1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
//! A pointer type for heap allocation.
//!
//! [`Box<T>`], casually referred to as a 'box', provides the simplest form of
//! heap allocation in Rust. Boxes provide ownership for this allocation, and
//! drop their contents when they go out of scope.
//!
//! # Examples
//!
//! Move a value from the stack to the heap by creating a [`Box`]:
//!
//! ```
//! let val: u8 = 5;
//! let boxed: Box<u8> = Box::new(val);
//! ```
//!
//! Move a value from a [`Box`] back to the stack by [dereferencing]:
//!
//! ```
//! let boxed: Box<u8> = Box::new(5);
//! let val: u8 = *boxed;
//! ```
//!
//! Creating a recursive data structure:
//!
//! ```
//! #[derive(Debug)]
//! enum List<T> {
//!     Cons(T, Box<List<T>>),
//!     Nil,
//! }
//!
//! let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil))));
//! println!("{:?}", list);
//! ```
//!
//! This will print `Cons(1, Cons(2, Nil))`.
//!
//! Recursive structures must be boxed, because if the definition of `Cons`
//! looked like this:
//!
//! ```compile_fail,E0072
//! # enum List<T> {
//! Cons(T, List<T>),
//! # }
//! ```
//!
//! It wouldn't work. This is because the size of a `List` depends on how many
//! elements are in the list, and so we don't know how much memory to allocate
//! for a `Cons`. By introducing a [`Box<T>`], which has a defined size, we know how
//! big `Cons` needs to be.
//!
//! # Memory layout
//!
//! For non-zero-sized values, a [`Box`] will use the [`Global`] allocator for
//! its allocation. It is valid to convert both ways between a [`Box`] and a
//! raw pointer allocated with the [`Global`] allocator, given that the
//! [`Layout`] used with the allocator is correct for the type. More precisely,
//! a `value: *mut T` that has been allocated with the [`Global`] allocator
//! with `Layout::for_value(&*value)` may be converted into a box using
//! [`Box::<T>::from_raw(value)`]. Conversely, the memory backing a `value: *mut
//! T` obtained from [`Box::<T>::into_raw`] may be deallocated using the
//! [`Global`] allocator with [`Layout::for_value(&*value)`].
//!
//! So long as `T: Sized`, a `Box<T>` is guaranteed to be represented
//! as a single pointer and is also ABI-compatible with C pointers
//! (i.e. the C type `T*`). This means that if you have extern "C"
//! Rust functions that will be called from C, you can define those
//! Rust functions using `Box<T>` types, and use `T*` as corresponding
//! type on the C side. As an example, consider this C header which
//! declares functions that create and destroy some kind of `Foo`
//! value:
//!
//! ```c
//! /* C header */
//!
//! /* Returns ownership to the caller */
//! struct Foo* foo_new(void);
//!
//! /* Takes ownership from the caller; no-op when invoked with NULL */
//! void foo_delete(struct Foo*);
//! ```
//!
//! These two functions might be implemented in Rust as follows. Here, the
//! `struct Foo*` type from C is translated to `Box<Foo>`, which captures
//! the ownership constraints. Note also that the nullable argument to
//! `foo_delete` is represented in Rust as `Option<Box<Foo>>`, since `Box<Foo>`
//! cannot be null.
//!
//! ```
//! #[repr(C)]
//! pub struct Foo;
//!
//! #[no_mangle]
//! pub extern "C" fn foo_new() -> Box<Foo> {
//!     Box::new(Foo)
//! }
//!
//! #[no_mangle]
//! pub extern "C" fn foo_delete(_: Option<Box<Foo>>) {}
//! ```
//!
//! Even though `Box<T>` has the same representation and C ABI as a C pointer,
//! this does not mean that you can convert an arbitrary `T*` into a `Box<T>`
//! and expect things to work. `Box<T>` values will always be fully aligned,
//! non-null pointers. Moreover, the destructor for `Box<T>` will attempt to
//! free the value with the global allocator. In general, the best practice
//! is to only use `Box<T>` for pointers that originated from the global
//! allocator.
//!
//! **Important.** At least at present, you should avoid using
//! `Box<T>` types for functions that are defined in C but invoked
//! from Rust. In those cases, you should directly mirror the C types
//! as closely as possible. Using types like `Box<T>` where the C
//! definition is just using `T*` can lead to undefined behavior, as
//! described in [rust-lang/unsafe-code-guidelines#198][ucg#198].
//!
//! [ucg#198]: https://github.com/rust-lang/unsafe-code-guidelines/issues/198
//! [dereferencing]: ../../std/ops/trait.Deref.html
//! [`Box`]: struct.Box.html
//! [`Box<T>`]: struct.Box.html
//! [`Box::<T>::from_raw(value)`]: struct.Box.html#method.from_raw
//! [`Box::<T>::into_raw`]: struct.Box.html#method.into_raw
//! [`Global`]: ../alloc/struct.Global.html
//! [`Layout`]: ../alloc/struct.Layout.html
//! [`Layout::for_value(&*value)`]: ../alloc/struct.Layout.html#method.for_value

#![stable(feature = "rust1", since = "1.0.0")]

use core::any::Any;
use core::array::LengthAtMost32;
use core::borrow;
use core::cmp::Ordering;
use core::convert::{From, TryFrom};
use core::fmt;
use core::future::Future;
use core::hash::{Hash, Hasher};
use core::iter::{Iterator, FromIterator, FusedIterator};
use core::marker::{Unpin, Unsize};
use core::mem;
use core::pin::Pin;
use core::ops::{
    CoerceUnsized, DispatchFromDyn, Deref, DerefMut, Receiver, Generator, GeneratorState
};
use core::ptr::{self, NonNull, Unique};
use core::slice;
use core::task::{Context, Poll};

use crate::alloc::{self, Global, Alloc};
use crate::vec::Vec;
use crate::raw_vec::RawVec;
use crate::str::from_boxed_utf8_unchecked;

/// A pointer type for heap allocation.
///
/// See the [module-level documentation](../../std/boxed/index.html) for more.
#[lang = "owned_box"]
#[fundamental]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Box<T: ?Sized>(Unique<T>);

impl<T> Box<T> {
    /// Allocates memory on the heap and then places `x` into it.
    ///
    /// This doesn't actually allocate if `T` is zero-sized.
    ///
    /// # Examples
    ///
    /// ```
    /// let five = Box::new(5);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline(always)]
    pub fn new(x: T) -> Box<T> {
        box x
    }

    /// Constructs a new box with uninitialized contents.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(new_uninit)]
    ///
    /// let mut five = Box::<u32>::new_uninit();
    ///
    /// let five = unsafe {
    ///     // Deferred initialization:
    ///     five.as_mut_ptr().write(5);
    ///
    ///     five.assume_init()
    /// };
    ///
    /// assert_eq!(*five, 5)
    /// ```
    #[unstable(feature = "new_uninit", issue = "63291")]
    pub fn new_uninit() -> Box<mem::MaybeUninit<T>> {
        let layout = alloc::Layout::new::<mem::MaybeUninit<T>>();
        if layout.size() == 0 {
            return Box(NonNull::dangling().into())
        }
        let ptr = unsafe {
            Global.alloc(layout)
                .unwrap_or_else(|_| alloc::handle_alloc_error(layout))
        };
        Box(ptr.cast().into())
    }

    /// Constructs a new `Box` with uninitialized contents, with the memory
    /// being filled with `0` bytes.
    ///
    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
    /// of this method.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(new_uninit)]
    ///
    /// let zero = Box::<u32>::new_zeroed();
    /// let zero = unsafe { zero.assume_init() };
    ///
    /// assert_eq!(*zero, 0)
    /// ```
    ///
    /// [zeroed]: ../../std/mem/union.MaybeUninit.html#method.zeroed
    #[unstable(feature = "new_uninit", issue = "63291")]
    pub fn new_zeroed() -> Box<mem::MaybeUninit<T>> {
        unsafe {
            let mut uninit = Self::new_uninit();
            ptr::write_bytes::<T>(uninit.as_mut_ptr(), 0, 1);
            uninit
        }
    }

    /// Constructs a new `Pin<Box<T>>`. If `T` does not implement `Unpin`, then
    /// `x` will be pinned in memory and unable to be moved.
    #[stable(feature = "pin", since = "1.33.0")]
    #[inline(always)]
    pub fn pin(x: T) -> Pin<Box<T>> {
        (box x).into()
    }
}

impl<T> Box<[T]> {
    /// Constructs a new boxed slice with uninitialized contents.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(new_uninit)]
    ///
    /// let mut values = Box::<[u32]>::new_uninit_slice(3);
    ///
    /// let values = unsafe {
    ///     // Deferred initialization:
    ///     values[0].as_mut_ptr().write(1);
    ///     values[1].as_mut_ptr().write(2);
    ///     values[2].as_mut_ptr().write(3);
    ///
    ///     values.assume_init()
    /// };
    ///
    /// assert_eq!(*values, [1, 2, 3])
    /// ```
    #[unstable(feature = "new_uninit", issue = "63291")]
    pub fn new_uninit_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> {
        let layout = alloc::Layout::array::<mem::MaybeUninit<T>>(len).unwrap();
        let ptr = if layout.size() == 0 {
            NonNull::dangling()
        } else {
            unsafe {
                Global.alloc(layout)
                    .unwrap_or_else(|_| alloc::handle_alloc_error(layout))
                    .cast()
            }
        };
        let slice = unsafe { slice::from_raw_parts_mut(ptr.as_ptr(), len) };
        Box(Unique::from(slice))
    }
}

impl<T> Box<mem::MaybeUninit<T>> {
    /// Converts to `Box<T>`.
    ///
    /// # Safety
    ///
    /// As with [`MaybeUninit::assume_init`],
    /// it is up to the caller to guarantee that the value
    /// really is in an initialized state.
    /// Calling this when the content is not yet fully initialized
    /// causes immediate undefined behavior.
    ///
    /// [`MaybeUninit::assume_init`]: ../../std/mem/union.MaybeUninit.html#method.assume_init
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(new_uninit)]
    ///
    /// let mut five = Box::<u32>::new_uninit();
    ///
    /// let five: Box<u32> = unsafe {
    ///     // Deferred initialization:
    ///     five.as_mut_ptr().write(5);
    ///
    ///     five.assume_init()
    /// };
    ///
    /// assert_eq!(*five, 5)
    /// ```
    #[unstable(feature = "new_uninit", issue = "63291")]
    #[inline]
    pub unsafe fn assume_init(self) -> Box<T> {
        Box(Box::into_unique(self).cast())
    }
}

impl<T> Box<[mem::MaybeUninit<T>]> {
    /// Converts to `Box<[T]>`.
    ///
    /// # Safety
    ///
    /// As with [`MaybeUninit::assume_init`],
    /// it is up to the caller to guarantee that the values
    /// really are in an initialized state.
    /// Calling this when the content is not yet fully initialized
    /// causes immediate undefined behavior.
    ///
    /// [`MaybeUninit::assume_init`]: ../../std/mem/union.MaybeUninit.html#method.assume_init
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(new_uninit)]
    ///
    /// let mut values = Box::<[u32]>::new_uninit_slice(3);
    ///
    /// let values = unsafe {
    ///     // Deferred initialization:
    ///     values[0].as_mut_ptr().write(1);
    ///     values[1].as_mut_ptr().write(2);
    ///     values[2].as_mut_ptr().write(3);
    ///
    ///     values.assume_init()
    /// };
    ///
    /// assert_eq!(*values, [1, 2, 3])
    /// ```
    #[unstable(feature = "new_uninit", issue = "63291")]
    #[inline]
    pub unsafe fn assume_init(self) -> Box<[T]> {
        Box(Unique::new_unchecked(Box::into_raw(self) as _))
    }
}

impl<T: ?Sized> Box<T> {
    /// Constructs a box from a raw pointer.
    ///
    /// After calling this function, the raw pointer is owned by the
    /// resulting `Box`. Specifically, the `Box` destructor will call
    /// the destructor of `T` and free the allocated memory. For this
    /// to be safe, the memory must have been allocated in accordance
    /// with the [memory layout] used by `Box` .
    ///
    /// # Safety
    ///
    /// This function is unsafe because improper use may lead to
    /// memory problems. For example, a double-free may occur if the
    /// function is called twice on the same raw pointer.
    ///
    /// # Examples
    /// Recreate a `Box` which was previously converted to a raw pointer
    /// using [`Box::into_raw`]:
    /// ```
    /// let x = Box::new(5);
    /// let ptr = Box::into_raw(x);
    /// let x = unsafe { Box::from_raw(ptr) };
    /// ```
    /// Manually create a `Box` from scratch by using the global allocator:
    /// ```
    /// use std::alloc::{alloc, Layout};
    ///
    /// unsafe {
    ///     let ptr = alloc(Layout::new::<i32>()) as *mut i32;
    ///     *ptr = 5;
    ///     let x = Box::from_raw(ptr);
    /// }
    /// ```
    ///
    /// [memory layout]: index.html#memory-layout
    /// [`Layout`]: ../alloc/struct.Layout.html
    /// [`Box::into_raw`]: struct.Box.html#method.into_raw
    #[stable(feature = "box_raw", since = "1.4.0")]
    #[inline]
    pub unsafe fn from_raw(raw: *mut T) -> Self {
        Box(Unique::new_unchecked(raw))
    }

    /// Consumes the `Box`, returning a wrapped raw pointer.
    ///
    /// The pointer will be properly aligned and non-null.
    ///
    /// After calling this function, the caller is responsible for the
    /// memory previously managed by the `Box`. In particular, the
    /// caller should properly destroy `T` and release the memory, taking
    /// into account the [memory layout] used by `Box`. The easiest way to
    /// do this is to convert the raw pointer back into a `Box` with the
    /// [`Box::from_raw`] function, allowing the `Box` destructor to perform
    /// the cleanup.
    ///
    /// Note: this is an associated function, which means that you have
    /// to call it as `Box::into_raw(b)` instead of `b.into_raw()`. This
    /// is so that there is no conflict with a method on the inner type.
    ///
    /// # Examples
    /// Converting the raw pointer back into a `Box` with [`Box::from_raw`]
    /// for automatic cleanup:
    /// ```
    /// let x = Box::new(String::from("Hello"));
    /// let ptr = Box::into_raw(x);
    /// let x = unsafe { Box::from_raw(ptr) };
    /// ```
    /// Manual cleanup by explicitly running the destructor and deallocating
    /// the memory:
    /// ```
    /// use std::alloc::{dealloc, Layout};
    /// use std::ptr;
    ///
    /// let x = Box::new(String::from("Hello"));
    /// let p = Box::into_raw(x);
    /// unsafe {
    ///     ptr::drop_in_place(p);
    ///     dealloc(p as *mut u8, Layout::new::<String>());
    /// }
    /// ```
    ///
    /// [memory layout]: index.html#memory-layout
    /// [`Box::from_raw`]: struct.Box.html#method.from_raw
    #[stable(feature = "box_raw", since = "1.4.0")]
    #[inline]
    pub fn into_raw(b: Box<T>) -> *mut T {
        Box::into_raw_non_null(b).as_ptr()
    }

    /// Consumes the `Box`, returning the wrapped pointer as `NonNull<T>`.
    ///
    /// After calling this function, the caller is responsible for the
    /// memory previously managed by the `Box`. In particular, the
    /// caller should properly destroy `T` and release the memory. The
    /// easiest way to do so is to convert the `NonNull<T>` pointer
    /// into a raw pointer and back into a `Box` with the [`Box::from_raw`]
    /// function.
    ///
    /// Note: this is an associated function, which means that you have
    /// to call it as `Box::into_raw_non_null(b)`
    /// instead of `b.into_raw_non_null()`. This
    /// is so that there is no conflict with a method on the inner type.
    ///
    /// [`Box::from_raw`]: struct.Box.html#method.from_raw
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(box_into_raw_non_null)]
    ///
    /// let x = Box::new(5);
    /// let ptr = Box::into_raw_non_null(x);
    ///
    /// // Clean up the memory by converting the NonNull pointer back
    /// // into a Box and letting the Box be dropped.
    /// let x = unsafe { Box::from_raw(ptr.as_ptr()) };
    /// ```
    #[unstable(feature = "box_into_raw_non_null", issue = "47336")]
    #[inline]
    pub fn into_raw_non_null(b: Box<T>) -> NonNull<T> {
        Box::into_unique(b).into()
    }

    #[unstable(feature = "ptr_internals", issue = "0", reason = "use into_raw_non_null instead")]
    #[inline]
    #[doc(hidden)]
    pub fn into_unique(b: Box<T>) -> Unique<T> {
        let mut unique = b.0;
        mem::forget(b);
        // Box is kind-of a library type, but recognized as a "unique pointer" by
        // Stacked Borrows.  This function here corresponds to "reborrowing to
        // a raw pointer", but there is no actual reborrow here -- so
        // without some care, the pointer we are returning here still carries
        // the tag of `b`, with `Unique` permission.
        // We round-trip through a mutable reference to avoid that.
        unsafe { Unique::new_unchecked(unique.as_mut() as *mut T) }
    }

    /// Consumes and leaks the `Box`, returning a mutable reference,
    /// `&'a mut T`. Note that the type `T` must outlive the chosen lifetime
    /// `'a`. If the type has only static references, or none at all, then this
    /// may be chosen to be `'static`.
    ///
    /// This function is mainly useful for data that lives for the remainder of
    /// the program's life. Dropping the returned reference will cause a memory
    /// leak. If this is not acceptable, the reference should first be wrapped
    /// with the [`Box::from_raw`] function producing a `Box`. This `Box` can
    /// then be dropped which will properly destroy `T` and release the
    /// allocated memory.
    ///
    /// Note: this is an associated function, which means that you have
    /// to call it as `Box::leak(b)` instead of `b.leak()`. This
    /// is so that there is no conflict with a method on the inner type.
    ///
    /// [`Box::from_raw`]: struct.Box.html#method.from_raw
    ///
    /// # Examples
    ///
    /// Simple usage:
    ///
    /// ```
    /// let x = Box::new(41);
    /// let static_ref: &'static mut usize = Box::leak(x);
    /// *static_ref += 1;
    /// assert_eq!(*static_ref, 42);
    /// ```
    ///
    /// Unsized data:
    ///
    /// ```
    /// let x = vec![1, 2, 3].into_boxed_slice();
    /// let static_ref = Box::leak(x);
    /// static_ref[0] = 4;
    /// assert_eq!(*static_ref, [4, 2, 3]);
    /// ```
    #[stable(feature = "box_leak", since = "1.26.0")]
    #[inline]
    pub fn leak<'a>(b: Box<T>) -> &'a mut T
    where
        T: 'a // Technically not needed, but kept to be explicit.
    {
        unsafe { &mut *Box::into_raw(b) }
    }

    /// Converts a `Box<T>` into a `Pin<Box<T>>`
    ///
    /// This conversion does not allocate on the heap and happens in place.
    ///
    /// This is also available via [`From`].
    #[unstable(feature = "box_into_pin", issue = "62370")]
    pub fn into_pin(boxed: Box<T>) -> Pin<Box<T>> {
        // It's not possible to move or replace the insides of a `Pin<Box<T>>`
        // when `T: !Unpin`,  so it's safe to pin it directly without any
        // additional requirements.
        unsafe { Pin::new_unchecked(boxed) }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<#[may_dangle] T: ?Sized> Drop for Box<T> {
    fn drop(&mut self) {
        // FIXME: Do nothing, drop is currently performed by compiler.
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Default> Default for Box<T> {
    /// Creates a `Box<T>`, with the `Default` value for T.
    fn default() -> Box<T> {
        box Default::default()
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Default for Box<[T]> {
    fn default() -> Box<[T]> {
        Box::<[T; 0]>::new([])
    }
}

#[stable(feature = "default_box_extra", since = "1.17.0")]
impl Default for Box<str> {
    fn default() -> Box<str> {
        unsafe { from_boxed_utf8_unchecked(Default::default()) }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Clone> Clone for Box<T> {
    /// Returns a new box with a `clone()` of this box's contents.
    ///
    /// # Examples
    ///
    /// ```
    /// let x = Box::new(5);
    /// let y = x.clone();
    ///
    /// // The value is the same
    /// assert_eq!(x, y);
    ///
    /// // But they are unique objects
    /// assert_ne!(&*x as *const i32, &*y as *const i32);
    /// ```
    #[rustfmt::skip]
    #[inline]
    fn clone(&self) -> Box<T> {
        box { (**self).clone() }
    }

    /// Copies `source`'s contents into `self` without creating a new allocation.
    ///
    /// # Examples
    ///
    /// ```
    /// let x = Box::new(5);
    /// let mut y = Box::new(10);
    /// let yp: *const i32 = &*y;
    ///
    /// y.clone_from(&x);
    ///
    /// // The value is the same
    /// assert_eq!(x, y);
    ///
    /// // And no allocation occurred
    /// assert_eq!(yp, &*y);
    /// ```
    #[inline]
    fn clone_from(&mut self, source: &Box<T>) {
        (**self).clone_from(&(**source));
    }
}


#[stable(feature = "box_slice_clone", since = "1.3.0")]
impl Clone for Box<str> {
    fn clone(&self) -> Self {
        // this makes a copy of the data
        let buf: Box<[u8]> = self.as_bytes().into();
        unsafe {
            from_boxed_utf8_unchecked(buf)
        }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + PartialEq> PartialEq for Box<T> {
    #[inline]
    fn eq(&self, other: &Box<T>) -> bool {
        PartialEq::eq(&**self, &**other)
    }
    #[inline]
    fn ne(&self, other: &Box<T>) -> bool {
        PartialEq::ne(&**self, &**other)
    }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + PartialOrd> PartialOrd for Box<T> {
    #[inline]
    fn partial_cmp(&self, other: &Box<T>) -> Option<Ordering> {
        PartialOrd::partial_cmp(&**self, &**other)
    }
    #[inline]
    fn lt(&self, other: &Box<T>) -> bool {
        PartialOrd::lt(&**self, &**other)
    }
    #[inline]
    fn le(&self, other: &Box<T>) -> bool {
        PartialOrd::le(&**self, &**other)
    }
    #[inline]
    fn ge(&self, other: &Box<T>) -> bool {
        PartialOrd::ge(&**self, &**other)
    }
    #[inline]
    fn gt(&self, other: &Box<T>) -> bool {
        PartialOrd::gt(&**self, &**other)
    }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Ord> Ord for Box<T> {
    #[inline]
    fn cmp(&self, other: &Box<T>) -> Ordering {
        Ord::cmp(&**self, &**other)
    }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Eq> Eq for Box<T> {}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Hash> Hash for Box<T> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        (**self).hash(state);
    }
}

#[stable(feature = "indirect_hasher_impl", since = "1.22.0")]
impl<T: ?Sized + Hasher> Hasher for Box<T> {
    fn finish(&self) -> u64 {
        (**self).finish()
    }
    fn write(&mut self, bytes: &[u8]) {
        (**self).write(bytes)
    }
    fn write_u8(&mut self, i: u8) {
        (**self).write_u8(i)
    }
    fn write_u16(&mut self, i: u16) {
        (**self).write_u16(i)
    }
    fn write_u32(&mut self, i: u32) {
        (**self).write_u32(i)
    }
    fn write_u64(&mut self, i: u64) {
        (**self).write_u64(i)
    }
    fn write_u128(&mut self, i: u128) {
        (**self).write_u128(i)
    }
    fn write_usize(&mut self, i: usize) {
        (**self).write_usize(i)
    }
    fn write_i8(&mut self, i: i8) {
        (**self).write_i8(i)
    }
    fn write_i16(&mut self, i: i16) {
        (**self).write_i16(i)
    }
    fn write_i32(&mut self, i: i32) {
        (**self).write_i32(i)
    }
    fn write_i64(&mut self, i: i64) {
        (**self).write_i64(i)
    }
    fn write_i128(&mut self, i: i128) {
        (**self).write_i128(i)
    }
    fn write_isize(&mut self, i: isize) {
        (**self).write_isize(i)
    }
}

#[stable(feature = "from_for_ptrs", since = "1.6.0")]
impl<T> From<T> for Box<T> {
    /// Converts a generic type `T` into a `Box<T>`
    ///
    /// The conversion allocates on the heap and moves `t`
    /// from the stack into it.
    ///
    /// # Examples
    /// ```rust
    /// let x = 5;
    /// let boxed = Box::new(5);
    ///
    /// assert_eq!(Box::from(x), boxed);
    /// ```
    fn from(t: T) -> Self {
        Box::new(t)
    }
}

#[stable(feature = "pin", since = "1.33.0")]
impl<T: ?Sized> From<Box<T>> for Pin<Box<T>> {
    /// Converts a `Box<T>` into a `Pin<Box<T>>`
    ///
    /// This conversion does not allocate on the heap and happens in place.
    fn from(boxed: Box<T>) -> Self {
        Box::into_pin(boxed)
    }
}

#[stable(feature = "box_from_slice", since = "1.17.0")]
impl<T: Copy> From<&[T]> for Box<[T]> {
    /// Converts a `&[T]` into a `Box<[T]>`
    ///
    /// This conversion allocates on the heap
    /// and performs a copy of `slice`.
    ///
    /// # Examples
    /// ```rust
    /// // create a &[u8] which will be used to create a Box<[u8]>
    /// let slice: &[u8] = &[104, 101, 108, 108, 111];
    /// let boxed_slice: Box<[u8]> = Box::from(slice);
    ///
    /// println!("{:?}", boxed_slice);
    /// ```
    fn from(slice: &[T]) -> Box<[T]> {
        let len = slice.len();
        let buf = RawVec::with_capacity(len);
        unsafe {
            ptr::copy_nonoverlapping(slice.as_ptr(), buf.ptr(), len);
            buf.into_box()
        }
    }
}

#[stable(feature = "box_from_slice", since = "1.17.0")]
impl From<&str> for Box<str> {
    /// Converts a `&str` into a `Box<str>`
    ///
    /// This conversion allocates on the heap
    /// and performs a copy of `s`.
    ///
    /// # Examples
    /// ```rust
    /// let boxed: Box<str> = Box::from("hello");
    /// println!("{}", boxed);
    /// ```
    #[inline]
    fn from(s: &str) -> Box<str> {
        unsafe { from_boxed_utf8_unchecked(Box::from(s.as_bytes())) }
    }
}

#[stable(feature = "boxed_str_conv", since = "1.19.0")]
impl From<Box<str>> for Box<[u8]> {
    /// Converts a `Box<str>>` into a `Box<[u8]>`
    ///
    /// This conversion does not allocate on the heap and happens in place.
    ///
    /// # Examples
    /// ```rust
    /// // create a Box<str> which will be used to create a Box<[u8]>
    /// let boxed: Box<str> = Box::from("hello");
    /// let boxed_str: Box<[u8]> = Box::from(boxed);
    ///
    /// // create a &[u8] which will be used to create a Box<[u8]>
    /// let slice: &[u8] = &[104, 101, 108, 108, 111];
    /// let boxed_slice = Box::from(slice);
    ///
    /// assert_eq!(boxed_slice, boxed_str);
    /// ```
    #[inline]
    fn from(s: Box<str>) -> Self {
        unsafe { Box::from_raw(Box::into_raw(s) as *mut [u8]) }
    }
}

#[unstable(feature = "boxed_slice_try_from", issue = "0")]
impl<T, const N: usize> TryFrom<Box<[T]>> for Box<[T; N]>
where
    [T; N]: LengthAtMost32,
{
    type Error = Box<[T]>;

    fn try_from(boxed_slice: Box<[T]>) -> Result<Self, Self::Error> {
        if boxed_slice.len() == N {
            Ok(unsafe { Box::from_raw(Box::into_raw(boxed_slice) as *mut [T; N]) })
        } else {
            Err(boxed_slice)
        }
    }
}

impl Box<dyn Any> {
    #[inline]
    #[stable(feature = "rust1", since = "1.0.0")]
    /// Attempt to downcast the box to a concrete type.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::any::Any;
    ///
    /// fn print_if_string(value: Box<dyn Any>) {
    ///     if let Ok(string) = value.downcast::<String>() {
    ///         println!("String ({}): {}", string.len(), string);
    ///     }
    /// }
    ///
    /// let my_string = "Hello World".to_string();
    /// print_if_string(Box::new(my_string));
    /// print_if_string(Box::new(0i8));
    /// ```
    pub fn downcast<T: Any>(self) -> Result<Box<T>, Box<dyn Any>> {
        if self.is::<T>() {
            unsafe {
                let raw: *mut dyn Any = Box::into_raw(self);
                Ok(Box::from_raw(raw as *mut T))
            }
        } else {
            Err(self)
        }
    }
}

impl Box<dyn Any + Send> {
    #[inline]
    #[stable(feature = "rust1", since = "1.0.0")]
    /// Attempt to downcast the box to a concrete type.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::any::Any;
    ///
    /// fn print_if_string(value: Box<dyn Any + Send>) {
    ///     if let Ok(string) = value.downcast::<String>() {
    ///         println!("String ({}): {}", string.len(), string);
    ///     }
    /// }
    ///
    /// let my_string = "Hello World".to_string();
    /// print_if_string(Box::new(my_string));
    /// print_if_string(Box::new(0i8));
    /// ```
    pub fn downcast<T: Any>(self) -> Result<Box<T>, Box<dyn Any + Send>> {
        <Box<dyn Any>>::downcast(self).map_err(|s| unsafe {
            // reapply the Send marker
            Box::from_raw(Box::into_raw(s) as *mut (dyn Any + Send))
        })
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: fmt::Display + ?Sized> fmt::Display for Box<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Display::fmt(&**self, f)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: fmt::Debug + ?Sized> fmt::Debug for Box<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> fmt::Pointer for Box<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        // It's not possible to extract the inner Uniq directly from the Box,
        // instead we cast it to a *const which aliases the Unique
        let ptr: *const T = &**self;
        fmt::Pointer::fmt(&ptr, f)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Deref for Box<T> {
    type Target = T;

    fn deref(&self) -> &T {
        &**self
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> DerefMut for Box<T> {
    fn deref_mut(&mut self) -> &mut T {
        &mut **self
    }
}

#[unstable(feature = "receiver_trait", issue = "0")]
impl<T: ?Sized> Receiver for Box<T> {}

#[stable(feature = "rust1", since = "1.0.0")]
impl<I: Iterator + ?Sized> Iterator for Box<I> {
    type Item = I::Item;
    fn next(&mut self) -> Option<I::Item> {
        (**self).next()
    }
    fn size_hint(&self) -> (usize, Option<usize>) {
        (**self).size_hint()
    }
    fn nth(&mut self, n: usize) -> Option<I::Item> {
        (**self).nth(n)
    }
    fn last(self) -> Option<I::Item> {
        BoxIter::last(self)
    }
}

trait BoxIter {
    type Item;
    fn last(self) -> Option<Self::Item>;
}

impl<I: Iterator + ?Sized> BoxIter for Box<I> {
    type Item = I::Item;
    default fn last(self) -> Option<I::Item> {
        #[inline]
        fn some<T>(_: Option<T>, x: T) -> Option<T> {
            Some(x)
        }

        self.fold(None, some)
    }
}

/// Specialization for sized `I`s that uses `I`s implementation of `last()`
/// instead of the default.
#[stable(feature = "rust1", since = "1.0.0")]
impl<I: Iterator> BoxIter for Box<I> {
    fn last(self) -> Option<I::Item> {
        (*self).last()
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<I: DoubleEndedIterator + ?Sized> DoubleEndedIterator for Box<I> {
    fn next_back(&mut self) -> Option<I::Item> {
        (**self).next_back()
    }
    fn nth_back(&mut self, n: usize) -> Option<I::Item> {
        (**self).nth_back(n)
    }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<I: ExactSizeIterator + ?Sized> ExactSizeIterator for Box<I> {
    fn len(&self) -> usize {
        (**self).len()
    }
    fn is_empty(&self) -> bool {
        (**self).is_empty()
    }
}

#[stable(feature = "fused", since = "1.26.0")]
impl<I: FusedIterator + ?Sized> FusedIterator for Box<I> {}

#[stable(feature = "boxed_closure_impls", since = "1.35.0")]
impl<A, F: FnOnce<A> + ?Sized> FnOnce<A> for Box<F> {
    type Output = <F as FnOnce<A>>::Output;

    extern "rust-call" fn call_once(self, args: A) -> Self::Output {
        <F as FnOnce<A>>::call_once(*self, args)
    }
}

#[stable(feature = "boxed_closure_impls", since = "1.35.0")]
impl<A, F: FnMut<A> + ?Sized> FnMut<A> for Box<F> {
    extern "rust-call" fn call_mut(&mut self, args: A) -> Self::Output {
        <F as FnMut<A>>::call_mut(self, args)
    }
}

#[stable(feature = "boxed_closure_impls", since = "1.35.0")]
impl<A, F: Fn<A> + ?Sized> Fn<A> for Box<F> {
    extern "rust-call" fn call(&self, args: A) -> Self::Output {
        <F as Fn<A>>::call(self, args)
    }
}

#[unstable(feature = "coerce_unsized", issue = "27732")]
impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Box<U>> for Box<T> {}

#[unstable(feature = "dispatch_from_dyn", issue = "0")]
impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Box<U>> for Box<T> {}

#[stable(feature = "boxed_slice_from_iter", since = "1.32.0")]
impl<A> FromIterator<A> for Box<[A]> {
    fn from_iter<T: IntoIterator<Item = A>>(iter: T) -> Self {
        iter.into_iter().collect::<Vec<_>>().into_boxed_slice()
    }
}

#[stable(feature = "box_slice_clone", since = "1.3.0")]
impl<T: Clone> Clone for Box<[T]> {
    fn clone(&self) -> Self {
        let mut new = BoxBuilder {
            data: RawVec::with_capacity(self.len()),
            len: 0,
        };

        let mut target = new.data.ptr();

        for item in self.iter() {
            unsafe {
                ptr::write(target, item.clone());
                target = target.offset(1);
            };

            new.len += 1;
        }

        return unsafe { new.into_box() };

        // Helper type for responding to panics correctly.
        struct BoxBuilder<T> {
            data: RawVec<T>,
            len: usize,
        }

        impl<T> BoxBuilder<T> {
            unsafe fn into_box(self) -> Box<[T]> {
                let raw = ptr::read(&self.data);
                mem::forget(self);
                raw.into_box()
            }
        }

        impl<T> Drop for BoxBuilder<T> {
            fn drop(&mut self) {
                let mut data = self.data.ptr();
                let max = unsafe { data.add(self.len) };

                while data != max {
                    unsafe {
                        ptr::read(data);
                        data = data.offset(1);
                    }
                }
            }
        }
    }
}

#[stable(feature = "box_borrow", since = "1.1.0")]
impl<T: ?Sized> borrow::Borrow<T> for Box<T> {
    fn borrow(&self) -> &T {
        &**self
    }
}

#[stable(feature = "box_borrow", since = "1.1.0")]
impl<T: ?Sized> borrow::BorrowMut<T> for Box<T> {
    fn borrow_mut(&mut self) -> &mut T {
        &mut **self
    }
}

#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
impl<T: ?Sized> AsRef<T> for Box<T> {
    fn as_ref(&self) -> &T {
        &**self
    }
}

#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
impl<T: ?Sized> AsMut<T> for Box<T> {
    fn as_mut(&mut self) -> &mut T {
        &mut **self
    }
}

/* Nota bene
 *
 *  We could have chosen not to add this impl, and instead have written a
 *  function of Pin<Box<T>> to Pin<T>. Such a function would not be sound,
 *  because Box<T> implements Unpin even when T does not, as a result of
 *  this impl.
 *
 *  We chose this API instead of the alternative for a few reasons:
 *      - Logically, it is helpful to understand pinning in regard to the
 *        memory region being pointed to. For this reason none of the
 *        standard library pointer types support projecting through a pin
 *        (Box<T> is the only pointer type in std for which this would be
 *        safe.)
 *      - It is in practice very useful to have Box<T> be unconditionally
 *        Unpin because of trait objects, for which the structural auto
 *        trait functionality does not apply (e.g., Box<dyn Foo> would
 *        otherwise not be Unpin).
 *
 *  Another type with the same semantics as Box but only a conditional
 *  implementation of `Unpin` (where `T: Unpin`) would be valid/safe, and
 *  could have a method to project a Pin<T> from it.
 */
#[stable(feature = "pin", since = "1.33.0")]
impl<T: ?Sized> Unpin for Box<T> { }

#[unstable(feature = "generator_trait", issue = "43122")]
impl<G: ?Sized + Generator + Unpin> Generator for Box<G> {
    type Yield = G::Yield;
    type Return = G::Return;

    fn resume(mut self: Pin<&mut Self>) -> GeneratorState<Self::Yield, Self::Return> {
        G::resume(Pin::new(&mut *self))
    }
}

#[unstable(feature = "generator_trait", issue = "43122")]
impl<G: ?Sized + Generator> Generator for Pin<Box<G>> {
    type Yield = G::Yield;
    type Return = G::Return;

    fn resume(mut self: Pin<&mut Self>) -> GeneratorState<Self::Yield, Self::Return> {
        G::resume((*self).as_mut())
    }
}

#[stable(feature = "futures_api", since = "1.36.0")]
impl<F: ?Sized + Future + Unpin> Future for Box<F> {
    type Output = F::Output;

    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        F::poll(Pin::new(&mut *self), cx)
    }
}