1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
//! Comparison traits for `[T]`.

use crate::cmp;
use crate::cmp::Ordering::{self, Greater, Less};
use crate::mem;

use super::from_raw_parts;
use super::memchr;

extern "C" {
    /// Calls implementation provided memcmp.
    ///
    /// Interprets the data as u8.
    ///
    /// Returns 0 for equal, < 0 for less than and > 0 for greater
    /// than.
    // FIXME(#32610): Return type should be c_int
    fn memcmp(s1: *const u8, s2: *const u8, n: usize) -> i32;
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<A, B> PartialEq<[B]> for [A]
where
    A: PartialEq<B>,
{
    fn eq(&self, other: &[B]) -> bool {
        SlicePartialEq::equal(self, other)
    }

    fn ne(&self, other: &[B]) -> bool {
        SlicePartialEq::not_equal(self, other)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Eq> Eq for [T] {}

/// Implements comparison of vectors lexicographically.
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Ord> Ord for [T] {
    fn cmp(&self, other: &[T]) -> Ordering {
        SliceOrd::compare(self, other)
    }
}

/// Implements comparison of vectors lexicographically.
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: PartialOrd> PartialOrd for [T] {
    fn partial_cmp(&self, other: &[T]) -> Option<Ordering> {
        SlicePartialOrd::partial_compare(self, other)
    }
}

#[doc(hidden)]
// intermediate trait for specialization of slice's PartialEq
trait SlicePartialEq<B> {
    fn equal(&self, other: &[B]) -> bool;

    fn not_equal(&self, other: &[B]) -> bool {
        !self.equal(other)
    }
}

// Generic slice equality
impl<A, B> SlicePartialEq<B> for [A]
where
    A: PartialEq<B>,
{
    default fn equal(&self, other: &[B]) -> bool {
        if self.len() != other.len() {
            return false;
        }

        self.iter().zip(other.iter()).all(|(x, y)| x == y)
    }
}

// Use an equal-pointer optimization when types are `Eq`
// We can't make `A` and `B` the same type because `min_specialization` won't
// allow it.
impl<A, B> SlicePartialEq<B> for [A]
where
    A: MarkerEq<B>,
{
    default fn equal(&self, other: &[B]) -> bool {
        if self.len() != other.len() {
            return false;
        }

        // While performance would suffer if `guaranteed_eq` just returned `false`
        // for all arguments, correctness and return value of this function are not affected.
        if self.as_ptr().guaranteed_eq(other.as_ptr() as *const A) {
            return true;
        }

        self.iter().zip(other.iter()).all(|(x, y)| x == y)
    }
}

// Use memcmp for bytewise equality when the types allow
impl<A, B> SlicePartialEq<B> for [A]
where
    A: BytewiseEquality<B>,
{
    fn equal(&self, other: &[B]) -> bool {
        if self.len() != other.len() {
            return false;
        }

        // While performance would suffer if `guaranteed_eq` just returned `false`
        // for all arguments, correctness and return value of this function are not affected.
        if self.as_ptr().guaranteed_eq(other.as_ptr() as *const A) {
            return true;
        }
        // SAFETY: `self` and `other` are references and are thus guaranteed to be valid.
        // The two slices have been checked to have the same size above.
        unsafe {
            let size = mem::size_of_val(self);
            memcmp(self.as_ptr() as *const u8, other.as_ptr() as *const u8, size) == 0
        }
    }
}

#[doc(hidden)]
// intermediate trait for specialization of slice's PartialOrd
trait SlicePartialOrd: Sized {
    fn partial_compare(left: &[Self], right: &[Self]) -> Option<Ordering>;
}

impl<A: PartialOrd> SlicePartialOrd for A {
    default fn partial_compare(left: &[A], right: &[A]) -> Option<Ordering> {
        let l = cmp::min(left.len(), right.len());

        // Slice to the loop iteration range to enable bound check
        // elimination in the compiler
        let lhs = &left[..l];
        let rhs = &right[..l];

        for i in 0..l {
            match lhs[i].partial_cmp(&rhs[i]) {
                Some(Ordering::Equal) => (),
                non_eq => return non_eq,
            }
        }

        left.len().partial_cmp(&right.len())
    }
}

// This is the impl that we would like to have. Unfortunately it's not sound.
// See `partial_ord_slice.rs`.
/*
impl<A> SlicePartialOrd for A
where
    A: Ord,
{
    default fn partial_compare(left: &[A], right: &[A]) -> Option<Ordering> {
        Some(SliceOrd::compare(left, right))
    }
}
*/

impl<A: AlwaysApplicableOrd> SlicePartialOrd for A {
    fn partial_compare(left: &[A], right: &[A]) -> Option<Ordering> {
        Some(SliceOrd::compare(left, right))
    }
}

#[rustc_specialization_trait]
trait AlwaysApplicableOrd: SliceOrd + Ord {}

macro_rules! always_applicable_ord {
    ($([$($p:tt)*] $t:ty,)*) => {
        $(impl<$($p)*> AlwaysApplicableOrd for $t {})*
    }
}

always_applicable_ord! {
    [] u8, [] u16, [] u32, [] u64, [] u128, [] usize,
    [] i8, [] i16, [] i32, [] i64, [] i128, [] isize,
    [] bool, [] char,
    [T: ?Sized] *const T, [T: ?Sized] *mut T,
    [T: AlwaysApplicableOrd] &T,
    [T: AlwaysApplicableOrd] &mut T,
    [T: AlwaysApplicableOrd] Option<T>,
}

#[doc(hidden)]
// intermediate trait for specialization of slice's Ord
trait SliceOrd: Sized {
    fn compare(left: &[Self], right: &[Self]) -> Ordering;
}

impl<A: Ord> SliceOrd for A {
    default fn compare(left: &[Self], right: &[Self]) -> Ordering {
        let l = cmp::min(left.len(), right.len());

        // Slice to the loop iteration range to enable bound check
        // elimination in the compiler
        let lhs = &left[..l];
        let rhs = &right[..l];

        for i in 0..l {
            match lhs[i].cmp(&rhs[i]) {
                Ordering::Equal => (),
                non_eq => return non_eq,
            }
        }

        left.len().cmp(&right.len())
    }
}

// memcmp compares a sequence of unsigned bytes lexicographically.
// this matches the order we want for [u8], but no others (not even [i8]).
impl SliceOrd for u8 {
    #[inline]
    fn compare(left: &[Self], right: &[Self]) -> Ordering {
        let order =
            // SAFETY: `left` and `right` are references and are thus guaranteed to be valid.
            // We use the minimum of both lengths which guarantees that both regions are
            // valid for reads in that interval.
            unsafe { memcmp(left.as_ptr(), right.as_ptr(), cmp::min(left.len(), right.len())) };
        if order == 0 {
            left.len().cmp(&right.len())
        } else if order < 0 {
            Less
        } else {
            Greater
        }
    }
}

// Hack to allow specializing on `Eq` even though `Eq` has a method.
#[rustc_unsafe_specialization_marker]
trait MarkerEq<T>: PartialEq<T> {}

impl<T: Eq> MarkerEq<T> for T {}

#[doc(hidden)]
/// Trait implemented for types that can be compared for equality using
/// their bytewise representation
#[rustc_specialization_trait]
trait BytewiseEquality<T>: MarkerEq<T> + Copy {}

macro_rules! impl_marker_for {
    ($traitname:ident, $($ty:ty)*) => {
        $(
            impl $traitname<$ty> for $ty { }
        )*
    }
}

impl_marker_for!(BytewiseEquality,
                 u8 i8 u16 i16 u32 i32 u64 i64 u128 i128 usize isize char bool);

pub(super) trait SliceContains: Sized {
    fn slice_contains(&self, x: &[Self]) -> bool;
}

impl<T> SliceContains for T
where
    T: PartialEq,
{
    default fn slice_contains(&self, x: &[Self]) -> bool {
        x.iter().any(|y| *y == *self)
    }
}

impl SliceContains for u8 {
    #[inline]
    fn slice_contains(&self, x: &[Self]) -> bool {
        memchr::memchr(*self, x).is_some()
    }
}

impl SliceContains for i8 {
    #[inline]
    fn slice_contains(&self, x: &[Self]) -> bool {
        let byte = *self as u8;
        // SAFETY: `i8` and `u8` have the same memory layout, thus casting `x.as_ptr()`
        // as `*const u8` is safe. The `x.as_ptr()` comes from a reference and is thus guaranteed
        // to be valid for reads for the length of the slice `x.len()`, which cannot be larger
        // than `isize::MAX`. The returned slice is never mutated.
        let bytes: &[u8] = unsafe { from_raw_parts(x.as_ptr() as *const u8, x.len()) };
        memchr::memchr(byte, bytes).is_some()
    }
}