core/num/bignum.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
//! Custom arbitrary-precision number (bignum) implementation.
//!
//! This is designed to avoid the heap allocation at expense of stack memory.
//! The most used bignum type, `Big32x40`, is limited by 32 × 40 = 1,280 bits
//! and will take at most 160 bytes of stack memory. This is more than enough
//! for round-tripping all possible finite `f64` values.
//!
//! In principle it is possible to have multiple bignum types for different
//! inputs, but we don't do so to avoid the code bloat. Each bignum is still
//! tracked for the actual usages, so it normally doesn't matter.
// This module is only for dec2flt and flt2dec, and only public because of coretests.
// It is not intended to ever be stabilized.
#![doc(hidden)]
#![unstable(
feature = "core_private_bignum",
reason = "internal routines only exposed for testing",
issue = "none"
)]
#![macro_use]
/// Arithmetic operations required by bignums.
pub trait FullOps: Sized {
/// Returns `(carry', v')` such that `carry' * 2^W + v' = self * other + other2 + carry`,
/// where `W` is the number of bits in `Self`.
fn full_mul_add(self, other: Self, other2: Self, carry: Self) -> (Self /* carry */, Self);
/// Returns `(quo, rem)` such that `borrow * 2^W + self = quo * other + rem`
/// and `0 <= rem < other`, where `W` is the number of bits in `Self`.
fn full_div_rem(self, other: Self, borrow: Self)
-> (Self /* quotient */, Self /* remainder */);
}
macro_rules! impl_full_ops {
($($ty:ty: add($addfn:path), mul/div($bigty:ident);)*) => (
$(
impl FullOps for $ty {
fn full_mul_add(self, other: $ty, other2: $ty, carry: $ty) -> ($ty, $ty) {
// This cannot overflow;
// the output is between `0` and `2^nbits * (2^nbits - 1)`.
let v = (self as $bigty) * (other as $bigty) + (other2 as $bigty) +
(carry as $bigty);
((v >> <$ty>::BITS) as $ty, v as $ty)
}
fn full_div_rem(self, other: $ty, borrow: $ty) -> ($ty, $ty) {
debug_assert!(borrow < other);
// This cannot overflow; the output is between `0` and `other * (2^nbits - 1)`.
let lhs = ((borrow as $bigty) << <$ty>::BITS) | (self as $bigty);
let rhs = other as $bigty;
((lhs / rhs) as $ty, (lhs % rhs) as $ty)
}
}
)*
)
}
impl_full_ops! {
u8: add(intrinsics::u8_add_with_overflow), mul/div(u16);
u16: add(intrinsics::u16_add_with_overflow), mul/div(u32);
u32: add(intrinsics::u32_add_with_overflow), mul/div(u64);
// See RFC #521 for enabling this.
// u64: add(intrinsics::u64_add_with_overflow), mul/div(u128);
}
/// Table of powers of 5 representable in digits. Specifically, the largest {u8, u16, u32} value
/// that's a power of five, plus the corresponding exponent. Used in `mul_pow5`.
const SMALL_POW5: [(u64, usize); 3] = [(125, 3), (15625, 6), (1_220_703_125, 13)];
macro_rules! define_bignum {
($name:ident: type=$ty:ty, n=$n:expr) => {
/// Stack-allocated arbitrary-precision (up to certain limit) integer.
///
/// This is backed by a fixed-size array of given type ("digit").
/// While the array is not very large (normally some hundred bytes),
/// copying it recklessly may result in the performance hit.
/// Thus this is intentionally not `Copy`.
///
/// All operations available to bignums panic in the case of overflows.
/// The caller is responsible to use large enough bignum types.
pub struct $name {
/// One plus the offset to the maximum "digit" in use.
/// This does not decrease, so be aware of the computation order.
/// `base[size..]` should be zero.
size: usize,
/// Digits. `[a, b, c, ...]` represents `a + b*2^W + c*2^(2W) + ...`
/// where `W` is the number of bits in the digit type.
base: [$ty; $n],
}
impl $name {
/// Makes a bignum from one digit.
pub fn from_small(v: $ty) -> $name {
let mut base = [0; $n];
base[0] = v;
$name { size: 1, base }
}
/// Makes a bignum from `u64` value.
pub fn from_u64(mut v: u64) -> $name {
let mut base = [0; $n];
let mut sz = 0;
while v > 0 {
base[sz] = v as $ty;
v >>= <$ty>::BITS;
sz += 1;
}
$name { size: sz, base }
}
/// Returns the internal digits as a slice `[a, b, c, ...]` such that the numeric
/// value is `a + b * 2^W + c * 2^(2W) + ...` where `W` is the number of bits in
/// the digit type.
pub fn digits(&self) -> &[$ty] {
&self.base[..self.size]
}
/// Returns the `i`-th bit where bit 0 is the least significant one.
/// In other words, the bit with weight `2^i`.
pub fn get_bit(&self, i: usize) -> u8 {
let digitbits = <$ty>::BITS as usize;
let d = i / digitbits;
let b = i % digitbits;
((self.base[d] >> b) & 1) as u8
}
/// Returns `true` if the bignum is zero.
pub fn is_zero(&self) -> bool {
self.digits().iter().all(|&v| v == 0)
}
/// Returns the number of bits necessary to represent this value. Note that zero
/// is considered to need 0 bits.
pub fn bit_length(&self) -> usize {
let digitbits = <$ty>::BITS as usize;
let digits = self.digits();
// Find the most significant non-zero digit.
let msd = digits.iter().rposition(|&x| x != 0);
match msd {
Some(msd) => msd * digitbits + digits[msd].ilog2() as usize + 1,
// There are no non-zero digits, i.e., the number is zero.
_ => 0,
}
}
/// Adds `other` to itself and returns its own mutable reference.
pub fn add<'a>(&'a mut self, other: &$name) -> &'a mut $name {
use crate::{cmp, iter};
let mut sz = cmp::max(self.size, other.size);
let mut carry = false;
for (a, b) in iter::zip(&mut self.base[..sz], &other.base[..sz]) {
let (v, c) = (*a).carrying_add(*b, carry);
*a = v;
carry = c;
}
if carry {
self.base[sz] = 1;
sz += 1;
}
self.size = sz;
self
}
pub fn add_small(&mut self, other: $ty) -> &mut $name {
let (v, mut carry) = self.base[0].carrying_add(other, false);
self.base[0] = v;
let mut i = 1;
while carry {
let (v, c) = self.base[i].carrying_add(0, carry);
self.base[i] = v;
carry = c;
i += 1;
}
if i > self.size {
self.size = i;
}
self
}
/// Subtracts `other` from itself and returns its own mutable reference.
pub fn sub<'a>(&'a mut self, other: &$name) -> &'a mut $name {
use crate::{cmp, iter};
let sz = cmp::max(self.size, other.size);
let mut noborrow = true;
for (a, b) in iter::zip(&mut self.base[..sz], &other.base[..sz]) {
let (v, c) = (*a).carrying_add(!*b, noborrow);
*a = v;
noborrow = c;
}
assert!(noborrow);
self.size = sz;
self
}
/// Multiplies itself by a digit-sized `other` and returns its own
/// mutable reference.
pub fn mul_small(&mut self, other: $ty) -> &mut $name {
let mut sz = self.size;
let mut carry = 0;
for a in &mut self.base[..sz] {
let (v, c) = (*a).carrying_mul(other, carry);
*a = v;
carry = c;
}
if carry > 0 {
self.base[sz] = carry;
sz += 1;
}
self.size = sz;
self
}
/// Multiplies itself by `2^bits` and returns its own mutable reference.
pub fn mul_pow2(&mut self, bits: usize) -> &mut $name {
let digitbits = <$ty>::BITS as usize;
let digits = bits / digitbits;
let bits = bits % digitbits;
assert!(digits < $n);
debug_assert!(self.base[$n - digits..].iter().all(|&v| v == 0));
debug_assert!(bits == 0 || (self.base[$n - digits - 1] >> (digitbits - bits)) == 0);
// shift by `digits * digitbits` bits
for i in (0..self.size).rev() {
self.base[i + digits] = self.base[i];
}
for i in 0..digits {
self.base[i] = 0;
}
// shift by `bits` bits
let mut sz = self.size + digits;
if bits > 0 {
let last = sz;
let overflow = self.base[last - 1] >> (digitbits - bits);
if overflow > 0 {
self.base[last] = overflow;
sz += 1;
}
for i in (digits + 1..last).rev() {
self.base[i] =
(self.base[i] << bits) | (self.base[i - 1] >> (digitbits - bits));
}
self.base[digits] <<= bits;
// self.base[..digits] is zero, no need to shift
}
self.size = sz;
self
}
/// Multiplies itself by `5^e` and returns its own mutable reference.
pub fn mul_pow5(&mut self, mut e: usize) -> &mut $name {
use crate::mem;
use crate::num::bignum::SMALL_POW5;
// There are exactly n trailing zeros on 2^n, and the only relevant digit sizes
// are consecutive powers of two, so this is well suited index for the table.
let table_index = mem::size_of::<$ty>().trailing_zeros() as usize;
let (small_power, small_e) = SMALL_POW5[table_index];
let small_power = small_power as $ty;
// Multiply with the largest single-digit power as long as possible ...
while e >= small_e {
self.mul_small(small_power);
e -= small_e;
}
// ... then finish off the remainder.
let mut rest_power = 1;
for _ in 0..e {
rest_power *= 5;
}
self.mul_small(rest_power);
self
}
/// Multiplies itself by a number described by `other[0] + other[1] * 2^W +
/// other[2] * 2^(2W) + ...` (where `W` is the number of bits in the digit type)
/// and returns its own mutable reference.
pub fn mul_digits<'a>(&'a mut self, other: &[$ty]) -> &'a mut $name {
// the internal routine. works best when aa.len() <= bb.len().
fn mul_inner(ret: &mut [$ty; $n], aa: &[$ty], bb: &[$ty]) -> usize {
use crate::num::bignum::FullOps;
let mut retsz = 0;
for (i, &a) in aa.iter().enumerate() {
if a == 0 {
continue;
}
let mut sz = bb.len();
let mut carry = 0;
for (j, &b) in bb.iter().enumerate() {
let (c, v) = a.full_mul_add(b, ret[i + j], carry);
ret[i + j] = v;
carry = c;
}
if carry > 0 {
ret[i + sz] = carry;
sz += 1;
}
if retsz < i + sz {
retsz = i + sz;
}
}
retsz
}
let mut ret = [0; $n];
let retsz = if self.size < other.len() {
mul_inner(&mut ret, &self.digits(), other)
} else {
mul_inner(&mut ret, other, &self.digits())
};
self.base = ret;
self.size = retsz;
self
}
/// Divides itself by a digit-sized `other` and returns its own
/// mutable reference *and* the remainder.
pub fn div_rem_small(&mut self, other: $ty) -> (&mut $name, $ty) {
use crate::num::bignum::FullOps;
assert!(other > 0);
let sz = self.size;
let mut borrow = 0;
for a in self.base[..sz].iter_mut().rev() {
let (q, r) = (*a).full_div_rem(other, borrow);
*a = q;
borrow = r;
}
(self, borrow)
}
/// Divide self by another bignum, overwriting `q` with the quotient and `r` with the
/// remainder.
pub fn div_rem(&self, d: &$name, q: &mut $name, r: &mut $name) {
// Stupid slow base-2 long division taken from
// https://en.wikipedia.org/wiki/Division_algorithm
// FIXME use a greater base ($ty) for the long division.
assert!(!d.is_zero());
let digitbits = <$ty>::BITS as usize;
for digit in &mut q.base[..] {
*digit = 0;
}
for digit in &mut r.base[..] {
*digit = 0;
}
r.size = d.size;
q.size = 1;
let mut q_is_zero = true;
let end = self.bit_length();
for i in (0..end).rev() {
r.mul_pow2(1);
r.base[0] |= self.get_bit(i) as $ty;
if &*r >= d {
r.sub(d);
// Set bit `i` of q to 1.
let digit_idx = i / digitbits;
let bit_idx = i % digitbits;
if q_is_zero {
q.size = digit_idx + 1;
q_is_zero = false;
}
q.base[digit_idx] |= 1 << bit_idx;
}
}
debug_assert!(q.base[q.size..].iter().all(|&d| d == 0));
debug_assert!(r.base[r.size..].iter().all(|&d| d == 0));
}
}
impl crate::cmp::PartialEq for $name {
fn eq(&self, other: &$name) -> bool {
self.base[..] == other.base[..]
}
}
impl crate::cmp::Eq for $name {}
impl crate::cmp::PartialOrd for $name {
fn partial_cmp(&self, other: &$name) -> crate::option::Option<crate::cmp::Ordering> {
crate::option::Option::Some(self.cmp(other))
}
}
impl crate::cmp::Ord for $name {
fn cmp(&self, other: &$name) -> crate::cmp::Ordering {
use crate::cmp::max;
let sz = max(self.size, other.size);
let lhs = self.base[..sz].iter().cloned().rev();
let rhs = other.base[..sz].iter().cloned().rev();
lhs.cmp(rhs)
}
}
impl crate::clone::Clone for $name {
fn clone(&self) -> Self {
Self { size: self.size, base: self.base }
}
}
impl crate::fmt::Debug for $name {
fn fmt(&self, f: &mut crate::fmt::Formatter<'_>) -> crate::fmt::Result {
let sz = if self.size < 1 { 1 } else { self.size };
let digitlen = <$ty>::BITS as usize / 4;
write!(f, "{:#x}", self.base[sz - 1])?;
for &v in self.base[..sz - 1].iter().rev() {
write!(f, "_{:01$x}", v, digitlen)?;
}
crate::result::Result::Ok(())
}
}
};
}
/// The digit type for `Big32x40`.
pub type Digit32 = u32;
define_bignum!(Big32x40: type=Digit32, n=40);
// this one is used for testing only.
#[doc(hidden)]
pub mod tests {
define_bignum!(Big8x3: type=u8, n=3);
}