core/slice/
cmp.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
//! Comparison traits for `[T]`.

use super::{from_raw_parts, memchr};
use crate::cmp::{self, BytewiseEq, Ordering};
use crate::intrinsics::compare_bytes;
use crate::num::NonZero;
use crate::{ascii, mem};

#[stable(feature = "rust1", since = "1.0.0")]
impl<T, U> PartialEq<[U]> for [T]
where
    T: PartialEq<U>,
{
    fn eq(&self, other: &[U]) -> bool {
        SlicePartialEq::equal(self, other)
    }

    fn ne(&self, other: &[U]) -> bool {
        SlicePartialEq::not_equal(self, other)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Eq> Eq for [T] {}

/// Implements comparison of slices [lexicographically](Ord#lexicographical-comparison).
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Ord> Ord for [T] {
    fn cmp(&self, other: &[T]) -> Ordering {
        SliceOrd::compare(self, other)
    }
}

/// Implements comparison of slices [lexicographically](Ord#lexicographical-comparison).
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: PartialOrd> PartialOrd for [T] {
    fn partial_cmp(&self, other: &[T]) -> Option<Ordering> {
        SlicePartialOrd::partial_compare(self, other)
    }
}

#[doc(hidden)]
// intermediate trait for specialization of slice's PartialEq
trait SlicePartialEq<B> {
    fn equal(&self, other: &[B]) -> bool;

    fn not_equal(&self, other: &[B]) -> bool {
        !self.equal(other)
    }
}

// Generic slice equality
impl<A, B> SlicePartialEq<B> for [A]
where
    A: PartialEq<B>,
{
    default fn equal(&self, other: &[B]) -> bool {
        if self.len() != other.len() {
            return false;
        }

        // Implemented as explicit indexing rather
        // than zipped iterators for performance reasons.
        // See PR https://github.com/rust-lang/rust/pull/116846
        for idx in 0..self.len() {
            // bound checks are optimized away
            if self[idx] != other[idx] {
                return false;
            }
        }

        true
    }
}

// When each element can be compared byte-wise, we can compare all the bytes
// from the whole size in one call to the intrinsics.
impl<A, B> SlicePartialEq<B> for [A]
where
    A: BytewiseEq<B>,
{
    fn equal(&self, other: &[B]) -> bool {
        if self.len() != other.len() {
            return false;
        }

        // SAFETY: `self` and `other` are references and are thus guaranteed to be valid.
        // The two slices have been checked to have the same size above.
        unsafe {
            let size = mem::size_of_val(self);
            compare_bytes(self.as_ptr() as *const u8, other.as_ptr() as *const u8, size) == 0
        }
    }
}

#[doc(hidden)]
// intermediate trait for specialization of slice's PartialOrd
trait SlicePartialOrd: Sized {
    fn partial_compare(left: &[Self], right: &[Self]) -> Option<Ordering>;
}

impl<A: PartialOrd> SlicePartialOrd for A {
    default fn partial_compare(left: &[A], right: &[A]) -> Option<Ordering> {
        let l = cmp::min(left.len(), right.len());

        // Slice to the loop iteration range to enable bound check
        // elimination in the compiler
        let lhs = &left[..l];
        let rhs = &right[..l];

        for i in 0..l {
            match lhs[i].partial_cmp(&rhs[i]) {
                Some(Ordering::Equal) => (),
                non_eq => return non_eq,
            }
        }

        left.len().partial_cmp(&right.len())
    }
}

// This is the impl that we would like to have. Unfortunately it's not sound.
// See `partial_ord_slice.rs`.
/*
impl<A> SlicePartialOrd for A
where
    A: Ord,
{
    default fn partial_compare(left: &[A], right: &[A]) -> Option<Ordering> {
        Some(SliceOrd::compare(left, right))
    }
}
*/

impl<A: AlwaysApplicableOrd> SlicePartialOrd for A {
    fn partial_compare(left: &[A], right: &[A]) -> Option<Ordering> {
        Some(SliceOrd::compare(left, right))
    }
}

#[rustc_specialization_trait]
trait AlwaysApplicableOrd: SliceOrd + Ord {}

macro_rules! always_applicable_ord {
    ($([$($p:tt)*] $t:ty,)*) => {
        $(impl<$($p)*> AlwaysApplicableOrd for $t {})*
    }
}

always_applicable_ord! {
    [] u8, [] u16, [] u32, [] u64, [] u128, [] usize,
    [] i8, [] i16, [] i32, [] i64, [] i128, [] isize,
    [] bool, [] char,
    [T: ?Sized] *const T, [T: ?Sized] *mut T,
    [T: AlwaysApplicableOrd] &T,
    [T: AlwaysApplicableOrd] &mut T,
    [T: AlwaysApplicableOrd] Option<T>,
}

#[doc(hidden)]
// intermediate trait for specialization of slice's Ord
trait SliceOrd: Sized {
    fn compare(left: &[Self], right: &[Self]) -> Ordering;
}

impl<A: Ord> SliceOrd for A {
    default fn compare(left: &[Self], right: &[Self]) -> Ordering {
        let l = cmp::min(left.len(), right.len());

        // Slice to the loop iteration range to enable bound check
        // elimination in the compiler
        let lhs = &left[..l];
        let rhs = &right[..l];

        for i in 0..l {
            match lhs[i].cmp(&rhs[i]) {
                Ordering::Equal => (),
                non_eq => return non_eq,
            }
        }

        left.len().cmp(&right.len())
    }
}

/// Marks that a type should be treated as an unsigned byte for comparisons.
///
/// # Safety
/// * The type must be readable as an `u8`, meaning it has to have the same
///   layout as `u8` and always be initialized.
/// * For every `x` and `y` of this type, `Ord(x, y)` must return the same
///   value as `Ord::cmp(transmute::<_, u8>(x), transmute::<_, u8>(y))`.
#[rustc_specialization_trait]
unsafe trait UnsignedBytewiseOrd {}

unsafe impl UnsignedBytewiseOrd for bool {}
unsafe impl UnsignedBytewiseOrd for u8 {}
unsafe impl UnsignedBytewiseOrd for NonZero<u8> {}
unsafe impl UnsignedBytewiseOrd for Option<NonZero<u8>> {}
unsafe impl UnsignedBytewiseOrd for ascii::Char {}

// `compare_bytes` compares a sequence of unsigned bytes lexicographically, so
// use it if the requirements for `UnsignedBytewiseOrd` are fulfilled.
impl<A: Ord + UnsignedBytewiseOrd> SliceOrd for A {
    #[inline]
    fn compare(left: &[Self], right: &[Self]) -> Ordering {
        // Since the length of a slice is always less than or equal to
        // isize::MAX, this never underflows.
        let diff = left.len() as isize - right.len() as isize;
        // This comparison gets optimized away (on x86_64 and ARM) because the
        // subtraction updates flags.
        let len = if left.len() < right.len() { left.len() } else { right.len() };
        let left = left.as_ptr().cast();
        let right = right.as_ptr().cast();
        // SAFETY: `left` and `right` are references and are thus guaranteed to
        // be valid. `UnsignedBytewiseOrd` is only implemented for types that
        // are valid u8s and can be compared the same way. We use the minimum
        // of both lengths which guarantees that both regions are valid for
        // reads in that interval.
        let mut order = unsafe { compare_bytes(left, right, len) as isize };
        if order == 0 {
            order = diff;
        }
        order.cmp(&0)
    }
}

pub(super) trait SliceContains: Sized {
    fn slice_contains(&self, x: &[Self]) -> bool;
}

impl<T> SliceContains for T
where
    T: PartialEq,
{
    default fn slice_contains(&self, x: &[Self]) -> bool {
        x.iter().any(|y| *y == *self)
    }
}

impl SliceContains for u8 {
    #[inline]
    fn slice_contains(&self, x: &[Self]) -> bool {
        memchr::memchr(*self, x).is_some()
    }
}

impl SliceContains for i8 {
    #[inline]
    fn slice_contains(&self, x: &[Self]) -> bool {
        let byte = *self as u8;
        // SAFETY: `i8` and `u8` have the same memory layout, thus casting `x.as_ptr()`
        // as `*const u8` is safe. The `x.as_ptr()` comes from a reference and is thus guaranteed
        // to be valid for reads for the length of the slice `x.len()`, which cannot be larger
        // than `isize::MAX`. The returned slice is never mutated.
        let bytes: &[u8] = unsafe { from_raw_parts(x.as_ptr() as *const u8, x.len()) };
        memchr::memchr(byte, bytes).is_some()
    }
}

macro_rules! impl_slice_contains {
    ($($t:ty),*) => {
        $(
            impl SliceContains for $t {
                #[inline]
                fn slice_contains(&self, arr: &[$t]) -> bool {
                    // Make our LANE_COUNT 4x the normal lane count (aiming for 128 bit vectors).
                    // The compiler will nicely unroll it.
                    const LANE_COUNT: usize = 4 * (128 / (mem::size_of::<$t>() * 8));
                    // SIMD
                    let mut chunks = arr.chunks_exact(LANE_COUNT);
                    for chunk in &mut chunks {
                        if chunk.iter().fold(false, |acc, x| acc | (*x == *self)) {
                            return true;
                        }
                    }
                    // Scalar remainder
                    return chunks.remainder().iter().any(|x| *x == *self);
                }
            }
        )*
    };
}

impl_slice_contains!(u16, u32, u64, i16, i32, i64, f32, f64, usize, isize);