std/
path.rs

1//! Cross-platform path manipulation.
2//!
3//! This module provides two types, [`PathBuf`] and [`Path`] (akin to [`String`]
4//! and [`str`]), for working with paths abstractly. These types are thin wrappers
5//! around [`OsString`] and [`OsStr`] respectively, meaning that they work directly
6//! on strings according to the local platform's path syntax.
7//!
8//! Paths can be parsed into [`Component`]s by iterating over the structure
9//! returned by the [`components`] method on [`Path`]. [`Component`]s roughly
10//! correspond to the substrings between path separators (`/` or `\`). You can
11//! reconstruct an equivalent path from components with the [`push`] method on
12//! [`PathBuf`]; note that the paths may differ syntactically by the
13//! normalization described in the documentation for the [`components`] method.
14//!
15//! ## Case sensitivity
16//!
17//! Unless otherwise indicated path methods that do not access the filesystem,
18//! such as [`Path::starts_with`] and [`Path::ends_with`], are case sensitive no
19//! matter the platform or filesystem. An exception to this is made for Windows
20//! drive letters.
21//!
22//! ## Simple usage
23//!
24//! Path manipulation includes both parsing components from slices and building
25//! new owned paths.
26//!
27//! To parse a path, you can create a [`Path`] slice from a [`str`]
28//! slice and start asking questions:
29//!
30//! ```
31//! use std::path::Path;
32//! use std::ffi::OsStr;
33//!
34//! let path = Path::new("/tmp/foo/bar.txt");
35//!
36//! let parent = path.parent();
37//! assert_eq!(parent, Some(Path::new("/tmp/foo")));
38//!
39//! let file_stem = path.file_stem();
40//! assert_eq!(file_stem, Some(OsStr::new("bar")));
41//!
42//! let extension = path.extension();
43//! assert_eq!(extension, Some(OsStr::new("txt")));
44//! ```
45//!
46//! To build or modify paths, use [`PathBuf`]:
47//!
48//! ```
49//! use std::path::PathBuf;
50//!
51//! // This way works...
52//! let mut path = PathBuf::from("c:\\");
53//!
54//! path.push("windows");
55//! path.push("system32");
56//!
57//! path.set_extension("dll");
58//!
59//! // ... but push is best used if you don't know everything up
60//! // front. If you do, this way is better:
61//! let path: PathBuf = ["c:\\", "windows", "system32.dll"].iter().collect();
62//! ```
63//!
64//! [`components`]: Path::components
65//! [`push`]: PathBuf::push
66
67#![stable(feature = "rust1", since = "1.0.0")]
68#![deny(unsafe_op_in_unsafe_fn)]
69
70use core::clone::CloneToUninit;
71
72use crate::borrow::{Borrow, Cow};
73use crate::collections::TryReserveError;
74use crate::error::Error;
75use crate::ffi::{OsStr, OsString, os_str};
76use crate::hash::{Hash, Hasher};
77use crate::iter::FusedIterator;
78use crate::ops::{self, Deref};
79use crate::rc::Rc;
80use crate::str::FromStr;
81use crate::sync::Arc;
82use crate::sys::path::{MAIN_SEP_STR, is_sep_byte, is_verbatim_sep, parse_prefix};
83use crate::{cmp, fmt, fs, io, sys};
84
85////////////////////////////////////////////////////////////////////////////////
86// GENERAL NOTES
87////////////////////////////////////////////////////////////////////////////////
88//
89// Parsing in this module is done by directly transmuting OsStr to [u8] slices,
90// taking advantage of the fact that OsStr always encodes ASCII characters
91// as-is.  Eventually, this transmutation should be replaced by direct uses of
92// OsStr APIs for parsing, but it will take a while for those to become
93// available.
94
95////////////////////////////////////////////////////////////////////////////////
96// Windows Prefixes
97////////////////////////////////////////////////////////////////////////////////
98
99/// Windows path prefixes, e.g., `C:` or `\\server\share`.
100///
101/// Windows uses a variety of path prefix styles, including references to drive
102/// volumes (like `C:`), network shared folders (like `\\server\share`), and
103/// others. In addition, some path prefixes are "verbatim" (i.e., prefixed with
104/// `\\?\`), in which case `/` is *not* treated as a separator and essentially
105/// no normalization is performed.
106///
107/// # Examples
108///
109/// ```
110/// use std::path::{Component, Path, Prefix};
111/// use std::path::Prefix::*;
112/// use std::ffi::OsStr;
113///
114/// fn get_path_prefix(s: &str) -> Prefix<'_> {
115///     let path = Path::new(s);
116///     match path.components().next().unwrap() {
117///         Component::Prefix(prefix_component) => prefix_component.kind(),
118///         _ => panic!(),
119///     }
120/// }
121///
122/// # if cfg!(windows) {
123/// assert_eq!(Verbatim(OsStr::new("pictures")),
124///            get_path_prefix(r"\\?\pictures\kittens"));
125/// assert_eq!(VerbatimUNC(OsStr::new("server"), OsStr::new("share")),
126///            get_path_prefix(r"\\?\UNC\server\share"));
127/// assert_eq!(VerbatimDisk(b'C'), get_path_prefix(r"\\?\c:\"));
128/// assert_eq!(DeviceNS(OsStr::new("BrainInterface")),
129///            get_path_prefix(r"\\.\BrainInterface"));
130/// assert_eq!(UNC(OsStr::new("server"), OsStr::new("share")),
131///            get_path_prefix(r"\\server\share"));
132/// assert_eq!(Disk(b'C'), get_path_prefix(r"C:\Users\Rust\Pictures\Ferris"));
133/// # }
134/// ```
135#[derive(Copy, Clone, Debug, Hash, PartialOrd, Ord, PartialEq, Eq)]
136#[stable(feature = "rust1", since = "1.0.0")]
137pub enum Prefix<'a> {
138    /// Verbatim prefix, e.g., `\\?\cat_pics`.
139    ///
140    /// Verbatim prefixes consist of `\\?\` immediately followed by the given
141    /// component.
142    #[stable(feature = "rust1", since = "1.0.0")]
143    Verbatim(#[stable(feature = "rust1", since = "1.0.0")] &'a OsStr),
144
145    /// Verbatim prefix using Windows' _**U**niform **N**aming **C**onvention_,
146    /// e.g., `\\?\UNC\server\share`.
147    ///
148    /// Verbatim UNC prefixes consist of `\\?\UNC\` immediately followed by the
149    /// server's hostname and a share name.
150    #[stable(feature = "rust1", since = "1.0.0")]
151    VerbatimUNC(
152        #[stable(feature = "rust1", since = "1.0.0")] &'a OsStr,
153        #[stable(feature = "rust1", since = "1.0.0")] &'a OsStr,
154    ),
155
156    /// Verbatim disk prefix, e.g., `\\?\C:`.
157    ///
158    /// Verbatim disk prefixes consist of `\\?\` immediately followed by the
159    /// drive letter and `:`.
160    #[stable(feature = "rust1", since = "1.0.0")]
161    VerbatimDisk(#[stable(feature = "rust1", since = "1.0.0")] u8),
162
163    /// Device namespace prefix, e.g., `\\.\COM42`.
164    ///
165    /// Device namespace prefixes consist of `\\.\` (possibly using `/`
166    /// instead of `\`), immediately followed by the device name.
167    #[stable(feature = "rust1", since = "1.0.0")]
168    DeviceNS(#[stable(feature = "rust1", since = "1.0.0")] &'a OsStr),
169
170    /// Prefix using Windows' _**U**niform **N**aming **C**onvention_, e.g.
171    /// `\\server\share`.
172    ///
173    /// UNC prefixes consist of the server's hostname and a share name.
174    #[stable(feature = "rust1", since = "1.0.0")]
175    UNC(
176        #[stable(feature = "rust1", since = "1.0.0")] &'a OsStr,
177        #[stable(feature = "rust1", since = "1.0.0")] &'a OsStr,
178    ),
179
180    /// Prefix `C:` for the given disk drive.
181    #[stable(feature = "rust1", since = "1.0.0")]
182    Disk(#[stable(feature = "rust1", since = "1.0.0")] u8),
183}
184
185impl<'a> Prefix<'a> {
186    #[inline]
187    fn len(&self) -> usize {
188        use self::Prefix::*;
189        fn os_str_len(s: &OsStr) -> usize {
190            s.as_encoded_bytes().len()
191        }
192        match *self {
193            Verbatim(x) => 4 + os_str_len(x),
194            VerbatimUNC(x, y) => {
195                8 + os_str_len(x) + if os_str_len(y) > 0 { 1 + os_str_len(y) } else { 0 }
196            }
197            VerbatimDisk(_) => 6,
198            UNC(x, y) => 2 + os_str_len(x) + if os_str_len(y) > 0 { 1 + os_str_len(y) } else { 0 },
199            DeviceNS(x) => 4 + os_str_len(x),
200            Disk(_) => 2,
201        }
202    }
203
204    /// Determines if the prefix is verbatim, i.e., begins with `\\?\`.
205    ///
206    /// # Examples
207    ///
208    /// ```
209    /// use std::path::Prefix::*;
210    /// use std::ffi::OsStr;
211    ///
212    /// assert!(Verbatim(OsStr::new("pictures")).is_verbatim());
213    /// assert!(VerbatimUNC(OsStr::new("server"), OsStr::new("share")).is_verbatim());
214    /// assert!(VerbatimDisk(b'C').is_verbatim());
215    /// assert!(!DeviceNS(OsStr::new("BrainInterface")).is_verbatim());
216    /// assert!(!UNC(OsStr::new("server"), OsStr::new("share")).is_verbatim());
217    /// assert!(!Disk(b'C').is_verbatim());
218    /// ```
219    #[inline]
220    #[must_use]
221    #[stable(feature = "rust1", since = "1.0.0")]
222    pub fn is_verbatim(&self) -> bool {
223        use self::Prefix::*;
224        matches!(*self, Verbatim(_) | VerbatimDisk(_) | VerbatimUNC(..))
225    }
226
227    #[inline]
228    fn is_drive(&self) -> bool {
229        matches!(*self, Prefix::Disk(_))
230    }
231
232    #[inline]
233    fn has_implicit_root(&self) -> bool {
234        !self.is_drive()
235    }
236}
237
238////////////////////////////////////////////////////////////////////////////////
239// Exposed parsing helpers
240////////////////////////////////////////////////////////////////////////////////
241
242/// Determines whether the character is one of the permitted path
243/// separators for the current platform.
244///
245/// # Examples
246///
247/// ```
248/// use std::path;
249///
250/// assert!(path::is_separator('/')); // '/' works for both Unix and Windows
251/// assert!(!path::is_separator('❤'));
252/// ```
253#[must_use]
254#[stable(feature = "rust1", since = "1.0.0")]
255pub fn is_separator(c: char) -> bool {
256    c.is_ascii() && is_sep_byte(c as u8)
257}
258
259/// The primary separator of path components for the current platform.
260///
261/// For example, `/` on Unix and `\` on Windows.
262#[stable(feature = "rust1", since = "1.0.0")]
263#[cfg_attr(not(test), rustc_diagnostic_item = "path_main_separator")]
264pub const MAIN_SEPARATOR: char = crate::sys::path::MAIN_SEP;
265
266/// The primary separator of path components for the current platform.
267///
268/// For example, `/` on Unix and `\` on Windows.
269#[stable(feature = "main_separator_str", since = "1.68.0")]
270pub const MAIN_SEPARATOR_STR: &str = crate::sys::path::MAIN_SEP_STR;
271
272////////////////////////////////////////////////////////////////////////////////
273// Misc helpers
274////////////////////////////////////////////////////////////////////////////////
275
276// Iterate through `iter` while it matches `prefix`; return `None` if `prefix`
277// is not a prefix of `iter`, otherwise return `Some(iter_after_prefix)` giving
278// `iter` after having exhausted `prefix`.
279fn iter_after<'a, 'b, I, J>(mut iter: I, mut prefix: J) -> Option<I>
280where
281    I: Iterator<Item = Component<'a>> + Clone,
282    J: Iterator<Item = Component<'b>>,
283{
284    loop {
285        let mut iter_next = iter.clone();
286        match (iter_next.next(), prefix.next()) {
287            (Some(ref x), Some(ref y)) if x == y => (),
288            (Some(_), Some(_)) => return None,
289            (Some(_), None) => return Some(iter),
290            (None, None) => return Some(iter),
291            (None, Some(_)) => return None,
292        }
293        iter = iter_next;
294    }
295}
296
297////////////////////////////////////////////////////////////////////////////////
298// Cross-platform, iterator-independent parsing
299////////////////////////////////////////////////////////////////////////////////
300
301/// Says whether the first byte after the prefix is a separator.
302fn has_physical_root(s: &[u8], prefix: Option<Prefix<'_>>) -> bool {
303    let path = if let Some(p) = prefix { &s[p.len()..] } else { s };
304    !path.is_empty() && is_sep_byte(path[0])
305}
306
307// basic workhorse for splitting stem and extension
308fn rsplit_file_at_dot(file: &OsStr) -> (Option<&OsStr>, Option<&OsStr>) {
309    if file.as_encoded_bytes() == b".." {
310        return (Some(file), None);
311    }
312
313    // The unsafety here stems from converting between &OsStr and &[u8]
314    // and back. This is safe to do because (1) we only look at ASCII
315    // contents of the encoding and (2) new &OsStr values are produced
316    // only from ASCII-bounded slices of existing &OsStr values.
317    let mut iter = file.as_encoded_bytes().rsplitn(2, |b| *b == b'.');
318    let after = iter.next();
319    let before = iter.next();
320    if before == Some(b"") {
321        (Some(file), None)
322    } else {
323        unsafe {
324            (
325                before.map(|s| OsStr::from_encoded_bytes_unchecked(s)),
326                after.map(|s| OsStr::from_encoded_bytes_unchecked(s)),
327            )
328        }
329    }
330}
331
332fn split_file_at_dot(file: &OsStr) -> (&OsStr, Option<&OsStr>) {
333    let slice = file.as_encoded_bytes();
334    if slice == b".." {
335        return (file, None);
336    }
337
338    // The unsafety here stems from converting between &OsStr and &[u8]
339    // and back. This is safe to do because (1) we only look at ASCII
340    // contents of the encoding and (2) new &OsStr values are produced
341    // only from ASCII-bounded slices of existing &OsStr values.
342    let i = match slice[1..].iter().position(|b| *b == b'.') {
343        Some(i) => i + 1,
344        None => return (file, None),
345    };
346    let before = &slice[..i];
347    let after = &slice[i + 1..];
348    unsafe {
349        (
350            OsStr::from_encoded_bytes_unchecked(before),
351            Some(OsStr::from_encoded_bytes_unchecked(after)),
352        )
353    }
354}
355
356////////////////////////////////////////////////////////////////////////////////
357// The core iterators
358////////////////////////////////////////////////////////////////////////////////
359
360/// Component parsing works by a double-ended state machine; the cursors at the
361/// front and back of the path each keep track of what parts of the path have
362/// been consumed so far.
363///
364/// Going front to back, a path is made up of a prefix, a starting
365/// directory component, and a body (of normal components)
366#[derive(Copy, Clone, PartialEq, PartialOrd, Debug)]
367enum State {
368    Prefix = 0,   // c:
369    StartDir = 1, // / or . or nothing
370    Body = 2,     // foo/bar/baz
371    Done = 3,
372}
373
374/// A structure wrapping a Windows path prefix as well as its unparsed string
375/// representation.
376///
377/// In addition to the parsed [`Prefix`] information returned by [`kind`],
378/// `PrefixComponent` also holds the raw and unparsed [`OsStr`] slice,
379/// returned by [`as_os_str`].
380///
381/// Instances of this `struct` can be obtained by matching against the
382/// [`Prefix` variant] on [`Component`].
383///
384/// Does not occur on Unix.
385///
386/// # Examples
387///
388/// ```
389/// # if cfg!(windows) {
390/// use std::path::{Component, Path, Prefix};
391/// use std::ffi::OsStr;
392///
393/// let path = Path::new(r"c:\you\later\");
394/// match path.components().next().unwrap() {
395///     Component::Prefix(prefix_component) => {
396///         assert_eq!(Prefix::Disk(b'C'), prefix_component.kind());
397///         assert_eq!(OsStr::new("c:"), prefix_component.as_os_str());
398///     }
399///     _ => unreachable!(),
400/// }
401/// # }
402/// ```
403///
404/// [`as_os_str`]: PrefixComponent::as_os_str
405/// [`kind`]: PrefixComponent::kind
406/// [`Prefix` variant]: Component::Prefix
407#[stable(feature = "rust1", since = "1.0.0")]
408#[derive(Copy, Clone, Eq, Debug)]
409pub struct PrefixComponent<'a> {
410    /// The prefix as an unparsed `OsStr` slice.
411    raw: &'a OsStr,
412
413    /// The parsed prefix data.
414    parsed: Prefix<'a>,
415}
416
417impl<'a> PrefixComponent<'a> {
418    /// Returns the parsed prefix data.
419    ///
420    /// See [`Prefix`]'s documentation for more information on the different
421    /// kinds of prefixes.
422    #[stable(feature = "rust1", since = "1.0.0")]
423    #[must_use]
424    #[inline]
425    pub fn kind(&self) -> Prefix<'a> {
426        self.parsed
427    }
428
429    /// Returns the raw [`OsStr`] slice for this prefix.
430    #[stable(feature = "rust1", since = "1.0.0")]
431    #[must_use]
432    #[inline]
433    pub fn as_os_str(&self) -> &'a OsStr {
434        self.raw
435    }
436}
437
438#[stable(feature = "rust1", since = "1.0.0")]
439impl<'a> PartialEq for PrefixComponent<'a> {
440    #[inline]
441    fn eq(&self, other: &PrefixComponent<'a>) -> bool {
442        self.parsed == other.parsed
443    }
444}
445
446#[stable(feature = "rust1", since = "1.0.0")]
447impl<'a> PartialOrd for PrefixComponent<'a> {
448    #[inline]
449    fn partial_cmp(&self, other: &PrefixComponent<'a>) -> Option<cmp::Ordering> {
450        PartialOrd::partial_cmp(&self.parsed, &other.parsed)
451    }
452}
453
454#[stable(feature = "rust1", since = "1.0.0")]
455impl Ord for PrefixComponent<'_> {
456    #[inline]
457    fn cmp(&self, other: &Self) -> cmp::Ordering {
458        Ord::cmp(&self.parsed, &other.parsed)
459    }
460}
461
462#[stable(feature = "rust1", since = "1.0.0")]
463impl Hash for PrefixComponent<'_> {
464    fn hash<H: Hasher>(&self, h: &mut H) {
465        self.parsed.hash(h);
466    }
467}
468
469/// A single component of a path.
470///
471/// A `Component` roughly corresponds to a substring between path separators
472/// (`/` or `\`).
473///
474/// This `enum` is created by iterating over [`Components`], which in turn is
475/// created by the [`components`](Path::components) method on [`Path`].
476///
477/// # Examples
478///
479/// ```rust
480/// use std::path::{Component, Path};
481///
482/// let path = Path::new("/tmp/foo/bar.txt");
483/// let components = path.components().collect::<Vec<_>>();
484/// assert_eq!(&components, &[
485///     Component::RootDir,
486///     Component::Normal("tmp".as_ref()),
487///     Component::Normal("foo".as_ref()),
488///     Component::Normal("bar.txt".as_ref()),
489/// ]);
490/// ```
491#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
492#[stable(feature = "rust1", since = "1.0.0")]
493pub enum Component<'a> {
494    /// A Windows path prefix, e.g., `C:` or `\\server\share`.
495    ///
496    /// There is a large variety of prefix types, see [`Prefix`]'s documentation
497    /// for more.
498    ///
499    /// Does not occur on Unix.
500    #[stable(feature = "rust1", since = "1.0.0")]
501    Prefix(#[stable(feature = "rust1", since = "1.0.0")] PrefixComponent<'a>),
502
503    /// The root directory component, appears after any prefix and before anything else.
504    ///
505    /// It represents a separator that designates that a path starts from root.
506    #[stable(feature = "rust1", since = "1.0.0")]
507    RootDir,
508
509    /// A reference to the current directory, i.e., `.`.
510    #[stable(feature = "rust1", since = "1.0.0")]
511    CurDir,
512
513    /// A reference to the parent directory, i.e., `..`.
514    #[stable(feature = "rust1", since = "1.0.0")]
515    ParentDir,
516
517    /// A normal component, e.g., `a` and `b` in `a/b`.
518    ///
519    /// This variant is the most common one, it represents references to files
520    /// or directories.
521    #[stable(feature = "rust1", since = "1.0.0")]
522    Normal(#[stable(feature = "rust1", since = "1.0.0")] &'a OsStr),
523}
524
525impl<'a> Component<'a> {
526    /// Extracts the underlying [`OsStr`] slice.
527    ///
528    /// # Examples
529    ///
530    /// ```
531    /// use std::path::Path;
532    ///
533    /// let path = Path::new("./tmp/foo/bar.txt");
534    /// let components: Vec<_> = path.components().map(|comp| comp.as_os_str()).collect();
535    /// assert_eq!(&components, &[".", "tmp", "foo", "bar.txt"]);
536    /// ```
537    #[must_use = "`self` will be dropped if the result is not used"]
538    #[stable(feature = "rust1", since = "1.0.0")]
539    pub fn as_os_str(self) -> &'a OsStr {
540        match self {
541            Component::Prefix(p) => p.as_os_str(),
542            Component::RootDir => OsStr::new(MAIN_SEP_STR),
543            Component::CurDir => OsStr::new("."),
544            Component::ParentDir => OsStr::new(".."),
545            Component::Normal(path) => path,
546        }
547    }
548}
549
550#[stable(feature = "rust1", since = "1.0.0")]
551impl AsRef<OsStr> for Component<'_> {
552    #[inline]
553    fn as_ref(&self) -> &OsStr {
554        self.as_os_str()
555    }
556}
557
558#[stable(feature = "path_component_asref", since = "1.25.0")]
559impl AsRef<Path> for Component<'_> {
560    #[inline]
561    fn as_ref(&self) -> &Path {
562        self.as_os_str().as_ref()
563    }
564}
565
566/// An iterator over the [`Component`]s of a [`Path`].
567///
568/// This `struct` is created by the [`components`] method on [`Path`].
569/// See its documentation for more.
570///
571/// # Examples
572///
573/// ```
574/// use std::path::Path;
575///
576/// let path = Path::new("/tmp/foo/bar.txt");
577///
578/// for component in path.components() {
579///     println!("{component:?}");
580/// }
581/// ```
582///
583/// [`components`]: Path::components
584#[derive(Clone)]
585#[must_use = "iterators are lazy and do nothing unless consumed"]
586#[stable(feature = "rust1", since = "1.0.0")]
587pub struct Components<'a> {
588    // The path left to parse components from
589    path: &'a [u8],
590
591    // The prefix as it was originally parsed, if any
592    prefix: Option<Prefix<'a>>,
593
594    // true if path *physically* has a root separator; for most Windows
595    // prefixes, it may have a "logical" root separator for the purposes of
596    // normalization, e.g., \\server\share == \\server\share\.
597    has_physical_root: bool,
598
599    // The iterator is double-ended, and these two states keep track of what has
600    // been produced from either end
601    front: State,
602    back: State,
603}
604
605/// An iterator over the [`Component`]s of a [`Path`], as [`OsStr`] slices.
606///
607/// This `struct` is created by the [`iter`] method on [`Path`].
608/// See its documentation for more.
609///
610/// [`iter`]: Path::iter
611#[derive(Clone)]
612#[must_use = "iterators are lazy and do nothing unless consumed"]
613#[stable(feature = "rust1", since = "1.0.0")]
614pub struct Iter<'a> {
615    inner: Components<'a>,
616}
617
618#[stable(feature = "path_components_debug", since = "1.13.0")]
619impl fmt::Debug for Components<'_> {
620    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
621        struct DebugHelper<'a>(&'a Path);
622
623        impl fmt::Debug for DebugHelper<'_> {
624            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
625                f.debug_list().entries(self.0.components()).finish()
626            }
627        }
628
629        f.debug_tuple("Components").field(&DebugHelper(self.as_path())).finish()
630    }
631}
632
633impl<'a> Components<'a> {
634    // how long is the prefix, if any?
635    #[inline]
636    fn prefix_len(&self) -> usize {
637        self.prefix.as_ref().map(Prefix::len).unwrap_or(0)
638    }
639
640    #[inline]
641    fn prefix_verbatim(&self) -> bool {
642        self.prefix.as_ref().map(Prefix::is_verbatim).unwrap_or(false)
643    }
644
645    /// how much of the prefix is left from the point of view of iteration?
646    #[inline]
647    fn prefix_remaining(&self) -> usize {
648        if self.front == State::Prefix { self.prefix_len() } else { 0 }
649    }
650
651    // Given the iteration so far, how much of the pre-State::Body path is left?
652    #[inline]
653    fn len_before_body(&self) -> usize {
654        let root = if self.front <= State::StartDir && self.has_physical_root { 1 } else { 0 };
655        let cur_dir = if self.front <= State::StartDir && self.include_cur_dir() { 1 } else { 0 };
656        self.prefix_remaining() + root + cur_dir
657    }
658
659    // is the iteration complete?
660    #[inline]
661    fn finished(&self) -> bool {
662        self.front == State::Done || self.back == State::Done || self.front > self.back
663    }
664
665    #[inline]
666    fn is_sep_byte(&self, b: u8) -> bool {
667        if self.prefix_verbatim() { is_verbatim_sep(b) } else { is_sep_byte(b) }
668    }
669
670    /// Extracts a slice corresponding to the portion of the path remaining for iteration.
671    ///
672    /// # Examples
673    ///
674    /// ```
675    /// use std::path::Path;
676    ///
677    /// let mut components = Path::new("/tmp/foo/bar.txt").components();
678    /// components.next();
679    /// components.next();
680    ///
681    /// assert_eq!(Path::new("foo/bar.txt"), components.as_path());
682    /// ```
683    #[must_use]
684    #[stable(feature = "rust1", since = "1.0.0")]
685    pub fn as_path(&self) -> &'a Path {
686        let mut comps = self.clone();
687        if comps.front == State::Body {
688            comps.trim_left();
689        }
690        if comps.back == State::Body {
691            comps.trim_right();
692        }
693        unsafe { Path::from_u8_slice(comps.path) }
694    }
695
696    /// Is the *original* path rooted?
697    fn has_root(&self) -> bool {
698        if self.has_physical_root {
699            return true;
700        }
701        if let Some(p) = self.prefix {
702            if p.has_implicit_root() {
703                return true;
704            }
705        }
706        false
707    }
708
709    /// Should the normalized path include a leading . ?
710    fn include_cur_dir(&self) -> bool {
711        if self.has_root() {
712            return false;
713        }
714        let mut iter = self.path[self.prefix_remaining()..].iter();
715        match (iter.next(), iter.next()) {
716            (Some(&b'.'), None) => true,
717            (Some(&b'.'), Some(&b)) => self.is_sep_byte(b),
718            _ => false,
719        }
720    }
721
722    // parse a given byte sequence following the OsStr encoding into the
723    // corresponding path component
724    unsafe fn parse_single_component<'b>(&self, comp: &'b [u8]) -> Option<Component<'b>> {
725        match comp {
726            b"." if self.prefix_verbatim() => Some(Component::CurDir),
727            b"." => None, // . components are normalized away, except at
728            // the beginning of a path, which is treated
729            // separately via `include_cur_dir`
730            b".." => Some(Component::ParentDir),
731            b"" => None,
732            _ => Some(Component::Normal(unsafe { OsStr::from_encoded_bytes_unchecked(comp) })),
733        }
734    }
735
736    // parse a component from the left, saying how many bytes to consume to
737    // remove the component
738    fn parse_next_component(&self) -> (usize, Option<Component<'a>>) {
739        debug_assert!(self.front == State::Body);
740        let (extra, comp) = match self.path.iter().position(|b| self.is_sep_byte(*b)) {
741            None => (0, self.path),
742            Some(i) => (1, &self.path[..i]),
743        };
744        // SAFETY: `comp` is a valid substring, since it is split on a separator.
745        (comp.len() + extra, unsafe { self.parse_single_component(comp) })
746    }
747
748    // parse a component from the right, saying how many bytes to consume to
749    // remove the component
750    fn parse_next_component_back(&self) -> (usize, Option<Component<'a>>) {
751        debug_assert!(self.back == State::Body);
752        let start = self.len_before_body();
753        let (extra, comp) = match self.path[start..].iter().rposition(|b| self.is_sep_byte(*b)) {
754            None => (0, &self.path[start..]),
755            Some(i) => (1, &self.path[start + i + 1..]),
756        };
757        // SAFETY: `comp` is a valid substring, since it is split on a separator.
758        (comp.len() + extra, unsafe { self.parse_single_component(comp) })
759    }
760
761    // trim away repeated separators (i.e., empty components) on the left
762    fn trim_left(&mut self) {
763        while !self.path.is_empty() {
764            let (size, comp) = self.parse_next_component();
765            if comp.is_some() {
766                return;
767            } else {
768                self.path = &self.path[size..];
769            }
770        }
771    }
772
773    // trim away repeated separators (i.e., empty components) on the right
774    fn trim_right(&mut self) {
775        while self.path.len() > self.len_before_body() {
776            let (size, comp) = self.parse_next_component_back();
777            if comp.is_some() {
778                return;
779            } else {
780                self.path = &self.path[..self.path.len() - size];
781            }
782        }
783    }
784}
785
786#[stable(feature = "rust1", since = "1.0.0")]
787impl AsRef<Path> for Components<'_> {
788    #[inline]
789    fn as_ref(&self) -> &Path {
790        self.as_path()
791    }
792}
793
794#[stable(feature = "rust1", since = "1.0.0")]
795impl AsRef<OsStr> for Components<'_> {
796    #[inline]
797    fn as_ref(&self) -> &OsStr {
798        self.as_path().as_os_str()
799    }
800}
801
802#[stable(feature = "path_iter_debug", since = "1.13.0")]
803impl fmt::Debug for Iter<'_> {
804    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
805        struct DebugHelper<'a>(&'a Path);
806
807        impl fmt::Debug for DebugHelper<'_> {
808            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
809                f.debug_list().entries(self.0.iter()).finish()
810            }
811        }
812
813        f.debug_tuple("Iter").field(&DebugHelper(self.as_path())).finish()
814    }
815}
816
817impl<'a> Iter<'a> {
818    /// Extracts a slice corresponding to the portion of the path remaining for iteration.
819    ///
820    /// # Examples
821    ///
822    /// ```
823    /// use std::path::Path;
824    ///
825    /// let mut iter = Path::new("/tmp/foo/bar.txt").iter();
826    /// iter.next();
827    /// iter.next();
828    ///
829    /// assert_eq!(Path::new("foo/bar.txt"), iter.as_path());
830    /// ```
831    #[stable(feature = "rust1", since = "1.0.0")]
832    #[must_use]
833    #[inline]
834    pub fn as_path(&self) -> &'a Path {
835        self.inner.as_path()
836    }
837}
838
839#[stable(feature = "rust1", since = "1.0.0")]
840impl AsRef<Path> for Iter<'_> {
841    #[inline]
842    fn as_ref(&self) -> &Path {
843        self.as_path()
844    }
845}
846
847#[stable(feature = "rust1", since = "1.0.0")]
848impl AsRef<OsStr> for Iter<'_> {
849    #[inline]
850    fn as_ref(&self) -> &OsStr {
851        self.as_path().as_os_str()
852    }
853}
854
855#[stable(feature = "rust1", since = "1.0.0")]
856impl<'a> Iterator for Iter<'a> {
857    type Item = &'a OsStr;
858
859    #[inline]
860    fn next(&mut self) -> Option<&'a OsStr> {
861        self.inner.next().map(Component::as_os_str)
862    }
863}
864
865#[stable(feature = "rust1", since = "1.0.0")]
866impl<'a> DoubleEndedIterator for Iter<'a> {
867    #[inline]
868    fn next_back(&mut self) -> Option<&'a OsStr> {
869        self.inner.next_back().map(Component::as_os_str)
870    }
871}
872
873#[stable(feature = "fused", since = "1.26.0")]
874impl FusedIterator for Iter<'_> {}
875
876#[stable(feature = "rust1", since = "1.0.0")]
877impl<'a> Iterator for Components<'a> {
878    type Item = Component<'a>;
879
880    fn next(&mut self) -> Option<Component<'a>> {
881        while !self.finished() {
882            match self.front {
883                State::Prefix if self.prefix_len() > 0 => {
884                    self.front = State::StartDir;
885                    debug_assert!(self.prefix_len() <= self.path.len());
886                    let raw = &self.path[..self.prefix_len()];
887                    self.path = &self.path[self.prefix_len()..];
888                    return Some(Component::Prefix(PrefixComponent {
889                        raw: unsafe { OsStr::from_encoded_bytes_unchecked(raw) },
890                        parsed: self.prefix.unwrap(),
891                    }));
892                }
893                State::Prefix => {
894                    self.front = State::StartDir;
895                }
896                State::StartDir => {
897                    self.front = State::Body;
898                    if self.has_physical_root {
899                        debug_assert!(!self.path.is_empty());
900                        self.path = &self.path[1..];
901                        return Some(Component::RootDir);
902                    } else if let Some(p) = self.prefix {
903                        if p.has_implicit_root() && !p.is_verbatim() {
904                            return Some(Component::RootDir);
905                        }
906                    } else if self.include_cur_dir() {
907                        debug_assert!(!self.path.is_empty());
908                        self.path = &self.path[1..];
909                        return Some(Component::CurDir);
910                    }
911                }
912                State::Body if !self.path.is_empty() => {
913                    let (size, comp) = self.parse_next_component();
914                    self.path = &self.path[size..];
915                    if comp.is_some() {
916                        return comp;
917                    }
918                }
919                State::Body => {
920                    self.front = State::Done;
921                }
922                State::Done => unreachable!(),
923            }
924        }
925        None
926    }
927}
928
929#[stable(feature = "rust1", since = "1.0.0")]
930impl<'a> DoubleEndedIterator for Components<'a> {
931    fn next_back(&mut self) -> Option<Component<'a>> {
932        while !self.finished() {
933            match self.back {
934                State::Body if self.path.len() > self.len_before_body() => {
935                    let (size, comp) = self.parse_next_component_back();
936                    self.path = &self.path[..self.path.len() - size];
937                    if comp.is_some() {
938                        return comp;
939                    }
940                }
941                State::Body => {
942                    self.back = State::StartDir;
943                }
944                State::StartDir => {
945                    self.back = State::Prefix;
946                    if self.has_physical_root {
947                        self.path = &self.path[..self.path.len() - 1];
948                        return Some(Component::RootDir);
949                    } else if let Some(p) = self.prefix {
950                        if p.has_implicit_root() && !p.is_verbatim() {
951                            return Some(Component::RootDir);
952                        }
953                    } else if self.include_cur_dir() {
954                        self.path = &self.path[..self.path.len() - 1];
955                        return Some(Component::CurDir);
956                    }
957                }
958                State::Prefix if self.prefix_len() > 0 => {
959                    self.back = State::Done;
960                    return Some(Component::Prefix(PrefixComponent {
961                        raw: unsafe { OsStr::from_encoded_bytes_unchecked(self.path) },
962                        parsed: self.prefix.unwrap(),
963                    }));
964                }
965                State::Prefix => {
966                    self.back = State::Done;
967                    return None;
968                }
969                State::Done => unreachable!(),
970            }
971        }
972        None
973    }
974}
975
976#[stable(feature = "fused", since = "1.26.0")]
977impl FusedIterator for Components<'_> {}
978
979#[stable(feature = "rust1", since = "1.0.0")]
980impl<'a> PartialEq for Components<'a> {
981    #[inline]
982    fn eq(&self, other: &Components<'a>) -> bool {
983        let Components { path: _, front: _, back: _, has_physical_root: _, prefix: _ } = self;
984
985        // Fast path for exact matches, e.g. for hashmap lookups.
986        // Don't explicitly compare the prefix or has_physical_root fields since they'll
987        // either be covered by the `path` buffer or are only relevant for `prefix_verbatim()`.
988        if self.path.len() == other.path.len()
989            && self.front == other.front
990            && self.back == State::Body
991            && other.back == State::Body
992            && self.prefix_verbatim() == other.prefix_verbatim()
993        {
994            // possible future improvement: this could bail out earlier if there were a
995            // reverse memcmp/bcmp comparing back to front
996            if self.path == other.path {
997                return true;
998            }
999        }
1000
1001        // compare back to front since absolute paths often share long prefixes
1002        Iterator::eq(self.clone().rev(), other.clone().rev())
1003    }
1004}
1005
1006#[stable(feature = "rust1", since = "1.0.0")]
1007impl Eq for Components<'_> {}
1008
1009#[stable(feature = "rust1", since = "1.0.0")]
1010impl<'a> PartialOrd for Components<'a> {
1011    #[inline]
1012    fn partial_cmp(&self, other: &Components<'a>) -> Option<cmp::Ordering> {
1013        Some(compare_components(self.clone(), other.clone()))
1014    }
1015}
1016
1017#[stable(feature = "rust1", since = "1.0.0")]
1018impl Ord for Components<'_> {
1019    #[inline]
1020    fn cmp(&self, other: &Self) -> cmp::Ordering {
1021        compare_components(self.clone(), other.clone())
1022    }
1023}
1024
1025fn compare_components(mut left: Components<'_>, mut right: Components<'_>) -> cmp::Ordering {
1026    // Fast path for long shared prefixes
1027    //
1028    // - compare raw bytes to find first mismatch
1029    // - backtrack to find separator before mismatch to avoid ambiguous parsings of '.' or '..' characters
1030    // - if found update state to only do a component-wise comparison on the remainder,
1031    //   otherwise do it on the full path
1032    //
1033    // The fast path isn't taken for paths with a PrefixComponent to avoid backtracking into
1034    // the middle of one
1035    if left.prefix.is_none() && right.prefix.is_none() && left.front == right.front {
1036        // possible future improvement: a [u8]::first_mismatch simd implementation
1037        let first_difference = match left.path.iter().zip(right.path).position(|(&a, &b)| a != b) {
1038            None if left.path.len() == right.path.len() => return cmp::Ordering::Equal,
1039            None => left.path.len().min(right.path.len()),
1040            Some(diff) => diff,
1041        };
1042
1043        if let Some(previous_sep) =
1044            left.path[..first_difference].iter().rposition(|&b| left.is_sep_byte(b))
1045        {
1046            let mismatched_component_start = previous_sep + 1;
1047            left.path = &left.path[mismatched_component_start..];
1048            left.front = State::Body;
1049            right.path = &right.path[mismatched_component_start..];
1050            right.front = State::Body;
1051        }
1052    }
1053
1054    Iterator::cmp(left, right)
1055}
1056
1057/// An iterator over [`Path`] and its ancestors.
1058///
1059/// This `struct` is created by the [`ancestors`] method on [`Path`].
1060/// See its documentation for more.
1061///
1062/// # Examples
1063///
1064/// ```
1065/// use std::path::Path;
1066///
1067/// let path = Path::new("/foo/bar");
1068///
1069/// for ancestor in path.ancestors() {
1070///     println!("{}", ancestor.display());
1071/// }
1072/// ```
1073///
1074/// [`ancestors`]: Path::ancestors
1075#[derive(Copy, Clone, Debug)]
1076#[must_use = "iterators are lazy and do nothing unless consumed"]
1077#[stable(feature = "path_ancestors", since = "1.28.0")]
1078pub struct Ancestors<'a> {
1079    next: Option<&'a Path>,
1080}
1081
1082#[stable(feature = "path_ancestors", since = "1.28.0")]
1083impl<'a> Iterator for Ancestors<'a> {
1084    type Item = &'a Path;
1085
1086    #[inline]
1087    fn next(&mut self) -> Option<Self::Item> {
1088        let next = self.next;
1089        self.next = next.and_then(Path::parent);
1090        next
1091    }
1092}
1093
1094#[stable(feature = "path_ancestors", since = "1.28.0")]
1095impl FusedIterator for Ancestors<'_> {}
1096
1097////////////////////////////////////////////////////////////////////////////////
1098// Basic types and traits
1099////////////////////////////////////////////////////////////////////////////////
1100
1101/// An owned, mutable path (akin to [`String`]).
1102///
1103/// This type provides methods like [`push`] and [`set_extension`] that mutate
1104/// the path in place. It also implements [`Deref`] to [`Path`], meaning that
1105/// all methods on [`Path`] slices are available on `PathBuf` values as well.
1106///
1107/// [`push`]: PathBuf::push
1108/// [`set_extension`]: PathBuf::set_extension
1109///
1110/// More details about the overall approach can be found in
1111/// the [module documentation](self).
1112///
1113/// # Examples
1114///
1115/// You can use [`push`] to build up a `PathBuf` from
1116/// components:
1117///
1118/// ```
1119/// use std::path::PathBuf;
1120///
1121/// let mut path = PathBuf::new();
1122///
1123/// path.push(r"C:\");
1124/// path.push("windows");
1125/// path.push("system32");
1126///
1127/// path.set_extension("dll");
1128/// ```
1129///
1130/// However, [`push`] is best used for dynamic situations. This is a better way
1131/// to do this when you know all of the components ahead of time:
1132///
1133/// ```
1134/// use std::path::PathBuf;
1135///
1136/// let path: PathBuf = [r"C:\", "windows", "system32.dll"].iter().collect();
1137/// ```
1138///
1139/// We can still do better than this! Since these are all strings, we can use
1140/// `From::from`:
1141///
1142/// ```
1143/// use std::path::PathBuf;
1144///
1145/// let path = PathBuf::from(r"C:\windows\system32.dll");
1146/// ```
1147///
1148/// Which method works best depends on what kind of situation you're in.
1149///
1150/// Note that `PathBuf` does not always sanitize arguments, for example
1151/// [`push`] allows paths built from strings which include separators:
1152///
1153/// ```
1154/// use std::path::PathBuf;
1155///
1156/// let mut path = PathBuf::new();
1157///
1158/// path.push(r"C:\");
1159/// path.push("windows");
1160/// path.push(r"..\otherdir");
1161/// path.push("system32");
1162/// ```
1163///
1164/// The behavior of `PathBuf` may be changed to a panic on such inputs
1165/// in the future. [`Extend::extend`] should be used to add multi-part paths.
1166#[cfg_attr(not(test), rustc_diagnostic_item = "PathBuf")]
1167#[stable(feature = "rust1", since = "1.0.0")]
1168pub struct PathBuf {
1169    inner: OsString,
1170}
1171
1172impl PathBuf {
1173    /// Allocates an empty `PathBuf`.
1174    ///
1175    /// # Examples
1176    ///
1177    /// ```
1178    /// use std::path::PathBuf;
1179    ///
1180    /// let path = PathBuf::new();
1181    /// ```
1182    #[stable(feature = "rust1", since = "1.0.0")]
1183    #[must_use]
1184    #[inline]
1185    pub fn new() -> PathBuf {
1186        PathBuf { inner: OsString::new() }
1187    }
1188
1189    /// Creates a new `PathBuf` with a given capacity used to create the
1190    /// internal [`OsString`]. See [`with_capacity`] defined on [`OsString`].
1191    ///
1192    /// # Examples
1193    ///
1194    /// ```
1195    /// use std::path::PathBuf;
1196    ///
1197    /// let mut path = PathBuf::with_capacity(10);
1198    /// let capacity = path.capacity();
1199    ///
1200    /// // This push is done without reallocating
1201    /// path.push(r"C:\");
1202    ///
1203    /// assert_eq!(capacity, path.capacity());
1204    /// ```
1205    ///
1206    /// [`with_capacity`]: OsString::with_capacity
1207    #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1208    #[must_use]
1209    #[inline]
1210    pub fn with_capacity(capacity: usize) -> PathBuf {
1211        PathBuf { inner: OsString::with_capacity(capacity) }
1212    }
1213
1214    /// Coerces to a [`Path`] slice.
1215    ///
1216    /// # Examples
1217    ///
1218    /// ```
1219    /// use std::path::{Path, PathBuf};
1220    ///
1221    /// let p = PathBuf::from("/test");
1222    /// assert_eq!(Path::new("/test"), p.as_path());
1223    /// ```
1224    #[cfg_attr(not(test), rustc_diagnostic_item = "pathbuf_as_path")]
1225    #[stable(feature = "rust1", since = "1.0.0")]
1226    #[must_use]
1227    #[inline]
1228    pub fn as_path(&self) -> &Path {
1229        self
1230    }
1231
1232    /// Consumes and leaks the `PathBuf`, returning a mutable reference to the contents,
1233    /// `&'a mut Path`.
1234    ///
1235    /// The caller has free choice over the returned lifetime, including 'static.
1236    /// Indeed, this function is ideally used for data that lives for the remainder of
1237    /// the program’s life, as dropping the returned reference will cause a memory leak.
1238    ///
1239    /// It does not reallocate or shrink the `PathBuf`, so the leaked allocation may include
1240    /// unused capacity that is not part of the returned slice. If you want to discard excess
1241    /// capacity, call [`into_boxed_path`], and then [`Box::leak`] instead.
1242    /// However, keep in mind that trimming the capacity may result in a reallocation and copy.
1243    ///
1244    /// [`into_boxed_path`]: Self::into_boxed_path
1245    #[unstable(feature = "os_string_pathbuf_leak", issue = "125965")]
1246    #[inline]
1247    pub fn leak<'a>(self) -> &'a mut Path {
1248        Path::from_inner_mut(self.inner.leak())
1249    }
1250
1251    /// Extends `self` with `path`.
1252    ///
1253    /// If `path` is absolute, it replaces the current path.
1254    ///
1255    /// On Windows:
1256    ///
1257    /// * if `path` has a root but no prefix (e.g., `\windows`), it
1258    ///   replaces everything except for the prefix (if any) of `self`.
1259    /// * if `path` has a prefix but no root, it replaces `self`.
1260    /// * if `self` has a verbatim prefix (e.g. `\\?\C:\windows`)
1261    ///   and `path` is not empty, the new path is normalized: all references
1262    ///   to `.` and `..` are removed.
1263    ///
1264    /// Consider using [`Path::join`] if you need a new `PathBuf` instead of
1265    /// using this function on a cloned `PathBuf`.
1266    ///
1267    /// # Examples
1268    ///
1269    /// Pushing a relative path extends the existing path:
1270    ///
1271    /// ```
1272    /// use std::path::PathBuf;
1273    ///
1274    /// let mut path = PathBuf::from("/tmp");
1275    /// path.push("file.bk");
1276    /// assert_eq!(path, PathBuf::from("/tmp/file.bk"));
1277    /// ```
1278    ///
1279    /// Pushing an absolute path replaces the existing path:
1280    ///
1281    /// ```
1282    /// use std::path::PathBuf;
1283    ///
1284    /// let mut path = PathBuf::from("/tmp");
1285    /// path.push("/etc");
1286    /// assert_eq!(path, PathBuf::from("/etc"));
1287    /// ```
1288    #[stable(feature = "rust1", since = "1.0.0")]
1289    #[rustc_confusables("append", "put")]
1290    pub fn push<P: AsRef<Path>>(&mut self, path: P) {
1291        self._push(path.as_ref())
1292    }
1293
1294    fn _push(&mut self, path: &Path) {
1295        // in general, a separator is needed if the rightmost byte is not a separator
1296        let buf = self.inner.as_encoded_bytes();
1297        let mut need_sep = buf.last().map(|c| !is_sep_byte(*c)).unwrap_or(false);
1298
1299        // in the special case of `C:` on Windows, do *not* add a separator
1300        let comps = self.components();
1301
1302        if comps.prefix_len() > 0
1303            && comps.prefix_len() == comps.path.len()
1304            && comps.prefix.unwrap().is_drive()
1305        {
1306            need_sep = false
1307        }
1308
1309        // absolute `path` replaces `self`
1310        if path.is_absolute() || path.prefix().is_some() {
1311            self.inner.truncate(0);
1312
1313        // verbatim paths need . and .. removed
1314        } else if comps.prefix_verbatim() && !path.inner.is_empty() {
1315            let mut buf: Vec<_> = comps.collect();
1316            for c in path.components() {
1317                match c {
1318                    Component::RootDir => {
1319                        buf.truncate(1);
1320                        buf.push(c);
1321                    }
1322                    Component::CurDir => (),
1323                    Component::ParentDir => {
1324                        if let Some(Component::Normal(_)) = buf.last() {
1325                            buf.pop();
1326                        }
1327                    }
1328                    _ => buf.push(c),
1329                }
1330            }
1331
1332            let mut res = OsString::new();
1333            let mut need_sep = false;
1334
1335            for c in buf {
1336                if need_sep && c != Component::RootDir {
1337                    res.push(MAIN_SEP_STR);
1338                }
1339                res.push(c.as_os_str());
1340
1341                need_sep = match c {
1342                    Component::RootDir => false,
1343                    Component::Prefix(prefix) => {
1344                        !prefix.parsed.is_drive() && prefix.parsed.len() > 0
1345                    }
1346                    _ => true,
1347                }
1348            }
1349
1350            self.inner = res;
1351            return;
1352
1353        // `path` has a root but no prefix, e.g., `\windows` (Windows only)
1354        } else if path.has_root() {
1355            let prefix_len = self.components().prefix_remaining();
1356            self.inner.truncate(prefix_len);
1357
1358        // `path` is a pure relative path
1359        } else if need_sep {
1360            self.inner.push(MAIN_SEP_STR);
1361        }
1362
1363        self.inner.push(path);
1364    }
1365
1366    /// Truncates `self` to [`self.parent`].
1367    ///
1368    /// Returns `false` and does nothing if [`self.parent`] is [`None`].
1369    /// Otherwise, returns `true`.
1370    ///
1371    /// [`self.parent`]: Path::parent
1372    ///
1373    /// # Examples
1374    ///
1375    /// ```
1376    /// use std::path::{Path, PathBuf};
1377    ///
1378    /// let mut p = PathBuf::from("/spirited/away.rs");
1379    ///
1380    /// p.pop();
1381    /// assert_eq!(Path::new("/spirited"), p);
1382    /// p.pop();
1383    /// assert_eq!(Path::new("/"), p);
1384    /// ```
1385    #[stable(feature = "rust1", since = "1.0.0")]
1386    pub fn pop(&mut self) -> bool {
1387        match self.parent().map(|p| p.as_u8_slice().len()) {
1388            Some(len) => {
1389                self.inner.truncate(len);
1390                true
1391            }
1392            None => false,
1393        }
1394    }
1395
1396    /// Updates [`self.file_name`] to `file_name`.
1397    ///
1398    /// If [`self.file_name`] was [`None`], this is equivalent to pushing
1399    /// `file_name`.
1400    ///
1401    /// Otherwise it is equivalent to calling [`pop`] and then pushing
1402    /// `file_name`. The new path will be a sibling of the original path.
1403    /// (That is, it will have the same parent.)
1404    ///
1405    /// The argument is not sanitized, so can include separators. This
1406    /// behavior may be changed to a panic in the future.
1407    ///
1408    /// [`self.file_name`]: Path::file_name
1409    /// [`pop`]: PathBuf::pop
1410    ///
1411    /// # Examples
1412    ///
1413    /// ```
1414    /// use std::path::PathBuf;
1415    ///
1416    /// let mut buf = PathBuf::from("/");
1417    /// assert!(buf.file_name() == None);
1418    ///
1419    /// buf.set_file_name("foo.txt");
1420    /// assert!(buf == PathBuf::from("/foo.txt"));
1421    /// assert!(buf.file_name().is_some());
1422    ///
1423    /// buf.set_file_name("bar.txt");
1424    /// assert!(buf == PathBuf::from("/bar.txt"));
1425    ///
1426    /// buf.set_file_name("baz");
1427    /// assert!(buf == PathBuf::from("/baz"));
1428    ///
1429    /// buf.set_file_name("../b/c.txt");
1430    /// assert!(buf == PathBuf::from("/../b/c.txt"));
1431    ///
1432    /// buf.set_file_name("baz");
1433    /// assert!(buf == PathBuf::from("/../b/baz"));
1434    /// ```
1435    #[stable(feature = "rust1", since = "1.0.0")]
1436    pub fn set_file_name<S: AsRef<OsStr>>(&mut self, file_name: S) {
1437        self._set_file_name(file_name.as_ref())
1438    }
1439
1440    fn _set_file_name(&mut self, file_name: &OsStr) {
1441        if self.file_name().is_some() {
1442            let popped = self.pop();
1443            debug_assert!(popped);
1444        }
1445        self.push(file_name);
1446    }
1447
1448    /// Updates [`self.extension`] to `Some(extension)` or to `None` if
1449    /// `extension` is empty.
1450    ///
1451    /// Returns `false` and does nothing if [`self.file_name`] is [`None`],
1452    /// returns `true` and updates the extension otherwise.
1453    ///
1454    /// If [`self.extension`] is [`None`], the extension is added; otherwise
1455    /// it is replaced.
1456    ///
1457    /// If `extension` is the empty string, [`self.extension`] will be [`None`]
1458    /// afterwards, not `Some("")`.
1459    ///
1460    /// # Panics
1461    ///
1462    /// Panics if the passed extension contains a path separator (see
1463    /// [`is_separator`]).
1464    ///
1465    /// # Caveats
1466    ///
1467    /// The new `extension` may contain dots and will be used in its entirety,
1468    /// but only the part after the final dot will be reflected in
1469    /// [`self.extension`].
1470    ///
1471    /// If the file stem contains internal dots and `extension` is empty, part
1472    /// of the old file stem will be considered the new [`self.extension`].
1473    ///
1474    /// See the examples below.
1475    ///
1476    /// [`self.file_name`]: Path::file_name
1477    /// [`self.extension`]: Path::extension
1478    ///
1479    /// # Examples
1480    ///
1481    /// ```
1482    /// use std::path::{Path, PathBuf};
1483    ///
1484    /// let mut p = PathBuf::from("/feel/the");
1485    ///
1486    /// p.set_extension("force");
1487    /// assert_eq!(Path::new("/feel/the.force"), p.as_path());
1488    ///
1489    /// p.set_extension("dark.side");
1490    /// assert_eq!(Path::new("/feel/the.dark.side"), p.as_path());
1491    ///
1492    /// p.set_extension("cookie");
1493    /// assert_eq!(Path::new("/feel/the.dark.cookie"), p.as_path());
1494    ///
1495    /// p.set_extension("");
1496    /// assert_eq!(Path::new("/feel/the.dark"), p.as_path());
1497    ///
1498    /// p.set_extension("");
1499    /// assert_eq!(Path::new("/feel/the"), p.as_path());
1500    ///
1501    /// p.set_extension("");
1502    /// assert_eq!(Path::new("/feel/the"), p.as_path());
1503    /// ```
1504    #[stable(feature = "rust1", since = "1.0.0")]
1505    pub fn set_extension<S: AsRef<OsStr>>(&mut self, extension: S) -> bool {
1506        self._set_extension(extension.as_ref())
1507    }
1508
1509    fn _set_extension(&mut self, extension: &OsStr) -> bool {
1510        for &b in extension.as_encoded_bytes() {
1511            if b < 128 {
1512                if is_separator(b as char) {
1513                    panic!("extension cannot contain path separators: {:?}", extension);
1514                }
1515            }
1516        }
1517
1518        let file_stem = match self.file_stem() {
1519            None => return false,
1520            Some(f) => f.as_encoded_bytes(),
1521        };
1522
1523        // truncate until right after the file stem
1524        let end_file_stem = file_stem[file_stem.len()..].as_ptr().addr();
1525        let start = self.inner.as_encoded_bytes().as_ptr().addr();
1526        self.inner.truncate(end_file_stem.wrapping_sub(start));
1527
1528        // add the new extension, if any
1529        let new = extension;
1530        if !new.is_empty() {
1531            self.inner.reserve_exact(new.len() + 1);
1532            self.inner.push(OsStr::new("."));
1533            self.inner.push(new);
1534        }
1535
1536        true
1537    }
1538
1539    /// Append [`self.extension`] with `extension`.
1540    ///
1541    /// Returns `false` and does nothing if [`self.file_name`] is [`None`],
1542    /// returns `true` and updates the extension otherwise.
1543    ///
1544    /// # Caveats
1545    ///
1546    /// The appended `extension` may contain dots and will be used in its entirety,
1547    /// but only the part after the final dot will be reflected in
1548    /// [`self.extension`].
1549    ///
1550    /// See the examples below.
1551    ///
1552    /// [`self.file_name`]: Path::file_name
1553    /// [`self.extension`]: Path::extension
1554    ///
1555    /// # Examples
1556    ///
1557    /// ```
1558    /// #![feature(path_add_extension)]
1559    ///
1560    /// use std::path::{Path, PathBuf};
1561    ///
1562    /// let mut p = PathBuf::from("/feel/the");
1563    ///
1564    /// p.add_extension("formatted");
1565    /// assert_eq!(Path::new("/feel/the.formatted"), p.as_path());
1566    ///
1567    /// p.add_extension("dark.side");
1568    /// assert_eq!(Path::new("/feel/the.formatted.dark.side"), p.as_path());
1569    ///
1570    /// p.set_extension("cookie");
1571    /// assert_eq!(Path::new("/feel/the.formatted.dark.cookie"), p.as_path());
1572    ///
1573    /// p.set_extension("");
1574    /// assert_eq!(Path::new("/feel/the.formatted.dark"), p.as_path());
1575    ///
1576    /// p.add_extension("");
1577    /// assert_eq!(Path::new("/feel/the.formatted.dark"), p.as_path());
1578    /// ```
1579    #[unstable(feature = "path_add_extension", issue = "127292")]
1580    pub fn add_extension<S: AsRef<OsStr>>(&mut self, extension: S) -> bool {
1581        self._add_extension(extension.as_ref())
1582    }
1583
1584    fn _add_extension(&mut self, extension: &OsStr) -> bool {
1585        let file_name = match self.file_name() {
1586            None => return false,
1587            Some(f) => f.as_encoded_bytes(),
1588        };
1589
1590        let new = extension;
1591        if !new.is_empty() {
1592            // truncate until right after the file name
1593            // this is necessary for trimming the trailing slash
1594            let end_file_name = file_name[file_name.len()..].as_ptr().addr();
1595            let start = self.inner.as_encoded_bytes().as_ptr().addr();
1596            self.inner.truncate(end_file_name.wrapping_sub(start));
1597
1598            // append the new extension
1599            self.inner.reserve_exact(new.len() + 1);
1600            self.inner.push(OsStr::new("."));
1601            self.inner.push(new);
1602        }
1603
1604        true
1605    }
1606
1607    /// Yields a mutable reference to the underlying [`OsString`] instance.
1608    ///
1609    /// # Examples
1610    ///
1611    /// ```
1612    /// use std::path::{Path, PathBuf};
1613    ///
1614    /// let mut path = PathBuf::from("/foo");
1615    ///
1616    /// path.push("bar");
1617    /// assert_eq!(path, Path::new("/foo/bar"));
1618    ///
1619    /// // OsString's `push` does not add a separator.
1620    /// path.as_mut_os_string().push("baz");
1621    /// assert_eq!(path, Path::new("/foo/barbaz"));
1622    /// ```
1623    #[stable(feature = "path_as_mut_os_str", since = "1.70.0")]
1624    #[must_use]
1625    #[inline]
1626    pub fn as_mut_os_string(&mut self) -> &mut OsString {
1627        &mut self.inner
1628    }
1629
1630    /// Consumes the `PathBuf`, yielding its internal [`OsString`] storage.
1631    ///
1632    /// # Examples
1633    ///
1634    /// ```
1635    /// use std::path::PathBuf;
1636    ///
1637    /// let p = PathBuf::from("/the/head");
1638    /// let os_str = p.into_os_string();
1639    /// ```
1640    #[stable(feature = "rust1", since = "1.0.0")]
1641    #[must_use = "`self` will be dropped if the result is not used"]
1642    #[inline]
1643    pub fn into_os_string(self) -> OsString {
1644        self.inner
1645    }
1646
1647    /// Converts this `PathBuf` into a [boxed](Box) [`Path`].
1648    #[stable(feature = "into_boxed_path", since = "1.20.0")]
1649    #[must_use = "`self` will be dropped if the result is not used"]
1650    #[inline]
1651    pub fn into_boxed_path(self) -> Box<Path> {
1652        let rw = Box::into_raw(self.inner.into_boxed_os_str()) as *mut Path;
1653        unsafe { Box::from_raw(rw) }
1654    }
1655
1656    /// Invokes [`capacity`] on the underlying instance of [`OsString`].
1657    ///
1658    /// [`capacity`]: OsString::capacity
1659    #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1660    #[must_use]
1661    #[inline]
1662    pub fn capacity(&self) -> usize {
1663        self.inner.capacity()
1664    }
1665
1666    /// Invokes [`clear`] on the underlying instance of [`OsString`].
1667    ///
1668    /// [`clear`]: OsString::clear
1669    #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1670    #[inline]
1671    pub fn clear(&mut self) {
1672        self.inner.clear()
1673    }
1674
1675    /// Invokes [`reserve`] on the underlying instance of [`OsString`].
1676    ///
1677    /// [`reserve`]: OsString::reserve
1678    #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1679    #[inline]
1680    pub fn reserve(&mut self, additional: usize) {
1681        self.inner.reserve(additional)
1682    }
1683
1684    /// Invokes [`try_reserve`] on the underlying instance of [`OsString`].
1685    ///
1686    /// [`try_reserve`]: OsString::try_reserve
1687    #[stable(feature = "try_reserve_2", since = "1.63.0")]
1688    #[inline]
1689    pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
1690        self.inner.try_reserve(additional)
1691    }
1692
1693    /// Invokes [`reserve_exact`] on the underlying instance of [`OsString`].
1694    ///
1695    /// [`reserve_exact`]: OsString::reserve_exact
1696    #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1697    #[inline]
1698    pub fn reserve_exact(&mut self, additional: usize) {
1699        self.inner.reserve_exact(additional)
1700    }
1701
1702    /// Invokes [`try_reserve_exact`] on the underlying instance of [`OsString`].
1703    ///
1704    /// [`try_reserve_exact`]: OsString::try_reserve_exact
1705    #[stable(feature = "try_reserve_2", since = "1.63.0")]
1706    #[inline]
1707    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
1708        self.inner.try_reserve_exact(additional)
1709    }
1710
1711    /// Invokes [`shrink_to_fit`] on the underlying instance of [`OsString`].
1712    ///
1713    /// [`shrink_to_fit`]: OsString::shrink_to_fit
1714    #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1715    #[inline]
1716    pub fn shrink_to_fit(&mut self) {
1717        self.inner.shrink_to_fit()
1718    }
1719
1720    /// Invokes [`shrink_to`] on the underlying instance of [`OsString`].
1721    ///
1722    /// [`shrink_to`]: OsString::shrink_to
1723    #[stable(feature = "shrink_to", since = "1.56.0")]
1724    #[inline]
1725    pub fn shrink_to(&mut self, min_capacity: usize) {
1726        self.inner.shrink_to(min_capacity)
1727    }
1728}
1729
1730#[stable(feature = "rust1", since = "1.0.0")]
1731impl Clone for PathBuf {
1732    #[inline]
1733    fn clone(&self) -> Self {
1734        PathBuf { inner: self.inner.clone() }
1735    }
1736
1737    /// Clones the contents of `source` into `self`.
1738    ///
1739    /// This method is preferred over simply assigning `source.clone()` to `self`,
1740    /// as it avoids reallocation if possible.
1741    #[inline]
1742    fn clone_from(&mut self, source: &Self) {
1743        self.inner.clone_from(&source.inner)
1744    }
1745}
1746
1747#[stable(feature = "box_from_path", since = "1.17.0")]
1748impl From<&Path> for Box<Path> {
1749    /// Creates a boxed [`Path`] from a reference.
1750    ///
1751    /// This will allocate and clone `path` to it.
1752    fn from(path: &Path) -> Box<Path> {
1753        let boxed: Box<OsStr> = path.inner.into();
1754        let rw = Box::into_raw(boxed) as *mut Path;
1755        unsafe { Box::from_raw(rw) }
1756    }
1757}
1758
1759#[stable(feature = "box_from_mut_slice", since = "1.84.0")]
1760impl From<&mut Path> for Box<Path> {
1761    /// Creates a boxed [`Path`] from a reference.
1762    ///
1763    /// This will allocate and clone `path` to it.
1764    fn from(path: &mut Path) -> Box<Path> {
1765        Self::from(&*path)
1766    }
1767}
1768
1769#[stable(feature = "box_from_cow", since = "1.45.0")]
1770impl From<Cow<'_, Path>> for Box<Path> {
1771    /// Creates a boxed [`Path`] from a clone-on-write pointer.
1772    ///
1773    /// Converting from a `Cow::Owned` does not clone or allocate.
1774    #[inline]
1775    fn from(cow: Cow<'_, Path>) -> Box<Path> {
1776        match cow {
1777            Cow::Borrowed(path) => Box::from(path),
1778            Cow::Owned(path) => Box::from(path),
1779        }
1780    }
1781}
1782
1783#[stable(feature = "path_buf_from_box", since = "1.18.0")]
1784impl From<Box<Path>> for PathBuf {
1785    /// Converts a <code>[Box]&lt;[Path]&gt;</code> into a [`PathBuf`].
1786    ///
1787    /// This conversion does not allocate or copy memory.
1788    #[inline]
1789    fn from(boxed: Box<Path>) -> PathBuf {
1790        boxed.into_path_buf()
1791    }
1792}
1793
1794#[stable(feature = "box_from_path_buf", since = "1.20.0")]
1795impl From<PathBuf> for Box<Path> {
1796    /// Converts a [`PathBuf`] into a <code>[Box]&lt;[Path]&gt;</code>.
1797    ///
1798    /// This conversion currently should not allocate memory,
1799    /// but this behavior is not guaranteed on all platforms or in all future versions.
1800    #[inline]
1801    fn from(p: PathBuf) -> Box<Path> {
1802        p.into_boxed_path()
1803    }
1804}
1805
1806#[stable(feature = "more_box_slice_clone", since = "1.29.0")]
1807impl Clone for Box<Path> {
1808    #[inline]
1809    fn clone(&self) -> Self {
1810        self.to_path_buf().into_boxed_path()
1811    }
1812}
1813
1814#[stable(feature = "rust1", since = "1.0.0")]
1815impl<T: ?Sized + AsRef<OsStr>> From<&T> for PathBuf {
1816    /// Converts a borrowed [`OsStr`] to a [`PathBuf`].
1817    ///
1818    /// Allocates a [`PathBuf`] and copies the data into it.
1819    #[inline]
1820    fn from(s: &T) -> PathBuf {
1821        PathBuf::from(s.as_ref().to_os_string())
1822    }
1823}
1824
1825#[stable(feature = "rust1", since = "1.0.0")]
1826impl From<OsString> for PathBuf {
1827    /// Converts an [`OsString`] into a [`PathBuf`].
1828    ///
1829    /// This conversion does not allocate or copy memory.
1830    #[inline]
1831    fn from(s: OsString) -> PathBuf {
1832        PathBuf { inner: s }
1833    }
1834}
1835
1836#[stable(feature = "from_path_buf_for_os_string", since = "1.14.0")]
1837impl From<PathBuf> for OsString {
1838    /// Converts a [`PathBuf`] into an [`OsString`]
1839    ///
1840    /// This conversion does not allocate or copy memory.
1841    #[inline]
1842    fn from(path_buf: PathBuf) -> OsString {
1843        path_buf.inner
1844    }
1845}
1846
1847#[stable(feature = "rust1", since = "1.0.0")]
1848impl From<String> for PathBuf {
1849    /// Converts a [`String`] into a [`PathBuf`]
1850    ///
1851    /// This conversion does not allocate or copy memory.
1852    #[inline]
1853    fn from(s: String) -> PathBuf {
1854        PathBuf::from(OsString::from(s))
1855    }
1856}
1857
1858#[stable(feature = "path_from_str", since = "1.32.0")]
1859impl FromStr for PathBuf {
1860    type Err = core::convert::Infallible;
1861
1862    #[inline]
1863    fn from_str(s: &str) -> Result<Self, Self::Err> {
1864        Ok(PathBuf::from(s))
1865    }
1866}
1867
1868#[stable(feature = "rust1", since = "1.0.0")]
1869impl<P: AsRef<Path>> FromIterator<P> for PathBuf {
1870    fn from_iter<I: IntoIterator<Item = P>>(iter: I) -> PathBuf {
1871        let mut buf = PathBuf::new();
1872        buf.extend(iter);
1873        buf
1874    }
1875}
1876
1877#[stable(feature = "rust1", since = "1.0.0")]
1878impl<P: AsRef<Path>> Extend<P> for PathBuf {
1879    fn extend<I: IntoIterator<Item = P>>(&mut self, iter: I) {
1880        iter.into_iter().for_each(move |p| self.push(p.as_ref()));
1881    }
1882
1883    #[inline]
1884    fn extend_one(&mut self, p: P) {
1885        self.push(p.as_ref());
1886    }
1887}
1888
1889#[stable(feature = "rust1", since = "1.0.0")]
1890impl fmt::Debug for PathBuf {
1891    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
1892        fmt::Debug::fmt(&**self, formatter)
1893    }
1894}
1895
1896#[stable(feature = "rust1", since = "1.0.0")]
1897impl ops::Deref for PathBuf {
1898    type Target = Path;
1899    #[inline]
1900    fn deref(&self) -> &Path {
1901        Path::new(&self.inner)
1902    }
1903}
1904
1905#[stable(feature = "path_buf_deref_mut", since = "1.68.0")]
1906impl ops::DerefMut for PathBuf {
1907    #[inline]
1908    fn deref_mut(&mut self) -> &mut Path {
1909        Path::from_inner_mut(&mut self.inner)
1910    }
1911}
1912
1913#[stable(feature = "rust1", since = "1.0.0")]
1914impl Borrow<Path> for PathBuf {
1915    #[inline]
1916    fn borrow(&self) -> &Path {
1917        self.deref()
1918    }
1919}
1920
1921#[stable(feature = "default_for_pathbuf", since = "1.17.0")]
1922impl Default for PathBuf {
1923    #[inline]
1924    fn default() -> Self {
1925        PathBuf::new()
1926    }
1927}
1928
1929#[stable(feature = "cow_from_path", since = "1.6.0")]
1930impl<'a> From<&'a Path> for Cow<'a, Path> {
1931    /// Creates a clone-on-write pointer from a reference to
1932    /// [`Path`].
1933    ///
1934    /// This conversion does not clone or allocate.
1935    #[inline]
1936    fn from(s: &'a Path) -> Cow<'a, Path> {
1937        Cow::Borrowed(s)
1938    }
1939}
1940
1941#[stable(feature = "cow_from_path", since = "1.6.0")]
1942impl<'a> From<PathBuf> for Cow<'a, Path> {
1943    /// Creates a clone-on-write pointer from an owned
1944    /// instance of [`PathBuf`].
1945    ///
1946    /// This conversion does not clone or allocate.
1947    #[inline]
1948    fn from(s: PathBuf) -> Cow<'a, Path> {
1949        Cow::Owned(s)
1950    }
1951}
1952
1953#[stable(feature = "cow_from_pathbuf_ref", since = "1.28.0")]
1954impl<'a> From<&'a PathBuf> for Cow<'a, Path> {
1955    /// Creates a clone-on-write pointer from a reference to
1956    /// [`PathBuf`].
1957    ///
1958    /// This conversion does not clone or allocate.
1959    #[inline]
1960    fn from(p: &'a PathBuf) -> Cow<'a, Path> {
1961        Cow::Borrowed(p.as_path())
1962    }
1963}
1964
1965#[stable(feature = "pathbuf_from_cow_path", since = "1.28.0")]
1966impl<'a> From<Cow<'a, Path>> for PathBuf {
1967    /// Converts a clone-on-write pointer to an owned path.
1968    ///
1969    /// Converting from a `Cow::Owned` does not clone or allocate.
1970    #[inline]
1971    fn from(p: Cow<'a, Path>) -> Self {
1972        p.into_owned()
1973    }
1974}
1975
1976#[stable(feature = "shared_from_slice2", since = "1.24.0")]
1977impl From<PathBuf> for Arc<Path> {
1978    /// Converts a [`PathBuf`] into an <code>[Arc]<[Path]></code> by moving the [`PathBuf`] data
1979    /// into a new [`Arc`] buffer.
1980    #[inline]
1981    fn from(s: PathBuf) -> Arc<Path> {
1982        let arc: Arc<OsStr> = Arc::from(s.into_os_string());
1983        unsafe { Arc::from_raw(Arc::into_raw(arc) as *const Path) }
1984    }
1985}
1986
1987#[stable(feature = "shared_from_slice2", since = "1.24.0")]
1988impl From<&Path> for Arc<Path> {
1989    /// Converts a [`Path`] into an [`Arc`] by copying the [`Path`] data into a new [`Arc`] buffer.
1990    #[inline]
1991    fn from(s: &Path) -> Arc<Path> {
1992        let arc: Arc<OsStr> = Arc::from(s.as_os_str());
1993        unsafe { Arc::from_raw(Arc::into_raw(arc) as *const Path) }
1994    }
1995}
1996
1997#[stable(feature = "shared_from_mut_slice", since = "1.84.0")]
1998impl From<&mut Path> for Arc<Path> {
1999    /// Converts a [`Path`] into an [`Arc`] by copying the [`Path`] data into a new [`Arc`] buffer.
2000    #[inline]
2001    fn from(s: &mut Path) -> Arc<Path> {
2002        Arc::from(&*s)
2003    }
2004}
2005
2006#[stable(feature = "shared_from_slice2", since = "1.24.0")]
2007impl From<PathBuf> for Rc<Path> {
2008    /// Converts a [`PathBuf`] into an <code>[Rc]<[Path]></code> by moving the [`PathBuf`] data into
2009    /// a new [`Rc`] buffer.
2010    #[inline]
2011    fn from(s: PathBuf) -> Rc<Path> {
2012        let rc: Rc<OsStr> = Rc::from(s.into_os_string());
2013        unsafe { Rc::from_raw(Rc::into_raw(rc) as *const Path) }
2014    }
2015}
2016
2017#[stable(feature = "shared_from_slice2", since = "1.24.0")]
2018impl From<&Path> for Rc<Path> {
2019    /// Converts a [`Path`] into an [`Rc`] by copying the [`Path`] data into a new [`Rc`] buffer.
2020    #[inline]
2021    fn from(s: &Path) -> Rc<Path> {
2022        let rc: Rc<OsStr> = Rc::from(s.as_os_str());
2023        unsafe { Rc::from_raw(Rc::into_raw(rc) as *const Path) }
2024    }
2025}
2026
2027#[stable(feature = "shared_from_mut_slice", since = "1.84.0")]
2028impl From<&mut Path> for Rc<Path> {
2029    /// Converts a [`Path`] into an [`Rc`] by copying the [`Path`] data into a new [`Rc`] buffer.
2030    #[inline]
2031    fn from(s: &mut Path) -> Rc<Path> {
2032        Rc::from(&*s)
2033    }
2034}
2035
2036#[stable(feature = "rust1", since = "1.0.0")]
2037impl ToOwned for Path {
2038    type Owned = PathBuf;
2039    #[inline]
2040    fn to_owned(&self) -> PathBuf {
2041        self.to_path_buf()
2042    }
2043    #[inline]
2044    fn clone_into(&self, target: &mut PathBuf) {
2045        self.inner.clone_into(&mut target.inner);
2046    }
2047}
2048
2049#[stable(feature = "rust1", since = "1.0.0")]
2050impl PartialEq for PathBuf {
2051    #[inline]
2052    fn eq(&self, other: &PathBuf) -> bool {
2053        self.components() == other.components()
2054    }
2055}
2056
2057#[stable(feature = "rust1", since = "1.0.0")]
2058impl Hash for PathBuf {
2059    fn hash<H: Hasher>(&self, h: &mut H) {
2060        self.as_path().hash(h)
2061    }
2062}
2063
2064#[stable(feature = "rust1", since = "1.0.0")]
2065impl Eq for PathBuf {}
2066
2067#[stable(feature = "rust1", since = "1.0.0")]
2068impl PartialOrd for PathBuf {
2069    #[inline]
2070    fn partial_cmp(&self, other: &PathBuf) -> Option<cmp::Ordering> {
2071        Some(compare_components(self.components(), other.components()))
2072    }
2073}
2074
2075#[stable(feature = "rust1", since = "1.0.0")]
2076impl Ord for PathBuf {
2077    #[inline]
2078    fn cmp(&self, other: &PathBuf) -> cmp::Ordering {
2079        compare_components(self.components(), other.components())
2080    }
2081}
2082
2083#[stable(feature = "rust1", since = "1.0.0")]
2084impl AsRef<OsStr> for PathBuf {
2085    #[inline]
2086    fn as_ref(&self) -> &OsStr {
2087        &self.inner[..]
2088    }
2089}
2090
2091/// A slice of a path (akin to [`str`]).
2092///
2093/// This type supports a number of operations for inspecting a path, including
2094/// breaking the path into its components (separated by `/` on Unix and by either
2095/// `/` or `\` on Windows), extracting the file name, determining whether the path
2096/// is absolute, and so on.
2097///
2098/// This is an *unsized* type, meaning that it must always be used behind a
2099/// pointer like `&` or [`Box`]. For an owned version of this type,
2100/// see [`PathBuf`].
2101///
2102/// More details about the overall approach can be found in
2103/// the [module documentation](self).
2104///
2105/// # Examples
2106///
2107/// ```
2108/// use std::path::Path;
2109/// use std::ffi::OsStr;
2110///
2111/// // Note: this example does work on Windows
2112/// let path = Path::new("./foo/bar.txt");
2113///
2114/// let parent = path.parent();
2115/// assert_eq!(parent, Some(Path::new("./foo")));
2116///
2117/// let file_stem = path.file_stem();
2118/// assert_eq!(file_stem, Some(OsStr::new("bar")));
2119///
2120/// let extension = path.extension();
2121/// assert_eq!(extension, Some(OsStr::new("txt")));
2122/// ```
2123#[cfg_attr(not(test), rustc_diagnostic_item = "Path")]
2124#[stable(feature = "rust1", since = "1.0.0")]
2125// `Path::new` and `impl CloneToUninit for Path` current implementation relies
2126// on `Path` being layout-compatible with `OsStr`.
2127// However, `Path` layout is considered an implementation detail and must not be relied upon.
2128#[repr(transparent)]
2129pub struct Path {
2130    inner: OsStr,
2131}
2132
2133/// An error returned from [`Path::strip_prefix`] if the prefix was not found.
2134///
2135/// This `struct` is created by the [`strip_prefix`] method on [`Path`].
2136/// See its documentation for more.
2137///
2138/// [`strip_prefix`]: Path::strip_prefix
2139#[derive(Debug, Clone, PartialEq, Eq)]
2140#[stable(since = "1.7.0", feature = "strip_prefix")]
2141pub struct StripPrefixError(());
2142
2143impl Path {
2144    // The following (private!) function allows construction of a path from a u8
2145    // slice, which is only safe when it is known to follow the OsStr encoding.
2146    unsafe fn from_u8_slice(s: &[u8]) -> &Path {
2147        unsafe { Path::new(OsStr::from_encoded_bytes_unchecked(s)) }
2148    }
2149    // The following (private!) function reveals the byte encoding used for OsStr.
2150    pub(crate) fn as_u8_slice(&self) -> &[u8] {
2151        self.inner.as_encoded_bytes()
2152    }
2153
2154    /// Directly wraps a string slice as a `Path` slice.
2155    ///
2156    /// This is a cost-free conversion.
2157    ///
2158    /// # Examples
2159    ///
2160    /// ```
2161    /// use std::path::Path;
2162    ///
2163    /// Path::new("foo.txt");
2164    /// ```
2165    ///
2166    /// You can create `Path`s from `String`s, or even other `Path`s:
2167    ///
2168    /// ```
2169    /// use std::path::Path;
2170    ///
2171    /// let string = String::from("foo.txt");
2172    /// let from_string = Path::new(&string);
2173    /// let from_path = Path::new(&from_string);
2174    /// assert_eq!(from_string, from_path);
2175    /// ```
2176    #[stable(feature = "rust1", since = "1.0.0")]
2177    pub fn new<S: AsRef<OsStr> + ?Sized>(s: &S) -> &Path {
2178        unsafe { &*(s.as_ref() as *const OsStr as *const Path) }
2179    }
2180
2181    fn from_inner_mut(inner: &mut OsStr) -> &mut Path {
2182        // SAFETY: Path is just a wrapper around OsStr,
2183        // therefore converting &mut OsStr to &mut Path is safe.
2184        unsafe { &mut *(inner as *mut OsStr as *mut Path) }
2185    }
2186
2187    /// Yields the underlying [`OsStr`] slice.
2188    ///
2189    /// # Examples
2190    ///
2191    /// ```
2192    /// use std::path::Path;
2193    ///
2194    /// let os_str = Path::new("foo.txt").as_os_str();
2195    /// assert_eq!(os_str, std::ffi::OsStr::new("foo.txt"));
2196    /// ```
2197    #[stable(feature = "rust1", since = "1.0.0")]
2198    #[must_use]
2199    #[inline]
2200    pub fn as_os_str(&self) -> &OsStr {
2201        &self.inner
2202    }
2203
2204    /// Yields a mutable reference to the underlying [`OsStr`] slice.
2205    ///
2206    /// # Examples
2207    ///
2208    /// ```
2209    /// use std::path::{Path, PathBuf};
2210    ///
2211    /// let mut path = PathBuf::from("Foo.TXT");
2212    ///
2213    /// assert_ne!(path, Path::new("foo.txt"));
2214    ///
2215    /// path.as_mut_os_str().make_ascii_lowercase();
2216    /// assert_eq!(path, Path::new("foo.txt"));
2217    /// ```
2218    #[stable(feature = "path_as_mut_os_str", since = "1.70.0")]
2219    #[must_use]
2220    #[inline]
2221    pub fn as_mut_os_str(&mut self) -> &mut OsStr {
2222        &mut self.inner
2223    }
2224
2225    /// Yields a [`&str`] slice if the `Path` is valid unicode.
2226    ///
2227    /// This conversion may entail doing a check for UTF-8 validity.
2228    /// Note that validation is performed because non-UTF-8 strings are
2229    /// perfectly valid for some OS.
2230    ///
2231    /// [`&str`]: str
2232    ///
2233    /// # Examples
2234    ///
2235    /// ```
2236    /// use std::path::Path;
2237    ///
2238    /// let path = Path::new("foo.txt");
2239    /// assert_eq!(path.to_str(), Some("foo.txt"));
2240    /// ```
2241    #[stable(feature = "rust1", since = "1.0.0")]
2242    #[must_use = "this returns the result of the operation, \
2243                  without modifying the original"]
2244    #[inline]
2245    pub fn to_str(&self) -> Option<&str> {
2246        self.inner.to_str()
2247    }
2248
2249    /// Converts a `Path` to a [`Cow<str>`].
2250    ///
2251    /// Any non-UTF-8 sequences are replaced with
2252    /// [`U+FFFD REPLACEMENT CHARACTER`][U+FFFD].
2253    ///
2254    /// [U+FFFD]: super::char::REPLACEMENT_CHARACTER
2255    ///
2256    /// # Examples
2257    ///
2258    /// Calling `to_string_lossy` on a `Path` with valid unicode:
2259    ///
2260    /// ```
2261    /// use std::path::Path;
2262    ///
2263    /// let path = Path::new("foo.txt");
2264    /// assert_eq!(path.to_string_lossy(), "foo.txt");
2265    /// ```
2266    ///
2267    /// Had `path` contained invalid unicode, the `to_string_lossy` call might
2268    /// have returned `"fo�.txt"`.
2269    #[stable(feature = "rust1", since = "1.0.0")]
2270    #[must_use = "this returns the result of the operation, \
2271                  without modifying the original"]
2272    #[inline]
2273    pub fn to_string_lossy(&self) -> Cow<'_, str> {
2274        self.inner.to_string_lossy()
2275    }
2276
2277    /// Converts a `Path` to an owned [`PathBuf`].
2278    ///
2279    /// # Examples
2280    ///
2281    /// ```
2282    /// use std::path::{Path, PathBuf};
2283    ///
2284    /// let path_buf = Path::new("foo.txt").to_path_buf();
2285    /// assert_eq!(path_buf, PathBuf::from("foo.txt"));
2286    /// ```
2287    #[rustc_conversion_suggestion]
2288    #[must_use = "this returns the result of the operation, \
2289                  without modifying the original"]
2290    #[stable(feature = "rust1", since = "1.0.0")]
2291    #[cfg_attr(not(test), rustc_diagnostic_item = "path_to_pathbuf")]
2292    pub fn to_path_buf(&self) -> PathBuf {
2293        PathBuf::from(self.inner.to_os_string())
2294    }
2295
2296    /// Returns `true` if the `Path` is absolute, i.e., if it is independent of
2297    /// the current directory.
2298    ///
2299    /// * On Unix, a path is absolute if it starts with the root, so
2300    /// `is_absolute` and [`has_root`] are equivalent.
2301    ///
2302    /// * On Windows, a path is absolute if it has a prefix and starts with the
2303    /// root: `c:\windows` is absolute, while `c:temp` and `\temp` are not.
2304    ///
2305    /// # Examples
2306    ///
2307    /// ```
2308    /// use std::path::Path;
2309    ///
2310    /// assert!(!Path::new("foo.txt").is_absolute());
2311    /// ```
2312    ///
2313    /// [`has_root`]: Path::has_root
2314    #[stable(feature = "rust1", since = "1.0.0")]
2315    #[must_use]
2316    #[allow(deprecated)]
2317    pub fn is_absolute(&self) -> bool {
2318        sys::path::is_absolute(self)
2319    }
2320
2321    /// Returns `true` if the `Path` is relative, i.e., not absolute.
2322    ///
2323    /// See [`is_absolute`]'s documentation for more details.
2324    ///
2325    /// # Examples
2326    ///
2327    /// ```
2328    /// use std::path::Path;
2329    ///
2330    /// assert!(Path::new("foo.txt").is_relative());
2331    /// ```
2332    ///
2333    /// [`is_absolute`]: Path::is_absolute
2334    #[stable(feature = "rust1", since = "1.0.0")]
2335    #[must_use]
2336    #[inline]
2337    pub fn is_relative(&self) -> bool {
2338        !self.is_absolute()
2339    }
2340
2341    pub(crate) fn prefix(&self) -> Option<Prefix<'_>> {
2342        self.components().prefix
2343    }
2344
2345    /// Returns `true` if the `Path` has a root.
2346    ///
2347    /// * On Unix, a path has a root if it begins with `/`.
2348    ///
2349    /// * On Windows, a path has a root if it:
2350    ///     * has no prefix and begins with a separator, e.g., `\windows`
2351    ///     * has a prefix followed by a separator, e.g., `c:\windows` but not `c:windows`
2352    ///     * has any non-disk prefix, e.g., `\\server\share`
2353    ///
2354    /// # Examples
2355    ///
2356    /// ```
2357    /// use std::path::Path;
2358    ///
2359    /// assert!(Path::new("/etc/passwd").has_root());
2360    /// ```
2361    #[stable(feature = "rust1", since = "1.0.0")]
2362    #[must_use]
2363    #[inline]
2364    pub fn has_root(&self) -> bool {
2365        self.components().has_root()
2366    }
2367
2368    /// Returns the `Path` without its final component, if there is one.
2369    ///
2370    /// This means it returns `Some("")` for relative paths with one component.
2371    ///
2372    /// Returns [`None`] if the path terminates in a root or prefix, or if it's
2373    /// the empty string.
2374    ///
2375    /// # Examples
2376    ///
2377    /// ```
2378    /// use std::path::Path;
2379    ///
2380    /// let path = Path::new("/foo/bar");
2381    /// let parent = path.parent().unwrap();
2382    /// assert_eq!(parent, Path::new("/foo"));
2383    ///
2384    /// let grand_parent = parent.parent().unwrap();
2385    /// assert_eq!(grand_parent, Path::new("/"));
2386    /// assert_eq!(grand_parent.parent(), None);
2387    ///
2388    /// let relative_path = Path::new("foo/bar");
2389    /// let parent = relative_path.parent();
2390    /// assert_eq!(parent, Some(Path::new("foo")));
2391    /// let grand_parent = parent.and_then(Path::parent);
2392    /// assert_eq!(grand_parent, Some(Path::new("")));
2393    /// let great_grand_parent = grand_parent.and_then(Path::parent);
2394    /// assert_eq!(great_grand_parent, None);
2395    /// ```
2396    #[stable(feature = "rust1", since = "1.0.0")]
2397    #[doc(alias = "dirname")]
2398    #[must_use]
2399    pub fn parent(&self) -> Option<&Path> {
2400        let mut comps = self.components();
2401        let comp = comps.next_back();
2402        comp.and_then(|p| match p {
2403            Component::Normal(_) | Component::CurDir | Component::ParentDir => {
2404                Some(comps.as_path())
2405            }
2406            _ => None,
2407        })
2408    }
2409
2410    /// Produces an iterator over `Path` and its ancestors.
2411    ///
2412    /// The iterator will yield the `Path` that is returned if the [`parent`] method is used zero
2413    /// or more times. If the [`parent`] method returns [`None`], the iterator will do likewise.
2414    /// The iterator will always yield at least one value, namely `Some(&self)`. Next it will yield
2415    /// `&self.parent()`, `&self.parent().and_then(Path::parent)` and so on.
2416    ///
2417    /// # Examples
2418    ///
2419    /// ```
2420    /// use std::path::Path;
2421    ///
2422    /// let mut ancestors = Path::new("/foo/bar").ancestors();
2423    /// assert_eq!(ancestors.next(), Some(Path::new("/foo/bar")));
2424    /// assert_eq!(ancestors.next(), Some(Path::new("/foo")));
2425    /// assert_eq!(ancestors.next(), Some(Path::new("/")));
2426    /// assert_eq!(ancestors.next(), None);
2427    ///
2428    /// let mut ancestors = Path::new("../foo/bar").ancestors();
2429    /// assert_eq!(ancestors.next(), Some(Path::new("../foo/bar")));
2430    /// assert_eq!(ancestors.next(), Some(Path::new("../foo")));
2431    /// assert_eq!(ancestors.next(), Some(Path::new("..")));
2432    /// assert_eq!(ancestors.next(), Some(Path::new("")));
2433    /// assert_eq!(ancestors.next(), None);
2434    /// ```
2435    ///
2436    /// [`parent`]: Path::parent
2437    #[stable(feature = "path_ancestors", since = "1.28.0")]
2438    #[inline]
2439    pub fn ancestors(&self) -> Ancestors<'_> {
2440        Ancestors { next: Some(&self) }
2441    }
2442
2443    /// Returns the final component of the `Path`, if there is one.
2444    ///
2445    /// If the path is a normal file, this is the file name. If it's the path of a directory, this
2446    /// is the directory name.
2447    ///
2448    /// Returns [`None`] if the path terminates in `..`.
2449    ///
2450    /// # Examples
2451    ///
2452    /// ```
2453    /// use std::path::Path;
2454    /// use std::ffi::OsStr;
2455    ///
2456    /// assert_eq!(Some(OsStr::new("bin")), Path::new("/usr/bin/").file_name());
2457    /// assert_eq!(Some(OsStr::new("foo.txt")), Path::new("tmp/foo.txt").file_name());
2458    /// assert_eq!(Some(OsStr::new("foo.txt")), Path::new("foo.txt/.").file_name());
2459    /// assert_eq!(Some(OsStr::new("foo.txt")), Path::new("foo.txt/.//").file_name());
2460    /// assert_eq!(None, Path::new("foo.txt/..").file_name());
2461    /// assert_eq!(None, Path::new("/").file_name());
2462    /// ```
2463    #[stable(feature = "rust1", since = "1.0.0")]
2464    #[doc(alias = "basename")]
2465    #[must_use]
2466    pub fn file_name(&self) -> Option<&OsStr> {
2467        self.components().next_back().and_then(|p| match p {
2468            Component::Normal(p) => Some(p),
2469            _ => None,
2470        })
2471    }
2472
2473    /// Returns a path that, when joined onto `base`, yields `self`.
2474    ///
2475    /// # Errors
2476    ///
2477    /// If `base` is not a prefix of `self` (i.e., [`starts_with`]
2478    /// returns `false`), returns [`Err`].
2479    ///
2480    /// [`starts_with`]: Path::starts_with
2481    ///
2482    /// # Examples
2483    ///
2484    /// ```
2485    /// use std::path::{Path, PathBuf};
2486    ///
2487    /// let path = Path::new("/test/haha/foo.txt");
2488    ///
2489    /// assert_eq!(path.strip_prefix("/"), Ok(Path::new("test/haha/foo.txt")));
2490    /// assert_eq!(path.strip_prefix("/test"), Ok(Path::new("haha/foo.txt")));
2491    /// assert_eq!(path.strip_prefix("/test/"), Ok(Path::new("haha/foo.txt")));
2492    /// assert_eq!(path.strip_prefix("/test/haha/foo.txt"), Ok(Path::new("")));
2493    /// assert_eq!(path.strip_prefix("/test/haha/foo.txt/"), Ok(Path::new("")));
2494    ///
2495    /// assert!(path.strip_prefix("test").is_err());
2496    /// assert!(path.strip_prefix("/te").is_err());
2497    /// assert!(path.strip_prefix("/haha").is_err());
2498    ///
2499    /// let prefix = PathBuf::from("/test/");
2500    /// assert_eq!(path.strip_prefix(prefix), Ok(Path::new("haha/foo.txt")));
2501    /// ```
2502    #[stable(since = "1.7.0", feature = "path_strip_prefix")]
2503    pub fn strip_prefix<P>(&self, base: P) -> Result<&Path, StripPrefixError>
2504    where
2505        P: AsRef<Path>,
2506    {
2507        self._strip_prefix(base.as_ref())
2508    }
2509
2510    fn _strip_prefix(&self, base: &Path) -> Result<&Path, StripPrefixError> {
2511        iter_after(self.components(), base.components())
2512            .map(|c| c.as_path())
2513            .ok_or(StripPrefixError(()))
2514    }
2515
2516    /// Determines whether `base` is a prefix of `self`.
2517    ///
2518    /// Only considers whole path components to match.
2519    ///
2520    /// # Examples
2521    ///
2522    /// ```
2523    /// use std::path::Path;
2524    ///
2525    /// let path = Path::new("/etc/passwd");
2526    ///
2527    /// assert!(path.starts_with("/etc"));
2528    /// assert!(path.starts_with("/etc/"));
2529    /// assert!(path.starts_with("/etc/passwd"));
2530    /// assert!(path.starts_with("/etc/passwd/")); // extra slash is okay
2531    /// assert!(path.starts_with("/etc/passwd///")); // multiple extra slashes are okay
2532    ///
2533    /// assert!(!path.starts_with("/e"));
2534    /// assert!(!path.starts_with("/etc/passwd.txt"));
2535    ///
2536    /// assert!(!Path::new("/etc/foo.rs").starts_with("/etc/foo"));
2537    /// ```
2538    #[stable(feature = "rust1", since = "1.0.0")]
2539    #[must_use]
2540    pub fn starts_with<P: AsRef<Path>>(&self, base: P) -> bool {
2541        self._starts_with(base.as_ref())
2542    }
2543
2544    fn _starts_with(&self, base: &Path) -> bool {
2545        iter_after(self.components(), base.components()).is_some()
2546    }
2547
2548    /// Determines whether `child` is a suffix of `self`.
2549    ///
2550    /// Only considers whole path components to match.
2551    ///
2552    /// # Examples
2553    ///
2554    /// ```
2555    /// use std::path::Path;
2556    ///
2557    /// let path = Path::new("/etc/resolv.conf");
2558    ///
2559    /// assert!(path.ends_with("resolv.conf"));
2560    /// assert!(path.ends_with("etc/resolv.conf"));
2561    /// assert!(path.ends_with("/etc/resolv.conf"));
2562    ///
2563    /// assert!(!path.ends_with("/resolv.conf"));
2564    /// assert!(!path.ends_with("conf")); // use .extension() instead
2565    /// ```
2566    #[stable(feature = "rust1", since = "1.0.0")]
2567    #[must_use]
2568    pub fn ends_with<P: AsRef<Path>>(&self, child: P) -> bool {
2569        self._ends_with(child.as_ref())
2570    }
2571
2572    fn _ends_with(&self, child: &Path) -> bool {
2573        iter_after(self.components().rev(), child.components().rev()).is_some()
2574    }
2575
2576    /// Extracts the stem (non-extension) portion of [`self.file_name`].
2577    ///
2578    /// [`self.file_name`]: Path::file_name
2579    ///
2580    /// The stem is:
2581    ///
2582    /// * [`None`], if there is no file name;
2583    /// * The entire file name if there is no embedded `.`;
2584    /// * The entire file name if the file name begins with `.` and has no other `.`s within;
2585    /// * Otherwise, the portion of the file name before the final `.`
2586    ///
2587    /// # Examples
2588    ///
2589    /// ```
2590    /// use std::path::Path;
2591    ///
2592    /// assert_eq!("foo", Path::new("foo.rs").file_stem().unwrap());
2593    /// assert_eq!("foo.tar", Path::new("foo.tar.gz").file_stem().unwrap());
2594    /// ```
2595    ///
2596    /// # See Also
2597    /// This method is similar to [`Path::file_prefix`], which extracts the portion of the file name
2598    /// before the *first* `.`
2599    ///
2600    /// [`Path::file_prefix`]: Path::file_prefix
2601    ///
2602    #[stable(feature = "rust1", since = "1.0.0")]
2603    #[must_use]
2604    pub fn file_stem(&self) -> Option<&OsStr> {
2605        self.file_name().map(rsplit_file_at_dot).and_then(|(before, after)| before.or(after))
2606    }
2607
2608    /// Extracts the prefix of [`self.file_name`].
2609    ///
2610    /// The prefix is:
2611    ///
2612    /// * [`None`], if there is no file name;
2613    /// * The entire file name if there is no embedded `.`;
2614    /// * The portion of the file name before the first non-beginning `.`;
2615    /// * The entire file name if the file name begins with `.` and has no other `.`s within;
2616    /// * The portion of the file name before the second `.` if the file name begins with `.`
2617    ///
2618    /// [`self.file_name`]: Path::file_name
2619    ///
2620    /// # Examples
2621    ///
2622    /// ```
2623    /// # #![feature(path_file_prefix)]
2624    /// use std::path::Path;
2625    ///
2626    /// assert_eq!("foo", Path::new("foo.rs").file_prefix().unwrap());
2627    /// assert_eq!("foo", Path::new("foo.tar.gz").file_prefix().unwrap());
2628    /// ```
2629    ///
2630    /// # See Also
2631    /// This method is similar to [`Path::file_stem`], which extracts the portion of the file name
2632    /// before the *last* `.`
2633    ///
2634    /// [`Path::file_stem`]: Path::file_stem
2635    ///
2636    #[unstable(feature = "path_file_prefix", issue = "86319")]
2637    #[must_use]
2638    pub fn file_prefix(&self) -> Option<&OsStr> {
2639        self.file_name().map(split_file_at_dot).and_then(|(before, _after)| Some(before))
2640    }
2641
2642    /// Extracts the extension (without the leading dot) of [`self.file_name`], if possible.
2643    ///
2644    /// The extension is:
2645    ///
2646    /// * [`None`], if there is no file name;
2647    /// * [`None`], if there is no embedded `.`;
2648    /// * [`None`], if the file name begins with `.` and has no other `.`s within;
2649    /// * Otherwise, the portion of the file name after the final `.`
2650    ///
2651    /// [`self.file_name`]: Path::file_name
2652    ///
2653    /// # Examples
2654    ///
2655    /// ```
2656    /// use std::path::Path;
2657    ///
2658    /// assert_eq!("rs", Path::new("foo.rs").extension().unwrap());
2659    /// assert_eq!("gz", Path::new("foo.tar.gz").extension().unwrap());
2660    /// ```
2661    #[stable(feature = "rust1", since = "1.0.0")]
2662    #[must_use]
2663    pub fn extension(&self) -> Option<&OsStr> {
2664        self.file_name().map(rsplit_file_at_dot).and_then(|(before, after)| before.and(after))
2665    }
2666
2667    /// Creates an owned [`PathBuf`] with `path` adjoined to `self`.
2668    ///
2669    /// If `path` is absolute, it replaces the current path.
2670    ///
2671    /// See [`PathBuf::push`] for more details on what it means to adjoin a path.
2672    ///
2673    /// # Examples
2674    ///
2675    /// ```
2676    /// use std::path::{Path, PathBuf};
2677    ///
2678    /// assert_eq!(Path::new("/etc").join("passwd"), PathBuf::from("/etc/passwd"));
2679    /// assert_eq!(Path::new("/etc").join("/bin/sh"), PathBuf::from("/bin/sh"));
2680    /// ```
2681    #[stable(feature = "rust1", since = "1.0.0")]
2682    #[must_use]
2683    pub fn join<P: AsRef<Path>>(&self, path: P) -> PathBuf {
2684        self._join(path.as_ref())
2685    }
2686
2687    fn _join(&self, path: &Path) -> PathBuf {
2688        let mut buf = self.to_path_buf();
2689        buf.push(path);
2690        buf
2691    }
2692
2693    /// Creates an owned [`PathBuf`] like `self` but with the given file name.
2694    ///
2695    /// See [`PathBuf::set_file_name`] for more details.
2696    ///
2697    /// # Examples
2698    ///
2699    /// ```
2700    /// use std::path::{Path, PathBuf};
2701    ///
2702    /// let path = Path::new("/tmp/foo.png");
2703    /// assert_eq!(path.with_file_name("bar"), PathBuf::from("/tmp/bar"));
2704    /// assert_eq!(path.with_file_name("bar.txt"), PathBuf::from("/tmp/bar.txt"));
2705    ///
2706    /// let path = Path::new("/tmp");
2707    /// assert_eq!(path.with_file_name("var"), PathBuf::from("/var"));
2708    /// ```
2709    #[stable(feature = "rust1", since = "1.0.0")]
2710    #[must_use]
2711    pub fn with_file_name<S: AsRef<OsStr>>(&self, file_name: S) -> PathBuf {
2712        self._with_file_name(file_name.as_ref())
2713    }
2714
2715    fn _with_file_name(&self, file_name: &OsStr) -> PathBuf {
2716        let mut buf = self.to_path_buf();
2717        buf.set_file_name(file_name);
2718        buf
2719    }
2720
2721    /// Creates an owned [`PathBuf`] like `self` but with the given extension.
2722    ///
2723    /// See [`PathBuf::set_extension`] for more details.
2724    ///
2725    /// # Examples
2726    ///
2727    /// ```
2728    /// use std::path::{Path, PathBuf};
2729    ///
2730    /// let path = Path::new("foo.rs");
2731    /// assert_eq!(path.with_extension("txt"), PathBuf::from("foo.txt"));
2732    ///
2733    /// let path = Path::new("foo.tar.gz");
2734    /// assert_eq!(path.with_extension(""), PathBuf::from("foo.tar"));
2735    /// assert_eq!(path.with_extension("xz"), PathBuf::from("foo.tar.xz"));
2736    /// assert_eq!(path.with_extension("").with_extension("txt"), PathBuf::from("foo.txt"));
2737    /// ```
2738    #[stable(feature = "rust1", since = "1.0.0")]
2739    pub fn with_extension<S: AsRef<OsStr>>(&self, extension: S) -> PathBuf {
2740        self._with_extension(extension.as_ref())
2741    }
2742
2743    fn _with_extension(&self, extension: &OsStr) -> PathBuf {
2744        let self_len = self.as_os_str().len();
2745        let self_bytes = self.as_os_str().as_encoded_bytes();
2746
2747        let (new_capacity, slice_to_copy) = match self.extension() {
2748            None => {
2749                // Enough capacity for the extension and the dot
2750                let capacity = self_len + extension.len() + 1;
2751                let whole_path = self_bytes;
2752                (capacity, whole_path)
2753            }
2754            Some(previous_extension) => {
2755                let capacity = self_len + extension.len() - previous_extension.len();
2756                let path_till_dot = &self_bytes[..self_len - previous_extension.len()];
2757                (capacity, path_till_dot)
2758            }
2759        };
2760
2761        let mut new_path = PathBuf::with_capacity(new_capacity);
2762        new_path.inner.extend_from_slice(slice_to_copy);
2763        new_path.set_extension(extension);
2764        new_path
2765    }
2766
2767    /// Creates an owned [`PathBuf`] like `self` but with the extension added.
2768    ///
2769    /// See [`PathBuf::add_extension`] for more details.
2770    ///
2771    /// # Examples
2772    ///
2773    /// ```
2774    /// #![feature(path_add_extension)]
2775    ///
2776    /// use std::path::{Path, PathBuf};
2777    ///
2778    /// let path = Path::new("foo.rs");
2779    /// assert_eq!(path.with_added_extension("txt"), PathBuf::from("foo.rs.txt"));
2780    ///
2781    /// let path = Path::new("foo.tar.gz");
2782    /// assert_eq!(path.with_added_extension(""), PathBuf::from("foo.tar.gz"));
2783    /// assert_eq!(path.with_added_extension("xz"), PathBuf::from("foo.tar.gz.xz"));
2784    /// assert_eq!(path.with_added_extension("").with_added_extension("txt"), PathBuf::from("foo.tar.gz.txt"));
2785    /// ```
2786    #[unstable(feature = "path_add_extension", issue = "127292")]
2787    pub fn with_added_extension<S: AsRef<OsStr>>(&self, extension: S) -> PathBuf {
2788        let mut new_path = self.to_path_buf();
2789        new_path.add_extension(extension);
2790        new_path
2791    }
2792
2793    /// Produces an iterator over the [`Component`]s of the path.
2794    ///
2795    /// When parsing the path, there is a small amount of normalization:
2796    ///
2797    /// * Repeated separators are ignored, so `a/b` and `a//b` both have
2798    ///   `a` and `b` as components.
2799    ///
2800    /// * Occurrences of `.` are normalized away, except if they are at the
2801    ///   beginning of the path. For example, `a/./b`, `a/b/`, `a/b/.` and
2802    ///   `a/b` all have `a` and `b` as components, but `./a/b` starts with
2803    ///   an additional [`CurDir`] component.
2804    ///
2805    /// * A trailing slash is normalized away, `/a/b` and `/a/b/` are equivalent.
2806    ///
2807    /// Note that no other normalization takes place; in particular, `a/c`
2808    /// and `a/b/../c` are distinct, to account for the possibility that `b`
2809    /// is a symbolic link (so its parent isn't `a`).
2810    ///
2811    /// # Examples
2812    ///
2813    /// ```
2814    /// use std::path::{Path, Component};
2815    /// use std::ffi::OsStr;
2816    ///
2817    /// let mut components = Path::new("/tmp/foo.txt").components();
2818    ///
2819    /// assert_eq!(components.next(), Some(Component::RootDir));
2820    /// assert_eq!(components.next(), Some(Component::Normal(OsStr::new("tmp"))));
2821    /// assert_eq!(components.next(), Some(Component::Normal(OsStr::new("foo.txt"))));
2822    /// assert_eq!(components.next(), None)
2823    /// ```
2824    ///
2825    /// [`CurDir`]: Component::CurDir
2826    #[stable(feature = "rust1", since = "1.0.0")]
2827    pub fn components(&self) -> Components<'_> {
2828        let prefix = parse_prefix(self.as_os_str());
2829        Components {
2830            path: self.as_u8_slice(),
2831            prefix,
2832            has_physical_root: has_physical_root(self.as_u8_slice(), prefix),
2833            front: State::Prefix,
2834            back: State::Body,
2835        }
2836    }
2837
2838    /// Produces an iterator over the path's components viewed as [`OsStr`]
2839    /// slices.
2840    ///
2841    /// For more information about the particulars of how the path is separated
2842    /// into components, see [`components`].
2843    ///
2844    /// [`components`]: Path::components
2845    ///
2846    /// # Examples
2847    ///
2848    /// ```
2849    /// use std::path::{self, Path};
2850    /// use std::ffi::OsStr;
2851    ///
2852    /// let mut it = Path::new("/tmp/foo.txt").iter();
2853    /// assert_eq!(it.next(), Some(OsStr::new(&path::MAIN_SEPARATOR.to_string())));
2854    /// assert_eq!(it.next(), Some(OsStr::new("tmp")));
2855    /// assert_eq!(it.next(), Some(OsStr::new("foo.txt")));
2856    /// assert_eq!(it.next(), None)
2857    /// ```
2858    #[stable(feature = "rust1", since = "1.0.0")]
2859    #[inline]
2860    pub fn iter(&self) -> Iter<'_> {
2861        Iter { inner: self.components() }
2862    }
2863
2864    /// Returns an object that implements [`Display`] for safely printing paths
2865    /// that may contain non-Unicode data. This may perform lossy conversion,
2866    /// depending on the platform.  If you would like an implementation which
2867    /// escapes the path please use [`Debug`] instead.
2868    ///
2869    /// [`Display`]: fmt::Display
2870    /// [`Debug`]: fmt::Debug
2871    ///
2872    /// # Examples
2873    ///
2874    /// ```
2875    /// use std::path::Path;
2876    ///
2877    /// let path = Path::new("/tmp/foo.rs");
2878    ///
2879    /// println!("{}", path.display());
2880    /// ```
2881    #[stable(feature = "rust1", since = "1.0.0")]
2882    #[must_use = "this does not display the path, \
2883                  it returns an object that can be displayed"]
2884    #[inline]
2885    pub fn display(&self) -> Display<'_> {
2886        Display { inner: self.inner.display() }
2887    }
2888
2889    /// Queries the file system to get information about a file, directory, etc.
2890    ///
2891    /// This function will traverse symbolic links to query information about the
2892    /// destination file.
2893    ///
2894    /// This is an alias to [`fs::metadata`].
2895    ///
2896    /// # Examples
2897    ///
2898    /// ```no_run
2899    /// use std::path::Path;
2900    ///
2901    /// let path = Path::new("/Minas/tirith");
2902    /// let metadata = path.metadata().expect("metadata call failed");
2903    /// println!("{:?}", metadata.file_type());
2904    /// ```
2905    #[stable(feature = "path_ext", since = "1.5.0")]
2906    #[inline]
2907    pub fn metadata(&self) -> io::Result<fs::Metadata> {
2908        fs::metadata(self)
2909    }
2910
2911    /// Queries the metadata about a file without following symlinks.
2912    ///
2913    /// This is an alias to [`fs::symlink_metadata`].
2914    ///
2915    /// # Examples
2916    ///
2917    /// ```no_run
2918    /// use std::path::Path;
2919    ///
2920    /// let path = Path::new("/Minas/tirith");
2921    /// let metadata = path.symlink_metadata().expect("symlink_metadata call failed");
2922    /// println!("{:?}", metadata.file_type());
2923    /// ```
2924    #[stable(feature = "path_ext", since = "1.5.0")]
2925    #[inline]
2926    pub fn symlink_metadata(&self) -> io::Result<fs::Metadata> {
2927        fs::symlink_metadata(self)
2928    }
2929
2930    /// Returns the canonical, absolute form of the path with all intermediate
2931    /// components normalized and symbolic links resolved.
2932    ///
2933    /// This is an alias to [`fs::canonicalize`].
2934    ///
2935    /// # Examples
2936    ///
2937    /// ```no_run
2938    /// use std::path::{Path, PathBuf};
2939    ///
2940    /// let path = Path::new("/foo/test/../test/bar.rs");
2941    /// assert_eq!(path.canonicalize().unwrap(), PathBuf::from("/foo/test/bar.rs"));
2942    /// ```
2943    #[stable(feature = "path_ext", since = "1.5.0")]
2944    #[inline]
2945    pub fn canonicalize(&self) -> io::Result<PathBuf> {
2946        fs::canonicalize(self)
2947    }
2948
2949    /// Reads a symbolic link, returning the file that the link points to.
2950    ///
2951    /// This is an alias to [`fs::read_link`].
2952    ///
2953    /// # Examples
2954    ///
2955    /// ```no_run
2956    /// use std::path::Path;
2957    ///
2958    /// let path = Path::new("/laputa/sky_castle.rs");
2959    /// let path_link = path.read_link().expect("read_link call failed");
2960    /// ```
2961    #[stable(feature = "path_ext", since = "1.5.0")]
2962    #[inline]
2963    pub fn read_link(&self) -> io::Result<PathBuf> {
2964        fs::read_link(self)
2965    }
2966
2967    /// Returns an iterator over the entries within a directory.
2968    ///
2969    /// The iterator will yield instances of <code>[io::Result]<[fs::DirEntry]></code>. New
2970    /// errors may be encountered after an iterator is initially constructed.
2971    ///
2972    /// This is an alias to [`fs::read_dir`].
2973    ///
2974    /// # Examples
2975    ///
2976    /// ```no_run
2977    /// use std::path::Path;
2978    ///
2979    /// let path = Path::new("/laputa");
2980    /// for entry in path.read_dir().expect("read_dir call failed") {
2981    ///     if let Ok(entry) = entry {
2982    ///         println!("{:?}", entry.path());
2983    ///     }
2984    /// }
2985    /// ```
2986    #[stable(feature = "path_ext", since = "1.5.0")]
2987    #[inline]
2988    pub fn read_dir(&self) -> io::Result<fs::ReadDir> {
2989        fs::read_dir(self)
2990    }
2991
2992    /// Returns `true` if the path points at an existing entity.
2993    ///
2994    /// Warning: this method may be error-prone, consider using [`try_exists()`] instead!
2995    /// It also has a risk of introducing time-of-check to time-of-use (TOCTOU) bugs.
2996    ///
2997    /// This function will traverse symbolic links to query information about the
2998    /// destination file.
2999    ///
3000    /// If you cannot access the metadata of the file, e.g. because of a
3001    /// permission error or broken symbolic links, this will return `false`.
3002    ///
3003    /// # Examples
3004    ///
3005    /// ```no_run
3006    /// use std::path::Path;
3007    /// assert!(!Path::new("does_not_exist.txt").exists());
3008    /// ```
3009    ///
3010    /// # See Also
3011    ///
3012    /// This is a convenience function that coerces errors to false. If you want to
3013    /// check errors, call [`Path::try_exists`].
3014    ///
3015    /// [`try_exists()`]: Self::try_exists
3016    #[stable(feature = "path_ext", since = "1.5.0")]
3017    #[must_use]
3018    #[inline]
3019    pub fn exists(&self) -> bool {
3020        fs::metadata(self).is_ok()
3021    }
3022
3023    /// Returns `Ok(true)` if the path points at an existing entity.
3024    ///
3025    /// This function will traverse symbolic links to query information about the
3026    /// destination file. In case of broken symbolic links this will return `Ok(false)`.
3027    ///
3028    /// [`Path::exists()`] only checks whether or not a path was both found and readable. By
3029    /// contrast, `try_exists` will return `Ok(true)` or `Ok(false)`, respectively, if the path
3030    /// was _verified_ to exist or not exist. If its existence can neither be confirmed nor
3031    /// denied, it will propagate an `Err(_)` instead. This can be the case if e.g. listing
3032    /// permission is denied on one of the parent directories.
3033    ///
3034    /// Note that while this avoids some pitfalls of the `exists()` method, it still can not
3035    /// prevent time-of-check to time-of-use (TOCTOU) bugs. You should only use it in scenarios
3036    /// where those bugs are not an issue.
3037    ///
3038    /// This is an alias for [`std::fs::exists`](crate::fs::exists).
3039    ///
3040    /// # Examples
3041    ///
3042    /// ```no_run
3043    /// use std::path::Path;
3044    /// assert!(!Path::new("does_not_exist.txt").try_exists().expect("Can't check existence of file does_not_exist.txt"));
3045    /// assert!(Path::new("/root/secret_file.txt").try_exists().is_err());
3046    /// ```
3047    ///
3048    /// [`exists()`]: Self::exists
3049    #[stable(feature = "path_try_exists", since = "1.63.0")]
3050    #[inline]
3051    pub fn try_exists(&self) -> io::Result<bool> {
3052        fs::exists(self)
3053    }
3054
3055    /// Returns `true` if the path exists on disk and is pointing at a regular file.
3056    ///
3057    /// This function will traverse symbolic links to query information about the
3058    /// destination file.
3059    ///
3060    /// If you cannot access the metadata of the file, e.g. because of a
3061    /// permission error or broken symbolic links, this will return `false`.
3062    ///
3063    /// # Examples
3064    ///
3065    /// ```no_run
3066    /// use std::path::Path;
3067    /// assert_eq!(Path::new("./is_a_directory/").is_file(), false);
3068    /// assert_eq!(Path::new("a_file.txt").is_file(), true);
3069    /// ```
3070    ///
3071    /// # See Also
3072    ///
3073    /// This is a convenience function that coerces errors to false. If you want to
3074    /// check errors, call [`fs::metadata`] and handle its [`Result`]. Then call
3075    /// [`fs::Metadata::is_file`] if it was [`Ok`].
3076    ///
3077    /// When the goal is simply to read from (or write to) the source, the most
3078    /// reliable way to test the source can be read (or written to) is to open
3079    /// it. Only using `is_file` can break workflows like `diff <( prog_a )` on
3080    /// a Unix-like system for example. See [`fs::File::open`] or
3081    /// [`fs::OpenOptions::open`] for more information.
3082    #[stable(feature = "path_ext", since = "1.5.0")]
3083    #[must_use]
3084    pub fn is_file(&self) -> bool {
3085        fs::metadata(self).map(|m| m.is_file()).unwrap_or(false)
3086    }
3087
3088    /// Returns `true` if the path exists on disk and is pointing at a directory.
3089    ///
3090    /// This function will traverse symbolic links to query information about the
3091    /// destination file.
3092    ///
3093    /// If you cannot access the metadata of the file, e.g. because of a
3094    /// permission error or broken symbolic links, this will return `false`.
3095    ///
3096    /// # Examples
3097    ///
3098    /// ```no_run
3099    /// use std::path::Path;
3100    /// assert_eq!(Path::new("./is_a_directory/").is_dir(), true);
3101    /// assert_eq!(Path::new("a_file.txt").is_dir(), false);
3102    /// ```
3103    ///
3104    /// # See Also
3105    ///
3106    /// This is a convenience function that coerces errors to false. If you want to
3107    /// check errors, call [`fs::metadata`] and handle its [`Result`]. Then call
3108    /// [`fs::Metadata::is_dir`] if it was [`Ok`].
3109    #[stable(feature = "path_ext", since = "1.5.0")]
3110    #[must_use]
3111    pub fn is_dir(&self) -> bool {
3112        fs::metadata(self).map(|m| m.is_dir()).unwrap_or(false)
3113    }
3114
3115    /// Returns `true` if the path exists on disk and is pointing at a symbolic link.
3116    ///
3117    /// This function will not traverse symbolic links.
3118    /// In case of a broken symbolic link this will also return true.
3119    ///
3120    /// If you cannot access the directory containing the file, e.g., because of a
3121    /// permission error, this will return false.
3122    ///
3123    /// # Examples
3124    ///
3125    #[cfg_attr(unix, doc = "```no_run")]
3126    #[cfg_attr(not(unix), doc = "```ignore")]
3127    /// use std::path::Path;
3128    /// use std::os::unix::fs::symlink;
3129    ///
3130    /// let link_path = Path::new("link");
3131    /// symlink("/origin_does_not_exist/", link_path).unwrap();
3132    /// assert_eq!(link_path.is_symlink(), true);
3133    /// assert_eq!(link_path.exists(), false);
3134    /// ```
3135    ///
3136    /// # See Also
3137    ///
3138    /// This is a convenience function that coerces errors to false. If you want to
3139    /// check errors, call [`fs::symlink_metadata`] and handle its [`Result`]. Then call
3140    /// [`fs::Metadata::is_symlink`] if it was [`Ok`].
3141    #[must_use]
3142    #[stable(feature = "is_symlink", since = "1.58.0")]
3143    pub fn is_symlink(&self) -> bool {
3144        fs::symlink_metadata(self).map(|m| m.is_symlink()).unwrap_or(false)
3145    }
3146
3147    /// Converts a [`Box<Path>`](Box) into a [`PathBuf`] without copying or
3148    /// allocating.
3149    #[stable(feature = "into_boxed_path", since = "1.20.0")]
3150    #[must_use = "`self` will be dropped if the result is not used"]
3151    pub fn into_path_buf(self: Box<Path>) -> PathBuf {
3152        let rw = Box::into_raw(self) as *mut OsStr;
3153        let inner = unsafe { Box::from_raw(rw) };
3154        PathBuf { inner: OsString::from(inner) }
3155    }
3156}
3157
3158#[unstable(feature = "clone_to_uninit", issue = "126799")]
3159unsafe impl CloneToUninit for Path {
3160    #[inline]
3161    #[cfg_attr(debug_assertions, track_caller)]
3162    unsafe fn clone_to_uninit(&self, dst: *mut u8) {
3163        // SAFETY: Path is just a transparent wrapper around OsStr
3164        unsafe { self.inner.clone_to_uninit(dst) }
3165    }
3166}
3167
3168#[stable(feature = "rust1", since = "1.0.0")]
3169impl AsRef<OsStr> for Path {
3170    #[inline]
3171    fn as_ref(&self) -> &OsStr {
3172        &self.inner
3173    }
3174}
3175
3176#[stable(feature = "rust1", since = "1.0.0")]
3177impl fmt::Debug for Path {
3178    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
3179        fmt::Debug::fmt(&self.inner, formatter)
3180    }
3181}
3182
3183/// Helper struct for safely printing paths with [`format!`] and `{}`.
3184///
3185/// A [`Path`] might contain non-Unicode data. This `struct` implements the
3186/// [`Display`] trait in a way that mitigates that. It is created by the
3187/// [`display`](Path::display) method on [`Path`]. This may perform lossy
3188/// conversion, depending on the platform. If you would like an implementation
3189/// which escapes the path please use [`Debug`] instead.
3190///
3191/// # Examples
3192///
3193/// ```
3194/// use std::path::Path;
3195///
3196/// let path = Path::new("/tmp/foo.rs");
3197///
3198/// println!("{}", path.display());
3199/// ```
3200///
3201/// [`Display`]: fmt::Display
3202/// [`format!`]: crate::format
3203#[stable(feature = "rust1", since = "1.0.0")]
3204pub struct Display<'a> {
3205    inner: os_str::Display<'a>,
3206}
3207
3208#[stable(feature = "rust1", since = "1.0.0")]
3209impl fmt::Debug for Display<'_> {
3210    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3211        fmt::Debug::fmt(&self.inner, f)
3212    }
3213}
3214
3215#[stable(feature = "rust1", since = "1.0.0")]
3216impl fmt::Display for Display<'_> {
3217    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3218        fmt::Display::fmt(&self.inner, f)
3219    }
3220}
3221
3222#[stable(feature = "rust1", since = "1.0.0")]
3223impl PartialEq for Path {
3224    #[inline]
3225    fn eq(&self, other: &Path) -> bool {
3226        self.components() == other.components()
3227    }
3228}
3229
3230#[stable(feature = "rust1", since = "1.0.0")]
3231impl Hash for Path {
3232    fn hash<H: Hasher>(&self, h: &mut H) {
3233        let bytes = self.as_u8_slice();
3234        let (prefix_len, verbatim) = match parse_prefix(&self.inner) {
3235            Some(prefix) => {
3236                prefix.hash(h);
3237                (prefix.len(), prefix.is_verbatim())
3238            }
3239            None => (0, false),
3240        };
3241        let bytes = &bytes[prefix_len..];
3242
3243        let mut component_start = 0;
3244        // track some extra state to avoid prefix collisions.
3245        // ["foo", "bar"] and ["foobar"], will have the same payload bytes
3246        // but result in different chunk_bits
3247        let mut chunk_bits: usize = 0;
3248
3249        for i in 0..bytes.len() {
3250            let is_sep = if verbatim { is_verbatim_sep(bytes[i]) } else { is_sep_byte(bytes[i]) };
3251            if is_sep {
3252                if i > component_start {
3253                    let to_hash = &bytes[component_start..i];
3254                    chunk_bits = chunk_bits.wrapping_add(to_hash.len());
3255                    chunk_bits = chunk_bits.rotate_right(2);
3256                    h.write(to_hash);
3257                }
3258
3259                // skip over separator and optionally a following CurDir item
3260                // since components() would normalize these away.
3261                component_start = i + 1;
3262
3263                let tail = &bytes[component_start..];
3264
3265                if !verbatim {
3266                    component_start += match tail {
3267                        [b'.'] => 1,
3268                        [b'.', sep @ _, ..] if is_sep_byte(*sep) => 1,
3269                        _ => 0,
3270                    };
3271                }
3272            }
3273        }
3274
3275        if component_start < bytes.len() {
3276            let to_hash = &bytes[component_start..];
3277            chunk_bits = chunk_bits.wrapping_add(to_hash.len());
3278            chunk_bits = chunk_bits.rotate_right(2);
3279            h.write(to_hash);
3280        }
3281
3282        h.write_usize(chunk_bits);
3283    }
3284}
3285
3286#[stable(feature = "rust1", since = "1.0.0")]
3287impl Eq for Path {}
3288
3289#[stable(feature = "rust1", since = "1.0.0")]
3290impl PartialOrd for Path {
3291    #[inline]
3292    fn partial_cmp(&self, other: &Path) -> Option<cmp::Ordering> {
3293        Some(compare_components(self.components(), other.components()))
3294    }
3295}
3296
3297#[stable(feature = "rust1", since = "1.0.0")]
3298impl Ord for Path {
3299    #[inline]
3300    fn cmp(&self, other: &Path) -> cmp::Ordering {
3301        compare_components(self.components(), other.components())
3302    }
3303}
3304
3305#[stable(feature = "rust1", since = "1.0.0")]
3306impl AsRef<Path> for Path {
3307    #[inline]
3308    fn as_ref(&self) -> &Path {
3309        self
3310    }
3311}
3312
3313#[stable(feature = "rust1", since = "1.0.0")]
3314impl AsRef<Path> for OsStr {
3315    #[inline]
3316    fn as_ref(&self) -> &Path {
3317        Path::new(self)
3318    }
3319}
3320
3321#[stable(feature = "cow_os_str_as_ref_path", since = "1.8.0")]
3322impl AsRef<Path> for Cow<'_, OsStr> {
3323    #[inline]
3324    fn as_ref(&self) -> &Path {
3325        Path::new(self)
3326    }
3327}
3328
3329#[stable(feature = "rust1", since = "1.0.0")]
3330impl AsRef<Path> for OsString {
3331    #[inline]
3332    fn as_ref(&self) -> &Path {
3333        Path::new(self)
3334    }
3335}
3336
3337#[stable(feature = "rust1", since = "1.0.0")]
3338impl AsRef<Path> for str {
3339    #[inline]
3340    fn as_ref(&self) -> &Path {
3341        Path::new(self)
3342    }
3343}
3344
3345#[stable(feature = "rust1", since = "1.0.0")]
3346impl AsRef<Path> for String {
3347    #[inline]
3348    fn as_ref(&self) -> &Path {
3349        Path::new(self)
3350    }
3351}
3352
3353#[stable(feature = "rust1", since = "1.0.0")]
3354impl AsRef<Path> for PathBuf {
3355    #[inline]
3356    fn as_ref(&self) -> &Path {
3357        self
3358    }
3359}
3360
3361#[stable(feature = "path_into_iter", since = "1.6.0")]
3362impl<'a> IntoIterator for &'a PathBuf {
3363    type Item = &'a OsStr;
3364    type IntoIter = Iter<'a>;
3365    #[inline]
3366    fn into_iter(self) -> Iter<'a> {
3367        self.iter()
3368    }
3369}
3370
3371#[stable(feature = "path_into_iter", since = "1.6.0")]
3372impl<'a> IntoIterator for &'a Path {
3373    type Item = &'a OsStr;
3374    type IntoIter = Iter<'a>;
3375    #[inline]
3376    fn into_iter(self) -> Iter<'a> {
3377        self.iter()
3378    }
3379}
3380
3381macro_rules! impl_cmp {
3382    (<$($life:lifetime),*> $lhs:ty, $rhs: ty) => {
3383        #[stable(feature = "partialeq_path", since = "1.6.0")]
3384        impl<$($life),*> PartialEq<$rhs> for $lhs {
3385            #[inline]
3386            fn eq(&self, other: &$rhs) -> bool {
3387                <Path as PartialEq>::eq(self, other)
3388            }
3389        }
3390
3391        #[stable(feature = "partialeq_path", since = "1.6.0")]
3392        impl<$($life),*> PartialEq<$lhs> for $rhs {
3393            #[inline]
3394            fn eq(&self, other: &$lhs) -> bool {
3395                <Path as PartialEq>::eq(self, other)
3396            }
3397        }
3398
3399        #[stable(feature = "cmp_path", since = "1.8.0")]
3400        impl<$($life),*> PartialOrd<$rhs> for $lhs {
3401            #[inline]
3402            fn partial_cmp(&self, other: &$rhs) -> Option<cmp::Ordering> {
3403                <Path as PartialOrd>::partial_cmp(self, other)
3404            }
3405        }
3406
3407        #[stable(feature = "cmp_path", since = "1.8.0")]
3408        impl<$($life),*> PartialOrd<$lhs> for $rhs {
3409            #[inline]
3410            fn partial_cmp(&self, other: &$lhs) -> Option<cmp::Ordering> {
3411                <Path as PartialOrd>::partial_cmp(self, other)
3412            }
3413        }
3414    };
3415}
3416
3417impl_cmp!(<> PathBuf, Path);
3418impl_cmp!(<'a> PathBuf, &'a Path);
3419impl_cmp!(<'a> Cow<'a, Path>, Path);
3420impl_cmp!(<'a, 'b> Cow<'a, Path>, &'b Path);
3421impl_cmp!(<'a> Cow<'a, Path>, PathBuf);
3422
3423macro_rules! impl_cmp_os_str {
3424    (<$($life:lifetime),*> $lhs:ty, $rhs: ty) => {
3425        #[stable(feature = "cmp_path", since = "1.8.0")]
3426        impl<$($life),*> PartialEq<$rhs> for $lhs {
3427            #[inline]
3428            fn eq(&self, other: &$rhs) -> bool {
3429                <Path as PartialEq>::eq(self, other.as_ref())
3430            }
3431        }
3432
3433        #[stable(feature = "cmp_path", since = "1.8.0")]
3434        impl<$($life),*> PartialEq<$lhs> for $rhs {
3435            #[inline]
3436            fn eq(&self, other: &$lhs) -> bool {
3437                <Path as PartialEq>::eq(self.as_ref(), other)
3438            }
3439        }
3440
3441        #[stable(feature = "cmp_path", since = "1.8.0")]
3442        impl<$($life),*> PartialOrd<$rhs> for $lhs {
3443            #[inline]
3444            fn partial_cmp(&self, other: &$rhs) -> Option<cmp::Ordering> {
3445                <Path as PartialOrd>::partial_cmp(self, other.as_ref())
3446            }
3447        }
3448
3449        #[stable(feature = "cmp_path", since = "1.8.0")]
3450        impl<$($life),*> PartialOrd<$lhs> for $rhs {
3451            #[inline]
3452            fn partial_cmp(&self, other: &$lhs) -> Option<cmp::Ordering> {
3453                <Path as PartialOrd>::partial_cmp(self.as_ref(), other)
3454            }
3455        }
3456    };
3457}
3458
3459impl_cmp_os_str!(<> PathBuf, OsStr);
3460impl_cmp_os_str!(<'a> PathBuf, &'a OsStr);
3461impl_cmp_os_str!(<'a> PathBuf, Cow<'a, OsStr>);
3462impl_cmp_os_str!(<> PathBuf, OsString);
3463impl_cmp_os_str!(<> Path, OsStr);
3464impl_cmp_os_str!(<'a> Path, &'a OsStr);
3465impl_cmp_os_str!(<'a> Path, Cow<'a, OsStr>);
3466impl_cmp_os_str!(<> Path, OsString);
3467impl_cmp_os_str!(<'a> &'a Path, OsStr);
3468impl_cmp_os_str!(<'a, 'b> &'a Path, Cow<'b, OsStr>);
3469impl_cmp_os_str!(<'a> &'a Path, OsString);
3470impl_cmp_os_str!(<'a> Cow<'a, Path>, OsStr);
3471impl_cmp_os_str!(<'a, 'b> Cow<'a, Path>, &'b OsStr);
3472impl_cmp_os_str!(<'a> Cow<'a, Path>, OsString);
3473
3474#[stable(since = "1.7.0", feature = "strip_prefix")]
3475impl fmt::Display for StripPrefixError {
3476    #[allow(deprecated, deprecated_in_future)]
3477    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3478        self.description().fmt(f)
3479    }
3480}
3481
3482#[stable(since = "1.7.0", feature = "strip_prefix")]
3483impl Error for StripPrefixError {
3484    #[allow(deprecated)]
3485    fn description(&self) -> &str {
3486        "prefix not found"
3487    }
3488}
3489
3490/// Makes the path absolute without accessing the filesystem.
3491///
3492/// If the path is relative, the current directory is used as the base directory.
3493/// All intermediate components will be resolved according to platform-specific
3494/// rules, but unlike [`canonicalize`][crate::fs::canonicalize], this does not
3495/// resolve symlinks and may succeed even if the path does not exist.
3496///
3497/// If the `path` is empty or getting the
3498/// [current directory][crate::env::current_dir] fails, then an error will be
3499/// returned.
3500///
3501/// # Platform-specific behavior
3502///
3503/// On POSIX platforms, the path is resolved using [POSIX semantics][posix-semantics],
3504/// except that it stops short of resolving symlinks. This means it will keep `..`
3505/// components and trailing slashes.
3506///
3507/// On Windows, for verbatim paths, this will simply return the path as given. For other
3508/// paths, this is currently equivalent to calling
3509/// [`GetFullPathNameW`][windows-path].
3510///
3511/// Note that these [may change in the future][changes].
3512///
3513/// # Errors
3514///
3515/// This function may return an error in the following situations:
3516///
3517/// * If `path` is syntactically invalid; in particular, if it is empty.
3518/// * If getting the [current directory][crate::env::current_dir] fails.
3519///
3520/// # Examples
3521///
3522/// ## POSIX paths
3523///
3524/// ```
3525/// # #[cfg(unix)]
3526/// fn main() -> std::io::Result<()> {
3527///     use std::path::{self, Path};
3528///
3529///     // Relative to absolute
3530///     let absolute = path::absolute("foo/./bar")?;
3531///     assert!(absolute.ends_with("foo/bar"));
3532///
3533///     // Absolute to absolute
3534///     let absolute = path::absolute("/foo//test/.././bar.rs")?;
3535///     assert_eq!(absolute, Path::new("/foo/test/../bar.rs"));
3536///     Ok(())
3537/// }
3538/// # #[cfg(not(unix))]
3539/// # fn main() {}
3540/// ```
3541///
3542/// ## Windows paths
3543///
3544/// ```
3545/// # #[cfg(windows)]
3546/// fn main() -> std::io::Result<()> {
3547///     use std::path::{self, Path};
3548///
3549///     // Relative to absolute
3550///     let absolute = path::absolute("foo/./bar")?;
3551///     assert!(absolute.ends_with(r"foo\bar"));
3552///
3553///     // Absolute to absolute
3554///     let absolute = path::absolute(r"C:\foo//test\..\./bar.rs")?;
3555///
3556///     assert_eq!(absolute, Path::new(r"C:\foo\bar.rs"));
3557///     Ok(())
3558/// }
3559/// # #[cfg(not(windows))]
3560/// # fn main() {}
3561/// ```
3562///
3563/// Note that this [may change in the future][changes].
3564///
3565/// [changes]: io#platform-specific-behavior
3566/// [posix-semantics]: https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_13
3567/// [windows-path]: https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-getfullpathnamew
3568#[stable(feature = "absolute_path", since = "1.79.0")]
3569pub fn absolute<P: AsRef<Path>>(path: P) -> io::Result<PathBuf> {
3570    let path = path.as_ref();
3571    if path.as_os_str().is_empty() {
3572        Err(io::const_error!(io::ErrorKind::InvalidInput, "cannot make an empty path absolute"))
3573    } else {
3574        sys::path::absolute(path)
3575    }
3576}