core/num/
f16.rs

1//! Constants for the `f16` half-precision floating point type.
2//!
3//! *[See also the `f16` primitive type][f16].*
4//!
5//! Mathematically significant numbers are provided in the `consts` sub-module.
6//!
7//! For the constants defined directly in this module
8//! (as distinct from those defined in the `consts` sub-module),
9//! new code should instead use the associated constants
10//! defined directly on the `f16` type.
11
12#![unstable(feature = "f16", issue = "116909")]
13
14use crate::convert::FloatToInt;
15use crate::num::FpCategory;
16#[cfg(not(test))]
17use crate::num::libm;
18use crate::panic::const_assert;
19use crate::{intrinsics, mem};
20
21/// Basic mathematical constants.
22#[unstable(feature = "f16", issue = "116909")]
23#[rustc_diagnostic_item = "f16_consts_mod"]
24pub mod consts {
25    // FIXME: replace with mathematical constants from cmath.
26
27    /// Archimedes' constant (π)
28    #[unstable(feature = "f16", issue = "116909")]
29    pub const PI: f16 = 3.14159265358979323846264338327950288_f16;
30
31    /// The full circle constant (τ)
32    ///
33    /// Equal to 2π.
34    #[unstable(feature = "f16", issue = "116909")]
35    pub const TAU: f16 = 6.28318530717958647692528676655900577_f16;
36
37    /// The golden ratio (φ)
38    #[unstable(feature = "f16", issue = "116909")]
39    // Also, #[unstable(feature = "more_float_constants", issue = "146939")]
40    pub const PHI: f16 = 1.618033988749894848204586834365638118_f16;
41
42    /// The Euler-Mascheroni constant (γ)
43    #[unstable(feature = "f16", issue = "116909")]
44    // Also, #[unstable(feature = "more_float_constants", issue = "146939")]
45    pub const EGAMMA: f16 = 0.577215664901532860606512090082402431_f16;
46
47    /// π/2
48    #[unstable(feature = "f16", issue = "116909")]
49    pub const FRAC_PI_2: f16 = 1.57079632679489661923132169163975144_f16;
50
51    /// π/3
52    #[unstable(feature = "f16", issue = "116909")]
53    pub const FRAC_PI_3: f16 = 1.04719755119659774615421446109316763_f16;
54
55    /// π/4
56    #[unstable(feature = "f16", issue = "116909")]
57    pub const FRAC_PI_4: f16 = 0.785398163397448309615660845819875721_f16;
58
59    /// π/6
60    #[unstable(feature = "f16", issue = "116909")]
61    pub const FRAC_PI_6: f16 = 0.52359877559829887307710723054658381_f16;
62
63    /// π/8
64    #[unstable(feature = "f16", issue = "116909")]
65    pub const FRAC_PI_8: f16 = 0.39269908169872415480783042290993786_f16;
66
67    /// 1/π
68    #[unstable(feature = "f16", issue = "116909")]
69    pub const FRAC_1_PI: f16 = 0.318309886183790671537767526745028724_f16;
70
71    /// 1/sqrt(π)
72    #[unstable(feature = "f16", issue = "116909")]
73    // Also, #[unstable(feature = "more_float_constants", issue = "146939")]
74    pub const FRAC_1_SQRT_PI: f16 = 0.564189583547756286948079451560772586_f16;
75
76    /// 1/sqrt(2π)
77    #[doc(alias = "FRAC_1_SQRT_TAU")]
78    #[unstable(feature = "f16", issue = "116909")]
79    // Also, #[unstable(feature = "more_float_constants", issue = "146939")]
80    pub const FRAC_1_SQRT_2PI: f16 = 0.398942280401432677939946059934381868_f16;
81
82    /// 2/π
83    #[unstable(feature = "f16", issue = "116909")]
84    pub const FRAC_2_PI: f16 = 0.636619772367581343075535053490057448_f16;
85
86    /// 2/sqrt(π)
87    #[unstable(feature = "f16", issue = "116909")]
88    pub const FRAC_2_SQRT_PI: f16 = 1.12837916709551257389615890312154517_f16;
89
90    /// sqrt(2)
91    #[unstable(feature = "f16", issue = "116909")]
92    pub const SQRT_2: f16 = 1.41421356237309504880168872420969808_f16;
93
94    /// 1/sqrt(2)
95    #[unstable(feature = "f16", issue = "116909")]
96    pub const FRAC_1_SQRT_2: f16 = 0.707106781186547524400844362104849039_f16;
97
98    /// sqrt(3)
99    #[unstable(feature = "f16", issue = "116909")]
100    // Also, #[unstable(feature = "more_float_constants", issue = "146939")]
101    pub const SQRT_3: f16 = 1.732050807568877293527446341505872367_f16;
102
103    /// 1/sqrt(3)
104    #[unstable(feature = "f16", issue = "116909")]
105    // Also, #[unstable(feature = "more_float_constants", issue = "146939")]
106    pub const FRAC_1_SQRT_3: f16 = 0.577350269189625764509148780501957456_f16;
107
108    /// Euler's number (e)
109    #[unstable(feature = "f16", issue = "116909")]
110    pub const E: f16 = 2.71828182845904523536028747135266250_f16;
111
112    /// log<sub>2</sub>(10)
113    #[unstable(feature = "f16", issue = "116909")]
114    pub const LOG2_10: f16 = 3.32192809488736234787031942948939018_f16;
115
116    /// log<sub>2</sub>(e)
117    #[unstable(feature = "f16", issue = "116909")]
118    pub const LOG2_E: f16 = 1.44269504088896340735992468100189214_f16;
119
120    /// log<sub>10</sub>(2)
121    #[unstable(feature = "f16", issue = "116909")]
122    pub const LOG10_2: f16 = 0.301029995663981195213738894724493027_f16;
123
124    /// log<sub>10</sub>(e)
125    #[unstable(feature = "f16", issue = "116909")]
126    pub const LOG10_E: f16 = 0.434294481903251827651128918916605082_f16;
127
128    /// ln(2)
129    #[unstable(feature = "f16", issue = "116909")]
130    pub const LN_2: f16 = 0.693147180559945309417232121458176568_f16;
131
132    /// ln(10)
133    #[unstable(feature = "f16", issue = "116909")]
134    pub const LN_10: f16 = 2.30258509299404568401799145468436421_f16;
135}
136
137impl f16 {
138    // FIXME(f16_f128): almost all methods in this `impl` are missing examples and a const
139    // implementation. Add these once we can run code on all platforms and have f16/f128 in CTFE.
140
141    /// The radix or base of the internal representation of `f16`.
142    #[unstable(feature = "f16", issue = "116909")]
143    pub const RADIX: u32 = 2;
144
145    /// Number of significant digits in base 2.
146    ///
147    /// Note that the size of the mantissa in the bitwise representation is one
148    /// smaller than this since the leading 1 is not stored explicitly.
149    #[unstable(feature = "f16", issue = "116909")]
150    pub const MANTISSA_DIGITS: u32 = 11;
151
152    /// Approximate number of significant digits in base 10.
153    ///
154    /// This is the maximum <i>x</i> such that any decimal number with <i>x</i>
155    /// significant digits can be converted to `f16` and back without loss.
156    ///
157    /// Equal to floor(log<sub>10</sub>&nbsp;2<sup>[`MANTISSA_DIGITS`]&nbsp;&minus;&nbsp;1</sup>).
158    ///
159    /// [`MANTISSA_DIGITS`]: f16::MANTISSA_DIGITS
160    #[unstable(feature = "f16", issue = "116909")]
161    pub const DIGITS: u32 = 3;
162
163    /// [Machine epsilon] value for `f16`.
164    ///
165    /// This is the difference between `1.0` and the next larger representable number.
166    ///
167    /// Equal to 2<sup>1&nbsp;&minus;&nbsp;[`MANTISSA_DIGITS`]</sup>.
168    ///
169    /// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
170    /// [`MANTISSA_DIGITS`]: f16::MANTISSA_DIGITS
171    #[unstable(feature = "f16", issue = "116909")]
172    #[rustc_diagnostic_item = "f16_epsilon"]
173    pub const EPSILON: f16 = 9.7656e-4_f16;
174
175    /// Smallest finite `f16` value.
176    ///
177    /// Equal to &minus;[`MAX`].
178    ///
179    /// [`MAX`]: f16::MAX
180    #[unstable(feature = "f16", issue = "116909")]
181    pub const MIN: f16 = -6.5504e+4_f16;
182    /// Smallest positive normal `f16` value.
183    ///
184    /// Equal to 2<sup>[`MIN_EXP`]&nbsp;&minus;&nbsp;1</sup>.
185    ///
186    /// [`MIN_EXP`]: f16::MIN_EXP
187    #[unstable(feature = "f16", issue = "116909")]
188    pub const MIN_POSITIVE: f16 = 6.1035e-5_f16;
189    /// Largest finite `f16` value.
190    ///
191    /// Equal to
192    /// (1&nbsp;&minus;&nbsp;2<sup>&minus;[`MANTISSA_DIGITS`]</sup>)&nbsp;2<sup>[`MAX_EXP`]</sup>.
193    ///
194    /// [`MANTISSA_DIGITS`]: f16::MANTISSA_DIGITS
195    /// [`MAX_EXP`]: f16::MAX_EXP
196    #[unstable(feature = "f16", issue = "116909")]
197    pub const MAX: f16 = 6.5504e+4_f16;
198
199    /// One greater than the minimum possible *normal* power of 2 exponent
200    /// for a significand bounded by 1 ≤ x < 2 (i.e. the IEEE definition).
201    ///
202    /// This corresponds to the exact minimum possible *normal* power of 2 exponent
203    /// for a significand bounded by 0.5 ≤ x < 1 (i.e. the C definition).
204    /// In other words, all normal numbers representable by this type are
205    /// greater than or equal to 0.5&nbsp;×&nbsp;2<sup><i>MIN_EXP</i></sup>.
206    #[unstable(feature = "f16", issue = "116909")]
207    pub const MIN_EXP: i32 = -13;
208    /// One greater than the maximum possible power of 2 exponent
209    /// for a significand bounded by 1 ≤ x < 2 (i.e. the IEEE definition).
210    ///
211    /// This corresponds to the exact maximum possible power of 2 exponent
212    /// for a significand bounded by 0.5 ≤ x < 1 (i.e. the C definition).
213    /// In other words, all numbers representable by this type are
214    /// strictly less than 2<sup><i>MAX_EXP</i></sup>.
215    #[unstable(feature = "f16", issue = "116909")]
216    pub const MAX_EXP: i32 = 16;
217
218    /// Minimum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
219    ///
220    /// Equal to ceil(log<sub>10</sub>&nbsp;[`MIN_POSITIVE`]).
221    ///
222    /// [`MIN_POSITIVE`]: f16::MIN_POSITIVE
223    #[unstable(feature = "f16", issue = "116909")]
224    pub const MIN_10_EXP: i32 = -4;
225    /// Maximum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
226    ///
227    /// Equal to floor(log<sub>10</sub>&nbsp;[`MAX`]).
228    ///
229    /// [`MAX`]: f16::MAX
230    #[unstable(feature = "f16", issue = "116909")]
231    pub const MAX_10_EXP: i32 = 4;
232
233    /// Not a Number (NaN).
234    ///
235    /// Note that IEEE 754 doesn't define just a single NaN value; a plethora of bit patterns are
236    /// considered to be NaN. Furthermore, the standard makes a difference between a "signaling" and
237    /// a "quiet" NaN, and allows inspecting its "payload" (the unspecified bits in the bit pattern)
238    /// and its sign. See the [specification of NaN bit patterns](f32#nan-bit-patterns) for more
239    /// info.
240    ///
241    /// This constant is guaranteed to be a quiet NaN (on targets that follow the Rust assumptions
242    /// that the quiet/signaling bit being set to 1 indicates a quiet NaN). Beyond that, nothing is
243    /// guaranteed about the specific bit pattern chosen here: both payload and sign are arbitrary.
244    /// The concrete bit pattern may change across Rust versions and target platforms.
245    #[allow(clippy::eq_op)]
246    #[rustc_diagnostic_item = "f16_nan"]
247    #[unstable(feature = "f16", issue = "116909")]
248    pub const NAN: f16 = 0.0_f16 / 0.0_f16;
249
250    /// Infinity (∞).
251    #[unstable(feature = "f16", issue = "116909")]
252    pub const INFINITY: f16 = 1.0_f16 / 0.0_f16;
253
254    /// Negative infinity (−∞).
255    #[unstable(feature = "f16", issue = "116909")]
256    pub const NEG_INFINITY: f16 = -1.0_f16 / 0.0_f16;
257
258    /// Sign bit
259    pub(crate) const SIGN_MASK: u16 = 0x8000;
260
261    /// Exponent mask
262    pub(crate) const EXP_MASK: u16 = 0x7c00;
263
264    /// Mantissa mask
265    pub(crate) const MAN_MASK: u16 = 0x03ff;
266
267    /// Minimum representable positive value (min subnormal)
268    const TINY_BITS: u16 = 0x1;
269
270    /// Minimum representable negative value (min negative subnormal)
271    const NEG_TINY_BITS: u16 = Self::TINY_BITS | Self::SIGN_MASK;
272
273    /// Returns `true` if this value is NaN.
274    ///
275    /// ```
276    /// #![feature(f16)]
277    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
278    ///
279    /// let nan = f16::NAN;
280    /// let f = 7.0_f16;
281    ///
282    /// assert!(nan.is_nan());
283    /// assert!(!f.is_nan());
284    /// # }
285    /// ```
286    #[inline]
287    #[must_use]
288    #[unstable(feature = "f16", issue = "116909")]
289    #[allow(clippy::eq_op)] // > if you intended to check if the operand is NaN, use `.is_nan()` instead :)
290    pub const fn is_nan(self) -> bool {
291        self != self
292    }
293
294    /// Returns `true` if this value is positive infinity or negative infinity, and
295    /// `false` otherwise.
296    ///
297    /// ```
298    /// #![feature(f16)]
299    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
300    ///
301    /// let f = 7.0f16;
302    /// let inf = f16::INFINITY;
303    /// let neg_inf = f16::NEG_INFINITY;
304    /// let nan = f16::NAN;
305    ///
306    /// assert!(!f.is_infinite());
307    /// assert!(!nan.is_infinite());
308    ///
309    /// assert!(inf.is_infinite());
310    /// assert!(neg_inf.is_infinite());
311    /// # }
312    /// ```
313    #[inline]
314    #[must_use]
315    #[unstable(feature = "f16", issue = "116909")]
316    pub const fn is_infinite(self) -> bool {
317        (self == f16::INFINITY) | (self == f16::NEG_INFINITY)
318    }
319
320    /// Returns `true` if this number is neither infinite nor NaN.
321    ///
322    /// ```
323    /// #![feature(f16)]
324    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
325    ///
326    /// let f = 7.0f16;
327    /// let inf: f16 = f16::INFINITY;
328    /// let neg_inf: f16 = f16::NEG_INFINITY;
329    /// let nan: f16 = f16::NAN;
330    ///
331    /// assert!(f.is_finite());
332    ///
333    /// assert!(!nan.is_finite());
334    /// assert!(!inf.is_finite());
335    /// assert!(!neg_inf.is_finite());
336    /// # }
337    /// ```
338    #[inline]
339    #[must_use]
340    #[unstable(feature = "f16", issue = "116909")]
341    #[rustc_const_unstable(feature = "f16", issue = "116909")]
342    pub const fn is_finite(self) -> bool {
343        // There's no need to handle NaN separately: if self is NaN,
344        // the comparison is not true, exactly as desired.
345        self.abs() < Self::INFINITY
346    }
347
348    /// Returns `true` if the number is [subnormal].
349    ///
350    /// ```
351    /// #![feature(f16)]
352    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
353    ///
354    /// let min = f16::MIN_POSITIVE; // 6.1035e-5
355    /// let max = f16::MAX;
356    /// let lower_than_min = 1.0e-7_f16;
357    /// let zero = 0.0_f16;
358    ///
359    /// assert!(!min.is_subnormal());
360    /// assert!(!max.is_subnormal());
361    ///
362    /// assert!(!zero.is_subnormal());
363    /// assert!(!f16::NAN.is_subnormal());
364    /// assert!(!f16::INFINITY.is_subnormal());
365    /// // Values between `0` and `min` are Subnormal.
366    /// assert!(lower_than_min.is_subnormal());
367    /// # }
368    /// ```
369    /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
370    #[inline]
371    #[must_use]
372    #[unstable(feature = "f16", issue = "116909")]
373    pub const fn is_subnormal(self) -> bool {
374        matches!(self.classify(), FpCategory::Subnormal)
375    }
376
377    /// Returns `true` if the number is neither zero, infinite, [subnormal], or NaN.
378    ///
379    /// ```
380    /// #![feature(f16)]
381    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
382    ///
383    /// let min = f16::MIN_POSITIVE; // 6.1035e-5
384    /// let max = f16::MAX;
385    /// let lower_than_min = 1.0e-7_f16;
386    /// let zero = 0.0_f16;
387    ///
388    /// assert!(min.is_normal());
389    /// assert!(max.is_normal());
390    ///
391    /// assert!(!zero.is_normal());
392    /// assert!(!f16::NAN.is_normal());
393    /// assert!(!f16::INFINITY.is_normal());
394    /// // Values between `0` and `min` are Subnormal.
395    /// assert!(!lower_than_min.is_normal());
396    /// # }
397    /// ```
398    /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
399    #[inline]
400    #[must_use]
401    #[unstable(feature = "f16", issue = "116909")]
402    pub const fn is_normal(self) -> bool {
403        matches!(self.classify(), FpCategory::Normal)
404    }
405
406    /// Returns the floating point category of the number. If only one property
407    /// is going to be tested, it is generally faster to use the specific
408    /// predicate instead.
409    ///
410    /// ```
411    /// #![feature(f16)]
412    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
413    ///
414    /// use std::num::FpCategory;
415    ///
416    /// let num = 12.4_f16;
417    /// let inf = f16::INFINITY;
418    ///
419    /// assert_eq!(num.classify(), FpCategory::Normal);
420    /// assert_eq!(inf.classify(), FpCategory::Infinite);
421    /// # }
422    /// ```
423    #[inline]
424    #[unstable(feature = "f16", issue = "116909")]
425    pub const fn classify(self) -> FpCategory {
426        let b = self.to_bits();
427        match (b & Self::MAN_MASK, b & Self::EXP_MASK) {
428            (0, Self::EXP_MASK) => FpCategory::Infinite,
429            (_, Self::EXP_MASK) => FpCategory::Nan,
430            (0, 0) => FpCategory::Zero,
431            (_, 0) => FpCategory::Subnormal,
432            _ => FpCategory::Normal,
433        }
434    }
435
436    /// Returns `true` if `self` has a positive sign, including `+0.0`, NaNs with
437    /// positive sign bit and positive infinity.
438    ///
439    /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of
440    /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are
441    /// conserved over arithmetic operations, the result of `is_sign_positive` on
442    /// a NaN might produce an unexpected or non-portable result. See the [specification
443    /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == 1.0`
444    /// if you need fully portable behavior (will return `false` for all NaNs).
445    ///
446    /// ```
447    /// #![feature(f16)]
448    /// # // FIXME(f16_f128): LLVM crashes on s390x, llvm/llvm-project#50374
449    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
450    ///
451    /// let f = 7.0_f16;
452    /// let g = -7.0_f16;
453    ///
454    /// assert!(f.is_sign_positive());
455    /// assert!(!g.is_sign_positive());
456    /// # }
457    /// ```
458    #[inline]
459    #[must_use]
460    #[unstable(feature = "f16", issue = "116909")]
461    pub const fn is_sign_positive(self) -> bool {
462        !self.is_sign_negative()
463    }
464
465    /// Returns `true` if `self` has a negative sign, including `-0.0`, NaNs with
466    /// negative sign bit and negative infinity.
467    ///
468    /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of
469    /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are
470    /// conserved over arithmetic operations, the result of `is_sign_negative` on
471    /// a NaN might produce an unexpected or non-portable result. See the [specification
472    /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == -1.0`
473    /// if you need fully portable behavior (will return `false` for all NaNs).
474    ///
475    /// ```
476    /// #![feature(f16)]
477    /// # // FIXME(f16_f128): LLVM crashes on s390x, llvm/llvm-project#50374
478    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
479    ///
480    /// let f = 7.0_f16;
481    /// let g = -7.0_f16;
482    ///
483    /// assert!(!f.is_sign_negative());
484    /// assert!(g.is_sign_negative());
485    /// # }
486    /// ```
487    #[inline]
488    #[must_use]
489    #[unstable(feature = "f16", issue = "116909")]
490    pub const fn is_sign_negative(self) -> bool {
491        // IEEE754 says: isSignMinus(x) is true if and only if x has negative sign. isSignMinus
492        // applies to zeros and NaNs as well.
493        // SAFETY: This is just transmuting to get the sign bit, it's fine.
494        (self.to_bits() & (1 << 15)) != 0
495    }
496
497    /// Returns the least number greater than `self`.
498    ///
499    /// Let `TINY` be the smallest representable positive `f16`. Then,
500    ///  - if `self.is_nan()`, this returns `self`;
501    ///  - if `self` is [`NEG_INFINITY`], this returns [`MIN`];
502    ///  - if `self` is `-TINY`, this returns -0.0;
503    ///  - if `self` is -0.0 or +0.0, this returns `TINY`;
504    ///  - if `self` is [`MAX`] or [`INFINITY`], this returns [`INFINITY`];
505    ///  - otherwise the unique least value greater than `self` is returned.
506    ///
507    /// The identity `x.next_up() == -(-x).next_down()` holds for all non-NaN `x`. When `x`
508    /// is finite `x == x.next_up().next_down()` also holds.
509    ///
510    /// ```rust
511    /// #![feature(f16)]
512    /// # // FIXME(f16_f128): ABI issues on MSVC
513    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
514    ///
515    /// // f16::EPSILON is the difference between 1.0 and the next number up.
516    /// assert_eq!(1.0f16.next_up(), 1.0 + f16::EPSILON);
517    /// // But not for most numbers.
518    /// assert!(0.1f16.next_up() < 0.1 + f16::EPSILON);
519    /// assert_eq!(4356f16.next_up(), 4360.0);
520    /// # }
521    /// ```
522    ///
523    /// This operation corresponds to IEEE-754 `nextUp`.
524    ///
525    /// [`NEG_INFINITY`]: Self::NEG_INFINITY
526    /// [`INFINITY`]: Self::INFINITY
527    /// [`MIN`]: Self::MIN
528    /// [`MAX`]: Self::MAX
529    #[inline]
530    #[doc(alias = "nextUp")]
531    #[unstable(feature = "f16", issue = "116909")]
532    pub const fn next_up(self) -> Self {
533        // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing
534        // denormals to zero. This is in general unsound and unsupported, but here
535        // we do our best to still produce the correct result on such targets.
536        let bits = self.to_bits();
537        if self.is_nan() || bits == Self::INFINITY.to_bits() {
538            return self;
539        }
540
541        let abs = bits & !Self::SIGN_MASK;
542        let next_bits = if abs == 0 {
543            Self::TINY_BITS
544        } else if bits == abs {
545            bits + 1
546        } else {
547            bits - 1
548        };
549        Self::from_bits(next_bits)
550    }
551
552    /// Returns the greatest number less than `self`.
553    ///
554    /// Let `TINY` be the smallest representable positive `f16`. Then,
555    ///  - if `self.is_nan()`, this returns `self`;
556    ///  - if `self` is [`INFINITY`], this returns [`MAX`];
557    ///  - if `self` is `TINY`, this returns 0.0;
558    ///  - if `self` is -0.0 or +0.0, this returns `-TINY`;
559    ///  - if `self` is [`MIN`] or [`NEG_INFINITY`], this returns [`NEG_INFINITY`];
560    ///  - otherwise the unique greatest value less than `self` is returned.
561    ///
562    /// The identity `x.next_down() == -(-x).next_up()` holds for all non-NaN `x`. When `x`
563    /// is finite `x == x.next_down().next_up()` also holds.
564    ///
565    /// ```rust
566    /// #![feature(f16)]
567    /// # // FIXME(f16_f128): ABI issues on MSVC
568    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
569    ///
570    /// let x = 1.0f16;
571    /// // Clamp value into range [0, 1).
572    /// let clamped = x.clamp(0.0, 1.0f16.next_down());
573    /// assert!(clamped < 1.0);
574    /// assert_eq!(clamped.next_up(), 1.0);
575    /// # }
576    /// ```
577    ///
578    /// This operation corresponds to IEEE-754 `nextDown`.
579    ///
580    /// [`NEG_INFINITY`]: Self::NEG_INFINITY
581    /// [`INFINITY`]: Self::INFINITY
582    /// [`MIN`]: Self::MIN
583    /// [`MAX`]: Self::MAX
584    #[inline]
585    #[doc(alias = "nextDown")]
586    #[unstable(feature = "f16", issue = "116909")]
587    pub const fn next_down(self) -> Self {
588        // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing
589        // denormals to zero. This is in general unsound and unsupported, but here
590        // we do our best to still produce the correct result on such targets.
591        let bits = self.to_bits();
592        if self.is_nan() || bits == Self::NEG_INFINITY.to_bits() {
593            return self;
594        }
595
596        let abs = bits & !Self::SIGN_MASK;
597        let next_bits = if abs == 0 {
598            Self::NEG_TINY_BITS
599        } else if bits == abs {
600            bits - 1
601        } else {
602            bits + 1
603        };
604        Self::from_bits(next_bits)
605    }
606
607    /// Takes the reciprocal (inverse) of a number, `1/x`.
608    ///
609    /// ```
610    /// #![feature(f16)]
611    /// # // FIXME(f16_f128): extendhfsf2, truncsfhf2, __gnu_h2f_ieee, __gnu_f2h_ieee missing for many platforms
612    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
613    ///
614    /// let x = 2.0_f16;
615    /// let abs_difference = (x.recip() - (1.0 / x)).abs();
616    ///
617    /// assert!(abs_difference <= f16::EPSILON);
618    /// # }
619    /// ```
620    #[inline]
621    #[unstable(feature = "f16", issue = "116909")]
622    #[must_use = "this returns the result of the operation, without modifying the original"]
623    pub const fn recip(self) -> Self {
624        1.0 / self
625    }
626
627    /// Converts radians to degrees.
628    ///
629    /// # Unspecified precision
630    ///
631    /// The precision of this function is non-deterministic. This means it varies by platform,
632    /// Rust version, and can even differ within the same execution from one invocation to the next.
633    ///
634    /// # Examples
635    ///
636    /// ```
637    /// #![feature(f16)]
638    /// # // FIXME(f16_f128): extendhfsf2, truncsfhf2, __gnu_h2f_ieee, __gnu_f2h_ieee missing for many platforms
639    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
640    ///
641    /// let angle = std::f16::consts::PI;
642    ///
643    /// let abs_difference = (angle.to_degrees() - 180.0).abs();
644    /// assert!(abs_difference <= 0.5);
645    /// # }
646    /// ```
647    #[inline]
648    #[unstable(feature = "f16", issue = "116909")]
649    #[must_use = "this returns the result of the operation, without modifying the original"]
650    pub const fn to_degrees(self) -> Self {
651        // Use a literal to avoid double rounding, consts::PI is already rounded,
652        // and dividing would round again.
653        const PIS_IN_180: f16 = 57.2957795130823208767981548141051703_f16;
654        self * PIS_IN_180
655    }
656
657    /// Converts degrees to radians.
658    ///
659    /// # Unspecified precision
660    ///
661    /// The precision of this function is non-deterministic. This means it varies by platform,
662    /// Rust version, and can even differ within the same execution from one invocation to the next.
663    ///
664    /// # Examples
665    ///
666    /// ```
667    /// #![feature(f16)]
668    /// # // FIXME(f16_f128): extendhfsf2, truncsfhf2, __gnu_h2f_ieee, __gnu_f2h_ieee missing for many platforms
669    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
670    ///
671    /// let angle = 180.0f16;
672    ///
673    /// let abs_difference = (angle.to_radians() - std::f16::consts::PI).abs();
674    ///
675    /// assert!(abs_difference <= 0.01);
676    /// # }
677    /// ```
678    #[inline]
679    #[unstable(feature = "f16", issue = "116909")]
680    #[must_use = "this returns the result of the operation, without modifying the original"]
681    pub const fn to_radians(self) -> f16 {
682        // Use a literal to avoid double rounding, consts::PI is already rounded,
683        // and dividing would round again.
684        const RADS_PER_DEG: f16 = 0.017453292519943295769236907684886_f16;
685        self * RADS_PER_DEG
686    }
687
688    /// Returns the maximum of the two numbers, ignoring NaN.
689    ///
690    /// If exactly one of the arguments is NaN, then the other argument is returned. If both
691    /// arguments are NaN, the return value is NaN, with the bit pattern picked using the usual
692    /// [rules for arithmetic operations](f32#nan-bit-patterns). If the inputs compare equal (such
693    /// as for the case of `+0.0` and `-0.0`), either input may be returned non-deterministically.
694    ///
695    /// This follows the IEEE 754-2008 semantics for `maxNum`, except for handling of signaling NaNs;
696    /// this function handles all NaNs the same way and avoids `maxNum`'s problems with associativity.
697    /// This also matches the behavior of libm’s `fmax`.
698    ///
699    /// ```
700    /// #![feature(f16)]
701    /// # #[cfg(target_arch = "aarch64")] { // FIXME(f16_F128): rust-lang/rust#123885
702    ///
703    /// let x = 1.0f16;
704    /// let y = 2.0f16;
705    ///
706    /// assert_eq!(x.max(y), y);
707    /// assert_eq!(x.max(f16::NAN), x);
708    /// # }
709    /// ```
710    #[inline]
711    #[unstable(feature = "f16", issue = "116909")]
712    #[rustc_const_unstable(feature = "f16", issue = "116909")]
713    #[must_use = "this returns the result of the comparison, without modifying either input"]
714    pub const fn max(self, other: f16) -> f16 {
715        intrinsics::maxnumf16(self, other)
716    }
717
718    /// Returns the minimum of the two numbers, ignoring NaN.
719    ///
720    /// If exactly one of the arguments is NaN, then the other argument is returned. If both
721    /// arguments are NaN, the return value is NaN, with the bit pattern picked using the usual
722    /// [rules for arithmetic operations](f32#nan-bit-patterns). If the inputs compare equal (such
723    /// as for the case of `+0.0` and `-0.0`), either input may be returned non-deterministically.
724    ///
725    /// This follows the IEEE 754-2008 semantics for `minNum`, except for handling of signaling NaNs;
726    /// this function handles all NaNs the same way and avoids `minNum`'s problems with associativity.
727    /// This also matches the behavior of libm’s `fmin`.
728    ///
729    /// ```
730    /// #![feature(f16)]
731    /// # #[cfg(target_arch = "aarch64")] { // FIXME(f16_F128): rust-lang/rust#123885
732    ///
733    /// let x = 1.0f16;
734    /// let y = 2.0f16;
735    ///
736    /// assert_eq!(x.min(y), x);
737    /// assert_eq!(x.min(f16::NAN), x);
738    /// # }
739    /// ```
740    #[inline]
741    #[unstable(feature = "f16", issue = "116909")]
742    #[rustc_const_unstable(feature = "f16", issue = "116909")]
743    #[must_use = "this returns the result of the comparison, without modifying either input"]
744    pub const fn min(self, other: f16) -> f16 {
745        intrinsics::minnumf16(self, other)
746    }
747
748    /// Returns the maximum of the two numbers, propagating NaN.
749    ///
750    /// If at least one of the arguments is NaN, the return value is NaN, with the bit pattern
751    /// picked using the usual [rules for arithmetic operations](f32#nan-bit-patterns). Furthermore,
752    /// `-0.0` is considered to be less than `+0.0`, making this function fully deterministic for
753    /// non-NaN inputs.
754    ///
755    /// This is in contrast to [`f16::max`] which only returns NaN when *both* arguments are NaN,
756    /// and which does not reliably order `-0.0` and `+0.0`.
757    ///
758    /// This follows the IEEE 754-2019 semantics for `maximum`.
759    ///
760    /// ```
761    /// #![feature(f16)]
762    /// #![feature(float_minimum_maximum)]
763    /// # #[cfg(target_arch = "aarch64")] { // FIXME(f16_F128): rust-lang/rust#123885
764    ///
765    /// let x = 1.0f16;
766    /// let y = 2.0f16;
767    ///
768    /// assert_eq!(x.maximum(y), y);
769    /// assert!(x.maximum(f16::NAN).is_nan());
770    /// # }
771    /// ```
772    #[inline]
773    #[unstable(feature = "f16", issue = "116909")]
774    // #[unstable(feature = "float_minimum_maximum", issue = "91079")]
775    #[must_use = "this returns the result of the comparison, without modifying either input"]
776    pub const fn maximum(self, other: f16) -> f16 {
777        intrinsics::maximumf16(self, other)
778    }
779
780    /// Returns the minimum of the two numbers, propagating NaN.
781    ///
782    /// If at least one of the arguments is NaN, the return value is NaN, with the bit pattern
783    /// picked using the usual [rules for arithmetic operations](f32#nan-bit-patterns). Furthermore,
784    /// `-0.0` is considered to be less than `+0.0`, making this function fully deterministic for
785    /// non-NaN inputs.
786    ///
787    /// This is in contrast to [`f16::min`] which only returns NaN when *both* arguments are NaN,
788    /// and which does not reliably order `-0.0` and `+0.0`.
789    ///
790    /// This follows the IEEE 754-2019 semantics for `minimum`.
791    ///
792    /// ```
793    /// #![feature(f16)]
794    /// #![feature(float_minimum_maximum)]
795    /// # #[cfg(target_arch = "aarch64")] { // FIXME(f16_F128): rust-lang/rust#123885
796    ///
797    /// let x = 1.0f16;
798    /// let y = 2.0f16;
799    ///
800    /// assert_eq!(x.minimum(y), x);
801    /// assert!(x.minimum(f16::NAN).is_nan());
802    /// # }
803    /// ```
804    #[inline]
805    #[unstable(feature = "f16", issue = "116909")]
806    // #[unstable(feature = "float_minimum_maximum", issue = "91079")]
807    #[must_use = "this returns the result of the comparison, without modifying either input"]
808    pub const fn minimum(self, other: f16) -> f16 {
809        intrinsics::minimumf16(self, other)
810    }
811
812    /// Calculates the midpoint (average) between `self` and `rhs`.
813    ///
814    /// This returns NaN when *either* argument is NaN or if a combination of
815    /// +inf and -inf is provided as arguments.
816    ///
817    /// # Examples
818    ///
819    /// ```
820    /// #![feature(f16)]
821    /// # #[cfg(target_arch = "aarch64")] { // FIXME(f16_F128): rust-lang/rust#123885
822    ///
823    /// assert_eq!(1f16.midpoint(4.0), 2.5);
824    /// assert_eq!((-5.5f16).midpoint(8.0), 1.25);
825    /// # }
826    /// ```
827    #[inline]
828    #[doc(alias = "average")]
829    #[unstable(feature = "f16", issue = "116909")]
830    #[rustc_const_unstable(feature = "f16", issue = "116909")]
831    pub const fn midpoint(self, other: f16) -> f16 {
832        const HI: f16 = f16::MAX / 2.;
833
834        let (a, b) = (self, other);
835        let abs_a = a.abs();
836        let abs_b = b.abs();
837
838        if abs_a <= HI && abs_b <= HI {
839            // Overflow is impossible
840            (a + b) / 2.
841        } else {
842            (a / 2.) + (b / 2.)
843        }
844    }
845
846    /// Rounds toward zero and converts to any primitive integer type,
847    /// assuming that the value is finite and fits in that type.
848    ///
849    /// ```
850    /// #![feature(f16)]
851    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
852    ///
853    /// let value = 4.6_f16;
854    /// let rounded = unsafe { value.to_int_unchecked::<u16>() };
855    /// assert_eq!(rounded, 4);
856    ///
857    /// let value = -128.9_f16;
858    /// let rounded = unsafe { value.to_int_unchecked::<i8>() };
859    /// assert_eq!(rounded, i8::MIN);
860    /// # }
861    /// ```
862    ///
863    /// # Safety
864    ///
865    /// The value must:
866    ///
867    /// * Not be `NaN`
868    /// * Not be infinite
869    /// * Be representable in the return type `Int`, after truncating off its fractional part
870    #[inline]
871    #[unstable(feature = "f16", issue = "116909")]
872    #[must_use = "this returns the result of the operation, without modifying the original"]
873    pub unsafe fn to_int_unchecked<Int>(self) -> Int
874    where
875        Self: FloatToInt<Int>,
876    {
877        // SAFETY: the caller must uphold the safety contract for
878        // `FloatToInt::to_int_unchecked`.
879        unsafe { FloatToInt::<Int>::to_int_unchecked(self) }
880    }
881
882    /// Raw transmutation to `u16`.
883    ///
884    /// This is currently identical to `transmute::<f16, u16>(self)` on all platforms.
885    ///
886    /// See [`from_bits`](#method.from_bits) for some discussion of the
887    /// portability of this operation (there are almost no issues).
888    ///
889    /// Note that this function is distinct from `as` casting, which attempts to
890    /// preserve the *numeric* value, and not the bitwise value.
891    ///
892    /// ```
893    /// #![feature(f16)]
894    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
895    ///
896    /// # // FIXME(f16_f128): enable this once const casting works
897    /// # // assert_ne!((1f16).to_bits(), 1f16 as u128); // to_bits() is not casting!
898    /// assert_eq!((12.5f16).to_bits(), 0x4a40);
899    /// # }
900    /// ```
901    #[inline]
902    #[unstable(feature = "f16", issue = "116909")]
903    #[must_use = "this returns the result of the operation, without modifying the original"]
904    #[allow(unnecessary_transmutes)]
905    pub const fn to_bits(self) -> u16 {
906        // SAFETY: `u16` is a plain old datatype so we can always transmute to it.
907        unsafe { mem::transmute(self) }
908    }
909
910    /// Raw transmutation from `u16`.
911    ///
912    /// This is currently identical to `transmute::<u16, f16>(v)` on all platforms.
913    /// It turns out this is incredibly portable, for two reasons:
914    ///
915    /// * Floats and Ints have the same endianness on all supported platforms.
916    /// * IEEE 754 very precisely specifies the bit layout of floats.
917    ///
918    /// However there is one caveat: prior to the 2008 version of IEEE 754, how
919    /// to interpret the NaN signaling bit wasn't actually specified. Most platforms
920    /// (notably x86 and ARM) picked the interpretation that was ultimately
921    /// standardized in 2008, but some didn't (notably MIPS). As a result, all
922    /// signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa.
923    ///
924    /// Rather than trying to preserve signaling-ness cross-platform, this
925    /// implementation favors preserving the exact bits. This means that
926    /// any payloads encoded in NaNs will be preserved even if the result of
927    /// this method is sent over the network from an x86 machine to a MIPS one.
928    ///
929    /// If the results of this method are only manipulated by the same
930    /// architecture that produced them, then there is no portability concern.
931    ///
932    /// If the input isn't NaN, then there is no portability concern.
933    ///
934    /// If you don't care about signalingness (very likely), then there is no
935    /// portability concern.
936    ///
937    /// Note that this function is distinct from `as` casting, which attempts to
938    /// preserve the *numeric* value, and not the bitwise value.
939    ///
940    /// ```
941    /// #![feature(f16)]
942    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
943    ///
944    /// let v = f16::from_bits(0x4a40);
945    /// assert_eq!(v, 12.5);
946    /// # }
947    /// ```
948    #[inline]
949    #[must_use]
950    #[unstable(feature = "f16", issue = "116909")]
951    #[allow(unnecessary_transmutes)]
952    pub const fn from_bits(v: u16) -> Self {
953        // It turns out the safety issues with sNaN were overblown! Hooray!
954        // SAFETY: `u16` is a plain old datatype so we can always transmute from it.
955        unsafe { mem::transmute(v) }
956    }
957
958    /// Returns the memory representation of this floating point number as a byte array in
959    /// big-endian (network) byte order.
960    ///
961    /// See [`from_bits`](Self::from_bits) for some discussion of the
962    /// portability of this operation (there are almost no issues).
963    ///
964    /// # Examples
965    ///
966    /// ```
967    /// #![feature(f16)]
968    /// # // FIXME(f16_f128): LLVM crashes on s390x, llvm/llvm-project#50374
969    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
970    ///
971    /// let bytes = 12.5f16.to_be_bytes();
972    /// assert_eq!(bytes, [0x4a, 0x40]);
973    /// # }
974    /// ```
975    #[inline]
976    #[unstable(feature = "f16", issue = "116909")]
977    #[must_use = "this returns the result of the operation, without modifying the original"]
978    pub const fn to_be_bytes(self) -> [u8; 2] {
979        self.to_bits().to_be_bytes()
980    }
981
982    /// Returns the memory representation of this floating point number as a byte array in
983    /// little-endian byte order.
984    ///
985    /// See [`from_bits`](Self::from_bits) for some discussion of the
986    /// portability of this operation (there are almost no issues).
987    ///
988    /// # Examples
989    ///
990    /// ```
991    /// #![feature(f16)]
992    /// # // FIXME(f16_f128): LLVM crashes on s390x, llvm/llvm-project#50374
993    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
994    ///
995    /// let bytes = 12.5f16.to_le_bytes();
996    /// assert_eq!(bytes, [0x40, 0x4a]);
997    /// # }
998    /// ```
999    #[inline]
1000    #[unstable(feature = "f16", issue = "116909")]
1001    #[must_use = "this returns the result of the operation, without modifying the original"]
1002    pub const fn to_le_bytes(self) -> [u8; 2] {
1003        self.to_bits().to_le_bytes()
1004    }
1005
1006    /// Returns the memory representation of this floating point number as a byte array in
1007    /// native byte order.
1008    ///
1009    /// As the target platform's native endianness is used, portable code
1010    /// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate, instead.
1011    ///
1012    /// [`to_be_bytes`]: f16::to_be_bytes
1013    /// [`to_le_bytes`]: f16::to_le_bytes
1014    ///
1015    /// See [`from_bits`](Self::from_bits) for some discussion of the
1016    /// portability of this operation (there are almost no issues).
1017    ///
1018    /// # Examples
1019    ///
1020    /// ```
1021    /// #![feature(f16)]
1022    /// # // FIXME(f16_f128): LLVM crashes on s390x, llvm/llvm-project#50374
1023    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1024    ///
1025    /// let bytes = 12.5f16.to_ne_bytes();
1026    /// assert_eq!(
1027    ///     bytes,
1028    ///     if cfg!(target_endian = "big") {
1029    ///         [0x4a, 0x40]
1030    ///     } else {
1031    ///         [0x40, 0x4a]
1032    ///     }
1033    /// );
1034    /// # }
1035    /// ```
1036    #[inline]
1037    #[unstable(feature = "f16", issue = "116909")]
1038    #[must_use = "this returns the result of the operation, without modifying the original"]
1039    pub const fn to_ne_bytes(self) -> [u8; 2] {
1040        self.to_bits().to_ne_bytes()
1041    }
1042
1043    /// Creates a floating point value from its representation as a byte array in big endian.
1044    ///
1045    /// See [`from_bits`](Self::from_bits) for some discussion of the
1046    /// portability of this operation (there are almost no issues).
1047    ///
1048    /// # Examples
1049    ///
1050    /// ```
1051    /// #![feature(f16)]
1052    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1053    ///
1054    /// let value = f16::from_be_bytes([0x4a, 0x40]);
1055    /// assert_eq!(value, 12.5);
1056    /// # }
1057    /// ```
1058    #[inline]
1059    #[must_use]
1060    #[unstable(feature = "f16", issue = "116909")]
1061    pub const fn from_be_bytes(bytes: [u8; 2]) -> Self {
1062        Self::from_bits(u16::from_be_bytes(bytes))
1063    }
1064
1065    /// Creates a floating point value from its representation as a byte array in little endian.
1066    ///
1067    /// See [`from_bits`](Self::from_bits) for some discussion of the
1068    /// portability of this operation (there are almost no issues).
1069    ///
1070    /// # Examples
1071    ///
1072    /// ```
1073    /// #![feature(f16)]
1074    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1075    ///
1076    /// let value = f16::from_le_bytes([0x40, 0x4a]);
1077    /// assert_eq!(value, 12.5);
1078    /// # }
1079    /// ```
1080    #[inline]
1081    #[must_use]
1082    #[unstable(feature = "f16", issue = "116909")]
1083    pub const fn from_le_bytes(bytes: [u8; 2]) -> Self {
1084        Self::from_bits(u16::from_le_bytes(bytes))
1085    }
1086
1087    /// Creates a floating point value from its representation as a byte array in native endian.
1088    ///
1089    /// As the target platform's native endianness is used, portable code
1090    /// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as
1091    /// appropriate instead.
1092    ///
1093    /// [`from_be_bytes`]: f16::from_be_bytes
1094    /// [`from_le_bytes`]: f16::from_le_bytes
1095    ///
1096    /// See [`from_bits`](Self::from_bits) for some discussion of the
1097    /// portability of this operation (there are almost no issues).
1098    ///
1099    /// # Examples
1100    ///
1101    /// ```
1102    /// #![feature(f16)]
1103    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1104    ///
1105    /// let value = f16::from_ne_bytes(if cfg!(target_endian = "big") {
1106    ///     [0x4a, 0x40]
1107    /// } else {
1108    ///     [0x40, 0x4a]
1109    /// });
1110    /// assert_eq!(value, 12.5);
1111    /// # }
1112    /// ```
1113    #[inline]
1114    #[must_use]
1115    #[unstable(feature = "f16", issue = "116909")]
1116    pub const fn from_ne_bytes(bytes: [u8; 2]) -> Self {
1117        Self::from_bits(u16::from_ne_bytes(bytes))
1118    }
1119
1120    /// Returns the ordering between `self` and `other`.
1121    ///
1122    /// Unlike the standard partial comparison between floating point numbers,
1123    /// this comparison always produces an ordering in accordance to
1124    /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision)
1125    /// floating point standard. The values are ordered in the following sequence:
1126    ///
1127    /// - negative quiet NaN
1128    /// - negative signaling NaN
1129    /// - negative infinity
1130    /// - negative numbers
1131    /// - negative subnormal numbers
1132    /// - negative zero
1133    /// - positive zero
1134    /// - positive subnormal numbers
1135    /// - positive numbers
1136    /// - positive infinity
1137    /// - positive signaling NaN
1138    /// - positive quiet NaN.
1139    ///
1140    /// The ordering established by this function does not always agree with the
1141    /// [`PartialOrd`] and [`PartialEq`] implementations of `f16`. For example,
1142    /// they consider negative and positive zero equal, while `total_cmp`
1143    /// doesn't.
1144    ///
1145    /// The interpretation of the signaling NaN bit follows the definition in
1146    /// the IEEE 754 standard, which may not match the interpretation by some of
1147    /// the older, non-conformant (e.g. MIPS) hardware implementations.
1148    ///
1149    /// # Example
1150    ///
1151    /// ```
1152    /// #![feature(f16)]
1153    /// # // FIXME(f16_f128): extendhfsf2, truncsfhf2, __gnu_h2f_ieee, __gnu_f2h_ieee missing for many platforms
1154    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1155    ///
1156    /// struct GoodBoy {
1157    ///     name: &'static str,
1158    ///     weight: f16,
1159    /// }
1160    ///
1161    /// let mut bois = vec![
1162    ///     GoodBoy { name: "Pucci", weight: 0.1 },
1163    ///     GoodBoy { name: "Woofer", weight: 99.0 },
1164    ///     GoodBoy { name: "Yapper", weight: 10.0 },
1165    ///     GoodBoy { name: "Chonk", weight: f16::INFINITY },
1166    ///     GoodBoy { name: "Abs. Unit", weight: f16::NAN },
1167    ///     GoodBoy { name: "Floaty", weight: -5.0 },
1168    /// ];
1169    ///
1170    /// bois.sort_by(|a, b| a.weight.total_cmp(&b.weight));
1171    ///
1172    /// // `f16::NAN` could be positive or negative, which will affect the sort order.
1173    /// if f16::NAN.is_sign_negative() {
1174    ///     bois.into_iter().map(|b| b.weight)
1175    ///         .zip([f16::NAN, -5.0, 0.1, 10.0, 99.0, f16::INFINITY].iter())
1176    ///         .for_each(|(a, b)| assert_eq!(a.to_bits(), b.to_bits()))
1177    /// } else {
1178    ///     bois.into_iter().map(|b| b.weight)
1179    ///         .zip([-5.0, 0.1, 10.0, 99.0, f16::INFINITY, f16::NAN].iter())
1180    ///         .for_each(|(a, b)| assert_eq!(a.to_bits(), b.to_bits()))
1181    /// }
1182    /// # }
1183    /// ```
1184    #[inline]
1185    #[must_use]
1186    #[unstable(feature = "f16", issue = "116909")]
1187    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1188    pub const fn total_cmp(&self, other: &Self) -> crate::cmp::Ordering {
1189        let mut left = self.to_bits() as i16;
1190        let mut right = other.to_bits() as i16;
1191
1192        // In case of negatives, flip all the bits except the sign
1193        // to achieve a similar layout as two's complement integers
1194        //
1195        // Why does this work? IEEE 754 floats consist of three fields:
1196        // Sign bit, exponent and mantissa. The set of exponent and mantissa
1197        // fields as a whole have the property that their bitwise order is
1198        // equal to the numeric magnitude where the magnitude is defined.
1199        // The magnitude is not normally defined on NaN values, but
1200        // IEEE 754 totalOrder defines the NaN values also to follow the
1201        // bitwise order. This leads to order explained in the doc comment.
1202        // However, the representation of magnitude is the same for negative
1203        // and positive numbers – only the sign bit is different.
1204        // To easily compare the floats as signed integers, we need to
1205        // flip the exponent and mantissa bits in case of negative numbers.
1206        // We effectively convert the numbers to "two's complement" form.
1207        //
1208        // To do the flipping, we construct a mask and XOR against it.
1209        // We branchlessly calculate an "all-ones except for the sign bit"
1210        // mask from negative-signed values: right shifting sign-extends
1211        // the integer, so we "fill" the mask with sign bits, and then
1212        // convert to unsigned to push one more zero bit.
1213        // On positive values, the mask is all zeros, so it's a no-op.
1214        left ^= (((left >> 15) as u16) >> 1) as i16;
1215        right ^= (((right >> 15) as u16) >> 1) as i16;
1216
1217        left.cmp(&right)
1218    }
1219
1220    /// Restrict a value to a certain interval unless it is NaN.
1221    ///
1222    /// Returns `max` if `self` is greater than `max`, and `min` if `self` is
1223    /// less than `min`. Otherwise this returns `self`.
1224    ///
1225    /// Note that this function returns NaN if the initial value was NaN as
1226    /// well. If the result is zero and among the three inputs `self`, `min`, and `max` there are
1227    /// zeros with different sign, either `0.0` or `-0.0` is returned non-deterministically.
1228    ///
1229    /// # Panics
1230    ///
1231    /// Panics if `min > max`, `min` is NaN, or `max` is NaN.
1232    ///
1233    /// # Examples
1234    ///
1235    /// ```
1236    /// #![feature(f16)]
1237    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1238    ///
1239    /// assert!((-3.0f16).clamp(-2.0, 1.0) == -2.0);
1240    /// assert!((0.0f16).clamp(-2.0, 1.0) == 0.0);
1241    /// assert!((2.0f16).clamp(-2.0, 1.0) == 1.0);
1242    /// assert!((f16::NAN).clamp(-2.0, 1.0).is_nan());
1243    ///
1244    /// // These always returns zero, but the sign (which is ignored by `==`) is non-deterministic.
1245    /// assert!((0.0f16).clamp(-0.0, -0.0) == 0.0);
1246    /// assert!((1.0f16).clamp(-0.0, 0.0) == 0.0);
1247    /// // This is definitely a negative zero.
1248    /// assert!((-1.0f16).clamp(-0.0, 1.0).is_sign_negative());
1249    /// # }
1250    /// ```
1251    #[inline]
1252    #[unstable(feature = "f16", issue = "116909")]
1253    #[must_use = "method returns a new number and does not mutate the original value"]
1254    pub const fn clamp(mut self, min: f16, max: f16) -> f16 {
1255        const_assert!(
1256            min <= max,
1257            "min > max, or either was NaN",
1258            "min > max, or either was NaN. min = {min:?}, max = {max:?}",
1259            min: f16,
1260            max: f16,
1261        );
1262
1263        if self < min {
1264            self = min;
1265        }
1266        if self > max {
1267            self = max;
1268        }
1269        self
1270    }
1271
1272    /// Clamps this number to a symmetric range centered around zero.
1273    ///
1274    /// The method clamps the number's magnitude (absolute value) to be at most `limit`.
1275    ///
1276    /// This is functionally equivalent to `self.clamp(-limit, limit)`, but is more
1277    /// explicit about the intent.
1278    ///
1279    /// # Panics
1280    ///
1281    /// Panics if `limit` is negative or NaN, as this indicates a logic error.
1282    ///
1283    /// # Examples
1284    ///
1285    /// ```
1286    /// #![feature(f16)]
1287    /// #![feature(clamp_magnitude)]
1288    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1289    /// assert_eq!(5.0f16.clamp_magnitude(3.0), 3.0);
1290    /// assert_eq!((-5.0f16).clamp_magnitude(3.0), -3.0);
1291    /// assert_eq!(2.0f16.clamp_magnitude(3.0), 2.0);
1292    /// assert_eq!((-2.0f16).clamp_magnitude(3.0), -2.0);
1293    /// # }
1294    /// ```
1295    #[inline]
1296    #[unstable(feature = "clamp_magnitude", issue = "148519")]
1297    #[must_use = "this returns the clamped value and does not modify the original"]
1298    pub fn clamp_magnitude(self, limit: f16) -> f16 {
1299        assert!(limit >= 0.0, "limit must be non-negative");
1300        let limit = limit.abs(); // Canonicalises -0.0 to 0.0
1301        self.clamp(-limit, limit)
1302    }
1303
1304    /// Computes the absolute value of `self`.
1305    ///
1306    /// This function always returns the precise result.
1307    ///
1308    /// # Examples
1309    ///
1310    /// ```
1311    /// #![feature(f16)]
1312    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1313    ///
1314    /// let x = 3.5_f16;
1315    /// let y = -3.5_f16;
1316    ///
1317    /// assert_eq!(x.abs(), x);
1318    /// assert_eq!(y.abs(), -y);
1319    ///
1320    /// assert!(f16::NAN.abs().is_nan());
1321    /// # }
1322    /// ```
1323    #[inline]
1324    #[unstable(feature = "f16", issue = "116909")]
1325    #[rustc_const_unstable(feature = "f16", issue = "116909")]
1326    #[must_use = "method returns a new number and does not mutate the original value"]
1327    pub const fn abs(self) -> Self {
1328        // FIXME(f16_f128): replace with `intrinsics::fabsf16` when available
1329        Self::from_bits(self.to_bits() & !(1 << 15))
1330    }
1331
1332    /// Returns a number that represents the sign of `self`.
1333    ///
1334    /// - `1.0` if the number is positive, `+0.0` or `INFINITY`
1335    /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
1336    /// - NaN if the number is NaN
1337    ///
1338    /// # Examples
1339    ///
1340    /// ```
1341    /// #![feature(f16)]
1342    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1343    ///
1344    /// let f = 3.5_f16;
1345    ///
1346    /// assert_eq!(f.signum(), 1.0);
1347    /// assert_eq!(f16::NEG_INFINITY.signum(), -1.0);
1348    ///
1349    /// assert!(f16::NAN.signum().is_nan());
1350    /// # }
1351    /// ```
1352    #[inline]
1353    #[unstable(feature = "f16", issue = "116909")]
1354    #[rustc_const_unstable(feature = "f16", issue = "116909")]
1355    #[must_use = "method returns a new number and does not mutate the original value"]
1356    pub const fn signum(self) -> f16 {
1357        if self.is_nan() { Self::NAN } else { 1.0_f16.copysign(self) }
1358    }
1359
1360    /// Returns a number composed of the magnitude of `self` and the sign of
1361    /// `sign`.
1362    ///
1363    /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`.
1364    /// If `self` is a NaN, then a NaN with the same payload as `self` and the sign bit of `sign` is
1365    /// returned.
1366    ///
1367    /// If `sign` is a NaN, then this operation will still carry over its sign into the result. Note
1368    /// that IEEE 754 doesn't assign any meaning to the sign bit in case of a NaN, and as Rust
1369    /// doesn't guarantee that the bit pattern of NaNs are conserved over arithmetic operations, the
1370    /// result of `copysign` with `sign` being a NaN might produce an unexpected or non-portable
1371    /// result. See the [specification of NaN bit patterns](primitive@f32#nan-bit-patterns) for more
1372    /// info.
1373    ///
1374    /// # Examples
1375    ///
1376    /// ```
1377    /// #![feature(f16)]
1378    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1379    ///
1380    /// let f = 3.5_f16;
1381    ///
1382    /// assert_eq!(f.copysign(0.42), 3.5_f16);
1383    /// assert_eq!(f.copysign(-0.42), -3.5_f16);
1384    /// assert_eq!((-f).copysign(0.42), 3.5_f16);
1385    /// assert_eq!((-f).copysign(-0.42), -3.5_f16);
1386    ///
1387    /// assert!(f16::NAN.copysign(1.0).is_nan());
1388    /// # }
1389    /// ```
1390    #[inline]
1391    #[unstable(feature = "f16", issue = "116909")]
1392    #[rustc_const_unstable(feature = "f16", issue = "116909")]
1393    #[must_use = "method returns a new number and does not mutate the original value"]
1394    pub const fn copysign(self, sign: f16) -> f16 {
1395        intrinsics::copysignf16(self, sign)
1396    }
1397
1398    /// Float addition that allows optimizations based on algebraic rules.
1399    ///
1400    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1401    #[must_use = "method returns a new number and does not mutate the original value"]
1402    #[unstable(feature = "float_algebraic", issue = "136469")]
1403    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1404    #[inline]
1405    pub const fn algebraic_add(self, rhs: f16) -> f16 {
1406        intrinsics::fadd_algebraic(self, rhs)
1407    }
1408
1409    /// Float subtraction that allows optimizations based on algebraic rules.
1410    ///
1411    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1412    #[must_use = "method returns a new number and does not mutate the original value"]
1413    #[unstable(feature = "float_algebraic", issue = "136469")]
1414    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1415    #[inline]
1416    pub const fn algebraic_sub(self, rhs: f16) -> f16 {
1417        intrinsics::fsub_algebraic(self, rhs)
1418    }
1419
1420    /// Float multiplication that allows optimizations based on algebraic rules.
1421    ///
1422    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1423    #[must_use = "method returns a new number and does not mutate the original value"]
1424    #[unstable(feature = "float_algebraic", issue = "136469")]
1425    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1426    #[inline]
1427    pub const fn algebraic_mul(self, rhs: f16) -> f16 {
1428        intrinsics::fmul_algebraic(self, rhs)
1429    }
1430
1431    /// Float division that allows optimizations based on algebraic rules.
1432    ///
1433    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1434    #[must_use = "method returns a new number and does not mutate the original value"]
1435    #[unstable(feature = "float_algebraic", issue = "136469")]
1436    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1437    #[inline]
1438    pub const fn algebraic_div(self, rhs: f16) -> f16 {
1439        intrinsics::fdiv_algebraic(self, rhs)
1440    }
1441
1442    /// Float remainder that allows optimizations based on algebraic rules.
1443    ///
1444    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1445    #[must_use = "method returns a new number and does not mutate the original value"]
1446    #[unstable(feature = "float_algebraic", issue = "136469")]
1447    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1448    #[inline]
1449    pub const fn algebraic_rem(self, rhs: f16) -> f16 {
1450        intrinsics::frem_algebraic(self, rhs)
1451    }
1452}
1453
1454// Functions in this module fall into `core_float_math`
1455// #[unstable(feature = "core_float_math", issue = "137578")]
1456#[cfg(not(test))]
1457#[doc(test(attr(feature(cfg_target_has_reliable_f16_f128), expect(internal_features))))]
1458impl f16 {
1459    /// Returns the largest integer less than or equal to `self`.
1460    ///
1461    /// This function always returns the precise result.
1462    ///
1463    /// # Examples
1464    ///
1465    /// ```
1466    /// #![feature(f16)]
1467    /// # #[cfg(not(miri))]
1468    /// # #[cfg(target_has_reliable_f16_math)] {
1469    ///
1470    /// let f = 3.7_f16;
1471    /// let g = 3.0_f16;
1472    /// let h = -3.7_f16;
1473    ///
1474    /// assert_eq!(f.floor(), 3.0);
1475    /// assert_eq!(g.floor(), 3.0);
1476    /// assert_eq!(h.floor(), -4.0);
1477    /// # }
1478    /// ```
1479    #[inline]
1480    #[rustc_allow_incoherent_impl]
1481    #[unstable(feature = "f16", issue = "116909")]
1482    #[rustc_const_unstable(feature = "f16", issue = "116909")]
1483    #[must_use = "method returns a new number and does not mutate the original value"]
1484    pub const fn floor(self) -> f16 {
1485        intrinsics::floorf16(self)
1486    }
1487
1488    /// Returns the smallest integer greater than or equal to `self`.
1489    ///
1490    /// This function always returns the precise result.
1491    ///
1492    /// # Examples
1493    ///
1494    /// ```
1495    /// #![feature(f16)]
1496    /// # #[cfg(not(miri))]
1497    /// # #[cfg(target_has_reliable_f16_math)] {
1498    ///
1499    /// let f = 3.01_f16;
1500    /// let g = 4.0_f16;
1501    ///
1502    /// assert_eq!(f.ceil(), 4.0);
1503    /// assert_eq!(g.ceil(), 4.0);
1504    /// # }
1505    /// ```
1506    #[inline]
1507    #[doc(alias = "ceiling")]
1508    #[rustc_allow_incoherent_impl]
1509    #[unstable(feature = "f16", issue = "116909")]
1510    #[rustc_const_unstable(feature = "f16", issue = "116909")]
1511    #[must_use = "method returns a new number and does not mutate the original value"]
1512    pub const fn ceil(self) -> f16 {
1513        intrinsics::ceilf16(self)
1514    }
1515
1516    /// Returns the nearest integer to `self`. If a value is half-way between two
1517    /// integers, round away from `0.0`.
1518    ///
1519    /// This function always returns the precise result.
1520    ///
1521    /// # Examples
1522    ///
1523    /// ```
1524    /// #![feature(f16)]
1525    /// # #[cfg(not(miri))]
1526    /// # #[cfg(target_has_reliable_f16_math)] {
1527    ///
1528    /// let f = 3.3_f16;
1529    /// let g = -3.3_f16;
1530    /// let h = -3.7_f16;
1531    /// let i = 3.5_f16;
1532    /// let j = 4.5_f16;
1533    ///
1534    /// assert_eq!(f.round(), 3.0);
1535    /// assert_eq!(g.round(), -3.0);
1536    /// assert_eq!(h.round(), -4.0);
1537    /// assert_eq!(i.round(), 4.0);
1538    /// assert_eq!(j.round(), 5.0);
1539    /// # }
1540    /// ```
1541    #[inline]
1542    #[rustc_allow_incoherent_impl]
1543    #[unstable(feature = "f16", issue = "116909")]
1544    #[rustc_const_unstable(feature = "f16", issue = "116909")]
1545    #[must_use = "method returns a new number and does not mutate the original value"]
1546    pub const fn round(self) -> f16 {
1547        intrinsics::roundf16(self)
1548    }
1549
1550    /// Returns the nearest integer to a number. Rounds half-way cases to the number
1551    /// with an even least significant digit.
1552    ///
1553    /// This function always returns the precise result.
1554    ///
1555    /// # Examples
1556    ///
1557    /// ```
1558    /// #![feature(f16)]
1559    /// # #[cfg(not(miri))]
1560    /// # #[cfg(target_has_reliable_f16_math)] {
1561    ///
1562    /// let f = 3.3_f16;
1563    /// let g = -3.3_f16;
1564    /// let h = 3.5_f16;
1565    /// let i = 4.5_f16;
1566    ///
1567    /// assert_eq!(f.round_ties_even(), 3.0);
1568    /// assert_eq!(g.round_ties_even(), -3.0);
1569    /// assert_eq!(h.round_ties_even(), 4.0);
1570    /// assert_eq!(i.round_ties_even(), 4.0);
1571    /// # }
1572    /// ```
1573    #[inline]
1574    #[rustc_allow_incoherent_impl]
1575    #[unstable(feature = "f16", issue = "116909")]
1576    #[rustc_const_unstable(feature = "f16", issue = "116909")]
1577    #[must_use = "method returns a new number and does not mutate the original value"]
1578    pub const fn round_ties_even(self) -> f16 {
1579        intrinsics::round_ties_even_f16(self)
1580    }
1581
1582    /// Returns the integer part of `self`.
1583    /// This means that non-integer numbers are always truncated towards zero.
1584    ///
1585    /// This function always returns the precise result.
1586    ///
1587    /// # Examples
1588    ///
1589    /// ```
1590    /// #![feature(f16)]
1591    /// # #[cfg(not(miri))]
1592    /// # #[cfg(target_has_reliable_f16_math)] {
1593    ///
1594    /// let f = 3.7_f16;
1595    /// let g = 3.0_f16;
1596    /// let h = -3.7_f16;
1597    ///
1598    /// assert_eq!(f.trunc(), 3.0);
1599    /// assert_eq!(g.trunc(), 3.0);
1600    /// assert_eq!(h.trunc(), -3.0);
1601    /// # }
1602    /// ```
1603    #[inline]
1604    #[doc(alias = "truncate")]
1605    #[rustc_allow_incoherent_impl]
1606    #[unstable(feature = "f16", issue = "116909")]
1607    #[rustc_const_unstable(feature = "f16", issue = "116909")]
1608    #[must_use = "method returns a new number and does not mutate the original value"]
1609    pub const fn trunc(self) -> f16 {
1610        intrinsics::truncf16(self)
1611    }
1612
1613    /// Returns the fractional part of `self`.
1614    ///
1615    /// This function always returns the precise result.
1616    ///
1617    /// # Examples
1618    ///
1619    /// ```
1620    /// #![feature(f16)]
1621    /// # #[cfg(not(miri))]
1622    /// # #[cfg(target_has_reliable_f16_math)] {
1623    ///
1624    /// let x = 3.6_f16;
1625    /// let y = -3.6_f16;
1626    /// let abs_difference_x = (x.fract() - 0.6).abs();
1627    /// let abs_difference_y = (y.fract() - (-0.6)).abs();
1628    ///
1629    /// assert!(abs_difference_x <= f16::EPSILON);
1630    /// assert!(abs_difference_y <= f16::EPSILON);
1631    /// # }
1632    /// ```
1633    #[inline]
1634    #[rustc_allow_incoherent_impl]
1635    #[unstable(feature = "f16", issue = "116909")]
1636    #[rustc_const_unstable(feature = "f16", issue = "116909")]
1637    #[must_use = "method returns a new number and does not mutate the original value"]
1638    pub const fn fract(self) -> f16 {
1639        self - self.trunc()
1640    }
1641
1642    /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
1643    /// error, yielding a more accurate result than an unfused multiply-add.
1644    ///
1645    /// Using `mul_add` *may* be more performant than an unfused multiply-add if
1646    /// the target architecture has a dedicated `fma` CPU instruction. However,
1647    /// this is not always true, and will be heavily dependant on designing
1648    /// algorithms with specific target hardware in mind.
1649    ///
1650    /// # Precision
1651    ///
1652    /// The result of this operation is guaranteed to be the rounded
1653    /// infinite-precision result. It is specified by IEEE 754 as
1654    /// `fusedMultiplyAdd` and guaranteed not to change.
1655    ///
1656    /// # Examples
1657    ///
1658    /// ```
1659    /// #![feature(f16)]
1660    /// # #[cfg(not(miri))]
1661    /// # #[cfg(target_has_reliable_f16_math)] {
1662    ///
1663    /// let m = 10.0_f16;
1664    /// let x = 4.0_f16;
1665    /// let b = 60.0_f16;
1666    ///
1667    /// assert_eq!(m.mul_add(x, b), 100.0);
1668    /// assert_eq!(m * x + b, 100.0);
1669    ///
1670    /// let one_plus_eps = 1.0_f16 + f16::EPSILON;
1671    /// let one_minus_eps = 1.0_f16 - f16::EPSILON;
1672    /// let minus_one = -1.0_f16;
1673    ///
1674    /// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps.
1675    /// assert_eq!(one_plus_eps.mul_add(one_minus_eps, minus_one), -f16::EPSILON * f16::EPSILON);
1676    /// // Different rounding with the non-fused multiply and add.
1677    /// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0);
1678    /// # }
1679    /// ```
1680    #[inline]
1681    #[rustc_allow_incoherent_impl]
1682    #[unstable(feature = "f16", issue = "116909")]
1683    #[doc(alias = "fmaf16", alias = "fusedMultiplyAdd")]
1684    #[must_use = "method returns a new number and does not mutate the original value"]
1685    #[rustc_const_unstable(feature = "const_mul_add", issue = "146724")]
1686    pub const fn mul_add(self, a: f16, b: f16) -> f16 {
1687        intrinsics::fmaf16(self, a, b)
1688    }
1689
1690    /// Calculates Euclidean division, the matching method for `rem_euclid`.
1691    ///
1692    /// This computes the integer `n` such that
1693    /// `self = n * rhs + self.rem_euclid(rhs)`.
1694    /// In other words, the result is `self / rhs` rounded to the integer `n`
1695    /// such that `self >= n * rhs`.
1696    ///
1697    /// # Precision
1698    ///
1699    /// The result of this operation is guaranteed to be the rounded
1700    /// infinite-precision result.
1701    ///
1702    /// # Examples
1703    ///
1704    /// ```
1705    /// #![feature(f16)]
1706    /// # #[cfg(not(miri))]
1707    /// # #[cfg(target_has_reliable_f16_math)] {
1708    ///
1709    /// let a: f16 = 7.0;
1710    /// let b = 4.0;
1711    /// assert_eq!(a.div_euclid(b), 1.0); // 7.0 > 4.0 * 1.0
1712    /// assert_eq!((-a).div_euclid(b), -2.0); // -7.0 >= 4.0 * -2.0
1713    /// assert_eq!(a.div_euclid(-b), -1.0); // 7.0 >= -4.0 * -1.0
1714    /// assert_eq!((-a).div_euclid(-b), 2.0); // -7.0 >= -4.0 * 2.0
1715    /// # }
1716    /// ```
1717    #[inline]
1718    #[rustc_allow_incoherent_impl]
1719    #[unstable(feature = "f16", issue = "116909")]
1720    #[must_use = "method returns a new number and does not mutate the original value"]
1721    pub fn div_euclid(self, rhs: f16) -> f16 {
1722        let q = (self / rhs).trunc();
1723        if self % rhs < 0.0 {
1724            return if rhs > 0.0 { q - 1.0 } else { q + 1.0 };
1725        }
1726        q
1727    }
1728
1729    /// Calculates the least nonnegative remainder of `self (mod rhs)`.
1730    ///
1731    /// In particular, the return value `r` satisfies `0.0 <= r < rhs.abs()` in
1732    /// most cases. However, due to a floating point round-off error it can
1733    /// result in `r == rhs.abs()`, violating the mathematical definition, if
1734    /// `self` is much smaller than `rhs.abs()` in magnitude and `self < 0.0`.
1735    /// This result is not an element of the function's codomain, but it is the
1736    /// closest floating point number in the real numbers and thus fulfills the
1737    /// property `self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)`
1738    /// approximately.
1739    ///
1740    /// # Precision
1741    ///
1742    /// The result of this operation is guaranteed to be the rounded
1743    /// infinite-precision result.
1744    ///
1745    /// # Examples
1746    ///
1747    /// ```
1748    /// #![feature(f16)]
1749    /// # #[cfg(not(miri))]
1750    /// # #[cfg(target_has_reliable_f16_math)] {
1751    ///
1752    /// let a: f16 = 7.0;
1753    /// let b = 4.0;
1754    /// assert_eq!(a.rem_euclid(b), 3.0);
1755    /// assert_eq!((-a).rem_euclid(b), 1.0);
1756    /// assert_eq!(a.rem_euclid(-b), 3.0);
1757    /// assert_eq!((-a).rem_euclid(-b), 1.0);
1758    /// // limitation due to round-off error
1759    /// assert!((-f16::EPSILON).rem_euclid(3.0) != 0.0);
1760    /// # }
1761    /// ```
1762    #[inline]
1763    #[rustc_allow_incoherent_impl]
1764    #[doc(alias = "modulo", alias = "mod")]
1765    #[unstable(feature = "f16", issue = "116909")]
1766    #[must_use = "method returns a new number and does not mutate the original value"]
1767    pub fn rem_euclid(self, rhs: f16) -> f16 {
1768        let r = self % rhs;
1769        if r < 0.0 { r + rhs.abs() } else { r }
1770    }
1771
1772    /// Raises a number to an integer power.
1773    ///
1774    /// Using this function is generally faster than using `powf`.
1775    /// It might have a different sequence of rounding operations than `powf`,
1776    /// so the results are not guaranteed to agree.
1777    ///
1778    /// Note that this function is special in that it can return non-NaN results for NaN inputs. For
1779    /// example, `f16::powi(f16::NAN, 0)` returns `1.0`. However, if an input is a *signaling*
1780    /// NaN, then the result is non-deterministically either a NaN or the result that the
1781    /// corresponding quiet NaN would produce.
1782    ///
1783    /// # Unspecified precision
1784    ///
1785    /// The precision of this function is non-deterministic. This means it varies by platform,
1786    /// Rust version, and can even differ within the same execution from one invocation to the next.
1787    ///
1788    /// # Examples
1789    ///
1790    /// ```
1791    /// #![feature(f16)]
1792    /// # #[cfg(not(miri))]
1793    /// # #[cfg(target_has_reliable_f16_math)] {
1794    ///
1795    /// let x = 2.0_f16;
1796    /// let abs_difference = (x.powi(2) - (x * x)).abs();
1797    /// assert!(abs_difference <= f16::EPSILON);
1798    ///
1799    /// assert_eq!(f16::powi(f16::NAN, 0), 1.0);
1800    /// assert_eq!(f16::powi(0.0, 0), 1.0);
1801    /// # }
1802    /// ```
1803    #[inline]
1804    #[rustc_allow_incoherent_impl]
1805    #[unstable(feature = "f16", issue = "116909")]
1806    #[must_use = "method returns a new number and does not mutate the original value"]
1807    pub fn powi(self, n: i32) -> f16 {
1808        intrinsics::powif16(self, n)
1809    }
1810
1811    /// Returns the square root of a number.
1812    ///
1813    /// Returns NaN if `self` is a negative number other than `-0.0`.
1814    ///
1815    /// # Precision
1816    ///
1817    /// The result of this operation is guaranteed to be the rounded
1818    /// infinite-precision result. It is specified by IEEE 754 as `squareRoot`
1819    /// and guaranteed not to change.
1820    ///
1821    /// # Examples
1822    ///
1823    /// ```
1824    /// #![feature(f16)]
1825    /// # #[cfg(not(miri))]
1826    /// # #[cfg(target_has_reliable_f16_math)] {
1827    ///
1828    /// let positive = 4.0_f16;
1829    /// let negative = -4.0_f16;
1830    /// let negative_zero = -0.0_f16;
1831    ///
1832    /// assert_eq!(positive.sqrt(), 2.0);
1833    /// assert!(negative.sqrt().is_nan());
1834    /// assert!(negative_zero.sqrt() == negative_zero);
1835    /// # }
1836    /// ```
1837    #[inline]
1838    #[doc(alias = "squareRoot")]
1839    #[rustc_allow_incoherent_impl]
1840    #[unstable(feature = "f16", issue = "116909")]
1841    #[must_use = "method returns a new number and does not mutate the original value"]
1842    pub fn sqrt(self) -> f16 {
1843        intrinsics::sqrtf16(self)
1844    }
1845
1846    /// Returns the cube root of a number.
1847    ///
1848    /// # Unspecified precision
1849    ///
1850    /// The precision of this function is non-deterministic. This means it varies by platform,
1851    /// Rust version, and can even differ within the same execution from one invocation to the next.
1852    ///
1853    /// This function currently corresponds to the `cbrtf` from libc on Unix
1854    /// and Windows. Note that this might change in the future.
1855    ///
1856    /// # Examples
1857    ///
1858    /// ```
1859    /// #![feature(f16)]
1860    /// # #[cfg(not(miri))]
1861    /// # #[cfg(target_has_reliable_f16_math)] {
1862    ///
1863    /// let x = 8.0f16;
1864    ///
1865    /// // x^(1/3) - 2 == 0
1866    /// let abs_difference = (x.cbrt() - 2.0).abs();
1867    ///
1868    /// assert!(abs_difference <= f16::EPSILON);
1869    /// # }
1870    /// ```
1871    #[inline]
1872    #[rustc_allow_incoherent_impl]
1873    #[unstable(feature = "f16", issue = "116909")]
1874    #[must_use = "method returns a new number and does not mutate the original value"]
1875    pub fn cbrt(self) -> f16 {
1876        libm::cbrtf(self as f32) as f16
1877    }
1878}