core/
option.rs

1//! Optional values.
2//!
3//! Type [`Option`] represents an optional value: every [`Option`]
4//! is either [`Some`] and contains a value, or [`None`], and
5//! does not. [`Option`] types are very common in Rust code, as
6//! they have a number of uses:
7//!
8//! * Initial values
9//! * Return values for functions that are not defined
10//!   over their entire input range (partial functions)
11//! * Return value for otherwise reporting simple errors, where [`None`] is
12//!   returned on error
13//! * Optional struct fields
14//! * Struct fields that can be loaned or "taken"
15//! * Optional function arguments
16//! * Nullable pointers
17//! * Swapping things out of difficult situations
18//!
19//! [`Option`]s are commonly paired with pattern matching to query the presence
20//! of a value and take action, always accounting for the [`None`] case.
21//!
22//! ```
23//! fn divide(numerator: f64, denominator: f64) -> Option<f64> {
24//!     if denominator == 0.0 {
25//!         None
26//!     } else {
27//!         Some(numerator / denominator)
28//!     }
29//! }
30//!
31//! // The return value of the function is an option
32//! let result = divide(2.0, 3.0);
33//!
34//! // Pattern match to retrieve the value
35//! match result {
36//!     // The division was valid
37//!     Some(x) => println!("Result: {x}"),
38//!     // The division was invalid
39//!     None    => println!("Cannot divide by 0"),
40//! }
41//! ```
42//!
43//
44// FIXME: Show how `Option` is used in practice, with lots of methods
45//
46//! # Options and pointers ("nullable" pointers)
47//!
48//! Rust's pointer types must always point to a valid location; there are
49//! no "null" references. Instead, Rust has *optional* pointers, like
50//! the optional owned box, <code>[Option]<[Box\<T>]></code>.
51//!
52//! [Box\<T>]: ../../std/boxed/struct.Box.html
53//!
54//! The following example uses [`Option`] to create an optional box of
55//! [`i32`]. Notice that in order to use the inner [`i32`] value, the
56//! `check_optional` function first needs to use pattern matching to
57//! determine whether the box has a value (i.e., it is [`Some(...)`][`Some`]) or
58//! not ([`None`]).
59//!
60//! ```
61//! let optional = None;
62//! check_optional(optional);
63//!
64//! let optional = Some(Box::new(9000));
65//! check_optional(optional);
66//!
67//! fn check_optional(optional: Option<Box<i32>>) {
68//!     match optional {
69//!         Some(p) => println!("has value {p}"),
70//!         None => println!("has no value"),
71//!     }
72//! }
73//! ```
74//!
75//! # The question mark operator, `?`
76//!
77//! Similar to the [`Result`] type, when writing code that calls many functions that return the
78//! [`Option`] type, handling `Some`/`None` can be tedious. The question mark
79//! operator, [`?`], hides some of the boilerplate of propagating values
80//! up the call stack.
81//!
82//! It replaces this:
83//!
84//! ```
85//! # #![allow(dead_code)]
86//! fn add_last_numbers(stack: &mut Vec<i32>) -> Option<i32> {
87//!     let a = stack.pop();
88//!     let b = stack.pop();
89//!
90//!     match (a, b) {
91//!         (Some(x), Some(y)) => Some(x + y),
92//!         _ => None,
93//!     }
94//! }
95//!
96//! ```
97//!
98//! With this:
99//!
100//! ```
101//! # #![allow(dead_code)]
102//! fn add_last_numbers(stack: &mut Vec<i32>) -> Option<i32> {
103//!     Some(stack.pop()? + stack.pop()?)
104//! }
105//! ```
106//!
107//! *It's much nicer!*
108//!
109//! Ending the expression with [`?`] will result in the [`Some`]'s unwrapped value, unless the
110//! result is [`None`], in which case [`None`] is returned early from the enclosing function.
111//!
112//! [`?`] can be used in functions that return [`Option`] because of the
113//! early return of [`None`] that it provides.
114//!
115//! [`?`]: crate::ops::Try
116//! [`Some`]: Some
117//! [`None`]: None
118//!
119//! # Representation
120//!
121//! Rust guarantees to optimize the following types `T` such that [`Option<T>`]
122//! has the same size, alignment, and [function call ABI] as `T`. It is
123//! therefore sound, when `T` is one of these types, to transmute a value `t` of
124//! type `T` to type `Option<T>` (producing the value `Some(t)`) and to
125//! transmute a value `Some(t)` of type `Option<T>` to type `T` (producing the
126//! value `t`).
127//!
128//! In some of these cases, Rust further guarantees the following:
129//! - `transmute::<_, Option<T>>([0u8; size_of::<T>()])` is sound and produces
130//!   `Option::<T>::None`
131//! - `transmute::<_, [u8; size_of::<T>()]>(Option::<T>::None)` is sound and produces
132//!   `[0u8; size_of::<T>()]`
133//!
134//! These cases are identified by the second column:
135//!
136//! | `T`                                                                 | Transmuting between `[0u8; size_of::<T>()]` and `Option::<T>::None` sound? |
137//! |---------------------------------------------------------------------|----------------------------------------------------------------------------|
138//! | [`Box<U>`] (specifically, only `Box<U, Global>`)                    | when `U: Sized`                                                            |
139//! | `&U`                                                                | when `U: Sized`                                                            |
140//! | `&mut U`                                                            | when `U: Sized`                                                            |
141//! | `fn`, `extern "C" fn`[^extern_fn]                                   | always                                                                     |
142//! | [`num::NonZero*`]                                                   | always                                                                     |
143//! | [`ptr::NonNull<U>`]                                                 | when `U: Sized`                                                            |
144//! | `#[repr(transparent)]` struct around one of the types in this list. | when it holds for the inner type                                           |
145//!
146//! [^extern_fn]: this remains true for `unsafe` variants, any argument/return types, and any other ABI: `[unsafe] extern "abi" fn` (_e.g._, `extern "system" fn`)
147//!
148//! Under some conditions the above types `T` are also null pointer optimized when wrapped in a [`Result`][result_repr].
149//!
150//! [`Box<U>`]: ../../std/boxed/struct.Box.html
151//! [`num::NonZero*`]: crate::num
152//! [`ptr::NonNull<U>`]: crate::ptr::NonNull
153//! [function call ABI]: ../primitive.fn.html#abi-compatibility
154//! [result_repr]: crate::result#representation
155//!
156//! This is called the "null pointer optimization" or NPO.
157//!
158//! It is further guaranteed that, for the cases above, one can
159//! [`mem::transmute`] from all valid values of `T` to `Option<T>` and
160//! from `Some::<T>(_)` to `T` (but transmuting `None::<T>` to `T`
161//! is undefined behavior).
162//!
163//! # Method overview
164//!
165//! In addition to working with pattern matching, [`Option`] provides a wide
166//! variety of different methods.
167//!
168//! ## Querying the variant
169//!
170//! The [`is_some`] and [`is_none`] methods return [`true`] if the [`Option`]
171//! is [`Some`] or [`None`], respectively.
172//!
173//! The [`is_some_and`] and [`is_none_or`] methods apply the provided function
174//! to the contents of the [`Option`] to produce a boolean value.
175//! If this is [`None`] then a default result is returned instead without executing the function.
176//!
177//! [`is_none`]: Option::is_none
178//! [`is_some`]: Option::is_some
179//! [`is_some_and`]: Option::is_some_and
180//! [`is_none_or`]: Option::is_none_or
181//!
182//! ## Adapters for working with references
183//!
184//! * [`as_ref`] converts from <code>[&][][Option]\<T></code> to <code>[Option]<[&]T></code>
185//! * [`as_mut`] converts from <code>[&mut] [Option]\<T></code> to <code>[Option]<[&mut] T></code>
186//! * [`as_deref`] converts from <code>[&][][Option]\<T></code> to
187//!   <code>[Option]<[&]T::[Target]></code>
188//! * [`as_deref_mut`] converts from <code>[&mut] [Option]\<T></code> to
189//!   <code>[Option]<[&mut] T::[Target]></code>
190//! * [`as_pin_ref`] converts from <code>[Pin]<[&][][Option]\<T>></code> to
191//!   <code>[Option]<[Pin]<[&]T>></code>
192//! * [`as_pin_mut`] converts from <code>[Pin]<[&mut] [Option]\<T>></code> to
193//!   <code>[Option]<[Pin]<[&mut] T>></code>
194//! * [`as_slice`] returns a one-element slice of the contained value, if any.
195//!   If this is [`None`], an empty slice is returned.
196//! * [`as_mut_slice`] returns a mutable one-element slice of the contained value, if any.
197//!   If this is [`None`], an empty slice is returned.
198//!
199//! [&]: reference "shared reference"
200//! [&mut]: reference "mutable reference"
201//! [Target]: Deref::Target "ops::Deref::Target"
202//! [`as_deref`]: Option::as_deref
203//! [`as_deref_mut`]: Option::as_deref_mut
204//! [`as_mut`]: Option::as_mut
205//! [`as_pin_mut`]: Option::as_pin_mut
206//! [`as_pin_ref`]: Option::as_pin_ref
207//! [`as_ref`]: Option::as_ref
208//! [`as_slice`]: Option::as_slice
209//! [`as_mut_slice`]: Option::as_mut_slice
210//!
211//! ## Extracting the contained value
212//!
213//! These methods extract the contained value in an [`Option<T>`] when it
214//! is the [`Some`] variant. If the [`Option`] is [`None`]:
215//!
216//! * [`expect`] panics with a provided custom message
217//! * [`unwrap`] panics with a generic message
218//! * [`unwrap_or`] returns the provided default value
219//! * [`unwrap_or_default`] returns the default value of the type `T`
220//!   (which must implement the [`Default`] trait)
221//! * [`unwrap_or_else`] returns the result of evaluating the provided
222//!   function
223//! * [`unwrap_unchecked`] produces *[undefined behavior]*
224//!
225//! [`expect`]: Option::expect
226//! [`unwrap`]: Option::unwrap
227//! [`unwrap_or`]: Option::unwrap_or
228//! [`unwrap_or_default`]: Option::unwrap_or_default
229//! [`unwrap_or_else`]: Option::unwrap_or_else
230//! [`unwrap_unchecked`]: Option::unwrap_unchecked
231//! [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
232//!
233//! ## Transforming contained values
234//!
235//! These methods transform [`Option`] to [`Result`]:
236//!
237//! * [`ok_or`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to
238//!   [`Err(err)`] using the provided default `err` value
239//! * [`ok_or_else`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to
240//!   a value of [`Err`] using the provided function
241//! * [`transpose`] transposes an [`Option`] of a [`Result`] into a
242//!   [`Result`] of an [`Option`]
243//!
244//! [`Err(err)`]: Err
245//! [`Ok(v)`]: Ok
246//! [`Some(v)`]: Some
247//! [`ok_or`]: Option::ok_or
248//! [`ok_or_else`]: Option::ok_or_else
249//! [`transpose`]: Option::transpose
250//!
251//! These methods transform the [`Some`] variant:
252//!
253//! * [`filter`] calls the provided predicate function on the contained
254//!   value `t` if the [`Option`] is [`Some(t)`], and returns [`Some(t)`]
255//!   if the function returns `true`; otherwise, returns [`None`]
256//! * [`flatten`] removes one level of nesting from an [`Option<Option<T>>`]
257//! * [`inspect`] method takes ownership of the [`Option`] and applies
258//!   the provided function to the contained value by reference if [`Some`]
259//! * [`map`] transforms [`Option<T>`] to [`Option<U>`] by applying the
260//!   provided function to the contained value of [`Some`] and leaving
261//!   [`None`] values unchanged
262//!
263//! [`Some(t)`]: Some
264//! [`filter`]: Option::filter
265//! [`flatten`]: Option::flatten
266//! [`inspect`]: Option::inspect
267//! [`map`]: Option::map
268//!
269//! These methods transform [`Option<T>`] to a value of a possibly
270//! different type `U`:
271//!
272//! * [`map_or`] applies the provided function to the contained value of
273//!   [`Some`], or returns the provided default value if the [`Option`] is
274//!   [`None`]
275//! * [`map_or_else`] applies the provided function to the contained value
276//!   of [`Some`], or returns the result of evaluating the provided
277//!   fallback function if the [`Option`] is [`None`]
278//!
279//! [`map_or`]: Option::map_or
280//! [`map_or_else`]: Option::map_or_else
281//!
282//! These methods combine the [`Some`] variants of two [`Option`] values:
283//!
284//! * [`zip`] returns [`Some((s, o))`] if `self` is [`Some(s)`] and the
285//!   provided [`Option`] value is [`Some(o)`]; otherwise, returns [`None`]
286//! * [`zip_with`] calls the provided function `f` and returns
287//!   [`Some(f(s, o))`] if `self` is [`Some(s)`] and the provided
288//!   [`Option`] value is [`Some(o)`]; otherwise, returns [`None`]
289//!
290//! [`Some(f(s, o))`]: Some
291//! [`Some(o)`]: Some
292//! [`Some(s)`]: Some
293//! [`Some((s, o))`]: Some
294//! [`zip`]: Option::zip
295//! [`zip_with`]: Option::zip_with
296//!
297//! ## Boolean operators
298//!
299//! These methods treat the [`Option`] as a boolean value, where [`Some`]
300//! acts like [`true`] and [`None`] acts like [`false`]. There are two
301//! categories of these methods: ones that take an [`Option`] as input, and
302//! ones that take a function as input (to be lazily evaluated).
303//!
304//! The [`and`], [`or`], and [`xor`] methods take another [`Option`] as
305//! input, and produce an [`Option`] as output. Only the [`and`] method can
306//! produce an [`Option<U>`] value having a different inner type `U` than
307//! [`Option<T>`].
308//!
309//! | method  | self      | input     | output    |
310//! |---------|-----------|-----------|-----------|
311//! | [`and`] | `None`    | (ignored) | `None`    |
312//! | [`and`] | `Some(x)` | `None`    | `None`    |
313//! | [`and`] | `Some(x)` | `Some(y)` | `Some(y)` |
314//! | [`or`]  | `None`    | `None`    | `None`    |
315//! | [`or`]  | `None`    | `Some(y)` | `Some(y)` |
316//! | [`or`]  | `Some(x)` | (ignored) | `Some(x)` |
317//! | [`xor`] | `None`    | `None`    | `None`    |
318//! | [`xor`] | `None`    | `Some(y)` | `Some(y)` |
319//! | [`xor`] | `Some(x)` | `None`    | `Some(x)` |
320//! | [`xor`] | `Some(x)` | `Some(y)` | `None`    |
321//!
322//! [`and`]: Option::and
323//! [`or`]: Option::or
324//! [`xor`]: Option::xor
325//!
326//! The [`and_then`] and [`or_else`] methods take a function as input, and
327//! only evaluate the function when they need to produce a new value. Only
328//! the [`and_then`] method can produce an [`Option<U>`] value having a
329//! different inner type `U` than [`Option<T>`].
330//!
331//! | method       | self      | function input | function result | output    |
332//! |--------------|-----------|----------------|-----------------|-----------|
333//! | [`and_then`] | `None`    | (not provided) | (not evaluated) | `None`    |
334//! | [`and_then`] | `Some(x)` | `x`            | `None`          | `None`    |
335//! | [`and_then`] | `Some(x)` | `x`            | `Some(y)`       | `Some(y)` |
336//! | [`or_else`]  | `None`    | (not provided) | `None`          | `None`    |
337//! | [`or_else`]  | `None`    | (not provided) | `Some(y)`       | `Some(y)` |
338//! | [`or_else`]  | `Some(x)` | (not provided) | (not evaluated) | `Some(x)` |
339//!
340//! [`and_then`]: Option::and_then
341//! [`or_else`]: Option::or_else
342//!
343//! This is an example of using methods like [`and_then`] and [`or`] in a
344//! pipeline of method calls. Early stages of the pipeline pass failure
345//! values ([`None`]) through unchanged, and continue processing on
346//! success values ([`Some`]). Toward the end, [`or`] substitutes an error
347//! message if it receives [`None`].
348//!
349//! ```
350//! # use std::collections::BTreeMap;
351//! let mut bt = BTreeMap::new();
352//! bt.insert(20u8, "foo");
353//! bt.insert(42u8, "bar");
354//! let res = [0u8, 1, 11, 200, 22]
355//!     .into_iter()
356//!     .map(|x| {
357//!         // `checked_sub()` returns `None` on error
358//!         x.checked_sub(1)
359//!             // same with `checked_mul()`
360//!             .and_then(|x| x.checked_mul(2))
361//!             // `BTreeMap::get` returns `None` on error
362//!             .and_then(|x| bt.get(&x))
363//!             // Substitute an error message if we have `None` so far
364//!             .or(Some(&"error!"))
365//!             .copied()
366//!             // Won't panic because we unconditionally used `Some` above
367//!             .unwrap()
368//!     })
369//!     .collect::<Vec<_>>();
370//! assert_eq!(res, ["error!", "error!", "foo", "error!", "bar"]);
371//! ```
372//!
373//! ## Comparison operators
374//!
375//! If `T` implements [`PartialOrd`] then [`Option<T>`] will derive its
376//! [`PartialOrd`] implementation.  With this order, [`None`] compares as
377//! less than any [`Some`], and two [`Some`] compare the same way as their
378//! contained values would in `T`.  If `T` also implements
379//! [`Ord`], then so does [`Option<T>`].
380//!
381//! ```
382//! assert!(None < Some(0));
383//! assert!(Some(0) < Some(1));
384//! ```
385//!
386//! ## Iterating over `Option`
387//!
388//! An [`Option`] can be iterated over. This can be helpful if you need an
389//! iterator that is conditionally empty. The iterator will either produce
390//! a single value (when the [`Option`] is [`Some`]), or produce no values
391//! (when the [`Option`] is [`None`]). For example, [`into_iter`] acts like
392//! [`once(v)`] if the [`Option`] is [`Some(v)`], and like [`empty()`] if
393//! the [`Option`] is [`None`].
394//!
395//! [`Some(v)`]: Some
396//! [`empty()`]: crate::iter::empty
397//! [`once(v)`]: crate::iter::once
398//!
399//! Iterators over [`Option<T>`] come in three types:
400//!
401//! * [`into_iter`] consumes the [`Option`] and produces the contained
402//!   value
403//! * [`iter`] produces an immutable reference of type `&T` to the
404//!   contained value
405//! * [`iter_mut`] produces a mutable reference of type `&mut T` to the
406//!   contained value
407//!
408//! [`into_iter`]: Option::into_iter
409//! [`iter`]: Option::iter
410//! [`iter_mut`]: Option::iter_mut
411//!
412//! An iterator over [`Option`] can be useful when chaining iterators, for
413//! example, to conditionally insert items. (It's not always necessary to
414//! explicitly call an iterator constructor: many [`Iterator`] methods that
415//! accept other iterators will also accept iterable types that implement
416//! [`IntoIterator`], which includes [`Option`].)
417//!
418//! ```
419//! let yep = Some(42);
420//! let nope = None;
421//! // chain() already calls into_iter(), so we don't have to do so
422//! let nums: Vec<i32> = (0..4).chain(yep).chain(4..8).collect();
423//! assert_eq!(nums, [0, 1, 2, 3, 42, 4, 5, 6, 7]);
424//! let nums: Vec<i32> = (0..4).chain(nope).chain(4..8).collect();
425//! assert_eq!(nums, [0, 1, 2, 3, 4, 5, 6, 7]);
426//! ```
427//!
428//! One reason to chain iterators in this way is that a function returning
429//! `impl Iterator` must have all possible return values be of the same
430//! concrete type. Chaining an iterated [`Option`] can help with that.
431//!
432//! ```
433//! fn make_iter(do_insert: bool) -> impl Iterator<Item = i32> {
434//!     // Explicit returns to illustrate return types matching
435//!     match do_insert {
436//!         true => return (0..4).chain(Some(42)).chain(4..8),
437//!         false => return (0..4).chain(None).chain(4..8),
438//!     }
439//! }
440//! println!("{:?}", make_iter(true).collect::<Vec<_>>());
441//! println!("{:?}", make_iter(false).collect::<Vec<_>>());
442//! ```
443//!
444//! If we try to do the same thing, but using [`once()`] and [`empty()`],
445//! we can't return `impl Iterator` anymore because the concrete types of
446//! the return values differ.
447//!
448//! [`empty()`]: crate::iter::empty
449//! [`once()`]: crate::iter::once
450//!
451//! ```compile_fail,E0308
452//! # use std::iter::{empty, once};
453//! // This won't compile because all possible returns from the function
454//! // must have the same concrete type.
455//! fn make_iter(do_insert: bool) -> impl Iterator<Item = i32> {
456//!     // Explicit returns to illustrate return types not matching
457//!     match do_insert {
458//!         true => return (0..4).chain(once(42)).chain(4..8),
459//!         false => return (0..4).chain(empty()).chain(4..8),
460//!     }
461//! }
462//! ```
463//!
464//! ## Collecting into `Option`
465//!
466//! [`Option`] implements the [`FromIterator`][impl-FromIterator] trait,
467//! which allows an iterator over [`Option`] values to be collected into an
468//! [`Option`] of a collection of each contained value of the original
469//! [`Option`] values, or [`None`] if any of the elements was [`None`].
470//!
471//! [impl-FromIterator]: Option#impl-FromIterator%3COption%3CA%3E%3E-for-Option%3CV%3E
472//!
473//! ```
474//! let v = [Some(2), Some(4), None, Some(8)];
475//! let res: Option<Vec<_>> = v.into_iter().collect();
476//! assert_eq!(res, None);
477//! let v = [Some(2), Some(4), Some(8)];
478//! let res: Option<Vec<_>> = v.into_iter().collect();
479//! assert_eq!(res, Some(vec![2, 4, 8]));
480//! ```
481//!
482//! [`Option`] also implements the [`Product`][impl-Product] and
483//! [`Sum`][impl-Sum] traits, allowing an iterator over [`Option`] values
484//! to provide the [`product`][Iterator::product] and
485//! [`sum`][Iterator::sum] methods.
486//!
487//! [impl-Product]: Option#impl-Product%3COption%3CU%3E%3E-for-Option%3CT%3E
488//! [impl-Sum]: Option#impl-Sum%3COption%3CU%3E%3E-for-Option%3CT%3E
489//!
490//! ```
491//! let v = [None, Some(1), Some(2), Some(3)];
492//! let res: Option<i32> = v.into_iter().sum();
493//! assert_eq!(res, None);
494//! let v = [Some(1), Some(2), Some(21)];
495//! let res: Option<i32> = v.into_iter().product();
496//! assert_eq!(res, Some(42));
497//! ```
498//!
499//! ## Modifying an [`Option`] in-place
500//!
501//! These methods return a mutable reference to the contained value of an
502//! [`Option<T>`]:
503//!
504//! * [`insert`] inserts a value, dropping any old contents
505//! * [`get_or_insert`] gets the current value, inserting a provided
506//!   default value if it is [`None`]
507//! * [`get_or_insert_default`] gets the current value, inserting the
508//!   default value of type `T` (which must implement [`Default`]) if it is
509//!   [`None`]
510//! * [`get_or_insert_with`] gets the current value, inserting a default
511//!   computed by the provided function if it is [`None`]
512//!
513//! [`get_or_insert`]: Option::get_or_insert
514//! [`get_or_insert_default`]: Option::get_or_insert_default
515//! [`get_or_insert_with`]: Option::get_or_insert_with
516//! [`insert`]: Option::insert
517//!
518//! These methods transfer ownership of the contained value of an
519//! [`Option`]:
520//!
521//! * [`take`] takes ownership of the contained value of an [`Option`], if
522//!   any, replacing the [`Option`] with [`None`]
523//! * [`replace`] takes ownership of the contained value of an [`Option`],
524//!   if any, replacing the [`Option`] with a [`Some`] containing the
525//!   provided value
526//!
527//! [`replace`]: Option::replace
528//! [`take`]: Option::take
529//!
530//! # Examples
531//!
532//! Basic pattern matching on [`Option`]:
533//!
534//! ```
535//! let msg = Some("howdy");
536//!
537//! // Take a reference to the contained string
538//! if let Some(m) = &msg {
539//!     println!("{}", *m);
540//! }
541//!
542//! // Remove the contained string, destroying the Option
543//! let unwrapped_msg = msg.unwrap_or("default message");
544//! ```
545//!
546//! Initialize a result to [`None`] before a loop:
547//!
548//! ```
549//! enum Kingdom { Plant(u32, &'static str), Animal(u32, &'static str) }
550//!
551//! // A list of data to search through.
552//! let all_the_big_things = [
553//!     Kingdom::Plant(250, "redwood"),
554//!     Kingdom::Plant(230, "noble fir"),
555//!     Kingdom::Plant(229, "sugar pine"),
556//!     Kingdom::Animal(25, "blue whale"),
557//!     Kingdom::Animal(19, "fin whale"),
558//!     Kingdom::Animal(15, "north pacific right whale"),
559//! ];
560//!
561//! // We're going to search for the name of the biggest animal,
562//! // but to start with we've just got `None`.
563//! let mut name_of_biggest_animal = None;
564//! let mut size_of_biggest_animal = 0;
565//! for big_thing in &all_the_big_things {
566//!     match *big_thing {
567//!         Kingdom::Animal(size, name) if size > size_of_biggest_animal => {
568//!             // Now we've found the name of some big animal
569//!             size_of_biggest_animal = size;
570//!             name_of_biggest_animal = Some(name);
571//!         }
572//!         Kingdom::Animal(..) | Kingdom::Plant(..) => ()
573//!     }
574//! }
575//!
576//! match name_of_biggest_animal {
577//!     Some(name) => println!("the biggest animal is {name}"),
578//!     None => println!("there are no animals :("),
579//! }
580//! ```
581
582#![stable(feature = "rust1", since = "1.0.0")]
583
584use crate::iter::{self, FusedIterator, TrustedLen};
585use crate::marker::Destruct;
586use crate::ops::{self, ControlFlow, Deref, DerefMut};
587use crate::panicking::{panic, panic_display};
588use crate::pin::Pin;
589use crate::{cmp, convert, hint, mem, slice};
590
591/// The `Option` type. See [the module level documentation](self) for more.
592#[doc(search_unbox)]
593#[derive(Copy, Debug, Hash)]
594#[derive_const(Eq)]
595#[rustc_diagnostic_item = "Option"]
596#[lang = "Option"]
597#[stable(feature = "rust1", since = "1.0.0")]
598#[allow(clippy::derived_hash_with_manual_eq)] // PartialEq is manually implemented equivalently
599pub enum Option<T> {
600    /// No value.
601    #[lang = "None"]
602    #[stable(feature = "rust1", since = "1.0.0")]
603    None,
604    /// Some value of type `T`.
605    #[lang = "Some"]
606    #[stable(feature = "rust1", since = "1.0.0")]
607    Some(#[stable(feature = "rust1", since = "1.0.0")] T),
608}
609
610/////////////////////////////////////////////////////////////////////////////
611// Type implementation
612/////////////////////////////////////////////////////////////////////////////
613
614impl<T> Option<T> {
615    /////////////////////////////////////////////////////////////////////////
616    // Querying the contained values
617    /////////////////////////////////////////////////////////////////////////
618
619    /// Returns `true` if the option is a [`Some`] value.
620    ///
621    /// # Examples
622    ///
623    /// ```
624    /// let x: Option<u32> = Some(2);
625    /// assert_eq!(x.is_some(), true);
626    ///
627    /// let x: Option<u32> = None;
628    /// assert_eq!(x.is_some(), false);
629    /// ```
630    #[must_use = "if you intended to assert that this has a value, consider `.unwrap()` instead"]
631    #[inline]
632    #[stable(feature = "rust1", since = "1.0.0")]
633    #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
634    pub const fn is_some(&self) -> bool {
635        matches!(*self, Some(_))
636    }
637
638    /// Returns `true` if the option is a [`Some`] and the value inside of it matches a predicate.
639    ///
640    /// # Examples
641    ///
642    /// ```
643    /// let x: Option<u32> = Some(2);
644    /// assert_eq!(x.is_some_and(|x| x > 1), true);
645    ///
646    /// let x: Option<u32> = Some(0);
647    /// assert_eq!(x.is_some_and(|x| x > 1), false);
648    ///
649    /// let x: Option<u32> = None;
650    /// assert_eq!(x.is_some_and(|x| x > 1), false);
651    ///
652    /// let x: Option<String> = Some("ownership".to_string());
653    /// assert_eq!(x.as_ref().is_some_and(|x| x.len() > 1), true);
654    /// println!("still alive {:?}", x);
655    /// ```
656    #[must_use]
657    #[inline]
658    #[stable(feature = "is_some_and", since = "1.70.0")]
659    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
660    pub const fn is_some_and(self, f: impl [const] FnOnce(T) -> bool + [const] Destruct) -> bool {
661        match self {
662            None => false,
663            Some(x) => f(x),
664        }
665    }
666
667    /// Returns `true` if the option is a [`None`] value.
668    ///
669    /// # Examples
670    ///
671    /// ```
672    /// let x: Option<u32> = Some(2);
673    /// assert_eq!(x.is_none(), false);
674    ///
675    /// let x: Option<u32> = None;
676    /// assert_eq!(x.is_none(), true);
677    /// ```
678    #[must_use = "if you intended to assert that this doesn't have a value, consider \
679                  wrapping this in an `assert!()` instead"]
680    #[inline]
681    #[stable(feature = "rust1", since = "1.0.0")]
682    #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
683    pub const fn is_none(&self) -> bool {
684        !self.is_some()
685    }
686
687    /// Returns `true` if the option is a [`None`] or the value inside of it matches a predicate.
688    ///
689    /// # Examples
690    ///
691    /// ```
692    /// let x: Option<u32> = Some(2);
693    /// assert_eq!(x.is_none_or(|x| x > 1), true);
694    ///
695    /// let x: Option<u32> = Some(0);
696    /// assert_eq!(x.is_none_or(|x| x > 1), false);
697    ///
698    /// let x: Option<u32> = None;
699    /// assert_eq!(x.is_none_or(|x| x > 1), true);
700    ///
701    /// let x: Option<String> = Some("ownership".to_string());
702    /// assert_eq!(x.as_ref().is_none_or(|x| x.len() > 1), true);
703    /// println!("still alive {:?}", x);
704    /// ```
705    #[must_use]
706    #[inline]
707    #[stable(feature = "is_none_or", since = "1.82.0")]
708    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
709    pub const fn is_none_or(self, f: impl [const] FnOnce(T) -> bool + [const] Destruct) -> bool {
710        match self {
711            None => true,
712            Some(x) => f(x),
713        }
714    }
715
716    /////////////////////////////////////////////////////////////////////////
717    // Adapter for working with references
718    /////////////////////////////////////////////////////////////////////////
719
720    /// Converts from `&Option<T>` to `Option<&T>`.
721    ///
722    /// # Examples
723    ///
724    /// Calculates the length of an <code>Option<[String]></code> as an <code>Option<[usize]></code>
725    /// without moving the [`String`]. The [`map`] method takes the `self` argument by value,
726    /// consuming the original, so this technique uses `as_ref` to first take an `Option` to a
727    /// reference to the value inside the original.
728    ///
729    /// [`map`]: Option::map
730    /// [String]: ../../std/string/struct.String.html "String"
731    /// [`String`]: ../../std/string/struct.String.html "String"
732    ///
733    /// ```
734    /// let text: Option<String> = Some("Hello, world!".to_string());
735    /// // First, cast `Option<String>` to `Option<&String>` with `as_ref`,
736    /// // then consume *that* with `map`, leaving `text` on the stack.
737    /// let text_length: Option<usize> = text.as_ref().map(|s| s.len());
738    /// println!("still can print text: {text:?}");
739    /// ```
740    #[inline]
741    #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
742    #[stable(feature = "rust1", since = "1.0.0")]
743    pub const fn as_ref(&self) -> Option<&T> {
744        match *self {
745            Some(ref x) => Some(x),
746            None => None,
747        }
748    }
749
750    /// Converts from `&mut Option<T>` to `Option<&mut T>`.
751    ///
752    /// # Examples
753    ///
754    /// ```
755    /// let mut x = Some(2);
756    /// match x.as_mut() {
757    ///     Some(v) => *v = 42,
758    ///     None => {},
759    /// }
760    /// assert_eq!(x, Some(42));
761    /// ```
762    #[inline]
763    #[stable(feature = "rust1", since = "1.0.0")]
764    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
765    pub const fn as_mut(&mut self) -> Option<&mut T> {
766        match *self {
767            Some(ref mut x) => Some(x),
768            None => None,
769        }
770    }
771
772    /// Converts from <code>[Pin]<[&]Option\<T>></code> to <code>Option<[Pin]<[&]T>></code>.
773    ///
774    /// [&]: reference "shared reference"
775    #[inline]
776    #[must_use]
777    #[stable(feature = "pin", since = "1.33.0")]
778    #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
779    pub const fn as_pin_ref(self: Pin<&Self>) -> Option<Pin<&T>> {
780        // FIXME(const-hack): use `map` once that is possible
781        match Pin::get_ref(self).as_ref() {
782            // SAFETY: `x` is guaranteed to be pinned because it comes from `self`
783            // which is pinned.
784            Some(x) => unsafe { Some(Pin::new_unchecked(x)) },
785            None => None,
786        }
787    }
788
789    /// Converts from <code>[Pin]<[&mut] Option\<T>></code> to <code>Option<[Pin]<[&mut] T>></code>.
790    ///
791    /// [&mut]: reference "mutable reference"
792    #[inline]
793    #[must_use]
794    #[stable(feature = "pin", since = "1.33.0")]
795    #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
796    pub const fn as_pin_mut(self: Pin<&mut Self>) -> Option<Pin<&mut T>> {
797        // SAFETY: `get_unchecked_mut` is never used to move the `Option` inside `self`.
798        // `x` is guaranteed to be pinned because it comes from `self` which is pinned.
799        unsafe {
800            // FIXME(const-hack): use `map` once that is possible
801            match Pin::get_unchecked_mut(self).as_mut() {
802                Some(x) => Some(Pin::new_unchecked(x)),
803                None => None,
804            }
805        }
806    }
807
808    #[inline]
809    const fn len(&self) -> usize {
810        // Using the intrinsic avoids emitting a branch to get the 0 or 1.
811        let discriminant: isize = crate::intrinsics::discriminant_value(self);
812        discriminant as usize
813    }
814
815    /// Returns a slice of the contained value, if any. If this is `None`, an
816    /// empty slice is returned. This can be useful to have a single type of
817    /// iterator over an `Option` or slice.
818    ///
819    /// Note: Should you have an `Option<&T>` and wish to get a slice of `T`,
820    /// you can unpack it via `opt.map_or(&[], std::slice::from_ref)`.
821    ///
822    /// # Examples
823    ///
824    /// ```rust
825    /// assert_eq!(
826    ///     [Some(1234).as_slice(), None.as_slice()],
827    ///     [&[1234][..], &[][..]],
828    /// );
829    /// ```
830    ///
831    /// The inverse of this function is (discounting
832    /// borrowing) [`[_]::first`](slice::first):
833    ///
834    /// ```rust
835    /// for i in [Some(1234_u16), None] {
836    ///     assert_eq!(i.as_ref(), i.as_slice().first());
837    /// }
838    /// ```
839    #[inline]
840    #[must_use]
841    #[stable(feature = "option_as_slice", since = "1.75.0")]
842    #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
843    pub const fn as_slice(&self) -> &[T] {
844        // SAFETY: When the `Option` is `Some`, we're using the actual pointer
845        // to the payload, with a length of 1, so this is equivalent to
846        // `slice::from_ref`, and thus is safe.
847        // When the `Option` is `None`, the length used is 0, so to be safe it
848        // just needs to be aligned, which it is because `&self` is aligned and
849        // the offset used is a multiple of alignment.
850        //
851        // Here we assume that `offset_of!` always returns an offset to an
852        // in-bounds and correctly aligned position for a `T` (even if in the
853        // `None` case it's just padding).
854        unsafe {
855            slice::from_raw_parts(
856                (self as *const Self).byte_add(core::mem::offset_of!(Self, Some.0)).cast(),
857                self.len(),
858            )
859        }
860    }
861
862    /// Returns a mutable slice of the contained value, if any. If this is
863    /// `None`, an empty slice is returned. This can be useful to have a
864    /// single type of iterator over an `Option` or slice.
865    ///
866    /// Note: Should you have an `Option<&mut T>` instead of a
867    /// `&mut Option<T>`, which this method takes, you can obtain a mutable
868    /// slice via `opt.map_or(&mut [], std::slice::from_mut)`.
869    ///
870    /// # Examples
871    ///
872    /// ```rust
873    /// assert_eq!(
874    ///     [Some(1234).as_mut_slice(), None.as_mut_slice()],
875    ///     [&mut [1234][..], &mut [][..]],
876    /// );
877    /// ```
878    ///
879    /// The result is a mutable slice of zero or one items that points into
880    /// our original `Option`:
881    ///
882    /// ```rust
883    /// let mut x = Some(1234);
884    /// x.as_mut_slice()[0] += 1;
885    /// assert_eq!(x, Some(1235));
886    /// ```
887    ///
888    /// The inverse of this method (discounting borrowing)
889    /// is [`[_]::first_mut`](slice::first_mut):
890    ///
891    /// ```rust
892    /// assert_eq!(Some(123).as_mut_slice().first_mut(), Some(&mut 123))
893    /// ```
894    #[inline]
895    #[must_use]
896    #[stable(feature = "option_as_slice", since = "1.75.0")]
897    #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
898    pub const fn as_mut_slice(&mut self) -> &mut [T] {
899        // SAFETY: When the `Option` is `Some`, we're using the actual pointer
900        // to the payload, with a length of 1, so this is equivalent to
901        // `slice::from_mut`, and thus is safe.
902        // When the `Option` is `None`, the length used is 0, so to be safe it
903        // just needs to be aligned, which it is because `&self` is aligned and
904        // the offset used is a multiple of alignment.
905        //
906        // In the new version, the intrinsic creates a `*const T` from a
907        // mutable reference  so it is safe to cast back to a mutable pointer
908        // here. As with `as_slice`, the intrinsic always returns a pointer to
909        // an in-bounds and correctly aligned position for a `T` (even if in
910        // the `None` case it's just padding).
911        unsafe {
912            slice::from_raw_parts_mut(
913                (self as *mut Self).byte_add(core::mem::offset_of!(Self, Some.0)).cast(),
914                self.len(),
915            )
916        }
917    }
918
919    /////////////////////////////////////////////////////////////////////////
920    // Getting to contained values
921    /////////////////////////////////////////////////////////////////////////
922
923    /// Returns the contained [`Some`] value, consuming the `self` value.
924    ///
925    /// # Panics
926    ///
927    /// Panics if the value is a [`None`] with a custom panic message provided by
928    /// `msg`.
929    ///
930    /// # Examples
931    ///
932    /// ```
933    /// let x = Some("value");
934    /// assert_eq!(x.expect("fruits are healthy"), "value");
935    /// ```
936    ///
937    /// ```should_panic
938    /// let x: Option<&str> = None;
939    /// x.expect("fruits are healthy"); // panics with `fruits are healthy`
940    /// ```
941    ///
942    /// # Recommended Message Style
943    ///
944    /// We recommend that `expect` messages are used to describe the reason you
945    /// _expect_ the `Option` should be `Some`.
946    ///
947    /// ```should_panic
948    /// # let slice: &[u8] = &[];
949    /// let item = slice.get(0)
950    ///     .expect("slice should not be empty");
951    /// ```
952    ///
953    /// **Hint**: If you're having trouble remembering how to phrase expect
954    /// error messages remember to focus on the word "should" as in "env
955    /// variable should be set by blah" or "the given binary should be available
956    /// and executable by the current user".
957    ///
958    /// For more detail on expect message styles and the reasoning behind our
959    /// recommendation please refer to the section on ["Common Message
960    /// Styles"](../../std/error/index.html#common-message-styles) in the [`std::error`](../../std/error/index.html) module docs.
961    #[inline]
962    #[track_caller]
963    #[stable(feature = "rust1", since = "1.0.0")]
964    #[rustc_diagnostic_item = "option_expect"]
965    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
966    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
967    pub const fn expect(self, msg: &str) -> T {
968        match self {
969            Some(val) => val,
970            None => expect_failed(msg),
971        }
972    }
973
974    /// Returns the contained [`Some`] value, consuming the `self` value.
975    ///
976    /// Because this function may panic, its use is generally discouraged.
977    /// Panics are meant for unrecoverable errors, and
978    /// [may abort the entire program][panic-abort].
979    ///
980    /// Instead, prefer to use pattern matching and handle the [`None`]
981    /// case explicitly, or call [`unwrap_or`], [`unwrap_or_else`], or
982    /// [`unwrap_or_default`]. In functions returning `Option`, you can use
983    /// [the `?` (try) operator][try-option].
984    ///
985    /// [panic-abort]: https://doc.rust-lang.org/book/ch09-01-unrecoverable-errors-with-panic.html
986    /// [try-option]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#where-the--operator-can-be-used
987    /// [`unwrap_or`]: Option::unwrap_or
988    /// [`unwrap_or_else`]: Option::unwrap_or_else
989    /// [`unwrap_or_default`]: Option::unwrap_or_default
990    ///
991    /// # Panics
992    ///
993    /// Panics if the self value equals [`None`].
994    ///
995    /// # Examples
996    ///
997    /// ```
998    /// let x = Some("air");
999    /// assert_eq!(x.unwrap(), "air");
1000    /// ```
1001    ///
1002    /// ```should_panic
1003    /// let x: Option<&str> = None;
1004    /// assert_eq!(x.unwrap(), "air"); // fails
1005    /// ```
1006    #[inline(always)]
1007    #[track_caller]
1008    #[stable(feature = "rust1", since = "1.0.0")]
1009    #[rustc_diagnostic_item = "option_unwrap"]
1010    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1011    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1012    pub const fn unwrap(self) -> T {
1013        match self {
1014            Some(val) => val,
1015            None => unwrap_failed(),
1016        }
1017    }
1018
1019    /// Returns the contained [`Some`] value or a provided default.
1020    ///
1021    /// Arguments passed to `unwrap_or` are eagerly evaluated; if you are passing
1022    /// the result of a function call, it is recommended to use [`unwrap_or_else`],
1023    /// which is lazily evaluated.
1024    ///
1025    /// [`unwrap_or_else`]: Option::unwrap_or_else
1026    ///
1027    /// # Examples
1028    ///
1029    /// ```
1030    /// assert_eq!(Some("car").unwrap_or("bike"), "car");
1031    /// assert_eq!(None.unwrap_or("bike"), "bike");
1032    /// ```
1033    #[inline]
1034    #[stable(feature = "rust1", since = "1.0.0")]
1035    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1036    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1037    pub const fn unwrap_or(self, default: T) -> T
1038    where
1039        T: [const] Destruct,
1040    {
1041        match self {
1042            Some(x) => x,
1043            None => default,
1044        }
1045    }
1046
1047    /// Returns the contained [`Some`] value or computes it from a closure.
1048    ///
1049    /// # Examples
1050    ///
1051    /// ```
1052    /// let k = 10;
1053    /// assert_eq!(Some(4).unwrap_or_else(|| 2 * k), 4);
1054    /// assert_eq!(None.unwrap_or_else(|| 2 * k), 20);
1055    /// ```
1056    #[inline]
1057    #[track_caller]
1058    #[stable(feature = "rust1", since = "1.0.0")]
1059    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1060    pub const fn unwrap_or_else<F>(self, f: F) -> T
1061    where
1062        F: [const] FnOnce() -> T + [const] Destruct,
1063    {
1064        match self {
1065            Some(x) => x,
1066            None => f(),
1067        }
1068    }
1069
1070    /// Returns the contained [`Some`] value or a default.
1071    ///
1072    /// Consumes the `self` argument then, if [`Some`], returns the contained
1073    /// value, otherwise if [`None`], returns the [default value] for that
1074    /// type.
1075    ///
1076    /// # Examples
1077    ///
1078    /// ```
1079    /// let x: Option<u32> = None;
1080    /// let y: Option<u32> = Some(12);
1081    ///
1082    /// assert_eq!(x.unwrap_or_default(), 0);
1083    /// assert_eq!(y.unwrap_or_default(), 12);
1084    /// ```
1085    ///
1086    /// [default value]: Default::default
1087    /// [`parse`]: str::parse
1088    /// [`FromStr`]: crate::str::FromStr
1089    #[inline]
1090    #[stable(feature = "rust1", since = "1.0.0")]
1091    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1092    pub const fn unwrap_or_default(self) -> T
1093    where
1094        T: [const] Default,
1095    {
1096        match self {
1097            Some(x) => x,
1098            None => T::default(),
1099        }
1100    }
1101
1102    /// Returns the contained [`Some`] value, consuming the `self` value,
1103    /// without checking that the value is not [`None`].
1104    ///
1105    /// # Safety
1106    ///
1107    /// Calling this method on [`None`] is *[undefined behavior]*.
1108    ///
1109    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1110    ///
1111    /// # Examples
1112    ///
1113    /// ```
1114    /// let x = Some("air");
1115    /// assert_eq!(unsafe { x.unwrap_unchecked() }, "air");
1116    /// ```
1117    ///
1118    /// ```no_run
1119    /// let x: Option<&str> = None;
1120    /// assert_eq!(unsafe { x.unwrap_unchecked() }, "air"); // Undefined behavior!
1121    /// ```
1122    #[inline]
1123    #[track_caller]
1124    #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1125    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1126    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1127    pub const unsafe fn unwrap_unchecked(self) -> T {
1128        match self {
1129            Some(val) => val,
1130            // SAFETY: the safety contract must be upheld by the caller.
1131            None => unsafe { hint::unreachable_unchecked() },
1132        }
1133    }
1134
1135    /////////////////////////////////////////////////////////////////////////
1136    // Transforming contained values
1137    /////////////////////////////////////////////////////////////////////////
1138
1139    /// Maps an `Option<T>` to `Option<U>` by applying a function to a contained value (if `Some`) or returns `None` (if `None`).
1140    ///
1141    /// # Examples
1142    ///
1143    /// Calculates the length of an <code>Option<[String]></code> as an
1144    /// <code>Option<[usize]></code>, consuming the original:
1145    ///
1146    /// [String]: ../../std/string/struct.String.html "String"
1147    /// ```
1148    /// let maybe_some_string = Some(String::from("Hello, World!"));
1149    /// // `Option::map` takes self *by value*, consuming `maybe_some_string`
1150    /// let maybe_some_len = maybe_some_string.map(|s| s.len());
1151    /// assert_eq!(maybe_some_len, Some(13));
1152    ///
1153    /// let x: Option<&str> = None;
1154    /// assert_eq!(x.map(|s| s.len()), None);
1155    /// ```
1156    #[inline]
1157    #[stable(feature = "rust1", since = "1.0.0")]
1158    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1159    pub const fn map<U, F>(self, f: F) -> Option<U>
1160    where
1161        F: [const] FnOnce(T) -> U + [const] Destruct,
1162    {
1163        match self {
1164            Some(x) => Some(f(x)),
1165            None => None,
1166        }
1167    }
1168
1169    /// Calls a function with a reference to the contained value if [`Some`].
1170    ///
1171    /// Returns the original option.
1172    ///
1173    /// # Examples
1174    ///
1175    /// ```
1176    /// let list = vec![1, 2, 3];
1177    ///
1178    /// // prints "got: 2"
1179    /// let x = list
1180    ///     .get(1)
1181    ///     .inspect(|x| println!("got: {x}"))
1182    ///     .expect("list should be long enough");
1183    ///
1184    /// // prints nothing
1185    /// list.get(5).inspect(|x| println!("got: {x}"));
1186    /// ```
1187    #[inline]
1188    #[stable(feature = "result_option_inspect", since = "1.76.0")]
1189    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1190    pub const fn inspect<F>(self, f: F) -> Self
1191    where
1192        F: [const] FnOnce(&T) + [const] Destruct,
1193    {
1194        if let Some(ref x) = self {
1195            f(x);
1196        }
1197
1198        self
1199    }
1200
1201    /// Returns the provided default result (if none),
1202    /// or applies a function to the contained value (if any).
1203    ///
1204    /// Arguments passed to `map_or` are eagerly evaluated; if you are passing
1205    /// the result of a function call, it is recommended to use [`map_or_else`],
1206    /// which is lazily evaluated.
1207    ///
1208    /// [`map_or_else`]: Option::map_or_else
1209    ///
1210    /// # Examples
1211    ///
1212    /// ```
1213    /// let x = Some("foo");
1214    /// assert_eq!(x.map_or(42, |v| v.len()), 3);
1215    ///
1216    /// let x: Option<&str> = None;
1217    /// assert_eq!(x.map_or(42, |v| v.len()), 42);
1218    /// ```
1219    #[inline]
1220    #[stable(feature = "rust1", since = "1.0.0")]
1221    #[must_use = "if you don't need the returned value, use `if let` instead"]
1222    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1223    pub const fn map_or<U, F>(self, default: U, f: F) -> U
1224    where
1225        F: [const] FnOnce(T) -> U + [const] Destruct,
1226        U: [const] Destruct,
1227    {
1228        match self {
1229            Some(t) => f(t),
1230            None => default,
1231        }
1232    }
1233
1234    /// Computes a default function result (if none), or
1235    /// applies a different function to the contained value (if any).
1236    ///
1237    /// # Basic examples
1238    ///
1239    /// ```
1240    /// let k = 21;
1241    ///
1242    /// let x = Some("foo");
1243    /// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 3);
1244    ///
1245    /// let x: Option<&str> = None;
1246    /// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 42);
1247    /// ```
1248    ///
1249    /// # Handling a Result-based fallback
1250    ///
1251    /// A somewhat common occurrence when dealing with optional values
1252    /// in combination with [`Result<T, E>`] is the case where one wants to invoke
1253    /// a fallible fallback if the option is not present.  This example
1254    /// parses a command line argument (if present), or the contents of a file to
1255    /// an integer.  However, unlike accessing the command line argument, reading
1256    /// the file is fallible, so it must be wrapped with `Ok`.
1257    ///
1258    /// ```no_run
1259    /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
1260    /// let v: u64 = std::env::args()
1261    ///    .nth(1)
1262    ///    .map_or_else(|| std::fs::read_to_string("/etc/someconfig.conf"), Ok)?
1263    ///    .parse()?;
1264    /// #   Ok(())
1265    /// # }
1266    /// ```
1267    #[inline]
1268    #[stable(feature = "rust1", since = "1.0.0")]
1269    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1270    pub const fn map_or_else<U, D, F>(self, default: D, f: F) -> U
1271    where
1272        D: [const] FnOnce() -> U + [const] Destruct,
1273        F: [const] FnOnce(T) -> U + [const] Destruct,
1274    {
1275        match self {
1276            Some(t) => f(t),
1277            None => default(),
1278        }
1279    }
1280
1281    /// Maps an `Option<T>` to a `U` by applying function `f` to the contained
1282    /// value if the option is [`Some`], otherwise if [`None`], returns the
1283    /// [default value] for the type `U`.
1284    ///
1285    /// # Examples
1286    ///
1287    /// ```
1288    /// #![feature(result_option_map_or_default)]
1289    ///
1290    /// let x: Option<&str> = Some("hi");
1291    /// let y: Option<&str> = None;
1292    ///
1293    /// assert_eq!(x.map_or_default(|x| x.len()), 2);
1294    /// assert_eq!(y.map_or_default(|y| y.len()), 0);
1295    /// ```
1296    ///
1297    /// [default value]: Default::default
1298    #[inline]
1299    #[unstable(feature = "result_option_map_or_default", issue = "138099")]
1300    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1301    pub const fn map_or_default<U, F>(self, f: F) -> U
1302    where
1303        U: [const] Default,
1304        F: [const] FnOnce(T) -> U + [const] Destruct,
1305    {
1306        match self {
1307            Some(t) => f(t),
1308            None => U::default(),
1309        }
1310    }
1311
1312    /// Transforms the `Option<T>` into a [`Result<T, E>`], mapping [`Some(v)`] to
1313    /// [`Ok(v)`] and [`None`] to [`Err(err)`].
1314    ///
1315    /// Arguments passed to `ok_or` are eagerly evaluated; if you are passing the
1316    /// result of a function call, it is recommended to use [`ok_or_else`], which is
1317    /// lazily evaluated.
1318    ///
1319    /// [`Ok(v)`]: Ok
1320    /// [`Err(err)`]: Err
1321    /// [`Some(v)`]: Some
1322    /// [`ok_or_else`]: Option::ok_or_else
1323    ///
1324    /// # Examples
1325    ///
1326    /// ```
1327    /// let x = Some("foo");
1328    /// assert_eq!(x.ok_or(0), Ok("foo"));
1329    ///
1330    /// let x: Option<&str> = None;
1331    /// assert_eq!(x.ok_or(0), Err(0));
1332    /// ```
1333    #[inline]
1334    #[stable(feature = "rust1", since = "1.0.0")]
1335    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1336    pub const fn ok_or<E: [const] Destruct>(self, err: E) -> Result<T, E> {
1337        match self {
1338            Some(v) => Ok(v),
1339            None => Err(err),
1340        }
1341    }
1342
1343    /// Transforms the `Option<T>` into a [`Result<T, E>`], mapping [`Some(v)`] to
1344    /// [`Ok(v)`] and [`None`] to [`Err(err())`].
1345    ///
1346    /// [`Ok(v)`]: Ok
1347    /// [`Err(err())`]: Err
1348    /// [`Some(v)`]: Some
1349    ///
1350    /// # Examples
1351    ///
1352    /// ```
1353    /// let x = Some("foo");
1354    /// assert_eq!(x.ok_or_else(|| 0), Ok("foo"));
1355    ///
1356    /// let x: Option<&str> = None;
1357    /// assert_eq!(x.ok_or_else(|| 0), Err(0));
1358    /// ```
1359    #[inline]
1360    #[stable(feature = "rust1", since = "1.0.0")]
1361    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1362    pub const fn ok_or_else<E, F>(self, err: F) -> Result<T, E>
1363    where
1364        F: [const] FnOnce() -> E + [const] Destruct,
1365    {
1366        match self {
1367            Some(v) => Ok(v),
1368            None => Err(err()),
1369        }
1370    }
1371
1372    /// Converts from `Option<T>` (or `&Option<T>`) to `Option<&T::Target>`.
1373    ///
1374    /// Leaves the original Option in-place, creating a new one with a reference
1375    /// to the original one, additionally coercing the contents via [`Deref`].
1376    ///
1377    /// # Examples
1378    ///
1379    /// ```
1380    /// let x: Option<String> = Some("hey".to_owned());
1381    /// assert_eq!(x.as_deref(), Some("hey"));
1382    ///
1383    /// let x: Option<String> = None;
1384    /// assert_eq!(x.as_deref(), None);
1385    /// ```
1386    #[inline]
1387    #[stable(feature = "option_deref", since = "1.40.0")]
1388    #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1389    pub const fn as_deref(&self) -> Option<&T::Target>
1390    where
1391        T: [const] Deref,
1392    {
1393        self.as_ref().map(Deref::deref)
1394    }
1395
1396    /// Converts from `Option<T>` (or `&mut Option<T>`) to `Option<&mut T::Target>`.
1397    ///
1398    /// Leaves the original `Option` in-place, creating a new one containing a mutable reference to
1399    /// the inner type's [`Deref::Target`] type.
1400    ///
1401    /// # Examples
1402    ///
1403    /// ```
1404    /// let mut x: Option<String> = Some("hey".to_owned());
1405    /// assert_eq!(x.as_deref_mut().map(|x| {
1406    ///     x.make_ascii_uppercase();
1407    ///     x
1408    /// }), Some("HEY".to_owned().as_mut_str()));
1409    /// ```
1410    #[inline]
1411    #[stable(feature = "option_deref", since = "1.40.0")]
1412    #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1413    pub const fn as_deref_mut(&mut self) -> Option<&mut T::Target>
1414    where
1415        T: [const] DerefMut,
1416    {
1417        self.as_mut().map(DerefMut::deref_mut)
1418    }
1419
1420    /////////////////////////////////////////////////////////////////////////
1421    // Iterator constructors
1422    /////////////////////////////////////////////////////////////////////////
1423
1424    /// Returns an iterator over the possibly contained value.
1425    ///
1426    /// # Examples
1427    ///
1428    /// ```
1429    /// let x = Some(4);
1430    /// assert_eq!(x.iter().next(), Some(&4));
1431    ///
1432    /// let x: Option<u32> = None;
1433    /// assert_eq!(x.iter().next(), None);
1434    /// ```
1435    #[inline]
1436    #[stable(feature = "rust1", since = "1.0.0")]
1437    pub fn iter(&self) -> Iter<'_, T> {
1438        Iter { inner: Item { opt: self.as_ref() } }
1439    }
1440
1441    /// Returns a mutable iterator over the possibly contained value.
1442    ///
1443    /// # Examples
1444    ///
1445    /// ```
1446    /// let mut x = Some(4);
1447    /// match x.iter_mut().next() {
1448    ///     Some(v) => *v = 42,
1449    ///     None => {},
1450    /// }
1451    /// assert_eq!(x, Some(42));
1452    ///
1453    /// let mut x: Option<u32> = None;
1454    /// assert_eq!(x.iter_mut().next(), None);
1455    /// ```
1456    #[inline]
1457    #[stable(feature = "rust1", since = "1.0.0")]
1458    pub fn iter_mut(&mut self) -> IterMut<'_, T> {
1459        IterMut { inner: Item { opt: self.as_mut() } }
1460    }
1461
1462    /////////////////////////////////////////////////////////////////////////
1463    // Boolean operations on the values, eager and lazy
1464    /////////////////////////////////////////////////////////////////////////
1465
1466    /// Returns [`None`] if the option is [`None`], otherwise returns `optb`.
1467    ///
1468    /// Arguments passed to `and` are eagerly evaluated; if you are passing the
1469    /// result of a function call, it is recommended to use [`and_then`], which is
1470    /// lazily evaluated.
1471    ///
1472    /// [`and_then`]: Option::and_then
1473    ///
1474    /// # Examples
1475    ///
1476    /// ```
1477    /// let x = Some(2);
1478    /// let y: Option<&str> = None;
1479    /// assert_eq!(x.and(y), None);
1480    ///
1481    /// let x: Option<u32> = None;
1482    /// let y = Some("foo");
1483    /// assert_eq!(x.and(y), None);
1484    ///
1485    /// let x = Some(2);
1486    /// let y = Some("foo");
1487    /// assert_eq!(x.and(y), Some("foo"));
1488    ///
1489    /// let x: Option<u32> = None;
1490    /// let y: Option<&str> = None;
1491    /// assert_eq!(x.and(y), None);
1492    /// ```
1493    #[inline]
1494    #[stable(feature = "rust1", since = "1.0.0")]
1495    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1496    pub const fn and<U>(self, optb: Option<U>) -> Option<U>
1497    where
1498        T: [const] Destruct,
1499        U: [const] Destruct,
1500    {
1501        match self {
1502            Some(_) => optb,
1503            None => None,
1504        }
1505    }
1506
1507    /// Returns [`None`] if the option is [`None`], otherwise calls `f` with the
1508    /// wrapped value and returns the result.
1509    ///
1510    /// Some languages call this operation flatmap.
1511    ///
1512    /// # Examples
1513    ///
1514    /// ```
1515    /// fn sq_then_to_string(x: u32) -> Option<String> {
1516    ///     x.checked_mul(x).map(|sq| sq.to_string())
1517    /// }
1518    ///
1519    /// assert_eq!(Some(2).and_then(sq_then_to_string), Some(4.to_string()));
1520    /// assert_eq!(Some(1_000_000).and_then(sq_then_to_string), None); // overflowed!
1521    /// assert_eq!(None.and_then(sq_then_to_string), None);
1522    /// ```
1523    ///
1524    /// Often used to chain fallible operations that may return [`None`].
1525    ///
1526    /// ```
1527    /// let arr_2d = [["A0", "A1"], ["B0", "B1"]];
1528    ///
1529    /// let item_0_1 = arr_2d.get(0).and_then(|row| row.get(1));
1530    /// assert_eq!(item_0_1, Some(&"A1"));
1531    ///
1532    /// let item_2_0 = arr_2d.get(2).and_then(|row| row.get(0));
1533    /// assert_eq!(item_2_0, None);
1534    /// ```
1535    #[doc(alias = "flatmap")]
1536    #[inline]
1537    #[stable(feature = "rust1", since = "1.0.0")]
1538    #[rustc_confusables("flat_map", "flatmap")]
1539    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1540    pub const fn and_then<U, F>(self, f: F) -> Option<U>
1541    where
1542        F: [const] FnOnce(T) -> Option<U> + [const] Destruct,
1543    {
1544        match self {
1545            Some(x) => f(x),
1546            None => None,
1547        }
1548    }
1549
1550    /// Returns [`None`] if the option is [`None`], otherwise calls `predicate`
1551    /// with the wrapped value and returns:
1552    ///
1553    /// - [`Some(t)`] if `predicate` returns `true` (where `t` is the wrapped
1554    ///   value), and
1555    /// - [`None`] if `predicate` returns `false`.
1556    ///
1557    /// This function works similar to [`Iterator::filter()`]. You can imagine
1558    /// the `Option<T>` being an iterator over one or zero elements. `filter()`
1559    /// lets you decide which elements to keep.
1560    ///
1561    /// # Examples
1562    ///
1563    /// ```rust
1564    /// fn is_even(n: &i32) -> bool {
1565    ///     n % 2 == 0
1566    /// }
1567    ///
1568    /// assert_eq!(None.filter(is_even), None);
1569    /// assert_eq!(Some(3).filter(is_even), None);
1570    /// assert_eq!(Some(4).filter(is_even), Some(4));
1571    /// ```
1572    ///
1573    /// [`Some(t)`]: Some
1574    #[inline]
1575    #[stable(feature = "option_filter", since = "1.27.0")]
1576    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1577    pub const fn filter<P>(self, predicate: P) -> Self
1578    where
1579        P: [const] FnOnce(&T) -> bool + [const] Destruct,
1580        T: [const] Destruct,
1581    {
1582        if let Some(x) = self {
1583            if predicate(&x) {
1584                return Some(x);
1585            }
1586        }
1587        None
1588    }
1589
1590    /// Returns the option if it contains a value, otherwise returns `optb`.
1591    ///
1592    /// Arguments passed to `or` are eagerly evaluated; if you are passing the
1593    /// result of a function call, it is recommended to use [`or_else`], which is
1594    /// lazily evaluated.
1595    ///
1596    /// [`or_else`]: Option::or_else
1597    ///
1598    /// # Examples
1599    ///
1600    /// ```
1601    /// let x = Some(2);
1602    /// let y = None;
1603    /// assert_eq!(x.or(y), Some(2));
1604    ///
1605    /// let x = None;
1606    /// let y = Some(100);
1607    /// assert_eq!(x.or(y), Some(100));
1608    ///
1609    /// let x = Some(2);
1610    /// let y = Some(100);
1611    /// assert_eq!(x.or(y), Some(2));
1612    ///
1613    /// let x: Option<u32> = None;
1614    /// let y = None;
1615    /// assert_eq!(x.or(y), None);
1616    /// ```
1617    #[inline]
1618    #[stable(feature = "rust1", since = "1.0.0")]
1619    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1620    pub const fn or(self, optb: Option<T>) -> Option<T>
1621    where
1622        T: [const] Destruct,
1623    {
1624        match self {
1625            x @ Some(_) => x,
1626            None => optb,
1627        }
1628    }
1629
1630    /// Returns the option if it contains a value, otherwise calls `f` and
1631    /// returns the result.
1632    ///
1633    /// # Examples
1634    ///
1635    /// ```
1636    /// fn nobody() -> Option<&'static str> { None }
1637    /// fn vikings() -> Option<&'static str> { Some("vikings") }
1638    ///
1639    /// assert_eq!(Some("barbarians").or_else(vikings), Some("barbarians"));
1640    /// assert_eq!(None.or_else(vikings), Some("vikings"));
1641    /// assert_eq!(None.or_else(nobody), None);
1642    /// ```
1643    #[inline]
1644    #[stable(feature = "rust1", since = "1.0.0")]
1645    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1646    pub const fn or_else<F>(self, f: F) -> Option<T>
1647    where
1648        F: [const] FnOnce() -> Option<T> + [const] Destruct,
1649        //FIXME(const_hack): this `T: [const] Destruct` is unnecessary, but even precise live drops can't tell
1650        // no value of type `T` gets dropped here
1651        T: [const] Destruct,
1652    {
1653        match self {
1654            x @ Some(_) => x,
1655            None => f(),
1656        }
1657    }
1658
1659    /// Returns [`Some`] if exactly one of `self`, `optb` is [`Some`], otherwise returns [`None`].
1660    ///
1661    /// # Examples
1662    ///
1663    /// ```
1664    /// let x = Some(2);
1665    /// let y: Option<u32> = None;
1666    /// assert_eq!(x.xor(y), Some(2));
1667    ///
1668    /// let x: Option<u32> = None;
1669    /// let y = Some(2);
1670    /// assert_eq!(x.xor(y), Some(2));
1671    ///
1672    /// let x = Some(2);
1673    /// let y = Some(2);
1674    /// assert_eq!(x.xor(y), None);
1675    ///
1676    /// let x: Option<u32> = None;
1677    /// let y: Option<u32> = None;
1678    /// assert_eq!(x.xor(y), None);
1679    /// ```
1680    #[inline]
1681    #[stable(feature = "option_xor", since = "1.37.0")]
1682    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1683    pub const fn xor(self, optb: Option<T>) -> Option<T>
1684    where
1685        T: [const] Destruct,
1686    {
1687        match (self, optb) {
1688            (a @ Some(_), None) => a,
1689            (None, b @ Some(_)) => b,
1690            _ => None,
1691        }
1692    }
1693
1694    /////////////////////////////////////////////////////////////////////////
1695    // Entry-like operations to insert a value and return a reference
1696    /////////////////////////////////////////////////////////////////////////
1697
1698    /// Inserts `value` into the option, then returns a mutable reference to it.
1699    ///
1700    /// If the option already contains a value, the old value is dropped.
1701    ///
1702    /// See also [`Option::get_or_insert`], which doesn't update the value if
1703    /// the option already contains [`Some`].
1704    ///
1705    /// # Example
1706    ///
1707    /// ```
1708    /// let mut opt = None;
1709    /// let val = opt.insert(1);
1710    /// assert_eq!(*val, 1);
1711    /// assert_eq!(opt.unwrap(), 1);
1712    /// let val = opt.insert(2);
1713    /// assert_eq!(*val, 2);
1714    /// *val = 3;
1715    /// assert_eq!(opt.unwrap(), 3);
1716    /// ```
1717    #[must_use = "if you intended to set a value, consider assignment instead"]
1718    #[inline]
1719    #[stable(feature = "option_insert", since = "1.53.0")]
1720    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1721    pub const fn insert(&mut self, value: T) -> &mut T
1722    where
1723        T: [const] Destruct,
1724    {
1725        *self = Some(value);
1726
1727        // SAFETY: the code above just filled the option
1728        unsafe { self.as_mut().unwrap_unchecked() }
1729    }
1730
1731    /// Inserts `value` into the option if it is [`None`], then
1732    /// returns a mutable reference to the contained value.
1733    ///
1734    /// See also [`Option::insert`], which updates the value even if
1735    /// the option already contains [`Some`].
1736    ///
1737    /// # Examples
1738    ///
1739    /// ```
1740    /// let mut x = None;
1741    ///
1742    /// {
1743    ///     let y: &mut u32 = x.get_or_insert(5);
1744    ///     assert_eq!(y, &5);
1745    ///
1746    ///     *y = 7;
1747    /// }
1748    ///
1749    /// assert_eq!(x, Some(7));
1750    /// ```
1751    #[inline]
1752    #[stable(feature = "option_entry", since = "1.20.0")]
1753    pub fn get_or_insert(&mut self, value: T) -> &mut T {
1754        self.get_or_insert_with(|| value)
1755    }
1756
1757    /// Inserts the default value into the option if it is [`None`], then
1758    /// returns a mutable reference to the contained value.
1759    ///
1760    /// # Examples
1761    ///
1762    /// ```
1763    /// let mut x = None;
1764    ///
1765    /// {
1766    ///     let y: &mut u32 = x.get_or_insert_default();
1767    ///     assert_eq!(y, &0);
1768    ///
1769    ///     *y = 7;
1770    /// }
1771    ///
1772    /// assert_eq!(x, Some(7));
1773    /// ```
1774    #[inline]
1775    #[stable(feature = "option_get_or_insert_default", since = "1.83.0")]
1776    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1777    pub const fn get_or_insert_default(&mut self) -> &mut T
1778    where
1779        T: [const] Default + [const] Destruct,
1780    {
1781        self.get_or_insert_with(T::default)
1782    }
1783
1784    /// Inserts a value computed from `f` into the option if it is [`None`],
1785    /// then returns a mutable reference to the contained value.
1786    ///
1787    /// # Examples
1788    ///
1789    /// ```
1790    /// let mut x = None;
1791    ///
1792    /// {
1793    ///     let y: &mut u32 = x.get_or_insert_with(|| 5);
1794    ///     assert_eq!(y, &5);
1795    ///
1796    ///     *y = 7;
1797    /// }
1798    ///
1799    /// assert_eq!(x, Some(7));
1800    /// ```
1801    #[inline]
1802    #[stable(feature = "option_entry", since = "1.20.0")]
1803    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1804    pub const fn get_or_insert_with<F>(&mut self, f: F) -> &mut T
1805    where
1806        F: [const] FnOnce() -> T + [const] Destruct,
1807        T: [const] Destruct,
1808    {
1809        if let None = self {
1810            *self = Some(f());
1811        }
1812
1813        // SAFETY: a `None` variant for `self` would have been replaced by a `Some`
1814        // variant in the code above.
1815        unsafe { self.as_mut().unwrap_unchecked() }
1816    }
1817
1818    /////////////////////////////////////////////////////////////////////////
1819    // Misc
1820    /////////////////////////////////////////////////////////////////////////
1821
1822    /// Takes the value out of the option, leaving a [`None`] in its place.
1823    ///
1824    /// # Examples
1825    ///
1826    /// ```
1827    /// let mut x = Some(2);
1828    /// let y = x.take();
1829    /// assert_eq!(x, None);
1830    /// assert_eq!(y, Some(2));
1831    ///
1832    /// let mut x: Option<u32> = None;
1833    /// let y = x.take();
1834    /// assert_eq!(x, None);
1835    /// assert_eq!(y, None);
1836    /// ```
1837    #[inline]
1838    #[stable(feature = "rust1", since = "1.0.0")]
1839    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1840    pub const fn take(&mut self) -> Option<T> {
1841        // FIXME(const-hack) replace `mem::replace` by `mem::take` when the latter is const ready
1842        mem::replace(self, None)
1843    }
1844
1845    /// Takes the value out of the option, but only if the predicate evaluates to
1846    /// `true` on a mutable reference to the value.
1847    ///
1848    /// In other words, replaces `self` with `None` if the predicate returns `true`.
1849    /// This method operates similar to [`Option::take`] but conditional.
1850    ///
1851    /// # Examples
1852    ///
1853    /// ```
1854    /// let mut x = Some(42);
1855    ///
1856    /// let prev = x.take_if(|v| if *v == 42 {
1857    ///     *v += 1;
1858    ///     false
1859    /// } else {
1860    ///     false
1861    /// });
1862    /// assert_eq!(x, Some(43));
1863    /// assert_eq!(prev, None);
1864    ///
1865    /// let prev = x.take_if(|v| *v == 43);
1866    /// assert_eq!(x, None);
1867    /// assert_eq!(prev, Some(43));
1868    /// ```
1869    #[inline]
1870    #[stable(feature = "option_take_if", since = "1.80.0")]
1871    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1872    pub const fn take_if<P>(&mut self, predicate: P) -> Option<T>
1873    where
1874        P: [const] FnOnce(&mut T) -> bool + [const] Destruct,
1875    {
1876        if self.as_mut().map_or(false, predicate) { self.take() } else { None }
1877    }
1878
1879    /// Replaces the actual value in the option by the value given in parameter,
1880    /// returning the old value if present,
1881    /// leaving a [`Some`] in its place without deinitializing either one.
1882    ///
1883    /// # Examples
1884    ///
1885    /// ```
1886    /// let mut x = Some(2);
1887    /// let old = x.replace(5);
1888    /// assert_eq!(x, Some(5));
1889    /// assert_eq!(old, Some(2));
1890    ///
1891    /// let mut x = None;
1892    /// let old = x.replace(3);
1893    /// assert_eq!(x, Some(3));
1894    /// assert_eq!(old, None);
1895    /// ```
1896    #[inline]
1897    #[stable(feature = "option_replace", since = "1.31.0")]
1898    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1899    pub const fn replace(&mut self, value: T) -> Option<T> {
1900        mem::replace(self, Some(value))
1901    }
1902
1903    /// Zips `self` with another `Option`.
1904    ///
1905    /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some((s, o))`.
1906    /// Otherwise, `None` is returned.
1907    ///
1908    /// # Examples
1909    ///
1910    /// ```
1911    /// let x = Some(1);
1912    /// let y = Some("hi");
1913    /// let z = None::<u8>;
1914    ///
1915    /// assert_eq!(x.zip(y), Some((1, "hi")));
1916    /// assert_eq!(x.zip(z), None);
1917    /// ```
1918    #[stable(feature = "option_zip_option", since = "1.46.0")]
1919    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1920    pub const fn zip<U>(self, other: Option<U>) -> Option<(T, U)>
1921    where
1922        T: [const] Destruct,
1923        U: [const] Destruct,
1924    {
1925        match (self, other) {
1926            (Some(a), Some(b)) => Some((a, b)),
1927            _ => None,
1928        }
1929    }
1930
1931    /// Zips `self` and another `Option` with function `f`.
1932    ///
1933    /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some(f(s, o))`.
1934    /// Otherwise, `None` is returned.
1935    ///
1936    /// # Examples
1937    ///
1938    /// ```
1939    /// #![feature(option_zip)]
1940    ///
1941    /// #[derive(Debug, PartialEq)]
1942    /// struct Point {
1943    ///     x: f64,
1944    ///     y: f64,
1945    /// }
1946    ///
1947    /// impl Point {
1948    ///     fn new(x: f64, y: f64) -> Self {
1949    ///         Self { x, y }
1950    ///     }
1951    /// }
1952    ///
1953    /// let x = Some(17.5);
1954    /// let y = Some(42.7);
1955    ///
1956    /// assert_eq!(x.zip_with(y, Point::new), Some(Point { x: 17.5, y: 42.7 }));
1957    /// assert_eq!(x.zip_with(None, Point::new), None);
1958    /// ```
1959    #[unstable(feature = "option_zip", issue = "70086")]
1960    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1961    pub const fn zip_with<U, F, R>(self, other: Option<U>, f: F) -> Option<R>
1962    where
1963        F: [const] FnOnce(T, U) -> R + [const] Destruct,
1964        T: [const] Destruct,
1965        U: [const] Destruct,
1966    {
1967        match (self, other) {
1968            (Some(a), Some(b)) => Some(f(a, b)),
1969            _ => None,
1970        }
1971    }
1972
1973    /// Reduces two options into one, using the provided function if both are `Some`.
1974    ///
1975    /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some(f(s, o))`.
1976    /// Otherwise, if only one of `self` and `other` is `Some`, that one is returned.
1977    /// If both `self` and `other` are `None`, `None` is returned.
1978    ///
1979    /// # Examples
1980    ///
1981    /// ```
1982    /// #![feature(option_reduce)]
1983    ///
1984    /// let s12 = Some(12);
1985    /// let s17 = Some(17);
1986    /// let n = None;
1987    /// let f = |a, b| a + b;
1988    ///
1989    /// assert_eq!(s12.reduce(s17, f), Some(29));
1990    /// assert_eq!(s12.reduce(n, f), Some(12));
1991    /// assert_eq!(n.reduce(s17, f), Some(17));
1992    /// assert_eq!(n.reduce(n, f), None);
1993    /// ```
1994    #[unstable(feature = "option_reduce", issue = "144273")]
1995    pub fn reduce<U, R, F>(self, other: Option<U>, f: F) -> Option<R>
1996    where
1997        T: Into<R>,
1998        U: Into<R>,
1999        F: FnOnce(T, U) -> R,
2000    {
2001        match (self, other) {
2002            (Some(a), Some(b)) => Some(f(a, b)),
2003            (Some(a), _) => Some(a.into()),
2004            (_, Some(b)) => Some(b.into()),
2005            _ => None,
2006        }
2007    }
2008}
2009
2010impl<T, U> Option<(T, U)> {
2011    /// Unzips an option containing a tuple of two options.
2012    ///
2013    /// If `self` is `Some((a, b))` this method returns `(Some(a), Some(b))`.
2014    /// Otherwise, `(None, None)` is returned.
2015    ///
2016    /// # Examples
2017    ///
2018    /// ```
2019    /// let x = Some((1, "hi"));
2020    /// let y = None::<(u8, u32)>;
2021    ///
2022    /// assert_eq!(x.unzip(), (Some(1), Some("hi")));
2023    /// assert_eq!(y.unzip(), (None, None));
2024    /// ```
2025    #[inline]
2026    #[stable(feature = "unzip_option", since = "1.66.0")]
2027    pub fn unzip(self) -> (Option<T>, Option<U>) {
2028        match self {
2029            Some((a, b)) => (Some(a), Some(b)),
2030            None => (None, None),
2031        }
2032    }
2033}
2034
2035impl<T> Option<&T> {
2036    /// Maps an `Option<&T>` to an `Option<T>` by copying the contents of the
2037    /// option.
2038    ///
2039    /// # Examples
2040    ///
2041    /// ```
2042    /// let x = 12;
2043    /// let opt_x = Some(&x);
2044    /// assert_eq!(opt_x, Some(&12));
2045    /// let copied = opt_x.copied();
2046    /// assert_eq!(copied, Some(12));
2047    /// ```
2048    #[must_use = "`self` will be dropped if the result is not used"]
2049    #[stable(feature = "copied", since = "1.35.0")]
2050    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2051    pub const fn copied(self) -> Option<T>
2052    where
2053        T: Copy,
2054    {
2055        // FIXME(const-hack): this implementation, which sidesteps using `Option::map` since it's not const
2056        // ready yet, should be reverted when possible to avoid code repetition
2057        match self {
2058            Some(&v) => Some(v),
2059            None => None,
2060        }
2061    }
2062
2063    /// Maps an `Option<&T>` to an `Option<T>` by cloning the contents of the
2064    /// option.
2065    ///
2066    /// # Examples
2067    ///
2068    /// ```
2069    /// let x = 12;
2070    /// let opt_x = Some(&x);
2071    /// assert_eq!(opt_x, Some(&12));
2072    /// let cloned = opt_x.cloned();
2073    /// assert_eq!(cloned, Some(12));
2074    /// ```
2075    #[must_use = "`self` will be dropped if the result is not used"]
2076    #[stable(feature = "rust1", since = "1.0.0")]
2077    pub fn cloned(self) -> Option<T>
2078    where
2079        T: Clone,
2080    {
2081        match self {
2082            Some(t) => Some(t.clone()),
2083            None => None,
2084        }
2085    }
2086}
2087
2088impl<T> Option<&mut T> {
2089    /// Maps an `Option<&mut T>` to an `Option<T>` by copying the contents of the
2090    /// option.
2091    ///
2092    /// # Examples
2093    ///
2094    /// ```
2095    /// let mut x = 12;
2096    /// let opt_x = Some(&mut x);
2097    /// assert_eq!(opt_x, Some(&mut 12));
2098    /// let copied = opt_x.copied();
2099    /// assert_eq!(copied, Some(12));
2100    /// ```
2101    #[must_use = "`self` will be dropped if the result is not used"]
2102    #[stable(feature = "copied", since = "1.35.0")]
2103    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2104    pub const fn copied(self) -> Option<T>
2105    where
2106        T: Copy,
2107    {
2108        match self {
2109            Some(&mut t) => Some(t),
2110            None => None,
2111        }
2112    }
2113
2114    /// Maps an `Option<&mut T>` to an `Option<T>` by cloning the contents of the
2115    /// option.
2116    ///
2117    /// # Examples
2118    ///
2119    /// ```
2120    /// let mut x = 12;
2121    /// let opt_x = Some(&mut x);
2122    /// assert_eq!(opt_x, Some(&mut 12));
2123    /// let cloned = opt_x.cloned();
2124    /// assert_eq!(cloned, Some(12));
2125    /// ```
2126    #[must_use = "`self` will be dropped if the result is not used"]
2127    #[stable(since = "1.26.0", feature = "option_ref_mut_cloned")]
2128    pub fn cloned(self) -> Option<T>
2129    where
2130        T: Clone,
2131    {
2132        match self {
2133            Some(t) => Some(t.clone()),
2134            None => None,
2135        }
2136    }
2137}
2138
2139impl<T, E> Option<Result<T, E>> {
2140    /// Transposes an `Option` of a [`Result`] into a [`Result`] of an `Option`.
2141    ///
2142    /// <code>[Some]\([Ok]\(\_))</code> is mapped to <code>[Ok]\([Some]\(\_))</code>,
2143    /// <code>[Some]\([Err]\(\_))</code> is mapped to <code>[Err]\(\_)</code>,
2144    /// and [`None`] will be mapped to <code>[Ok]\([None])</code>.
2145    ///
2146    /// # Examples
2147    ///
2148    /// ```
2149    /// #[derive(Debug, Eq, PartialEq)]
2150    /// struct SomeErr;
2151    ///
2152    /// let x: Option<Result<i32, SomeErr>> = Some(Ok(5));
2153    /// let y: Result<Option<i32>, SomeErr> = Ok(Some(5));
2154    /// assert_eq!(x.transpose(), y);
2155    /// ```
2156    #[inline]
2157    #[stable(feature = "transpose_result", since = "1.33.0")]
2158    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2159    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2160    pub const fn transpose(self) -> Result<Option<T>, E> {
2161        match self {
2162            Some(Ok(x)) => Ok(Some(x)),
2163            Some(Err(e)) => Err(e),
2164            None => Ok(None),
2165        }
2166    }
2167}
2168
2169#[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2170#[cfg_attr(panic = "immediate-abort", inline)]
2171#[cold]
2172#[track_caller]
2173const fn unwrap_failed() -> ! {
2174    panic("called `Option::unwrap()` on a `None` value")
2175}
2176
2177// This is a separate function to reduce the code size of .expect() itself.
2178#[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2179#[cfg_attr(panic = "immediate-abort", inline)]
2180#[cold]
2181#[track_caller]
2182const fn expect_failed(msg: &str) -> ! {
2183    panic_display(&msg)
2184}
2185
2186/////////////////////////////////////////////////////////////////////////////
2187// Trait implementations
2188/////////////////////////////////////////////////////////////////////////////
2189
2190#[stable(feature = "rust1", since = "1.0.0")]
2191#[rustc_const_unstable(feature = "const_clone", issue = "142757")]
2192impl<T> const Clone for Option<T>
2193where
2194    // FIXME(const_hack): the T: [const] Destruct should be inferred from the Self: [const] Destruct in clone_from.
2195    // See https://github.com/rust-lang/rust/issues/144207
2196    T: [const] Clone + [const] Destruct,
2197{
2198    #[inline]
2199    fn clone(&self) -> Self {
2200        match self {
2201            Some(x) => Some(x.clone()),
2202            None => None,
2203        }
2204    }
2205
2206    #[inline]
2207    fn clone_from(&mut self, source: &Self) {
2208        match (self, source) {
2209            (Some(to), Some(from)) => to.clone_from(from),
2210            (to, from) => *to = from.clone(),
2211        }
2212    }
2213}
2214
2215#[unstable(feature = "ergonomic_clones", issue = "132290")]
2216impl<T> crate::clone::UseCloned for Option<T> where T: crate::clone::UseCloned {}
2217
2218#[stable(feature = "rust1", since = "1.0.0")]
2219#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2220impl<T> const Default for Option<T> {
2221    /// Returns [`None`][Option::None].
2222    ///
2223    /// # Examples
2224    ///
2225    /// ```
2226    /// let opt: Option<u32> = Option::default();
2227    /// assert!(opt.is_none());
2228    /// ```
2229    #[inline]
2230    fn default() -> Option<T> {
2231        None
2232    }
2233}
2234
2235#[stable(feature = "rust1", since = "1.0.0")]
2236impl<T> IntoIterator for Option<T> {
2237    type Item = T;
2238    type IntoIter = IntoIter<T>;
2239
2240    /// Returns a consuming iterator over the possibly contained value.
2241    ///
2242    /// # Examples
2243    ///
2244    /// ```
2245    /// let x = Some("string");
2246    /// let v: Vec<&str> = x.into_iter().collect();
2247    /// assert_eq!(v, ["string"]);
2248    ///
2249    /// let x = None;
2250    /// let v: Vec<&str> = x.into_iter().collect();
2251    /// assert!(v.is_empty());
2252    /// ```
2253    #[inline]
2254    fn into_iter(self) -> IntoIter<T> {
2255        IntoIter { inner: Item { opt: self } }
2256    }
2257}
2258
2259#[stable(since = "1.4.0", feature = "option_iter")]
2260impl<'a, T> IntoIterator for &'a Option<T> {
2261    type Item = &'a T;
2262    type IntoIter = Iter<'a, T>;
2263
2264    fn into_iter(self) -> Iter<'a, T> {
2265        self.iter()
2266    }
2267}
2268
2269#[stable(since = "1.4.0", feature = "option_iter")]
2270impl<'a, T> IntoIterator for &'a mut Option<T> {
2271    type Item = &'a mut T;
2272    type IntoIter = IterMut<'a, T>;
2273
2274    fn into_iter(self) -> IterMut<'a, T> {
2275        self.iter_mut()
2276    }
2277}
2278
2279#[stable(since = "1.12.0", feature = "option_from")]
2280#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2281impl<T> const From<T> for Option<T> {
2282    /// Moves `val` into a new [`Some`].
2283    ///
2284    /// # Examples
2285    ///
2286    /// ```
2287    /// let o: Option<u8> = Option::from(67);
2288    ///
2289    /// assert_eq!(Some(67), o);
2290    /// ```
2291    fn from(val: T) -> Option<T> {
2292        Some(val)
2293    }
2294}
2295
2296#[stable(feature = "option_ref_from_ref_option", since = "1.30.0")]
2297#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2298impl<'a, T> const From<&'a Option<T>> for Option<&'a T> {
2299    /// Converts from `&Option<T>` to `Option<&T>`.
2300    ///
2301    /// # Examples
2302    ///
2303    /// Converts an <code>[Option]<[String]></code> into an <code>[Option]<[usize]></code>, preserving
2304    /// the original. The [`map`] method takes the `self` argument by value, consuming the original,
2305    /// so this technique uses `from` to first take an [`Option`] to a reference
2306    /// to the value inside the original.
2307    ///
2308    /// [`map`]: Option::map
2309    /// [String]: ../../std/string/struct.String.html "String"
2310    ///
2311    /// ```
2312    /// let s: Option<String> = Some(String::from("Hello, Rustaceans!"));
2313    /// let o: Option<usize> = Option::from(&s).map(|ss: &String| ss.len());
2314    ///
2315    /// println!("Can still print s: {s:?}");
2316    ///
2317    /// assert_eq!(o, Some(18));
2318    /// ```
2319    fn from(o: &'a Option<T>) -> Option<&'a T> {
2320        o.as_ref()
2321    }
2322}
2323
2324#[stable(feature = "option_ref_from_ref_option", since = "1.30.0")]
2325#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2326impl<'a, T> const From<&'a mut Option<T>> for Option<&'a mut T> {
2327    /// Converts from `&mut Option<T>` to `Option<&mut T>`
2328    ///
2329    /// # Examples
2330    ///
2331    /// ```
2332    /// let mut s = Some(String::from("Hello"));
2333    /// let o: Option<&mut String> = Option::from(&mut s);
2334    ///
2335    /// match o {
2336    ///     Some(t) => *t = String::from("Hello, Rustaceans!"),
2337    ///     None => (),
2338    /// }
2339    ///
2340    /// assert_eq!(s, Some(String::from("Hello, Rustaceans!")));
2341    /// ```
2342    fn from(o: &'a mut Option<T>) -> Option<&'a mut T> {
2343        o.as_mut()
2344    }
2345}
2346
2347// Ideally, LLVM should be able to optimize our derive code to this.
2348// Once https://github.com/llvm/llvm-project/issues/52622 is fixed, we can
2349// go back to deriving `PartialEq`.
2350#[stable(feature = "rust1", since = "1.0.0")]
2351impl<T> crate::marker::StructuralPartialEq for Option<T> {}
2352#[stable(feature = "rust1", since = "1.0.0")]
2353#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2354impl<T: [const] PartialEq> const PartialEq for Option<T> {
2355    #[inline]
2356    fn eq(&self, other: &Self) -> bool {
2357        // Spelling out the cases explicitly optimizes better than
2358        // `_ => false`
2359        match (self, other) {
2360            (Some(l), Some(r)) => *l == *r,
2361            (Some(_), None) => false,
2362            (None, Some(_)) => false,
2363            (None, None) => true,
2364        }
2365    }
2366}
2367
2368// Manually implementing here somewhat improves codegen for
2369// https://github.com/rust-lang/rust/issues/49892, although still
2370// not optimal.
2371#[stable(feature = "rust1", since = "1.0.0")]
2372#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2373impl<T: [const] PartialOrd> const PartialOrd for Option<T> {
2374    #[inline]
2375    fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
2376        match (self, other) {
2377            (Some(l), Some(r)) => l.partial_cmp(r),
2378            (Some(_), None) => Some(cmp::Ordering::Greater),
2379            (None, Some(_)) => Some(cmp::Ordering::Less),
2380            (None, None) => Some(cmp::Ordering::Equal),
2381        }
2382    }
2383}
2384
2385#[stable(feature = "rust1", since = "1.0.0")]
2386#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2387impl<T: [const] Ord> const Ord for Option<T> {
2388    #[inline]
2389    fn cmp(&self, other: &Self) -> cmp::Ordering {
2390        match (self, other) {
2391            (Some(l), Some(r)) => l.cmp(r),
2392            (Some(_), None) => cmp::Ordering::Greater,
2393            (None, Some(_)) => cmp::Ordering::Less,
2394            (None, None) => cmp::Ordering::Equal,
2395        }
2396    }
2397}
2398
2399/////////////////////////////////////////////////////////////////////////////
2400// The Option Iterators
2401/////////////////////////////////////////////////////////////////////////////
2402
2403#[derive(Clone, Debug)]
2404struct Item<A> {
2405    opt: Option<A>,
2406}
2407
2408impl<A> Iterator for Item<A> {
2409    type Item = A;
2410
2411    #[inline]
2412    fn next(&mut self) -> Option<A> {
2413        self.opt.take()
2414    }
2415
2416    #[inline]
2417    fn size_hint(&self) -> (usize, Option<usize>) {
2418        let len = self.len();
2419        (len, Some(len))
2420    }
2421}
2422
2423impl<A> DoubleEndedIterator for Item<A> {
2424    #[inline]
2425    fn next_back(&mut self) -> Option<A> {
2426        self.opt.take()
2427    }
2428}
2429
2430impl<A> ExactSizeIterator for Item<A> {
2431    #[inline]
2432    fn len(&self) -> usize {
2433        self.opt.len()
2434    }
2435}
2436impl<A> FusedIterator for Item<A> {}
2437unsafe impl<A> TrustedLen for Item<A> {}
2438
2439/// An iterator over a reference to the [`Some`] variant of an [`Option`].
2440///
2441/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2442///
2443/// This `struct` is created by the [`Option::iter`] function.
2444#[stable(feature = "rust1", since = "1.0.0")]
2445#[derive(Debug)]
2446pub struct Iter<'a, A: 'a> {
2447    inner: Item<&'a A>,
2448}
2449
2450#[stable(feature = "rust1", since = "1.0.0")]
2451impl<'a, A> Iterator for Iter<'a, A> {
2452    type Item = &'a A;
2453
2454    #[inline]
2455    fn next(&mut self) -> Option<&'a A> {
2456        self.inner.next()
2457    }
2458    #[inline]
2459    fn size_hint(&self) -> (usize, Option<usize>) {
2460        self.inner.size_hint()
2461    }
2462}
2463
2464#[stable(feature = "rust1", since = "1.0.0")]
2465impl<'a, A> DoubleEndedIterator for Iter<'a, A> {
2466    #[inline]
2467    fn next_back(&mut self) -> Option<&'a A> {
2468        self.inner.next_back()
2469    }
2470}
2471
2472#[stable(feature = "rust1", since = "1.0.0")]
2473impl<A> ExactSizeIterator for Iter<'_, A> {}
2474
2475#[stable(feature = "fused", since = "1.26.0")]
2476impl<A> FusedIterator for Iter<'_, A> {}
2477
2478#[unstable(feature = "trusted_len", issue = "37572")]
2479unsafe impl<A> TrustedLen for Iter<'_, A> {}
2480
2481#[stable(feature = "rust1", since = "1.0.0")]
2482impl<A> Clone for Iter<'_, A> {
2483    #[inline]
2484    fn clone(&self) -> Self {
2485        Iter { inner: self.inner.clone() }
2486    }
2487}
2488
2489/// An iterator over a mutable reference to the [`Some`] variant of an [`Option`].
2490///
2491/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2492///
2493/// This `struct` is created by the [`Option::iter_mut`] function.
2494#[stable(feature = "rust1", since = "1.0.0")]
2495#[derive(Debug)]
2496pub struct IterMut<'a, A: 'a> {
2497    inner: Item<&'a mut A>,
2498}
2499
2500#[stable(feature = "rust1", since = "1.0.0")]
2501impl<'a, A> Iterator for IterMut<'a, A> {
2502    type Item = &'a mut A;
2503
2504    #[inline]
2505    fn next(&mut self) -> Option<&'a mut A> {
2506        self.inner.next()
2507    }
2508    #[inline]
2509    fn size_hint(&self) -> (usize, Option<usize>) {
2510        self.inner.size_hint()
2511    }
2512}
2513
2514#[stable(feature = "rust1", since = "1.0.0")]
2515impl<'a, A> DoubleEndedIterator for IterMut<'a, A> {
2516    #[inline]
2517    fn next_back(&mut self) -> Option<&'a mut A> {
2518        self.inner.next_back()
2519    }
2520}
2521
2522#[stable(feature = "rust1", since = "1.0.0")]
2523impl<A> ExactSizeIterator for IterMut<'_, A> {}
2524
2525#[stable(feature = "fused", since = "1.26.0")]
2526impl<A> FusedIterator for IterMut<'_, A> {}
2527#[unstable(feature = "trusted_len", issue = "37572")]
2528unsafe impl<A> TrustedLen for IterMut<'_, A> {}
2529
2530/// An iterator over the value in [`Some`] variant of an [`Option`].
2531///
2532/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2533///
2534/// This `struct` is created by the [`Option::into_iter`] function.
2535#[derive(Clone, Debug)]
2536#[stable(feature = "rust1", since = "1.0.0")]
2537pub struct IntoIter<A> {
2538    inner: Item<A>,
2539}
2540
2541#[stable(feature = "rust1", since = "1.0.0")]
2542impl<A> Iterator for IntoIter<A> {
2543    type Item = A;
2544
2545    #[inline]
2546    fn next(&mut self) -> Option<A> {
2547        self.inner.next()
2548    }
2549    #[inline]
2550    fn size_hint(&self) -> (usize, Option<usize>) {
2551        self.inner.size_hint()
2552    }
2553}
2554
2555#[stable(feature = "rust1", since = "1.0.0")]
2556impl<A> DoubleEndedIterator for IntoIter<A> {
2557    #[inline]
2558    fn next_back(&mut self) -> Option<A> {
2559        self.inner.next_back()
2560    }
2561}
2562
2563#[stable(feature = "rust1", since = "1.0.0")]
2564impl<A> ExactSizeIterator for IntoIter<A> {}
2565
2566#[stable(feature = "fused", since = "1.26.0")]
2567impl<A> FusedIterator for IntoIter<A> {}
2568
2569#[unstable(feature = "trusted_len", issue = "37572")]
2570unsafe impl<A> TrustedLen for IntoIter<A> {}
2571
2572/////////////////////////////////////////////////////////////////////////////
2573// FromIterator
2574/////////////////////////////////////////////////////////////////////////////
2575
2576#[stable(feature = "rust1", since = "1.0.0")]
2577impl<A, V: FromIterator<A>> FromIterator<Option<A>> for Option<V> {
2578    /// Takes each element in the [`Iterator`]: if it is [`None`][Option::None],
2579    /// no further elements are taken, and the [`None`][Option::None] is
2580    /// returned. Should no [`None`][Option::None] occur, a container of type
2581    /// `V` containing the values of each [`Option`] is returned.
2582    ///
2583    /// # Examples
2584    ///
2585    /// Here is an example which increments every integer in a vector.
2586    /// We use the checked variant of `add` that returns `None` when the
2587    /// calculation would result in an overflow.
2588    ///
2589    /// ```
2590    /// let items = vec![0_u16, 1, 2];
2591    ///
2592    /// let res: Option<Vec<u16>> = items
2593    ///     .iter()
2594    ///     .map(|x| x.checked_add(1))
2595    ///     .collect();
2596    ///
2597    /// assert_eq!(res, Some(vec![1, 2, 3]));
2598    /// ```
2599    ///
2600    /// As you can see, this will return the expected, valid items.
2601    ///
2602    /// Here is another example that tries to subtract one from another list
2603    /// of integers, this time checking for underflow:
2604    ///
2605    /// ```
2606    /// let items = vec![2_u16, 1, 0];
2607    ///
2608    /// let res: Option<Vec<u16>> = items
2609    ///     .iter()
2610    ///     .map(|x| x.checked_sub(1))
2611    ///     .collect();
2612    ///
2613    /// assert_eq!(res, None);
2614    /// ```
2615    ///
2616    /// Since the last element is zero, it would underflow. Thus, the resulting
2617    /// value is `None`.
2618    ///
2619    /// Here is a variation on the previous example, showing that no
2620    /// further elements are taken from `iter` after the first `None`.
2621    ///
2622    /// ```
2623    /// let items = vec![3_u16, 2, 1, 10];
2624    ///
2625    /// let mut shared = 0;
2626    ///
2627    /// let res: Option<Vec<u16>> = items
2628    ///     .iter()
2629    ///     .map(|x| { shared += x; x.checked_sub(2) })
2630    ///     .collect();
2631    ///
2632    /// assert_eq!(res, None);
2633    /// assert_eq!(shared, 6);
2634    /// ```
2635    ///
2636    /// Since the third element caused an underflow, no further elements were taken,
2637    /// so the final value of `shared` is 6 (= `3 + 2 + 1`), not 16.
2638    #[inline]
2639    fn from_iter<I: IntoIterator<Item = Option<A>>>(iter: I) -> Option<V> {
2640        // FIXME(#11084): This could be replaced with Iterator::scan when this
2641        // performance bug is closed.
2642
2643        iter::try_process(iter.into_iter(), |i| i.collect())
2644    }
2645}
2646
2647#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2648#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2649impl<T> const ops::Try for Option<T> {
2650    type Output = T;
2651    type Residual = Option<convert::Infallible>;
2652
2653    #[inline]
2654    fn from_output(output: Self::Output) -> Self {
2655        Some(output)
2656    }
2657
2658    #[inline]
2659    fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
2660        match self {
2661            Some(v) => ControlFlow::Continue(v),
2662            None => ControlFlow::Break(None),
2663        }
2664    }
2665}
2666
2667#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2668#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2669// Note: manually specifying the residual type instead of using the default to work around
2670// https://github.com/rust-lang/rust/issues/99940
2671impl<T> const ops::FromResidual<Option<convert::Infallible>> for Option<T> {
2672    #[inline]
2673    fn from_residual(residual: Option<convert::Infallible>) -> Self {
2674        match residual {
2675            None => None,
2676        }
2677    }
2678}
2679
2680#[diagnostic::do_not_recommend]
2681#[unstable(feature = "try_trait_v2_yeet", issue = "96374")]
2682#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2683impl<T> const ops::FromResidual<ops::Yeet<()>> for Option<T> {
2684    #[inline]
2685    fn from_residual(ops::Yeet(()): ops::Yeet<()>) -> Self {
2686        None
2687    }
2688}
2689
2690#[unstable(feature = "try_trait_v2_residual", issue = "91285")]
2691#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2692impl<T> const ops::Residual<T> for Option<convert::Infallible> {
2693    type TryType = Option<T>;
2694}
2695
2696impl<T> Option<Option<T>> {
2697    /// Converts from `Option<Option<T>>` to `Option<T>`.
2698    ///
2699    /// # Examples
2700    ///
2701    /// Basic usage:
2702    ///
2703    /// ```
2704    /// let x: Option<Option<u32>> = Some(Some(6));
2705    /// assert_eq!(Some(6), x.flatten());
2706    ///
2707    /// let x: Option<Option<u32>> = Some(None);
2708    /// assert_eq!(None, x.flatten());
2709    ///
2710    /// let x: Option<Option<u32>> = None;
2711    /// assert_eq!(None, x.flatten());
2712    /// ```
2713    ///
2714    /// Flattening only removes one level of nesting at a time:
2715    ///
2716    /// ```
2717    /// let x: Option<Option<Option<u32>>> = Some(Some(Some(6)));
2718    /// assert_eq!(Some(Some(6)), x.flatten());
2719    /// assert_eq!(Some(6), x.flatten().flatten());
2720    /// ```
2721    #[inline]
2722    #[stable(feature = "option_flattening", since = "1.40.0")]
2723    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2724    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2725    pub const fn flatten(self) -> Option<T> {
2726        // FIXME(const-hack): could be written with `and_then`
2727        match self {
2728            Some(inner) => inner,
2729            None => None,
2730        }
2731    }
2732}
2733
2734impl<T, const N: usize> [Option<T>; N] {
2735    /// Transposes a `[Option<T>; N]` into a `Option<[T; N]>`.
2736    ///
2737    /// # Examples
2738    ///
2739    /// ```
2740    /// #![feature(option_array_transpose)]
2741    /// # use std::option::Option;
2742    ///
2743    /// let data = [Some(0); 1000];
2744    /// let data: Option<[u8; 1000]> = data.transpose();
2745    /// assert_eq!(data, Some([0; 1000]));
2746    ///
2747    /// let data = [Some(0), None];
2748    /// let data: Option<[u8; 2]> = data.transpose();
2749    /// assert_eq!(data, None);
2750    /// ```
2751    #[inline]
2752    #[unstable(feature = "option_array_transpose", issue = "130828")]
2753    pub fn transpose(self) -> Option<[T; N]> {
2754        self.try_map(core::convert::identity)
2755    }
2756}