core/stdarch/crates/core_arch/src/x86/sse41.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
//! Streaming SIMD Extensions 4.1 (SSE4.1)
use crate::core_arch::{simd::*, x86::*};
use crate::intrinsics::simd::*;
#[cfg(test)]
use stdarch_test::assert_instr;
// SSE4 rounding constants
/// round to nearest
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_FROUND_TO_NEAREST_INT: i32 = 0x00;
/// round down
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_FROUND_TO_NEG_INF: i32 = 0x01;
/// round up
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_FROUND_TO_POS_INF: i32 = 0x02;
/// truncate
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_FROUND_TO_ZERO: i32 = 0x03;
/// use MXCSR.RC; see `vendor::_MM_SET_ROUNDING_MODE`
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_FROUND_CUR_DIRECTION: i32 = 0x04;
/// do not suppress exceptions
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_FROUND_RAISE_EXC: i32 = 0x00;
/// suppress exceptions
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_FROUND_NO_EXC: i32 = 0x08;
/// round to nearest and do not suppress exceptions
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_FROUND_NINT: i32 = 0x00;
/// round down and do not suppress exceptions
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_FROUND_FLOOR: i32 = _MM_FROUND_RAISE_EXC | _MM_FROUND_TO_NEG_INF;
/// round up and do not suppress exceptions
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_FROUND_CEIL: i32 = _MM_FROUND_RAISE_EXC | _MM_FROUND_TO_POS_INF;
/// truncate and do not suppress exceptions
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_FROUND_TRUNC: i32 = _MM_FROUND_RAISE_EXC | _MM_FROUND_TO_ZERO;
/// use MXCSR.RC and do not suppress exceptions; see
/// `vendor::_MM_SET_ROUNDING_MODE`
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_FROUND_RINT: i32 = _MM_FROUND_RAISE_EXC | _MM_FROUND_CUR_DIRECTION;
/// use MXCSR.RC and suppress exceptions; see `vendor::_MM_SET_ROUNDING_MODE`
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_FROUND_NEARBYINT: i32 = _MM_FROUND_NO_EXC | _MM_FROUND_CUR_DIRECTION;
/// Blend packed 8-bit integers from `a` and `b` using `mask`
///
/// The high bit of each corresponding mask byte determines the selection.
/// If the high bit is set, the element of `b` is selected.
/// Otherwise, the element of `a` is selected.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blendv_epi8)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pblendvb))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_blendv_epi8(a: __m128i, b: __m128i, mask: __m128i) -> __m128i {
let mask: i8x16 = simd_lt(mask.as_i8x16(), i8x16::splat(0));
transmute(simd_select(mask, b.as_i8x16(), a.as_i8x16()))
}
/// Blend packed 16-bit integers from `a` and `b` using the mask `IMM8`.
///
/// The mask bits determine the selection. A clear bit selects the
/// corresponding element of `a`, and a set bit the corresponding
/// element of `b`.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blend_epi16)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pblendw, IMM8 = 0xB1))]
#[rustc_legacy_const_generics(2)]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_blend_epi16<const IMM8: i32>(a: __m128i, b: __m128i) -> __m128i {
static_assert_uimm_bits!(IMM8, 8);
transmute::<i16x8, _>(simd_shuffle!(
a.as_i16x8(),
b.as_i16x8(),
[
[0, 8][IMM8 as usize & 1],
[1, 9][(IMM8 >> 1) as usize & 1],
[2, 10][(IMM8 >> 2) as usize & 1],
[3, 11][(IMM8 >> 3) as usize & 1],
[4, 12][(IMM8 >> 4) as usize & 1],
[5, 13][(IMM8 >> 5) as usize & 1],
[6, 14][(IMM8 >> 6) as usize & 1],
[7, 15][(IMM8 >> 7) as usize & 1],
]
))
}
/// Blend packed double-precision (64-bit) floating-point elements from `a`
/// and `b` using `mask`
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blendv_pd)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(blendvpd))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_blendv_pd(a: __m128d, b: __m128d, mask: __m128d) -> __m128d {
let mask: i64x2 = simd_lt(transmute::<_, i64x2>(mask), i64x2::splat(0));
transmute(simd_select(mask, b.as_f64x2(), a.as_f64x2()))
}
/// Blend packed single-precision (32-bit) floating-point elements from `a`
/// and `b` using `mask`
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blendv_ps)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(blendvps))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_blendv_ps(a: __m128, b: __m128, mask: __m128) -> __m128 {
let mask: i32x4 = simd_lt(transmute::<_, i32x4>(mask), i32x4::splat(0));
transmute(simd_select(mask, b.as_f32x4(), a.as_f32x4()))
}
/// Blend packed double-precision (64-bit) floating-point elements from `a`
/// and `b` using control mask `IMM2`
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blend_pd)
#[inline]
#[target_feature(enable = "sse4.1")]
// Note: LLVM7 prefers the single-precision floating-point domain when possible
// see https://bugs.llvm.org/show_bug.cgi?id=38195
// #[cfg_attr(test, assert_instr(blendpd, IMM2 = 0b10))]
#[cfg_attr(test, assert_instr(blendps, IMM2 = 0b10))]
#[rustc_legacy_const_generics(2)]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_blend_pd<const IMM2: i32>(a: __m128d, b: __m128d) -> __m128d {
static_assert_uimm_bits!(IMM2, 2);
transmute::<f64x2, _>(simd_shuffle!(
a.as_f64x2(),
b.as_f64x2(),
[[0, 2][IMM2 as usize & 1], [1, 3][(IMM2 >> 1) as usize & 1]]
))
}
/// Blend packed single-precision (32-bit) floating-point elements from `a`
/// and `b` using mask `IMM4`
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blend_ps)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(blendps, IMM4 = 0b0101))]
#[rustc_legacy_const_generics(2)]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_blend_ps<const IMM4: i32>(a: __m128, b: __m128) -> __m128 {
static_assert_uimm_bits!(IMM4, 4);
transmute::<f32x4, _>(simd_shuffle!(
a.as_f32x4(),
b.as_f32x4(),
[
[0, 4][IMM4 as usize & 1],
[1, 5][(IMM4 >> 1) as usize & 1],
[2, 6][(IMM4 >> 2) as usize & 1],
[3, 7][(IMM4 >> 3) as usize & 1],
]
))
}
/// Extracts a single-precision (32-bit) floating-point element from `a`,
/// selected with `IMM8`. The returned `i32` stores the float's bit-pattern,
/// and may be converted back to a floating point number via casting.
///
/// # Example
/// ```rust
/// # #[cfg(target_arch = "x86")]
/// # use std::arch::x86::*;
/// # #[cfg(target_arch = "x86_64")]
/// # use std::arch::x86_64::*;
/// # fn main() {
/// # if is_x86_feature_detected!("sse4.1") {
/// # #[target_feature(enable = "sse4.1")]
/// # unsafe fn worker() {
/// let mut float_store = vec![1.0, 1.0, 2.0, 3.0];
/// let simd_floats = _mm_set_ps(2.5, 5.0, 7.5, 10.0);
/// let x: i32 = _mm_extract_ps::<2>(simd_floats);
/// float_store.push(f32::from_bits(x as u32));
/// assert_eq!(float_store, vec![1.0, 1.0, 2.0, 3.0, 5.0]);
/// # }
/// # unsafe { worker() }
/// # }
/// # }
/// ```
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_ps)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(all(test, not(target_env = "msvc")), assert_instr(extractps, IMM8 = 0))]
#[rustc_legacy_const_generics(1)]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_extract_ps<const IMM8: i32>(a: __m128) -> i32 {
static_assert_uimm_bits!(IMM8, 2);
simd_extract!(a, IMM8 as u32, f32).to_bits() as i32
}
/// Extracts an 8-bit integer from `a`, selected with `IMM8`. Returns a 32-bit
/// integer containing the zero-extended integer data.
///
/// See [LLVM commit D20468](https://reviews.llvm.org/D20468).
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_epi8)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pextrb, IMM8 = 0))]
#[rustc_legacy_const_generics(1)]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_extract_epi8<const IMM8: i32>(a: __m128i) -> i32 {
static_assert_uimm_bits!(IMM8, 4);
simd_extract!(a.as_u8x16(), IMM8 as u32, u8) as i32
}
/// Extracts an 32-bit integer from `a` selected with `IMM8`
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_epi32)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(all(test, not(target_env = "msvc")), assert_instr(extractps, IMM8 = 1))]
#[rustc_legacy_const_generics(1)]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_extract_epi32<const IMM8: i32>(a: __m128i) -> i32 {
static_assert_uimm_bits!(IMM8, 2);
simd_extract!(a.as_i32x4(), IMM8 as u32, i32)
}
/// Select a single value in `b` to store at some position in `a`,
/// Then zero elements according to `IMM8`.
///
/// `IMM8` specifies which bits from operand `b` will be copied, which bits in
/// the result they will be copied to, and which bits in the result will be
/// cleared. The following assignments are made:
///
/// * Bits `[7:6]` specify the bits to copy from operand `b`:
/// - `00`: Selects bits `[31:0]` from operand `b`.
/// - `01`: Selects bits `[63:32]` from operand `b`.
/// - `10`: Selects bits `[95:64]` from operand `b`.
/// - `11`: Selects bits `[127:96]` from operand `b`.
///
/// * Bits `[5:4]` specify the bits in the result to which the selected bits
/// from operand `b` are copied:
/// - `00`: Copies the selected bits from `b` to result bits `[31:0]`.
/// - `01`: Copies the selected bits from `b` to result bits `[63:32]`.
/// - `10`: Copies the selected bits from `b` to result bits `[95:64]`.
/// - `11`: Copies the selected bits from `b` to result bits `[127:96]`.
///
/// * Bits `[3:0]`: If any of these bits are set, the corresponding result
/// element is cleared.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_ps)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(insertps, IMM8 = 0b1010))]
#[rustc_legacy_const_generics(2)]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_insert_ps<const IMM8: i32>(a: __m128, b: __m128) -> __m128 {
static_assert_uimm_bits!(IMM8, 8);
insertps(a, b, IMM8 as u8)
}
/// Returns a copy of `a` with the 8-bit integer from `i` inserted at a
/// location specified by `IMM8`.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_epi8)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pinsrb, IMM8 = 0))]
#[rustc_legacy_const_generics(2)]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_insert_epi8<const IMM8: i32>(a: __m128i, i: i32) -> __m128i {
static_assert_uimm_bits!(IMM8, 4);
transmute(simd_insert!(a.as_i8x16(), IMM8 as u32, i as i8))
}
/// Returns a copy of `a` with the 32-bit integer from `i` inserted at a
/// location specified by `IMM8`.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_epi32)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pinsrd, IMM8 = 0))]
#[rustc_legacy_const_generics(2)]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_insert_epi32<const IMM8: i32>(a: __m128i, i: i32) -> __m128i {
static_assert_uimm_bits!(IMM8, 2);
transmute(simd_insert!(a.as_i32x4(), IMM8 as u32, i))
}
/// Compares packed 8-bit integers in `a` and `b` and returns packed maximum
/// values in dst.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epi8)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pmaxsb))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_max_epi8(a: __m128i, b: __m128i) -> __m128i {
let a = a.as_i8x16();
let b = b.as_i8x16();
transmute(simd_select::<i8x16, _>(simd_gt(a, b), a, b))
}
/// Compares packed unsigned 16-bit integers in `a` and `b`, and returns packed
/// maximum.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu16)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pmaxuw))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_max_epu16(a: __m128i, b: __m128i) -> __m128i {
let a = a.as_u16x8();
let b = b.as_u16x8();
transmute(simd_select::<i16x8, _>(simd_gt(a, b), a, b))
}
/// Compares packed 32-bit integers in `a` and `b`, and returns packed maximum
/// values.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epi32)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pmaxsd))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_max_epi32(a: __m128i, b: __m128i) -> __m128i {
let a = a.as_i32x4();
let b = b.as_i32x4();
transmute(simd_select::<i32x4, _>(simd_gt(a, b), a, b))
}
/// Compares packed unsigned 32-bit integers in `a` and `b`, and returns packed
/// maximum values.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu32)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pmaxud))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_max_epu32(a: __m128i, b: __m128i) -> __m128i {
let a = a.as_u32x4();
let b = b.as_u32x4();
transmute(simd_select::<i32x4, _>(simd_gt(a, b), a, b))
}
/// Compares packed 8-bit integers in `a` and `b` and returns packed minimum
/// values in dst.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epi8)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pminsb))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_min_epi8(a: __m128i, b: __m128i) -> __m128i {
let a = a.as_i8x16();
let b = b.as_i8x16();
transmute(simd_select::<i8x16, _>(simd_lt(a, b), a, b))
}
/// Compares packed unsigned 16-bit integers in `a` and `b`, and returns packed
/// minimum.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epu16)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pminuw))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_min_epu16(a: __m128i, b: __m128i) -> __m128i {
let a = a.as_u16x8();
let b = b.as_u16x8();
transmute(simd_select::<i16x8, _>(simd_lt(a, b), a, b))
}
/// Compares packed 32-bit integers in `a` and `b`, and returns packed minimum
/// values.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epi32)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pminsd))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_min_epi32(a: __m128i, b: __m128i) -> __m128i {
let a = a.as_i32x4();
let b = b.as_i32x4();
transmute(simd_select::<i32x4, _>(simd_lt(a, b), a, b))
}
/// Compares packed unsigned 32-bit integers in `a` and `b`, and returns packed
/// minimum values.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epu32)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pminud))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_min_epu32(a: __m128i, b: __m128i) -> __m128i {
let a = a.as_u32x4();
let b = b.as_u32x4();
transmute(simd_select::<i32x4, _>(simd_lt(a, b), a, b))
}
/// Converts packed 32-bit integers from `a` and `b` to packed 16-bit integers
/// using unsigned saturation
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_packus_epi32)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(packusdw))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_packus_epi32(a: __m128i, b: __m128i) -> __m128i {
transmute(packusdw(a.as_i32x4(), b.as_i32x4()))
}
/// Compares packed 64-bit integers in `a` and `b` for equality
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_epi64)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pcmpeqq))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cmpeq_epi64(a: __m128i, b: __m128i) -> __m128i {
transmute(simd_eq::<_, i64x2>(a.as_i64x2(), b.as_i64x2()))
}
/// Sign extend packed 8-bit integers in `a` to packed 16-bit integers
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi8_epi16)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pmovsxbw))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cvtepi8_epi16(a: __m128i) -> __m128i {
let a = a.as_i8x16();
let a: i8x8 = simd_shuffle!(a, a, [0, 1, 2, 3, 4, 5, 6, 7]);
transmute(simd_cast::<_, i16x8>(a))
}
/// Sign extend packed 8-bit integers in `a` to packed 32-bit integers
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi8_epi32)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pmovsxbd))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cvtepi8_epi32(a: __m128i) -> __m128i {
let a = a.as_i8x16();
let a: i8x4 = simd_shuffle!(a, a, [0, 1, 2, 3]);
transmute(simd_cast::<_, i32x4>(a))
}
/// Sign extend packed 8-bit integers in the low 8 bytes of `a` to packed
/// 64-bit integers
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi8_epi64)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pmovsxbq))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cvtepi8_epi64(a: __m128i) -> __m128i {
let a = a.as_i8x16();
let a: i8x2 = simd_shuffle!(a, a, [0, 1]);
transmute(simd_cast::<_, i64x2>(a))
}
/// Sign extend packed 16-bit integers in `a` to packed 32-bit integers
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi16_epi32)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pmovsxwd))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cvtepi16_epi32(a: __m128i) -> __m128i {
let a = a.as_i16x8();
let a: i16x4 = simd_shuffle!(a, a, [0, 1, 2, 3]);
transmute(simd_cast::<_, i32x4>(a))
}
/// Sign extend packed 16-bit integers in `a` to packed 64-bit integers
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi16_epi64)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pmovsxwq))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cvtepi16_epi64(a: __m128i) -> __m128i {
let a = a.as_i16x8();
let a: i16x2 = simd_shuffle!(a, a, [0, 1]);
transmute(simd_cast::<_, i64x2>(a))
}
/// Sign extend packed 32-bit integers in `a` to packed 64-bit integers
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi32_epi64)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pmovsxdq))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cvtepi32_epi64(a: __m128i) -> __m128i {
let a = a.as_i32x4();
let a: i32x2 = simd_shuffle!(a, a, [0, 1]);
transmute(simd_cast::<_, i64x2>(a))
}
/// Zeroes extend packed unsigned 8-bit integers in `a` to packed 16-bit integers
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu8_epi16)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pmovzxbw))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cvtepu8_epi16(a: __m128i) -> __m128i {
let a = a.as_u8x16();
let a: u8x8 = simd_shuffle!(a, a, [0, 1, 2, 3, 4, 5, 6, 7]);
transmute(simd_cast::<_, i16x8>(a))
}
/// Zeroes extend packed unsigned 8-bit integers in `a` to packed 32-bit integers
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu8_epi32)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pmovzxbd))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cvtepu8_epi32(a: __m128i) -> __m128i {
let a = a.as_u8x16();
let a: u8x4 = simd_shuffle!(a, a, [0, 1, 2, 3]);
transmute(simd_cast::<_, i32x4>(a))
}
/// Zeroes extend packed unsigned 8-bit integers in `a` to packed 64-bit integers
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu8_epi64)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pmovzxbq))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cvtepu8_epi64(a: __m128i) -> __m128i {
let a = a.as_u8x16();
let a: u8x2 = simd_shuffle!(a, a, [0, 1]);
transmute(simd_cast::<_, i64x2>(a))
}
/// Zeroes extend packed unsigned 16-bit integers in `a`
/// to packed 32-bit integers
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu16_epi32)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pmovzxwd))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cvtepu16_epi32(a: __m128i) -> __m128i {
let a = a.as_u16x8();
let a: u16x4 = simd_shuffle!(a, a, [0, 1, 2, 3]);
transmute(simd_cast::<_, i32x4>(a))
}
/// Zeroes extend packed unsigned 16-bit integers in `a`
/// to packed 64-bit integers
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu16_epi64)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pmovzxwq))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cvtepu16_epi64(a: __m128i) -> __m128i {
let a = a.as_u16x8();
let a: u16x2 = simd_shuffle!(a, a, [0, 1]);
transmute(simd_cast::<_, i64x2>(a))
}
/// Zeroes extend packed unsigned 32-bit integers in `a`
/// to packed 64-bit integers
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu32_epi64)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pmovzxdq))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cvtepu32_epi64(a: __m128i) -> __m128i {
let a = a.as_u32x4();
let a: u32x2 = simd_shuffle!(a, a, [0, 1]);
transmute(simd_cast::<_, i64x2>(a))
}
/// Returns the dot product of two __m128d vectors.
///
/// `IMM8[1:0]` is the broadcast mask, and `IMM8[5:4]` is the condition mask.
/// If a condition mask bit is zero, the corresponding multiplication is
/// replaced by a value of `0.0`. If a broadcast mask bit is one, the result of
/// the dot product will be stored in the return value component. Otherwise if
/// the broadcast mask bit is zero then the return component will be zero.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_dp_pd)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(dppd, IMM8 = 0))]
#[rustc_legacy_const_generics(2)]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_dp_pd<const IMM8: i32>(a: __m128d, b: __m128d) -> __m128d {
static_assert_uimm_bits!(IMM8, 8);
dppd(a, b, IMM8 as u8)
}
/// Returns the dot product of two __m128 vectors.
///
/// `IMM8[3:0]` is the broadcast mask, and `IMM8[7:4]` is the condition mask.
/// If a condition mask bit is zero, the corresponding multiplication is
/// replaced by a value of `0.0`. If a broadcast mask bit is one, the result of
/// the dot product will be stored in the return value component. Otherwise if
/// the broadcast mask bit is zero then the return component will be zero.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_dp_ps)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(dpps, IMM8 = 0))]
#[rustc_legacy_const_generics(2)]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_dp_ps<const IMM8: i32>(a: __m128, b: __m128) -> __m128 {
static_assert_uimm_bits!(IMM8, 8);
dpps(a, b, IMM8 as u8)
}
/// Round the packed double-precision (64-bit) floating-point elements in `a`
/// down to an integer value, and stores the results as packed double-precision
/// floating-point elements.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_pd)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(roundpd))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_floor_pd(a: __m128d) -> __m128d {
simd_floor(a)
}
/// Round the packed single-precision (32-bit) floating-point elements in `a`
/// down to an integer value, and stores the results as packed single-precision
/// floating-point elements.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_ps)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(roundps))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_floor_ps(a: __m128) -> __m128 {
simd_floor(a)
}
/// Round the lower double-precision (64-bit) floating-point element in `b`
/// down to an integer value, store the result as a double-precision
/// floating-point element in the lower element of the intrinsic result,
/// and copies the upper element from `a` to the upper element of the intrinsic
/// result.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_sd)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(roundsd))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_floor_sd(a: __m128d, b: __m128d) -> __m128d {
roundsd(a, b, _MM_FROUND_FLOOR)
}
/// Round the lower single-precision (32-bit) floating-point element in `b`
/// down to an integer value, store the result as a single-precision
/// floating-point element in the lower element of the intrinsic result,
/// and copies the upper 3 packed elements from `a` to the upper elements
/// of the intrinsic result.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_ss)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(roundss))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_floor_ss(a: __m128, b: __m128) -> __m128 {
roundss(a, b, _MM_FROUND_FLOOR)
}
/// Round the packed double-precision (64-bit) floating-point elements in `a`
/// up to an integer value, and stores the results as packed double-precision
/// floating-point elements.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_pd)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(roundpd))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_ceil_pd(a: __m128d) -> __m128d {
simd_ceil(a)
}
/// Round the packed single-precision (32-bit) floating-point elements in `a`
/// up to an integer value, and stores the results as packed single-precision
/// floating-point elements.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_ps)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(roundps))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_ceil_ps(a: __m128) -> __m128 {
simd_ceil(a)
}
/// Round the lower double-precision (64-bit) floating-point element in `b`
/// up to an integer value, store the result as a double-precision
/// floating-point element in the lower element of the intrinsic result,
/// and copies the upper element from `a` to the upper element
/// of the intrinsic result.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_sd)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(roundsd))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_ceil_sd(a: __m128d, b: __m128d) -> __m128d {
roundsd(a, b, _MM_FROUND_CEIL)
}
/// Round the lower single-precision (32-bit) floating-point element in `b`
/// up to an integer value, store the result as a single-precision
/// floating-point element in the lower element of the intrinsic result,
/// and copies the upper 3 packed elements from `a` to the upper elements
/// of the intrinsic result.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_ss)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(roundss))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_ceil_ss(a: __m128, b: __m128) -> __m128 {
roundss(a, b, _MM_FROUND_CEIL)
}
/// Round the packed double-precision (64-bit) floating-point elements in `a`
/// using the `ROUNDING` parameter, and stores the results as packed
/// double-precision floating-point elements.
/// Rounding is done according to the rounding parameter, which can be one of:
///
/// ```
/// #[cfg(target_arch = "x86")]
/// use std::arch::x86::*;
/// #[cfg(target_arch = "x86_64")]
/// use std::arch::x86_64::*;
///
/// # fn main() {
/// // round to nearest, and suppress exceptions:
/// # let _x =
/// _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC;
/// // round down, and suppress exceptions:
/// # let _x =
/// _MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC;
/// // round up, and suppress exceptions:
/// # let _x =
/// _MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC;
/// // truncate, and suppress exceptions:
/// # let _x =
/// _MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC;
/// // use MXCSR.RC; see `_MM_SET_ROUNDING_MODE`:
/// # let _x =
/// _MM_FROUND_CUR_DIRECTION;
/// # }
/// ```
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_pd)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(roundpd, ROUNDING = 0))]
#[rustc_legacy_const_generics(1)]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_round_pd<const ROUNDING: i32>(a: __m128d) -> __m128d {
static_assert_uimm_bits!(ROUNDING, 4);
roundpd(a, ROUNDING)
}
/// Round the packed single-precision (32-bit) floating-point elements in `a`
/// using the `ROUNDING` parameter, and stores the results as packed
/// single-precision floating-point elements.
/// Rounding is done according to the rounding parameter, which can be one of:
///
/// ```
/// #[cfg(target_arch = "x86")]
/// use std::arch::x86::*;
/// #[cfg(target_arch = "x86_64")]
/// use std::arch::x86_64::*;
///
/// # fn main() {
/// // round to nearest, and suppress exceptions:
/// # let _x =
/// _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC;
/// // round down, and suppress exceptions:
/// # let _x =
/// _MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC;
/// // round up, and suppress exceptions:
/// # let _x =
/// _MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC;
/// // truncate, and suppress exceptions:
/// # let _x =
/// _MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC;
/// // use MXCSR.RC; see `_MM_SET_ROUNDING_MODE`:
/// # let _x =
/// _MM_FROUND_CUR_DIRECTION;
/// # }
/// ```
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_ps)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(roundps, ROUNDING = 0))]
#[rustc_legacy_const_generics(1)]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_round_ps<const ROUNDING: i32>(a: __m128) -> __m128 {
static_assert_uimm_bits!(ROUNDING, 4);
roundps(a, ROUNDING)
}
/// Round the lower double-precision (64-bit) floating-point element in `b`
/// using the `ROUNDING` parameter, store the result as a double-precision
/// floating-point element in the lower element of the intrinsic result,
/// and copies the upper element from `a` to the upper element of the intrinsic
/// result.
/// Rounding is done according to the rounding parameter, which can be one of:
///
/// ```
/// #[cfg(target_arch = "x86")]
/// use std::arch::x86::*;
/// #[cfg(target_arch = "x86_64")]
/// use std::arch::x86_64::*;
///
/// # fn main() {
/// // round to nearest, and suppress exceptions:
/// # let _x =
/// _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC;
/// // round down, and suppress exceptions:
/// # let _x =
/// _MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC;
/// // round up, and suppress exceptions:
/// # let _x =
/// _MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC;
/// // truncate, and suppress exceptions:
/// # let _x =
/// _MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC;
/// // use MXCSR.RC; see `_MM_SET_ROUNDING_MODE`:
/// # let _x =
/// _MM_FROUND_CUR_DIRECTION;
/// # }
/// ```
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_sd)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(roundsd, ROUNDING = 0))]
#[rustc_legacy_const_generics(2)]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_round_sd<const ROUNDING: i32>(a: __m128d, b: __m128d) -> __m128d {
static_assert_uimm_bits!(ROUNDING, 4);
roundsd(a, b, ROUNDING)
}
/// Round the lower single-precision (32-bit) floating-point element in `b`
/// using the `ROUNDING` parameter, store the result as a single-precision
/// floating-point element in the lower element of the intrinsic result,
/// and copies the upper 3 packed elements from `a` to the upper elements
/// of the intrinsic result.
/// Rounding is done according to the rounding parameter, which can be one of:
///
/// ```
/// #[cfg(target_arch = "x86")]
/// use std::arch::x86::*;
/// #[cfg(target_arch = "x86_64")]
/// use std::arch::x86_64::*;
///
/// # fn main() {
/// // round to nearest, and suppress exceptions:
/// # let _x =
/// _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC;
/// // round down, and suppress exceptions:
/// # let _x =
/// _MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC;
/// // round up, and suppress exceptions:
/// # let _x =
/// _MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC;
/// // truncate, and suppress exceptions:
/// # let _x =
/// _MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC;
/// // use MXCSR.RC; see `_MM_SET_ROUNDING_MODE`:
/// # let _x =
/// _MM_FROUND_CUR_DIRECTION;
/// # }
/// ```
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_ss)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(roundss, ROUNDING = 0))]
#[rustc_legacy_const_generics(2)]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_round_ss<const ROUNDING: i32>(a: __m128, b: __m128) -> __m128 {
static_assert_uimm_bits!(ROUNDING, 4);
roundss(a, b, ROUNDING)
}
/// Finds the minimum unsigned 16-bit element in the 128-bit __m128i vector,
/// returning a vector containing its value in its first position, and its
/// index
/// in its second position; all other elements are set to zero.
///
/// This intrinsic corresponds to the `VPHMINPOSUW` / `PHMINPOSUW`
/// instruction.
///
/// Arguments:
///
/// * `a` - A 128-bit vector of type `__m128i`.
///
/// Returns:
///
/// A 128-bit value where:
///
/// * bits `[15:0]` - contain the minimum value found in parameter `a`,
/// * bits `[18:16]` - contain the index of the minimum value
/// * remaining bits are set to `0`.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_minpos_epu16)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(phminposuw))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_minpos_epu16(a: __m128i) -> __m128i {
transmute(phminposuw(a.as_u16x8()))
}
/// Multiplies the low 32-bit integers from each packed 64-bit
/// element in `a` and `b`, and returns the signed 64-bit result.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_epi32)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pmuldq))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_mul_epi32(a: __m128i, b: __m128i) -> __m128i {
let a = simd_cast::<_, i64x2>(simd_cast::<_, i32x2>(a.as_i64x2()));
let b = simd_cast::<_, i64x2>(simd_cast::<_, i32x2>(b.as_i64x2()));
transmute(simd_mul(a, b))
}
/// Multiplies the packed 32-bit integers in `a` and `b`, producing intermediate
/// 64-bit integers, and returns the lowest 32-bit, whatever they might be,
/// reinterpreted as a signed integer. While `pmulld __m128i::splat(2),
/// __m128i::splat(2)` returns the obvious `__m128i::splat(4)`, due to wrapping
/// arithmetic `pmulld __m128i::splat(i32::MAX), __m128i::splat(2)` would
/// return a negative number.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mullo_epi32)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pmulld))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_mullo_epi32(a: __m128i, b: __m128i) -> __m128i {
transmute(simd_mul(a.as_i32x4(), b.as_i32x4()))
}
/// Subtracts 8-bit unsigned integer values and computes the absolute
/// values of the differences to the corresponding bits in the destination.
/// Then sums of the absolute differences are returned according to the bit
/// fields in the immediate operand.
///
/// The following algorithm is performed:
///
/// ```ignore
/// i = IMM8[2] * 4
/// j = IMM8[1:0] * 4
/// for k := 0 to 7
/// d0 = abs(a[i + k + 0] - b[j + 0])
/// d1 = abs(a[i + k + 1] - b[j + 1])
/// d2 = abs(a[i + k + 2] - b[j + 2])
/// d3 = abs(a[i + k + 3] - b[j + 3])
/// r[k] = d0 + d1 + d2 + d3
/// ```
///
/// Arguments:
///
/// * `a` - A 128-bit vector of type `__m128i`.
/// * `b` - A 128-bit vector of type `__m128i`.
/// * `IMM8` - An 8-bit immediate operand specifying how the absolute
/// differences are to be calculated
/// * Bit `[2]` specify the offset for operand `a`
/// * Bits `[1:0]` specify the offset for operand `b`
///
/// Returns:
///
/// * A `__m128i` vector containing the sums of the sets of absolute
/// differences between both operands.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mpsadbw_epu8)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(mpsadbw, IMM8 = 0))]
#[rustc_legacy_const_generics(2)]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_mpsadbw_epu8<const IMM8: i32>(a: __m128i, b: __m128i) -> __m128i {
static_assert_uimm_bits!(IMM8, 3);
transmute(mpsadbw(a.as_u8x16(), b.as_u8x16(), IMM8 as u8))
}
/// Tests whether the specified bits in a 128-bit integer vector are all
/// zeros.
///
/// Arguments:
///
/// * `a` - A 128-bit integer vector containing the bits to be tested.
/// * `mask` - A 128-bit integer vector selecting which bits to test in
/// operand `a`.
///
/// Returns:
///
/// * `1` - if the specified bits are all zeros,
/// * `0` - otherwise.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testz_si128)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(ptest))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_testz_si128(a: __m128i, mask: __m128i) -> i32 {
ptestz(a.as_i64x2(), mask.as_i64x2())
}
/// Tests whether the specified bits in a 128-bit integer vector are all
/// ones.
///
/// Arguments:
///
/// * `a` - A 128-bit integer vector containing the bits to be tested.
/// * `mask` - A 128-bit integer vector selecting which bits to test in
/// operand `a`.
///
/// Returns:
///
/// * `1` - if the specified bits are all ones,
/// * `0` - otherwise.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testc_si128)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(ptest))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_testc_si128(a: __m128i, mask: __m128i) -> i32 {
ptestc(a.as_i64x2(), mask.as_i64x2())
}
/// Tests whether the specified bits in a 128-bit integer vector are
/// neither all zeros nor all ones.
///
/// Arguments:
///
/// * `a` - A 128-bit integer vector containing the bits to be tested.
/// * `mask` - A 128-bit integer vector selecting which bits to test in
/// operand `a`.
///
/// Returns:
///
/// * `1` - if the specified bits are neither all zeros nor all ones,
/// * `0` - otherwise.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testnzc_si128)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(ptest))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_testnzc_si128(a: __m128i, mask: __m128i) -> i32 {
ptestnzc(a.as_i64x2(), mask.as_i64x2())
}
/// Tests whether the specified bits in a 128-bit integer vector are all
/// zeros.
///
/// Arguments:
///
/// * `a` - A 128-bit integer vector containing the bits to be tested.
/// * `mask` - A 128-bit integer vector selecting which bits to test in
/// operand `a`.
///
/// Returns:
///
/// * `1` - if the specified bits are all zeros,
/// * `0` - otherwise.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_test_all_zeros)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(ptest))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_test_all_zeros(a: __m128i, mask: __m128i) -> i32 {
_mm_testz_si128(a, mask)
}
/// Tests whether the specified bits in `a` 128-bit integer vector are all
/// ones.
///
/// Argument:
///
/// * `a` - A 128-bit integer vector containing the bits to be tested.
///
/// Returns:
///
/// * `1` - if the bits specified in the operand are all set to 1,
/// * `0` - otherwise.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_test_all_ones)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(pcmpeqd))]
#[cfg_attr(test, assert_instr(ptest))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_test_all_ones(a: __m128i) -> i32 {
_mm_testc_si128(a, _mm_cmpeq_epi32(a, a))
}
/// Tests whether the specified bits in a 128-bit integer vector are
/// neither all zeros nor all ones.
///
/// Arguments:
///
/// * `a` - A 128-bit integer vector containing the bits to be tested.
/// * `mask` - A 128-bit integer vector selecting which bits to test in
/// operand `a`.
///
/// Returns:
///
/// * `1` - if the specified bits are neither all zeros nor all ones,
/// * `0` - otherwise.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_test_mix_ones_zeros)
#[inline]
#[target_feature(enable = "sse4.1")]
#[cfg_attr(test, assert_instr(ptest))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_test_mix_ones_zeros(a: __m128i, mask: __m128i) -> i32 {
_mm_testnzc_si128(a, mask)
}
/// Load 128-bits of integer data from memory into dst. mem_addr must be aligned on a 16-byte
/// boundary or a general-protection exception may be generated. To minimize caching, the data
/// is flagged as non-temporal (unlikely to be used again soon)
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_load_si128)
#[inline]
#[target_feature(enable = "sse,sse4.1")]
#[cfg_attr(test, assert_instr(movntdqa))]
#[stable(feature = "simd_x86_updates", since = "1.82.0")]
pub unsafe fn _mm_stream_load_si128(mem_addr: *const __m128i) -> __m128i {
let dst: __m128i;
crate::arch::asm!(
vpl!("movntdqa {a}"),
a = out(xmm_reg) dst,
p = in(reg) mem_addr,
options(pure, readonly, nostack, preserves_flags),
);
dst
}
#[allow(improper_ctypes)]
extern "C" {
#[link_name = "llvm.x86.sse41.insertps"]
fn insertps(a: __m128, b: __m128, imm8: u8) -> __m128;
#[link_name = "llvm.x86.sse41.packusdw"]
fn packusdw(a: i32x4, b: i32x4) -> u16x8;
#[link_name = "llvm.x86.sse41.dppd"]
fn dppd(a: __m128d, b: __m128d, imm8: u8) -> __m128d;
#[link_name = "llvm.x86.sse41.dpps"]
fn dpps(a: __m128, b: __m128, imm8: u8) -> __m128;
#[link_name = "llvm.x86.sse41.round.pd"]
fn roundpd(a: __m128d, rounding: i32) -> __m128d;
#[link_name = "llvm.x86.sse41.round.ps"]
fn roundps(a: __m128, rounding: i32) -> __m128;
#[link_name = "llvm.x86.sse41.round.sd"]
fn roundsd(a: __m128d, b: __m128d, rounding: i32) -> __m128d;
#[link_name = "llvm.x86.sse41.round.ss"]
fn roundss(a: __m128, b: __m128, rounding: i32) -> __m128;
#[link_name = "llvm.x86.sse41.phminposuw"]
fn phminposuw(a: u16x8) -> u16x8;
#[link_name = "llvm.x86.sse41.mpsadbw"]
fn mpsadbw(a: u8x16, b: u8x16, imm8: u8) -> u16x8;
#[link_name = "llvm.x86.sse41.ptestz"]
fn ptestz(a: i64x2, mask: i64x2) -> i32;
#[link_name = "llvm.x86.sse41.ptestc"]
fn ptestc(a: i64x2, mask: i64x2) -> i32;
#[link_name = "llvm.x86.sse41.ptestnzc"]
fn ptestnzc(a: i64x2, mask: i64x2) -> i32;
}
#[cfg(test)]
mod tests {
use crate::core_arch::x86::*;
use std::mem;
use stdarch_test::simd_test;
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_blendv_epi8() {
#[rustfmt::skip]
let a = _mm_setr_epi8(
0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15,
);
#[rustfmt::skip]
let b = _mm_setr_epi8(
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
);
#[rustfmt::skip]
let mask = _mm_setr_epi8(
0, -1, 0, -1, 0, -1, 0, -1,
0, -1, 0, -1, 0, -1, 0, -1,
);
#[rustfmt::skip]
let e = _mm_setr_epi8(
0, 17, 2, 19, 4, 21, 6, 23, 8, 25, 10, 27, 12, 29, 14, 31,
);
assert_eq_m128i(_mm_blendv_epi8(a, b, mask), e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_blendv_pd() {
let a = _mm_set1_pd(0.0);
let b = _mm_set1_pd(1.0);
let mask = transmute(_mm_setr_epi64x(0, -1));
let r = _mm_blendv_pd(a, b, mask);
let e = _mm_setr_pd(0.0, 1.0);
assert_eq_m128d(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_blendv_ps() {
let a = _mm_set1_ps(0.0);
let b = _mm_set1_ps(1.0);
let mask = transmute(_mm_setr_epi32(0, -1, 0, -1));
let r = _mm_blendv_ps(a, b, mask);
let e = _mm_setr_ps(0.0, 1.0, 0.0, 1.0);
assert_eq_m128(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_blend_pd() {
let a = _mm_set1_pd(0.0);
let b = _mm_set1_pd(1.0);
let r = _mm_blend_pd::<0b10>(a, b);
let e = _mm_setr_pd(0.0, 1.0);
assert_eq_m128d(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_blend_ps() {
let a = _mm_set1_ps(0.0);
let b = _mm_set1_ps(1.0);
let r = _mm_blend_ps::<0b1010>(a, b);
let e = _mm_setr_ps(0.0, 1.0, 0.0, 1.0);
assert_eq_m128(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_blend_epi16() {
let a = _mm_set1_epi16(0);
let b = _mm_set1_epi16(1);
let r = _mm_blend_epi16::<0b1010_1100>(a, b);
let e = _mm_setr_epi16(0, 0, 1, 1, 0, 1, 0, 1);
assert_eq_m128i(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_extract_ps() {
let a = _mm_setr_ps(0.0, 1.0, 2.0, 3.0);
let r: f32 = f32::from_bits(_mm_extract_ps::<1>(a) as u32);
assert_eq!(r, 1.0);
let r: f32 = f32::from_bits(_mm_extract_ps::<3>(a) as u32);
assert_eq!(r, 3.0);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_extract_epi8() {
#[rustfmt::skip]
let a = _mm_setr_epi8(
-1, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15
);
let r1 = _mm_extract_epi8::<0>(a);
let r2 = _mm_extract_epi8::<3>(a);
assert_eq!(r1, 0xFF);
assert_eq!(r2, 3);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_extract_epi32() {
let a = _mm_setr_epi32(0, 1, 2, 3);
let r = _mm_extract_epi32::<1>(a);
assert_eq!(r, 1);
let r = _mm_extract_epi32::<3>(a);
assert_eq!(r, 3);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_insert_ps() {
let a = _mm_set1_ps(1.0);
let b = _mm_setr_ps(1.0, 2.0, 3.0, 4.0);
let r = _mm_insert_ps::<0b11_00_1100>(a, b);
let e = _mm_setr_ps(4.0, 1.0, 0.0, 0.0);
assert_eq_m128(r, e);
// Zeroing takes precedence over copied value
let a = _mm_set1_ps(1.0);
let b = _mm_setr_ps(1.0, 2.0, 3.0, 4.0);
let r = _mm_insert_ps::<0b11_00_0001>(a, b);
let e = _mm_setr_ps(0.0, 1.0, 1.0, 1.0);
assert_eq_m128(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_insert_epi8() {
let a = _mm_set1_epi8(0);
let e = _mm_setr_epi8(0, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
let r = _mm_insert_epi8::<1>(a, 32);
assert_eq_m128i(r, e);
let e = _mm_setr_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 0);
let r = _mm_insert_epi8::<14>(a, 32);
assert_eq_m128i(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_insert_epi32() {
let a = _mm_set1_epi32(0);
let e = _mm_setr_epi32(0, 32, 0, 0);
let r = _mm_insert_epi32::<1>(a, 32);
assert_eq_m128i(r, e);
let e = _mm_setr_epi32(0, 0, 0, 32);
let r = _mm_insert_epi32::<3>(a, 32);
assert_eq_m128i(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_max_epi8() {
#[rustfmt::skip]
let a = _mm_setr_epi8(
1, 4, 5, 8, 9, 12, 13, 16,
17, 20, 21, 24, 25, 28, 29, 32,
);
#[rustfmt::skip]
let b = _mm_setr_epi8(
2, 3, 6, 7, 10, 11, 14, 15,
18, 19, 22, 23, 26, 27, 30, 31,
);
let r = _mm_max_epi8(a, b);
#[rustfmt::skip]
let e = _mm_setr_epi8(
2, 4, 6, 8, 10, 12, 14, 16,
18, 20, 22, 24, 26, 28, 30, 32,
);
assert_eq_m128i(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_max_epu16() {
let a = _mm_setr_epi16(1, 4, 5, 8, 9, 12, 13, 16);
let b = _mm_setr_epi16(2, 3, 6, 7, 10, 11, 14, 15);
let r = _mm_max_epu16(a, b);
let e = _mm_setr_epi16(2, 4, 6, 8, 10, 12, 14, 16);
assert_eq_m128i(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_max_epi32() {
let a = _mm_setr_epi32(1, 4, 5, 8);
let b = _mm_setr_epi32(2, 3, 6, 7);
let r = _mm_max_epi32(a, b);
let e = _mm_setr_epi32(2, 4, 6, 8);
assert_eq_m128i(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_max_epu32() {
let a = _mm_setr_epi32(1, 4, 5, 8);
let b = _mm_setr_epi32(2, 3, 6, 7);
let r = _mm_max_epu32(a, b);
let e = _mm_setr_epi32(2, 4, 6, 8);
assert_eq_m128i(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_min_epi8_1() {
#[rustfmt::skip]
let a = _mm_setr_epi8(
1, 4, 5, 8, 9, 12, 13, 16,
17, 20, 21, 24, 25, 28, 29, 32,
);
#[rustfmt::skip]
let b = _mm_setr_epi8(
2, 3, 6, 7, 10, 11, 14, 15,
18, 19, 22, 23, 26, 27, 30, 31,
);
let r = _mm_min_epi8(a, b);
#[rustfmt::skip]
let e = _mm_setr_epi8(
1, 3, 5, 7, 9, 11, 13, 15,
17, 19, 21, 23, 25, 27, 29, 31,
);
assert_eq_m128i(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_min_epi8_2() {
#[rustfmt::skip]
let a = _mm_setr_epi8(
1, -4, -5, 8, -9, -12, 13, -16,
17, 20, 21, 24, 25, 28, 29, 32,
);
#[rustfmt::skip]
let b = _mm_setr_epi8(
2, -3, -6, 7, -10, -11, 14, -15,
18, 19, 22, 23, 26, 27, 30, 31,
);
let r = _mm_min_epi8(a, b);
#[rustfmt::skip]
let e = _mm_setr_epi8(
1, -4, -6, 7, -10, -12, 13, -16,
17, 19, 21, 23, 25, 27, 29, 31,
);
assert_eq_m128i(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_min_epu16() {
let a = _mm_setr_epi16(1, 4, 5, 8, 9, 12, 13, 16);
let b = _mm_setr_epi16(2, 3, 6, 7, 10, 11, 14, 15);
let r = _mm_min_epu16(a, b);
let e = _mm_setr_epi16(1, 3, 5, 7, 9, 11, 13, 15);
assert_eq_m128i(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_min_epi32_1() {
let a = _mm_setr_epi32(1, 4, 5, 8);
let b = _mm_setr_epi32(2, 3, 6, 7);
let r = _mm_min_epi32(a, b);
let e = _mm_setr_epi32(1, 3, 5, 7);
assert_eq_m128i(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_min_epi32_2() {
let a = _mm_setr_epi32(-1, 4, 5, -7);
let b = _mm_setr_epi32(-2, 3, -6, 8);
let r = _mm_min_epi32(a, b);
let e = _mm_setr_epi32(-2, 3, -6, -7);
assert_eq_m128i(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_min_epu32() {
let a = _mm_setr_epi32(1, 4, 5, 8);
let b = _mm_setr_epi32(2, 3, 6, 7);
let r = _mm_min_epu32(a, b);
let e = _mm_setr_epi32(1, 3, 5, 7);
assert_eq_m128i(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_packus_epi32() {
let a = _mm_setr_epi32(1, 2, 3, 4);
let b = _mm_setr_epi32(-1, -2, -3, -4);
let r = _mm_packus_epi32(a, b);
let e = _mm_setr_epi16(1, 2, 3, 4, 0, 0, 0, 0);
assert_eq_m128i(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_cmpeq_epi64() {
let a = _mm_setr_epi64x(0, 1);
let b = _mm_setr_epi64x(0, 0);
let r = _mm_cmpeq_epi64(a, b);
let e = _mm_setr_epi64x(-1, 0);
assert_eq_m128i(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_cvtepi8_epi16() {
let a = _mm_set1_epi8(10);
let r = _mm_cvtepi8_epi16(a);
let e = _mm_set1_epi16(10);
assert_eq_m128i(r, e);
let a = _mm_set1_epi8(-10);
let r = _mm_cvtepi8_epi16(a);
let e = _mm_set1_epi16(-10);
assert_eq_m128i(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_cvtepi8_epi32() {
let a = _mm_set1_epi8(10);
let r = _mm_cvtepi8_epi32(a);
let e = _mm_set1_epi32(10);
assert_eq_m128i(r, e);
let a = _mm_set1_epi8(-10);
let r = _mm_cvtepi8_epi32(a);
let e = _mm_set1_epi32(-10);
assert_eq_m128i(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_cvtepi8_epi64() {
let a = _mm_set1_epi8(10);
let r = _mm_cvtepi8_epi64(a);
let e = _mm_set1_epi64x(10);
assert_eq_m128i(r, e);
let a = _mm_set1_epi8(-10);
let r = _mm_cvtepi8_epi64(a);
let e = _mm_set1_epi64x(-10);
assert_eq_m128i(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_cvtepi16_epi32() {
let a = _mm_set1_epi16(10);
let r = _mm_cvtepi16_epi32(a);
let e = _mm_set1_epi32(10);
assert_eq_m128i(r, e);
let a = _mm_set1_epi16(-10);
let r = _mm_cvtepi16_epi32(a);
let e = _mm_set1_epi32(-10);
assert_eq_m128i(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_cvtepi16_epi64() {
let a = _mm_set1_epi16(10);
let r = _mm_cvtepi16_epi64(a);
let e = _mm_set1_epi64x(10);
assert_eq_m128i(r, e);
let a = _mm_set1_epi16(-10);
let r = _mm_cvtepi16_epi64(a);
let e = _mm_set1_epi64x(-10);
assert_eq_m128i(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_cvtepi32_epi64() {
let a = _mm_set1_epi32(10);
let r = _mm_cvtepi32_epi64(a);
let e = _mm_set1_epi64x(10);
assert_eq_m128i(r, e);
let a = _mm_set1_epi32(-10);
let r = _mm_cvtepi32_epi64(a);
let e = _mm_set1_epi64x(-10);
assert_eq_m128i(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_cvtepu8_epi16() {
let a = _mm_set1_epi8(10);
let r = _mm_cvtepu8_epi16(a);
let e = _mm_set1_epi16(10);
assert_eq_m128i(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_cvtepu8_epi32() {
let a = _mm_set1_epi8(10);
let r = _mm_cvtepu8_epi32(a);
let e = _mm_set1_epi32(10);
assert_eq_m128i(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_cvtepu8_epi64() {
let a = _mm_set1_epi8(10);
let r = _mm_cvtepu8_epi64(a);
let e = _mm_set1_epi64x(10);
assert_eq_m128i(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_cvtepu16_epi32() {
let a = _mm_set1_epi16(10);
let r = _mm_cvtepu16_epi32(a);
let e = _mm_set1_epi32(10);
assert_eq_m128i(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_cvtepu16_epi64() {
let a = _mm_set1_epi16(10);
let r = _mm_cvtepu16_epi64(a);
let e = _mm_set1_epi64x(10);
assert_eq_m128i(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_cvtepu32_epi64() {
let a = _mm_set1_epi32(10);
let r = _mm_cvtepu32_epi64(a);
let e = _mm_set1_epi64x(10);
assert_eq_m128i(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_dp_pd() {
let a = _mm_setr_pd(2.0, 3.0);
let b = _mm_setr_pd(1.0, 4.0);
let e = _mm_setr_pd(14.0, 0.0);
assert_eq_m128d(_mm_dp_pd::<0b00110001>(a, b), e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_dp_ps() {
let a = _mm_setr_ps(2.0, 3.0, 1.0, 10.0);
let b = _mm_setr_ps(1.0, 4.0, 0.5, 10.0);
let e = _mm_setr_ps(14.5, 0.0, 14.5, 0.0);
assert_eq_m128(_mm_dp_ps::<0b01110101>(a, b), e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_floor_pd() {
let a = _mm_setr_pd(2.5, 4.5);
let r = _mm_floor_pd(a);
let e = _mm_setr_pd(2.0, 4.0);
assert_eq_m128d(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_floor_ps() {
let a = _mm_setr_ps(2.5, 4.5, 8.5, 16.5);
let r = _mm_floor_ps(a);
let e = _mm_setr_ps(2.0, 4.0, 8.0, 16.0);
assert_eq_m128(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_floor_sd() {
let a = _mm_setr_pd(2.5, 4.5);
let b = _mm_setr_pd(-1.5, -3.5);
let r = _mm_floor_sd(a, b);
let e = _mm_setr_pd(-2.0, 4.5);
assert_eq_m128d(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_floor_ss() {
let a = _mm_setr_ps(2.5, 4.5, 8.5, 16.5);
let b = _mm_setr_ps(-1.5, -3.5, -7.5, -15.5);
let r = _mm_floor_ss(a, b);
let e = _mm_setr_ps(-2.0, 4.5, 8.5, 16.5);
assert_eq_m128(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_ceil_pd() {
let a = _mm_setr_pd(1.5, 3.5);
let r = _mm_ceil_pd(a);
let e = _mm_setr_pd(2.0, 4.0);
assert_eq_m128d(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_ceil_ps() {
let a = _mm_setr_ps(1.5, 3.5, 7.5, 15.5);
let r = _mm_ceil_ps(a);
let e = _mm_setr_ps(2.0, 4.0, 8.0, 16.0);
assert_eq_m128(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_ceil_sd() {
let a = _mm_setr_pd(1.5, 3.5);
let b = _mm_setr_pd(-2.5, -4.5);
let r = _mm_ceil_sd(a, b);
let e = _mm_setr_pd(-2.0, 3.5);
assert_eq_m128d(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_ceil_ss() {
let a = _mm_setr_ps(1.5, 3.5, 7.5, 15.5);
let b = _mm_setr_ps(-2.5, -4.5, -8.5, -16.5);
let r = _mm_ceil_ss(a, b);
let e = _mm_setr_ps(-2.0, 3.5, 7.5, 15.5);
assert_eq_m128(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_round_pd() {
let a = _mm_setr_pd(1.25, 3.75);
let r = _mm_round_pd::<_MM_FROUND_TO_NEAREST_INT>(a);
let e = _mm_setr_pd(1.0, 4.0);
assert_eq_m128d(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_round_ps() {
let a = _mm_setr_ps(2.25, 4.75, -1.75, -4.25);
let r = _mm_round_ps::<_MM_FROUND_TO_ZERO>(a);
let e = _mm_setr_ps(2.0, 4.0, -1.0, -4.0);
assert_eq_m128(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_round_sd() {
let a = _mm_setr_pd(1.5, 3.5);
let b = _mm_setr_pd(-2.5, -4.5);
let r = _mm_round_sd::<_MM_FROUND_TO_NEAREST_INT>(a, b);
let e = _mm_setr_pd(-2.0, 3.5);
assert_eq_m128d(r, e);
let a = _mm_setr_pd(1.5, 3.5);
let b = _mm_setr_pd(-2.5, -4.5);
let r = _mm_round_sd::<_MM_FROUND_TO_NEG_INF>(a, b);
let e = _mm_setr_pd(-3.0, 3.5);
assert_eq_m128d(r, e);
let a = _mm_setr_pd(1.5, 3.5);
let b = _mm_setr_pd(-2.5, -4.5);
let r = _mm_round_sd::<_MM_FROUND_TO_POS_INF>(a, b);
let e = _mm_setr_pd(-2.0, 3.5);
assert_eq_m128d(r, e);
let a = _mm_setr_pd(1.5, 3.5);
let b = _mm_setr_pd(-2.5, -4.5);
let r = _mm_round_sd::<_MM_FROUND_TO_ZERO>(a, b);
let e = _mm_setr_pd(-2.0, 3.5);
assert_eq_m128d(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_round_ss() {
let a = _mm_setr_ps(1.5, 3.5, 7.5, 15.5);
let b = _mm_setr_ps(-1.75, -4.5, -8.5, -16.5);
let r = _mm_round_ss::<_MM_FROUND_TO_NEAREST_INT>(a, b);
let e = _mm_setr_ps(-2.0, 3.5, 7.5, 15.5);
assert_eq_m128(r, e);
let a = _mm_setr_ps(1.5, 3.5, 7.5, 15.5);
let b = _mm_setr_ps(-1.75, -4.5, -8.5, -16.5);
let r = _mm_round_ss::<_MM_FROUND_TO_NEG_INF>(a, b);
let e = _mm_setr_ps(-2.0, 3.5, 7.5, 15.5);
assert_eq_m128(r, e);
let a = _mm_setr_ps(1.5, 3.5, 7.5, 15.5);
let b = _mm_setr_ps(-1.75, -4.5, -8.5, -16.5);
let r = _mm_round_ss::<_MM_FROUND_TO_POS_INF>(a, b);
let e = _mm_setr_ps(-1.0, 3.5, 7.5, 15.5);
assert_eq_m128(r, e);
let a = _mm_setr_ps(1.5, 3.5, 7.5, 15.5);
let b = _mm_setr_ps(-1.75, -4.5, -8.5, -16.5);
let r = _mm_round_ss::<_MM_FROUND_TO_ZERO>(a, b);
let e = _mm_setr_ps(-1.0, 3.5, 7.5, 15.5);
assert_eq_m128(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_minpos_epu16_1() {
let a = _mm_setr_epi16(23, 18, 44, 97, 50, 13, 67, 66);
let r = _mm_minpos_epu16(a);
let e = _mm_setr_epi16(13, 5, 0, 0, 0, 0, 0, 0);
assert_eq_m128i(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_minpos_epu16_2() {
let a = _mm_setr_epi16(0, 18, 44, 97, 50, 13, 67, 66);
let r = _mm_minpos_epu16(a);
let e = _mm_setr_epi16(0, 0, 0, 0, 0, 0, 0, 0);
assert_eq_m128i(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_minpos_epu16_3() {
// Case where the minimum value is repeated
let a = _mm_setr_epi16(23, 18, 44, 97, 50, 13, 67, 13);
let r = _mm_minpos_epu16(a);
let e = _mm_setr_epi16(13, 5, 0, 0, 0, 0, 0, 0);
assert_eq_m128i(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_mul_epi32() {
{
let a = _mm_setr_epi32(1, 1, 1, 1);
let b = _mm_setr_epi32(1, 2, 3, 4);
let r = _mm_mul_epi32(a, b);
let e = _mm_setr_epi64x(1, 3);
assert_eq_m128i(r, e);
}
{
let a = _mm_setr_epi32(15, 2 /* ignored */, 1234567, 4 /* ignored */);
let b = _mm_setr_epi32(
-20, -256, /* ignored */
666666, 666666, /* ignored */
);
let r = _mm_mul_epi32(a, b);
let e = _mm_setr_epi64x(-300, 823043843622);
assert_eq_m128i(r, e);
}
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_mullo_epi32() {
{
let a = _mm_setr_epi32(1, 1, 1, 1);
let b = _mm_setr_epi32(1, 2, 3, 4);
let r = _mm_mullo_epi32(a, b);
let e = _mm_setr_epi32(1, 2, 3, 4);
assert_eq_m128i(r, e);
}
{
let a = _mm_setr_epi32(15, -2, 1234567, 99999);
let b = _mm_setr_epi32(-20, -256, 666666, -99999);
let r = _mm_mullo_epi32(a, b);
// Attention, most significant bit in r[2] is treated
// as a sign bit:
// 1234567 * 666666 = -1589877210
let e = _mm_setr_epi32(-300, 512, -1589877210, -1409865409);
assert_eq_m128i(r, e);
}
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_minpos_epu16() {
let a = _mm_setr_epi16(8, 7, 6, 5, 4, 1, 2, 3);
let r = _mm_minpos_epu16(a);
let e = _mm_setr_epi16(1, 5, 0, 0, 0, 0, 0, 0);
assert_eq_m128i(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_mpsadbw_epu8() {
#[rustfmt::skip]
let a = _mm_setr_epi8(
0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15,
);
let r = _mm_mpsadbw_epu8::<0b000>(a, a);
let e = _mm_setr_epi16(0, 4, 8, 12, 16, 20, 24, 28);
assert_eq_m128i(r, e);
let r = _mm_mpsadbw_epu8::<0b001>(a, a);
let e = _mm_setr_epi16(16, 12, 8, 4, 0, 4, 8, 12);
assert_eq_m128i(r, e);
let r = _mm_mpsadbw_epu8::<0b100>(a, a);
let e = _mm_setr_epi16(16, 20, 24, 28, 32, 36, 40, 44);
assert_eq_m128i(r, e);
let r = _mm_mpsadbw_epu8::<0b101>(a, a);
let e = _mm_setr_epi16(0, 4, 8, 12, 16, 20, 24, 28);
assert_eq_m128i(r, e);
let r = _mm_mpsadbw_epu8::<0b111>(a, a);
let e = _mm_setr_epi16(32, 28, 24, 20, 16, 12, 8, 4);
assert_eq_m128i(r, e);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_testz_si128() {
let a = _mm_set1_epi8(1);
let mask = _mm_set1_epi8(0);
let r = _mm_testz_si128(a, mask);
assert_eq!(r, 1);
let a = _mm_set1_epi8(0b101);
let mask = _mm_set1_epi8(0b110);
let r = _mm_testz_si128(a, mask);
assert_eq!(r, 0);
let a = _mm_set1_epi8(0b011);
let mask = _mm_set1_epi8(0b100);
let r = _mm_testz_si128(a, mask);
assert_eq!(r, 1);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_testc_si128() {
let a = _mm_set1_epi8(-1);
let mask = _mm_set1_epi8(0);
let r = _mm_testc_si128(a, mask);
assert_eq!(r, 1);
let a = _mm_set1_epi8(0b101);
let mask = _mm_set1_epi8(0b110);
let r = _mm_testc_si128(a, mask);
assert_eq!(r, 0);
let a = _mm_set1_epi8(0b101);
let mask = _mm_set1_epi8(0b100);
let r = _mm_testc_si128(a, mask);
assert_eq!(r, 1);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_testnzc_si128() {
let a = _mm_set1_epi8(0);
let mask = _mm_set1_epi8(1);
let r = _mm_testnzc_si128(a, mask);
assert_eq!(r, 0);
let a = _mm_set1_epi8(-1);
let mask = _mm_set1_epi8(0);
let r = _mm_testnzc_si128(a, mask);
assert_eq!(r, 0);
let a = _mm_set1_epi8(0b101);
let mask = _mm_set1_epi8(0b110);
let r = _mm_testnzc_si128(a, mask);
assert_eq!(r, 1);
let a = _mm_set1_epi8(0b101);
let mask = _mm_set1_epi8(0b101);
let r = _mm_testnzc_si128(a, mask);
assert_eq!(r, 0);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_test_all_zeros() {
let a = _mm_set1_epi8(1);
let mask = _mm_set1_epi8(0);
let r = _mm_test_all_zeros(a, mask);
assert_eq!(r, 1);
let a = _mm_set1_epi8(0b101);
let mask = _mm_set1_epi8(0b110);
let r = _mm_test_all_zeros(a, mask);
assert_eq!(r, 0);
let a = _mm_set1_epi8(0b011);
let mask = _mm_set1_epi8(0b100);
let r = _mm_test_all_zeros(a, mask);
assert_eq!(r, 1);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_test_all_ones() {
let a = _mm_set1_epi8(-1);
let r = _mm_test_all_ones(a);
assert_eq!(r, 1);
let a = _mm_set1_epi8(0b101);
let r = _mm_test_all_ones(a);
assert_eq!(r, 0);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_test_mix_ones_zeros() {
let a = _mm_set1_epi8(0);
let mask = _mm_set1_epi8(1);
let r = _mm_test_mix_ones_zeros(a, mask);
assert_eq!(r, 0);
let a = _mm_set1_epi8(-1);
let mask = _mm_set1_epi8(0);
let r = _mm_test_mix_ones_zeros(a, mask);
assert_eq!(r, 0);
let a = _mm_set1_epi8(0b101);
let mask = _mm_set1_epi8(0b110);
let r = _mm_test_mix_ones_zeros(a, mask);
assert_eq!(r, 1);
let a = _mm_set1_epi8(0b101);
let mask = _mm_set1_epi8(0b101);
let r = _mm_test_mix_ones_zeros(a, mask);
assert_eq!(r, 0);
}
#[simd_test(enable = "sse4.1")]
unsafe fn test_mm_stream_load_si128() {
let a = _mm_set_epi64x(5, 6);
let r = _mm_stream_load_si128(core::ptr::addr_of!(a) as *const _);
assert_eq_m128i(a, r);
}
}