core/ffi/c_str.rs
1//! [`CStr`] and its related types.
2
3use crate::cmp::Ordering;
4use crate::error::Error;
5use crate::ffi::c_char;
6use crate::intrinsics::const_eval_select;
7use crate::iter::FusedIterator;
8use crate::marker::PhantomData;
9use crate::ptr::NonNull;
10use crate::slice::memchr;
11use crate::{fmt, ops, slice, str};
12
13// FIXME: because this is doc(inline)d, we *have* to use intra-doc links because the actual link
14// depends on where the item is being documented. however, since this is libcore, we can't
15// actually reference libstd or liballoc in intra-doc links. so, the best we can do is remove the
16// links to `CString` and `String` for now until a solution is developed
17
18/// Representation of a borrowed C string.
19///
20/// This type represents a borrowed reference to a nul-terminated
21/// array of bytes. It can be constructed safely from a <code>&[[u8]]</code>
22/// slice, or unsafely from a raw `*const c_char`. It can be expressed as a
23/// literal in the form `c"Hello world"`.
24///
25/// The `CStr` can then be converted to a Rust <code>&[str]</code> by performing
26/// UTF-8 validation, or into an owned `CString`.
27///
28/// `&CStr` is to `CString` as <code>&[str]</code> is to `String`: the former
29/// in each pair are borrowed references; the latter are owned
30/// strings.
31///
32/// Note that this structure does **not** have a guaranteed layout (the `repr(transparent)`
33/// notwithstanding) and should not be placed in the signatures of FFI functions.
34/// Instead, safe wrappers of FFI functions may leverage [`CStr::as_ptr`] and the unsafe
35/// [`CStr::from_ptr`] constructor to provide a safe interface to other consumers.
36///
37/// # Examples
38///
39/// Inspecting a foreign C string:
40///
41/// ```
42/// use std::ffi::CStr;
43/// use std::os::raw::c_char;
44///
45/// # /* Extern functions are awkward in doc comments - fake it instead
46/// extern "C" { fn my_string() -> *const c_char; }
47/// # */ unsafe extern "C" fn my_string() -> *const c_char { c"hello".as_ptr() }
48///
49/// unsafe {
50/// let slice = CStr::from_ptr(my_string());
51/// println!("string buffer size without nul terminator: {}", slice.to_bytes().len());
52/// }
53/// ```
54///
55/// Passing a Rust-originating C string:
56///
57/// ```
58/// use std::ffi::CStr;
59/// use std::os::raw::c_char;
60///
61/// fn work(data: &CStr) {
62/// unsafe extern "C" fn work_with(s: *const c_char) {}
63/// unsafe { work_with(data.as_ptr()) }
64/// }
65///
66/// let s = c"Hello world!";
67/// work(&s);
68/// ```
69///
70/// Converting a foreign C string into a Rust `String`:
71///
72/// ```
73/// use std::ffi::CStr;
74/// use std::os::raw::c_char;
75///
76/// # /* Extern functions are awkward in doc comments - fake it instead
77/// extern "C" { fn my_string() -> *const c_char; }
78/// # */ unsafe extern "C" fn my_string() -> *const c_char { c"hello".as_ptr() }
79///
80/// fn my_string_safe() -> String {
81/// let cstr = unsafe { CStr::from_ptr(my_string()) };
82/// // Get a copy-on-write Cow<'_, str>, then extract the
83/// // allocated String (or allocate a fresh one if needed).
84/// cstr.to_string_lossy().into_owned()
85/// }
86///
87/// println!("string: {}", my_string_safe());
88/// ```
89///
90/// [str]: prim@str "str"
91#[derive(PartialEq, Eq, Hash)]
92#[stable(feature = "core_c_str", since = "1.64.0")]
93#[rustc_diagnostic_item = "cstr_type"]
94#[rustc_has_incoherent_inherent_impls]
95#[lang = "CStr"]
96// `fn from` in `impl From<&CStr> for Box<CStr>` current implementation relies
97// on `CStr` being layout-compatible with `[u8]`.
98// However, `CStr` layout is considered an implementation detail and must not be relied upon. We
99// want `repr(transparent)` but we don't want it to show up in rustdoc, so we hide it under
100// `cfg(doc)`. This is an ad-hoc implementation of attribute privacy.
101#[repr(transparent)]
102pub struct CStr {
103 // FIXME: this should not be represented with a DST slice but rather with
104 // just a raw `c_char` along with some form of marker to make
105 // this an unsized type. Essentially `sizeof(&CStr)` should be the
106 // same as `sizeof(&c_char)` but `CStr` should be an unsized type.
107 inner: [c_char],
108}
109
110/// An error indicating that a nul byte was not in the expected position.
111///
112/// The slice used to create a [`CStr`] must have one and only one nul byte,
113/// positioned at the end.
114///
115/// This error is created by the [`CStr::from_bytes_with_nul`] method.
116/// See its documentation for more.
117///
118/// # Examples
119///
120/// ```
121/// use std::ffi::{CStr, FromBytesWithNulError};
122///
123/// let _: FromBytesWithNulError = CStr::from_bytes_with_nul(b"f\0oo").unwrap_err();
124/// ```
125#[derive(Clone, Copy, PartialEq, Eq, Debug)]
126#[stable(feature = "core_c_str", since = "1.64.0")]
127pub enum FromBytesWithNulError {
128 /// Data provided contains an interior nul byte at byte `position`.
129 InteriorNul {
130 /// The position of the interior nul byte.
131 position: usize,
132 },
133 /// Data provided is not nul terminated.
134 NotNulTerminated,
135}
136
137#[stable(feature = "frombyteswithnulerror_impls", since = "1.17.0")]
138impl fmt::Display for FromBytesWithNulError {
139 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
140 match self {
141 Self::InteriorNul { position } => {
142 write!(f, "data provided contains an interior nul byte at byte position {position}")
143 }
144 Self::NotNulTerminated => write!(f, "data provided is not nul terminated"),
145 }
146 }
147}
148
149#[stable(feature = "frombyteswithnulerror_impls", since = "1.17.0")]
150impl Error for FromBytesWithNulError {}
151
152/// An error indicating that no nul byte was present.
153///
154/// A slice used to create a [`CStr`] must contain a nul byte somewhere
155/// within the slice.
156///
157/// This error is created by the [`CStr::from_bytes_until_nul`] method.
158#[derive(Clone, PartialEq, Eq, Debug)]
159#[stable(feature = "cstr_from_bytes_until_nul", since = "1.69.0")]
160pub struct FromBytesUntilNulError(());
161
162#[stable(feature = "cstr_from_bytes_until_nul", since = "1.69.0")]
163impl fmt::Display for FromBytesUntilNulError {
164 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
165 write!(f, "data provided does not contain a nul")
166 }
167}
168
169/// Shows the underlying bytes as a normal string, with invalid UTF-8
170/// presented as hex escape sequences.
171#[stable(feature = "cstr_debug", since = "1.3.0")]
172impl fmt::Debug for CStr {
173 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
174 fmt::Debug::fmt(crate::bstr::ByteStr::from_bytes(self.to_bytes()), f)
175 }
176}
177
178#[stable(feature = "cstr_default", since = "1.10.0")]
179impl Default for &CStr {
180 #[inline]
181 fn default() -> Self {
182 c""
183 }
184}
185
186impl CStr {
187 /// Wraps a raw C string with a safe C string wrapper.
188 ///
189 /// This function will wrap the provided `ptr` with a `CStr` wrapper, which
190 /// allows inspection and interoperation of non-owned C strings. The total
191 /// size of the terminated buffer must be smaller than [`isize::MAX`] **bytes**
192 /// in memory (a restriction from [`slice::from_raw_parts`]).
193 ///
194 /// # Safety
195 ///
196 /// * The memory pointed to by `ptr` must contain a valid nul terminator at the
197 /// end of the string.
198 ///
199 /// * `ptr` must be [valid] for reads of bytes up to and including the nul terminator.
200 /// This means in particular:
201 ///
202 /// * The entire memory range of this `CStr` must be contained within a single allocation!
203 /// * `ptr` must be non-null even for a zero-length cstr.
204 ///
205 /// * The memory referenced by the returned `CStr` must not be mutated for
206 /// the duration of lifetime `'a`.
207 ///
208 /// * The nul terminator must be within `isize::MAX` from `ptr`
209 ///
210 /// > **Note**: This operation is intended to be a 0-cost cast but it is
211 /// > currently implemented with an up-front calculation of the length of
212 /// > the string. This is not guaranteed to always be the case.
213 ///
214 /// # Caveat
215 ///
216 /// The lifetime for the returned slice is inferred from its usage. To prevent accidental misuse,
217 /// it's suggested to tie the lifetime to whichever source lifetime is safe in the context,
218 /// such as by providing a helper function taking the lifetime of a host value for the slice,
219 /// or by explicit annotation.
220 ///
221 /// # Examples
222 ///
223 /// ```
224 /// use std::ffi::{c_char, CStr};
225 ///
226 /// fn my_string() -> *const c_char {
227 /// c"hello".as_ptr()
228 /// }
229 ///
230 /// unsafe {
231 /// let slice = CStr::from_ptr(my_string());
232 /// assert_eq!(slice.to_str().unwrap(), "hello");
233 /// }
234 /// ```
235 ///
236 /// ```
237 /// use std::ffi::{c_char, CStr};
238 ///
239 /// const HELLO_PTR: *const c_char = {
240 /// const BYTES: &[u8] = b"Hello, world!\0";
241 /// BYTES.as_ptr().cast()
242 /// };
243 /// const HELLO: &CStr = unsafe { CStr::from_ptr(HELLO_PTR) };
244 ///
245 /// assert_eq!(c"Hello, world!", HELLO);
246 /// ```
247 ///
248 /// [valid]: core::ptr#safety
249 #[inline] // inline is necessary for codegen to see strlen.
250 #[must_use]
251 #[stable(feature = "rust1", since = "1.0.0")]
252 #[rustc_const_stable(feature = "const_cstr_from_ptr", since = "1.81.0")]
253 pub const unsafe fn from_ptr<'a>(ptr: *const c_char) -> &'a CStr {
254 // SAFETY: The caller has provided a pointer that points to a valid C
255 // string with a NUL terminator less than `isize::MAX` from `ptr`.
256 let len = unsafe { strlen(ptr) };
257
258 // SAFETY: The caller has provided a valid pointer with length less than
259 // `isize::MAX`, so `from_raw_parts` is safe. The content remains valid
260 // and doesn't change for the lifetime of the returned `CStr`. This
261 // means the call to `from_bytes_with_nul_unchecked` is correct.
262 //
263 // The cast from c_char to u8 is ok because a c_char is always one byte.
264 unsafe { Self::from_bytes_with_nul_unchecked(slice::from_raw_parts(ptr.cast(), len + 1)) }
265 }
266
267 /// Creates a C string wrapper from a byte slice with any number of nuls.
268 ///
269 /// This method will create a `CStr` from any byte slice that contains at
270 /// least one nul byte. Unlike with [`CStr::from_bytes_with_nul`], the caller
271 /// does not need to know where the nul byte is located.
272 ///
273 /// If the first byte is a nul character, this method will return an
274 /// empty `CStr`. If multiple nul characters are present, the `CStr` will
275 /// end at the first one.
276 ///
277 /// If the slice only has a single nul byte at the end, this method is
278 /// equivalent to [`CStr::from_bytes_with_nul`].
279 ///
280 /// # Examples
281 /// ```
282 /// use std::ffi::CStr;
283 ///
284 /// let mut buffer = [0u8; 16];
285 /// unsafe {
286 /// // Here we might call an unsafe C function that writes a string
287 /// // into the buffer.
288 /// let buf_ptr = buffer.as_mut_ptr();
289 /// buf_ptr.write_bytes(b'A', 8);
290 /// }
291 /// // Attempt to extract a C nul-terminated string from the buffer.
292 /// let c_str = CStr::from_bytes_until_nul(&buffer[..]).unwrap();
293 /// assert_eq!(c_str.to_str().unwrap(), "AAAAAAAA");
294 /// ```
295 ///
296 #[stable(feature = "cstr_from_bytes_until_nul", since = "1.69.0")]
297 #[rustc_const_stable(feature = "cstr_from_bytes_until_nul", since = "1.69.0")]
298 pub const fn from_bytes_until_nul(bytes: &[u8]) -> Result<&CStr, FromBytesUntilNulError> {
299 let nul_pos = memchr::memchr(0, bytes);
300 match nul_pos {
301 Some(nul_pos) => {
302 // FIXME(const-hack) replace with range index
303 // SAFETY: nul_pos + 1 <= bytes.len()
304 let subslice = unsafe { crate::slice::from_raw_parts(bytes.as_ptr(), nul_pos + 1) };
305 // SAFETY: We know there is a nul byte at nul_pos, so this slice
306 // (ending at the nul byte) is a well-formed C string.
307 Ok(unsafe { CStr::from_bytes_with_nul_unchecked(subslice) })
308 }
309 None => Err(FromBytesUntilNulError(())),
310 }
311 }
312
313 /// Creates a C string wrapper from a byte slice with exactly one nul
314 /// terminator.
315 ///
316 /// This function will cast the provided `bytes` to a `CStr`
317 /// wrapper after ensuring that the byte slice is nul-terminated
318 /// and does not contain any interior nul bytes.
319 ///
320 /// If the nul byte may not be at the end,
321 /// [`CStr::from_bytes_until_nul`] can be used instead.
322 ///
323 /// # Examples
324 ///
325 /// ```
326 /// use std::ffi::CStr;
327 ///
328 /// let cstr = CStr::from_bytes_with_nul(b"hello\0");
329 /// assert_eq!(cstr, Ok(c"hello"));
330 /// ```
331 ///
332 /// Creating a `CStr` without a trailing nul terminator is an error:
333 ///
334 /// ```
335 /// use std::ffi::{CStr, FromBytesWithNulError};
336 ///
337 /// let cstr = CStr::from_bytes_with_nul(b"hello");
338 /// assert_eq!(cstr, Err(FromBytesWithNulError::NotNulTerminated));
339 /// ```
340 ///
341 /// Creating a `CStr` with an interior nul byte is an error:
342 ///
343 /// ```
344 /// use std::ffi::{CStr, FromBytesWithNulError};
345 ///
346 /// let cstr = CStr::from_bytes_with_nul(b"he\0llo\0");
347 /// assert_eq!(cstr, Err(FromBytesWithNulError::InteriorNul { position: 2 }));
348 /// ```
349 #[stable(feature = "cstr_from_bytes", since = "1.10.0")]
350 #[rustc_const_stable(feature = "const_cstr_methods", since = "1.72.0")]
351 pub const fn from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, FromBytesWithNulError> {
352 let nul_pos = memchr::memchr(0, bytes);
353 match nul_pos {
354 Some(nul_pos) if nul_pos + 1 == bytes.len() => {
355 // SAFETY: We know there is only one nul byte, at the end
356 // of the byte slice.
357 Ok(unsafe { Self::from_bytes_with_nul_unchecked(bytes) })
358 }
359 Some(position) => Err(FromBytesWithNulError::InteriorNul { position }),
360 None => Err(FromBytesWithNulError::NotNulTerminated),
361 }
362 }
363
364 /// Unsafely creates a C string wrapper from a byte slice.
365 ///
366 /// This function will cast the provided `bytes` to a `CStr` wrapper without
367 /// performing any sanity checks.
368 ///
369 /// # Safety
370 /// The provided slice **must** be nul-terminated and not contain any interior
371 /// nul bytes.
372 ///
373 /// # Examples
374 ///
375 /// ```
376 /// use std::ffi::CStr;
377 ///
378 /// let bytes = b"Hello world!\0";
379 ///
380 /// let cstr = unsafe { CStr::from_bytes_with_nul_unchecked(bytes) };
381 /// assert_eq!(cstr.to_bytes_with_nul(), bytes);
382 /// ```
383 #[inline]
384 #[must_use]
385 #[stable(feature = "cstr_from_bytes", since = "1.10.0")]
386 #[rustc_const_stable(feature = "const_cstr_unchecked", since = "1.59.0")]
387 #[rustc_allow_const_fn_unstable(const_eval_select)]
388 pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr {
389 const_eval_select!(
390 @capture { bytes: &[u8] } -> &CStr:
391 if const {
392 // Saturating so that an empty slice panics in the assert with a good
393 // message, not here due to underflow.
394 let mut i = bytes.len().saturating_sub(1);
395 assert!(!bytes.is_empty() && bytes[i] == 0, "input was not nul-terminated");
396
397 // Ending nul byte exists, skip to the rest.
398 while i != 0 {
399 i -= 1;
400 let byte = bytes[i];
401 assert!(byte != 0, "input contained interior nul");
402 }
403
404 // SAFETY: See runtime cast comment below.
405 unsafe { &*(bytes as *const [u8] as *const CStr) }
406 } else {
407 // Chance at catching some UB at runtime with debug builds.
408 debug_assert!(!bytes.is_empty() && bytes[bytes.len() - 1] == 0);
409
410 // SAFETY: Casting to CStr is safe because its internal representation
411 // is a [u8] too (safe only inside std).
412 // Dereferencing the obtained pointer is safe because it comes from a
413 // reference. Making a reference is then safe because its lifetime
414 // is bound by the lifetime of the given `bytes`.
415 unsafe { &*(bytes as *const [u8] as *const CStr) }
416 }
417 )
418 }
419
420 /// Returns the inner pointer to this C string.
421 ///
422 /// The returned pointer will be valid for as long as `self` is, and points
423 /// to a contiguous region of memory terminated with a 0 byte to represent
424 /// the end of the string.
425 ///
426 /// The type of the returned pointer is
427 /// [`*const c_char`][crate::ffi::c_char], and whether it's
428 /// an alias for `*const i8` or `*const u8` is platform-specific.
429 ///
430 /// **WARNING**
431 ///
432 /// The returned pointer is read-only; writing to it (including passing it
433 /// to C code that writes to it) causes undefined behavior.
434 ///
435 /// It is your responsibility to make sure that the underlying memory is not
436 /// freed too early. For example, the following code will cause undefined
437 /// behavior when `ptr` is used inside the `unsafe` block:
438 ///
439 /// ```no_run
440 /// # #![expect(dangling_pointers_from_temporaries)]
441 /// use std::ffi::{CStr, CString};
442 ///
443 /// // 💀 The meaning of this entire program is undefined,
444 /// // 💀 and nothing about its behavior is guaranteed,
445 /// // 💀 not even that its behavior resembles the code as written,
446 /// // 💀 just because it contains a single instance of undefined behavior!
447 ///
448 /// // 🚨 creates a dangling pointer to a temporary `CString`
449 /// // 🚨 that is deallocated at the end of the statement
450 /// let ptr = CString::new("Hi!".to_uppercase()).unwrap().as_ptr();
451 ///
452 /// // without undefined behavior, you would expect that `ptr` equals:
453 /// dbg!(CStr::from_bytes_with_nul(b"HI!\0").unwrap());
454 ///
455 /// // 🙏 Possibly the program behaved as expected so far,
456 /// // 🙏 and this just shows `ptr` is now garbage..., but
457 /// // 💀 this violates `CStr::from_ptr`'s safety contract
458 /// // 💀 leading to a dereference of a dangling pointer,
459 /// // 💀 which is immediate undefined behavior.
460 /// // 💀 *BOOM*, you're dead, your entire program has no meaning.
461 /// dbg!(unsafe { CStr::from_ptr(ptr) });
462 /// ```
463 ///
464 /// This happens because, the pointer returned by `as_ptr` does not carry any
465 /// lifetime information, and the `CString` is deallocated immediately after
466 /// the expression that it is part of has been evaluated.
467 /// To fix the problem, bind the `CString` to a local variable:
468 ///
469 /// ```
470 /// use std::ffi::{CStr, CString};
471 ///
472 /// let c_str = CString::new("Hi!".to_uppercase()).unwrap();
473 /// let ptr = c_str.as_ptr();
474 ///
475 /// assert_eq!(unsafe { CStr::from_ptr(ptr) }, c"HI!");
476 /// ```
477 #[inline]
478 #[must_use]
479 #[stable(feature = "rust1", since = "1.0.0")]
480 #[rustc_const_stable(feature = "const_str_as_ptr", since = "1.32.0")]
481 #[rustc_as_ptr]
482 #[rustc_never_returns_null_ptr]
483 pub const fn as_ptr(&self) -> *const c_char {
484 self.inner.as_ptr()
485 }
486
487 /// We could eventually expose this publicly, if we wanted.
488 #[inline]
489 #[must_use]
490 const fn as_non_null_ptr(&self) -> NonNull<c_char> {
491 // FIXME(const_trait_impl) replace with `NonNull::from`
492 // SAFETY: a reference is never null
493 unsafe { NonNull::new_unchecked(&self.inner as *const [c_char] as *mut [c_char]) }
494 .as_non_null_ptr()
495 }
496
497 /// Returns the length of `self`. Like C's `strlen`, this does not include the nul terminator.
498 ///
499 /// > **Note**: This method is currently implemented as a constant-time
500 /// > cast, but it is planned to alter its definition in the future to
501 /// > perform the length calculation whenever this method is called.
502 ///
503 /// # Examples
504 ///
505 /// ```
506 /// assert_eq!(c"foo".count_bytes(), 3);
507 /// assert_eq!(c"".count_bytes(), 0);
508 /// ```
509 #[inline]
510 #[must_use]
511 #[doc(alias("len", "strlen"))]
512 #[stable(feature = "cstr_count_bytes", since = "1.79.0")]
513 #[rustc_const_stable(feature = "const_cstr_from_ptr", since = "1.81.0")]
514 pub const fn count_bytes(&self) -> usize {
515 self.inner.len() - 1
516 }
517
518 /// Returns `true` if `self.to_bytes()` has a length of 0.
519 ///
520 /// # Examples
521 ///
522 /// ```
523 /// assert!(!c"foo".is_empty());
524 /// assert!(c"".is_empty());
525 /// ```
526 #[inline]
527 #[stable(feature = "cstr_is_empty", since = "1.71.0")]
528 #[rustc_const_stable(feature = "cstr_is_empty", since = "1.71.0")]
529 pub const fn is_empty(&self) -> bool {
530 // SAFETY: We know there is at least one byte; for empty strings it
531 // is the NUL terminator.
532 // FIXME(const-hack): use get_unchecked
533 unsafe { *self.inner.as_ptr() == 0 }
534 }
535
536 /// Converts this C string to a byte slice.
537 ///
538 /// The returned slice will **not** contain the trailing nul terminator that this C
539 /// string has.
540 ///
541 /// > **Note**: This method is currently implemented as a constant-time
542 /// > cast, but it is planned to alter its definition in the future to
543 /// > perform the length calculation whenever this method is called.
544 ///
545 /// # Examples
546 ///
547 /// ```
548 /// assert_eq!(c"foo".to_bytes(), b"foo");
549 /// ```
550 #[inline]
551 #[must_use = "this returns the result of the operation, \
552 without modifying the original"]
553 #[stable(feature = "rust1", since = "1.0.0")]
554 #[rustc_const_stable(feature = "const_cstr_methods", since = "1.72.0")]
555 pub const fn to_bytes(&self) -> &[u8] {
556 let bytes = self.to_bytes_with_nul();
557 // FIXME(const-hack) replace with range index
558 // SAFETY: to_bytes_with_nul returns slice with length at least 1
559 unsafe { slice::from_raw_parts(bytes.as_ptr(), bytes.len() - 1) }
560 }
561
562 /// Converts this C string to a byte slice containing the trailing 0 byte.
563 ///
564 /// This function is the equivalent of [`CStr::to_bytes`] except that it
565 /// will retain the trailing nul terminator instead of chopping it off.
566 ///
567 /// > **Note**: This method is currently implemented as a 0-cost cast, but
568 /// > it is planned to alter its definition in the future to perform the
569 /// > length calculation whenever this method is called.
570 ///
571 /// # Examples
572 ///
573 /// ```
574 /// assert_eq!(c"foo".to_bytes_with_nul(), b"foo\0");
575 /// ```
576 #[inline]
577 #[must_use = "this returns the result of the operation, \
578 without modifying the original"]
579 #[stable(feature = "rust1", since = "1.0.0")]
580 #[rustc_const_stable(feature = "const_cstr_methods", since = "1.72.0")]
581 pub const fn to_bytes_with_nul(&self) -> &[u8] {
582 // SAFETY: Transmuting a slice of `c_char`s to a slice of `u8`s
583 // is safe on all supported targets.
584 unsafe { &*((&raw const self.inner) as *const [u8]) }
585 }
586
587 /// Iterates over the bytes in this C string.
588 ///
589 /// The returned iterator will **not** contain the trailing nul terminator
590 /// that this C string has.
591 ///
592 /// # Examples
593 ///
594 /// ```
595 /// #![feature(cstr_bytes)]
596 ///
597 /// assert!(c"foo".bytes().eq(*b"foo"));
598 /// ```
599 #[inline]
600 #[unstable(feature = "cstr_bytes", issue = "112115")]
601 pub fn bytes(&self) -> Bytes<'_> {
602 Bytes::new(self)
603 }
604
605 /// Yields a <code>&[str]</code> slice if the `CStr` contains valid UTF-8.
606 ///
607 /// If the contents of the `CStr` are valid UTF-8 data, this
608 /// function will return the corresponding <code>&[str]</code> slice. Otherwise,
609 /// it will return an error with details of where UTF-8 validation failed.
610 ///
611 /// [str]: prim@str "str"
612 ///
613 /// # Examples
614 ///
615 /// ```
616 /// assert_eq!(c"foo".to_str(), Ok("foo"));
617 /// ```
618 #[stable(feature = "cstr_to_str", since = "1.4.0")]
619 #[rustc_const_stable(feature = "const_cstr_methods", since = "1.72.0")]
620 pub const fn to_str(&self) -> Result<&str, str::Utf8Error> {
621 // N.B., when `CStr` is changed to perform the length check in `.to_bytes()`
622 // instead of in `from_ptr()`, it may be worth considering if this should
623 // be rewritten to do the UTF-8 check inline with the length calculation
624 // instead of doing it afterwards.
625 str::from_utf8(self.to_bytes())
626 }
627
628 /// Returns an object that implements [`Display`] for safely printing a [`CStr`] that may
629 /// contain non-Unicode data.
630 ///
631 /// Behaves as if `self` were first lossily converted to a `str`, with invalid UTF-8 presented
632 /// as the Unicode replacement character: �.
633 ///
634 /// [`Display`]: fmt::Display
635 ///
636 /// # Examples
637 ///
638 /// ```
639 /// #![feature(cstr_display)]
640 ///
641 /// let cstr = c"Hello, world!";
642 /// println!("{}", cstr.display());
643 /// ```
644 #[unstable(feature = "cstr_display", issue = "139984")]
645 #[must_use = "this does not display the `CStr`; \
646 it returns an object that can be displayed"]
647 #[inline]
648 pub fn display(&self) -> impl fmt::Display {
649 crate::bstr::ByteStr::from_bytes(self.to_bytes())
650 }
651}
652
653#[stable(feature = "c_string_eq_c_str", since = "1.90.0")]
654impl PartialEq<&Self> for CStr {
655 #[inline]
656 fn eq(&self, other: &&Self) -> bool {
657 *self == **other
658 }
659
660 #[inline]
661 fn ne(&self, other: &&Self) -> bool {
662 *self != **other
663 }
664}
665
666// `.to_bytes()` representations are compared instead of the inner `[c_char]`s,
667// because `c_char` is `i8` (not `u8`) on some platforms.
668// That is why this is implemented manually and not derived.
669#[stable(feature = "rust1", since = "1.0.0")]
670impl PartialOrd for CStr {
671 #[inline]
672 fn partial_cmp(&self, other: &CStr) -> Option<Ordering> {
673 self.to_bytes().partial_cmp(&other.to_bytes())
674 }
675}
676
677#[stable(feature = "rust1", since = "1.0.0")]
678impl Ord for CStr {
679 #[inline]
680 fn cmp(&self, other: &CStr) -> Ordering {
681 self.to_bytes().cmp(&other.to_bytes())
682 }
683}
684
685#[stable(feature = "cstr_range_from", since = "1.47.0")]
686impl ops::Index<ops::RangeFrom<usize>> for CStr {
687 type Output = CStr;
688
689 #[inline]
690 fn index(&self, index: ops::RangeFrom<usize>) -> &CStr {
691 let bytes = self.to_bytes_with_nul();
692 // we need to manually check the starting index to account for the null
693 // byte, since otherwise we could get an empty string that doesn't end
694 // in a null.
695 if index.start < bytes.len() {
696 // SAFETY: Non-empty tail of a valid `CStr` is still a valid `CStr`.
697 unsafe { CStr::from_bytes_with_nul_unchecked(&bytes[index.start..]) }
698 } else {
699 panic!(
700 "index out of bounds: the len is {} but the index is {}",
701 bytes.len(),
702 index.start
703 );
704 }
705 }
706}
707
708#[stable(feature = "cstring_asref", since = "1.7.0")]
709#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
710impl const AsRef<CStr> for CStr {
711 #[inline]
712 fn as_ref(&self) -> &CStr {
713 self
714 }
715}
716
717/// Calculate the length of a nul-terminated string. Defers to C's `strlen` when possible.
718///
719/// # Safety
720///
721/// The pointer must point to a valid buffer that contains a NUL terminator. The NUL must be
722/// located within `isize::MAX` from `ptr`.
723#[inline]
724#[unstable(feature = "cstr_internals", issue = "none")]
725#[rustc_allow_const_fn_unstable(const_eval_select)]
726const unsafe fn strlen(ptr: *const c_char) -> usize {
727 const_eval_select!(
728 @capture { s: *const c_char = ptr } -> usize:
729 if const {
730 let mut len = 0;
731
732 // SAFETY: Outer caller has provided a pointer to a valid C string.
733 while unsafe { *s.add(len) } != 0 {
734 len += 1;
735 }
736
737 len
738 } else {
739 unsafe extern "C" {
740 /// Provided by libc or compiler_builtins.
741 fn strlen(s: *const c_char) -> usize;
742 }
743
744 // SAFETY: Outer caller has provided a pointer to a valid C string.
745 unsafe { strlen(s) }
746 }
747 )
748}
749
750/// An iterator over the bytes of a [`CStr`], without the nul terminator.
751///
752/// This struct is created by the [`bytes`] method on [`CStr`].
753/// See its documentation for more.
754///
755/// [`bytes`]: CStr::bytes
756#[must_use = "iterators are lazy and do nothing unless consumed"]
757#[unstable(feature = "cstr_bytes", issue = "112115")]
758#[derive(Clone, Debug)]
759pub struct Bytes<'a> {
760 // since we know the string is nul-terminated, we only need one pointer
761 ptr: NonNull<u8>,
762 phantom: PhantomData<&'a [c_char]>,
763}
764
765#[unstable(feature = "cstr_bytes", issue = "112115")]
766unsafe impl Send for Bytes<'_> {}
767
768#[unstable(feature = "cstr_bytes", issue = "112115")]
769unsafe impl Sync for Bytes<'_> {}
770
771impl<'a> Bytes<'a> {
772 #[inline]
773 fn new(s: &'a CStr) -> Self {
774 Self { ptr: s.as_non_null_ptr().cast(), phantom: PhantomData }
775 }
776
777 #[inline]
778 fn is_empty(&self) -> bool {
779 // SAFETY: We uphold that the pointer is always valid to dereference
780 // by starting with a valid C string and then never incrementing beyond
781 // the nul terminator.
782 unsafe { self.ptr.read() == 0 }
783 }
784}
785
786#[unstable(feature = "cstr_bytes", issue = "112115")]
787impl Iterator for Bytes<'_> {
788 type Item = u8;
789
790 #[inline]
791 fn next(&mut self) -> Option<u8> {
792 // SAFETY: We only choose a pointer from a valid C string, which must
793 // be non-null and contain at least one value. Since we always stop at
794 // the nul terminator, which is guaranteed to exist, we can assume that
795 // the pointer is non-null and valid. This lets us safely dereference
796 // it and assume that adding 1 will create a new, non-null, valid
797 // pointer.
798 unsafe {
799 let ret = self.ptr.read();
800 if ret == 0 {
801 None
802 } else {
803 self.ptr = self.ptr.add(1);
804 Some(ret)
805 }
806 }
807 }
808
809 #[inline]
810 fn size_hint(&self) -> (usize, Option<usize>) {
811 if self.is_empty() { (0, Some(0)) } else { (1, None) }
812 }
813
814 #[inline]
815 fn count(self) -> usize {
816 // SAFETY: We always hold a valid pointer to a C string
817 unsafe { strlen(self.ptr.as_ptr().cast()) }
818 }
819}
820
821#[unstable(feature = "cstr_bytes", issue = "112115")]
822impl FusedIterator for Bytes<'_> {}