core/num/
f16.rs

1//! Constants for the `f16` half-precision floating point type.
2//!
3//! *[See also the `f16` primitive type][f16].*
4//!
5//! Mathematically significant numbers are provided in the `consts` sub-module.
6//!
7//! For the constants defined directly in this module
8//! (as distinct from those defined in the `consts` sub-module),
9//! new code should instead use the associated constants
10//! defined directly on the `f16` type.
11
12#![unstable(feature = "f16", issue = "116909")]
13
14use crate::convert::FloatToInt;
15use crate::num::FpCategory;
16use crate::panic::const_assert;
17use crate::{intrinsics, mem};
18
19/// Basic mathematical constants.
20#[unstable(feature = "f16", issue = "116909")]
21pub mod consts {
22    // FIXME: replace with mathematical constants from cmath.
23
24    /// Archimedes' constant (π)
25    #[unstable(feature = "f16", issue = "116909")]
26    pub const PI: f16 = 3.14159265358979323846264338327950288_f16;
27
28    /// The full circle constant (τ)
29    ///
30    /// Equal to 2π.
31    #[unstable(feature = "f16", issue = "116909")]
32    pub const TAU: f16 = 6.28318530717958647692528676655900577_f16;
33
34    /// The golden ratio (φ)
35    #[unstable(feature = "f16", issue = "116909")]
36    // Also, #[unstable(feature = "more_float_constants", issue = "103883")]
37    pub const PHI: f16 = 1.618033988749894848204586834365638118_f16;
38
39    /// The Euler-Mascheroni constant (γ)
40    #[unstable(feature = "f16", issue = "116909")]
41    // Also, #[unstable(feature = "more_float_constants", issue = "103883")]
42    pub const EGAMMA: f16 = 0.577215664901532860606512090082402431_f16;
43
44    /// π/2
45    #[unstable(feature = "f16", issue = "116909")]
46    pub const FRAC_PI_2: f16 = 1.57079632679489661923132169163975144_f16;
47
48    /// π/3
49    #[unstable(feature = "f16", issue = "116909")]
50    pub const FRAC_PI_3: f16 = 1.04719755119659774615421446109316763_f16;
51
52    /// π/4
53    #[unstable(feature = "f16", issue = "116909")]
54    pub const FRAC_PI_4: f16 = 0.785398163397448309615660845819875721_f16;
55
56    /// π/6
57    #[unstable(feature = "f16", issue = "116909")]
58    pub const FRAC_PI_6: f16 = 0.52359877559829887307710723054658381_f16;
59
60    /// π/8
61    #[unstable(feature = "f16", issue = "116909")]
62    pub const FRAC_PI_8: f16 = 0.39269908169872415480783042290993786_f16;
63
64    /// 1/π
65    #[unstable(feature = "f16", issue = "116909")]
66    pub const FRAC_1_PI: f16 = 0.318309886183790671537767526745028724_f16;
67
68    /// 1/sqrt(π)
69    #[unstable(feature = "f16", issue = "116909")]
70    // Also, #[unstable(feature = "more_float_constants", issue = "103883")]
71    pub const FRAC_1_SQRT_PI: f16 = 0.564189583547756286948079451560772586_f16;
72
73    /// 1/sqrt(2π)
74    #[doc(alias = "FRAC_1_SQRT_TAU")]
75    #[unstable(feature = "f16", issue = "116909")]
76    // Also, #[unstable(feature = "more_float_constants", issue = "103883")]
77    pub const FRAC_1_SQRT_2PI: f16 = 0.398942280401432677939946059934381868_f16;
78
79    /// 2/π
80    #[unstable(feature = "f16", issue = "116909")]
81    pub const FRAC_2_PI: f16 = 0.636619772367581343075535053490057448_f16;
82
83    /// 2/sqrt(π)
84    #[unstable(feature = "f16", issue = "116909")]
85    pub const FRAC_2_SQRT_PI: f16 = 1.12837916709551257389615890312154517_f16;
86
87    /// sqrt(2)
88    #[unstable(feature = "f16", issue = "116909")]
89    pub const SQRT_2: f16 = 1.41421356237309504880168872420969808_f16;
90
91    /// 1/sqrt(2)
92    #[unstable(feature = "f16", issue = "116909")]
93    pub const FRAC_1_SQRT_2: f16 = 0.707106781186547524400844362104849039_f16;
94
95    /// sqrt(3)
96    #[unstable(feature = "f16", issue = "116909")]
97    // Also, #[unstable(feature = "more_float_constants", issue = "103883")]
98    pub const SQRT_3: f16 = 1.732050807568877293527446341505872367_f16;
99
100    /// 1/sqrt(3)
101    #[unstable(feature = "f16", issue = "116909")]
102    // Also, #[unstable(feature = "more_float_constants", issue = "103883")]
103    pub const FRAC_1_SQRT_3: f16 = 0.577350269189625764509148780501957456_f16;
104
105    /// Euler's number (e)
106    #[unstable(feature = "f16", issue = "116909")]
107    pub const E: f16 = 2.71828182845904523536028747135266250_f16;
108
109    /// log<sub>2</sub>(10)
110    #[unstable(feature = "f16", issue = "116909")]
111    pub const LOG2_10: f16 = 3.32192809488736234787031942948939018_f16;
112
113    /// log<sub>2</sub>(e)
114    #[unstable(feature = "f16", issue = "116909")]
115    pub const LOG2_E: f16 = 1.44269504088896340735992468100189214_f16;
116
117    /// log<sub>10</sub>(2)
118    #[unstable(feature = "f16", issue = "116909")]
119    pub const LOG10_2: f16 = 0.301029995663981195213738894724493027_f16;
120
121    /// log<sub>10</sub>(e)
122    #[unstable(feature = "f16", issue = "116909")]
123    pub const LOG10_E: f16 = 0.434294481903251827651128918916605082_f16;
124
125    /// ln(2)
126    #[unstable(feature = "f16", issue = "116909")]
127    pub const LN_2: f16 = 0.693147180559945309417232121458176568_f16;
128
129    /// ln(10)
130    #[unstable(feature = "f16", issue = "116909")]
131    pub const LN_10: f16 = 2.30258509299404568401799145468436421_f16;
132}
133
134impl f16 {
135    // FIXME(f16_f128): almost all methods in this `impl` are missing examples and a const
136    // implementation. Add these once we can run code on all platforms and have f16/f128 in CTFE.
137
138    /// The radix or base of the internal representation of `f16`.
139    #[unstable(feature = "f16", issue = "116909")]
140    pub const RADIX: u32 = 2;
141
142    /// Number of significant digits in base 2.
143    #[unstable(feature = "f16", issue = "116909")]
144    pub const MANTISSA_DIGITS: u32 = 11;
145
146    /// Approximate number of significant digits in base 10.
147    ///
148    /// This is the maximum <i>x</i> such that any decimal number with <i>x</i>
149    /// significant digits can be converted to `f16` and back without loss.
150    ///
151    /// Equal to floor(log<sub>10</sub>&nbsp;2<sup>[`MANTISSA_DIGITS`]&nbsp;&minus;&nbsp;1</sup>).
152    ///
153    /// [`MANTISSA_DIGITS`]: f16::MANTISSA_DIGITS
154    #[unstable(feature = "f16", issue = "116909")]
155    pub const DIGITS: u32 = 3;
156
157    /// [Machine epsilon] value for `f16`.
158    ///
159    /// This is the difference between `1.0` and the next larger representable number.
160    ///
161    /// Equal to 2<sup>1&nbsp;&minus;&nbsp;[`MANTISSA_DIGITS`]</sup>.
162    ///
163    /// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
164    /// [`MANTISSA_DIGITS`]: f16::MANTISSA_DIGITS
165    #[unstable(feature = "f16", issue = "116909")]
166    pub const EPSILON: f16 = 9.7656e-4_f16;
167
168    /// Smallest finite `f16` value.
169    ///
170    /// Equal to &minus;[`MAX`].
171    ///
172    /// [`MAX`]: f16::MAX
173    #[unstable(feature = "f16", issue = "116909")]
174    pub const MIN: f16 = -6.5504e+4_f16;
175    /// Smallest positive normal `f16` value.
176    ///
177    /// Equal to 2<sup>[`MIN_EXP`]&nbsp;&minus;&nbsp;1</sup>.
178    ///
179    /// [`MIN_EXP`]: f16::MIN_EXP
180    #[unstable(feature = "f16", issue = "116909")]
181    pub const MIN_POSITIVE: f16 = 6.1035e-5_f16;
182    /// Largest finite `f16` value.
183    ///
184    /// Equal to
185    /// (1&nbsp;&minus;&nbsp;2<sup>&minus;[`MANTISSA_DIGITS`]</sup>)&nbsp;2<sup>[`MAX_EXP`]</sup>.
186    ///
187    /// [`MANTISSA_DIGITS`]: f16::MANTISSA_DIGITS
188    /// [`MAX_EXP`]: f16::MAX_EXP
189    #[unstable(feature = "f16", issue = "116909")]
190    pub const MAX: f16 = 6.5504e+4_f16;
191
192    /// One greater than the minimum possible normal power of 2 exponent.
193    ///
194    /// If <i>x</i>&nbsp;=&nbsp;`MIN_EXP`, then normal numbers
195    /// ≥&nbsp;0.5&nbsp;×&nbsp;2<sup><i>x</i></sup>.
196    #[unstable(feature = "f16", issue = "116909")]
197    pub const MIN_EXP: i32 = -13;
198    /// Maximum possible power of 2 exponent.
199    ///
200    /// If <i>x</i>&nbsp;=&nbsp;`MAX_EXP`, then normal numbers
201    /// &lt;&nbsp;1&nbsp;×&nbsp;2<sup><i>x</i></sup>.
202    #[unstable(feature = "f16", issue = "116909")]
203    pub const MAX_EXP: i32 = 16;
204
205    /// Minimum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
206    ///
207    /// Equal to ceil(log<sub>10</sub>&nbsp;[`MIN_POSITIVE`]).
208    ///
209    /// [`MIN_POSITIVE`]: f16::MIN_POSITIVE
210    #[unstable(feature = "f16", issue = "116909")]
211    pub const MIN_10_EXP: i32 = -4;
212    /// Maximum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
213    ///
214    /// Equal to floor(log<sub>10</sub>&nbsp;[`MAX`]).
215    ///
216    /// [`MAX`]: f16::MAX
217    #[unstable(feature = "f16", issue = "116909")]
218    pub const MAX_10_EXP: i32 = 4;
219
220    /// Not a Number (NaN).
221    ///
222    /// Note that IEEE 754 doesn't define just a single NaN value;
223    /// a plethora of bit patterns are considered to be NaN.
224    /// Furthermore, the standard makes a difference
225    /// between a "signaling" and a "quiet" NaN,
226    /// and allows inspecting its "payload" (the unspecified bits in the bit pattern).
227    /// This constant isn't guaranteed to equal to any specific NaN bitpattern,
228    /// and the stability of its representation over Rust versions
229    /// and target platforms isn't guaranteed.
230    #[allow(clippy::eq_op)]
231    #[rustc_diagnostic_item = "f16_nan"]
232    #[unstable(feature = "f16", issue = "116909")]
233    pub const NAN: f16 = 0.0_f16 / 0.0_f16;
234
235    /// Infinity (∞).
236    #[unstable(feature = "f16", issue = "116909")]
237    pub const INFINITY: f16 = 1.0_f16 / 0.0_f16;
238
239    /// Negative infinity (−∞).
240    #[unstable(feature = "f16", issue = "116909")]
241    pub const NEG_INFINITY: f16 = -1.0_f16 / 0.0_f16;
242
243    /// Sign bit
244    pub(crate) const SIGN_MASK: u16 = 0x8000;
245
246    /// Exponent mask
247    pub(crate) const EXP_MASK: u16 = 0x7c00;
248
249    /// Mantissa mask
250    pub(crate) const MAN_MASK: u16 = 0x03ff;
251
252    /// Minimum representable positive value (min subnormal)
253    const TINY_BITS: u16 = 0x1;
254
255    /// Minimum representable negative value (min negative subnormal)
256    const NEG_TINY_BITS: u16 = Self::TINY_BITS | Self::SIGN_MASK;
257
258    /// Returns `true` if this value is NaN.
259    ///
260    /// ```
261    /// #![feature(f16)]
262    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
263    ///
264    /// let nan = f16::NAN;
265    /// let f = 7.0_f16;
266    ///
267    /// assert!(nan.is_nan());
268    /// assert!(!f.is_nan());
269    /// # }
270    /// ```
271    #[inline]
272    #[must_use]
273    #[unstable(feature = "f16", issue = "116909")]
274    #[allow(clippy::eq_op)] // > if you intended to check if the operand is NaN, use `.is_nan()` instead :)
275    pub const fn is_nan(self) -> bool {
276        self != self
277    }
278
279    /// Returns `true` if this value is positive infinity or negative infinity, and
280    /// `false` otherwise.
281    ///
282    /// ```
283    /// #![feature(f16)]
284    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
285    ///
286    /// let f = 7.0f16;
287    /// let inf = f16::INFINITY;
288    /// let neg_inf = f16::NEG_INFINITY;
289    /// let nan = f16::NAN;
290    ///
291    /// assert!(!f.is_infinite());
292    /// assert!(!nan.is_infinite());
293    ///
294    /// assert!(inf.is_infinite());
295    /// assert!(neg_inf.is_infinite());
296    /// # }
297    /// ```
298    #[inline]
299    #[must_use]
300    #[unstable(feature = "f16", issue = "116909")]
301    pub const fn is_infinite(self) -> bool {
302        (self == f16::INFINITY) | (self == f16::NEG_INFINITY)
303    }
304
305    /// Returns `true` if this number is neither infinite nor NaN.
306    ///
307    /// ```
308    /// #![feature(f16)]
309    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
310    ///
311    /// let f = 7.0f16;
312    /// let inf: f16 = f16::INFINITY;
313    /// let neg_inf: f16 = f16::NEG_INFINITY;
314    /// let nan: f16 = f16::NAN;
315    ///
316    /// assert!(f.is_finite());
317    ///
318    /// assert!(!nan.is_finite());
319    /// assert!(!inf.is_finite());
320    /// assert!(!neg_inf.is_finite());
321    /// # }
322    /// ```
323    #[inline]
324    #[must_use]
325    #[unstable(feature = "f16", issue = "116909")]
326    #[rustc_const_unstable(feature = "f16", issue = "116909")]
327    pub const fn is_finite(self) -> bool {
328        // There's no need to handle NaN separately: if self is NaN,
329        // the comparison is not true, exactly as desired.
330        self.abs() < Self::INFINITY
331    }
332
333    /// Returns `true` if the number is [subnormal].
334    ///
335    /// ```
336    /// #![feature(f16)]
337    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
338    ///
339    /// let min = f16::MIN_POSITIVE; // 6.1035e-5
340    /// let max = f16::MAX;
341    /// let lower_than_min = 1.0e-7_f16;
342    /// let zero = 0.0_f16;
343    ///
344    /// assert!(!min.is_subnormal());
345    /// assert!(!max.is_subnormal());
346    ///
347    /// assert!(!zero.is_subnormal());
348    /// assert!(!f16::NAN.is_subnormal());
349    /// assert!(!f16::INFINITY.is_subnormal());
350    /// // Values between `0` and `min` are Subnormal.
351    /// assert!(lower_than_min.is_subnormal());
352    /// # }
353    /// ```
354    /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
355    #[inline]
356    #[must_use]
357    #[unstable(feature = "f16", issue = "116909")]
358    pub const fn is_subnormal(self) -> bool {
359        matches!(self.classify(), FpCategory::Subnormal)
360    }
361
362    /// Returns `true` if the number is neither zero, infinite, [subnormal], or NaN.
363    ///
364    /// ```
365    /// #![feature(f16)]
366    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
367    ///
368    /// let min = f16::MIN_POSITIVE; // 6.1035e-5
369    /// let max = f16::MAX;
370    /// let lower_than_min = 1.0e-7_f16;
371    /// let zero = 0.0_f16;
372    ///
373    /// assert!(min.is_normal());
374    /// assert!(max.is_normal());
375    ///
376    /// assert!(!zero.is_normal());
377    /// assert!(!f16::NAN.is_normal());
378    /// assert!(!f16::INFINITY.is_normal());
379    /// // Values between `0` and `min` are Subnormal.
380    /// assert!(!lower_than_min.is_normal());
381    /// # }
382    /// ```
383    /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
384    #[inline]
385    #[must_use]
386    #[unstable(feature = "f16", issue = "116909")]
387    pub const fn is_normal(self) -> bool {
388        matches!(self.classify(), FpCategory::Normal)
389    }
390
391    /// Returns the floating point category of the number. If only one property
392    /// is going to be tested, it is generally faster to use the specific
393    /// predicate instead.
394    ///
395    /// ```
396    /// #![feature(f16)]
397    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
398    ///
399    /// use std::num::FpCategory;
400    ///
401    /// let num = 12.4_f16;
402    /// let inf = f16::INFINITY;
403    ///
404    /// assert_eq!(num.classify(), FpCategory::Normal);
405    /// assert_eq!(inf.classify(), FpCategory::Infinite);
406    /// # }
407    /// ```
408    #[inline]
409    #[unstable(feature = "f16", issue = "116909")]
410    pub const fn classify(self) -> FpCategory {
411        let b = self.to_bits();
412        match (b & Self::MAN_MASK, b & Self::EXP_MASK) {
413            (0, Self::EXP_MASK) => FpCategory::Infinite,
414            (_, Self::EXP_MASK) => FpCategory::Nan,
415            (0, 0) => FpCategory::Zero,
416            (_, 0) => FpCategory::Subnormal,
417            _ => FpCategory::Normal,
418        }
419    }
420
421    /// Returns `true` if `self` has a positive sign, including `+0.0`, NaNs with
422    /// positive sign bit and positive infinity.
423    ///
424    /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of
425    /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are
426    /// conserved over arithmetic operations, the result of `is_sign_positive` on
427    /// a NaN might produce an unexpected or non-portable result. See the [specification
428    /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == 1.0`
429    /// if you need fully portable behavior (will return `false` for all NaNs).
430    ///
431    /// ```
432    /// #![feature(f16)]
433    /// # // FIXME(f16_f128): LLVM crashes on s390x, llvm/llvm-project#50374
434    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
435    ///
436    /// let f = 7.0_f16;
437    /// let g = -7.0_f16;
438    ///
439    /// assert!(f.is_sign_positive());
440    /// assert!(!g.is_sign_positive());
441    /// # }
442    /// ```
443    #[inline]
444    #[must_use]
445    #[unstable(feature = "f16", issue = "116909")]
446    pub const fn is_sign_positive(self) -> bool {
447        !self.is_sign_negative()
448    }
449
450    /// Returns `true` if `self` has a negative sign, including `-0.0`, NaNs with
451    /// negative sign bit and negative infinity.
452    ///
453    /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of
454    /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are
455    /// conserved over arithmetic operations, the result of `is_sign_negative` on
456    /// a NaN might produce an unexpected or non-portable result. See the [specification
457    /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == -1.0`
458    /// if you need fully portable behavior (will return `false` for all NaNs).
459    ///
460    /// ```
461    /// #![feature(f16)]
462    /// # // FIXME(f16_f128): LLVM crashes on s390x, llvm/llvm-project#50374
463    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
464    ///
465    /// let f = 7.0_f16;
466    /// let g = -7.0_f16;
467    ///
468    /// assert!(!f.is_sign_negative());
469    /// assert!(g.is_sign_negative());
470    /// # }
471    /// ```
472    #[inline]
473    #[must_use]
474    #[unstable(feature = "f16", issue = "116909")]
475    pub const fn is_sign_negative(self) -> bool {
476        // IEEE754 says: isSignMinus(x) is true if and only if x has negative sign. isSignMinus
477        // applies to zeros and NaNs as well.
478        // SAFETY: This is just transmuting to get the sign bit, it's fine.
479        (self.to_bits() & (1 << 15)) != 0
480    }
481
482    /// Returns the least number greater than `self`.
483    ///
484    /// Let `TINY` be the smallest representable positive `f16`. Then,
485    ///  - if `self.is_nan()`, this returns `self`;
486    ///  - if `self` is [`NEG_INFINITY`], this returns [`MIN`];
487    ///  - if `self` is `-TINY`, this returns -0.0;
488    ///  - if `self` is -0.0 or +0.0, this returns `TINY`;
489    ///  - if `self` is [`MAX`] or [`INFINITY`], this returns [`INFINITY`];
490    ///  - otherwise the unique least value greater than `self` is returned.
491    ///
492    /// The identity `x.next_up() == -(-x).next_down()` holds for all non-NaN `x`. When `x`
493    /// is finite `x == x.next_up().next_down()` also holds.
494    ///
495    /// ```rust
496    /// #![feature(f16)]
497    /// # // FIXME(f16_f128): ABI issues on MSVC
498    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
499    ///
500    /// // f16::EPSILON is the difference between 1.0 and the next number up.
501    /// assert_eq!(1.0f16.next_up(), 1.0 + f16::EPSILON);
502    /// // But not for most numbers.
503    /// assert!(0.1f16.next_up() < 0.1 + f16::EPSILON);
504    /// assert_eq!(4356f16.next_up(), 4360.0);
505    /// # }
506    /// ```
507    ///
508    /// This operation corresponds to IEEE-754 `nextUp`.
509    ///
510    /// [`NEG_INFINITY`]: Self::NEG_INFINITY
511    /// [`INFINITY`]: Self::INFINITY
512    /// [`MIN`]: Self::MIN
513    /// [`MAX`]: Self::MAX
514    #[inline]
515    #[doc(alias = "nextUp")]
516    #[unstable(feature = "f16", issue = "116909")]
517    pub const fn next_up(self) -> Self {
518        // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing
519        // denormals to zero. This is in general unsound and unsupported, but here
520        // we do our best to still produce the correct result on such targets.
521        let bits = self.to_bits();
522        if self.is_nan() || bits == Self::INFINITY.to_bits() {
523            return self;
524        }
525
526        let abs = bits & !Self::SIGN_MASK;
527        let next_bits = if abs == 0 {
528            Self::TINY_BITS
529        } else if bits == abs {
530            bits + 1
531        } else {
532            bits - 1
533        };
534        Self::from_bits(next_bits)
535    }
536
537    /// Returns the greatest number less than `self`.
538    ///
539    /// Let `TINY` be the smallest representable positive `f16`. Then,
540    ///  - if `self.is_nan()`, this returns `self`;
541    ///  - if `self` is [`INFINITY`], this returns [`MAX`];
542    ///  - if `self` is `TINY`, this returns 0.0;
543    ///  - if `self` is -0.0 or +0.0, this returns `-TINY`;
544    ///  - if `self` is [`MIN`] or [`NEG_INFINITY`], this returns [`NEG_INFINITY`];
545    ///  - otherwise the unique greatest value less than `self` is returned.
546    ///
547    /// The identity `x.next_down() == -(-x).next_up()` holds for all non-NaN `x`. When `x`
548    /// is finite `x == x.next_down().next_up()` also holds.
549    ///
550    /// ```rust
551    /// #![feature(f16)]
552    /// # // FIXME(f16_f128): ABI issues on MSVC
553    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
554    ///
555    /// let x = 1.0f16;
556    /// // Clamp value into range [0, 1).
557    /// let clamped = x.clamp(0.0, 1.0f16.next_down());
558    /// assert!(clamped < 1.0);
559    /// assert_eq!(clamped.next_up(), 1.0);
560    /// # }
561    /// ```
562    ///
563    /// This operation corresponds to IEEE-754 `nextDown`.
564    ///
565    /// [`NEG_INFINITY`]: Self::NEG_INFINITY
566    /// [`INFINITY`]: Self::INFINITY
567    /// [`MIN`]: Self::MIN
568    /// [`MAX`]: Self::MAX
569    #[inline]
570    #[doc(alias = "nextDown")]
571    #[unstable(feature = "f16", issue = "116909")]
572    pub const fn next_down(self) -> Self {
573        // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing
574        // denormals to zero. This is in general unsound and unsupported, but here
575        // we do our best to still produce the correct result on such targets.
576        let bits = self.to_bits();
577        if self.is_nan() || bits == Self::NEG_INFINITY.to_bits() {
578            return self;
579        }
580
581        let abs = bits & !Self::SIGN_MASK;
582        let next_bits = if abs == 0 {
583            Self::NEG_TINY_BITS
584        } else if bits == abs {
585            bits - 1
586        } else {
587            bits + 1
588        };
589        Self::from_bits(next_bits)
590    }
591
592    /// Takes the reciprocal (inverse) of a number, `1/x`.
593    ///
594    /// ```
595    /// #![feature(f16)]
596    /// # // FIXME(f16_f128): extendhfsf2, truncsfhf2, __gnu_h2f_ieee, __gnu_f2h_ieee missing for many platforms
597    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
598    ///
599    /// let x = 2.0_f16;
600    /// let abs_difference = (x.recip() - (1.0 / x)).abs();
601    ///
602    /// assert!(abs_difference <= f16::EPSILON);
603    /// # }
604    /// ```
605    #[inline]
606    #[unstable(feature = "f16", issue = "116909")]
607    #[must_use = "this returns the result of the operation, without modifying the original"]
608    pub const fn recip(self) -> Self {
609        1.0 / self
610    }
611
612    /// Converts radians to degrees.
613    ///
614    /// ```
615    /// #![feature(f16)]
616    /// # // FIXME(f16_f128): extendhfsf2, truncsfhf2, __gnu_h2f_ieee, __gnu_f2h_ieee missing for many platforms
617    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
618    ///
619    /// let angle = std::f16::consts::PI;
620    ///
621    /// let abs_difference = (angle.to_degrees() - 180.0).abs();
622    /// assert!(abs_difference <= 0.5);
623    /// # }
624    /// ```
625    #[inline]
626    #[unstable(feature = "f16", issue = "116909")]
627    #[must_use = "this returns the result of the operation, without modifying the original"]
628    pub const fn to_degrees(self) -> Self {
629        // Use a literal for better precision.
630        const PIS_IN_180: f16 = 57.2957795130823208767981548141051703_f16;
631        self * PIS_IN_180
632    }
633
634    /// Converts degrees to radians.
635    ///
636    /// ```
637    /// #![feature(f16)]
638    /// # // FIXME(f16_f128): extendhfsf2, truncsfhf2, __gnu_h2f_ieee, __gnu_f2h_ieee missing for many platforms
639    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
640    ///
641    /// let angle = 180.0f16;
642    ///
643    /// let abs_difference = (angle.to_radians() - std::f16::consts::PI).abs();
644    ///
645    /// assert!(abs_difference <= 0.01);
646    /// # }
647    /// ```
648    #[inline]
649    #[unstable(feature = "f16", issue = "116909")]
650    #[must_use = "this returns the result of the operation, without modifying the original"]
651    pub const fn to_radians(self) -> f16 {
652        // Use a literal for better precision.
653        const RADS_PER_DEG: f16 = 0.017453292519943295769236907684886_f16;
654        self * RADS_PER_DEG
655    }
656
657    /// Returns the maximum of the two numbers, ignoring NaN.
658    ///
659    /// If one of the arguments is NaN, then the other argument is returned.
660    /// This follows the IEEE 754-2008 semantics for maxNum, except for handling of signaling NaNs;
661    /// this function handles all NaNs the same way and avoids maxNum's problems with associativity.
662    /// This also matches the behavior of libm’s fmax. In particular, if the inputs compare equal
663    /// (such as for the case of `+0.0` and `-0.0`), either input may be returned non-deterministically.
664    ///
665    /// ```
666    /// #![feature(f16)]
667    /// # #[cfg(target_arch = "aarch64")] { // FIXME(f16_F128): rust-lang/rust#123885
668    ///
669    /// let x = 1.0f16;
670    /// let y = 2.0f16;
671    ///
672    /// assert_eq!(x.max(y), y);
673    /// # }
674    /// ```
675    #[inline]
676    #[unstable(feature = "f16", issue = "116909")]
677    #[rustc_const_unstable(feature = "f16", issue = "116909")]
678    #[must_use = "this returns the result of the comparison, without modifying either input"]
679    pub const fn max(self, other: f16) -> f16 {
680        intrinsics::maxnumf16(self, other)
681    }
682
683    /// Returns the minimum of the two numbers, ignoring NaN.
684    ///
685    /// If one of the arguments is NaN, then the other argument is returned.
686    /// This follows the IEEE 754-2008 semantics for minNum, except for handling of signaling NaNs;
687    /// this function handles all NaNs the same way and avoids minNum's problems with associativity.
688    /// This also matches the behavior of libm’s fmin. In particular, if the inputs compare equal
689    /// (such as for the case of `+0.0` and `-0.0`), either input may be returned non-deterministically.
690    ///
691    /// ```
692    /// #![feature(f16)]
693    /// # #[cfg(target_arch = "aarch64")] { // FIXME(f16_F128): rust-lang/rust#123885
694    ///
695    /// let x = 1.0f16;
696    /// let y = 2.0f16;
697    ///
698    /// assert_eq!(x.min(y), x);
699    /// # }
700    /// ```
701    #[inline]
702    #[unstable(feature = "f16", issue = "116909")]
703    #[rustc_const_unstable(feature = "f16", issue = "116909")]
704    #[must_use = "this returns the result of the comparison, without modifying either input"]
705    pub const fn min(self, other: f16) -> f16 {
706        intrinsics::minnumf16(self, other)
707    }
708
709    /// Returns the maximum of the two numbers, propagating NaN.
710    ///
711    /// This returns NaN when *either* argument is NaN, as opposed to
712    /// [`f16::max`] which only returns NaN when *both* arguments are NaN.
713    ///
714    /// ```
715    /// #![feature(f16)]
716    /// #![feature(float_minimum_maximum)]
717    /// # #[cfg(target_arch = "aarch64")] { // FIXME(f16_F128): rust-lang/rust#123885
718    ///
719    /// let x = 1.0f16;
720    /// let y = 2.0f16;
721    ///
722    /// assert_eq!(x.maximum(y), y);
723    /// assert!(x.maximum(f16::NAN).is_nan());
724    /// # }
725    /// ```
726    ///
727    /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the greater
728    /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0.
729    /// Note that this follows the semantics specified in IEEE 754-2019.
730    ///
731    /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN
732    /// operand is conserved; see the [specification of NaN bit patterns](f32#nan-bit-patterns) for more info.
733    #[inline]
734    #[unstable(feature = "f16", issue = "116909")]
735    // #[unstable(feature = "float_minimum_maximum", issue = "91079")]
736    #[must_use = "this returns the result of the comparison, without modifying either input"]
737    pub const fn maximum(self, other: f16) -> f16 {
738        if self > other {
739            self
740        } else if other > self {
741            other
742        } else if self == other {
743            if self.is_sign_positive() && other.is_sign_negative() { self } else { other }
744        } else {
745            self + other
746        }
747    }
748
749    /// Returns the minimum of the two numbers, propagating NaN.
750    ///
751    /// This returns NaN when *either* argument is NaN, as opposed to
752    /// [`f16::min`] which only returns NaN when *both* arguments are NaN.
753    ///
754    /// ```
755    /// #![feature(f16)]
756    /// #![feature(float_minimum_maximum)]
757    /// # #[cfg(target_arch = "aarch64")] { // FIXME(f16_F128): rust-lang/rust#123885
758    ///
759    /// let x = 1.0f16;
760    /// let y = 2.0f16;
761    ///
762    /// assert_eq!(x.minimum(y), x);
763    /// assert!(x.minimum(f16::NAN).is_nan());
764    /// # }
765    /// ```
766    ///
767    /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the lesser
768    /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0.
769    /// Note that this follows the semantics specified in IEEE 754-2019.
770    ///
771    /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN
772    /// operand is conserved; see the [specification of NaN bit patterns](f32#nan-bit-patterns) for more info.
773    #[inline]
774    #[unstable(feature = "f16", issue = "116909")]
775    // #[unstable(feature = "float_minimum_maximum", issue = "91079")]
776    #[must_use = "this returns the result of the comparison, without modifying either input"]
777    pub const fn minimum(self, other: f16) -> f16 {
778        if self < other {
779            self
780        } else if other < self {
781            other
782        } else if self == other {
783            if self.is_sign_negative() && other.is_sign_positive() { self } else { other }
784        } else {
785            // At least one input is NaN. Use `+` to perform NaN propagation and quieting.
786            self + other
787        }
788    }
789
790    /// Calculates the middle point of `self` and `rhs`.
791    ///
792    /// This returns NaN when *either* argument is NaN or if a combination of
793    /// +inf and -inf is provided as arguments.
794    ///
795    /// # Examples
796    ///
797    /// ```
798    /// #![feature(f16)]
799    /// # #[cfg(target_arch = "aarch64")] { // FIXME(f16_F128): rust-lang/rust#123885
800    ///
801    /// assert_eq!(1f16.midpoint(4.0), 2.5);
802    /// assert_eq!((-5.5f16).midpoint(8.0), 1.25);
803    /// # }
804    /// ```
805    #[inline]
806    #[unstable(feature = "f16", issue = "116909")]
807    #[rustc_const_unstable(feature = "f16", issue = "116909")]
808    pub const fn midpoint(self, other: f16) -> f16 {
809        const LO: f16 = f16::MIN_POSITIVE * 2.;
810        const HI: f16 = f16::MAX / 2.;
811
812        let (a, b) = (self, other);
813        let abs_a = a.abs();
814        let abs_b = b.abs();
815
816        if abs_a <= HI && abs_b <= HI {
817            // Overflow is impossible
818            (a + b) / 2.
819        } else if abs_a < LO {
820            // Not safe to halve `a` (would underflow)
821            a + (b / 2.)
822        } else if abs_b < LO {
823            // Not safe to halve `b` (would underflow)
824            (a / 2.) + b
825        } else {
826            // Safe to halve `a` and `b`
827            (a / 2.) + (b / 2.)
828        }
829    }
830
831    /// Rounds toward zero and converts to any primitive integer type,
832    /// assuming that the value is finite and fits in that type.
833    ///
834    /// ```
835    /// #![feature(f16)]
836    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
837    ///
838    /// let value = 4.6_f16;
839    /// let rounded = unsafe { value.to_int_unchecked::<u16>() };
840    /// assert_eq!(rounded, 4);
841    ///
842    /// let value = -128.9_f16;
843    /// let rounded = unsafe { value.to_int_unchecked::<i8>() };
844    /// assert_eq!(rounded, i8::MIN);
845    /// # }
846    /// ```
847    ///
848    /// # Safety
849    ///
850    /// The value must:
851    ///
852    /// * Not be `NaN`
853    /// * Not be infinite
854    /// * Be representable in the return type `Int`, after truncating off its fractional part
855    #[inline]
856    #[unstable(feature = "f16", issue = "116909")]
857    #[must_use = "this returns the result of the operation, without modifying the original"]
858    pub unsafe fn to_int_unchecked<Int>(self) -> Int
859    where
860        Self: FloatToInt<Int>,
861    {
862        // SAFETY: the caller must uphold the safety contract for
863        // `FloatToInt::to_int_unchecked`.
864        unsafe { FloatToInt::<Int>::to_int_unchecked(self) }
865    }
866
867    /// Raw transmutation to `u16`.
868    ///
869    /// This is currently identical to `transmute::<f16, u16>(self)` on all platforms.
870    ///
871    /// See [`from_bits`](#method.from_bits) for some discussion of the
872    /// portability of this operation (there are almost no issues).
873    ///
874    /// Note that this function is distinct from `as` casting, which attempts to
875    /// preserve the *numeric* value, and not the bitwise value.
876    ///
877    /// ```
878    /// #![feature(f16)]
879    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
880    ///
881    /// # // FIXME(f16_f128): enable this once const casting works
882    /// # // assert_ne!((1f16).to_bits(), 1f16 as u128); // to_bits() is not casting!
883    /// assert_eq!((12.5f16).to_bits(), 0x4a40);
884    /// # }
885    /// ```
886    #[inline]
887    #[unstable(feature = "f16", issue = "116909")]
888    #[must_use = "this returns the result of the operation, without modifying the original"]
889    pub const fn to_bits(self) -> u16 {
890        // SAFETY: `u16` is a plain old datatype so we can always transmute to it.
891        unsafe { mem::transmute(self) }
892    }
893
894    /// Raw transmutation from `u16`.
895    ///
896    /// This is currently identical to `transmute::<u16, f16>(v)` on all platforms.
897    /// It turns out this is incredibly portable, for two reasons:
898    ///
899    /// * Floats and Ints have the same endianness on all supported platforms.
900    /// * IEEE 754 very precisely specifies the bit layout of floats.
901    ///
902    /// However there is one caveat: prior to the 2008 version of IEEE 754, how
903    /// to interpret the NaN signaling bit wasn't actually specified. Most platforms
904    /// (notably x86 and ARM) picked the interpretation that was ultimately
905    /// standardized in 2008, but some didn't (notably MIPS). As a result, all
906    /// signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa.
907    ///
908    /// Rather than trying to preserve signaling-ness cross-platform, this
909    /// implementation favors preserving the exact bits. This means that
910    /// any payloads encoded in NaNs will be preserved even if the result of
911    /// this method is sent over the network from an x86 machine to a MIPS one.
912    ///
913    /// If the results of this method are only manipulated by the same
914    /// architecture that produced them, then there is no portability concern.
915    ///
916    /// If the input isn't NaN, then there is no portability concern.
917    ///
918    /// If you don't care about signalingness (very likely), then there is no
919    /// portability concern.
920    ///
921    /// Note that this function is distinct from `as` casting, which attempts to
922    /// preserve the *numeric* value, and not the bitwise value.
923    ///
924    /// ```
925    /// #![feature(f16)]
926    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
927    ///
928    /// let v = f16::from_bits(0x4a40);
929    /// assert_eq!(v, 12.5);
930    /// # }
931    /// ```
932    #[inline]
933    #[must_use]
934    #[unstable(feature = "f16", issue = "116909")]
935    pub const fn from_bits(v: u16) -> Self {
936        // It turns out the safety issues with sNaN were overblown! Hooray!
937        // SAFETY: `u16` is a plain old datatype so we can always transmute from it.
938        unsafe { mem::transmute(v) }
939    }
940
941    /// Returns the memory representation of this floating point number as a byte array in
942    /// big-endian (network) byte order.
943    ///
944    /// See [`from_bits`](Self::from_bits) for some discussion of the
945    /// portability of this operation (there are almost no issues).
946    ///
947    /// # Examples
948    ///
949    /// ```
950    /// #![feature(f16)]
951    /// # // FIXME(f16_f128): LLVM crashes on s390x, llvm/llvm-project#50374
952    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
953    ///
954    /// let bytes = 12.5f16.to_be_bytes();
955    /// assert_eq!(bytes, [0x4a, 0x40]);
956    /// # }
957    /// ```
958    #[inline]
959    #[unstable(feature = "f16", issue = "116909")]
960    #[must_use = "this returns the result of the operation, without modifying the original"]
961    pub const fn to_be_bytes(self) -> [u8; 2] {
962        self.to_bits().to_be_bytes()
963    }
964
965    /// Returns the memory representation of this floating point number as a byte array in
966    /// little-endian byte order.
967    ///
968    /// See [`from_bits`](Self::from_bits) for some discussion of the
969    /// portability of this operation (there are almost no issues).
970    ///
971    /// # Examples
972    ///
973    /// ```
974    /// #![feature(f16)]
975    /// # // FIXME(f16_f128): LLVM crashes on s390x, llvm/llvm-project#50374
976    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
977    ///
978    /// let bytes = 12.5f16.to_le_bytes();
979    /// assert_eq!(bytes, [0x40, 0x4a]);
980    /// # }
981    /// ```
982    #[inline]
983    #[unstable(feature = "f16", issue = "116909")]
984    #[must_use = "this returns the result of the operation, without modifying the original"]
985    pub const fn to_le_bytes(self) -> [u8; 2] {
986        self.to_bits().to_le_bytes()
987    }
988
989    /// Returns the memory representation of this floating point number as a byte array in
990    /// native byte order.
991    ///
992    /// As the target platform's native endianness is used, portable code
993    /// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate, instead.
994    ///
995    /// [`to_be_bytes`]: f16::to_be_bytes
996    /// [`to_le_bytes`]: f16::to_le_bytes
997    ///
998    /// See [`from_bits`](Self::from_bits) for some discussion of the
999    /// portability of this operation (there are almost no issues).
1000    ///
1001    /// # Examples
1002    ///
1003    /// ```
1004    /// #![feature(f16)]
1005    /// # // FIXME(f16_f128): LLVM crashes on s390x, llvm/llvm-project#50374
1006    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1007    ///
1008    /// let bytes = 12.5f16.to_ne_bytes();
1009    /// assert_eq!(
1010    ///     bytes,
1011    ///     if cfg!(target_endian = "big") {
1012    ///         [0x4a, 0x40]
1013    ///     } else {
1014    ///         [0x40, 0x4a]
1015    ///     }
1016    /// );
1017    /// # }
1018    /// ```
1019    #[inline]
1020    #[unstable(feature = "f16", issue = "116909")]
1021    #[must_use = "this returns the result of the operation, without modifying the original"]
1022    pub const fn to_ne_bytes(self) -> [u8; 2] {
1023        self.to_bits().to_ne_bytes()
1024    }
1025
1026    /// Creates a floating point value from its representation as a byte array in big endian.
1027    ///
1028    /// See [`from_bits`](Self::from_bits) for some discussion of the
1029    /// portability of this operation (there are almost no issues).
1030    ///
1031    /// # Examples
1032    ///
1033    /// ```
1034    /// #![feature(f16)]
1035    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1036    ///
1037    /// let value = f16::from_be_bytes([0x4a, 0x40]);
1038    /// assert_eq!(value, 12.5);
1039    /// # }
1040    /// ```
1041    #[inline]
1042    #[must_use]
1043    #[unstable(feature = "f16", issue = "116909")]
1044    pub const fn from_be_bytes(bytes: [u8; 2]) -> Self {
1045        Self::from_bits(u16::from_be_bytes(bytes))
1046    }
1047
1048    /// Creates a floating point value from its representation as a byte array in little endian.
1049    ///
1050    /// See [`from_bits`](Self::from_bits) for some discussion of the
1051    /// portability of this operation (there are almost no issues).
1052    ///
1053    /// # Examples
1054    ///
1055    /// ```
1056    /// #![feature(f16)]
1057    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1058    ///
1059    /// let value = f16::from_le_bytes([0x40, 0x4a]);
1060    /// assert_eq!(value, 12.5);
1061    /// # }
1062    /// ```
1063    #[inline]
1064    #[must_use]
1065    #[unstable(feature = "f16", issue = "116909")]
1066    pub const fn from_le_bytes(bytes: [u8; 2]) -> Self {
1067        Self::from_bits(u16::from_le_bytes(bytes))
1068    }
1069
1070    /// Creates a floating point value from its representation as a byte array in native endian.
1071    ///
1072    /// As the target platform's native endianness is used, portable code
1073    /// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as
1074    /// appropriate instead.
1075    ///
1076    /// [`from_be_bytes`]: f16::from_be_bytes
1077    /// [`from_le_bytes`]: f16::from_le_bytes
1078    ///
1079    /// See [`from_bits`](Self::from_bits) for some discussion of the
1080    /// portability of this operation (there are almost no issues).
1081    ///
1082    /// # Examples
1083    ///
1084    /// ```
1085    /// #![feature(f16)]
1086    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1087    ///
1088    /// let value = f16::from_ne_bytes(if cfg!(target_endian = "big") {
1089    ///     [0x4a, 0x40]
1090    /// } else {
1091    ///     [0x40, 0x4a]
1092    /// });
1093    /// assert_eq!(value, 12.5);
1094    /// # }
1095    /// ```
1096    #[inline]
1097    #[must_use]
1098    #[unstable(feature = "f16", issue = "116909")]
1099    pub const fn from_ne_bytes(bytes: [u8; 2]) -> Self {
1100        Self::from_bits(u16::from_ne_bytes(bytes))
1101    }
1102
1103    /// Returns the ordering between `self` and `other`.
1104    ///
1105    /// Unlike the standard partial comparison between floating point numbers,
1106    /// this comparison always produces an ordering in accordance to
1107    /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision)
1108    /// floating point standard. The values are ordered in the following sequence:
1109    ///
1110    /// - negative quiet NaN
1111    /// - negative signaling NaN
1112    /// - negative infinity
1113    /// - negative numbers
1114    /// - negative subnormal numbers
1115    /// - negative zero
1116    /// - positive zero
1117    /// - positive subnormal numbers
1118    /// - positive numbers
1119    /// - positive infinity
1120    /// - positive signaling NaN
1121    /// - positive quiet NaN.
1122    ///
1123    /// The ordering established by this function does not always agree with the
1124    /// [`PartialOrd`] and [`PartialEq`] implementations of `f16`. For example,
1125    /// they consider negative and positive zero equal, while `total_cmp`
1126    /// doesn't.
1127    ///
1128    /// The interpretation of the signaling NaN bit follows the definition in
1129    /// the IEEE 754 standard, which may not match the interpretation by some of
1130    /// the older, non-conformant (e.g. MIPS) hardware implementations.
1131    ///
1132    /// # Example
1133    ///
1134    /// ```
1135    /// #![feature(f16)]
1136    /// # // FIXME(f16_f128): extendhfsf2, truncsfhf2, __gnu_h2f_ieee, __gnu_f2h_ieee missing for many platforms
1137    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1138    ///
1139    /// struct GoodBoy {
1140    ///     name: &'static str,
1141    ///     weight: f16,
1142    /// }
1143    ///
1144    /// let mut bois = vec![
1145    ///     GoodBoy { name: "Pucci", weight: 0.1 },
1146    ///     GoodBoy { name: "Woofer", weight: 99.0 },
1147    ///     GoodBoy { name: "Yapper", weight: 10.0 },
1148    ///     GoodBoy { name: "Chonk", weight: f16::INFINITY },
1149    ///     GoodBoy { name: "Abs. Unit", weight: f16::NAN },
1150    ///     GoodBoy { name: "Floaty", weight: -5.0 },
1151    /// ];
1152    ///
1153    /// bois.sort_by(|a, b| a.weight.total_cmp(&b.weight));
1154    ///
1155    /// // `f16::NAN` could be positive or negative, which will affect the sort order.
1156    /// if f16::NAN.is_sign_negative() {
1157    ///     bois.into_iter().map(|b| b.weight)
1158    ///         .zip([f16::NAN, -5.0, 0.1, 10.0, 99.0, f16::INFINITY].iter())
1159    ///         .for_each(|(a, b)| assert_eq!(a.to_bits(), b.to_bits()))
1160    /// } else {
1161    ///     bois.into_iter().map(|b| b.weight)
1162    ///         .zip([-5.0, 0.1, 10.0, 99.0, f16::INFINITY, f16::NAN].iter())
1163    ///         .for_each(|(a, b)| assert_eq!(a.to_bits(), b.to_bits()))
1164    /// }
1165    /// # }
1166    /// ```
1167    #[inline]
1168    #[must_use]
1169    #[unstable(feature = "f16", issue = "116909")]
1170    pub fn total_cmp(&self, other: &Self) -> crate::cmp::Ordering {
1171        let mut left = self.to_bits() as i16;
1172        let mut right = other.to_bits() as i16;
1173
1174        // In case of negatives, flip all the bits except the sign
1175        // to achieve a similar layout as two's complement integers
1176        //
1177        // Why does this work? IEEE 754 floats consist of three fields:
1178        // Sign bit, exponent and mantissa. The set of exponent and mantissa
1179        // fields as a whole have the property that their bitwise order is
1180        // equal to the numeric magnitude where the magnitude is defined.
1181        // The magnitude is not normally defined on NaN values, but
1182        // IEEE 754 totalOrder defines the NaN values also to follow the
1183        // bitwise order. This leads to order explained in the doc comment.
1184        // However, the representation of magnitude is the same for negative
1185        // and positive numbers – only the sign bit is different.
1186        // To easily compare the floats as signed integers, we need to
1187        // flip the exponent and mantissa bits in case of negative numbers.
1188        // We effectively convert the numbers to "two's complement" form.
1189        //
1190        // To do the flipping, we construct a mask and XOR against it.
1191        // We branchlessly calculate an "all-ones except for the sign bit"
1192        // mask from negative-signed values: right shifting sign-extends
1193        // the integer, so we "fill" the mask with sign bits, and then
1194        // convert to unsigned to push one more zero bit.
1195        // On positive values, the mask is all zeros, so it's a no-op.
1196        left ^= (((left >> 15) as u16) >> 1) as i16;
1197        right ^= (((right >> 15) as u16) >> 1) as i16;
1198
1199        left.cmp(&right)
1200    }
1201
1202    /// Restrict a value to a certain interval unless it is NaN.
1203    ///
1204    /// Returns `max` if `self` is greater than `max`, and `min` if `self` is
1205    /// less than `min`. Otherwise this returns `self`.
1206    ///
1207    /// Note that this function returns NaN if the initial value was NaN as
1208    /// well.
1209    ///
1210    /// # Panics
1211    ///
1212    /// Panics if `min > max`, `min` is NaN, or `max` is NaN.
1213    ///
1214    /// # Examples
1215    ///
1216    /// ```
1217    /// #![feature(f16)]
1218    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1219    ///
1220    /// assert!((-3.0f16).clamp(-2.0, 1.0) == -2.0);
1221    /// assert!((0.0f16).clamp(-2.0, 1.0) == 0.0);
1222    /// assert!((2.0f16).clamp(-2.0, 1.0) == 1.0);
1223    /// assert!((f16::NAN).clamp(-2.0, 1.0).is_nan());
1224    /// # }
1225    /// ```
1226    #[inline]
1227    #[unstable(feature = "f16", issue = "116909")]
1228    #[must_use = "method returns a new number and does not mutate the original value"]
1229    pub const fn clamp(mut self, min: f16, max: f16) -> f16 {
1230        const_assert!(
1231            min <= max,
1232            "min > max, or either was NaN",
1233            "min > max, or either was NaN. min = {min:?}, max = {max:?}",
1234            min: f16,
1235            max: f16,
1236        );
1237
1238        if self < min {
1239            self = min;
1240        }
1241        if self > max {
1242            self = max;
1243        }
1244        self
1245    }
1246
1247    /// Computes the absolute value of `self`.
1248    ///
1249    /// This function always returns the precise result.
1250    ///
1251    /// # Examples
1252    ///
1253    /// ```
1254    /// #![feature(f16)]
1255    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1256    ///
1257    /// let x = 3.5_f16;
1258    /// let y = -3.5_f16;
1259    ///
1260    /// assert_eq!(x.abs(), x);
1261    /// assert_eq!(y.abs(), -y);
1262    ///
1263    /// assert!(f16::NAN.abs().is_nan());
1264    /// # }
1265    /// ```
1266    #[inline]
1267    #[unstable(feature = "f16", issue = "116909")]
1268    #[rustc_const_unstable(feature = "f16", issue = "116909")]
1269    #[must_use = "method returns a new number and does not mutate the original value"]
1270    pub const fn abs(self) -> Self {
1271        // FIXME(f16_f128): replace with `intrinsics::fabsf16` when available
1272        Self::from_bits(self.to_bits() & !(1 << 15))
1273    }
1274
1275    /// Returns a number that represents the sign of `self`.
1276    ///
1277    /// - `1.0` if the number is positive, `+0.0` or `INFINITY`
1278    /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
1279    /// - NaN if the number is NaN
1280    ///
1281    /// # Examples
1282    ///
1283    /// ```
1284    /// #![feature(f16)]
1285    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1286    ///
1287    /// let f = 3.5_f16;
1288    ///
1289    /// assert_eq!(f.signum(), 1.0);
1290    /// assert_eq!(f16::NEG_INFINITY.signum(), -1.0);
1291    ///
1292    /// assert!(f16::NAN.signum().is_nan());
1293    /// # }
1294    /// ```
1295    #[inline]
1296    #[unstable(feature = "f16", issue = "116909")]
1297    #[rustc_const_unstable(feature = "f16", issue = "116909")]
1298    #[must_use = "method returns a new number and does not mutate the original value"]
1299    pub const fn signum(self) -> f16 {
1300        if self.is_nan() { Self::NAN } else { 1.0_f16.copysign(self) }
1301    }
1302
1303    /// Returns a number composed of the magnitude of `self` and the sign of
1304    /// `sign`.
1305    ///
1306    /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`.
1307    /// If `self` is a NaN, then a NaN with the same payload as `self` and the sign bit of `sign` is
1308    /// returned.
1309    ///
1310    /// If `sign` is a NaN, then this operation will still carry over its sign into the result. Note
1311    /// that IEEE 754 doesn't assign any meaning to the sign bit in case of a NaN, and as Rust
1312    /// doesn't guarantee that the bit pattern of NaNs are conserved over arithmetic operations, the
1313    /// result of `copysign` with `sign` being a NaN might produce an unexpected or non-portable
1314    /// result. See the [specification of NaN bit patterns](primitive@f32#nan-bit-patterns) for more
1315    /// info.
1316    ///
1317    /// # Examples
1318    ///
1319    /// ```
1320    /// #![feature(f16)]
1321    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1322    ///
1323    /// let f = 3.5_f16;
1324    ///
1325    /// assert_eq!(f.copysign(0.42), 3.5_f16);
1326    /// assert_eq!(f.copysign(-0.42), -3.5_f16);
1327    /// assert_eq!((-f).copysign(0.42), 3.5_f16);
1328    /// assert_eq!((-f).copysign(-0.42), -3.5_f16);
1329    ///
1330    /// assert!(f16::NAN.copysign(1.0).is_nan());
1331    /// # }
1332    /// ```
1333    #[inline]
1334    #[unstable(feature = "f16", issue = "116909")]
1335    #[rustc_const_unstable(feature = "f16", issue = "116909")]
1336    #[must_use = "method returns a new number and does not mutate the original value"]
1337    pub const fn copysign(self, sign: f16) -> f16 {
1338        // SAFETY: this is actually a safe intrinsic
1339        unsafe { intrinsics::copysignf16(self, sign) }
1340    }
1341}