core/ffi/
c_str.rs

1//! [`CStr`] and its related types.
2
3use crate::cmp::Ordering;
4use crate::error::Error;
5use crate::ffi::c_char;
6use crate::intrinsics::const_eval_select;
7use crate::iter::FusedIterator;
8use crate::marker::PhantomData;
9use crate::ptr::NonNull;
10use crate::slice::memchr;
11use crate::{fmt, ops, slice, str};
12
13// FIXME: because this is doc(inline)d, we *have* to use intra-doc links because the actual link
14//   depends on where the item is being documented. however, since this is libcore, we can't
15//   actually reference libstd or liballoc in intra-doc links. so, the best we can do is remove the
16//   links to `CString` and `String` for now until a solution is developed
17
18/// Representation of a borrowed C string.
19///
20/// This type represents a borrowed reference to a nul-terminated
21/// array of bytes. It can be constructed safely from a <code>&[[u8]]</code>
22/// slice, or unsafely from a raw `*const c_char`. It can be expressed as a
23/// literal in the form `c"Hello world"`.
24///
25/// The `CStr` can then be converted to a Rust <code>&[str]</code> by performing
26/// UTF-8 validation, or into an owned `CString`.
27///
28/// `&CStr` is to `CString` as <code>&[str]</code> is to `String`: the former
29/// in each pair are borrowed references; the latter are owned
30/// strings.
31///
32/// Note that this structure does **not** have a guaranteed layout (the `repr(transparent)`
33/// notwithstanding) and should not be placed in the signatures of FFI functions.
34/// Instead, safe wrappers of FFI functions may leverage [`CStr::as_ptr`] and the unsafe
35/// [`CStr::from_ptr`] constructor to provide a safe interface to other consumers.
36///
37/// # Examples
38///
39/// Inspecting a foreign C string:
40///
41/// ```
42/// use std::ffi::CStr;
43/// use std::os::raw::c_char;
44///
45/// # /* Extern functions are awkward in doc comments - fake it instead
46/// extern "C" { fn my_string() -> *const c_char; }
47/// # */ unsafe extern "C" fn my_string() -> *const c_char { c"hello".as_ptr() }
48///
49/// unsafe {
50///     let slice = CStr::from_ptr(my_string());
51///     println!("string buffer size without nul terminator: {}", slice.to_bytes().len());
52/// }
53/// ```
54///
55/// Passing a Rust-originating C string:
56///
57/// ```
58/// use std::ffi::CStr;
59/// use std::os::raw::c_char;
60///
61/// fn work(data: &CStr) {
62///     unsafe extern "C" fn work_with(s: *const c_char) {}
63///     unsafe { work_with(data.as_ptr()) }
64/// }
65///
66/// let s = c"Hello world!";
67/// work(&s);
68/// ```
69///
70/// Converting a foreign C string into a Rust `String`:
71///
72/// ```
73/// use std::ffi::CStr;
74/// use std::os::raw::c_char;
75///
76/// # /* Extern functions are awkward in doc comments - fake it instead
77/// extern "C" { fn my_string() -> *const c_char; }
78/// # */ unsafe extern "C" fn my_string() -> *const c_char { c"hello".as_ptr() }
79///
80/// fn my_string_safe() -> String {
81///     let cstr = unsafe { CStr::from_ptr(my_string()) };
82///     // Get copy-on-write Cow<'_, str>, then guarantee a freshly-owned String allocation
83///     String::from_utf8_lossy(cstr.to_bytes()).to_string()
84/// }
85///
86/// println!("string: {}", my_string_safe());
87/// ```
88///
89/// [str]: prim@str "str"
90#[derive(PartialEq, Eq, Hash)]
91#[stable(feature = "core_c_str", since = "1.64.0")]
92#[rustc_diagnostic_item = "cstr_type"]
93#[rustc_has_incoherent_inherent_impls]
94#[lang = "CStr"]
95// `fn from` in `impl From<&CStr> for Box<CStr>` current implementation relies
96// on `CStr` being layout-compatible with `[u8]`.
97// However, `CStr` layout is considered an implementation detail and must not be relied upon. We
98// want `repr(transparent)` but we don't want it to show up in rustdoc, so we hide it under
99// `cfg(doc)`. This is an ad-hoc implementation of attribute privacy.
100#[repr(transparent)]
101pub struct CStr {
102    // FIXME: this should not be represented with a DST slice but rather with
103    //        just a raw `c_char` along with some form of marker to make
104    //        this an unsized type. Essentially `sizeof(&CStr)` should be the
105    //        same as `sizeof(&c_char)` but `CStr` should be an unsized type.
106    inner: [c_char],
107}
108
109/// An error indicating that a nul byte was not in the expected position.
110///
111/// The slice used to create a [`CStr`] must have one and only one nul byte,
112/// positioned at the end.
113///
114/// This error is created by the [`CStr::from_bytes_with_nul`] method.
115/// See its documentation for more.
116///
117/// # Examples
118///
119/// ```
120/// use std::ffi::{CStr, FromBytesWithNulError};
121///
122/// let _: FromBytesWithNulError = CStr::from_bytes_with_nul(b"f\0oo").unwrap_err();
123/// ```
124#[derive(Clone, Copy, PartialEq, Eq, Debug)]
125#[stable(feature = "core_c_str", since = "1.64.0")]
126pub enum FromBytesWithNulError {
127    /// Data provided contains an interior nul byte at byte `position`.
128    InteriorNul {
129        /// The position of the interior nul byte.
130        position: usize,
131    },
132    /// Data provided is not nul terminated.
133    NotNulTerminated,
134}
135
136#[stable(feature = "frombyteswithnulerror_impls", since = "1.17.0")]
137impl Error for FromBytesWithNulError {
138    #[allow(deprecated)]
139    fn description(&self) -> &str {
140        match self {
141            Self::InteriorNul { .. } => "data provided contains an interior nul byte",
142            Self::NotNulTerminated => "data provided is not nul terminated",
143        }
144    }
145}
146
147/// An error indicating that no nul byte was present.
148///
149/// A slice used to create a [`CStr`] must contain a nul byte somewhere
150/// within the slice.
151///
152/// This error is created by the [`CStr::from_bytes_until_nul`] method.
153///
154#[derive(Clone, PartialEq, Eq, Debug)]
155#[stable(feature = "cstr_from_bytes_until_nul", since = "1.69.0")]
156pub struct FromBytesUntilNulError(());
157
158#[stable(feature = "cstr_from_bytes_until_nul", since = "1.69.0")]
159impl fmt::Display for FromBytesUntilNulError {
160    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
161        write!(f, "data provided does not contain a nul")
162    }
163}
164
165#[stable(feature = "cstr_debug", since = "1.3.0")]
166impl fmt::Debug for CStr {
167    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
168        write!(f, "\"{}\"", self.to_bytes().escape_ascii())
169    }
170}
171
172#[stable(feature = "cstr_default", since = "1.10.0")]
173impl Default for &CStr {
174    #[inline]
175    fn default() -> Self {
176        const SLICE: &[c_char] = &[0];
177        // SAFETY: `SLICE` is indeed pointing to a valid nul-terminated string.
178        unsafe { CStr::from_ptr(SLICE.as_ptr()) }
179    }
180}
181
182#[stable(feature = "frombyteswithnulerror_impls", since = "1.17.0")]
183impl fmt::Display for FromBytesWithNulError {
184    #[allow(deprecated, deprecated_in_future)]
185    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
186        f.write_str(self.description())?;
187        if let Self::InteriorNul { position } = self {
188            write!(f, " at byte pos {position}")?;
189        }
190        Ok(())
191    }
192}
193
194impl CStr {
195    /// Wraps a raw C string with a safe C string wrapper.
196    ///
197    /// This function will wrap the provided `ptr` with a `CStr` wrapper, which
198    /// allows inspection and interoperation of non-owned C strings. The total
199    /// size of the terminated buffer must be smaller than [`isize::MAX`] **bytes**
200    /// in memory (a restriction from [`slice::from_raw_parts`]).
201    ///
202    /// # Safety
203    ///
204    /// * The memory pointed to by `ptr` must contain a valid nul terminator at the
205    ///   end of the string.
206    ///
207    /// * `ptr` must be [valid] for reads of bytes up to and including the nul terminator.
208    ///   This means in particular:
209    ///
210    ///     * The entire memory range of this `CStr` must be contained within a single allocated object!
211    ///     * `ptr` must be non-null even for a zero-length cstr.
212    ///
213    /// * The memory referenced by the returned `CStr` must not be mutated for
214    ///   the duration of lifetime `'a`.
215    ///
216    /// * The nul terminator must be within `isize::MAX` from `ptr`
217    ///
218    /// > **Note**: This operation is intended to be a 0-cost cast but it is
219    /// > currently implemented with an up-front calculation of the length of
220    /// > the string. This is not guaranteed to always be the case.
221    ///
222    /// # Caveat
223    ///
224    /// The lifetime for the returned slice is inferred from its usage. To prevent accidental misuse,
225    /// it's suggested to tie the lifetime to whichever source lifetime is safe in the context,
226    /// such as by providing a helper function taking the lifetime of a host value for the slice,
227    /// or by explicit annotation.
228    ///
229    /// # Examples
230    ///
231    /// ```
232    /// use std::ffi::{c_char, CStr};
233    ///
234    /// fn my_string() -> *const c_char {
235    ///     c"hello".as_ptr()
236    /// }
237    ///
238    /// unsafe {
239    ///     let slice = CStr::from_ptr(my_string());
240    ///     assert_eq!(slice.to_str().unwrap(), "hello");
241    /// }
242    /// ```
243    ///
244    /// ```
245    /// use std::ffi::{c_char, CStr};
246    ///
247    /// const HELLO_PTR: *const c_char = {
248    ///     const BYTES: &[u8] = b"Hello, world!\0";
249    ///     BYTES.as_ptr().cast()
250    /// };
251    /// const HELLO: &CStr = unsafe { CStr::from_ptr(HELLO_PTR) };
252    ///
253    /// assert_eq!(c"Hello, world!", HELLO);
254    /// ```
255    ///
256    /// [valid]: core::ptr#safety
257    #[inline] // inline is necessary for codegen to see strlen.
258    #[must_use]
259    #[stable(feature = "rust1", since = "1.0.0")]
260    #[rustc_const_stable(feature = "const_cstr_from_ptr", since = "1.81.0")]
261    pub const unsafe fn from_ptr<'a>(ptr: *const c_char) -> &'a CStr {
262        // SAFETY: The caller has provided a pointer that points to a valid C
263        // string with a NUL terminator less than `isize::MAX` from `ptr`.
264        let len = unsafe { strlen(ptr) };
265
266        // SAFETY: The caller has provided a valid pointer with length less than
267        // `isize::MAX`, so `from_raw_parts` is safe. The content remains valid
268        // and doesn't change for the lifetime of the returned `CStr`. This
269        // means the call to `from_bytes_with_nul_unchecked` is correct.
270        //
271        // The cast from c_char to u8 is ok because a c_char is always one byte.
272        unsafe { Self::from_bytes_with_nul_unchecked(slice::from_raw_parts(ptr.cast(), len + 1)) }
273    }
274
275    /// Creates a C string wrapper from a byte slice with any number of nuls.
276    ///
277    /// This method will create a `CStr` from any byte slice that contains at
278    /// least one nul byte. Unlike with [`CStr::from_bytes_with_nul`], the caller
279    /// does not need to know where the nul byte is located.
280    ///
281    /// If the first byte is a nul character, this method will return an
282    /// empty `CStr`. If multiple nul characters are present, the `CStr` will
283    /// end at the first one.
284    ///
285    /// If the slice only has a single nul byte at the end, this method is
286    /// equivalent to [`CStr::from_bytes_with_nul`].
287    ///
288    /// # Examples
289    /// ```
290    /// use std::ffi::CStr;
291    ///
292    /// let mut buffer = [0u8; 16];
293    /// unsafe {
294    ///     // Here we might call an unsafe C function that writes a string
295    ///     // into the buffer.
296    ///     let buf_ptr = buffer.as_mut_ptr();
297    ///     buf_ptr.write_bytes(b'A', 8);
298    /// }
299    /// // Attempt to extract a C nul-terminated string from the buffer.
300    /// let c_str = CStr::from_bytes_until_nul(&buffer[..]).unwrap();
301    /// assert_eq!(c_str.to_str().unwrap(), "AAAAAAAA");
302    /// ```
303    ///
304    #[stable(feature = "cstr_from_bytes_until_nul", since = "1.69.0")]
305    #[rustc_const_stable(feature = "cstr_from_bytes_until_nul", since = "1.69.0")]
306    pub const fn from_bytes_until_nul(bytes: &[u8]) -> Result<&CStr, FromBytesUntilNulError> {
307        let nul_pos = memchr::memchr(0, bytes);
308        match nul_pos {
309            Some(nul_pos) => {
310                // FIXME(const-hack) replace with range index
311                // SAFETY: nul_pos + 1 <= bytes.len()
312                let subslice = unsafe { crate::slice::from_raw_parts(bytes.as_ptr(), nul_pos + 1) };
313                // SAFETY: We know there is a nul byte at nul_pos, so this slice
314                // (ending at the nul byte) is a well-formed C string.
315                Ok(unsafe { CStr::from_bytes_with_nul_unchecked(subslice) })
316            }
317            None => Err(FromBytesUntilNulError(())),
318        }
319    }
320
321    /// Creates a C string wrapper from a byte slice with exactly one nul
322    /// terminator.
323    ///
324    /// This function will cast the provided `bytes` to a `CStr`
325    /// wrapper after ensuring that the byte slice is nul-terminated
326    /// and does not contain any interior nul bytes.
327    ///
328    /// If the nul byte may not be at the end,
329    /// [`CStr::from_bytes_until_nul`] can be used instead.
330    ///
331    /// # Examples
332    ///
333    /// ```
334    /// use std::ffi::CStr;
335    ///
336    /// let cstr = CStr::from_bytes_with_nul(b"hello\0");
337    /// assert_eq!(cstr, Ok(c"hello"));
338    /// ```
339    ///
340    /// Creating a `CStr` without a trailing nul terminator is an error:
341    ///
342    /// ```
343    /// use std::ffi::{CStr, FromBytesWithNulError};
344    ///
345    /// let cstr = CStr::from_bytes_with_nul(b"hello");
346    /// assert_eq!(cstr, Err(FromBytesWithNulError::NotNulTerminated));
347    /// ```
348    ///
349    /// Creating a `CStr` with an interior nul byte is an error:
350    ///
351    /// ```
352    /// use std::ffi::{CStr, FromBytesWithNulError};
353    ///
354    /// let cstr = CStr::from_bytes_with_nul(b"he\0llo\0");
355    /// assert_eq!(cstr, Err(FromBytesWithNulError::InteriorNul { position: 2 }));
356    /// ```
357    #[stable(feature = "cstr_from_bytes", since = "1.10.0")]
358    #[rustc_const_stable(feature = "const_cstr_methods", since = "1.72.0")]
359    pub const fn from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, FromBytesWithNulError> {
360        let nul_pos = memchr::memchr(0, bytes);
361        match nul_pos {
362            Some(nul_pos) if nul_pos + 1 == bytes.len() => {
363                // SAFETY: We know there is only one nul byte, at the end
364                // of the byte slice.
365                Ok(unsafe { Self::from_bytes_with_nul_unchecked(bytes) })
366            }
367            Some(position) => Err(FromBytesWithNulError::InteriorNul { position }),
368            None => Err(FromBytesWithNulError::NotNulTerminated),
369        }
370    }
371
372    /// Unsafely creates a C string wrapper from a byte slice.
373    ///
374    /// This function will cast the provided `bytes` to a `CStr` wrapper without
375    /// performing any sanity checks.
376    ///
377    /// # Safety
378    /// The provided slice **must** be nul-terminated and not contain any interior
379    /// nul bytes.
380    ///
381    /// # Examples
382    ///
383    /// ```
384    /// use std::ffi::CStr;
385    ///
386    /// let bytes = b"Hello world!\0";
387    ///
388    /// let cstr = unsafe { CStr::from_bytes_with_nul_unchecked(bytes) };
389    /// assert_eq!(cstr.to_bytes_with_nul(), bytes);
390    /// ```
391    #[inline]
392    #[must_use]
393    #[stable(feature = "cstr_from_bytes", since = "1.10.0")]
394    #[rustc_const_stable(feature = "const_cstr_unchecked", since = "1.59.0")]
395    #[rustc_allow_const_fn_unstable(const_eval_select)]
396    pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr {
397        const_eval_select!(
398            @capture { bytes: &[u8] } -> &CStr:
399            if const {
400                // Saturating so that an empty slice panics in the assert with a good
401                // message, not here due to underflow.
402                let mut i = bytes.len().saturating_sub(1);
403                assert!(!bytes.is_empty() && bytes[i] == 0, "input was not nul-terminated");
404
405                // Ending nul byte exists, skip to the rest.
406                while i != 0 {
407                    i -= 1;
408                    let byte = bytes[i];
409                    assert!(byte != 0, "input contained interior nul");
410                }
411
412                // SAFETY: See runtime cast comment below.
413                unsafe { &*(bytes as *const [u8] as *const CStr) }
414            } else {
415                // Chance at catching some UB at runtime with debug builds.
416                debug_assert!(!bytes.is_empty() && bytes[bytes.len() - 1] == 0);
417
418                // SAFETY: Casting to CStr is safe because its internal representation
419                // is a [u8] too (safe only inside std).
420                // Dereferencing the obtained pointer is safe because it comes from a
421                // reference. Making a reference is then safe because its lifetime
422                // is bound by the lifetime of the given `bytes`.
423                unsafe { &*(bytes as *const [u8] as *const CStr) }
424            }
425        )
426    }
427
428    /// Returns the inner pointer to this C string.
429    ///
430    /// The returned pointer will be valid for as long as `self` is, and points
431    /// to a contiguous region of memory terminated with a 0 byte to represent
432    /// the end of the string.
433    ///
434    /// The type of the returned pointer is
435    /// [`*const c_char`][crate::ffi::c_char], and whether it's
436    /// an alias for `*const i8` or `*const u8` is platform-specific.
437    ///
438    /// **WARNING**
439    ///
440    /// The returned pointer is read-only; writing to it (including passing it
441    /// to C code that writes to it) causes undefined behavior.
442    ///
443    /// It is your responsibility to make sure that the underlying memory is not
444    /// freed too early. For example, the following code will cause undefined
445    /// behavior when `ptr` is used inside the `unsafe` block:
446    ///
447    /// ```no_run
448    /// # #![expect(dangling_pointers_from_temporaries)]
449    /// use std::ffi::{CStr, CString};
450    ///
451    /// // 💀 The meaning of this entire program is undefined,
452    /// // 💀 and nothing about its behavior is guaranteed,
453    /// // 💀 not even that its behavior resembles the code as written,
454    /// // 💀 just because it contains a single instance of undefined behavior!
455    ///
456    /// // 🚨 creates a dangling pointer to a temporary `CString`
457    /// // 🚨 that is deallocated at the end of the statement
458    /// let ptr = CString::new("Hi!".to_uppercase()).unwrap().as_ptr();
459    ///
460    /// // without undefined behavior, you would expect that `ptr` equals:
461    /// dbg!(CStr::from_bytes_with_nul(b"HI!\0").unwrap());
462    ///
463    /// // 🙏 Possibly the program behaved as expected so far,
464    /// // 🙏 and this just shows `ptr` is now garbage..., but
465    /// // 💀 this violates `CStr::from_ptr`'s safety contract
466    /// // 💀 leading to a dereference of a dangling pointer,
467    /// // 💀 which is immediate undefined behavior.
468    /// // 💀 *BOOM*, you're dead, you're entire program has no meaning.
469    /// dbg!(unsafe { CStr::from_ptr(ptr) });
470    /// ```
471    ///
472    /// This happens because, the pointer returned by `as_ptr` does not carry any
473    /// lifetime information, and the `CString` is deallocated immediately after
474    /// the expression that it is part of has been evaluated.
475    /// To fix the problem, bind the `CString` to a local variable:
476    ///
477    /// ```
478    /// use std::ffi::{CStr, CString};
479    ///
480    /// let c_str = CString::new("Hi!".to_uppercase()).unwrap();
481    /// let ptr = c_str.as_ptr();
482    ///
483    /// assert_eq!(unsafe { CStr::from_ptr(ptr) }, c"HI!");
484    /// ```
485    #[inline]
486    #[must_use]
487    #[stable(feature = "rust1", since = "1.0.0")]
488    #[rustc_const_stable(feature = "const_str_as_ptr", since = "1.32.0")]
489    #[rustc_as_ptr]
490    #[rustc_never_returns_null_ptr]
491    pub const fn as_ptr(&self) -> *const c_char {
492        self.inner.as_ptr()
493    }
494
495    /// We could eventually expose this publicly, if we wanted.
496    #[inline]
497    #[must_use]
498    const fn as_non_null_ptr(&self) -> NonNull<c_char> {
499        // FIXME(const_trait_impl) replace with `NonNull::from`
500        // SAFETY: a reference is never null
501        unsafe { NonNull::new_unchecked(&self.inner as *const [c_char] as *mut [c_char]) }
502            .as_non_null_ptr()
503    }
504
505    /// Returns the length of `self`. Like C's `strlen`, this does not include the nul terminator.
506    ///
507    /// > **Note**: This method is currently implemented as a constant-time
508    /// > cast, but it is planned to alter its definition in the future to
509    /// > perform the length calculation whenever this method is called.
510    ///
511    /// # Examples
512    ///
513    /// ```
514    /// use std::ffi::CStr;
515    ///
516    /// let cstr = CStr::from_bytes_with_nul(b"foo\0").unwrap();
517    /// assert_eq!(cstr.count_bytes(), 3);
518    ///
519    /// let cstr = CStr::from_bytes_with_nul(b"\0").unwrap();
520    /// assert_eq!(cstr.count_bytes(), 0);
521    /// ```
522    #[inline]
523    #[must_use]
524    #[doc(alias("len", "strlen"))]
525    #[stable(feature = "cstr_count_bytes", since = "1.79.0")]
526    #[rustc_const_stable(feature = "const_cstr_from_ptr", since = "1.81.0")]
527    pub const fn count_bytes(&self) -> usize {
528        self.inner.len() - 1
529    }
530
531    /// Returns `true` if `self.to_bytes()` has a length of 0.
532    ///
533    /// # Examples
534    ///
535    /// ```
536    /// use std::ffi::CStr;
537    /// # use std::ffi::FromBytesWithNulError;
538    ///
539    /// # fn main() { test().unwrap(); }
540    /// # fn test() -> Result<(), FromBytesWithNulError> {
541    /// let cstr = CStr::from_bytes_with_nul(b"foo\0")?;
542    /// assert!(!cstr.is_empty());
543    ///
544    /// let empty_cstr = CStr::from_bytes_with_nul(b"\0")?;
545    /// assert!(empty_cstr.is_empty());
546    /// assert!(c"".is_empty());
547    /// # Ok(())
548    /// # }
549    /// ```
550    #[inline]
551    #[stable(feature = "cstr_is_empty", since = "1.71.0")]
552    #[rustc_const_stable(feature = "cstr_is_empty", since = "1.71.0")]
553    pub const fn is_empty(&self) -> bool {
554        // SAFETY: We know there is at least one byte; for empty strings it
555        // is the NUL terminator.
556        // FIXME(const-hack): use get_unchecked
557        unsafe { *self.inner.as_ptr() == 0 }
558    }
559
560    /// Converts this C string to a byte slice.
561    ///
562    /// The returned slice will **not** contain the trailing nul terminator that this C
563    /// string has.
564    ///
565    /// > **Note**: This method is currently implemented as a constant-time
566    /// > cast, but it is planned to alter its definition in the future to
567    /// > perform the length calculation whenever this method is called.
568    ///
569    /// # Examples
570    ///
571    /// ```
572    /// use std::ffi::CStr;
573    ///
574    /// let cstr = CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed");
575    /// assert_eq!(cstr.to_bytes(), b"foo");
576    /// ```
577    #[inline]
578    #[must_use = "this returns the result of the operation, \
579                  without modifying the original"]
580    #[stable(feature = "rust1", since = "1.0.0")]
581    #[rustc_const_stable(feature = "const_cstr_methods", since = "1.72.0")]
582    pub const fn to_bytes(&self) -> &[u8] {
583        let bytes = self.to_bytes_with_nul();
584        // FIXME(const-hack) replace with range index
585        // SAFETY: to_bytes_with_nul returns slice with length at least 1
586        unsafe { slice::from_raw_parts(bytes.as_ptr(), bytes.len() - 1) }
587    }
588
589    /// Converts this C string to a byte slice containing the trailing 0 byte.
590    ///
591    /// This function is the equivalent of [`CStr::to_bytes`] except that it
592    /// will retain the trailing nul terminator instead of chopping it off.
593    ///
594    /// > **Note**: This method is currently implemented as a 0-cost cast, but
595    /// > it is planned to alter its definition in the future to perform the
596    /// > length calculation whenever this method is called.
597    ///
598    /// # Examples
599    ///
600    /// ```
601    /// use std::ffi::CStr;
602    ///
603    /// let cstr = CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed");
604    /// assert_eq!(cstr.to_bytes_with_nul(), b"foo\0");
605    /// ```
606    #[inline]
607    #[must_use = "this returns the result of the operation, \
608                  without modifying the original"]
609    #[stable(feature = "rust1", since = "1.0.0")]
610    #[rustc_const_stable(feature = "const_cstr_methods", since = "1.72.0")]
611    pub const fn to_bytes_with_nul(&self) -> &[u8] {
612        // SAFETY: Transmuting a slice of `c_char`s to a slice of `u8`s
613        // is safe on all supported targets.
614        unsafe { &*((&raw const self.inner) as *const [u8]) }
615    }
616
617    /// Iterates over the bytes in this C string.
618    ///
619    /// The returned iterator will **not** contain the trailing nul terminator
620    /// that this C string has.
621    ///
622    /// # Examples
623    ///
624    /// ```
625    /// #![feature(cstr_bytes)]
626    /// use std::ffi::CStr;
627    ///
628    /// let cstr = CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed");
629    /// assert!(cstr.bytes().eq(*b"foo"));
630    /// ```
631    #[inline]
632    #[unstable(feature = "cstr_bytes", issue = "112115")]
633    pub fn bytes(&self) -> Bytes<'_> {
634        Bytes::new(self)
635    }
636
637    /// Yields a <code>&[str]</code> slice if the `CStr` contains valid UTF-8.
638    ///
639    /// If the contents of the `CStr` are valid UTF-8 data, this
640    /// function will return the corresponding <code>&[str]</code> slice. Otherwise,
641    /// it will return an error with details of where UTF-8 validation failed.
642    ///
643    /// [str]: prim@str "str"
644    ///
645    /// # Examples
646    ///
647    /// ```
648    /// use std::ffi::CStr;
649    ///
650    /// let cstr = CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed");
651    /// assert_eq!(cstr.to_str(), Ok("foo"));
652    /// ```
653    #[stable(feature = "cstr_to_str", since = "1.4.0")]
654    #[rustc_const_stable(feature = "const_cstr_methods", since = "1.72.0")]
655    pub const fn to_str(&self) -> Result<&str, str::Utf8Error> {
656        // N.B., when `CStr` is changed to perform the length check in `.to_bytes()`
657        // instead of in `from_ptr()`, it may be worth considering if this should
658        // be rewritten to do the UTF-8 check inline with the length calculation
659        // instead of doing it afterwards.
660        str::from_utf8(self.to_bytes())
661    }
662}
663
664// `.to_bytes()` representations are compared instead of the inner `[c_char]`s,
665// because `c_char` is `i8` (not `u8`) on some platforms.
666// That is why this is implemented manually and not derived.
667#[stable(feature = "rust1", since = "1.0.0")]
668impl PartialOrd for CStr {
669    #[inline]
670    fn partial_cmp(&self, other: &CStr) -> Option<Ordering> {
671        self.to_bytes().partial_cmp(&other.to_bytes())
672    }
673}
674#[stable(feature = "rust1", since = "1.0.0")]
675impl Ord for CStr {
676    #[inline]
677    fn cmp(&self, other: &CStr) -> Ordering {
678        self.to_bytes().cmp(&other.to_bytes())
679    }
680}
681
682#[stable(feature = "cstr_range_from", since = "1.47.0")]
683impl ops::Index<ops::RangeFrom<usize>> for CStr {
684    type Output = CStr;
685
686    #[inline]
687    fn index(&self, index: ops::RangeFrom<usize>) -> &CStr {
688        let bytes = self.to_bytes_with_nul();
689        // we need to manually check the starting index to account for the null
690        // byte, since otherwise we could get an empty string that doesn't end
691        // in a null.
692        if index.start < bytes.len() {
693            // SAFETY: Non-empty tail of a valid `CStr` is still a valid `CStr`.
694            unsafe { CStr::from_bytes_with_nul_unchecked(&bytes[index.start..]) }
695        } else {
696            panic!(
697                "index out of bounds: the len is {} but the index is {}",
698                bytes.len(),
699                index.start
700            );
701        }
702    }
703}
704
705#[stable(feature = "cstring_asref", since = "1.7.0")]
706impl AsRef<CStr> for CStr {
707    #[inline]
708    fn as_ref(&self) -> &CStr {
709        self
710    }
711}
712
713/// Calculate the length of a nul-terminated string. Defers to C's `strlen` when possible.
714///
715/// # Safety
716///
717/// The pointer must point to a valid buffer that contains a NUL terminator. The NUL must be
718/// located within `isize::MAX` from `ptr`.
719#[inline]
720#[unstable(feature = "cstr_internals", issue = "none")]
721#[rustc_allow_const_fn_unstable(const_eval_select)]
722const unsafe fn strlen(ptr: *const c_char) -> usize {
723    const_eval_select!(
724        @capture { s: *const c_char = ptr } -> usize:
725        if const {
726            let mut len = 0;
727
728            // SAFETY: Outer caller has provided a pointer to a valid C string.
729            while unsafe { *s.add(len) } != 0 {
730                len += 1;
731            }
732
733            len
734        } else {
735            unsafe extern "C" {
736                /// Provided by libc or compiler_builtins.
737                fn strlen(s: *const c_char) -> usize;
738            }
739
740            // SAFETY: Outer caller has provided a pointer to a valid C string.
741            unsafe { strlen(s) }
742        }
743    )
744}
745
746/// An iterator over the bytes of a [`CStr`], without the nul terminator.
747///
748/// This struct is created by the [`bytes`] method on [`CStr`].
749/// See its documentation for more.
750///
751/// [`bytes`]: CStr::bytes
752#[must_use = "iterators are lazy and do nothing unless consumed"]
753#[unstable(feature = "cstr_bytes", issue = "112115")]
754#[derive(Clone, Debug)]
755pub struct Bytes<'a> {
756    // since we know the string is nul-terminated, we only need one pointer
757    ptr: NonNull<u8>,
758    phantom: PhantomData<&'a [c_char]>,
759}
760
761#[unstable(feature = "cstr_bytes", issue = "112115")]
762unsafe impl Send for Bytes<'_> {}
763
764#[unstable(feature = "cstr_bytes", issue = "112115")]
765unsafe impl Sync for Bytes<'_> {}
766
767impl<'a> Bytes<'a> {
768    #[inline]
769    fn new(s: &'a CStr) -> Self {
770        Self { ptr: s.as_non_null_ptr().cast(), phantom: PhantomData }
771    }
772
773    #[inline]
774    fn is_empty(&self) -> bool {
775        // SAFETY: We uphold that the pointer is always valid to dereference
776        // by starting with a valid C string and then never incrementing beyond
777        // the nul terminator.
778        unsafe { self.ptr.read() == 0 }
779    }
780}
781
782#[unstable(feature = "cstr_bytes", issue = "112115")]
783impl Iterator for Bytes<'_> {
784    type Item = u8;
785
786    #[inline]
787    fn next(&mut self) -> Option<u8> {
788        // SAFETY: We only choose a pointer from a valid C string, which must
789        // be non-null and contain at least one value. Since we always stop at
790        // the nul terminator, which is guaranteed to exist, we can assume that
791        // the pointer is non-null and valid. This lets us safely dereference
792        // it and assume that adding 1 will create a new, non-null, valid
793        // pointer.
794        unsafe {
795            let ret = self.ptr.read();
796            if ret == 0 {
797                None
798            } else {
799                self.ptr = self.ptr.add(1);
800                Some(ret)
801            }
802        }
803    }
804
805    #[inline]
806    fn size_hint(&self) -> (usize, Option<usize>) {
807        if self.is_empty() { (0, Some(0)) } else { (1, None) }
808    }
809
810    #[inline]
811    fn count(self) -> usize {
812        // SAFETY: We always hold a valid pointer to a C string
813        unsafe { strlen(self.ptr.as_ptr().cast()) }
814    }
815}
816
817#[unstable(feature = "cstr_bytes", issue = "112115")]
818impl FusedIterator for Bytes<'_> {}