `map_or` are eagerly evaluated; if you are passing
1156    /// the result of a function call, it is recommended to use [`map_or_else`],
1157    /// which is lazily evaluated.
1158    ///
1159    /// [`map_or_else`]: Option::map_or_else
1160    ///
1161    /// # Examples
1162    ///
1163    /// ```
1164    /// let x = Some("foo");
1165    /// assert_eq!(x.map_or(42, |v| v.len()), 3);
1166    ///
1167    /// let x: Option<&str> = None;
1168    /// assert_eq!(x.map_or(42, |v| v.len()), 42);
1169    /// ```
1170    #[inline]
1171    #[stable(feature = "rust1", since = "1.0.0")]
1172    #[must_use = "if you don't need the returned value, use `if let` instead"]
1173    pub fn map_or<U, F>(self, default: U, f: F) -> U
1174    where
1175        F: FnOnce(T) -> U,
1176    {
1177        match self {
1178            Some(t) => f(t),
1179            None => default,
1180        }
1181    }
1182
1183    /// Computes a default function result (if none), or
1184    /// applies a different function to the contained value (if any).
1185    ///
1186    /// # Basic examples
1187    ///
1188    /// ```
1189    /// let k = 21;
1190    ///
1191    /// let x = Some("foo");
1192    /// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 3);
1193    ///
1194    /// let x: Option<&str> = None;
1195    /// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 42);
1196    /// ```
1197    ///
1198    /// # Handling a Result-based fallback
1199    ///
1200    /// A somewhat common occurrence when dealing with optional values
1201    /// in combination with [`Result<T, E>`] is the case where one wants to invoke
1202    /// a fallible fallback if the option is not present.  This example
1203    /// parses a command line argument (if present), or the contents of a file to
1204    /// an integer.  However, unlike accessing the command line argument, reading
1205    /// the file is fallible, so it must be wrapped with `Ok`.
1206    ///
1207    /// ```no_run
1208    /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
1209    /// let v: u64 = std::env::args()
1210    ///    .nth(1)
1211    ///    .map_or_else(|| std::fs::read_to_string("/etc/someconfig.conf"), Ok)?
1212    ///    .parse()?;
1213    /// #   Ok(())
1214    /// # }
1215    /// ```
1216    #[inline]
1217    #[stable(feature = "rust1", since = "1.0.0")]
1218    pub fn map_or_else<U, D, F>(self, default: D, f: F) -> U
1219    where
1220        D: FnOnce() -> U,
1221        F: FnOnce(T) -> U,
1222    {
1223        match self {
1224            Some(t) => f(t),
1225            None => default(),
1226        }
1227    }
1228
1229    /// Transforms the `Option<T>` into a [`Result<T, E>`], mapping [`Some(v)`] to
1230    /// [`Ok(v)`] and [`None`] to [`Err(err)`].
1231    ///
1232    /// Arguments passed to `ok_or` are eagerly evaluated; if you are passing the
1233    /// result of a function call, it is recommended to use [`ok_or_else`], which is
1234    /// lazily evaluated.
1235    ///
1236    /// [`Ok(v)`]: Ok
1237    /// [`Err(err)`]: Err
1238    /// [`Some(v)`]: Some
1239    /// [`ok_or_else`]: Option::ok_or_else
1240    ///
1241    /// # Examples
1242    ///
1243    /// ```
1244    /// let x = Some("foo");
1245    /// assert_eq!(x.ok_or(0), Ok("foo"));
1246    ///
1247    /// let x: Option<&str> = None;
1248    /// assert_eq!(x.ok_or(0), Err(0));
1249    /// ```
1250    #[inline]
1251    #[stable(feature = "rust1", since = "1.0.0")]
1252    pub fn ok_or<E>(self, err: E) -> Result<T, E> {
1253        match self {
1254            Some(v) => Ok(v),
1255            None => Err(err),
1256        }
1257    }
1258
1259    /// Transforms the `Option<T>` into a [`Result<T, E>`], mapping [`Some(v)`] to
1260    /// [`Ok(v)`] and [`None`] to [`Err(err())`].
1261    ///
1262    /// [`Ok(v)`]: Ok
1263    /// [`Err(err())`]: Err
1264    /// [`Some(v)`]: Some
1265    ///
1266    /// # Examples
1267    ///
1268    /// ```
1269    /// let x = Some("foo");
1270    /// assert_eq!(x.ok_or_else(|| 0), Ok("foo"));
1271    ///
1272    /// let x: Option<&str> = None;
1273    /// assert_eq!(x.ok_or_else(|| 0), Err(0));
1274    /// ```
1275    #[inline]
1276    #[stable(feature = "rust1", since = "1.0.0")]
1277    pub fn ok_or_else<E, F>(self, err: F) -> Result<T, E>
1278    where
1279        F: FnOnce() -> E,
1280    {
1281        match self {
1282            Some(v) => Ok(v),
1283            None => Err(err()),
1284        }
1285    }
1286
1287    /// Converts from `Option<T>` (or `&Option<T>`) to `Option<&T::Target>`.
1288    ///
1289    /// Leaves the original Option in-place, creating a new one with a reference
1290    /// to the original one, additionally coercing the contents via [`Deref`].
1291    ///
1292    /// # Examples
1293    ///
1294    /// ```
1295    /// let x: Option<String> = Some("hey".to_owned());
1296    /// assert_eq!(x.as_deref(), Some("hey"));
1297    ///
1298    /// let x: Option<String> = None;
1299    /// assert_eq!(x.as_deref(), None);
1300    /// ```
1301    #[inline]
1302    #[stable(feature = "option_deref", since = "1.40.0")]
1303    pub fn as_deref(&self) -> Option<&T::Target>
1304    where
1305        T: Deref,
1306    {
1307        self.as_ref().map(|t| t.deref())
1308    }
1309
1310    /// Converts from `Option<T>` (or `&mut Option<T>`) to `Option<&mut T::Target>`.
1311    ///
1312    /// Leaves the original `Option` in-place, creating a new one containing a mutable reference to
1313    /// the inner type's [`Deref::Target`] type.
1314    ///
1315    /// # Examples
1316    ///
1317    /// ```
1318    /// let mut x: Option<String> = Some("hey".to_owned());
1319    /// assert_eq!(x.as_deref_mut().map(|x| {
1320    ///     x.make_ascii_uppercase();
1321    ///     x
1322    /// }), Some("HEY".to_owned().as_mut_str()));
1323    /// ```
1324    #[inline]
1325    #[stable(feature = "option_deref", since = "1.40.0")]
1326    pub fn as_deref_mut(&mut self) -> Option<&mut T::Target>
1327    where
1328        T: DerefMut,
1329    {
1330        self.as_mut().map(|t| t.deref_mut())
1331    }
1332
1333    /////////////////////////////////////////////////////////////////////////
1334    // Iterator constructors
1335    /////////////////////////////////////////////////////////////////////////
1336
1337    /// Returns an iterator over the possibly contained value.
1338    ///
1339    /// # Examples
1340    ///
1341    /// ```
1342    /// let x = Some(4);
1343    /// assert_eq!(x.iter().next(), Some(&4));
1344    ///
1345    /// let x: Option<u32> = None;
1346    /// assert_eq!(x.iter().next(), None);
1347    /// ```
1348    #[inline]
1349    #[stable(feature = "rust1", since = "1.0.0")]
1350    pub fn iter(&self) -> Iter<'_, T> {
1351        Iter { inner: Item { opt: self.as_ref() } }
1352    }
1353
1354    /// Returns a mutable iterator over the possibly contained value.
1355    ///
1356    /// # Examples
1357    ///
1358    /// ```
1359    /// let mut x = Some(4);
1360    /// match x.iter_mut().next() {
1361    ///     Some(v) => *v = 42,
1362    ///     None => {},
1363    /// }
1364    /// assert_eq!(x, Some(42));
1365    ///
1366    /// let mut x: Option<u32> = None;
1367    /// assert_eq!(x.iter_mut().next(), None);
1368    /// ```
1369    #[inline]
1370    #[stable(feature = "rust1", since = "1.0.0")]
1371    pub fn iter_mut(&mut self) -> IterMut<'_, T> {
1372        IterMut { inner: Item { opt: self.as_mut() } }
1373    }
1374
1375    /////////////////////////////////////////////////////////////////////////
1376    // Boolean operations on the values, eager and lazy
1377    /////////////////////////////////////////////////////////////////////////
1378
1379    /// Returns [`None`] if the option is [`None`], otherwise returns `optb`.
1380    ///
1381    /// Arguments passed to `and` are eagerly evaluated; if you are passing the
1382    /// result of a function call, it is recommended to use [`and_then`], which is
1383    /// lazily evaluated.
1384    ///
1385    /// [`and_then`]: Option::and_then
1386    ///
1387    /// # Examples
1388    ///
1389    /// ```
1390    /// let x = Some(2);
1391    /// let y: Option<&str> = None;
1392    /// assert_eq!(x.and(y), None);
1393    ///
1394    /// let x: Option<u32> = None;
1395    /// let y = Some("foo");
1396    /// assert_eq!(x.and(y), None);
1397    ///
1398    /// let x = Some(2);
1399    /// let y = Some("foo");
1400    /// assert_eq!(x.and(y), Some("foo"));
1401    ///
1402    /// let x: Option<u32> = None;
1403    /// let y: Option<&str> = None;
1404    /// assert_eq!(x.and(y), None);
1405    /// ```
1406    #[inline]
1407    #[stable(feature = "rust1", since = "1.0.0")]
1408    pub fn and<U>(self, optb: Option<U>) -> Option<U> {
1409        match self {
1410            Some(_) => optb,
1411            None => None,
1412        }
1413    }
1414
1415    /// Returns [`None`] if the option is [`None`], otherwise calls `f` with the
1416    /// wrapped value and returns the result.
1417    ///
1418    /// Some languages call this operation flatmap.
1419    ///
1420    /// # Examples
1421    ///
1422    /// ```
1423    /// fn sq_then_to_string(x: u32) -> Option<String> {
1424    ///     x.checked_mul(x).map(|sq| sq.to_string())
1425    /// }
1426    ///
1427    /// assert_eq!(Some(2).and_then(sq_then_to_string), Some(4.to_string()));
1428    /// assert_eq!(Some(1_000_000).and_then(sq_then_to_string), None); // overflowed!
1429    /// assert_eq!(None.and_then(sq_then_to_string), None);
1430    /// ```
1431    ///
1432    /// Often used to chain fallible operations that may return [`None`].
1433    ///
1434    /// ```
1435    /// let arr_2d = [["A0", "A1"], ["B0", "B1"]];
1436    ///
1437    /// let item_0_1 = arr_2d.get(0).and_then(|row| row.get(1));
1438    /// assert_eq!(item_0_1, Some(&"A1"));
1439    ///
1440    /// let item_2_0 = arr_2d.get(2).and_then(|row| row.get(0));
1441    /// assert_eq!(item_2_0, None);
1442    /// ```
1443    #[doc(alias = "flatmap")]
1444    #[inline]
1445    #[stable(feature = "rust1", since = "1.0.0")]
1446    #[rustc_confusables("flat_map", "flatmap")]
1447    pub fn and_then<U, F>(self, f: F) -> Option<U>
1448    where
1449        F: FnOnce(T) -> Option<U>,
1450    {
1451        match self {
1452            Some(x) => f(x),
1453            None => None,
1454        }
1455    }
1456
1457    /// Returns [`None`] if the option is [`None`], otherwise calls `predicate`
1458    /// with the wrapped value and returns:
1459    ///
1460    /// - [`Some(t)`] if `predicate` returns `true` (where `t` is the wrapped
1461    ///   value), and
1462    /// - [`None`] if `predicate` returns `false`.
1463    ///
1464    /// This function works similar to [`Iterator::filter()`]. You can imagine
1465    /// the `Option<T>` being an iterator over one or zero elements. `filter()`
1466    /// lets you decide which elements to keep.
1467    ///
1468    /// # Examples
1469    ///
1470    /// ```rust
1471    /// fn is_even(n: &i32) -> bool {
1472    ///     n % 2 == 0
1473    /// }
1474    ///
1475    /// assert_eq!(None.filter(is_even), None);
1476    /// assert_eq!(Some(3).filter(is_even), None);
1477    /// assert_eq!(Some(4).filter(is_even), Some(4));
1478    /// ```
1479    ///
1480    /// [`Some(t)`]: Some
1481    #[inline]
1482    #[stable(feature = "option_filter", since = "1.27.0")]
1483    pub fn filter<P>(self, predicate: P) -> Self
1484    where
1485        P: FnOnce(&T) -> bool,
1486    {
1487        if let Some(x) = self {
1488            if predicate(&x) {
1489                return Some(x);
1490            }
1491        }
1492        None
1493    }
1494
1495    /// Returns the option if it contains a value, otherwise returns `optb`.
1496    ///
1497    /// Arguments passed to `or` are eagerly evaluated; if you are passing the
1498    /// result of a function call, it is recommended to use [`or_else`], which is
1499    /// lazily evaluated.
1500    ///
1501    /// [`or_else`]: Option::or_else
1502    ///
1503    /// # Examples
1504    ///
1505    /// ```
1506    /// let x = Some(2);
1507    /// let y = None;
1508    /// assert_eq!(x.or(y), Some(2));
1509    ///
1510    /// let x = None;
1511    /// let y = Some(100);
1512    /// assert_eq!(x.or(y), Some(100));
1513    ///
1514    /// let x = Some(2);
1515    /// let y = Some(100);
1516    /// assert_eq!(x.or(y), Some(2));
1517    ///
1518    /// let x: Option<u32> = None;
1519    /// let y = None;
1520    /// assert_eq!(x.or(y), None);
1521    /// ```
1522    #[inline]
1523    #[stable(feature = "rust1", since = "1.0.0")]
1524    pub fn or(self, optb: Option<T>) -> Option<T> {
1525        match self {
1526            x @ Some(_) => x,
1527            None => optb,
1528        }
1529    }
1530
1531    /// Returns the option if it contains a value, otherwise calls `f` and
1532    /// returns the result.
1533    ///
1534    /// # Examples
1535    ///
1536    /// ```
1537    /// fn nobody() -> Option<&'static str> { None }
1538    /// fn vikings() -> Option<&'static str> { Some("vikings") }
1539    ///
1540    /// assert_eq!(Some("barbarians").or_else(vikings), Some("barbarians"));
1541    /// assert_eq!(None.or_else(vikings), Some("vikings"));
1542    /// assert_eq!(None.or_else(nobody), None);
1543    /// ```
1544    #[inline]
1545    #[stable(feature = "rust1", since = "1.0.0")]
1546    pub fn or_else<F>(self, f: F) -> Option<T>
1547    where
1548        F: FnOnce() -> Option<T>,
1549    {
1550        match self {
1551            x @ Some(_) => x,
1552            None => f(),
1553        }
1554    }
1555
1556    /// Returns [`Some`] if exactly one of `self`, `optb` is [`Some`], otherwise returns [`None`].
1557    ///
1558    /// # Examples
1559    ///
1560    /// ```
1561    /// let x = Some(2);
1562    /// let y: Option<u32> = None;
1563    /// assert_eq!(x.xor(y), Some(2));
1564    ///
1565    /// let x: Option<u32> = None;
1566    /// let y = Some(2);
1567    /// assert_eq!(x.xor(y), Some(2));
1568    ///
1569    /// let x = Some(2);
1570    /// let y = Some(2);
1571    /// assert_eq!(x.xor(y), None);
1572    ///
1573    /// let x: Option<u32> = None;
1574    /// let y: Option<u32> = None;
1575    /// assert_eq!(x.xor(y), None);
1576    /// ```
1577    #[inline]
1578    #[stable(feature = "option_xor", since = "1.37.0")]
1579    pub fn xor(self, optb: Option<T>) -> Option<T> {
1580        match (self, optb) {
1581            (a @ Some(_), None) => a,
1582            (None, b @ Some(_)) => b,
1583            _ => None,
1584        }
1585    }
1586
1587    /////////////////////////////////////////////////////////////////////////
1588    // Entry-like operations to insert a value and return a reference
1589    /////////////////////////////////////////////////////////////////////////
1590
1591    /// Inserts `value` into the option, then returns a mutable reference to it.
1592    ///
1593    /// If the option already contains a value, the old value is dropped.
1594    ///
1595    /// See also [`Option::get_or_insert`], which doesn't update the value if
1596    /// the option already contains [`Some`].
1597    ///
1598    /// # Example
1599    ///
1600    /// ```
1601    /// let mut opt = None;
1602    /// let val = opt.insert(1);
1603    /// assert_eq!(*val, 1);
1604    /// assert_eq!(opt.unwrap(), 1);
1605    /// let val = opt.insert(2);
1606    /// assert_eq!(*val, 2);
1607    /// *val = 3;
1608    /// assert_eq!(opt.unwrap(), 3);
1609    /// ```
1610    #[must_use = "if you intended to set a value, consider assignment instead"]
1611    #[inline]
1612    #[stable(feature = "option_insert", since = "1.53.0")]
1613    pub fn insert(&mut self, value: T) -> &mut T {
1614        *self = Some(value);
1615
1616        // SAFETY: the code above just filled the option
1617        unsafe { self.as_mut().unwrap_unchecked() }
1618    }
1619
1620    /// Inserts `value` into the option if it is [`None`], then
1621    /// returns a mutable reference to the contained value.
1622    ///
1623    /// See also [`Option::insert`], which updates the value even if
1624    /// the option already contains [`Some`].
1625    ///
1626    /// # Examples
1627    ///
1628    /// ```
1629    /// let mut x = None;
1630    ///
1631    /// {
1632    ///     let y: &mut u32 = x.get_or_insert(5);
1633    ///     assert_eq!(y, &5);
1634    ///
1635    ///     *y = 7;
1636    /// }
1637    ///
1638    /// assert_eq!(x, Some(7));
1639    /// ```
1640    #[inline]
1641    #[stable(feature = "option_entry", since = "1.20.0")]
1642    pub fn get_or_insert(&mut self, value: T) -> &mut T {
1643        self.get_or_insert_with(|| value)
1644    }
1645
1646    /// Inserts the default value into the option if it is [`None`], then
1647    /// returns a mutable reference to the contained value.
1648    ///
1649    /// # Examples
1650    ///
1651    /// ```
1652    /// let mut x = None;
1653    ///
1654    /// {
1655    ///     let y: &mut u32 = x.get_or_insert_default();
1656    ///     assert_eq!(y, &0);
1657    ///
1658    ///     *y = 7;
1659    /// }
1660    ///
1661    /// assert_eq!(x, Some(7));
1662    /// ```
1663    #[inline]
1664    #[stable(feature = "option_get_or_insert_default", since = "1.83.0")]
1665    pub fn get_or_insert_default(&mut self) -> &mut T
1666    where
1667        T: Default,
1668    {
1669        self.get_or_insert_with(T::default)
1670    }
1671
1672    /// Inserts a value computed from `f` into the option if it is [`None`],
1673    /// then returns a mutable reference to the contained value.
1674    ///
1675    /// # Examples
1676    ///
1677    /// ```
1678    /// let mut x = None;
1679    ///
1680    /// {
1681    ///     let y: &mut u32 = x.get_or_insert_with(|| 5);
1682    ///     assert_eq!(y, &5);
1683    ///
1684    ///     *y = 7;
1685    /// }
1686    ///
1687    /// assert_eq!(x, Some(7));
1688    /// ```
1689    #[inline]
1690    #[stable(feature = "option_entry", since = "1.20.0")]
1691    pub fn get_or_insert_with<F>(&mut self, f: F) -> &mut T
1692    where
1693        F: FnOnce() -> T,
1694    {
1695        if let None = self {
1696            *self = Some(f());
1697        }
1698
1699        // SAFETY: a `None` variant for `self` would have been replaced by a `Some`
1700        // variant in the code above.
1701        unsafe { self.as_mut().unwrap_unchecked() }
1702    }
1703
1704    /////////////////////////////////////////////////////////////////////////
1705    // Misc
1706    /////////////////////////////////////////////////////////////////////////
1707
1708    /// Takes the value out of the option, leaving a [`None`] in its place.
1709    ///
1710    /// # Examples
1711    ///
1712    /// ```
1713    /// let mut x = Some(2);
1714    /// let y = x.take();
1715    /// assert_eq!(x, None);
1716    /// assert_eq!(y, Some(2));
1717    ///
1718    /// let mut x: Option<u32> = None;
1719    /// let y = x.take();
1720    /// assert_eq!(x, None);
1721    /// assert_eq!(y, None);
1722    /// ```
1723    #[inline]
1724    #[stable(feature = "rust1", since = "1.0.0")]
1725    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1726    pub const fn take(&mut self) -> Option<T> {
1727        // FIXME(const-hack) replace `mem::replace` by `mem::take` when the latter is const ready
1728        mem::replace(self, None)
1729    }
1730
1731    /// Takes the value out of the option, but only if the predicate evaluates to
1732    /// `true` on a mutable reference to the value.
1733    ///
1734    /// In other words, replaces `self` with `None` if the predicate returns `true`.
1735    /// This method operates similar to [`Option::take`] but conditional.
1736    ///
1737    /// # Examples
1738    ///
1739    /// ```
1740    /// let mut x = Some(42);
1741    ///
1742    /// let prev = x.take_if(|v| if *v == 42 {
1743    ///     *v += 1;
1744    ///     false
1745    /// } else {
1746    ///     false
1747    /// });
1748    /// assert_eq!(x, Some(43));
1749    /// assert_eq!(prev, None);
1750    ///
1751    /// let prev = x.take_if(|v| *v == 43);
1752    /// assert_eq!(x, None);
1753    /// assert_eq!(prev, Some(43));
1754    /// ```
1755    #[inline]
1756    #[stable(feature = "option_take_if", since = "1.80.0")]
1757    pub fn take_if<P>(&mut self, predicate: P) -> Option<T>
1758    where
1759        P: FnOnce(&mut T) -> bool,
1760    {
1761        if self.as_mut().map_or(false, predicate) { self.take() } else { None }
1762    }
1763
1764    /// Replaces the actual value in the option by the value given in parameter,
1765    /// returning the old value if present,
1766    /// leaving a [`Some`] in its place without deinitializing either one.
1767    ///
1768    /// # Examples
1769    ///
1770    /// ```
1771    /// let mut x = Some(2);
1772    /// let old = x.replace(5);
1773    /// assert_eq!(x, Some(5));
1774    /// assert_eq!(old, Some(2));
1775    ///
1776    /// let mut x = None;
1777    /// let old = x.replace(3);
1778    /// assert_eq!(x, Some(3));
1779    /// assert_eq!(old, None);
1780    /// ```
1781    #[inline]
1782    #[stable(feature = "option_replace", since = "1.31.0")]
1783    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1784    pub const fn replace(&mut self, value: T) -> Option<T> {
1785        mem::replace(self, Some(value))
1786    }
1787
1788    /// Zips `self` with another `Option`.
1789    ///
1790    /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some((s, o))`.
1791    /// Otherwise, `None` is returned.
1792    ///
1793    /// # Examples
1794    ///
1795    /// ```
1796    /// let x = Some(1);
1797    /// let y = Some("hi");
1798    /// let z = None::<u8>;
1799    ///
1800    /// assert_eq!(x.zip(y), Some((1, "hi")));
1801    /// assert_eq!(x.zip(z), None);
1802    /// ```
1803    #[stable(feature = "option_zip_option", since = "1.46.0")]
1804    pub fn zip<U>(self, other: Option<U>) -> Option<(T, U)> {
1805        match (self, other) {
1806            (Some(a), Some(b)) => Some((a, b)),
1807            _ => None,
1808        }
1809    }
1810
1811    /// Zips `self` and another `Option` with function `f`.
1812    ///
1813    /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some(f(s, o))`.
1814    /// Otherwise, `None` is returned.
1815    ///
1816    /// # Examples
1817    ///
1818    /// ```
1819    /// #![feature(option_zip)]
1820    ///
1821    /// #[derive(Debug, PartialEq)]
1822    /// struct Point {
1823    ///     x: f64,
1824    ///     y: f64,
1825    /// }
1826    ///
1827    /// impl Point {
1828    ///     fn new(x: f64, y: f64) -> Self {
1829    ///         Self { x, y }
1830    ///     }
1831    /// }
1832    ///
1833    /// let x = Some(17.5);
1834    /// let y = Some(42.7);
1835    ///
1836    /// assert_eq!(x.zip_with(y, Point::new), Some(Point { x: 17.5, y: 42.7 }));
1837    /// assert_eq!(x.zip_with(None, Point::new), None);
1838    /// ```
1839    #[unstable(feature = "option_zip", issue = "70086")]
1840    pub fn zip_with<U, F, R>(self, other: Option<U>, f: F) -> Option<R>
1841    where
1842        F: FnOnce(T, U) -> R,
1843    {
1844        match (self, other) {
1845            (Some(a), Some(b)) => Some(f(a, b)),
1846            _ => None,
1847        }
1848    }
1849}
1850
1851impl<T, U> Option<(T, U)> {
1852    /// Unzips an option containing a tuple of two options.
1853    ///
1854    /// If `self` is `Some((a, b))` this method returns `(Some(a), Some(b))`.
1855    /// Otherwise, `(None, None)` is returned.
1856    ///
1857    /// # Examples
1858    ///
1859    /// ```
1860    /// let x = Some((1, "hi"));
1861    /// let y = None::<(u8, u32)>;
1862    ///
1863    /// assert_eq!(x.unzip(), (Some(1), Some("hi")));
1864    /// assert_eq!(y.unzip(), (None, None));
1865    /// ```
1866    #[inline]
1867    #[stable(feature = "unzip_option", since = "1.66.0")]
1868    pub fn unzip(self) -> (Option<T>, Option<U>) {
1869        match self {
1870            Some((a, b)) => (Some(a), Some(b)),
1871            None => (None, None),
1872        }
1873    }
1874}
1875
1876impl<T> Option<&T> {
1877    /// Maps an `Option<&T>` to an `Option<T>` by copying the contents of the
1878    /// option.
1879    ///
1880    /// # Examples
1881    ///
1882    /// ```
1883    /// let x = 12;
1884    /// let opt_x = Some(&x);
1885    /// assert_eq!(opt_x, Some(&12));
1886    /// let copied = opt_x.copied();
1887    /// assert_eq!(copied, Some(12));
1888    /// ```
1889    #[must_use = "`self` will be dropped if the result is not used"]
1890    #[stable(feature = "copied", since = "1.35.0")]
1891    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1892    pub const fn copied(self) -> Option<T>
1893    where
1894        T: Copy,
1895    {
1896        // FIXME(const-hack): this implementation, which sidesteps using `Option::map` since it's not const
1897        // ready yet, should be reverted when possible to avoid code repetition
1898        match self {
1899            Some(&v) => Some(v),
1900            None => None,
1901        }
1902    }
1903
1904    /// Maps an `Option<&T>` to an `Option<T>` by cloning the contents of the
1905    /// option.
1906    ///
1907    /// # Examples
1908    ///
1909    /// ```
1910    /// let x = 12;
1911    /// let opt_x = Some(&x);
1912    /// assert_eq!(opt_x, Some(&12));
1913    /// let cloned = opt_x.cloned();
1914    /// assert_eq!(cloned, Some(12));
1915    /// ```
1916    #[must_use = "`self` will be dropped if the result is not used"]
1917    #[stable(feature = "rust1", since = "1.0.0")]
1918    pub fn cloned(self) -> Option<T>
1919    where
1920        T: Clone,
1921    {
1922        match self {
1923            Some(t) => Some(t.clone()),
1924            None => None,
1925        }
1926    }
1927}
1928
1929impl<T> Option<&mut T> {
1930    /// Maps an `Option<&mut T>` to an `Option<T>` by copying the contents of the
1931    /// option.
1932    ///
1933    /// # Examples
1934    ///
1935    /// ```
1936    /// let mut x = 12;
1937    /// let opt_x = Some(&mut x);
1938    /// assert_eq!(opt_x, Some(&mut 12));
1939    /// let copied = opt_x.copied();
1940    /// assert_eq!(copied, Some(12));
1941    /// ```
1942    #[must_use = "`self` will be dropped if the result is not used"]
1943    #[stable(feature = "copied", since = "1.35.0")]
1944    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1945    pub const fn copied(self) -> Option<T>
1946    where
1947        T: Copy,
1948    {
1949        match self {
1950            Some(&mut t) => Some(t),
1951            None => None,
1952        }
1953    }
1954
1955    /// Maps an `Option<&mut T>` to an `Option<T>` by cloning the contents of the
1956    /// option.
1957    ///
1958    /// # Examples
1959    ///
1960    /// ```
1961    /// let mut x = 12;
1962    /// let opt_x = Some(&mut x);
1963    /// assert_eq!(opt_x, Some(&mut 12));
1964    /// let cloned = opt_x.cloned();
1965    /// assert_eq!(cloned, Some(12));
1966    /// ```
1967    #[must_use = "`self` will be dropped if the result is not used"]
1968    #[stable(since = "1.26.0", feature = "option_ref_mut_cloned")]
1969    pub fn cloned(self) -> Option<T>
1970    where
1971        T: Clone,
1972    {
1973        match self {
1974            Some(t) => Some(t.clone()),
1975            None => None,
1976        }
1977    }
1978}
1979
1980impl<T, E> Option<Result<T, E>> {
1981    /// Transposes an `Option` of a [`Result`] into a [`Result`] of an `Option`.
1982    ///
1983    /// [`None`] will be mapped to <code>[Ok]\([None])</code>.
1984    /// <code>[Some]\([Ok]\(\_))</code> and <code>[Some]\([Err]\(\_))</code> will be mapped to
1985    /// <code>[Ok]\([Some]\(\_))</code> and <code>[Err]\(\_)</code>.
1986    ///
1987    /// # Examples
1988    ///
1989    /// ```
1990    /// #[derive(Debug, Eq, PartialEq)]
1991    /// struct SomeErr;
1992    ///
1993    /// let x: Result<Option<i32>, SomeErr> = Ok(Some(5));
1994    /// let y: Option<Result<i32, SomeErr>> = Some(Ok(5));
1995    /// assert_eq!(x, y.transpose());
1996    /// ```
1997    #[inline]
1998    #[stable(feature = "transpose_result", since = "1.33.0")]
1999    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2000    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2001    pub const fn transpose(self) -> Result<Option<T>, E> {
2002        match self {
2003            Some(Ok(x)) => Ok(Some(x)),
2004            Some(Err(e)) => Err(e),
2005            None => Ok(None),
2006        }
2007    }
2008}
2009
2010#[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
2011#[cfg_attr(feature = "panic_immediate_abort", inline)]
2012#[cold]
2013#[track_caller]
2014const fn unwrap_failed() -> ! {
2015    panic("called `Option::unwrap()` on a `None` value")
2016}
2017
2018// This is a separate function to reduce the code size of .expect() itself.
2019#[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
2020#[cfg_attr(feature = "panic_immediate_abort", inline)]
2021#[cold]
2022#[track_caller]
2023const fn expect_failed(msg: &str) -> ! {
2024    panic_display(&msg)
2025}
2026
2027/////////////////////////////////////////////////////////////////////////////
2028// Trait implementations
2029/////////////////////////////////////////////////////////////////////////////
2030
2031#[stable(feature = "rust1", since = "1.0.0")]
2032impl<T> Clone for Option<T>
2033where
2034    T: Clone,
2035{
2036    #[inline]
2037    fn clone(&self) -> Self {
2038        match self {
2039            Some(x) => Some(x.clone()),
2040            None => None,
2041        }
2042    }
2043
2044    #[inline]
2045    fn clone_from(&mut self, source: &Self) {
2046        match (self, source) {
2047            (Some(to), Some(from)) => to.clone_from(from),
2048            (to, from) => *to = from.clone(),
2049        }
2050    }
2051}
2052
2053#[unstable(feature = "ergonomic_clones", issue = "132290")]
2054impl<T> crate::clone::UseCloned for Option<T> where T: crate::clone::UseCloned {}
2055
2056#[stable(feature = "rust1", since = "1.0.0")]
2057impl<T> Default for Option<T> {
2058    /// Returns [`None`][Option::None].
2059    ///
2060    /// # Examples
2061    ///
2062    /// ```
2063    /// let opt: Option<u32> = Option::default();
2064    /// assert!(opt.is_none());
2065    /// ```
2066    #[inline]
2067    fn default() -> Option<T> {
2068        None
2069    }
2070}
2071
2072#[stable(feature = "rust1", since = "1.0.0")]
2073impl<T> IntoIterator for Option<T> {
2074    type Item = T;
2075    type IntoIter = IntoIter<T>;
2076
2077    /// Returns a consuming iterator over the possibly contained value.
2078    ///
2079    /// # Examples
2080    ///
2081    /// ```
2082    /// let x = Some("string");
2083    /// let v: Vec<&str> = x.into_iter().collect();
2084    /// assert_eq!(v, ["string"]);
2085    ///
2086    /// let x = None;
2087    /// let v: Vec<&str> = x.into_iter().collect();
2088    /// assert!(v.is_empty());
2089    /// ```
2090    #[inline]
2091    fn into_iter(self) -> IntoIter<T> {
2092        IntoIter { inner: Item { opt: self } }
2093    }
2094}
2095
2096#[stable(since = "1.4.0", feature = "option_iter")]
2097impl<'a, T> IntoIterator for &'a Option<T> {
2098    type Item = &'a T;
2099    type IntoIter = Iter<'a, T>;
2100
2101    fn into_iter(self) -> Iter<'a, T> {
2102        self.iter()
2103    }
2104}
2105
2106#[stable(since = "1.4.0", feature = "option_iter")]
2107impl<'a, T> IntoIterator for &'a mut Option<T> {
2108    type Item = &'a mut T;
2109    type IntoIter = IterMut<'a, T>;
2110
2111    fn into_iter(self) -> IterMut<'a, T> {
2112        self.iter_mut()
2113    }
2114}
2115
2116#[stable(since = "1.12.0", feature = "option_from")]
2117impl<T> From<T> for Option<T> {
2118    /// Moves `val` into a new [`Some`].
2119    ///
2120    /// # Examples
2121    ///
2122    /// ```
2123    /// let o: Option<u8> = Option::from(67);
2124    ///
2125    /// assert_eq!(Some(67), o);
2126    /// ```
2127    fn from(val: T) -> Option<T> {
2128        Some(val)
2129    }
2130}
2131
2132#[stable(feature = "option_ref_from_ref_option", since = "1.30.0")]
2133impl<'a, T> From<&'a Option<T>> for Option<&'a T> {
2134    /// Converts from `&Option<T>` to `Option<&T>`.
2135    ///
2136    /// # Examples
2137    ///
2138    /// Converts an <code>[Option]<[String]></code> into an <code>[Option]<[usize]></code>, preserving
2139    /// the original. The [`map`] method takes the `self` argument by value, consuming the original,
2140    /// so this technique uses `from` to first take an [`Option`] to a reference
2141    /// to the value inside the original.
2142    ///
2143    /// [`map`]: Option::map
2144    /// [String]: ../../std/string/struct.String.html "String"
2145    ///
2146    /// ```
2147    /// let s: Option<String> = Some(String::from("Hello, Rustaceans!"));
2148    /// let o: Option<usize> = Option::from(&s).map(|ss: &String| ss.len());
2149    ///
2150    /// println!("Can still print s: {s:?}");
2151    ///
2152    /// assert_eq!(o, Some(18));
2153    /// ```
2154    fn from(o: &'a Option<T>) -> Option<&'a T> {
2155        o.as_ref()
2156    }
2157}
2158
2159#[stable(feature = "option_ref_from_ref_option", since = "1.30.0")]
2160impl<'a, T> From<&'a mut Option<T>> for Option<&'a mut T> {
2161    /// Converts from `&mut Option<T>` to `Option<&mut T>`
2162    ///
2163    /// # Examples
2164    ///
2165    /// ```
2166    /// let mut s = Some(String::from("Hello"));
2167    /// let o: Option<&mut String> = Option::from(&mut s);
2168    ///
2169    /// match o {
2170    ///     Some(t) => *t = String::from("Hello, Rustaceans!"),
2171    ///     None => (),
2172    /// }
2173    ///
2174    /// assert_eq!(s, Some(String::from("Hello, Rustaceans!")));
2175    /// ```
2176    fn from(o: &'a mut Option<T>) -> Option<&'a mut T> {
2177        o.as_mut()
2178    }
2179}
2180
2181// Ideally, LLVM should be able to optimize our derive code to this.
2182// Once https://github.com/llvm/llvm-project/issues/52622 is fixed, we can
2183// go back to deriving `PartialEq`.
2184#[stable(feature = "rust1", since = "1.0.0")]
2185impl<T> crate::marker::StructuralPartialEq for Option<T> {}
2186#[stable(feature = "rust1", since = "1.0.0")]
2187impl<T: PartialEq> PartialEq for Option<T> {
2188    #[inline]
2189    fn eq(&self, other: &Self) -> bool {
2190        // Spelling out the cases explicitly optimizes better than
2191        // `_ => false`
2192        match (self, other) {
2193            (Some(l), Some(r)) => *l == *r,
2194            (Some(_), None) => false,
2195            (None, Some(_)) => false,
2196            (None, None) => true,
2197        }
2198    }
2199}
2200
2201// Manually implementing here somewhat improves codegen for
2202// https://github.com/rust-lang/rust/issues/49892, although still
2203// not optimal.
2204#[stable(feature = "rust1", since = "1.0.0")]
2205impl<T: PartialOrd> PartialOrd for Option<T> {
2206    #[inline]
2207    fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
2208        match (self, other) {
2209            (Some(l), Some(r)) => l.partial_cmp(r),
2210            (Some(_), None) => Some(cmp::Ordering::Greater),
2211            (None, Some(_)) => Some(cmp::Ordering::Less),
2212            (None, None) => Some(cmp::Ordering::Equal),
2213        }
2214    }
2215}
2216
2217#[stable(feature = "rust1", since = "1.0.0")]
2218impl<T: Ord> Ord for Option<T> {
2219    #[inline]
2220    fn cmp(&self, other: &Self) -> cmp::Ordering {
2221        match (self, other) {
2222            (Some(l), Some(r)) => l.cmp(r),
2223            (Some(_), None) => cmp::Ordering::Greater,
2224            (None, Some(_)) => cmp::Ordering::Less,
2225            (None, None) => cmp::Ordering::Equal,
2226        }
2227    }
2228}
2229
2230/////////////////////////////////////////////////////////////////////////////
2231// The Option Iterators
2232/////////////////////////////////////////////////////////////////////////////
2233
2234#[derive(Clone, Debug)]
2235struct Item<A> {
2236    opt: Option<A>,
2237}
2238
2239impl<A> Iterator for Item<A> {
2240    type Item = A;
2241
2242    #[inline]
2243    fn next(&mut self) -> Option<A> {
2244        self.opt.take()
2245    }
2246
2247    #[inline]
2248    fn size_hint(&self) -> (usize, Option<usize>) {
2249        let len = self.len();
2250        (len, Some(len))
2251    }
2252}
2253
2254impl<A> DoubleEndedIterator for Item<A> {
2255    #[inline]
2256    fn next_back(&mut self) -> Option<A> {
2257        self.opt.take()
2258    }
2259}
2260
2261impl<A> ExactSizeIterator for Item<A> {
2262    #[inline]
2263    fn len(&self) -> usize {
2264        self.opt.len()
2265    }
2266}
2267impl<A> FusedIterator for Item<A> {}
2268unsafe impl<A> TrustedLen for Item<A> {}
2269
2270/// An iterator over a reference to the [`Some`] variant of an [`Option`].
2271///
2272/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2273///
2274/// This `struct` is created by the [`Option::iter`] function.
2275#[stable(feature = "rust1", since = "1.0.0")]
2276#[derive(Debug)]
2277pub struct Iter<'a, A: 'a> {
2278    inner: Item<&'a A>,
2279}
2280
2281#[stable(feature = "rust1", since = "1.0.0")]
2282impl<'a, A> Iterator for Iter<'a, A> {
2283    type Item = &'a A;
2284
2285    #[inline]
2286    fn next(&mut self) -> Option<&'a A> {
2287        self.inner.next()
2288    }
2289    #[inline]
2290    fn size_hint(&self) -> (usize, Option<usize>) {
2291        self.inner.size_hint()
2292    }
2293}
2294
2295#[stable(feature = "rust1", since = "1.0.0")]
2296impl<'a, A> DoubleEndedIterator for Iter<'a, A> {
2297    #[inline]
2298    fn next_back(&mut self) -> Option<&'a A> {
2299        self.inner.next_back()
2300    }
2301}
2302
2303#[stable(feature = "rust1", since = "1.0.0")]
2304impl<A> ExactSizeIterator for Iter<'_, A> {}
2305
2306#[stable(feature = "fused", since = "1.26.0")]
2307impl<A> FusedIterator for Iter<'_, A> {}
2308
2309#[unstable(feature = "trusted_len", issue = "37572")]
2310unsafe impl<A> TrustedLen for Iter<'_, A> {}
2311
2312#[stable(feature = "rust1", since = "1.0.0")]
2313impl<A> Clone for Iter<'_, A> {
2314    #[inline]
2315    fn clone(&self) -> Self {
2316        Iter { inner: self.inner.clone() }
2317    }
2318}
2319
2320/// An iterator over a mutable reference to the [`Some`] variant of an [`Option`].
2321///
2322/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2323///
2324/// This `struct` is created by the [`Option::iter_mut`] function.
2325#[stable(feature = "rust1", since = "1.0.0")]
2326#[derive(Debug)]
2327pub struct IterMut<'a, A: 'a> {
2328    inner: Item<&'a mut A>,
2329}
2330
2331#[stable(feature = "rust1", since = "1.0.0")]
2332impl<'a, A> Iterator for IterMut<'a, A> {
2333    type Item = &'a mut A;
2334
2335    #[inline]
2336    fn next(&mut self) -> Option<&'a mut A> {
2337        self.inner.next()
2338    }
2339    #[inline]
2340    fn size_hint(&self) -> (usize, Option<usize>) {
2341        self.inner.size_hint()
2342    }
2343}
2344
2345#[stable(feature = "rust1", since = "1.0.0")]
2346impl<'a, A> DoubleEndedIterator for IterMut<'a, A> {
2347    #[inline]
2348    fn next_back(&mut self) -> Option<&'a mut A> {
2349        self.inner.next_back()
2350    }
2351}
2352
2353#[stable(feature = "rust1", since = "1.0.0")]
2354impl<A> ExactSizeIterator for IterMut<'_, A> {}
2355
2356#[stable(feature = "fused", since = "1.26.0")]
2357impl<A> FusedIterator for IterMut<'_, A> {}
2358#[unstable(feature = "trusted_len", issue = "37572")]
2359unsafe impl<A> TrustedLen for IterMut<'_, A> {}
2360
2361/// An iterator over the value in [`Some`] variant of an [`Option`].
2362///
2363/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2364///
2365/// This `struct` is created by the [`Option::into_iter`] function.
2366#[derive(Clone, Debug)]
2367#[stable(feature = "rust1", since = "1.0.0")]
2368pub struct IntoIter<A> {
2369    inner: Item<A>,
2370}
2371
2372#[stable(feature = "rust1", since = "1.0.0")]
2373impl<A> Iterator for IntoIter<A> {
2374    type Item = A;
2375
2376    #[inline]
2377    fn next(&mut self) -> Option<A> {
2378        self.inner.next()
2379    }
2380    #[inline]
2381    fn size_hint(&self) -> (usize, Option<usize>) {
2382        self.inner.size_hint()
2383    }
2384}
2385
2386#[stable(feature = "rust1", since = "1.0.0")]
2387impl<A> DoubleEndedIterator for IntoIter<A> {
2388    #[inline]
2389    fn next_back(&mut self) -> Option<A> {
2390        self.inner.next_back()
2391    }
2392}
2393
2394#[stable(feature = "rust1", since = "1.0.0")]
2395impl<A> ExactSizeIterator for IntoIter<A> {}
2396
2397#[stable(feature = "fused", since = "1.26.0")]
2398impl<A> FusedIterator for IntoIter<A> {}
2399
2400#[unstable(feature = "trusted_len", issue = "37572")]
2401unsafe impl<A> TrustedLen for IntoIter<A> {}
2402
2403/////////////////////////////////////////////////////////////////////////////
2404// FromIterator
2405/////////////////////////////////////////////////////////////////////////////
2406
2407#[stable(feature = "rust1", since = "1.0.0")]
2408impl<A, V: FromIterator<A>> FromIterator<Option<A>> for Option<V> {
2409    /// Takes each element in the [`Iterator`]: if it is [`None`][Option::None],
2410    /// no further elements are taken, and the [`None`][Option::None] is
2411    /// returned. Should no [`None`][Option::None] occur, a container of type
2412    /// `V` containing the values of each [`Option`] is returned.
2413    ///
2414    /// # Examples
2415    ///
2416    /// Here is an example which increments every integer in a vector.
2417    /// We use the checked variant of `add` that returns `None` when the
2418    /// calculation would result in an overflow.
2419    ///
2420    /// ```
2421    /// let items = vec![0_u16, 1, 2];
2422    ///
2423    /// let res: Option<Vec<u16>> = items
2424    ///     .iter()
2425    ///     .map(|x| x.checked_add(1))
2426    ///     .collect();
2427    ///
2428    /// assert_eq!(res, Some(vec![1, 2, 3]));
2429    /// ```
2430    ///
2431    /// As you can see, this will return the expected, valid items.
2432    ///
2433    /// Here is another example that tries to subtract one from another list
2434    /// of integers, this time checking for underflow:
2435    ///
2436    /// ```
2437    /// let items = vec![2_u16, 1, 0];
2438    ///
2439    /// let res: Option<Vec<u16>> = items
2440    ///     .iter()
2441    ///     .map(|x| x.checked_sub(1))
2442    ///     .collect();
2443    ///
2444    /// assert_eq!(res, None);
2445    /// ```
2446    ///
2447    /// Since the last element is zero, it would underflow. Thus, the resulting
2448    /// value is `None`.
2449    ///
2450    /// Here is a variation on the previous example, showing that no
2451    /// further elements are taken from `iter` after the first `None`.
2452    ///
2453    /// ```
2454    /// let items = vec![3_u16, 2, 1, 10];
2455    ///
2456    /// let mut shared = 0;
2457    ///
2458    /// let res: Option<Vec<u16>> = items
2459    ///     .iter()
2460    ///     .map(|x| { shared += x; x.checked_sub(2) })
2461    ///     .collect();
2462    ///
2463    /// assert_eq!(res, None);
2464    /// assert_eq!(shared, 6);
2465    /// ```
2466    ///
2467    /// Since the third element caused an underflow, no further elements were taken,
2468    /// so the final value of `shared` is 6 (= `3 + 2 + 1`), not 16.
2469    #[inline]
2470    fn from_iter<I: IntoIterator<Item = Option<A>>>(iter: I) -> Option<V> {
2471        // FIXME(#11084): This could be replaced with Iterator::scan when this
2472        // performance bug is closed.
2473
2474        iter::try_process(iter.into_iter(), |i| i.collect())
2475    }
2476}
2477
2478#[unstable(feature = "try_trait_v2", issue = "84277")]
2479impl<T> ops::Try for Option<T> {
2480    type Output = T;
2481    type Residual = Option<convert::Infallible>;
2482
2483    #[inline]
2484    fn from_output(output: Self::Output) -> Self {
2485        Some(output)
2486    }
2487
2488    #[inline]
2489    fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
2490        match self {
2491            Some(v) => ControlFlow::Continue(v),
2492            None => ControlFlow::Break(None),
2493        }
2494    }
2495}
2496
2497#[unstable(feature = "try_trait_v2", issue = "84277")]
2498// Note: manually specifying the residual type instead of using the default to work around
2499// https://github.com/rust-lang/rust/issues/99940
2500impl<T> ops::FromResidual<Option<convert::Infallible>> for Option<T> {
2501    #[inline]
2502    fn from_residual(residual: Option<convert::Infallible>) -> Self {
2503        match residual {
2504            None => None,
2505        }
2506    }
2507}
2508
2509#[diagnostic::do_not_recommend]
2510#[unstable(feature = "try_trait_v2_yeet", issue = "96374")]
2511impl<T> ops::FromResidual<ops::Yeet<()>> for Option<T> {
2512    #[inline]
2513    fn from_residual(ops::Yeet(()): ops::Yeet<()>) -> Self {
2514        None
2515    }
2516}
2517
2518#[unstable(feature = "try_trait_v2_residual", issue = "91285")]
2519impl<T> ops::Residual<T> for Option<convert::Infallible> {
2520    type TryType = Option<T>;
2521}
2522
2523impl<T> Option<Option<T>> {
2524    /// Converts from `Option<Option<T>>` to `Option<T>`.
2525    ///
2526    /// # Examples
2527    ///
2528    /// Basic usage:
2529    ///
2530    /// ```
2531    /// let x: Option<Option<u32>> = Some(Some(6));
2532    /// assert_eq!(Some(6), x.flatten());
2533    ///
2534    /// let x: Option<Option<u32>> = Some(None);
2535    /// assert_eq!(None, x.flatten());
2536    ///
2537    /// let x: Option<Option<u32>> = None;
2538    /// assert_eq!(None, x.flatten());
2539    /// ```
2540    ///
2541    /// Flattening only removes one level of nesting at a time:
2542    ///
2543    /// ```
2544    /// let x: Option<Option<Option<u32>>> = Some(Some(Some(6)));
2545    /// assert_eq!(Some(Some(6)), x.flatten());
2546    /// assert_eq!(Some(6), x.flatten().flatten());
2547    /// ```
2548    #[inline]
2549    #[stable(feature = "option_flattening", since = "1.40.0")]
2550    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2551    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2552    pub const fn flatten(self) -> Option<T> {
2553        // FIXME(const-hack): could be written with `and_then`
2554        match self {
2555            Some(inner) => inner,
2556            None => None,
2557        }
2558    }
2559}
2560
2561impl<T, const N: usize> [Option<T>; N] {
2562    /// Transposes a `[Option<T>; N]` into a `Option<[T; N]>`.
2563    ///
2564    /// # Examples
2565    ///
2566    /// ```
2567    /// #![feature(option_array_transpose)]
2568    /// # use std::option::Option;
2569    ///
2570    /// let data = [Some(0); 1000];
2571    /// let data: Option<[u8; 1000]> = data.transpose();
2572    /// assert_eq!(data, Some([0; 1000]));
2573    ///
2574    /// let data = [Some(0), None];
2575    /// let data: Option<[u8; 2]> = data.transpose();
2576    /// assert_eq!(data, None);
2577    /// ```
2578    #[inline]
2579    #[unstable(feature = "option_array_transpose", issue = "130828")]
2580    pub fn transpose(self) -> Option<[T; N]> {
2581        self.try_map(core::convert::identity)
2582    }
2583}