core/num/
f16.rs

1//! Constants for the `f16` half-precision floating point type.
2//!
3//! *[See also the `f16` primitive type][f16].*
4//!
5//! Mathematically significant numbers are provided in the `consts` sub-module.
6//!
7//! For the constants defined directly in this module
8//! (as distinct from those defined in the `consts` sub-module),
9//! new code should instead use the associated constants
10//! defined directly on the `f16` type.
11
12#![unstable(feature = "f16", issue = "116909")]
13
14use crate::convert::FloatToInt;
15use crate::num::FpCategory;
16#[cfg(not(test))]
17use crate::num::libm;
18use crate::panic::const_assert;
19use crate::{intrinsics, mem};
20
21/// Basic mathematical constants.
22#[unstable(feature = "f16", issue = "116909")]
23#[rustc_diagnostic_item = "f16_consts_mod"]
24pub mod consts {
25    // FIXME: replace with mathematical constants from cmath.
26
27    /// Archimedes' constant (π)
28    #[unstable(feature = "f16", issue = "116909")]
29    pub const PI: f16 = 3.14159265358979323846264338327950288_f16;
30
31    /// The full circle constant (τ)
32    ///
33    /// Equal to 2π.
34    #[unstable(feature = "f16", issue = "116909")]
35    pub const TAU: f16 = 6.28318530717958647692528676655900577_f16;
36
37    /// The golden ratio (φ)
38    #[unstable(feature = "f16", issue = "116909")]
39    pub const GOLDEN_RATIO: f16 = 1.618033988749894848204586834365638118_f16;
40
41    /// The Euler-Mascheroni constant (γ)
42    #[unstable(feature = "f16", issue = "116909")]
43    pub const EULER_GAMMA: f16 = 0.577215664901532860606512090082402431_f16;
44
45    /// π/2
46    #[unstable(feature = "f16", issue = "116909")]
47    pub const FRAC_PI_2: f16 = 1.57079632679489661923132169163975144_f16;
48
49    /// π/3
50    #[unstable(feature = "f16", issue = "116909")]
51    pub const FRAC_PI_3: f16 = 1.04719755119659774615421446109316763_f16;
52
53    /// π/4
54    #[unstable(feature = "f16", issue = "116909")]
55    pub const FRAC_PI_4: f16 = 0.785398163397448309615660845819875721_f16;
56
57    /// π/6
58    #[unstable(feature = "f16", issue = "116909")]
59    pub const FRAC_PI_6: f16 = 0.52359877559829887307710723054658381_f16;
60
61    /// π/8
62    #[unstable(feature = "f16", issue = "116909")]
63    pub const FRAC_PI_8: f16 = 0.39269908169872415480783042290993786_f16;
64
65    /// 1/π
66    #[unstable(feature = "f16", issue = "116909")]
67    pub const FRAC_1_PI: f16 = 0.318309886183790671537767526745028724_f16;
68
69    /// 1/sqrt(π)
70    #[unstable(feature = "f16", issue = "116909")]
71    // Also, #[unstable(feature = "more_float_constants", issue = "146939")]
72    pub const FRAC_1_SQRT_PI: f16 = 0.564189583547756286948079451560772586_f16;
73
74    /// 1/sqrt(2π)
75    #[doc(alias = "FRAC_1_SQRT_TAU")]
76    #[unstable(feature = "f16", issue = "116909")]
77    // Also, #[unstable(feature = "more_float_constants", issue = "146939")]
78    pub const FRAC_1_SQRT_2PI: f16 = 0.398942280401432677939946059934381868_f16;
79
80    /// 2/π
81    #[unstable(feature = "f16", issue = "116909")]
82    pub const FRAC_2_PI: f16 = 0.636619772367581343075535053490057448_f16;
83
84    /// 2/sqrt(π)
85    #[unstable(feature = "f16", issue = "116909")]
86    pub const FRAC_2_SQRT_PI: f16 = 1.12837916709551257389615890312154517_f16;
87
88    /// sqrt(2)
89    #[unstable(feature = "f16", issue = "116909")]
90    pub const SQRT_2: f16 = 1.41421356237309504880168872420969808_f16;
91
92    /// 1/sqrt(2)
93    #[unstable(feature = "f16", issue = "116909")]
94    pub const FRAC_1_SQRT_2: f16 = 0.707106781186547524400844362104849039_f16;
95
96    /// sqrt(3)
97    #[unstable(feature = "f16", issue = "116909")]
98    // Also, #[unstable(feature = "more_float_constants", issue = "146939")]
99    pub const SQRT_3: f16 = 1.732050807568877293527446341505872367_f16;
100
101    /// 1/sqrt(3)
102    #[unstable(feature = "f16", issue = "116909")]
103    // Also, #[unstable(feature = "more_float_constants", issue = "146939")]
104    pub const FRAC_1_SQRT_3: f16 = 0.577350269189625764509148780501957456_f16;
105
106    /// Euler's number (e)
107    #[unstable(feature = "f16", issue = "116909")]
108    pub const E: f16 = 2.71828182845904523536028747135266250_f16;
109
110    /// log<sub>2</sub>(10)
111    #[unstable(feature = "f16", issue = "116909")]
112    pub const LOG2_10: f16 = 3.32192809488736234787031942948939018_f16;
113
114    /// log<sub>2</sub>(e)
115    #[unstable(feature = "f16", issue = "116909")]
116    pub const LOG2_E: f16 = 1.44269504088896340735992468100189214_f16;
117
118    /// log<sub>10</sub>(2)
119    #[unstable(feature = "f16", issue = "116909")]
120    pub const LOG10_2: f16 = 0.301029995663981195213738894724493027_f16;
121
122    /// log<sub>10</sub>(e)
123    #[unstable(feature = "f16", issue = "116909")]
124    pub const LOG10_E: f16 = 0.434294481903251827651128918916605082_f16;
125
126    /// ln(2)
127    #[unstable(feature = "f16", issue = "116909")]
128    pub const LN_2: f16 = 0.693147180559945309417232121458176568_f16;
129
130    /// ln(10)
131    #[unstable(feature = "f16", issue = "116909")]
132    pub const LN_10: f16 = 2.30258509299404568401799145468436421_f16;
133}
134
135#[doc(test(attr(feature(cfg_target_has_reliable_f16_f128), allow(internal_features))))]
136impl f16 {
137    // FIXME(f16_f128): almost all methods in this `impl` are missing examples and a const
138    // implementation. Add these once we can run code on all platforms and have f16/f128 in CTFE.
139
140    /// The radix or base of the internal representation of `f16`.
141    #[unstable(feature = "f16", issue = "116909")]
142    pub const RADIX: u32 = 2;
143
144    /// Number of significant digits in base 2.
145    ///
146    /// Note that the size of the mantissa in the bitwise representation is one
147    /// smaller than this since the leading 1 is not stored explicitly.
148    #[unstable(feature = "f16", issue = "116909")]
149    pub const MANTISSA_DIGITS: u32 = 11;
150
151    /// Approximate number of significant digits in base 10.
152    ///
153    /// This is the maximum <i>x</i> such that any decimal number with <i>x</i>
154    /// significant digits can be converted to `f16` and back without loss.
155    ///
156    /// Equal to floor(log<sub>10</sub>&nbsp;2<sup>[`MANTISSA_DIGITS`]&nbsp;&minus;&nbsp;1</sup>).
157    ///
158    /// [`MANTISSA_DIGITS`]: f16::MANTISSA_DIGITS
159    #[unstable(feature = "f16", issue = "116909")]
160    pub const DIGITS: u32 = 3;
161
162    /// [Machine epsilon] value for `f16`.
163    ///
164    /// This is the difference between `1.0` and the next larger representable number.
165    ///
166    /// Equal to 2<sup>1&nbsp;&minus;&nbsp;[`MANTISSA_DIGITS`]</sup>.
167    ///
168    /// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
169    /// [`MANTISSA_DIGITS`]: f16::MANTISSA_DIGITS
170    #[unstable(feature = "f16", issue = "116909")]
171    #[rustc_diagnostic_item = "f16_epsilon"]
172    pub const EPSILON: f16 = 9.7656e-4_f16;
173
174    /// Smallest finite `f16` value.
175    ///
176    /// Equal to &minus;[`MAX`].
177    ///
178    /// [`MAX`]: f16::MAX
179    #[unstable(feature = "f16", issue = "116909")]
180    pub const MIN: f16 = -6.5504e+4_f16;
181    /// Smallest positive normal `f16` value.
182    ///
183    /// Equal to 2<sup>[`MIN_EXP`]&nbsp;&minus;&nbsp;1</sup>.
184    ///
185    /// [`MIN_EXP`]: f16::MIN_EXP
186    #[unstable(feature = "f16", issue = "116909")]
187    pub const MIN_POSITIVE: f16 = 6.1035e-5_f16;
188    /// Largest finite `f16` value.
189    ///
190    /// Equal to
191    /// (1&nbsp;&minus;&nbsp;2<sup>&minus;[`MANTISSA_DIGITS`]</sup>)&nbsp;2<sup>[`MAX_EXP`]</sup>.
192    ///
193    /// [`MANTISSA_DIGITS`]: f16::MANTISSA_DIGITS
194    /// [`MAX_EXP`]: f16::MAX_EXP
195    #[unstable(feature = "f16", issue = "116909")]
196    pub const MAX: f16 = 6.5504e+4_f16;
197
198    /// One greater than the minimum possible *normal* power of 2 exponent
199    /// for a significand bounded by 1 ≤ x < 2 (i.e. the IEEE definition).
200    ///
201    /// This corresponds to the exact minimum possible *normal* power of 2 exponent
202    /// for a significand bounded by 0.5 ≤ x < 1 (i.e. the C definition).
203    /// In other words, all normal numbers representable by this type are
204    /// greater than or equal to 0.5&nbsp;×&nbsp;2<sup><i>MIN_EXP</i></sup>.
205    #[unstable(feature = "f16", issue = "116909")]
206    pub const MIN_EXP: i32 = -13;
207    /// One greater than the maximum possible power of 2 exponent
208    /// for a significand bounded by 1 ≤ x < 2 (i.e. the IEEE definition).
209    ///
210    /// This corresponds to the exact maximum possible power of 2 exponent
211    /// for a significand bounded by 0.5 ≤ x < 1 (i.e. the C definition).
212    /// In other words, all numbers representable by this type are
213    /// strictly less than 2<sup><i>MAX_EXP</i></sup>.
214    #[unstable(feature = "f16", issue = "116909")]
215    pub const MAX_EXP: i32 = 16;
216
217    /// Minimum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
218    ///
219    /// Equal to ceil(log<sub>10</sub>&nbsp;[`MIN_POSITIVE`]).
220    ///
221    /// [`MIN_POSITIVE`]: f16::MIN_POSITIVE
222    #[unstable(feature = "f16", issue = "116909")]
223    pub const MIN_10_EXP: i32 = -4;
224    /// Maximum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
225    ///
226    /// Equal to floor(log<sub>10</sub>&nbsp;[`MAX`]).
227    ///
228    /// [`MAX`]: f16::MAX
229    #[unstable(feature = "f16", issue = "116909")]
230    pub const MAX_10_EXP: i32 = 4;
231
232    /// Not a Number (NaN).
233    ///
234    /// Note that IEEE 754 doesn't define just a single NaN value; a plethora of bit patterns are
235    /// considered to be NaN. Furthermore, the standard makes a difference between a "signaling" and
236    /// a "quiet" NaN, and allows inspecting its "payload" (the unspecified bits in the bit pattern)
237    /// and its sign. See the [specification of NaN bit patterns](f32#nan-bit-patterns) for more
238    /// info.
239    ///
240    /// This constant is guaranteed to be a quiet NaN (on targets that follow the Rust assumptions
241    /// that the quiet/signaling bit being set to 1 indicates a quiet NaN). Beyond that, nothing is
242    /// guaranteed about the specific bit pattern chosen here: both payload and sign are arbitrary.
243    /// The concrete bit pattern may change across Rust versions and target platforms.
244    #[allow(clippy::eq_op)]
245    #[rustc_diagnostic_item = "f16_nan"]
246    #[unstable(feature = "f16", issue = "116909")]
247    pub const NAN: f16 = 0.0_f16 / 0.0_f16;
248
249    /// Infinity (∞).
250    #[unstable(feature = "f16", issue = "116909")]
251    pub const INFINITY: f16 = 1.0_f16 / 0.0_f16;
252
253    /// Negative infinity (−∞).
254    #[unstable(feature = "f16", issue = "116909")]
255    pub const NEG_INFINITY: f16 = -1.0_f16 / 0.0_f16;
256
257    /// Sign bit
258    pub(crate) const SIGN_MASK: u16 = 0x8000;
259
260    /// Exponent mask
261    pub(crate) const EXP_MASK: u16 = 0x7c00;
262
263    /// Mantissa mask
264    pub(crate) const MAN_MASK: u16 = 0x03ff;
265
266    /// Minimum representable positive value (min subnormal)
267    const TINY_BITS: u16 = 0x1;
268
269    /// Minimum representable negative value (min negative subnormal)
270    const NEG_TINY_BITS: u16 = Self::TINY_BITS | Self::SIGN_MASK;
271
272    /// Returns `true` if this value is NaN.
273    ///
274    /// ```
275    /// #![feature(f16)]
276    /// # #[cfg(target_has_reliable_f16)] {
277    ///
278    /// let nan = f16::NAN;
279    /// let f = 7.0_f16;
280    ///
281    /// assert!(nan.is_nan());
282    /// assert!(!f.is_nan());
283    /// # }
284    /// ```
285    #[inline]
286    #[must_use]
287    #[unstable(feature = "f16", issue = "116909")]
288    #[allow(clippy::eq_op)] // > if you intended to check if the operand is NaN, use `.is_nan()` instead :)
289    pub const fn is_nan(self) -> bool {
290        self != self
291    }
292
293    /// Returns `true` if this value is positive infinity or negative infinity, and
294    /// `false` otherwise.
295    ///
296    /// ```
297    /// #![feature(f16)]
298    /// # #[cfg(target_has_reliable_f16)] {
299    ///
300    /// let f = 7.0f16;
301    /// let inf = f16::INFINITY;
302    /// let neg_inf = f16::NEG_INFINITY;
303    /// let nan = f16::NAN;
304    ///
305    /// assert!(!f.is_infinite());
306    /// assert!(!nan.is_infinite());
307    ///
308    /// assert!(inf.is_infinite());
309    /// assert!(neg_inf.is_infinite());
310    /// # }
311    /// ```
312    #[inline]
313    #[must_use]
314    #[unstable(feature = "f16", issue = "116909")]
315    pub const fn is_infinite(self) -> bool {
316        (self == f16::INFINITY) | (self == f16::NEG_INFINITY)
317    }
318
319    /// Returns `true` if this number is neither infinite nor NaN.
320    ///
321    /// ```
322    /// #![feature(f16)]
323    /// # #[cfg(target_has_reliable_f16)] {
324    ///
325    /// let f = 7.0f16;
326    /// let inf: f16 = f16::INFINITY;
327    /// let neg_inf: f16 = f16::NEG_INFINITY;
328    /// let nan: f16 = f16::NAN;
329    ///
330    /// assert!(f.is_finite());
331    ///
332    /// assert!(!nan.is_finite());
333    /// assert!(!inf.is_finite());
334    /// assert!(!neg_inf.is_finite());
335    /// # }
336    /// ```
337    #[inline]
338    #[must_use]
339    #[unstable(feature = "f16", issue = "116909")]
340    #[rustc_const_unstable(feature = "f16", issue = "116909")]
341    pub const fn is_finite(self) -> bool {
342        // There's no need to handle NaN separately: if self is NaN,
343        // the comparison is not true, exactly as desired.
344        self.abs() < Self::INFINITY
345    }
346
347    /// Returns `true` if the number is [subnormal].
348    ///
349    /// ```
350    /// #![feature(f16)]
351    /// # #[cfg(target_has_reliable_f16)] {
352    ///
353    /// let min = f16::MIN_POSITIVE; // 6.1035e-5
354    /// let max = f16::MAX;
355    /// let lower_than_min = 1.0e-7_f16;
356    /// let zero = 0.0_f16;
357    ///
358    /// assert!(!min.is_subnormal());
359    /// assert!(!max.is_subnormal());
360    ///
361    /// assert!(!zero.is_subnormal());
362    /// assert!(!f16::NAN.is_subnormal());
363    /// assert!(!f16::INFINITY.is_subnormal());
364    /// // Values between `0` and `min` are Subnormal.
365    /// assert!(lower_than_min.is_subnormal());
366    /// # }
367    /// ```
368    /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
369    #[inline]
370    #[must_use]
371    #[unstable(feature = "f16", issue = "116909")]
372    pub const fn is_subnormal(self) -> bool {
373        matches!(self.classify(), FpCategory::Subnormal)
374    }
375
376    /// Returns `true` if the number is neither zero, infinite, [subnormal], or NaN.
377    ///
378    /// ```
379    /// #![feature(f16)]
380    /// # #[cfg(target_has_reliable_f16)] {
381    ///
382    /// let min = f16::MIN_POSITIVE; // 6.1035e-5
383    /// let max = f16::MAX;
384    /// let lower_than_min = 1.0e-7_f16;
385    /// let zero = 0.0_f16;
386    ///
387    /// assert!(min.is_normal());
388    /// assert!(max.is_normal());
389    ///
390    /// assert!(!zero.is_normal());
391    /// assert!(!f16::NAN.is_normal());
392    /// assert!(!f16::INFINITY.is_normal());
393    /// // Values between `0` and `min` are Subnormal.
394    /// assert!(!lower_than_min.is_normal());
395    /// # }
396    /// ```
397    /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
398    #[inline]
399    #[must_use]
400    #[unstable(feature = "f16", issue = "116909")]
401    pub const fn is_normal(self) -> bool {
402        matches!(self.classify(), FpCategory::Normal)
403    }
404
405    /// Returns the floating point category of the number. If only one property
406    /// is going to be tested, it is generally faster to use the specific
407    /// predicate instead.
408    ///
409    /// ```
410    /// #![feature(f16)]
411    /// # #[cfg(target_has_reliable_f16)] {
412    ///
413    /// use std::num::FpCategory;
414    ///
415    /// let num = 12.4_f16;
416    /// let inf = f16::INFINITY;
417    ///
418    /// assert_eq!(num.classify(), FpCategory::Normal);
419    /// assert_eq!(inf.classify(), FpCategory::Infinite);
420    /// # }
421    /// ```
422    #[inline]
423    #[unstable(feature = "f16", issue = "116909")]
424    pub const fn classify(self) -> FpCategory {
425        let b = self.to_bits();
426        match (b & Self::MAN_MASK, b & Self::EXP_MASK) {
427            (0, Self::EXP_MASK) => FpCategory::Infinite,
428            (_, Self::EXP_MASK) => FpCategory::Nan,
429            (0, 0) => FpCategory::Zero,
430            (_, 0) => FpCategory::Subnormal,
431            _ => FpCategory::Normal,
432        }
433    }
434
435    /// Returns `true` if `self` has a positive sign, including `+0.0`, NaNs with
436    /// positive sign bit and positive infinity.
437    ///
438    /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of
439    /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are
440    /// conserved over arithmetic operations, the result of `is_sign_positive` on
441    /// a NaN might produce an unexpected or non-portable result. See the [specification
442    /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == 1.0`
443    /// if you need fully portable behavior (will return `false` for all NaNs).
444    ///
445    /// ```
446    /// #![feature(f16)]
447    /// # #[cfg(target_has_reliable_f16)] {
448    ///
449    /// let f = 7.0_f16;
450    /// let g = -7.0_f16;
451    ///
452    /// assert!(f.is_sign_positive());
453    /// assert!(!g.is_sign_positive());
454    /// # }
455    /// ```
456    #[inline]
457    #[must_use]
458    #[unstable(feature = "f16", issue = "116909")]
459    pub const fn is_sign_positive(self) -> bool {
460        !self.is_sign_negative()
461    }
462
463    /// Returns `true` if `self` has a negative sign, including `-0.0`, NaNs with
464    /// negative sign bit and negative infinity.
465    ///
466    /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of
467    /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are
468    /// conserved over arithmetic operations, the result of `is_sign_negative` on
469    /// a NaN might produce an unexpected or non-portable result. See the [specification
470    /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == -1.0`
471    /// if you need fully portable behavior (will return `false` for all NaNs).
472    ///
473    /// ```
474    /// #![feature(f16)]
475    /// # #[cfg(target_has_reliable_f16)] {
476    ///
477    /// let f = 7.0_f16;
478    /// let g = -7.0_f16;
479    ///
480    /// assert!(!f.is_sign_negative());
481    /// assert!(g.is_sign_negative());
482    /// # }
483    /// ```
484    #[inline]
485    #[must_use]
486    #[unstable(feature = "f16", issue = "116909")]
487    pub const fn is_sign_negative(self) -> bool {
488        // IEEE754 says: isSignMinus(x) is true if and only if x has negative sign. isSignMinus
489        // applies to zeros and NaNs as well.
490        // SAFETY: This is just transmuting to get the sign bit, it's fine.
491        (self.to_bits() & (1 << 15)) != 0
492    }
493
494    /// Returns the least number greater than `self`.
495    ///
496    /// Let `TINY` be the smallest representable positive `f16`. Then,
497    ///  - if `self.is_nan()`, this returns `self`;
498    ///  - if `self` is [`NEG_INFINITY`], this returns [`MIN`];
499    ///  - if `self` is `-TINY`, this returns -0.0;
500    ///  - if `self` is -0.0 or +0.0, this returns `TINY`;
501    ///  - if `self` is [`MAX`] or [`INFINITY`], this returns [`INFINITY`];
502    ///  - otherwise the unique least value greater than `self` is returned.
503    ///
504    /// The identity `x.next_up() == -(-x).next_down()` holds for all non-NaN `x`. When `x`
505    /// is finite `x == x.next_up().next_down()` also holds.
506    ///
507    /// ```rust
508    /// #![feature(f16)]
509    /// # #[cfg(target_has_reliable_f16)] {
510    ///
511    /// // f16::EPSILON is the difference between 1.0 and the next number up.
512    /// assert_eq!(1.0f16.next_up(), 1.0 + f16::EPSILON);
513    /// // But not for most numbers.
514    /// assert!(0.1f16.next_up() < 0.1 + f16::EPSILON);
515    /// assert_eq!(4356f16.next_up(), 4360.0);
516    /// # }
517    /// ```
518    ///
519    /// This operation corresponds to IEEE-754 `nextUp`.
520    ///
521    /// [`NEG_INFINITY`]: Self::NEG_INFINITY
522    /// [`INFINITY`]: Self::INFINITY
523    /// [`MIN`]: Self::MIN
524    /// [`MAX`]: Self::MAX
525    #[inline]
526    #[doc(alias = "nextUp")]
527    #[unstable(feature = "f16", issue = "116909")]
528    pub const fn next_up(self) -> Self {
529        // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing
530        // denormals to zero. This is in general unsound and unsupported, but here
531        // we do our best to still produce the correct result on such targets.
532        let bits = self.to_bits();
533        if self.is_nan() || bits == Self::INFINITY.to_bits() {
534            return self;
535        }
536
537        let abs = bits & !Self::SIGN_MASK;
538        let next_bits = if abs == 0 {
539            Self::TINY_BITS
540        } else if bits == abs {
541            bits + 1
542        } else {
543            bits - 1
544        };
545        Self::from_bits(next_bits)
546    }
547
548    /// Returns the greatest number less than `self`.
549    ///
550    /// Let `TINY` be the smallest representable positive `f16`. Then,
551    ///  - if `self.is_nan()`, this returns `self`;
552    ///  - if `self` is [`INFINITY`], this returns [`MAX`];
553    ///  - if `self` is `TINY`, this returns 0.0;
554    ///  - if `self` is -0.0 or +0.0, this returns `-TINY`;
555    ///  - if `self` is [`MIN`] or [`NEG_INFINITY`], this returns [`NEG_INFINITY`];
556    ///  - otherwise the unique greatest value less than `self` is returned.
557    ///
558    /// The identity `x.next_down() == -(-x).next_up()` holds for all non-NaN `x`. When `x`
559    /// is finite `x == x.next_down().next_up()` also holds.
560    ///
561    /// ```rust
562    /// #![feature(f16)]
563    /// # #[cfg(target_has_reliable_f16)] {
564    ///
565    /// let x = 1.0f16;
566    /// // Clamp value into range [0, 1).
567    /// let clamped = x.clamp(0.0, 1.0f16.next_down());
568    /// assert!(clamped < 1.0);
569    /// assert_eq!(clamped.next_up(), 1.0);
570    /// # }
571    /// ```
572    ///
573    /// This operation corresponds to IEEE-754 `nextDown`.
574    ///
575    /// [`NEG_INFINITY`]: Self::NEG_INFINITY
576    /// [`INFINITY`]: Self::INFINITY
577    /// [`MIN`]: Self::MIN
578    /// [`MAX`]: Self::MAX
579    #[inline]
580    #[doc(alias = "nextDown")]
581    #[unstable(feature = "f16", issue = "116909")]
582    pub const fn next_down(self) -> Self {
583        // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing
584        // denormals to zero. This is in general unsound and unsupported, but here
585        // we do our best to still produce the correct result on such targets.
586        let bits = self.to_bits();
587        if self.is_nan() || bits == Self::NEG_INFINITY.to_bits() {
588            return self;
589        }
590
591        let abs = bits & !Self::SIGN_MASK;
592        let next_bits = if abs == 0 {
593            Self::NEG_TINY_BITS
594        } else if bits == abs {
595            bits - 1
596        } else {
597            bits + 1
598        };
599        Self::from_bits(next_bits)
600    }
601
602    /// Takes the reciprocal (inverse) of a number, `1/x`.
603    ///
604    /// ```
605    /// #![feature(f16)]
606    /// # #[cfg(target_has_reliable_f16)] {
607    ///
608    /// let x = 2.0_f16;
609    /// let abs_difference = (x.recip() - (1.0 / x)).abs();
610    ///
611    /// assert!(abs_difference <= f16::EPSILON);
612    /// # }
613    /// ```
614    #[inline]
615    #[unstable(feature = "f16", issue = "116909")]
616    #[must_use = "this returns the result of the operation, without modifying the original"]
617    pub const fn recip(self) -> Self {
618        1.0 / self
619    }
620
621    /// Converts radians to degrees.
622    ///
623    /// # Unspecified precision
624    ///
625    /// The precision of this function is non-deterministic. This means it varies by platform,
626    /// Rust version, and can even differ within the same execution from one invocation to the next.
627    ///
628    /// # Examples
629    ///
630    /// ```
631    /// #![feature(f16)]
632    /// # #[cfg(target_has_reliable_f16)] {
633    ///
634    /// let angle = std::f16::consts::PI;
635    ///
636    /// let abs_difference = (angle.to_degrees() - 180.0).abs();
637    /// assert!(abs_difference <= 0.5);
638    /// # }
639    /// ```
640    #[inline]
641    #[unstable(feature = "f16", issue = "116909")]
642    #[must_use = "this returns the result of the operation, without modifying the original"]
643    pub const fn to_degrees(self) -> Self {
644        // Use a literal to avoid double rounding, consts::PI is already rounded,
645        // and dividing would round again.
646        const PIS_IN_180: f16 = 57.2957795130823208767981548141051703_f16;
647        self * PIS_IN_180
648    }
649
650    /// Converts degrees to radians.
651    ///
652    /// # Unspecified precision
653    ///
654    /// The precision of this function is non-deterministic. This means it varies by platform,
655    /// Rust version, and can even differ within the same execution from one invocation to the next.
656    ///
657    /// # Examples
658    ///
659    /// ```
660    /// #![feature(f16)]
661    /// # #[cfg(target_has_reliable_f16)] {
662    ///
663    /// let angle = 180.0f16;
664    ///
665    /// let abs_difference = (angle.to_radians() - std::f16::consts::PI).abs();
666    ///
667    /// assert!(abs_difference <= 0.01);
668    /// # }
669    /// ```
670    #[inline]
671    #[unstable(feature = "f16", issue = "116909")]
672    #[must_use = "this returns the result of the operation, without modifying the original"]
673    pub const fn to_radians(self) -> f16 {
674        // Use a literal to avoid double rounding, consts::PI is already rounded,
675        // and dividing would round again.
676        const RADS_PER_DEG: f16 = 0.017453292519943295769236907684886_f16;
677        self * RADS_PER_DEG
678    }
679
680    /// Returns the maximum of the two numbers, ignoring NaN.
681    ///
682    /// If exactly one of the arguments is NaN (quiet or signaling), then the other argument is
683    /// returned. If both arguments are NaN, the return value is NaN, with the bit pattern picked
684    /// using the usual [rules for arithmetic operations](f32#nan-bit-patterns). If the inputs
685    /// compare equal (such as for the case of `+0.0` and `-0.0`), either input may be returned
686    /// non-deterministically.
687    ///
688    /// The handling of NaNs follows the IEEE 754-2019 semantics for `maximumNumber`, treating all
689    /// NaNs the same way to ensure the operation is associative. The handling of signed zeros
690    /// follows the IEEE 754-2008 semantics for `maxNum`.
691    ///
692    /// ```
693    /// #![feature(f16)]
694    /// # #[cfg(target_has_reliable_f16)] {
695    ///
696    /// let x = 1.0f16;
697    /// let y = 2.0f16;
698    ///
699    /// assert_eq!(x.max(y), y);
700    /// assert_eq!(x.max(f16::NAN), x);
701    /// # }
702    /// ```
703    #[inline]
704    #[unstable(feature = "f16", issue = "116909")]
705    #[rustc_const_unstable(feature = "f16", issue = "116909")]
706    #[must_use = "this returns the result of the comparison, without modifying either input"]
707    pub const fn max(self, other: f16) -> f16 {
708        intrinsics::maxnumf16(self, other)
709    }
710
711    /// Returns the minimum of the two numbers, ignoring NaN.
712    ///
713    /// If exactly one of the arguments is NaN (quiet or signaling), then the other argument is
714    /// returned. If both arguments are NaN, the return value is NaN, with the bit pattern picked
715    /// using the usual [rules for arithmetic operations](f32#nan-bit-patterns). If the inputs
716    /// compare equal (such as for the case of `+0.0` and `-0.0`), either input may be returned
717    /// non-deterministically.
718    ///
719    /// The handling of NaNs follows the IEEE 754-2019 semantics for `minimumNumber`, treating all
720    /// NaNs the same way to ensure the operation is associative. The handling of signed zeros
721    /// follows the IEEE 754-2008 semantics for `minNum`.
722    ///
723    /// ```
724    /// #![feature(f16)]
725    /// # #[cfg(target_has_reliable_f16)] {
726    ///
727    /// let x = 1.0f16;
728    /// let y = 2.0f16;
729    ///
730    /// assert_eq!(x.min(y), x);
731    /// assert_eq!(x.min(f16::NAN), x);
732    /// # }
733    /// ```
734    #[inline]
735    #[unstable(feature = "f16", issue = "116909")]
736    #[rustc_const_unstable(feature = "f16", issue = "116909")]
737    #[must_use = "this returns the result of the comparison, without modifying either input"]
738    pub const fn min(self, other: f16) -> f16 {
739        intrinsics::minnumf16(self, other)
740    }
741
742    /// Returns the maximum of the two numbers, propagating NaN.
743    ///
744    /// If at least one of the arguments is NaN, the return value is NaN, with the bit pattern
745    /// picked using the usual [rules for arithmetic operations](f32#nan-bit-patterns). Furthermore,
746    /// `-0.0` is considered to be less than `+0.0`, making this function fully deterministic for
747    /// non-NaN inputs.
748    ///
749    /// This is in contrast to [`f16::max`] which only returns NaN when *both* arguments are NaN,
750    /// and which does not reliably order `-0.0` and `+0.0`.
751    ///
752    /// This follows the IEEE 754-2019 semantics for `maximum`.
753    ///
754    /// ```
755    /// #![feature(f16)]
756    /// #![feature(float_minimum_maximum)]
757    /// # #[cfg(target_has_reliable_f16)] {
758    ///
759    /// let x = 1.0f16;
760    /// let y = 2.0f16;
761    ///
762    /// assert_eq!(x.maximum(y), y);
763    /// assert!(x.maximum(f16::NAN).is_nan());
764    /// # }
765    /// ```
766    #[inline]
767    #[unstable(feature = "f16", issue = "116909")]
768    // #[unstable(feature = "float_minimum_maximum", issue = "91079")]
769    #[must_use = "this returns the result of the comparison, without modifying either input"]
770    pub const fn maximum(self, other: f16) -> f16 {
771        intrinsics::maximumf16(self, other)
772    }
773
774    /// Returns the minimum of the two numbers, propagating NaN.
775    ///
776    /// If at least one of the arguments is NaN, the return value is NaN, with the bit pattern
777    /// picked using the usual [rules for arithmetic operations](f32#nan-bit-patterns). Furthermore,
778    /// `-0.0` is considered to be less than `+0.0`, making this function fully deterministic for
779    /// non-NaN inputs.
780    ///
781    /// This is in contrast to [`f16::min`] which only returns NaN when *both* arguments are NaN,
782    /// and which does not reliably order `-0.0` and `+0.0`.
783    ///
784    /// This follows the IEEE 754-2019 semantics for `minimum`.
785    ///
786    /// ```
787    /// #![feature(f16)]
788    /// #![feature(float_minimum_maximum)]
789    /// # #[cfg(target_has_reliable_f16)] {
790    ///
791    /// let x = 1.0f16;
792    /// let y = 2.0f16;
793    ///
794    /// assert_eq!(x.minimum(y), x);
795    /// assert!(x.minimum(f16::NAN).is_nan());
796    /// # }
797    /// ```
798    #[inline]
799    #[unstable(feature = "f16", issue = "116909")]
800    // #[unstable(feature = "float_minimum_maximum", issue = "91079")]
801    #[must_use = "this returns the result of the comparison, without modifying either input"]
802    pub const fn minimum(self, other: f16) -> f16 {
803        intrinsics::minimumf16(self, other)
804    }
805
806    /// Calculates the midpoint (average) between `self` and `rhs`.
807    ///
808    /// This returns NaN when *either* argument is NaN or if a combination of
809    /// +inf and -inf is provided as arguments.
810    ///
811    /// # Examples
812    ///
813    /// ```
814    /// #![feature(f16)]
815    /// # #[cfg(target_has_reliable_f16)] {
816    ///
817    /// assert_eq!(1f16.midpoint(4.0), 2.5);
818    /// assert_eq!((-5.5f16).midpoint(8.0), 1.25);
819    /// # }
820    /// ```
821    #[inline]
822    #[doc(alias = "average")]
823    #[unstable(feature = "f16", issue = "116909")]
824    #[rustc_const_unstable(feature = "f16", issue = "116909")]
825    pub const fn midpoint(self, other: f16) -> f16 {
826        const HI: f16 = f16::MAX / 2.;
827
828        let (a, b) = (self, other);
829        let abs_a = a.abs();
830        let abs_b = b.abs();
831
832        if abs_a <= HI && abs_b <= HI {
833            // Overflow is impossible
834            (a + b) / 2.
835        } else {
836            (a / 2.) + (b / 2.)
837        }
838    }
839
840    /// Rounds toward zero and converts to any primitive integer type,
841    /// assuming that the value is finite and fits in that type.
842    ///
843    /// ```
844    /// #![feature(f16)]
845    /// # #[cfg(target_has_reliable_f16)] {
846    ///
847    /// let value = 4.6_f16;
848    /// let rounded = unsafe { value.to_int_unchecked::<u16>() };
849    /// assert_eq!(rounded, 4);
850    ///
851    /// let value = -128.9_f16;
852    /// let rounded = unsafe { value.to_int_unchecked::<i8>() };
853    /// assert_eq!(rounded, i8::MIN);
854    /// # }
855    /// ```
856    ///
857    /// # Safety
858    ///
859    /// The value must:
860    ///
861    /// * Not be `NaN`
862    /// * Not be infinite
863    /// * Be representable in the return type `Int`, after truncating off its fractional part
864    #[inline]
865    #[unstable(feature = "f16", issue = "116909")]
866    #[must_use = "this returns the result of the operation, without modifying the original"]
867    pub unsafe fn to_int_unchecked<Int>(self) -> Int
868    where
869        Self: FloatToInt<Int>,
870    {
871        // SAFETY: the caller must uphold the safety contract for
872        // `FloatToInt::to_int_unchecked`.
873        unsafe { FloatToInt::<Int>::to_int_unchecked(self) }
874    }
875
876    /// Raw transmutation to `u16`.
877    ///
878    /// This is currently identical to `transmute::<f16, u16>(self)` on all platforms.
879    ///
880    /// See [`from_bits`](#method.from_bits) for some discussion of the
881    /// portability of this operation (there are almost no issues).
882    ///
883    /// Note that this function is distinct from `as` casting, which attempts to
884    /// preserve the *numeric* value, and not the bitwise value.
885    ///
886    /// ```
887    /// #![feature(f16)]
888    /// # #[cfg(target_has_reliable_f16)] {
889    ///
890    /// # // FIXME(f16_f128): enable this once const casting works
891    /// # // assert_ne!((1f16).to_bits(), 1f16 as u128); // to_bits() is not casting!
892    /// assert_eq!((12.5f16).to_bits(), 0x4a40);
893    /// # }
894    /// ```
895    #[inline]
896    #[unstable(feature = "f16", issue = "116909")]
897    #[must_use = "this returns the result of the operation, without modifying the original"]
898    #[allow(unnecessary_transmutes)]
899    pub const fn to_bits(self) -> u16 {
900        // SAFETY: `u16` is a plain old datatype so we can always transmute to it.
901        unsafe { mem::transmute(self) }
902    }
903
904    /// Raw transmutation from `u16`.
905    ///
906    /// This is currently identical to `transmute::<u16, f16>(v)` on all platforms.
907    /// It turns out this is incredibly portable, for two reasons:
908    ///
909    /// * Floats and Ints have the same endianness on all supported platforms.
910    /// * IEEE 754 very precisely specifies the bit layout of floats.
911    ///
912    /// However there is one caveat: prior to the 2008 version of IEEE 754, how
913    /// to interpret the NaN signaling bit wasn't actually specified. Most platforms
914    /// (notably x86 and ARM) picked the interpretation that was ultimately
915    /// standardized in 2008, but some didn't (notably MIPS). As a result, all
916    /// signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa.
917    ///
918    /// Rather than trying to preserve signaling-ness cross-platform, this
919    /// implementation favors preserving the exact bits. This means that
920    /// any payloads encoded in NaNs will be preserved even if the result of
921    /// this method is sent over the network from an x86 machine to a MIPS one.
922    ///
923    /// If the results of this method are only manipulated by the same
924    /// architecture that produced them, then there is no portability concern.
925    ///
926    /// If the input isn't NaN, then there is no portability concern.
927    ///
928    /// If you don't care about signalingness (very likely), then there is no
929    /// portability concern.
930    ///
931    /// Note that this function is distinct from `as` casting, which attempts to
932    /// preserve the *numeric* value, and not the bitwise value.
933    ///
934    /// ```
935    /// #![feature(f16)]
936    /// # #[cfg(target_has_reliable_f16)] {
937    ///
938    /// let v = f16::from_bits(0x4a40);
939    /// assert_eq!(v, 12.5);
940    /// # }
941    /// ```
942    #[inline]
943    #[must_use]
944    #[unstable(feature = "f16", issue = "116909")]
945    #[allow(unnecessary_transmutes)]
946    pub const fn from_bits(v: u16) -> Self {
947        // It turns out the safety issues with sNaN were overblown! Hooray!
948        // SAFETY: `u16` is a plain old datatype so we can always transmute from it.
949        unsafe { mem::transmute(v) }
950    }
951
952    /// Returns the memory representation of this floating point number as a byte array in
953    /// big-endian (network) byte order.
954    ///
955    /// See [`from_bits`](Self::from_bits) for some discussion of the
956    /// portability of this operation (there are almost no issues).
957    ///
958    /// # Examples
959    ///
960    /// ```
961    /// #![feature(f16)]
962    /// # #[cfg(target_has_reliable_f16)] {
963    ///
964    /// let bytes = 12.5f16.to_be_bytes();
965    /// assert_eq!(bytes, [0x4a, 0x40]);
966    /// # }
967    /// ```
968    #[inline]
969    #[unstable(feature = "f16", issue = "116909")]
970    #[must_use = "this returns the result of the operation, without modifying the original"]
971    pub const fn to_be_bytes(self) -> [u8; 2] {
972        self.to_bits().to_be_bytes()
973    }
974
975    /// Returns the memory representation of this floating point number as a byte array in
976    /// little-endian byte order.
977    ///
978    /// See [`from_bits`](Self::from_bits) for some discussion of the
979    /// portability of this operation (there are almost no issues).
980    ///
981    /// # Examples
982    ///
983    /// ```
984    /// #![feature(f16)]
985    /// # #[cfg(target_has_reliable_f16)] {
986    ///
987    /// let bytes = 12.5f16.to_le_bytes();
988    /// assert_eq!(bytes, [0x40, 0x4a]);
989    /// # }
990    /// ```
991    #[inline]
992    #[unstable(feature = "f16", issue = "116909")]
993    #[must_use = "this returns the result of the operation, without modifying the original"]
994    pub const fn to_le_bytes(self) -> [u8; 2] {
995        self.to_bits().to_le_bytes()
996    }
997
998    /// Returns the memory representation of this floating point number as a byte array in
999    /// native byte order.
1000    ///
1001    /// As the target platform's native endianness is used, portable code
1002    /// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate, instead.
1003    ///
1004    /// [`to_be_bytes`]: f16::to_be_bytes
1005    /// [`to_le_bytes`]: f16::to_le_bytes
1006    ///
1007    /// See [`from_bits`](Self::from_bits) for some discussion of the
1008    /// portability of this operation (there are almost no issues).
1009    ///
1010    /// # Examples
1011    ///
1012    /// ```
1013    /// #![feature(f16)]
1014    /// # #[cfg(target_has_reliable_f16)] {
1015    ///
1016    /// let bytes = 12.5f16.to_ne_bytes();
1017    /// assert_eq!(
1018    ///     bytes,
1019    ///     if cfg!(target_endian = "big") {
1020    ///         [0x4a, 0x40]
1021    ///     } else {
1022    ///         [0x40, 0x4a]
1023    ///     }
1024    /// );
1025    /// # }
1026    /// ```
1027    #[inline]
1028    #[unstable(feature = "f16", issue = "116909")]
1029    #[must_use = "this returns the result of the operation, without modifying the original"]
1030    pub const fn to_ne_bytes(self) -> [u8; 2] {
1031        self.to_bits().to_ne_bytes()
1032    }
1033
1034    /// Creates a floating point value from its representation as a byte array in big endian.
1035    ///
1036    /// See [`from_bits`](Self::from_bits) for some discussion of the
1037    /// portability of this operation (there are almost no issues).
1038    ///
1039    /// # Examples
1040    ///
1041    /// ```
1042    /// #![feature(f16)]
1043    /// # #[cfg(target_has_reliable_f16)] {
1044    ///
1045    /// let value = f16::from_be_bytes([0x4a, 0x40]);
1046    /// assert_eq!(value, 12.5);
1047    /// # }
1048    /// ```
1049    #[inline]
1050    #[must_use]
1051    #[unstable(feature = "f16", issue = "116909")]
1052    pub const fn from_be_bytes(bytes: [u8; 2]) -> Self {
1053        Self::from_bits(u16::from_be_bytes(bytes))
1054    }
1055
1056    /// Creates a floating point value from its representation as a byte array in little endian.
1057    ///
1058    /// See [`from_bits`](Self::from_bits) for some discussion of the
1059    /// portability of this operation (there are almost no issues).
1060    ///
1061    /// # Examples
1062    ///
1063    /// ```
1064    /// #![feature(f16)]
1065    /// # #[cfg(target_has_reliable_f16)] {
1066    ///
1067    /// let value = f16::from_le_bytes([0x40, 0x4a]);
1068    /// assert_eq!(value, 12.5);
1069    /// # }
1070    /// ```
1071    #[inline]
1072    #[must_use]
1073    #[unstable(feature = "f16", issue = "116909")]
1074    pub const fn from_le_bytes(bytes: [u8; 2]) -> Self {
1075        Self::from_bits(u16::from_le_bytes(bytes))
1076    }
1077
1078    /// Creates a floating point value from its representation as a byte array in native endian.
1079    ///
1080    /// As the target platform's native endianness is used, portable code
1081    /// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as
1082    /// appropriate instead.
1083    ///
1084    /// [`from_be_bytes`]: f16::from_be_bytes
1085    /// [`from_le_bytes`]: f16::from_le_bytes
1086    ///
1087    /// See [`from_bits`](Self::from_bits) for some discussion of the
1088    /// portability of this operation (there are almost no issues).
1089    ///
1090    /// # Examples
1091    ///
1092    /// ```
1093    /// #![feature(f16)]
1094    /// # #[cfg(target_has_reliable_f16)] {
1095    ///
1096    /// let value = f16::from_ne_bytes(if cfg!(target_endian = "big") {
1097    ///     [0x4a, 0x40]
1098    /// } else {
1099    ///     [0x40, 0x4a]
1100    /// });
1101    /// assert_eq!(value, 12.5);
1102    /// # }
1103    /// ```
1104    #[inline]
1105    #[must_use]
1106    #[unstable(feature = "f16", issue = "116909")]
1107    pub const fn from_ne_bytes(bytes: [u8; 2]) -> Self {
1108        Self::from_bits(u16::from_ne_bytes(bytes))
1109    }
1110
1111    /// Returns the ordering between `self` and `other`.
1112    ///
1113    /// Unlike the standard partial comparison between floating point numbers,
1114    /// this comparison always produces an ordering in accordance to
1115    /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision)
1116    /// floating point standard. The values are ordered in the following sequence:
1117    ///
1118    /// - negative quiet NaN
1119    /// - negative signaling NaN
1120    /// - negative infinity
1121    /// - negative numbers
1122    /// - negative subnormal numbers
1123    /// - negative zero
1124    /// - positive zero
1125    /// - positive subnormal numbers
1126    /// - positive numbers
1127    /// - positive infinity
1128    /// - positive signaling NaN
1129    /// - positive quiet NaN.
1130    ///
1131    /// The ordering established by this function does not always agree with the
1132    /// [`PartialOrd`] and [`PartialEq`] implementations of `f16`. For example,
1133    /// they consider negative and positive zero equal, while `total_cmp`
1134    /// doesn't.
1135    ///
1136    /// The interpretation of the signaling NaN bit follows the definition in
1137    /// the IEEE 754 standard, which may not match the interpretation by some of
1138    /// the older, non-conformant (e.g. MIPS) hardware implementations.
1139    ///
1140    /// # Example
1141    ///
1142    /// ```
1143    /// #![feature(f16)]
1144    /// # #[cfg(target_has_reliable_f16)] {
1145    ///
1146    /// struct GoodBoy {
1147    ///     name: &'static str,
1148    ///     weight: f16,
1149    /// }
1150    ///
1151    /// let mut bois = vec![
1152    ///     GoodBoy { name: "Pucci", weight: 0.1 },
1153    ///     GoodBoy { name: "Woofer", weight: 99.0 },
1154    ///     GoodBoy { name: "Yapper", weight: 10.0 },
1155    ///     GoodBoy { name: "Chonk", weight: f16::INFINITY },
1156    ///     GoodBoy { name: "Abs. Unit", weight: f16::NAN },
1157    ///     GoodBoy { name: "Floaty", weight: -5.0 },
1158    /// ];
1159    ///
1160    /// bois.sort_by(|a, b| a.weight.total_cmp(&b.weight));
1161    ///
1162    /// // `f16::NAN` could be positive or negative, which will affect the sort order.
1163    /// if f16::NAN.is_sign_negative() {
1164    ///     bois.into_iter().map(|b| b.weight)
1165    ///         .zip([f16::NAN, -5.0, 0.1, 10.0, 99.0, f16::INFINITY].iter())
1166    ///         .for_each(|(a, b)| assert_eq!(a.to_bits(), b.to_bits()))
1167    /// } else {
1168    ///     bois.into_iter().map(|b| b.weight)
1169    ///         .zip([-5.0, 0.1, 10.0, 99.0, f16::INFINITY, f16::NAN].iter())
1170    ///         .for_each(|(a, b)| assert_eq!(a.to_bits(), b.to_bits()))
1171    /// }
1172    /// # }
1173    /// ```
1174    #[inline]
1175    #[must_use]
1176    #[unstable(feature = "f16", issue = "116909")]
1177    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1178    pub const fn total_cmp(&self, other: &Self) -> crate::cmp::Ordering {
1179        let mut left = self.to_bits() as i16;
1180        let mut right = other.to_bits() as i16;
1181
1182        // In case of negatives, flip all the bits except the sign
1183        // to achieve a similar layout as two's complement integers
1184        //
1185        // Why does this work? IEEE 754 floats consist of three fields:
1186        // Sign bit, exponent and mantissa. The set of exponent and mantissa
1187        // fields as a whole have the property that their bitwise order is
1188        // equal to the numeric magnitude where the magnitude is defined.
1189        // The magnitude is not normally defined on NaN values, but
1190        // IEEE 754 totalOrder defines the NaN values also to follow the
1191        // bitwise order. This leads to order explained in the doc comment.
1192        // However, the representation of magnitude is the same for negative
1193        // and positive numbers – only the sign bit is different.
1194        // To easily compare the floats as signed integers, we need to
1195        // flip the exponent and mantissa bits in case of negative numbers.
1196        // We effectively convert the numbers to "two's complement" form.
1197        //
1198        // To do the flipping, we construct a mask and XOR against it.
1199        // We branchlessly calculate an "all-ones except for the sign bit"
1200        // mask from negative-signed values: right shifting sign-extends
1201        // the integer, so we "fill" the mask with sign bits, and then
1202        // convert to unsigned to push one more zero bit.
1203        // On positive values, the mask is all zeros, so it's a no-op.
1204        left ^= (((left >> 15) as u16) >> 1) as i16;
1205        right ^= (((right >> 15) as u16) >> 1) as i16;
1206
1207        left.cmp(&right)
1208    }
1209
1210    /// Restrict a value to a certain interval unless it is NaN.
1211    ///
1212    /// Returns `max` if `self` is greater than `max`, and `min` if `self` is
1213    /// less than `min`. Otherwise this returns `self`.
1214    ///
1215    /// Note that this function returns NaN if the initial value was NaN as
1216    /// well. If the result is zero and among the three inputs `self`, `min`, and `max` there are
1217    /// zeros with different sign, either `0.0` or `-0.0` is returned non-deterministically.
1218    ///
1219    /// # Panics
1220    ///
1221    /// Panics if `min > max`, `min` is NaN, or `max` is NaN.
1222    ///
1223    /// # Examples
1224    ///
1225    /// ```
1226    /// #![feature(f16)]
1227    /// # #[cfg(target_has_reliable_f16)] {
1228    ///
1229    /// assert!((-3.0f16).clamp(-2.0, 1.0) == -2.0);
1230    /// assert!((0.0f16).clamp(-2.0, 1.0) == 0.0);
1231    /// assert!((2.0f16).clamp(-2.0, 1.0) == 1.0);
1232    /// assert!((f16::NAN).clamp(-2.0, 1.0).is_nan());
1233    ///
1234    /// // These always returns zero, but the sign (which is ignored by `==`) is non-deterministic.
1235    /// assert!((0.0f16).clamp(-0.0, -0.0) == 0.0);
1236    /// assert!((1.0f16).clamp(-0.0, 0.0) == 0.0);
1237    /// // This is definitely a negative zero.
1238    /// assert!((-1.0f16).clamp(-0.0, 1.0).is_sign_negative());
1239    /// # }
1240    /// ```
1241    #[inline]
1242    #[unstable(feature = "f16", issue = "116909")]
1243    #[must_use = "method returns a new number and does not mutate the original value"]
1244    pub const fn clamp(mut self, min: f16, max: f16) -> f16 {
1245        const_assert!(
1246            min <= max,
1247            "min > max, or either was NaN",
1248            "min > max, or either was NaN. min = {min:?}, max = {max:?}",
1249            min: f16,
1250            max: f16,
1251        );
1252
1253        if self < min {
1254            self = min;
1255        }
1256        if self > max {
1257            self = max;
1258        }
1259        self
1260    }
1261
1262    /// Clamps this number to a symmetric range centered around zero.
1263    ///
1264    /// The method clamps the number's magnitude (absolute value) to be at most `limit`.
1265    ///
1266    /// This is functionally equivalent to `self.clamp(-limit, limit)`, but is more
1267    /// explicit about the intent.
1268    ///
1269    /// # Panics
1270    ///
1271    /// Panics if `limit` is negative or NaN, as this indicates a logic error.
1272    ///
1273    /// # Examples
1274    ///
1275    /// ```
1276    /// #![feature(f16)]
1277    /// #![feature(clamp_magnitude)]
1278    /// # #[cfg(target_has_reliable_f16)] {
1279    /// assert_eq!(5.0f16.clamp_magnitude(3.0), 3.0);
1280    /// assert_eq!((-5.0f16).clamp_magnitude(3.0), -3.0);
1281    /// assert_eq!(2.0f16.clamp_magnitude(3.0), 2.0);
1282    /// assert_eq!((-2.0f16).clamp_magnitude(3.0), -2.0);
1283    /// # }
1284    /// ```
1285    #[inline]
1286    #[unstable(feature = "clamp_magnitude", issue = "148519")]
1287    #[must_use = "this returns the clamped value and does not modify the original"]
1288    pub fn clamp_magnitude(self, limit: f16) -> f16 {
1289        assert!(limit >= 0.0, "limit must be non-negative");
1290        let limit = limit.abs(); // Canonicalises -0.0 to 0.0
1291        self.clamp(-limit, limit)
1292    }
1293
1294    /// Computes the absolute value of `self`.
1295    ///
1296    /// This function always returns the precise result.
1297    ///
1298    /// # Examples
1299    ///
1300    /// ```
1301    /// #![feature(f16)]
1302    /// # #[cfg(target_has_reliable_f16_math)] {
1303    ///
1304    /// let x = 3.5_f16;
1305    /// let y = -3.5_f16;
1306    ///
1307    /// assert_eq!(x.abs(), x);
1308    /// assert_eq!(y.abs(), -y);
1309    ///
1310    /// assert!(f16::NAN.abs().is_nan());
1311    /// # }
1312    /// ```
1313    #[inline]
1314    #[unstable(feature = "f16", issue = "116909")]
1315    #[rustc_const_unstable(feature = "f16", issue = "116909")]
1316    #[must_use = "method returns a new number and does not mutate the original value"]
1317    pub const fn abs(self) -> Self {
1318        intrinsics::fabsf16(self)
1319    }
1320
1321    /// Returns a number that represents the sign of `self`.
1322    ///
1323    /// - `1.0` if the number is positive, `+0.0` or `INFINITY`
1324    /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
1325    /// - NaN if the number is NaN
1326    ///
1327    /// # Examples
1328    ///
1329    /// ```
1330    /// #![feature(f16)]
1331    /// # #[cfg(target_has_reliable_f16)] {
1332    ///
1333    /// let f = 3.5_f16;
1334    ///
1335    /// assert_eq!(f.signum(), 1.0);
1336    /// assert_eq!(f16::NEG_INFINITY.signum(), -1.0);
1337    ///
1338    /// assert!(f16::NAN.signum().is_nan());
1339    /// # }
1340    /// ```
1341    #[inline]
1342    #[unstable(feature = "f16", issue = "116909")]
1343    #[rustc_const_unstable(feature = "f16", issue = "116909")]
1344    #[must_use = "method returns a new number and does not mutate the original value"]
1345    pub const fn signum(self) -> f16 {
1346        if self.is_nan() { Self::NAN } else { 1.0_f16.copysign(self) }
1347    }
1348
1349    /// Returns a number composed of the magnitude of `self` and the sign of
1350    /// `sign`.
1351    ///
1352    /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`.
1353    /// If `self` is a NaN, then a NaN with the same payload as `self` and the sign bit of `sign` is
1354    /// returned.
1355    ///
1356    /// If `sign` is a NaN, then this operation will still carry over its sign into the result. Note
1357    /// that IEEE 754 doesn't assign any meaning to the sign bit in case of a NaN, and as Rust
1358    /// doesn't guarantee that the bit pattern of NaNs are conserved over arithmetic operations, the
1359    /// result of `copysign` with `sign` being a NaN might produce an unexpected or non-portable
1360    /// result. See the [specification of NaN bit patterns](primitive@f32#nan-bit-patterns) for more
1361    /// info.
1362    ///
1363    /// # Examples
1364    ///
1365    /// ```
1366    /// #![feature(f16)]
1367    /// # #[cfg(target_has_reliable_f16_math)] {
1368    ///
1369    /// let f = 3.5_f16;
1370    ///
1371    /// assert_eq!(f.copysign(0.42), 3.5_f16);
1372    /// assert_eq!(f.copysign(-0.42), -3.5_f16);
1373    /// assert_eq!((-f).copysign(0.42), 3.5_f16);
1374    /// assert_eq!((-f).copysign(-0.42), -3.5_f16);
1375    ///
1376    /// assert!(f16::NAN.copysign(1.0).is_nan());
1377    /// # }
1378    /// ```
1379    #[inline]
1380    #[unstable(feature = "f16", issue = "116909")]
1381    #[rustc_const_unstable(feature = "f16", issue = "116909")]
1382    #[must_use = "method returns a new number and does not mutate the original value"]
1383    pub const fn copysign(self, sign: f16) -> f16 {
1384        intrinsics::copysignf16(self, sign)
1385    }
1386
1387    /// Float addition that allows optimizations based on algebraic rules.
1388    ///
1389    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1390    #[must_use = "method returns a new number and does not mutate the original value"]
1391    #[unstable(feature = "float_algebraic", issue = "136469")]
1392    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1393    #[inline]
1394    pub const fn algebraic_add(self, rhs: f16) -> f16 {
1395        intrinsics::fadd_algebraic(self, rhs)
1396    }
1397
1398    /// Float subtraction that allows optimizations based on algebraic rules.
1399    ///
1400    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1401    #[must_use = "method returns a new number and does not mutate the original value"]
1402    #[unstable(feature = "float_algebraic", issue = "136469")]
1403    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1404    #[inline]
1405    pub const fn algebraic_sub(self, rhs: f16) -> f16 {
1406        intrinsics::fsub_algebraic(self, rhs)
1407    }
1408
1409    /// Float multiplication that allows optimizations based on algebraic rules.
1410    ///
1411    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1412    #[must_use = "method returns a new number and does not mutate the original value"]
1413    #[unstable(feature = "float_algebraic", issue = "136469")]
1414    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1415    #[inline]
1416    pub const fn algebraic_mul(self, rhs: f16) -> f16 {
1417        intrinsics::fmul_algebraic(self, rhs)
1418    }
1419
1420    /// Float division that allows optimizations based on algebraic rules.
1421    ///
1422    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1423    #[must_use = "method returns a new number and does not mutate the original value"]
1424    #[unstable(feature = "float_algebraic", issue = "136469")]
1425    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1426    #[inline]
1427    pub const fn algebraic_div(self, rhs: f16) -> f16 {
1428        intrinsics::fdiv_algebraic(self, rhs)
1429    }
1430
1431    /// Float remainder that allows optimizations based on algebraic rules.
1432    ///
1433    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1434    #[must_use = "method returns a new number and does not mutate the original value"]
1435    #[unstable(feature = "float_algebraic", issue = "136469")]
1436    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1437    #[inline]
1438    pub const fn algebraic_rem(self, rhs: f16) -> f16 {
1439        intrinsics::frem_algebraic(self, rhs)
1440    }
1441}
1442
1443// Functions in this module fall into `core_float_math`
1444// #[unstable(feature = "core_float_math", issue = "137578")]
1445#[cfg(not(test))]
1446#[doc(test(attr(feature(cfg_target_has_reliable_f16_f128), expect(internal_features))))]
1447impl f16 {
1448    /// Returns the largest integer less than or equal to `self`.
1449    ///
1450    /// This function always returns the precise result.
1451    ///
1452    /// # Examples
1453    ///
1454    /// ```
1455    /// #![feature(f16)]
1456    /// # #[cfg(not(miri))]
1457    /// # #[cfg(target_has_reliable_f16)] {
1458    ///
1459    /// let f = 3.7_f16;
1460    /// let g = 3.0_f16;
1461    /// let h = -3.7_f16;
1462    ///
1463    /// assert_eq!(f.floor(), 3.0);
1464    /// assert_eq!(g.floor(), 3.0);
1465    /// assert_eq!(h.floor(), -4.0);
1466    /// # }
1467    /// ```
1468    #[inline]
1469    #[rustc_allow_incoherent_impl]
1470    #[unstable(feature = "f16", issue = "116909")]
1471    #[rustc_const_unstable(feature = "f16", issue = "116909")]
1472    #[must_use = "method returns a new number and does not mutate the original value"]
1473    pub const fn floor(self) -> f16 {
1474        intrinsics::floorf16(self)
1475    }
1476
1477    /// Returns the smallest integer greater than or equal to `self`.
1478    ///
1479    /// This function always returns the precise result.
1480    ///
1481    /// # Examples
1482    ///
1483    /// ```
1484    /// #![feature(f16)]
1485    /// # #[cfg(not(miri))]
1486    /// # #[cfg(target_has_reliable_f16)] {
1487    ///
1488    /// let f = 3.01_f16;
1489    /// let g = 4.0_f16;
1490    ///
1491    /// assert_eq!(f.ceil(), 4.0);
1492    /// assert_eq!(g.ceil(), 4.0);
1493    /// # }
1494    /// ```
1495    #[inline]
1496    #[doc(alias = "ceiling")]
1497    #[rustc_allow_incoherent_impl]
1498    #[unstable(feature = "f16", issue = "116909")]
1499    #[rustc_const_unstable(feature = "f16", issue = "116909")]
1500    #[must_use = "method returns a new number and does not mutate the original value"]
1501    pub const fn ceil(self) -> f16 {
1502        intrinsics::ceilf16(self)
1503    }
1504
1505    /// Returns the nearest integer to `self`. If a value is half-way between two
1506    /// integers, round away from `0.0`.
1507    ///
1508    /// This function always returns the precise result.
1509    ///
1510    /// # Examples
1511    ///
1512    /// ```
1513    /// #![feature(f16)]
1514    /// # #[cfg(not(miri))]
1515    /// # #[cfg(target_has_reliable_f16)] {
1516    ///
1517    /// let f = 3.3_f16;
1518    /// let g = -3.3_f16;
1519    /// let h = -3.7_f16;
1520    /// let i = 3.5_f16;
1521    /// let j = 4.5_f16;
1522    ///
1523    /// assert_eq!(f.round(), 3.0);
1524    /// assert_eq!(g.round(), -3.0);
1525    /// assert_eq!(h.round(), -4.0);
1526    /// assert_eq!(i.round(), 4.0);
1527    /// assert_eq!(j.round(), 5.0);
1528    /// # }
1529    /// ```
1530    #[inline]
1531    #[rustc_allow_incoherent_impl]
1532    #[unstable(feature = "f16", issue = "116909")]
1533    #[rustc_const_unstable(feature = "f16", issue = "116909")]
1534    #[must_use = "method returns a new number and does not mutate the original value"]
1535    pub const fn round(self) -> f16 {
1536        intrinsics::roundf16(self)
1537    }
1538
1539    /// Returns the nearest integer to a number. Rounds half-way cases to the number
1540    /// with an even least significant digit.
1541    ///
1542    /// This function always returns the precise result.
1543    ///
1544    /// # Examples
1545    ///
1546    /// ```
1547    /// #![feature(f16)]
1548    /// # #[cfg(not(miri))]
1549    /// # #[cfg(target_has_reliable_f16)] {
1550    ///
1551    /// let f = 3.3_f16;
1552    /// let g = -3.3_f16;
1553    /// let h = 3.5_f16;
1554    /// let i = 4.5_f16;
1555    ///
1556    /// assert_eq!(f.round_ties_even(), 3.0);
1557    /// assert_eq!(g.round_ties_even(), -3.0);
1558    /// assert_eq!(h.round_ties_even(), 4.0);
1559    /// assert_eq!(i.round_ties_even(), 4.0);
1560    /// # }
1561    /// ```
1562    #[inline]
1563    #[rustc_allow_incoherent_impl]
1564    #[unstable(feature = "f16", issue = "116909")]
1565    #[rustc_const_unstable(feature = "f16", issue = "116909")]
1566    #[must_use = "method returns a new number and does not mutate the original value"]
1567    pub const fn round_ties_even(self) -> f16 {
1568        intrinsics::round_ties_even_f16(self)
1569    }
1570
1571    /// Returns the integer part of `self`.
1572    /// This means that non-integer numbers are always truncated towards zero.
1573    ///
1574    /// This function always returns the precise result.
1575    ///
1576    /// # Examples
1577    ///
1578    /// ```
1579    /// #![feature(f16)]
1580    /// # #[cfg(not(miri))]
1581    /// # #[cfg(target_has_reliable_f16)] {
1582    ///
1583    /// let f = 3.7_f16;
1584    /// let g = 3.0_f16;
1585    /// let h = -3.7_f16;
1586    ///
1587    /// assert_eq!(f.trunc(), 3.0);
1588    /// assert_eq!(g.trunc(), 3.0);
1589    /// assert_eq!(h.trunc(), -3.0);
1590    /// # }
1591    /// ```
1592    #[inline]
1593    #[doc(alias = "truncate")]
1594    #[rustc_allow_incoherent_impl]
1595    #[unstable(feature = "f16", issue = "116909")]
1596    #[rustc_const_unstable(feature = "f16", issue = "116909")]
1597    #[must_use = "method returns a new number and does not mutate the original value"]
1598    pub const fn trunc(self) -> f16 {
1599        intrinsics::truncf16(self)
1600    }
1601
1602    /// Returns the fractional part of `self`.
1603    ///
1604    /// This function always returns the precise result.
1605    ///
1606    /// # Examples
1607    ///
1608    /// ```
1609    /// #![feature(f16)]
1610    /// # #[cfg(not(miri))]
1611    /// # #[cfg(target_has_reliable_f16)] {
1612    ///
1613    /// let x = 3.6_f16;
1614    /// let y = -3.6_f16;
1615    /// let abs_difference_x = (x.fract() - 0.6).abs();
1616    /// let abs_difference_y = (y.fract() - (-0.6)).abs();
1617    ///
1618    /// assert!(abs_difference_x <= f16::EPSILON);
1619    /// assert!(abs_difference_y <= f16::EPSILON);
1620    /// # }
1621    /// ```
1622    #[inline]
1623    #[rustc_allow_incoherent_impl]
1624    #[unstable(feature = "f16", issue = "116909")]
1625    #[rustc_const_unstable(feature = "f16", issue = "116909")]
1626    #[must_use = "method returns a new number and does not mutate the original value"]
1627    pub const fn fract(self) -> f16 {
1628        self - self.trunc()
1629    }
1630
1631    /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
1632    /// error, yielding a more accurate result than an unfused multiply-add.
1633    ///
1634    /// Using `mul_add` *may* be more performant than an unfused multiply-add if
1635    /// the target architecture has a dedicated `fma` CPU instruction. However,
1636    /// this is not always true, and will be heavily dependant on designing
1637    /// algorithms with specific target hardware in mind.
1638    ///
1639    /// # Precision
1640    ///
1641    /// The result of this operation is guaranteed to be the rounded
1642    /// infinite-precision result. It is specified by IEEE 754 as
1643    /// `fusedMultiplyAdd` and guaranteed not to change.
1644    ///
1645    /// # Examples
1646    ///
1647    /// ```
1648    /// #![feature(f16)]
1649    /// # #[cfg(not(miri))]
1650    /// # #[cfg(target_has_reliable_f16)] {
1651    ///
1652    /// let m = 10.0_f16;
1653    /// let x = 4.0_f16;
1654    /// let b = 60.0_f16;
1655    ///
1656    /// assert_eq!(m.mul_add(x, b), 100.0);
1657    /// assert_eq!(m * x + b, 100.0);
1658    ///
1659    /// let one_plus_eps = 1.0_f16 + f16::EPSILON;
1660    /// let one_minus_eps = 1.0_f16 - f16::EPSILON;
1661    /// let minus_one = -1.0_f16;
1662    ///
1663    /// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps.
1664    /// assert_eq!(one_plus_eps.mul_add(one_minus_eps, minus_one), -f16::EPSILON * f16::EPSILON);
1665    /// // Different rounding with the non-fused multiply and add.
1666    /// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0);
1667    /// # }
1668    /// ```
1669    #[inline]
1670    #[rustc_allow_incoherent_impl]
1671    #[unstable(feature = "f16", issue = "116909")]
1672    #[doc(alias = "fmaf16", alias = "fusedMultiplyAdd")]
1673    #[must_use = "method returns a new number and does not mutate the original value"]
1674    pub const fn mul_add(self, a: f16, b: f16) -> f16 {
1675        intrinsics::fmaf16(self, a, b)
1676    }
1677
1678    /// Calculates Euclidean division, the matching method for `rem_euclid`.
1679    ///
1680    /// This computes the integer `n` such that
1681    /// `self = n * rhs + self.rem_euclid(rhs)`.
1682    /// In other words, the result is `self / rhs` rounded to the integer `n`
1683    /// such that `self >= n * rhs`.
1684    ///
1685    /// # Precision
1686    ///
1687    /// The result of this operation is guaranteed to be the rounded
1688    /// infinite-precision result.
1689    ///
1690    /// # Examples
1691    ///
1692    /// ```
1693    /// #![feature(f16)]
1694    /// # #[cfg(not(miri))]
1695    /// # #[cfg(target_has_reliable_f16)] {
1696    ///
1697    /// let a: f16 = 7.0;
1698    /// let b = 4.0;
1699    /// assert_eq!(a.div_euclid(b), 1.0); // 7.0 > 4.0 * 1.0
1700    /// assert_eq!((-a).div_euclid(b), -2.0); // -7.0 >= 4.0 * -2.0
1701    /// assert_eq!(a.div_euclid(-b), -1.0); // 7.0 >= -4.0 * -1.0
1702    /// assert_eq!((-a).div_euclid(-b), 2.0); // -7.0 >= -4.0 * 2.0
1703    /// # }
1704    /// ```
1705    #[inline]
1706    #[rustc_allow_incoherent_impl]
1707    #[unstable(feature = "f16", issue = "116909")]
1708    #[must_use = "method returns a new number and does not mutate the original value"]
1709    pub fn div_euclid(self, rhs: f16) -> f16 {
1710        let q = (self / rhs).trunc();
1711        if self % rhs < 0.0 {
1712            return if rhs > 0.0 { q - 1.0 } else { q + 1.0 };
1713        }
1714        q
1715    }
1716
1717    /// Calculates the least nonnegative remainder of `self` when
1718    /// divided by `rhs`.
1719    ///
1720    /// In particular, the return value `r` satisfies `0.0 <= r < rhs.abs()` in
1721    /// most cases. However, due to a floating point round-off error it can
1722    /// result in `r == rhs.abs()`, violating the mathematical definition, if
1723    /// `self` is much smaller than `rhs.abs()` in magnitude and `self < 0.0`.
1724    /// This result is not an element of the function's codomain, but it is the
1725    /// closest floating point number in the real numbers and thus fulfills the
1726    /// property `self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)`
1727    /// approximately.
1728    ///
1729    /// # Precision
1730    ///
1731    /// The result of this operation is guaranteed to be the rounded
1732    /// infinite-precision result.
1733    ///
1734    /// # Examples
1735    ///
1736    /// ```
1737    /// #![feature(f16)]
1738    /// # #[cfg(not(miri))]
1739    /// # #[cfg(target_has_reliable_f16)] {
1740    ///
1741    /// let a: f16 = 7.0;
1742    /// let b = 4.0;
1743    /// assert_eq!(a.rem_euclid(b), 3.0);
1744    /// assert_eq!((-a).rem_euclid(b), 1.0);
1745    /// assert_eq!(a.rem_euclid(-b), 3.0);
1746    /// assert_eq!((-a).rem_euclid(-b), 1.0);
1747    /// // limitation due to round-off error
1748    /// assert!((-f16::EPSILON).rem_euclid(3.0) != 0.0);
1749    /// # }
1750    /// ```
1751    #[inline]
1752    #[rustc_allow_incoherent_impl]
1753    #[doc(alias = "modulo", alias = "mod")]
1754    #[unstable(feature = "f16", issue = "116909")]
1755    #[must_use = "method returns a new number and does not mutate the original value"]
1756    pub fn rem_euclid(self, rhs: f16) -> f16 {
1757        let r = self % rhs;
1758        if r < 0.0 { r + rhs.abs() } else { r }
1759    }
1760
1761    /// Raises a number to an integer power.
1762    ///
1763    /// Using this function is generally faster than using `powf`.
1764    /// It might have a different sequence of rounding operations than `powf`,
1765    /// so the results are not guaranteed to agree.
1766    ///
1767    /// Note that this function is special in that it can return non-NaN results for NaN inputs. For
1768    /// example, `f16::powi(f16::NAN, 0)` returns `1.0`. However, if an input is a *signaling*
1769    /// NaN, then the result is non-deterministically either a NaN or the result that the
1770    /// corresponding quiet NaN would produce.
1771    ///
1772    /// # Unspecified precision
1773    ///
1774    /// The precision of this function is non-deterministic. This means it varies by platform,
1775    /// Rust version, and can even differ within the same execution from one invocation to the next.
1776    ///
1777    /// # Examples
1778    ///
1779    /// ```
1780    /// #![feature(f16)]
1781    /// # #[cfg(not(miri))]
1782    /// # #[cfg(target_has_reliable_f16)] {
1783    ///
1784    /// let x = 2.0_f16;
1785    /// let abs_difference = (x.powi(2) - (x * x)).abs();
1786    /// assert!(abs_difference <= f16::EPSILON);
1787    ///
1788    /// assert_eq!(f16::powi(f16::NAN, 0), 1.0);
1789    /// assert_eq!(f16::powi(0.0, 0), 1.0);
1790    /// # }
1791    /// ```
1792    #[inline]
1793    #[rustc_allow_incoherent_impl]
1794    #[unstable(feature = "f16", issue = "116909")]
1795    #[must_use = "method returns a new number and does not mutate the original value"]
1796    pub fn powi(self, n: i32) -> f16 {
1797        intrinsics::powif16(self, n)
1798    }
1799
1800    /// Returns the square root of a number.
1801    ///
1802    /// Returns NaN if `self` is a negative number other than `-0.0`.
1803    ///
1804    /// # Precision
1805    ///
1806    /// The result of this operation is guaranteed to be the rounded
1807    /// infinite-precision result. It is specified by IEEE 754 as `squareRoot`
1808    /// and guaranteed not to change.
1809    ///
1810    /// # Examples
1811    ///
1812    /// ```
1813    /// #![feature(f16)]
1814    /// # #[cfg(not(miri))]
1815    /// # #[cfg(target_has_reliable_f16)] {
1816    ///
1817    /// let positive = 4.0_f16;
1818    /// let negative = -4.0_f16;
1819    /// let negative_zero = -0.0_f16;
1820    ///
1821    /// assert_eq!(positive.sqrt(), 2.0);
1822    /// assert!(negative.sqrt().is_nan());
1823    /// assert!(negative_zero.sqrt() == negative_zero);
1824    /// # }
1825    /// ```
1826    #[inline]
1827    #[doc(alias = "squareRoot")]
1828    #[rustc_allow_incoherent_impl]
1829    #[unstable(feature = "f16", issue = "116909")]
1830    #[must_use = "method returns a new number and does not mutate the original value"]
1831    pub fn sqrt(self) -> f16 {
1832        intrinsics::sqrtf16(self)
1833    }
1834
1835    /// Returns the cube root of a number.
1836    ///
1837    /// # Unspecified precision
1838    ///
1839    /// The precision of this function is non-deterministic. This means it varies by platform,
1840    /// Rust version, and can even differ within the same execution from one invocation to the next.
1841    ///
1842    /// This function currently corresponds to the `cbrtf` from libc on Unix
1843    /// and Windows. Note that this might change in the future.
1844    ///
1845    /// # Examples
1846    ///
1847    /// ```
1848    /// #![feature(f16)]
1849    /// # #[cfg(not(miri))]
1850    /// # #[cfg(target_has_reliable_f16)] {
1851    ///
1852    /// let x = 8.0f16;
1853    ///
1854    /// // x^(1/3) - 2 == 0
1855    /// let abs_difference = (x.cbrt() - 2.0).abs();
1856    ///
1857    /// assert!(abs_difference <= f16::EPSILON);
1858    /// # }
1859    /// ```
1860    #[inline]
1861    #[rustc_allow_incoherent_impl]
1862    #[unstable(feature = "f16", issue = "116909")]
1863    #[must_use = "method returns a new number and does not mutate the original value"]
1864    pub fn cbrt(self) -> f16 {
1865        libm::cbrtf(self as f32) as f16
1866    }
1867}