core/ffi/
c_str.rs

1//! [`CStr`] and its related types.
2
3use crate::cmp::Ordering;
4use crate::error::Error;
5use crate::ffi::c_char;
6use crate::intrinsics::const_eval_select;
7use crate::iter::FusedIterator;
8use crate::marker::PhantomData;
9use crate::ptr::NonNull;
10use crate::slice::memchr;
11use crate::{fmt, ops, slice, str};
12
13// FIXME: because this is doc(inline)d, we *have* to use intra-doc links because the actual link
14//   depends on where the item is being documented. however, since this is libcore, we can't
15//   actually reference libstd or liballoc in intra-doc links. so, the best we can do is remove the
16//   links to `CString` and `String` for now until a solution is developed
17
18/// Representation of a borrowed C string.
19///
20/// This type represents a borrowed reference to a nul-terminated
21/// array of bytes. It can be constructed safely from a <code>&[[u8]]</code>
22/// slice, or unsafely from a raw `*const c_char`. It can be expressed as a
23/// literal in the form `c"Hello world"`.
24///
25/// The `CStr` can then be converted to a Rust <code>&[str]</code> by performing
26/// UTF-8 validation, or into an owned `CString`.
27///
28/// `&CStr` is to `CString` as <code>&[str]</code> is to `String`: the former
29/// in each pair are borrowed references; the latter are owned
30/// strings.
31///
32/// Note that this structure does **not** have a guaranteed layout (the `repr(transparent)`
33/// notwithstanding) and should not be placed in the signatures of FFI functions.
34/// Instead, safe wrappers of FFI functions may leverage [`CStr::as_ptr`] and the unsafe
35/// [`CStr::from_ptr`] constructor to provide a safe interface to other consumers.
36///
37/// # Examples
38///
39/// Inspecting a foreign C string:
40///
41/// ```
42/// use std::ffi::CStr;
43/// use std::os::raw::c_char;
44///
45/// # /* Extern functions are awkward in doc comments - fake it instead
46/// extern "C" { fn my_string() -> *const c_char; }
47/// # */ unsafe extern "C" fn my_string() -> *const c_char { c"hello".as_ptr() }
48///
49/// unsafe {
50///     let slice = CStr::from_ptr(my_string());
51///     println!("string buffer size without nul terminator: {}", slice.to_bytes().len());
52/// }
53/// ```
54///
55/// Passing a Rust-originating C string:
56///
57/// ```
58/// use std::ffi::CStr;
59/// use std::os::raw::c_char;
60///
61/// fn work(data: &CStr) {
62///     unsafe extern "C" fn work_with(s: *const c_char) {}
63///     unsafe { work_with(data.as_ptr()) }
64/// }
65///
66/// let s = c"Hello world!";
67/// work(&s);
68/// ```
69///
70/// Converting a foreign C string into a Rust `String`:
71///
72/// ```
73/// use std::ffi::CStr;
74/// use std::os::raw::c_char;
75///
76/// # /* Extern functions are awkward in doc comments - fake it instead
77/// extern "C" { fn my_string() -> *const c_char; }
78/// # */ unsafe extern "C" fn my_string() -> *const c_char { c"hello".as_ptr() }
79///
80/// fn my_string_safe() -> String {
81///     let cstr = unsafe { CStr::from_ptr(my_string()) };
82///     // Get a copy-on-write Cow<'_, str>, then extract the
83///     // allocated String (or allocate a fresh one if needed).
84///     cstr.to_string_lossy().into_owned()
85/// }
86///
87/// println!("string: {}", my_string_safe());
88/// ```
89///
90/// [str]: prim@str "str"
91#[derive(PartialEq, Eq, Hash)]
92#[stable(feature = "core_c_str", since = "1.64.0")]
93#[rustc_diagnostic_item = "cstr_type"]
94#[rustc_has_incoherent_inherent_impls]
95#[lang = "CStr"]
96// `fn from` in `impl From<&CStr> for Box<CStr>` current implementation relies
97// on `CStr` being layout-compatible with `[u8]`.
98// However, `CStr` layout is considered an implementation detail and must not be relied upon. We
99// want `repr(transparent)` but we don't want it to show up in rustdoc, so we hide it under
100// `cfg(doc)`. This is an ad-hoc implementation of attribute privacy.
101#[repr(transparent)]
102pub struct CStr {
103    // FIXME: this should not be represented with a DST slice but rather with
104    //        just a raw `c_char` along with some form of marker to make
105    //        this an unsized type. Essentially `sizeof(&CStr)` should be the
106    //        same as `sizeof(&c_char)` but `CStr` should be an unsized type.
107    inner: [c_char],
108}
109
110/// An error indicating that a nul byte was not in the expected position.
111///
112/// The slice used to create a [`CStr`] must have one and only one nul byte,
113/// positioned at the end.
114///
115/// This error is created by the [`CStr::from_bytes_with_nul`] method.
116/// See its documentation for more.
117///
118/// # Examples
119///
120/// ```
121/// use std::ffi::{CStr, FromBytesWithNulError};
122///
123/// let _: FromBytesWithNulError = CStr::from_bytes_with_nul(b"f\0oo").unwrap_err();
124/// ```
125#[derive(Clone, Copy, PartialEq, Eq, Debug)]
126#[stable(feature = "core_c_str", since = "1.64.0")]
127pub enum FromBytesWithNulError {
128    /// Data provided contains an interior nul byte at byte `position`.
129    InteriorNul {
130        /// The position of the interior nul byte.
131        position: usize,
132    },
133    /// Data provided is not nul terminated.
134    NotNulTerminated,
135}
136
137#[stable(feature = "frombyteswithnulerror_impls", since = "1.17.0")]
138impl fmt::Display for FromBytesWithNulError {
139    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
140        match self {
141            Self::InteriorNul { position } => {
142                write!(f, "data provided contains an interior nul byte at byte position {position}")
143            }
144            Self::NotNulTerminated => write!(f, "data provided is not nul terminated"),
145        }
146    }
147}
148
149#[stable(feature = "frombyteswithnulerror_impls", since = "1.17.0")]
150impl Error for FromBytesWithNulError {}
151
152/// An error indicating that no nul byte was present.
153///
154/// A slice used to create a [`CStr`] must contain a nul byte somewhere
155/// within the slice.
156///
157/// This error is created by the [`CStr::from_bytes_until_nul`] method.
158#[derive(Clone, PartialEq, Eq, Debug)]
159#[stable(feature = "cstr_from_bytes_until_nul", since = "1.69.0")]
160pub struct FromBytesUntilNulError(());
161
162#[stable(feature = "cstr_from_bytes_until_nul", since = "1.69.0")]
163impl fmt::Display for FromBytesUntilNulError {
164    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
165        write!(f, "data provided does not contain a nul")
166    }
167}
168
169/// Shows the underlying bytes as a normal string, with invalid UTF-8
170/// presented as hex escape sequences.
171#[stable(feature = "cstr_debug", since = "1.3.0")]
172impl fmt::Debug for CStr {
173    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
174        fmt::Debug::fmt(crate::bstr::ByteStr::from_bytes(self.to_bytes()), f)
175    }
176}
177
178#[stable(feature = "cstr_default", since = "1.10.0")]
179impl Default for &CStr {
180    #[inline]
181    fn default() -> Self {
182        c""
183    }
184}
185
186impl CStr {
187    /// Wraps a raw C string with a safe C string wrapper.
188    ///
189    /// This function will wrap the provided `ptr` with a `CStr` wrapper, which
190    /// allows inspection and interoperation of non-owned C strings. The total
191    /// size of the terminated buffer must be smaller than [`isize::MAX`] **bytes**
192    /// in memory (a restriction from [`slice::from_raw_parts`]).
193    ///
194    /// # Safety
195    ///
196    /// * The memory pointed to by `ptr` must contain a valid nul terminator at the
197    ///   end of the string.
198    ///
199    /// * `ptr` must be [valid] for reads of bytes up to and including the nul terminator.
200    ///   This means in particular:
201    ///
202    ///     * The entire memory range of this `CStr` must be contained within a single allocation!
203    ///     * `ptr` must be non-null even for a zero-length cstr.
204    ///
205    /// * The memory referenced by the returned `CStr` must not be mutated for
206    ///   the duration of lifetime `'a`.
207    ///
208    /// * The nul terminator must be within `isize::MAX` from `ptr`
209    ///
210    /// > **Note**: This operation is intended to be a 0-cost cast but it is
211    /// > currently implemented with an up-front calculation of the length of
212    /// > the string. This is not guaranteed to always be the case.
213    ///
214    /// # Caveat
215    ///
216    /// The lifetime for the returned slice is inferred from its usage. To prevent accidental misuse,
217    /// it's suggested to tie the lifetime to whichever source lifetime is safe in the context,
218    /// such as by providing a helper function taking the lifetime of a host value for the slice,
219    /// or by explicit annotation.
220    ///
221    /// # Examples
222    ///
223    /// ```
224    /// use std::ffi::{c_char, CStr};
225    ///
226    /// fn my_string() -> *const c_char {
227    ///     c"hello".as_ptr()
228    /// }
229    ///
230    /// unsafe {
231    ///     let slice = CStr::from_ptr(my_string());
232    ///     assert_eq!(slice.to_str().unwrap(), "hello");
233    /// }
234    /// ```
235    ///
236    /// ```
237    /// use std::ffi::{c_char, CStr};
238    ///
239    /// const HELLO_PTR: *const c_char = {
240    ///     const BYTES: &[u8] = b"Hello, world!\0";
241    ///     BYTES.as_ptr().cast()
242    /// };
243    /// const HELLO: &CStr = unsafe { CStr::from_ptr(HELLO_PTR) };
244    ///
245    /// assert_eq!(c"Hello, world!", HELLO);
246    /// ```
247    ///
248    /// [valid]: core::ptr#safety
249    #[inline] // inline is necessary for codegen to see strlen.
250    #[must_use]
251    #[stable(feature = "rust1", since = "1.0.0")]
252    #[rustc_const_stable(feature = "const_cstr_from_ptr", since = "1.81.0")]
253    pub const unsafe fn from_ptr<'a>(ptr: *const c_char) -> &'a CStr {
254        // SAFETY: The caller has provided a pointer that points to a valid C
255        // string with a NUL terminator less than `isize::MAX` from `ptr`.
256        let len = unsafe { strlen(ptr) };
257
258        // SAFETY: The caller has provided a valid pointer with length less than
259        // `isize::MAX`, so `from_raw_parts` is safe. The content remains valid
260        // and doesn't change for the lifetime of the returned `CStr`. This
261        // means the call to `from_bytes_with_nul_unchecked` is correct.
262        //
263        // The cast from c_char to u8 is ok because a c_char is always one byte.
264        unsafe { Self::from_bytes_with_nul_unchecked(slice::from_raw_parts(ptr.cast(), len + 1)) }
265    }
266
267    /// Creates a C string wrapper from a byte slice with any number of nuls.
268    ///
269    /// This method will create a `CStr` from any byte slice that contains at
270    /// least one nul byte. Unlike with [`CStr::from_bytes_with_nul`], the caller
271    /// does not need to know where the nul byte is located.
272    ///
273    /// If the first byte is a nul character, this method will return an
274    /// empty `CStr`. If multiple nul characters are present, the `CStr` will
275    /// end at the first one.
276    ///
277    /// If the slice only has a single nul byte at the end, this method is
278    /// equivalent to [`CStr::from_bytes_with_nul`].
279    ///
280    /// # Examples
281    /// ```
282    /// use std::ffi::CStr;
283    ///
284    /// let mut buffer = [0u8; 16];
285    /// unsafe {
286    ///     // Here we might call an unsafe C function that writes a string
287    ///     // into the buffer.
288    ///     let buf_ptr = buffer.as_mut_ptr();
289    ///     buf_ptr.write_bytes(b'A', 8);
290    /// }
291    /// // Attempt to extract a C nul-terminated string from the buffer.
292    /// let c_str = CStr::from_bytes_until_nul(&buffer[..]).unwrap();
293    /// assert_eq!(c_str.to_str().unwrap(), "AAAAAAAA");
294    /// ```
295    ///
296    #[stable(feature = "cstr_from_bytes_until_nul", since = "1.69.0")]
297    #[rustc_const_stable(feature = "cstr_from_bytes_until_nul", since = "1.69.0")]
298    pub const fn from_bytes_until_nul(bytes: &[u8]) -> Result<&CStr, FromBytesUntilNulError> {
299        let nul_pos = memchr::memchr(0, bytes);
300        match nul_pos {
301            Some(nul_pos) => {
302                // FIXME(const-hack) replace with range index
303                // SAFETY: nul_pos + 1 <= bytes.len()
304                let subslice = unsafe { crate::slice::from_raw_parts(bytes.as_ptr(), nul_pos + 1) };
305                // SAFETY: We know there is a nul byte at nul_pos, so this slice
306                // (ending at the nul byte) is a well-formed C string.
307                Ok(unsafe { CStr::from_bytes_with_nul_unchecked(subslice) })
308            }
309            None => Err(FromBytesUntilNulError(())),
310        }
311    }
312
313    /// Creates a C string wrapper from a byte slice with exactly one nul
314    /// terminator.
315    ///
316    /// This function will cast the provided `bytes` to a `CStr`
317    /// wrapper after ensuring that the byte slice is nul-terminated
318    /// and does not contain any interior nul bytes.
319    ///
320    /// If the nul byte may not be at the end,
321    /// [`CStr::from_bytes_until_nul`] can be used instead.
322    ///
323    /// # Examples
324    ///
325    /// ```
326    /// use std::ffi::CStr;
327    ///
328    /// let cstr = CStr::from_bytes_with_nul(b"hello\0");
329    /// assert_eq!(cstr, Ok(c"hello"));
330    /// ```
331    ///
332    /// Creating a `CStr` without a trailing nul terminator is an error:
333    ///
334    /// ```
335    /// use std::ffi::{CStr, FromBytesWithNulError};
336    ///
337    /// let cstr = CStr::from_bytes_with_nul(b"hello");
338    /// assert_eq!(cstr, Err(FromBytesWithNulError::NotNulTerminated));
339    /// ```
340    ///
341    /// Creating a `CStr` with an interior nul byte is an error:
342    ///
343    /// ```
344    /// use std::ffi::{CStr, FromBytesWithNulError};
345    ///
346    /// let cstr = CStr::from_bytes_with_nul(b"he\0llo\0");
347    /// assert_eq!(cstr, Err(FromBytesWithNulError::InteriorNul { position: 2 }));
348    /// ```
349    #[stable(feature = "cstr_from_bytes", since = "1.10.0")]
350    #[rustc_const_stable(feature = "const_cstr_methods", since = "1.72.0")]
351    pub const fn from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, FromBytesWithNulError> {
352        let nul_pos = memchr::memchr(0, bytes);
353        match nul_pos {
354            Some(nul_pos) if nul_pos + 1 == bytes.len() => {
355                // SAFETY: We know there is only one nul byte, at the end
356                // of the byte slice.
357                Ok(unsafe { Self::from_bytes_with_nul_unchecked(bytes) })
358            }
359            Some(position) => Err(FromBytesWithNulError::InteriorNul { position }),
360            None => Err(FromBytesWithNulError::NotNulTerminated),
361        }
362    }
363
364    /// Unsafely creates a C string wrapper from a byte slice.
365    ///
366    /// This function will cast the provided `bytes` to a `CStr` wrapper without
367    /// performing any sanity checks.
368    ///
369    /// # Safety
370    /// The provided slice **must** be nul-terminated and not contain any interior
371    /// nul bytes.
372    ///
373    /// # Examples
374    ///
375    /// ```
376    /// use std::ffi::CStr;
377    ///
378    /// let bytes = b"Hello world!\0";
379    ///
380    /// let cstr = unsafe { CStr::from_bytes_with_nul_unchecked(bytes) };
381    /// assert_eq!(cstr.to_bytes_with_nul(), bytes);
382    /// ```
383    #[inline]
384    #[must_use]
385    #[stable(feature = "cstr_from_bytes", since = "1.10.0")]
386    #[rustc_const_stable(feature = "const_cstr_unchecked", since = "1.59.0")]
387    #[rustc_allow_const_fn_unstable(const_eval_select)]
388    pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr {
389        const_eval_select!(
390            @capture { bytes: &[u8] } -> &CStr:
391            if const {
392                // Saturating so that an empty slice panics in the assert with a good
393                // message, not here due to underflow.
394                let mut i = bytes.len().saturating_sub(1);
395                assert!(!bytes.is_empty() && bytes[i] == 0, "input was not nul-terminated");
396
397                // Ending nul byte exists, skip to the rest.
398                while i != 0 {
399                    i -= 1;
400                    let byte = bytes[i];
401                    assert!(byte != 0, "input contained interior nul");
402                }
403
404                // SAFETY: See runtime cast comment below.
405                unsafe { &*(bytes as *const [u8] as *const CStr) }
406            } else {
407                // Chance at catching some UB at runtime with debug builds.
408                debug_assert!(!bytes.is_empty() && bytes[bytes.len() - 1] == 0);
409
410                // SAFETY: Casting to CStr is safe because its internal representation
411                // is a [u8] too (safe only inside std).
412                // Dereferencing the obtained pointer is safe because it comes from a
413                // reference. Making a reference is then safe because its lifetime
414                // is bound by the lifetime of the given `bytes`.
415                unsafe { &*(bytes as *const [u8] as *const CStr) }
416            }
417        )
418    }
419
420    /// Returns the inner pointer to this C string.
421    ///
422    /// The returned pointer will be valid for as long as `self` is, and points
423    /// to a contiguous region of memory terminated with a 0 byte to represent
424    /// the end of the string.
425    ///
426    /// The type of the returned pointer is
427    /// [`*const c_char`][crate::ffi::c_char], and whether it's
428    /// an alias for `*const i8` or `*const u8` is platform-specific.
429    ///
430    /// **WARNING**
431    ///
432    /// The returned pointer is read-only; writing to it (including passing it
433    /// to C code that writes to it) causes undefined behavior.
434    ///
435    /// It is your responsibility to make sure that the underlying memory is not
436    /// freed too early. For example, the following code will cause undefined
437    /// behavior when `ptr` is used inside the `unsafe` block:
438    ///
439    /// ```no_run
440    /// # #![expect(dangling_pointers_from_temporaries)]
441    /// use std::ffi::{CStr, CString};
442    ///
443    /// // 💀 The meaning of this entire program is undefined,
444    /// // 💀 and nothing about its behavior is guaranteed,
445    /// // 💀 not even that its behavior resembles the code as written,
446    /// // 💀 just because it contains a single instance of undefined behavior!
447    ///
448    /// // 🚨 creates a dangling pointer to a temporary `CString`
449    /// // 🚨 that is deallocated at the end of the statement
450    /// let ptr = CString::new("Hi!".to_uppercase()).unwrap().as_ptr();
451    ///
452    /// // without undefined behavior, you would expect that `ptr` equals:
453    /// dbg!(CStr::from_bytes_with_nul(b"HI!\0").unwrap());
454    ///
455    /// // 🙏 Possibly the program behaved as expected so far,
456    /// // 🙏 and this just shows `ptr` is now garbage..., but
457    /// // 💀 this violates `CStr::from_ptr`'s safety contract
458    /// // 💀 leading to a dereference of a dangling pointer,
459    /// // 💀 which is immediate undefined behavior.
460    /// // 💀 *BOOM*, you're dead, your entire program has no meaning.
461    /// dbg!(unsafe { CStr::from_ptr(ptr) });
462    /// ```
463    ///
464    /// This happens because, the pointer returned by `as_ptr` does not carry any
465    /// lifetime information, and the `CString` is deallocated immediately after
466    /// the expression that it is part of has been evaluated.
467    /// To fix the problem, bind the `CString` to a local variable:
468    ///
469    /// ```
470    /// use std::ffi::{CStr, CString};
471    ///
472    /// let c_str = CString::new("Hi!".to_uppercase()).unwrap();
473    /// let ptr = c_str.as_ptr();
474    ///
475    /// assert_eq!(unsafe { CStr::from_ptr(ptr) }, c"HI!");
476    /// ```
477    #[inline]
478    #[must_use]
479    #[stable(feature = "rust1", since = "1.0.0")]
480    #[rustc_const_stable(feature = "const_str_as_ptr", since = "1.32.0")]
481    #[rustc_as_ptr]
482    #[rustc_never_returns_null_ptr]
483    pub const fn as_ptr(&self) -> *const c_char {
484        self.inner.as_ptr()
485    }
486
487    /// We could eventually expose this publicly, if we wanted.
488    #[inline]
489    #[must_use]
490    const fn as_non_null_ptr(&self) -> NonNull<c_char> {
491        // FIXME(const_trait_impl) replace with `NonNull::from`
492        // SAFETY: a reference is never null
493        unsafe { NonNull::new_unchecked(&self.inner as *const [c_char] as *mut [c_char]) }
494            .as_non_null_ptr()
495    }
496
497    /// Returns the length of `self`. Like C's `strlen`, this does not include the nul terminator.
498    ///
499    /// > **Note**: This method is currently implemented as a constant-time
500    /// > cast, but it is planned to alter its definition in the future to
501    /// > perform the length calculation whenever this method is called.
502    ///
503    /// # Examples
504    ///
505    /// ```
506    /// assert_eq!(c"foo".count_bytes(), 3);
507    /// assert_eq!(c"".count_bytes(), 0);
508    /// ```
509    #[inline]
510    #[must_use]
511    #[doc(alias("len", "strlen"))]
512    #[stable(feature = "cstr_count_bytes", since = "1.79.0")]
513    #[rustc_const_stable(feature = "const_cstr_from_ptr", since = "1.81.0")]
514    pub const fn count_bytes(&self) -> usize {
515        self.inner.len() - 1
516    }
517
518    /// Returns `true` if `self.to_bytes()` has a length of 0.
519    ///
520    /// # Examples
521    ///
522    /// ```
523    /// assert!(!c"foo".is_empty());
524    /// assert!(c"".is_empty());
525    /// ```
526    #[inline]
527    #[stable(feature = "cstr_is_empty", since = "1.71.0")]
528    #[rustc_const_stable(feature = "cstr_is_empty", since = "1.71.0")]
529    pub const fn is_empty(&self) -> bool {
530        // SAFETY: We know there is at least one byte; for empty strings it
531        // is the NUL terminator.
532        // FIXME(const-hack): use get_unchecked
533        unsafe { *self.inner.as_ptr() == 0 }
534    }
535
536    /// Converts this C string to a byte slice.
537    ///
538    /// The returned slice will **not** contain the trailing nul terminator that this C
539    /// string has.
540    ///
541    /// > **Note**: This method is currently implemented as a constant-time
542    /// > cast, but it is planned to alter its definition in the future to
543    /// > perform the length calculation whenever this method is called.
544    ///
545    /// # Examples
546    ///
547    /// ```
548    /// assert_eq!(c"foo".to_bytes(), b"foo");
549    /// ```
550    #[inline]
551    #[must_use = "this returns the result of the operation, \
552                  without modifying the original"]
553    #[stable(feature = "rust1", since = "1.0.0")]
554    #[rustc_const_stable(feature = "const_cstr_methods", since = "1.72.0")]
555    pub const fn to_bytes(&self) -> &[u8] {
556        let bytes = self.to_bytes_with_nul();
557        // FIXME(const-hack) replace with range index
558        // SAFETY: to_bytes_with_nul returns slice with length at least 1
559        unsafe { slice::from_raw_parts(bytes.as_ptr(), bytes.len() - 1) }
560    }
561
562    /// Converts this C string to a byte slice containing the trailing 0 byte.
563    ///
564    /// This function is the equivalent of [`CStr::to_bytes`] except that it
565    /// will retain the trailing nul terminator instead of chopping it off.
566    ///
567    /// > **Note**: This method is currently implemented as a 0-cost cast, but
568    /// > it is planned to alter its definition in the future to perform the
569    /// > length calculation whenever this method is called.
570    ///
571    /// # Examples
572    ///
573    /// ```
574    /// assert_eq!(c"foo".to_bytes_with_nul(), b"foo\0");
575    /// ```
576    #[inline]
577    #[must_use = "this returns the result of the operation, \
578                  without modifying the original"]
579    #[stable(feature = "rust1", since = "1.0.0")]
580    #[rustc_const_stable(feature = "const_cstr_methods", since = "1.72.0")]
581    pub const fn to_bytes_with_nul(&self) -> &[u8] {
582        // SAFETY: Transmuting a slice of `c_char`s to a slice of `u8`s
583        // is safe on all supported targets.
584        unsafe { &*((&raw const self.inner) as *const [u8]) }
585    }
586
587    /// Iterates over the bytes in this C string.
588    ///
589    /// The returned iterator will **not** contain the trailing nul terminator
590    /// that this C string has.
591    ///
592    /// # Examples
593    ///
594    /// ```
595    /// #![feature(cstr_bytes)]
596    ///
597    /// assert!(c"foo".bytes().eq(*b"foo"));
598    /// ```
599    #[inline]
600    #[unstable(feature = "cstr_bytes", issue = "112115")]
601    pub fn bytes(&self) -> Bytes<'_> {
602        Bytes::new(self)
603    }
604
605    /// Yields a <code>&[str]</code> slice if the `CStr` contains valid UTF-8.
606    ///
607    /// If the contents of the `CStr` are valid UTF-8 data, this
608    /// function will return the corresponding <code>&[str]</code> slice. Otherwise,
609    /// it will return an error with details of where UTF-8 validation failed.
610    ///
611    /// [str]: prim@str "str"
612    ///
613    /// # Examples
614    ///
615    /// ```
616    /// assert_eq!(c"foo".to_str(), Ok("foo"));
617    /// ```
618    #[stable(feature = "cstr_to_str", since = "1.4.0")]
619    #[rustc_const_stable(feature = "const_cstr_methods", since = "1.72.0")]
620    pub const fn to_str(&self) -> Result<&str, str::Utf8Error> {
621        // N.B., when `CStr` is changed to perform the length check in `.to_bytes()`
622        // instead of in `from_ptr()`, it may be worth considering if this should
623        // be rewritten to do the UTF-8 check inline with the length calculation
624        // instead of doing it afterwards.
625        str::from_utf8(self.to_bytes())
626    }
627
628    /// Returns an object that implements [`Display`] for safely printing a [`CStr`] that may
629    /// contain non-Unicode data.
630    ///
631    /// Behaves as if `self` were first lossily converted to a `str`, with invalid UTF-8 presented
632    /// as the Unicode replacement character: �.
633    ///
634    /// [`Display`]: fmt::Display
635    ///
636    /// # Examples
637    ///
638    /// ```
639    /// #![feature(cstr_display)]
640    ///
641    /// let cstr = c"Hello, world!";
642    /// println!("{}", cstr.display());
643    /// ```
644    #[unstable(feature = "cstr_display", issue = "139984")]
645    #[must_use = "this does not display the `CStr`; \
646                  it returns an object that can be displayed"]
647    #[inline]
648    pub fn display(&self) -> impl fmt::Display {
649        crate::bstr::ByteStr::from_bytes(self.to_bytes())
650    }
651}
652
653#[stable(feature = "c_string_eq_c_str", since = "1.90.0")]
654impl PartialEq<&Self> for CStr {
655    #[inline]
656    fn eq(&self, other: &&Self) -> bool {
657        *self == **other
658    }
659
660    #[inline]
661    fn ne(&self, other: &&Self) -> bool {
662        *self != **other
663    }
664}
665
666// `.to_bytes()` representations are compared instead of the inner `[c_char]`s,
667// because `c_char` is `i8` (not `u8`) on some platforms.
668// That is why this is implemented manually and not derived.
669#[stable(feature = "rust1", since = "1.0.0")]
670impl PartialOrd for CStr {
671    #[inline]
672    fn partial_cmp(&self, other: &CStr) -> Option<Ordering> {
673        self.to_bytes().partial_cmp(&other.to_bytes())
674    }
675}
676
677#[stable(feature = "rust1", since = "1.0.0")]
678impl Ord for CStr {
679    #[inline]
680    fn cmp(&self, other: &CStr) -> Ordering {
681        self.to_bytes().cmp(&other.to_bytes())
682    }
683}
684
685#[stable(feature = "cstr_range_from", since = "1.47.0")]
686impl ops::Index<ops::RangeFrom<usize>> for CStr {
687    type Output = CStr;
688
689    #[inline]
690    fn index(&self, index: ops::RangeFrom<usize>) -> &CStr {
691        let bytes = self.to_bytes_with_nul();
692        // we need to manually check the starting index to account for the null
693        // byte, since otherwise we could get an empty string that doesn't end
694        // in a null.
695        if index.start < bytes.len() {
696            // SAFETY: Non-empty tail of a valid `CStr` is still a valid `CStr`.
697            unsafe { CStr::from_bytes_with_nul_unchecked(&bytes[index.start..]) }
698        } else {
699            panic!(
700                "index out of bounds: the len is {} but the index is {}",
701                bytes.len(),
702                index.start
703            );
704        }
705    }
706}
707
708#[stable(feature = "cstring_asref", since = "1.7.0")]
709#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
710impl const AsRef<CStr> for CStr {
711    #[inline]
712    fn as_ref(&self) -> &CStr {
713        self
714    }
715}
716
717/// Calculate the length of a nul-terminated string. Defers to C's `strlen` when possible.
718///
719/// # Safety
720///
721/// The pointer must point to a valid buffer that contains a NUL terminator. The NUL must be
722/// located within `isize::MAX` from `ptr`.
723#[inline]
724#[unstable(feature = "cstr_internals", issue = "none")]
725#[rustc_allow_const_fn_unstable(const_eval_select)]
726const unsafe fn strlen(ptr: *const c_char) -> usize {
727    const_eval_select!(
728        @capture { s: *const c_char = ptr } -> usize:
729        if const {
730            let mut len = 0;
731
732            // SAFETY: Outer caller has provided a pointer to a valid C string.
733            while unsafe { *s.add(len) } != 0 {
734                len += 1;
735            }
736
737            len
738        } else {
739            unsafe extern "C" {
740                /// Provided by libc or compiler_builtins.
741                fn strlen(s: *const c_char) -> usize;
742            }
743
744            // SAFETY: Outer caller has provided a pointer to a valid C string.
745            unsafe { strlen(s) }
746        }
747    )
748}
749
750/// An iterator over the bytes of a [`CStr`], without the nul terminator.
751///
752/// This struct is created by the [`bytes`] method on [`CStr`].
753/// See its documentation for more.
754///
755/// [`bytes`]: CStr::bytes
756#[must_use = "iterators are lazy and do nothing unless consumed"]
757#[unstable(feature = "cstr_bytes", issue = "112115")]
758#[derive(Clone, Debug)]
759pub struct Bytes<'a> {
760    // since we know the string is nul-terminated, we only need one pointer
761    ptr: NonNull<u8>,
762    phantom: PhantomData<&'a [c_char]>,
763}
764
765#[unstable(feature = "cstr_bytes", issue = "112115")]
766unsafe impl Send for Bytes<'_> {}
767
768#[unstable(feature = "cstr_bytes", issue = "112115")]
769unsafe impl Sync for Bytes<'_> {}
770
771impl<'a> Bytes<'a> {
772    #[inline]
773    fn new(s: &'a CStr) -> Self {
774        Self { ptr: s.as_non_null_ptr().cast(), phantom: PhantomData }
775    }
776
777    #[inline]
778    fn is_empty(&self) -> bool {
779        // SAFETY: We uphold that the pointer is always valid to dereference
780        // by starting with a valid C string and then never incrementing beyond
781        // the nul terminator.
782        unsafe { self.ptr.read() == 0 }
783    }
784}
785
786#[unstable(feature = "cstr_bytes", issue = "112115")]
787impl Iterator for Bytes<'_> {
788    type Item = u8;
789
790    #[inline]
791    fn next(&mut self) -> Option<u8> {
792        // SAFETY: We only choose a pointer from a valid C string, which must
793        // be non-null and contain at least one value. Since we always stop at
794        // the nul terminator, which is guaranteed to exist, we can assume that
795        // the pointer is non-null and valid. This lets us safely dereference
796        // it and assume that adding 1 will create a new, non-null, valid
797        // pointer.
798        unsafe {
799            let ret = self.ptr.read();
800            if ret == 0 {
801                None
802            } else {
803                self.ptr = self.ptr.add(1);
804                Some(ret)
805            }
806        }
807    }
808
809    #[inline]
810    fn size_hint(&self) -> (usize, Option<usize>) {
811        if self.is_empty() { (0, Some(0)) } else { (1, None) }
812    }
813
814    #[inline]
815    fn count(self) -> usize {
816        // SAFETY: We always hold a valid pointer to a C string
817        unsafe { strlen(self.ptr.as_ptr().cast()) }
818    }
819}
820
821#[unstable(feature = "cstr_bytes", issue = "112115")]
822impl FusedIterator for Bytes<'_> {}