core/ffi/
c_str.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
//! [`CStr`] and its related types.

use crate::cmp::Ordering;
use crate::error::Error;
use crate::ffi::c_char;
use crate::intrinsics::const_eval_select;
use crate::iter::FusedIterator;
use crate::marker::PhantomData;
use crate::ptr::NonNull;
use crate::slice::memchr;
use crate::{fmt, ops, slice, str};

// FIXME: because this is doc(inline)d, we *have* to use intra-doc links because the actual link
//   depends on where the item is being documented. however, since this is libcore, we can't
//   actually reference libstd or liballoc in intra-doc links. so, the best we can do is remove the
//   links to `CString` and `String` for now until a solution is developed

/// Representation of a borrowed C string.
///
/// This type represents a borrowed reference to a nul-terminated
/// array of bytes. It can be constructed safely from a <code>&[[u8]]</code>
/// slice, or unsafely from a raw `*const c_char`. It can be expressed as a
/// literal in the form `c"Hello world"`.
///
/// The `CStr` can then be converted to a Rust <code>&[str]</code> by performing
/// UTF-8 validation, or into an owned `CString`.
///
/// `&CStr` is to `CString` as <code>&[str]</code> is to `String`: the former
/// in each pair are borrowed references; the latter are owned
/// strings.
///
/// Note that this structure does **not** have a guaranteed layout (the `repr(transparent)`
/// notwithstanding) and should not be placed in the signatures of FFI functions.
/// Instead, safe wrappers of FFI functions may leverage [`CStr::as_ptr`] and the unsafe
/// [`CStr::from_ptr`] constructor to provide a safe interface to other consumers.
///
/// # Examples
///
/// Inspecting a foreign C string:
///
/// ```
/// use std::ffi::CStr;
/// use std::os::raw::c_char;
///
/// # /* Extern functions are awkward in doc comments - fake it instead
/// extern "C" { fn my_string() -> *const c_char; }
/// # */ unsafe extern "C" fn my_string() -> *const c_char { c"hello".as_ptr() }
///
/// unsafe {
///     let slice = CStr::from_ptr(my_string());
///     println!("string buffer size without nul terminator: {}", slice.to_bytes().len());
/// }
/// ```
///
/// Passing a Rust-originating C string:
///
/// ```
/// use std::ffi::{CString, CStr};
/// use std::os::raw::c_char;
///
/// fn work(data: &CStr) {
/// #   /* Extern functions are awkward in doc comments - fake it instead
///     extern "C" { fn work_with(data: *const c_char); }
/// #   */ unsafe extern "C" fn work_with(s: *const c_char) {}
///
///     unsafe { work_with(data.as_ptr()) }
/// }
///
/// let s = CString::new("data data data data").expect("CString::new failed");
/// work(&s);
/// ```
///
/// Converting a foreign C string into a Rust `String`:
///
/// ```
/// use std::ffi::CStr;
/// use std::os::raw::c_char;
///
/// # /* Extern functions are awkward in doc comments - fake it instead
/// extern "C" { fn my_string() -> *const c_char; }
/// # */ unsafe extern "C" fn my_string() -> *const c_char { c"hello".as_ptr() }
///
/// fn my_string_safe() -> String {
///     let cstr = unsafe { CStr::from_ptr(my_string()) };
///     // Get copy-on-write Cow<'_, str>, then guarantee a freshly-owned String allocation
///     String::from_utf8_lossy(cstr.to_bytes()).to_string()
/// }
///
/// println!("string: {}", my_string_safe());
/// ```
///
/// [str]: prim@str "str"
#[derive(PartialEq, Eq, Hash)]
#[stable(feature = "core_c_str", since = "1.64.0")]
#[rustc_diagnostic_item = "cstr_type"]
#[rustc_has_incoherent_inherent_impls]
#[lang = "CStr"]
// `fn from` in `impl From<&CStr> for Box<CStr>` current implementation relies
// on `CStr` being layout-compatible with `[u8]`.
// However, `CStr` layout is considered an implementation detail and must not be relied upon. We
// want `repr(transparent)` but we don't want it to show up in rustdoc, so we hide it under
// `cfg(doc)`. This is an ad-hoc implementation of attribute privacy.
#[repr(transparent)]
pub struct CStr {
    // FIXME: this should not be represented with a DST slice but rather with
    //        just a raw `c_char` along with some form of marker to make
    //        this an unsized type. Essentially `sizeof(&CStr)` should be the
    //        same as `sizeof(&c_char)` but `CStr` should be an unsized type.
    inner: [c_char],
}

/// An error indicating that a nul byte was not in the expected position.
///
/// The slice used to create a [`CStr`] must have one and only one nul byte,
/// positioned at the end.
///
/// This error is created by the [`CStr::from_bytes_with_nul`] method.
/// See its documentation for more.
///
/// # Examples
///
/// ```
/// use std::ffi::{CStr, FromBytesWithNulError};
///
/// let _: FromBytesWithNulError = CStr::from_bytes_with_nul(b"f\0oo").unwrap_err();
/// ```
#[derive(Clone, PartialEq, Eq, Debug)]
#[stable(feature = "core_c_str", since = "1.64.0")]
pub struct FromBytesWithNulError {
    kind: FromBytesWithNulErrorKind,
}

#[derive(Clone, PartialEq, Eq, Debug)]
enum FromBytesWithNulErrorKind {
    InteriorNul(usize),
    NotNulTerminated,
}

// FIXME: const stability attributes should not be required here, I think
impl FromBytesWithNulError {
    const fn interior_nul(pos: usize) -> FromBytesWithNulError {
        FromBytesWithNulError { kind: FromBytesWithNulErrorKind::InteriorNul(pos) }
    }
    const fn not_nul_terminated() -> FromBytesWithNulError {
        FromBytesWithNulError { kind: FromBytesWithNulErrorKind::NotNulTerminated }
    }
}

#[stable(feature = "frombyteswithnulerror_impls", since = "1.17.0")]
impl Error for FromBytesWithNulError {
    #[allow(deprecated)]
    fn description(&self) -> &str {
        match self.kind {
            FromBytesWithNulErrorKind::InteriorNul(..) => {
                "data provided contains an interior nul byte"
            }
            FromBytesWithNulErrorKind::NotNulTerminated => "data provided is not nul terminated",
        }
    }
}

/// An error indicating that no nul byte was present.
///
/// A slice used to create a [`CStr`] must contain a nul byte somewhere
/// within the slice.
///
/// This error is created by the [`CStr::from_bytes_until_nul`] method.
///
#[derive(Clone, PartialEq, Eq, Debug)]
#[stable(feature = "cstr_from_bytes_until_nul", since = "1.69.0")]
pub struct FromBytesUntilNulError(());

#[stable(feature = "cstr_from_bytes_until_nul", since = "1.69.0")]
impl fmt::Display for FromBytesUntilNulError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "data provided does not contain a nul")
    }
}

#[stable(feature = "cstr_debug", since = "1.3.0")]
impl fmt::Debug for CStr {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "\"{}\"", self.to_bytes().escape_ascii())
    }
}

#[stable(feature = "cstr_default", since = "1.10.0")]
impl Default for &CStr {
    #[inline]
    fn default() -> Self {
        const SLICE: &[c_char] = &[0];
        // SAFETY: `SLICE` is indeed pointing to a valid nul-terminated string.
        unsafe { CStr::from_ptr(SLICE.as_ptr()) }
    }
}

#[stable(feature = "frombyteswithnulerror_impls", since = "1.17.0")]
impl fmt::Display for FromBytesWithNulError {
    #[allow(deprecated, deprecated_in_future)]
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str(self.description())?;
        if let FromBytesWithNulErrorKind::InteriorNul(pos) = self.kind {
            write!(f, " at byte pos {pos}")?;
        }
        Ok(())
    }
}

impl CStr {
    /// Wraps a raw C string with a safe C string wrapper.
    ///
    /// This function will wrap the provided `ptr` with a `CStr` wrapper, which
    /// allows inspection and interoperation of non-owned C strings. The total
    /// size of the terminated buffer must be smaller than [`isize::MAX`] **bytes**
    /// in memory (a restriction from [`slice::from_raw_parts`]).
    ///
    /// # Safety
    ///
    /// * The memory pointed to by `ptr` must contain a valid nul terminator at the
    ///   end of the string.
    ///
    /// * `ptr` must be [valid] for reads of bytes up to and including the nul terminator.
    ///   This means in particular:
    ///
    ///     * The entire memory range of this `CStr` must be contained within a single allocated object!
    ///     * `ptr` must be non-null even for a zero-length cstr.
    ///
    /// * The memory referenced by the returned `CStr` must not be mutated for
    ///   the duration of lifetime `'a`.
    ///
    /// * The nul terminator must be within `isize::MAX` from `ptr`
    ///
    /// > **Note**: This operation is intended to be a 0-cost cast but it is
    /// > currently implemented with an up-front calculation of the length of
    /// > the string. This is not guaranteed to always be the case.
    ///
    /// # Caveat
    ///
    /// The lifetime for the returned slice is inferred from its usage. To prevent accidental misuse,
    /// it's suggested to tie the lifetime to whichever source lifetime is safe in the context,
    /// such as by providing a helper function taking the lifetime of a host value for the slice,
    /// or by explicit annotation.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::ffi::{c_char, CStr};
    ///
    /// fn my_string() -> *const c_char {
    ///     c"hello".as_ptr()
    /// }
    ///
    /// unsafe {
    ///     let slice = CStr::from_ptr(my_string());
    ///     assert_eq!(slice.to_str().unwrap(), "hello");
    /// }
    /// ```
    ///
    /// ```
    /// use std::ffi::{c_char, CStr};
    ///
    /// const HELLO_PTR: *const c_char = {
    ///     const BYTES: &[u8] = b"Hello, world!\0";
    ///     BYTES.as_ptr().cast()
    /// };
    /// const HELLO: &CStr = unsafe { CStr::from_ptr(HELLO_PTR) };
    ///
    /// assert_eq!(c"Hello, world!", HELLO);
    /// ```
    ///
    /// [valid]: core::ptr#safety
    #[inline] // inline is necessary for codegen to see strlen.
    #[must_use]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[rustc_const_stable(feature = "const_cstr_from_ptr", since = "1.81.0")]
    pub const unsafe fn from_ptr<'a>(ptr: *const c_char) -> &'a CStr {
        // SAFETY: The caller has provided a pointer that points to a valid C
        // string with a NUL terminator less than `isize::MAX` from `ptr`.
        let len = unsafe { strlen(ptr) };

        // SAFETY: The caller has provided a valid pointer with length less than
        // `isize::MAX`, so `from_raw_parts` is safe. The content remains valid
        // and doesn't change for the lifetime of the returned `CStr`. This
        // means the call to `from_bytes_with_nul_unchecked` is correct.
        //
        // The cast from c_char to u8 is ok because a c_char is always one byte.
        unsafe { Self::from_bytes_with_nul_unchecked(slice::from_raw_parts(ptr.cast(), len + 1)) }
    }

    /// Creates a C string wrapper from a byte slice with any number of nuls.
    ///
    /// This method will create a `CStr` from any byte slice that contains at
    /// least one nul byte. Unlike with [`CStr::from_bytes_with_nul`], the caller
    /// does not need to know where the nul byte is located.
    ///
    /// If the first byte is a nul character, this method will return an
    /// empty `CStr`. If multiple nul characters are present, the `CStr` will
    /// end at the first one.
    ///
    /// If the slice only has a single nul byte at the end, this method is
    /// equivalent to [`CStr::from_bytes_with_nul`].
    ///
    /// # Examples
    /// ```
    /// use std::ffi::CStr;
    ///
    /// let mut buffer = [0u8; 16];
    /// unsafe {
    ///     // Here we might call an unsafe C function that writes a string
    ///     // into the buffer.
    ///     let buf_ptr = buffer.as_mut_ptr();
    ///     buf_ptr.write_bytes(b'A', 8);
    /// }
    /// // Attempt to extract a C nul-terminated string from the buffer.
    /// let c_str = CStr::from_bytes_until_nul(&buffer[..]).unwrap();
    /// assert_eq!(c_str.to_str().unwrap(), "AAAAAAAA");
    /// ```
    ///
    #[stable(feature = "cstr_from_bytes_until_nul", since = "1.69.0")]
    #[rustc_const_stable(feature = "cstr_from_bytes_until_nul", since = "1.69.0")]
    pub const fn from_bytes_until_nul(bytes: &[u8]) -> Result<&CStr, FromBytesUntilNulError> {
        let nul_pos = memchr::memchr(0, bytes);
        match nul_pos {
            Some(nul_pos) => {
                // FIXME(const-hack) replace with range index
                // SAFETY: nul_pos + 1 <= bytes.len()
                let subslice = unsafe { crate::slice::from_raw_parts(bytes.as_ptr(), nul_pos + 1) };
                // SAFETY: We know there is a nul byte at nul_pos, so this slice
                // (ending at the nul byte) is a well-formed C string.
                Ok(unsafe { CStr::from_bytes_with_nul_unchecked(subslice) })
            }
            None => Err(FromBytesUntilNulError(())),
        }
    }

    /// Creates a C string wrapper from a byte slice with exactly one nul
    /// terminator.
    ///
    /// This function will cast the provided `bytes` to a `CStr`
    /// wrapper after ensuring that the byte slice is nul-terminated
    /// and does not contain any interior nul bytes.
    ///
    /// If the nul byte may not be at the end,
    /// [`CStr::from_bytes_until_nul`] can be used instead.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::ffi::CStr;
    ///
    /// let cstr = CStr::from_bytes_with_nul(b"hello\0");
    /// assert!(cstr.is_ok());
    /// ```
    ///
    /// Creating a `CStr` without a trailing nul terminator is an error:
    ///
    /// ```
    /// use std::ffi::CStr;
    ///
    /// let cstr = CStr::from_bytes_with_nul(b"hello");
    /// assert!(cstr.is_err());
    /// ```
    ///
    /// Creating a `CStr` with an interior nul byte is an error:
    ///
    /// ```
    /// use std::ffi::CStr;
    ///
    /// let cstr = CStr::from_bytes_with_nul(b"he\0llo\0");
    /// assert!(cstr.is_err());
    /// ```
    #[stable(feature = "cstr_from_bytes", since = "1.10.0")]
    #[rustc_const_stable(feature = "const_cstr_methods", since = "1.72.0")]
    pub const fn from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, FromBytesWithNulError> {
        let nul_pos = memchr::memchr(0, bytes);
        match nul_pos {
            Some(nul_pos) if nul_pos + 1 == bytes.len() => {
                // SAFETY: We know there is only one nul byte, at the end
                // of the byte slice.
                Ok(unsafe { Self::from_bytes_with_nul_unchecked(bytes) })
            }
            Some(nul_pos) => Err(FromBytesWithNulError::interior_nul(nul_pos)),
            None => Err(FromBytesWithNulError::not_nul_terminated()),
        }
    }

    /// Unsafely creates a C string wrapper from a byte slice.
    ///
    /// This function will cast the provided `bytes` to a `CStr` wrapper without
    /// performing any sanity checks.
    ///
    /// # Safety
    /// The provided slice **must** be nul-terminated and not contain any interior
    /// nul bytes.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::ffi::{CStr, CString};
    ///
    /// unsafe {
    ///     let cstring = CString::new("hello").expect("CString::new failed");
    ///     let cstr = CStr::from_bytes_with_nul_unchecked(cstring.to_bytes_with_nul());
    ///     assert_eq!(cstr, &*cstring);
    /// }
    /// ```
    #[inline]
    #[must_use]
    #[stable(feature = "cstr_from_bytes", since = "1.10.0")]
    #[rustc_const_stable(feature = "const_cstr_unchecked", since = "1.59.0")]
    #[rustc_allow_const_fn_unstable(const_eval_select)]
    pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr {
        const_eval_select!(
            @capture { bytes: &[u8] } -> &CStr:
            if const {
                // Saturating so that an empty slice panics in the assert with a good
                // message, not here due to underflow.
                let mut i = bytes.len().saturating_sub(1);
                assert!(!bytes.is_empty() && bytes[i] == 0, "input was not nul-terminated");

                // Ending nul byte exists, skip to the rest.
                while i != 0 {
                    i -= 1;
                    let byte = bytes[i];
                    assert!(byte != 0, "input contained interior nul");
                }

                // SAFETY: See runtime cast comment below.
                unsafe { &*(bytes as *const [u8] as *const CStr) }
            } else {
                // Chance at catching some UB at runtime with debug builds.
                debug_assert!(!bytes.is_empty() && bytes[bytes.len() - 1] == 0);

                // SAFETY: Casting to CStr is safe because its internal representation
                // is a [u8] too (safe only inside std).
                // Dereferencing the obtained pointer is safe because it comes from a
                // reference. Making a reference is then safe because its lifetime
                // is bound by the lifetime of the given `bytes`.
                unsafe { &*(bytes as *const [u8] as *const CStr) }
            }
        )
    }

    /// Returns the inner pointer to this C string.
    ///
    /// The returned pointer will be valid for as long as `self` is, and points
    /// to a contiguous region of memory terminated with a 0 byte to represent
    /// the end of the string.
    ///
    /// The type of the returned pointer is
    /// [`*const c_char`][crate::ffi::c_char], and whether it's
    /// an alias for `*const i8` or `*const u8` is platform-specific.
    ///
    /// **WARNING**
    ///
    /// The returned pointer is read-only; writing to it (including passing it
    /// to C code that writes to it) causes undefined behavior.
    ///
    /// It is your responsibility to make sure that the underlying memory is not
    /// freed too early. For example, the following code will cause undefined
    /// behavior when `ptr` is used inside the `unsafe` block:
    ///
    /// ```no_run
    /// # #![allow(unused_must_use)]
    /// # #![expect(dangling_pointers_from_temporaries)]
    /// use std::ffi::CString;
    ///
    /// // Do not do this:
    /// let ptr = CString::new("Hello").expect("CString::new failed").as_ptr();
    /// unsafe {
    ///     // `ptr` is dangling
    ///     *ptr;
    /// }
    /// ```
    ///
    /// This happens because the pointer returned by `as_ptr` does not carry any
    /// lifetime information and the `CString` is deallocated immediately after
    /// the `CString::new("Hello").expect("CString::new failed").as_ptr()`
    /// expression is evaluated.
    /// To fix the problem, bind the `CString` to a local variable:
    ///
    /// ```no_run
    /// # #![allow(unused_must_use)]
    /// use std::ffi::CString;
    ///
    /// let hello = CString::new("Hello").expect("CString::new failed");
    /// let ptr = hello.as_ptr();
    /// unsafe {
    ///     // `ptr` is valid because `hello` is in scope
    ///     *ptr;
    /// }
    /// ```
    ///
    /// This way, the lifetime of the `CString` in `hello` encompasses
    /// the lifetime of `ptr` and the `unsafe` block.
    #[inline]
    #[must_use]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[rustc_const_stable(feature = "const_str_as_ptr", since = "1.32.0")]
    #[rustc_as_ptr]
    #[rustc_never_returns_null_ptr]
    pub const fn as_ptr(&self) -> *const c_char {
        self.inner.as_ptr()
    }

    /// We could eventually expose this publicly, if we wanted.
    #[inline]
    #[must_use]
    const fn as_non_null_ptr(&self) -> NonNull<c_char> {
        // FIXME(const_trait_impl) replace with `NonNull::from`
        // SAFETY: a reference is never null
        unsafe { NonNull::new_unchecked(&self.inner as *const [c_char] as *mut [c_char]) }
            .as_non_null_ptr()
    }

    /// Returns the length of `self`. Like C's `strlen`, this does not include the nul terminator.
    ///
    /// > **Note**: This method is currently implemented as a constant-time
    /// > cast, but it is planned to alter its definition in the future to
    /// > perform the length calculation whenever this method is called.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::ffi::CStr;
    ///
    /// let cstr = CStr::from_bytes_with_nul(b"foo\0").unwrap();
    /// assert_eq!(cstr.count_bytes(), 3);
    ///
    /// let cstr = CStr::from_bytes_with_nul(b"\0").unwrap();
    /// assert_eq!(cstr.count_bytes(), 0);
    /// ```
    #[inline]
    #[must_use]
    #[doc(alias("len", "strlen"))]
    #[stable(feature = "cstr_count_bytes", since = "1.79.0")]
    #[rustc_const_stable(feature = "const_cstr_from_ptr", since = "1.81.0")]
    pub const fn count_bytes(&self) -> usize {
        self.inner.len() - 1
    }

    /// Returns `true` if `self.to_bytes()` has a length of 0.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::ffi::CStr;
    /// # use std::ffi::FromBytesWithNulError;
    ///
    /// # fn main() { test().unwrap(); }
    /// # fn test() -> Result<(), FromBytesWithNulError> {
    /// let cstr = CStr::from_bytes_with_nul(b"foo\0")?;
    /// assert!(!cstr.is_empty());
    ///
    /// let empty_cstr = CStr::from_bytes_with_nul(b"\0")?;
    /// assert!(empty_cstr.is_empty());
    /// assert!(c"".is_empty());
    /// # Ok(())
    /// # }
    /// ```
    #[inline]
    #[stable(feature = "cstr_is_empty", since = "1.71.0")]
    #[rustc_const_stable(feature = "cstr_is_empty", since = "1.71.0")]
    pub const fn is_empty(&self) -> bool {
        // SAFETY: We know there is at least one byte; for empty strings it
        // is the NUL terminator.
        // FIXME(const-hack): use get_unchecked
        unsafe { *self.inner.as_ptr() == 0 }
    }

    /// Converts this C string to a byte slice.
    ///
    /// The returned slice will **not** contain the trailing nul terminator that this C
    /// string has.
    ///
    /// > **Note**: This method is currently implemented as a constant-time
    /// > cast, but it is planned to alter its definition in the future to
    /// > perform the length calculation whenever this method is called.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::ffi::CStr;
    ///
    /// let cstr = CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed");
    /// assert_eq!(cstr.to_bytes(), b"foo");
    /// ```
    #[inline]
    #[must_use = "this returns the result of the operation, \
                  without modifying the original"]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[rustc_const_stable(feature = "const_cstr_methods", since = "1.72.0")]
    pub const fn to_bytes(&self) -> &[u8] {
        let bytes = self.to_bytes_with_nul();
        // FIXME(const-hack) replace with range index
        // SAFETY: to_bytes_with_nul returns slice with length at least 1
        unsafe { slice::from_raw_parts(bytes.as_ptr(), bytes.len() - 1) }
    }

    /// Converts this C string to a byte slice containing the trailing 0 byte.
    ///
    /// This function is the equivalent of [`CStr::to_bytes`] except that it
    /// will retain the trailing nul terminator instead of chopping it off.
    ///
    /// > **Note**: This method is currently implemented as a 0-cost cast, but
    /// > it is planned to alter its definition in the future to perform the
    /// > length calculation whenever this method is called.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::ffi::CStr;
    ///
    /// let cstr = CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed");
    /// assert_eq!(cstr.to_bytes_with_nul(), b"foo\0");
    /// ```
    #[inline]
    #[must_use = "this returns the result of the operation, \
                  without modifying the original"]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[rustc_const_stable(feature = "const_cstr_methods", since = "1.72.0")]
    pub const fn to_bytes_with_nul(&self) -> &[u8] {
        // SAFETY: Transmuting a slice of `c_char`s to a slice of `u8`s
        // is safe on all supported targets.
        unsafe { &*((&raw const self.inner) as *const [u8]) }
    }

    /// Iterates over the bytes in this C string.
    ///
    /// The returned iterator will **not** contain the trailing nul terminator
    /// that this C string has.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(cstr_bytes)]
    /// use std::ffi::CStr;
    ///
    /// let cstr = CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed");
    /// assert!(cstr.bytes().eq(*b"foo"));
    /// ```
    #[inline]
    #[unstable(feature = "cstr_bytes", issue = "112115")]
    pub fn bytes(&self) -> Bytes<'_> {
        Bytes::new(self)
    }

    /// Yields a <code>&[str]</code> slice if the `CStr` contains valid UTF-8.
    ///
    /// If the contents of the `CStr` are valid UTF-8 data, this
    /// function will return the corresponding <code>&[str]</code> slice. Otherwise,
    /// it will return an error with details of where UTF-8 validation failed.
    ///
    /// [str]: prim@str "str"
    ///
    /// # Examples
    ///
    /// ```
    /// use std::ffi::CStr;
    ///
    /// let cstr = CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed");
    /// assert_eq!(cstr.to_str(), Ok("foo"));
    /// ```
    #[stable(feature = "cstr_to_str", since = "1.4.0")]
    #[rustc_const_stable(feature = "const_cstr_methods", since = "1.72.0")]
    pub const fn to_str(&self) -> Result<&str, str::Utf8Error> {
        // N.B., when `CStr` is changed to perform the length check in `.to_bytes()`
        // instead of in `from_ptr()`, it may be worth considering if this should
        // be rewritten to do the UTF-8 check inline with the length calculation
        // instead of doing it afterwards.
        str::from_utf8(self.to_bytes())
    }
}

// `.to_bytes()` representations are compared instead of the inner `[c_char]`s,
// because `c_char` is `i8` (not `u8`) on some platforms.
// That is why this is implemented manually and not derived.
#[stable(feature = "rust1", since = "1.0.0")]
impl PartialOrd for CStr {
    #[inline]
    fn partial_cmp(&self, other: &CStr) -> Option<Ordering> {
        self.to_bytes().partial_cmp(&other.to_bytes())
    }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Ord for CStr {
    #[inline]
    fn cmp(&self, other: &CStr) -> Ordering {
        self.to_bytes().cmp(&other.to_bytes())
    }
}

#[stable(feature = "cstr_range_from", since = "1.47.0")]
impl ops::Index<ops::RangeFrom<usize>> for CStr {
    type Output = CStr;

    #[inline]
    fn index(&self, index: ops::RangeFrom<usize>) -> &CStr {
        let bytes = self.to_bytes_with_nul();
        // we need to manually check the starting index to account for the null
        // byte, since otherwise we could get an empty string that doesn't end
        // in a null.
        if index.start < bytes.len() {
            // SAFETY: Non-empty tail of a valid `CStr` is still a valid `CStr`.
            unsafe { CStr::from_bytes_with_nul_unchecked(&bytes[index.start..]) }
        } else {
            panic!(
                "index out of bounds: the len is {} but the index is {}",
                bytes.len(),
                index.start
            );
        }
    }
}

#[stable(feature = "cstring_asref", since = "1.7.0")]
impl AsRef<CStr> for CStr {
    #[inline]
    fn as_ref(&self) -> &CStr {
        self
    }
}

/// Calculate the length of a nul-terminated string. Defers to C's `strlen` when possible.
///
/// # Safety
///
/// The pointer must point to a valid buffer that contains a NUL terminator. The NUL must be
/// located within `isize::MAX` from `ptr`.
#[inline]
#[unstable(feature = "cstr_internals", issue = "none")]
#[rustc_allow_const_fn_unstable(const_eval_select)]
const unsafe fn strlen(ptr: *const c_char) -> usize {
    const_eval_select!(
        @capture { s: *const c_char = ptr } -> usize:
        if const {
            let mut len = 0;

            // SAFETY: Outer caller has provided a pointer to a valid C string.
            while unsafe { *s.add(len) } != 0 {
                len += 1;
            }

            len
        } else {
            extern "C" {
                /// Provided by libc or compiler_builtins.
                fn strlen(s: *const c_char) -> usize;
            }

            // SAFETY: Outer caller has provided a pointer to a valid C string.
            unsafe { strlen(s) }
        }
    )
}

/// An iterator over the bytes of a [`CStr`], without the nul terminator.
///
/// This struct is created by the [`bytes`] method on [`CStr`].
/// See its documentation for more.
///
/// [`bytes`]: CStr::bytes
#[must_use = "iterators are lazy and do nothing unless consumed"]
#[unstable(feature = "cstr_bytes", issue = "112115")]
#[derive(Clone, Debug)]
pub struct Bytes<'a> {
    // since we know the string is nul-terminated, we only need one pointer
    ptr: NonNull<u8>,
    phantom: PhantomData<&'a [c_char]>,
}

#[unstable(feature = "cstr_bytes", issue = "112115")]
unsafe impl Send for Bytes<'_> {}

#[unstable(feature = "cstr_bytes", issue = "112115")]
unsafe impl Sync for Bytes<'_> {}

impl<'a> Bytes<'a> {
    #[inline]
    fn new(s: &'a CStr) -> Self {
        Self { ptr: s.as_non_null_ptr().cast(), phantom: PhantomData }
    }

    #[inline]
    fn is_empty(&self) -> bool {
        // SAFETY: We uphold that the pointer is always valid to dereference
        // by starting with a valid C string and then never incrementing beyond
        // the nul terminator.
        unsafe { self.ptr.read() == 0 }
    }
}

#[unstable(feature = "cstr_bytes", issue = "112115")]
impl Iterator for Bytes<'_> {
    type Item = u8;

    #[inline]
    fn next(&mut self) -> Option<u8> {
        // SAFETY: We only choose a pointer from a valid C string, which must
        // be non-null and contain at least one value. Since we always stop at
        // the nul terminator, which is guaranteed to exist, we can assume that
        // the pointer is non-null and valid. This lets us safely dereference
        // it and assume that adding 1 will create a new, non-null, valid
        // pointer.
        unsafe {
            let ret = self.ptr.read();
            if ret == 0 {
                None
            } else {
                self.ptr = self.ptr.add(1);
                Some(ret)
            }
        }
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        if self.is_empty() { (0, Some(0)) } else { (1, None) }
    }

    #[inline]
    fn count(self) -> usize {
        // SAFETY: We always hold a valid pointer to a C string
        unsafe { strlen(self.ptr.as_ptr().cast()) }
    }
}

#[unstable(feature = "cstr_bytes", issue = "112115")]
impl FusedIterator for Bytes<'_> {}