1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
//! Vectorized Carry-less Multiplication (VCLMUL)
//!
//! The reference is [Intel 64 and IA-32 Architectures Software Developer's
//! Manual Volume 2: Instruction Set Reference, A-Z][intel64_ref] (p. 4-241).
//!
//! [intel64_ref]: http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf

use crate::core_arch::x86::__m256i;
use crate::core_arch::x86::__m512i;

#[cfg(test)]
use stdarch_test::assert_instr;

#[allow(improper_ctypes)]
extern "C" {
    #[link_name = "llvm.x86.pclmulqdq.256"]
    fn pclmulqdq_256(a: __m256i, round_key: __m256i, imm8: u8) -> __m256i;
    #[link_name = "llvm.x86.pclmulqdq.512"]
    fn pclmulqdq_512(a: __m512i, round_key: __m512i, imm8: u8) -> __m512i;
}

// for some odd reason on x86_64 we generate the correct long name instructions
// but on i686 we generate the short name + imm8
// so we need to special-case on that...

/// Performs a carry-less multiplication of two 64-bit polynomials over the
/// finite field GF(2) - in each of the 4 128-bit lanes.
///
/// The immediate byte is used for determining which halves of each lane `a` and `b`
/// should be used. Immediate bits other than 0 and 4 are ignored.
/// All lanes share immediate byte.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm512_clmulepi64_epi128)
#[inline]
#[target_feature(enable = "vpclmulqdq,avx512f")]
#[unstable(feature = "stdarch_x86_avx512", issue = "111137")]
// technically according to Intel's documentation we don't need avx512f here, however LLVM gets confused otherwise
#[cfg_attr(test, assert_instr(vpclmul, IMM8 = 0))]
#[rustc_legacy_const_generics(2)]
pub unsafe fn _mm512_clmulepi64_epi128<const IMM8: i32>(a: __m512i, b: __m512i) -> __m512i {
    static_assert_uimm_bits!(IMM8, 8);
    pclmulqdq_512(a, b, IMM8 as u8)
}

/// Performs a carry-less multiplication of two 64-bit polynomials over the
/// finite field GF(2) - in each of the 2 128-bit lanes.
///
/// The immediate byte is used for determining which halves of each lane `a` and `b`
/// should be used. Immediate bits other than 0 and 4 are ignored.
/// All lanes share immediate byte.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_clmulepi64_epi128)
#[inline]
#[target_feature(enable = "vpclmulqdq")]
#[unstable(feature = "stdarch_x86_avx512", issue = "111137")]
#[cfg_attr(test, assert_instr(vpclmul, IMM8 = 0))]
#[rustc_legacy_const_generics(2)]
pub unsafe fn _mm256_clmulepi64_epi128<const IMM8: i32>(a: __m256i, b: __m256i) -> __m256i {
    static_assert_uimm_bits!(IMM8, 8);
    pclmulqdq_256(a, b, IMM8 as u8)
}

#[cfg(test)]
mod tests {
    // The constants in the tests below are just bit patterns. They should not
    // be interpreted as integers; signedness does not make sense for them, but
    // __mXXXi happens to be defined in terms of signed integers.
    #![allow(overflowing_literals)]

    use stdarch_test::simd_test;

    use crate::core_arch::x86::*;

    macro_rules! verify_kat_pclmul {
        ($broadcast:ident, $clmul:ident, $assert:ident) => {
            // Constants taken from https://software.intel.com/sites/default/files/managed/72/cc/clmul-wp-rev-2.02-2014-04-20.pdf
         let a = _mm_set_epi64x(0x7b5b546573745665, 0x63746f725d53475d);
         let a = $broadcast(a);
         let b = _mm_set_epi64x(0x4869285368617929, 0x5b477565726f6e5d);
         let b = $broadcast(b);
         let r00 = _mm_set_epi64x(0x1d4d84c85c3440c0, 0x929633d5d36f0451);
         let r00 = $broadcast(r00);
         let r01 = _mm_set_epi64x(0x1bd17c8d556ab5a1, 0x7fa540ac2a281315);
         let r01 = $broadcast(r01);
         let r10 = _mm_set_epi64x(0x1a2bf6db3a30862f, 0xbabf262df4b7d5c9);
         let r10 = $broadcast(r10);
         let r11 = _mm_set_epi64x(0x1d1e1f2c592e7c45, 0xd66ee03e410fd4ed);
         let r11 = $broadcast(r11);

         $assert($clmul::<0x00>(a, b), r00);
         $assert($clmul::<0x10>(a, b), r01);
         $assert($clmul::<0x01>(a, b), r10);
         $assert($clmul::<0x11>(a, b), r11);

         let a0 = _mm_set_epi64x(0x0000000000000000, 0x8000000000000000);
         let a0 = $broadcast(a0);
         let r = _mm_set_epi64x(0x4000000000000000, 0x0000000000000000);
         let r = $broadcast(r);
         $assert($clmul::<0x00>(a0, a0), r);
        }
    }

    macro_rules! unroll {
        ($target:ident[4] = $op:ident::<4>($source:ident);) => {
            $target[3] = $op::<3>($source);
            $target[2] = $op::<2>($source);
            unroll! {$target[2] = $op::<2>($source);}
        };
        ($target:ident[2] = $op:ident::<2>($source:ident);) => {
            $target[1] = $op::<1>($source);
            $target[0] = $op::<0>($source);
        };
        (assert_eq_m128i($op:ident::<4>($vec_res:ident),$lin_res:ident[4]);) => {
            assert_eq_m128i($op::<3>($vec_res), $lin_res[3]);
            assert_eq_m128i($op::<2>($vec_res), $lin_res[2]);
            unroll! {assert_eq_m128i($op::<2>($vec_res),$lin_res[2]);}
        };
        (assert_eq_m128i($op:ident::<2>($vec_res:ident),$lin_res:ident[2]);) => {
            assert_eq_m128i($op::<1>($vec_res), $lin_res[1]);
            assert_eq_m128i($op::<0>($vec_res), $lin_res[0]);
        };
    }

    // this function tests one of the possible 4 instances
    // with different inputs across lanes
    #[target_feature(enable = "vpclmulqdq,avx512f")]
    unsafe fn verify_512_helper(
        linear: unsafe fn(__m128i, __m128i) -> __m128i,
        vectorized: unsafe fn(__m512i, __m512i) -> __m512i,
    ) {
        let a = _mm512_set_epi64(
            0xDCB4DB3657BF0B7D,
            0x18DB0601068EDD9F,
            0xB76B908233200DC5,
            0xE478235FA8E22D5E,
            0xAB05CFFA2621154C,
            0x1171B47A186174C9,
            0x8C6B6C0E7595CEC9,
            0xBE3E7D4934E961BD,
        );
        let b = _mm512_set_epi64(
            0x672F6F105A94CEA7,
            0x8298B8FFCA5F829C,
            0xA3927047B3FB61D8,
            0x978093862CDE7187,
            0xB1927AB22F31D0EC,
            0xA9A5DA619BE4D7AF,
            0xCA2590F56884FDC6,
            0x19BE9F660038BDB5,
        );

        let mut a_decomp = [_mm_setzero_si128(); 4];
        unroll! {a_decomp[4] = _mm512_extracti32x4_epi32::<4>(a);}
        let mut b_decomp = [_mm_setzero_si128(); 4];
        unroll! {b_decomp[4] = _mm512_extracti32x4_epi32::<4>(b);}

        let r = vectorized(a, b);
        let mut e_decomp = [_mm_setzero_si128(); 4];
        for i in 0..4 {
            e_decomp[i] = linear(a_decomp[i], b_decomp[i]);
        }
        unroll! {assert_eq_m128i(_mm512_extracti32x4_epi32::<4>(r),e_decomp[4]);}
    }

    // this function tests one of the possible 4 instances
    // with different inputs across lanes for the VL version
    #[target_feature(enable = "vpclmulqdq,avx512vl")]
    unsafe fn verify_256_helper(
        linear: unsafe fn(__m128i, __m128i) -> __m128i,
        vectorized: unsafe fn(__m256i, __m256i) -> __m256i,
    ) {
        let a = _mm512_set_epi64(
            0xDCB4DB3657BF0B7D,
            0x18DB0601068EDD9F,
            0xB76B908233200DC5,
            0xE478235FA8E22D5E,
            0xAB05CFFA2621154C,
            0x1171B47A186174C9,
            0x8C6B6C0E7595CEC9,
            0xBE3E7D4934E961BD,
        );
        let b = _mm512_set_epi64(
            0x672F6F105A94CEA7,
            0x8298B8FFCA5F829C,
            0xA3927047B3FB61D8,
            0x978093862CDE7187,
            0xB1927AB22F31D0EC,
            0xA9A5DA619BE4D7AF,
            0xCA2590F56884FDC6,
            0x19BE9F660038BDB5,
        );

        let mut a_decomp = [_mm_setzero_si128(); 2];
        unroll! {a_decomp[2] = _mm512_extracti32x4_epi32::<2>(a);}
        let mut b_decomp = [_mm_setzero_si128(); 2];
        unroll! {b_decomp[2] = _mm512_extracti32x4_epi32::<2>(b);}

        let r = vectorized(
            _mm512_extracti64x4_epi64::<0>(a),
            _mm512_extracti64x4_epi64::<0>(b),
        );
        let mut e_decomp = [_mm_setzero_si128(); 2];
        for i in 0..2 {
            e_decomp[i] = linear(a_decomp[i], b_decomp[i]);
        }
        unroll! {assert_eq_m128i(_mm256_extracti128_si256::<2>(r),e_decomp[2]);}
    }

    #[simd_test(enable = "vpclmulqdq,avx512f")]
    unsafe fn test_mm512_clmulepi64_epi128() {
        verify_kat_pclmul!(
            _mm512_broadcast_i32x4,
            _mm512_clmulepi64_epi128,
            assert_eq_m512i
        );

        verify_512_helper(
            |a, b| _mm_clmulepi64_si128::<0x00>(a, b),
            |a, b| _mm512_clmulepi64_epi128::<0x00>(a, b),
        );
        verify_512_helper(
            |a, b| _mm_clmulepi64_si128::<0x01>(a, b),
            |a, b| _mm512_clmulepi64_epi128::<0x01>(a, b),
        );
        verify_512_helper(
            |a, b| _mm_clmulepi64_si128::<0x10>(a, b),
            |a, b| _mm512_clmulepi64_epi128::<0x10>(a, b),
        );
        verify_512_helper(
            |a, b| _mm_clmulepi64_si128::<0x11>(a, b),
            |a, b| _mm512_clmulepi64_epi128::<0x11>(a, b),
        );
    }

    #[simd_test(enable = "vpclmulqdq,avx512vl")]
    unsafe fn test_mm256_clmulepi64_epi128() {
        verify_kat_pclmul!(
            _mm256_broadcastsi128_si256,
            _mm256_clmulepi64_epi128,
            assert_eq_m256i
        );

        verify_256_helper(
            |a, b| _mm_clmulepi64_si128::<0x00>(a, b),
            |a, b| _mm256_clmulepi64_epi128::<0x00>(a, b),
        );
        verify_256_helper(
            |a, b| _mm_clmulepi64_si128::<0x01>(a, b),
            |a, b| _mm256_clmulepi64_epi128::<0x01>(a, b),
        );
        verify_256_helper(
            |a, b| _mm_clmulepi64_si128::<0x10>(a, b),
            |a, b| _mm256_clmulepi64_epi128::<0x10>(a, b),
        );
        verify_256_helper(
            |a, b| _mm_clmulepi64_si128::<0x11>(a, b),
            |a, b| _mm256_clmulepi64_epi128::<0x11>(a, b),
        );
    }
}