alloc/
boxed.rs

1//! The `Box<T>` type for heap allocation.
2//!
3//! [`Box<T>`], casually referred to as a 'box', provides the simplest form of
4//! heap allocation in Rust. Boxes provide ownership for this allocation, and
5//! drop their contents when they go out of scope. Boxes also ensure that they
6//! never allocate more than `isize::MAX` bytes.
7//!
8//! # Examples
9//!
10//! Move a value from the stack to the heap by creating a [`Box`]:
11//!
12//! ```
13//! let val: u8 = 5;
14//! let boxed: Box<u8> = Box::new(val);
15//! ```
16//!
17//! Move a value from a [`Box`] back to the stack by [dereferencing]:
18//!
19//! ```
20//! let boxed: Box<u8> = Box::new(5);
21//! let val: u8 = *boxed;
22//! ```
23//!
24//! Creating a recursive data structure:
25//!
26//! ```
27//! # #[allow(dead_code)]
28//! #[derive(Debug)]
29//! enum List<T> {
30//!     Cons(T, Box<List<T>>),
31//!     Nil,
32//! }
33//!
34//! let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil))));
35//! println!("{list:?}");
36//! ```
37//!
38//! This will print `Cons(1, Cons(2, Nil))`.
39//!
40//! Recursive structures must be boxed, because if the definition of `Cons`
41//! looked like this:
42//!
43//! ```compile_fail,E0072
44//! # enum List<T> {
45//! Cons(T, List<T>),
46//! # }
47//! ```
48//!
49//! It wouldn't work. This is because the size of a `List` depends on how many
50//! elements are in the list, and so we don't know how much memory to allocate
51//! for a `Cons`. By introducing a [`Box<T>`], which has a defined size, we know how
52//! big `Cons` needs to be.
53//!
54//! # Memory layout
55//!
56//! For non-zero-sized values, a [`Box`] will use the [`Global`] allocator for its allocation. It is
57//! valid to convert both ways between a [`Box`] and a raw pointer allocated with the [`Global`]
58//! allocator, given that the [`Layout`] used with the allocator is correct for the type and the raw
59//! pointer points to a valid value of the right type. More precisely, a `value: *mut T` that has
60//! been allocated with the [`Global`] allocator with `Layout::for_value(&*value)` may be converted
61//! into a box using [`Box::<T>::from_raw(value)`]. Conversely, the memory backing a `value: *mut T`
62//! obtained from [`Box::<T>::into_raw`] may be deallocated using the [`Global`] allocator with
63//! [`Layout::for_value(&*value)`].
64//!
65//! For zero-sized values, the `Box` pointer has to be non-null and sufficiently aligned. The
66//! recommended way to build a Box to a ZST if `Box::new` cannot be used is to use
67//! [`ptr::NonNull::dangling`].
68//!
69//! On top of these basic layout requirements, a `Box<T>` must point to a valid value of `T`.
70//!
71//! So long as `T: Sized`, a `Box<T>` is guaranteed to be represented
72//! as a single pointer and is also ABI-compatible with C pointers
73//! (i.e. the C type `T*`). This means that if you have extern "C"
74//! Rust functions that will be called from C, you can define those
75//! Rust functions using `Box<T>` types, and use `T*` as corresponding
76//! type on the C side. As an example, consider this C header which
77//! declares functions that create and destroy some kind of `Foo`
78//! value:
79//!
80//! ```c
81//! /* C header */
82//!
83//! /* Returns ownership to the caller */
84//! struct Foo* foo_new(void);
85//!
86//! /* Takes ownership from the caller; no-op when invoked with null */
87//! void foo_delete(struct Foo*);
88//! ```
89//!
90//! These two functions might be implemented in Rust as follows. Here, the
91//! `struct Foo*` type from C is translated to `Box<Foo>`, which captures
92//! the ownership constraints. Note also that the nullable argument to
93//! `foo_delete` is represented in Rust as `Option<Box<Foo>>`, since `Box<Foo>`
94//! cannot be null.
95//!
96//! ```
97//! #[repr(C)]
98//! pub struct Foo;
99//!
100//! #[unsafe(no_mangle)]
101//! pub extern "C" fn foo_new() -> Box<Foo> {
102//!     Box::new(Foo)
103//! }
104//!
105//! #[unsafe(no_mangle)]
106//! pub extern "C" fn foo_delete(_: Option<Box<Foo>>) {}
107//! ```
108//!
109//! Even though `Box<T>` has the same representation and C ABI as a C pointer,
110//! this does not mean that you can convert an arbitrary `T*` into a `Box<T>`
111//! and expect things to work. `Box<T>` values will always be fully aligned,
112//! non-null pointers. Moreover, the destructor for `Box<T>` will attempt to
113//! free the value with the global allocator. In general, the best practice
114//! is to only use `Box<T>` for pointers that originated from the global
115//! allocator.
116//!
117//! **Important.** At least at present, you should avoid using
118//! `Box<T>` types for functions that are defined in C but invoked
119//! from Rust. In those cases, you should directly mirror the C types
120//! as closely as possible. Using types like `Box<T>` where the C
121//! definition is just using `T*` can lead to undefined behavior, as
122//! described in [rust-lang/unsafe-code-guidelines#198][ucg#198].
123//!
124//! # Considerations for unsafe code
125//!
126//! **Warning: This section is not normative and is subject to change, possibly
127//! being relaxed in the future! It is a simplified summary of the rules
128//! currently implemented in the compiler.**
129//!
130//! The aliasing rules for `Box<T>` are the same as for `&mut T`. `Box<T>`
131//! asserts uniqueness over its content. Using raw pointers derived from a box
132//! after that box has been mutated through, moved or borrowed as `&mut T`
133//! is not allowed. For more guidance on working with box from unsafe code, see
134//! [rust-lang/unsafe-code-guidelines#326][ucg#326].
135//!
136//! # Editions
137//!
138//! A special case exists for the implementation of `IntoIterator` for arrays on the Rust 2021
139//! edition, as documented [here][array]. Unfortunately, it was later found that a similar
140//! workaround should be added for boxed slices, and this was applied in the 2024 edition.
141//!
142//! Specifically, `IntoIterator` is implemented for `Box<[T]>` on all editions, but specific calls
143//! to `into_iter()` for boxed slices will defer to the slice implementation on editions before
144//! 2024:
145//!
146//! ```rust,edition2021
147//! // Rust 2015, 2018, and 2021:
148//!
149//! # #![allow(boxed_slice_into_iter)] // override our `deny(warnings)`
150//! let boxed_slice: Box<[i32]> = vec![0; 3].into_boxed_slice();
151//!
152//! // This creates a slice iterator, producing references to each value.
153//! for item in boxed_slice.into_iter().enumerate() {
154//!     let (i, x): (usize, &i32) = item;
155//!     println!("boxed_slice[{i}] = {x}");
156//! }
157//!
158//! // The `boxed_slice_into_iter` lint suggests this change for future compatibility:
159//! for item in boxed_slice.iter().enumerate() {
160//!     let (i, x): (usize, &i32) = item;
161//!     println!("boxed_slice[{i}] = {x}");
162//! }
163//!
164//! // You can explicitly iterate a boxed slice by value using `IntoIterator::into_iter`
165//! for item in IntoIterator::into_iter(boxed_slice).enumerate() {
166//!     let (i, x): (usize, i32) = item;
167//!     println!("boxed_slice[{i}] = {x}");
168//! }
169//! ```
170//!
171//! Similar to the array implementation, this may be modified in the future to remove this override,
172//! and it's best to avoid relying on this edition-dependent behavior if you wish to preserve
173//! compatibility with future versions of the compiler.
174//!
175//! [ucg#198]: https://github.com/rust-lang/unsafe-code-guidelines/issues/198
176//! [ucg#326]: https://github.com/rust-lang/unsafe-code-guidelines/issues/326
177//! [dereferencing]: core::ops::Deref
178//! [`Box::<T>::from_raw(value)`]: Box::from_raw
179//! [`Global`]: crate::alloc::Global
180//! [`Layout`]: crate::alloc::Layout
181//! [`Layout::for_value(&*value)`]: crate::alloc::Layout::for_value
182//! [valid]: ptr#safety
183
184#![stable(feature = "rust1", since = "1.0.0")]
185
186use core::borrow::{Borrow, BorrowMut};
187#[cfg(not(no_global_oom_handling))]
188use core::clone::CloneToUninit;
189use core::cmp::Ordering;
190use core::error::{self, Error};
191use core::fmt;
192use core::future::Future;
193use core::hash::{Hash, Hasher};
194use core::marker::{Tuple, Unsize};
195use core::mem::{self, SizedTypeProperties};
196use core::ops::{
197    AsyncFn, AsyncFnMut, AsyncFnOnce, CoerceUnsized, Coroutine, CoroutineState, Deref, DerefMut,
198    DerefPure, DispatchFromDyn, LegacyReceiver,
199};
200use core::pin::{Pin, PinCoerceUnsized};
201use core::ptr::{self, NonNull, Unique};
202use core::task::{Context, Poll};
203
204#[cfg(not(no_global_oom_handling))]
205use crate::alloc::handle_alloc_error;
206use crate::alloc::{AllocError, Allocator, Global, Layout};
207use crate::raw_vec::RawVec;
208#[cfg(not(no_global_oom_handling))]
209use crate::str::from_boxed_utf8_unchecked;
210
211/// Conversion related impls for `Box<_>` (`From`, `downcast`, etc)
212mod convert;
213/// Iterator related impls for `Box<_>`.
214mod iter;
215/// [`ThinBox`] implementation.
216mod thin;
217
218#[unstable(feature = "thin_box", issue = "92791")]
219pub use thin::ThinBox;
220
221/// A pointer type that uniquely owns a heap allocation of type `T`.
222///
223/// See the [module-level documentation](../../std/boxed/index.html) for more.
224#[lang = "owned_box"]
225#[fundamental]
226#[stable(feature = "rust1", since = "1.0.0")]
227#[rustc_insignificant_dtor]
228#[doc(search_unbox)]
229// The declaration of the `Box` struct must be kept in sync with the
230// compiler or ICEs will happen.
231pub struct Box<
232    T: ?Sized,
233    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
234>(Unique<T>, A);
235
236/// Constructs a `Box<T>` by calling the `exchange_malloc` lang item and moving the argument into
237/// the newly allocated memory. This is an intrinsic to avoid unnecessary copies.
238///
239/// This is the surface syntax for `box <expr>` expressions.
240#[doc(hidden)]
241#[rustc_intrinsic]
242#[unstable(feature = "liballoc_internals", issue = "none")]
243pub fn box_new<T>(x: T) -> Box<T>;
244
245impl<T> Box<T> {
246    /// Allocates memory on the heap and then places `x` into it.
247    ///
248    /// This doesn't actually allocate if `T` is zero-sized.
249    ///
250    /// # Examples
251    ///
252    /// ```
253    /// let five = Box::new(5);
254    /// ```
255    #[cfg(not(no_global_oom_handling))]
256    #[inline(always)]
257    #[stable(feature = "rust1", since = "1.0.0")]
258    #[must_use]
259    #[rustc_diagnostic_item = "box_new"]
260    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
261    pub fn new(x: T) -> Self {
262        return box_new(x);
263    }
264
265    /// Constructs a new box with uninitialized contents.
266    ///
267    /// # Examples
268    ///
269    /// ```
270    /// let mut five = Box::<u32>::new_uninit();
271    /// // Deferred initialization:
272    /// five.write(5);
273    /// let five = unsafe { five.assume_init() };
274    ///
275    /// assert_eq!(*five, 5)
276    /// ```
277    #[cfg(not(no_global_oom_handling))]
278    #[stable(feature = "new_uninit", since = "1.82.0")]
279    #[must_use]
280    #[inline]
281    pub fn new_uninit() -> Box<mem::MaybeUninit<T>> {
282        Self::new_uninit_in(Global)
283    }
284
285    /// Constructs a new `Box` with uninitialized contents, with the memory
286    /// being filled with `0` bytes.
287    ///
288    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
289    /// of this method.
290    ///
291    /// # Examples
292    ///
293    /// ```
294    /// let zero = Box::<u32>::new_zeroed();
295    /// let zero = unsafe { zero.assume_init() };
296    ///
297    /// assert_eq!(*zero, 0)
298    /// ```
299    ///
300    /// [zeroed]: mem::MaybeUninit::zeroed
301    #[cfg(not(no_global_oom_handling))]
302    #[inline]
303    #[stable(feature = "new_zeroed_alloc", since = "CURRENT_RUSTC_VERSION")]
304    #[must_use]
305    pub fn new_zeroed() -> Box<mem::MaybeUninit<T>> {
306        Self::new_zeroed_in(Global)
307    }
308
309    /// Constructs a new `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then
310    /// `x` will be pinned in memory and unable to be moved.
311    ///
312    /// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin(x)`
313    /// does the same as <code>[Box::into_pin]\([Box::new]\(x))</code>. Consider using
314    /// [`into_pin`](Box::into_pin) if you already have a `Box<T>`, or if you want to
315    /// construct a (pinned) `Box` in a different way than with [`Box::new`].
316    #[cfg(not(no_global_oom_handling))]
317    #[stable(feature = "pin", since = "1.33.0")]
318    #[must_use]
319    #[inline(always)]
320    pub fn pin(x: T) -> Pin<Box<T>> {
321        Box::new(x).into()
322    }
323
324    /// Allocates memory on the heap then places `x` into it,
325    /// returning an error if the allocation fails
326    ///
327    /// This doesn't actually allocate if `T` is zero-sized.
328    ///
329    /// # Examples
330    ///
331    /// ```
332    /// #![feature(allocator_api)]
333    ///
334    /// let five = Box::try_new(5)?;
335    /// # Ok::<(), std::alloc::AllocError>(())
336    /// ```
337    #[unstable(feature = "allocator_api", issue = "32838")]
338    #[inline]
339    pub fn try_new(x: T) -> Result<Self, AllocError> {
340        Self::try_new_in(x, Global)
341    }
342
343    /// Constructs a new box with uninitialized contents on the heap,
344    /// returning an error if the allocation fails
345    ///
346    /// # Examples
347    ///
348    /// ```
349    /// #![feature(allocator_api)]
350    ///
351    /// let mut five = Box::<u32>::try_new_uninit()?;
352    /// // Deferred initialization:
353    /// five.write(5);
354    /// let five = unsafe { five.assume_init() };
355    ///
356    /// assert_eq!(*five, 5);
357    /// # Ok::<(), std::alloc::AllocError>(())
358    /// ```
359    #[unstable(feature = "allocator_api", issue = "32838")]
360    #[inline]
361    pub fn try_new_uninit() -> Result<Box<mem::MaybeUninit<T>>, AllocError> {
362        Box::try_new_uninit_in(Global)
363    }
364
365    /// Constructs a new `Box` with uninitialized contents, with the memory
366    /// being filled with `0` bytes on the heap
367    ///
368    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
369    /// of this method.
370    ///
371    /// # Examples
372    ///
373    /// ```
374    /// #![feature(allocator_api)]
375    ///
376    /// let zero = Box::<u32>::try_new_zeroed()?;
377    /// let zero = unsafe { zero.assume_init() };
378    ///
379    /// assert_eq!(*zero, 0);
380    /// # Ok::<(), std::alloc::AllocError>(())
381    /// ```
382    ///
383    /// [zeroed]: mem::MaybeUninit::zeroed
384    #[unstable(feature = "allocator_api", issue = "32838")]
385    #[inline]
386    pub fn try_new_zeroed() -> Result<Box<mem::MaybeUninit<T>>, AllocError> {
387        Box::try_new_zeroed_in(Global)
388    }
389}
390
391impl<T, A: Allocator> Box<T, A> {
392    /// Allocates memory in the given allocator then places `x` into it.
393    ///
394    /// This doesn't actually allocate if `T` is zero-sized.
395    ///
396    /// # Examples
397    ///
398    /// ```
399    /// #![feature(allocator_api)]
400    ///
401    /// use std::alloc::System;
402    ///
403    /// let five = Box::new_in(5, System);
404    /// ```
405    #[cfg(not(no_global_oom_handling))]
406    #[unstable(feature = "allocator_api", issue = "32838")]
407    #[must_use]
408    #[inline]
409    pub fn new_in(x: T, alloc: A) -> Self
410    where
411        A: Allocator,
412    {
413        let mut boxed = Self::new_uninit_in(alloc);
414        boxed.write(x);
415        unsafe { boxed.assume_init() }
416    }
417
418    /// Allocates memory in the given allocator then places `x` into it,
419    /// returning an error if the allocation fails
420    ///
421    /// This doesn't actually allocate if `T` is zero-sized.
422    ///
423    /// # Examples
424    ///
425    /// ```
426    /// #![feature(allocator_api)]
427    ///
428    /// use std::alloc::System;
429    ///
430    /// let five = Box::try_new_in(5, System)?;
431    /// # Ok::<(), std::alloc::AllocError>(())
432    /// ```
433    #[unstable(feature = "allocator_api", issue = "32838")]
434    #[inline]
435    pub fn try_new_in(x: T, alloc: A) -> Result<Self, AllocError>
436    where
437        A: Allocator,
438    {
439        let mut boxed = Self::try_new_uninit_in(alloc)?;
440        boxed.write(x);
441        unsafe { Ok(boxed.assume_init()) }
442    }
443
444    /// Constructs a new box with uninitialized contents in the provided allocator.
445    ///
446    /// # Examples
447    ///
448    /// ```
449    /// #![feature(allocator_api)]
450    ///
451    /// use std::alloc::System;
452    ///
453    /// let mut five = Box::<u32, _>::new_uninit_in(System);
454    /// // Deferred initialization:
455    /// five.write(5);
456    /// let five = unsafe { five.assume_init() };
457    ///
458    /// assert_eq!(*five, 5)
459    /// ```
460    #[unstable(feature = "allocator_api", issue = "32838")]
461    #[cfg(not(no_global_oom_handling))]
462    #[must_use]
463    pub fn new_uninit_in(alloc: A) -> Box<mem::MaybeUninit<T>, A>
464    where
465        A: Allocator,
466    {
467        let layout = Layout::new::<mem::MaybeUninit<T>>();
468        // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable.
469        // That would make code size bigger.
470        match Box::try_new_uninit_in(alloc) {
471            Ok(m) => m,
472            Err(_) => handle_alloc_error(layout),
473        }
474    }
475
476    /// Constructs a new box with uninitialized contents in the provided allocator,
477    /// returning an error if the allocation fails
478    ///
479    /// # Examples
480    ///
481    /// ```
482    /// #![feature(allocator_api)]
483    ///
484    /// use std::alloc::System;
485    ///
486    /// let mut five = Box::<u32, _>::try_new_uninit_in(System)?;
487    /// // Deferred initialization:
488    /// five.write(5);
489    /// let five = unsafe { five.assume_init() };
490    ///
491    /// assert_eq!(*five, 5);
492    /// # Ok::<(), std::alloc::AllocError>(())
493    /// ```
494    #[unstable(feature = "allocator_api", issue = "32838")]
495    pub fn try_new_uninit_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError>
496    where
497        A: Allocator,
498    {
499        let ptr = if T::IS_ZST {
500            NonNull::dangling()
501        } else {
502            let layout = Layout::new::<mem::MaybeUninit<T>>();
503            alloc.allocate(layout)?.cast()
504        };
505        unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) }
506    }
507
508    /// Constructs a new `Box` with uninitialized contents, with the memory
509    /// being filled with `0` bytes in the provided allocator.
510    ///
511    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
512    /// of this method.
513    ///
514    /// # Examples
515    ///
516    /// ```
517    /// #![feature(allocator_api)]
518    ///
519    /// use std::alloc::System;
520    ///
521    /// let zero = Box::<u32, _>::new_zeroed_in(System);
522    /// let zero = unsafe { zero.assume_init() };
523    ///
524    /// assert_eq!(*zero, 0)
525    /// ```
526    ///
527    /// [zeroed]: mem::MaybeUninit::zeroed
528    #[unstable(feature = "allocator_api", issue = "32838")]
529    #[cfg(not(no_global_oom_handling))]
530    #[must_use]
531    pub fn new_zeroed_in(alloc: A) -> Box<mem::MaybeUninit<T>, A>
532    where
533        A: Allocator,
534    {
535        let layout = Layout::new::<mem::MaybeUninit<T>>();
536        // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable.
537        // That would make code size bigger.
538        match Box::try_new_zeroed_in(alloc) {
539            Ok(m) => m,
540            Err(_) => handle_alloc_error(layout),
541        }
542    }
543
544    /// Constructs a new `Box` with uninitialized contents, with the memory
545    /// being filled with `0` bytes in the provided allocator,
546    /// returning an error if the allocation fails,
547    ///
548    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
549    /// of this method.
550    ///
551    /// # Examples
552    ///
553    /// ```
554    /// #![feature(allocator_api)]
555    ///
556    /// use std::alloc::System;
557    ///
558    /// let zero = Box::<u32, _>::try_new_zeroed_in(System)?;
559    /// let zero = unsafe { zero.assume_init() };
560    ///
561    /// assert_eq!(*zero, 0);
562    /// # Ok::<(), std::alloc::AllocError>(())
563    /// ```
564    ///
565    /// [zeroed]: mem::MaybeUninit::zeroed
566    #[unstable(feature = "allocator_api", issue = "32838")]
567    pub fn try_new_zeroed_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError>
568    where
569        A: Allocator,
570    {
571        let ptr = if T::IS_ZST {
572            NonNull::dangling()
573        } else {
574            let layout = Layout::new::<mem::MaybeUninit<T>>();
575            alloc.allocate_zeroed(layout)?.cast()
576        };
577        unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) }
578    }
579
580    /// Constructs a new `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then
581    /// `x` will be pinned in memory and unable to be moved.
582    ///
583    /// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin_in(x, alloc)`
584    /// does the same as <code>[Box::into_pin]\([Box::new_in]\(x, alloc))</code>. Consider using
585    /// [`into_pin`](Box::into_pin) if you already have a `Box<T, A>`, or if you want to
586    /// construct a (pinned) `Box` in a different way than with [`Box::new_in`].
587    #[cfg(not(no_global_oom_handling))]
588    #[unstable(feature = "allocator_api", issue = "32838")]
589    #[must_use]
590    #[inline(always)]
591    pub fn pin_in(x: T, alloc: A) -> Pin<Self>
592    where
593        A: 'static + Allocator,
594    {
595        Self::into_pin(Self::new_in(x, alloc))
596    }
597
598    /// Converts a `Box<T>` into a `Box<[T]>`
599    ///
600    /// This conversion does not allocate on the heap and happens in place.
601    #[unstable(feature = "box_into_boxed_slice", issue = "71582")]
602    pub fn into_boxed_slice(boxed: Self) -> Box<[T], A> {
603        let (raw, alloc) = Box::into_raw_with_allocator(boxed);
604        unsafe { Box::from_raw_in(raw as *mut [T; 1], alloc) }
605    }
606
607    /// Consumes the `Box`, returning the wrapped value.
608    ///
609    /// # Examples
610    ///
611    /// ```
612    /// #![feature(box_into_inner)]
613    ///
614    /// let c = Box::new(5);
615    ///
616    /// assert_eq!(Box::into_inner(c), 5);
617    /// ```
618    #[unstable(feature = "box_into_inner", issue = "80437")]
619    #[inline]
620    pub fn into_inner(boxed: Self) -> T {
621        *boxed
622    }
623
624    /// Consumes the `Box` without consuming its allocation, returning the wrapped value and a `Box`
625    /// to the uninitialized memory where the wrapped value used to live.
626    ///
627    /// This can be used together with [`write`](Box::write) to reuse the allocation for multiple
628    /// boxed values.
629    ///
630    /// # Examples
631    ///
632    /// ```
633    /// #![feature(box_take)]
634    ///
635    /// let c = Box::new(5);
636    ///
637    /// // take the value out of the box
638    /// let (value, uninit) = Box::take(c);
639    /// assert_eq!(value, 5);
640    ///
641    /// // reuse the box for a second value
642    /// let c = Box::write(uninit, 6);
643    /// assert_eq!(*c, 6);
644    /// ```
645    #[unstable(feature = "box_take", issue = "147212")]
646    pub fn take(boxed: Self) -> (T, Box<mem::MaybeUninit<T>, A>) {
647        unsafe {
648            let (raw, alloc) = Box::into_raw_with_allocator(boxed);
649            let value = raw.read();
650            let uninit = Box::from_raw_in(raw.cast::<mem::MaybeUninit<T>>(), alloc);
651            (value, uninit)
652        }
653    }
654}
655
656impl<T> Box<[T]> {
657    /// Constructs a new boxed slice with uninitialized contents.
658    ///
659    /// # Examples
660    ///
661    /// ```
662    /// let mut values = Box::<[u32]>::new_uninit_slice(3);
663    /// // Deferred initialization:
664    /// values[0].write(1);
665    /// values[1].write(2);
666    /// values[2].write(3);
667    /// let values = unsafe { values.assume_init() };
668    ///
669    /// assert_eq!(*values, [1, 2, 3])
670    /// ```
671    #[cfg(not(no_global_oom_handling))]
672    #[stable(feature = "new_uninit", since = "1.82.0")]
673    #[must_use]
674    pub fn new_uninit_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> {
675        unsafe { RawVec::with_capacity(len).into_box(len) }
676    }
677
678    /// Constructs a new boxed slice with uninitialized contents, with the memory
679    /// being filled with `0` bytes.
680    ///
681    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
682    /// of this method.
683    ///
684    /// # Examples
685    ///
686    /// ```
687    /// let values = Box::<[u32]>::new_zeroed_slice(3);
688    /// let values = unsafe { values.assume_init() };
689    ///
690    /// assert_eq!(*values, [0, 0, 0])
691    /// ```
692    ///
693    /// [zeroed]: mem::MaybeUninit::zeroed
694    #[cfg(not(no_global_oom_handling))]
695    #[stable(feature = "new_zeroed_alloc", since = "CURRENT_RUSTC_VERSION")]
696    #[must_use]
697    pub fn new_zeroed_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> {
698        unsafe { RawVec::with_capacity_zeroed(len).into_box(len) }
699    }
700
701    /// Constructs a new boxed slice with uninitialized contents. Returns an error if
702    /// the allocation fails.
703    ///
704    /// # Examples
705    ///
706    /// ```
707    /// #![feature(allocator_api)]
708    ///
709    /// let mut values = Box::<[u32]>::try_new_uninit_slice(3)?;
710    /// // Deferred initialization:
711    /// values[0].write(1);
712    /// values[1].write(2);
713    /// values[2].write(3);
714    /// let values = unsafe { values.assume_init() };
715    ///
716    /// assert_eq!(*values, [1, 2, 3]);
717    /// # Ok::<(), std::alloc::AllocError>(())
718    /// ```
719    #[unstable(feature = "allocator_api", issue = "32838")]
720    #[inline]
721    pub fn try_new_uninit_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> {
722        let ptr = if T::IS_ZST || len == 0 {
723            NonNull::dangling()
724        } else {
725            let layout = match Layout::array::<mem::MaybeUninit<T>>(len) {
726                Ok(l) => l,
727                Err(_) => return Err(AllocError),
728            };
729            Global.allocate(layout)?.cast()
730        };
731        unsafe { Ok(RawVec::from_raw_parts_in(ptr.as_ptr(), len, Global).into_box(len)) }
732    }
733
734    /// Constructs a new boxed slice with uninitialized contents, with the memory
735    /// being filled with `0` bytes. Returns an error if the allocation fails.
736    ///
737    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
738    /// of this method.
739    ///
740    /// # Examples
741    ///
742    /// ```
743    /// #![feature(allocator_api)]
744    ///
745    /// let values = Box::<[u32]>::try_new_zeroed_slice(3)?;
746    /// let values = unsafe { values.assume_init() };
747    ///
748    /// assert_eq!(*values, [0, 0, 0]);
749    /// # Ok::<(), std::alloc::AllocError>(())
750    /// ```
751    ///
752    /// [zeroed]: mem::MaybeUninit::zeroed
753    #[unstable(feature = "allocator_api", issue = "32838")]
754    #[inline]
755    pub fn try_new_zeroed_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> {
756        let ptr = if T::IS_ZST || len == 0 {
757            NonNull::dangling()
758        } else {
759            let layout = match Layout::array::<mem::MaybeUninit<T>>(len) {
760                Ok(l) => l,
761                Err(_) => return Err(AllocError),
762            };
763            Global.allocate_zeroed(layout)?.cast()
764        };
765        unsafe { Ok(RawVec::from_raw_parts_in(ptr.as_ptr(), len, Global).into_box(len)) }
766    }
767
768    /// Converts the boxed slice into a boxed array.
769    ///
770    /// This operation does not reallocate; the underlying array of the slice is simply reinterpreted as an array type.
771    ///
772    /// If `N` is not exactly equal to the length of `self`, then this method returns `None`.
773    #[unstable(feature = "slice_as_array", issue = "133508")]
774    #[inline]
775    #[must_use]
776    pub fn into_array<const N: usize>(self) -> Option<Box<[T; N]>> {
777        if self.len() == N {
778            let ptr = Self::into_raw(self) as *mut [T; N];
779
780            // SAFETY: The underlying array of a slice has the exact same layout as an actual array `[T; N]` if `N` is equal to the slice's length.
781            let me = unsafe { Box::from_raw(ptr) };
782            Some(me)
783        } else {
784            None
785        }
786    }
787}
788
789impl<T, A: Allocator> Box<[T], A> {
790    /// Constructs a new boxed slice with uninitialized contents in the provided allocator.
791    ///
792    /// # Examples
793    ///
794    /// ```
795    /// #![feature(allocator_api)]
796    ///
797    /// use std::alloc::System;
798    ///
799    /// let mut values = Box::<[u32], _>::new_uninit_slice_in(3, System);
800    /// // Deferred initialization:
801    /// values[0].write(1);
802    /// values[1].write(2);
803    /// values[2].write(3);
804    /// let values = unsafe { values.assume_init() };
805    ///
806    /// assert_eq!(*values, [1, 2, 3])
807    /// ```
808    #[cfg(not(no_global_oom_handling))]
809    #[unstable(feature = "allocator_api", issue = "32838")]
810    #[must_use]
811    pub fn new_uninit_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> {
812        unsafe { RawVec::with_capacity_in(len, alloc).into_box(len) }
813    }
814
815    /// Constructs a new boxed slice with uninitialized contents in the provided allocator,
816    /// with the memory being filled with `0` bytes.
817    ///
818    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
819    /// of this method.
820    ///
821    /// # Examples
822    ///
823    /// ```
824    /// #![feature(allocator_api)]
825    ///
826    /// use std::alloc::System;
827    ///
828    /// let values = Box::<[u32], _>::new_zeroed_slice_in(3, System);
829    /// let values = unsafe { values.assume_init() };
830    ///
831    /// assert_eq!(*values, [0, 0, 0])
832    /// ```
833    ///
834    /// [zeroed]: mem::MaybeUninit::zeroed
835    #[cfg(not(no_global_oom_handling))]
836    #[unstable(feature = "allocator_api", issue = "32838")]
837    #[must_use]
838    pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> {
839        unsafe { RawVec::with_capacity_zeroed_in(len, alloc).into_box(len) }
840    }
841
842    /// Constructs a new boxed slice with uninitialized contents in the provided allocator. Returns an error if
843    /// the allocation fails.
844    ///
845    /// # Examples
846    ///
847    /// ```
848    /// #![feature(allocator_api)]
849    ///
850    /// use std::alloc::System;
851    ///
852    /// let mut values = Box::<[u32], _>::try_new_uninit_slice_in(3, System)?;
853    /// // Deferred initialization:
854    /// values[0].write(1);
855    /// values[1].write(2);
856    /// values[2].write(3);
857    /// let values = unsafe { values.assume_init() };
858    ///
859    /// assert_eq!(*values, [1, 2, 3]);
860    /// # Ok::<(), std::alloc::AllocError>(())
861    /// ```
862    #[unstable(feature = "allocator_api", issue = "32838")]
863    #[inline]
864    pub fn try_new_uninit_slice_in(
865        len: usize,
866        alloc: A,
867    ) -> Result<Box<[mem::MaybeUninit<T>], A>, AllocError> {
868        let ptr = if T::IS_ZST || len == 0 {
869            NonNull::dangling()
870        } else {
871            let layout = match Layout::array::<mem::MaybeUninit<T>>(len) {
872                Ok(l) => l,
873                Err(_) => return Err(AllocError),
874            };
875            alloc.allocate(layout)?.cast()
876        };
877        unsafe { Ok(RawVec::from_raw_parts_in(ptr.as_ptr(), len, alloc).into_box(len)) }
878    }
879
880    /// Constructs a new boxed slice with uninitialized contents in the provided allocator, with the memory
881    /// being filled with `0` bytes. Returns an error if the allocation fails.
882    ///
883    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
884    /// of this method.
885    ///
886    /// # Examples
887    ///
888    /// ```
889    /// #![feature(allocator_api)]
890    ///
891    /// use std::alloc::System;
892    ///
893    /// let values = Box::<[u32], _>::try_new_zeroed_slice_in(3, System)?;
894    /// let values = unsafe { values.assume_init() };
895    ///
896    /// assert_eq!(*values, [0, 0, 0]);
897    /// # Ok::<(), std::alloc::AllocError>(())
898    /// ```
899    ///
900    /// [zeroed]: mem::MaybeUninit::zeroed
901    #[unstable(feature = "allocator_api", issue = "32838")]
902    #[inline]
903    pub fn try_new_zeroed_slice_in(
904        len: usize,
905        alloc: A,
906    ) -> Result<Box<[mem::MaybeUninit<T>], A>, AllocError> {
907        let ptr = if T::IS_ZST || len == 0 {
908            NonNull::dangling()
909        } else {
910            let layout = match Layout::array::<mem::MaybeUninit<T>>(len) {
911                Ok(l) => l,
912                Err(_) => return Err(AllocError),
913            };
914            alloc.allocate_zeroed(layout)?.cast()
915        };
916        unsafe { Ok(RawVec::from_raw_parts_in(ptr.as_ptr(), len, alloc).into_box(len)) }
917    }
918}
919
920impl<T, A: Allocator> Box<mem::MaybeUninit<T>, A> {
921    /// Converts to `Box<T, A>`.
922    ///
923    /// # Safety
924    ///
925    /// As with [`MaybeUninit::assume_init`],
926    /// it is up to the caller to guarantee that the value
927    /// really is in an initialized state.
928    /// Calling this when the content is not yet fully initialized
929    /// causes immediate undefined behavior.
930    ///
931    /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
932    ///
933    /// # Examples
934    ///
935    /// ```
936    /// let mut five = Box::<u32>::new_uninit();
937    /// // Deferred initialization:
938    /// five.write(5);
939    /// let five: Box<u32> = unsafe { five.assume_init() };
940    ///
941    /// assert_eq!(*five, 5)
942    /// ```
943    #[stable(feature = "new_uninit", since = "1.82.0")]
944    #[inline]
945    pub unsafe fn assume_init(self) -> Box<T, A> {
946        let (raw, alloc) = Box::into_raw_with_allocator(self);
947        unsafe { Box::from_raw_in(raw as *mut T, alloc) }
948    }
949
950    /// Writes the value and converts to `Box<T, A>`.
951    ///
952    /// This method converts the box similarly to [`Box::assume_init`] but
953    /// writes `value` into it before conversion thus guaranteeing safety.
954    /// In some scenarios use of this method may improve performance because
955    /// the compiler may be able to optimize copying from stack.
956    ///
957    /// # Examples
958    ///
959    /// ```
960    /// let big_box = Box::<[usize; 1024]>::new_uninit();
961    ///
962    /// let mut array = [0; 1024];
963    /// for (i, place) in array.iter_mut().enumerate() {
964    ///     *place = i;
965    /// }
966    ///
967    /// // The optimizer may be able to elide this copy, so previous code writes
968    /// // to heap directly.
969    /// let big_box = Box::write(big_box, array);
970    ///
971    /// for (i, x) in big_box.iter().enumerate() {
972    ///     assert_eq!(*x, i);
973    /// }
974    /// ```
975    #[stable(feature = "box_uninit_write", since = "1.87.0")]
976    #[inline]
977    pub fn write(mut boxed: Self, value: T) -> Box<T, A> {
978        unsafe {
979            (*boxed).write(value);
980            boxed.assume_init()
981        }
982    }
983}
984
985impl<T, A: Allocator> Box<[mem::MaybeUninit<T>], A> {
986    /// Converts to `Box<[T], A>`.
987    ///
988    /// # Safety
989    ///
990    /// As with [`MaybeUninit::assume_init`],
991    /// it is up to the caller to guarantee that the values
992    /// really are in an initialized state.
993    /// Calling this when the content is not yet fully initialized
994    /// causes immediate undefined behavior.
995    ///
996    /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
997    ///
998    /// # Examples
999    ///
1000    /// ```
1001    /// let mut values = Box::<[u32]>::new_uninit_slice(3);
1002    /// // Deferred initialization:
1003    /// values[0].write(1);
1004    /// values[1].write(2);
1005    /// values[2].write(3);
1006    /// let values = unsafe { values.assume_init() };
1007    ///
1008    /// assert_eq!(*values, [1, 2, 3])
1009    /// ```
1010    #[stable(feature = "new_uninit", since = "1.82.0")]
1011    #[inline]
1012    pub unsafe fn assume_init(self) -> Box<[T], A> {
1013        let (raw, alloc) = Box::into_raw_with_allocator(self);
1014        unsafe { Box::from_raw_in(raw as *mut [T], alloc) }
1015    }
1016}
1017
1018impl<T: ?Sized> Box<T> {
1019    /// Constructs a box from a raw pointer.
1020    ///
1021    /// After calling this function, the raw pointer is owned by the
1022    /// resulting `Box`. Specifically, the `Box` destructor will call
1023    /// the destructor of `T` and free the allocated memory. For this
1024    /// to be safe, the memory must have been allocated in accordance
1025    /// with the [memory layout] used by `Box` .
1026    ///
1027    /// # Safety
1028    ///
1029    /// This function is unsafe because improper use may lead to
1030    /// memory problems. For example, a double-free may occur if the
1031    /// function is called twice on the same raw pointer.
1032    ///
1033    /// The raw pointer must point to a block of memory allocated by the global allocator.
1034    ///
1035    /// The safety conditions are described in the [memory layout] section.
1036    ///
1037    /// # Examples
1038    ///
1039    /// Recreate a `Box` which was previously converted to a raw pointer
1040    /// using [`Box::into_raw`]:
1041    /// ```
1042    /// let x = Box::new(5);
1043    /// let ptr = Box::into_raw(x);
1044    /// let x = unsafe { Box::from_raw(ptr) };
1045    /// ```
1046    /// Manually create a `Box` from scratch by using the global allocator:
1047    /// ```
1048    /// use std::alloc::{alloc, Layout};
1049    ///
1050    /// unsafe {
1051    ///     let ptr = alloc(Layout::new::<i32>()) as *mut i32;
1052    ///     // In general .write is required to avoid attempting to destruct
1053    ///     // the (uninitialized) previous contents of `ptr`, though for this
1054    ///     // simple example `*ptr = 5` would have worked as well.
1055    ///     ptr.write(5);
1056    ///     let x = Box::from_raw(ptr);
1057    /// }
1058    /// ```
1059    ///
1060    /// [memory layout]: self#memory-layout
1061    #[stable(feature = "box_raw", since = "1.4.0")]
1062    #[inline]
1063    #[must_use = "call `drop(Box::from_raw(ptr))` if you intend to drop the `Box`"]
1064    pub unsafe fn from_raw(raw: *mut T) -> Self {
1065        unsafe { Self::from_raw_in(raw, Global) }
1066    }
1067
1068    /// Constructs a box from a `NonNull` pointer.
1069    ///
1070    /// After calling this function, the `NonNull` pointer is owned by
1071    /// the resulting `Box`. Specifically, the `Box` destructor will call
1072    /// the destructor of `T` and free the allocated memory. For this
1073    /// to be safe, the memory must have been allocated in accordance
1074    /// with the [memory layout] used by `Box` .
1075    ///
1076    /// # Safety
1077    ///
1078    /// This function is unsafe because improper use may lead to
1079    /// memory problems. For example, a double-free may occur if the
1080    /// function is called twice on the same `NonNull` pointer.
1081    ///
1082    /// The non-null pointer must point to a block of memory allocated by the global allocator.
1083    ///
1084    /// The safety conditions are described in the [memory layout] section.
1085    ///
1086    /// # Examples
1087    ///
1088    /// Recreate a `Box` which was previously converted to a `NonNull`
1089    /// pointer using [`Box::into_non_null`]:
1090    /// ```
1091    /// #![feature(box_vec_non_null)]
1092    ///
1093    /// let x = Box::new(5);
1094    /// let non_null = Box::into_non_null(x);
1095    /// let x = unsafe { Box::from_non_null(non_null) };
1096    /// ```
1097    /// Manually create a `Box` from scratch by using the global allocator:
1098    /// ```
1099    /// #![feature(box_vec_non_null)]
1100    ///
1101    /// use std::alloc::{alloc, Layout};
1102    /// use std::ptr::NonNull;
1103    ///
1104    /// unsafe {
1105    ///     let non_null = NonNull::new(alloc(Layout::new::<i32>()).cast::<i32>())
1106    ///         .expect("allocation failed");
1107    ///     // In general .write is required to avoid attempting to destruct
1108    ///     // the (uninitialized) previous contents of `non_null`.
1109    ///     non_null.write(5);
1110    ///     let x = Box::from_non_null(non_null);
1111    /// }
1112    /// ```
1113    ///
1114    /// [memory layout]: self#memory-layout
1115    #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
1116    #[inline]
1117    #[must_use = "call `drop(Box::from_non_null(ptr))` if you intend to drop the `Box`"]
1118    pub unsafe fn from_non_null(ptr: NonNull<T>) -> Self {
1119        unsafe { Self::from_raw(ptr.as_ptr()) }
1120    }
1121
1122    /// Consumes the `Box`, returning a wrapped raw pointer.
1123    ///
1124    /// The pointer will be properly aligned and non-null.
1125    ///
1126    /// After calling this function, the caller is responsible for the
1127    /// memory previously managed by the `Box`. In particular, the
1128    /// caller should properly destroy `T` and release the memory, taking
1129    /// into account the [memory layout] used by `Box`. The easiest way to
1130    /// do this is to convert the raw pointer back into a `Box` with the
1131    /// [`Box::from_raw`] function, allowing the `Box` destructor to perform
1132    /// the cleanup.
1133    ///
1134    /// Note: this is an associated function, which means that you have
1135    /// to call it as `Box::into_raw(b)` instead of `b.into_raw()`. This
1136    /// is so that there is no conflict with a method on the inner type.
1137    ///
1138    /// # Examples
1139    /// Converting the raw pointer back into a `Box` with [`Box::from_raw`]
1140    /// for automatic cleanup:
1141    /// ```
1142    /// let x = Box::new(String::from("Hello"));
1143    /// let ptr = Box::into_raw(x);
1144    /// let x = unsafe { Box::from_raw(ptr) };
1145    /// ```
1146    /// Manual cleanup by explicitly running the destructor and deallocating
1147    /// the memory:
1148    /// ```
1149    /// use std::alloc::{dealloc, Layout};
1150    /// use std::ptr;
1151    ///
1152    /// let x = Box::new(String::from("Hello"));
1153    /// let ptr = Box::into_raw(x);
1154    /// unsafe {
1155    ///     ptr::drop_in_place(ptr);
1156    ///     dealloc(ptr as *mut u8, Layout::new::<String>());
1157    /// }
1158    /// ```
1159    /// Note: This is equivalent to the following:
1160    /// ```
1161    /// let x = Box::new(String::from("Hello"));
1162    /// let ptr = Box::into_raw(x);
1163    /// unsafe {
1164    ///     drop(Box::from_raw(ptr));
1165    /// }
1166    /// ```
1167    ///
1168    /// [memory layout]: self#memory-layout
1169    #[must_use = "losing the pointer will leak memory"]
1170    #[stable(feature = "box_raw", since = "1.4.0")]
1171    #[inline]
1172    pub fn into_raw(b: Self) -> *mut T {
1173        // Avoid `into_raw_with_allocator` as that interacts poorly with Miri's Stacked Borrows.
1174        let mut b = mem::ManuallyDrop::new(b);
1175        // We go through the built-in deref for `Box`, which is crucial for Miri to recognize this
1176        // operation for it's alias tracking.
1177        &raw mut **b
1178    }
1179
1180    /// Consumes the `Box`, returning a wrapped `NonNull` pointer.
1181    ///
1182    /// The pointer will be properly aligned.
1183    ///
1184    /// After calling this function, the caller is responsible for the
1185    /// memory previously managed by the `Box`. In particular, the
1186    /// caller should properly destroy `T` and release the memory, taking
1187    /// into account the [memory layout] used by `Box`. The easiest way to
1188    /// do this is to convert the `NonNull` pointer back into a `Box` with the
1189    /// [`Box::from_non_null`] function, allowing the `Box` destructor to
1190    /// perform the cleanup.
1191    ///
1192    /// Note: this is an associated function, which means that you have
1193    /// to call it as `Box::into_non_null(b)` instead of `b.into_non_null()`.
1194    /// This is so that there is no conflict with a method on the inner type.
1195    ///
1196    /// # Examples
1197    /// Converting the `NonNull` pointer back into a `Box` with [`Box::from_non_null`]
1198    /// for automatic cleanup:
1199    /// ```
1200    /// #![feature(box_vec_non_null)]
1201    ///
1202    /// let x = Box::new(String::from("Hello"));
1203    /// let non_null = Box::into_non_null(x);
1204    /// let x = unsafe { Box::from_non_null(non_null) };
1205    /// ```
1206    /// Manual cleanup by explicitly running the destructor and deallocating
1207    /// the memory:
1208    /// ```
1209    /// #![feature(box_vec_non_null)]
1210    ///
1211    /// use std::alloc::{dealloc, Layout};
1212    ///
1213    /// let x = Box::new(String::from("Hello"));
1214    /// let non_null = Box::into_non_null(x);
1215    /// unsafe {
1216    ///     non_null.drop_in_place();
1217    ///     dealloc(non_null.as_ptr().cast::<u8>(), Layout::new::<String>());
1218    /// }
1219    /// ```
1220    /// Note: This is equivalent to the following:
1221    /// ```
1222    /// #![feature(box_vec_non_null)]
1223    ///
1224    /// let x = Box::new(String::from("Hello"));
1225    /// let non_null = Box::into_non_null(x);
1226    /// unsafe {
1227    ///     drop(Box::from_non_null(non_null));
1228    /// }
1229    /// ```
1230    ///
1231    /// [memory layout]: self#memory-layout
1232    #[must_use = "losing the pointer will leak memory"]
1233    #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
1234    #[inline]
1235    pub fn into_non_null(b: Self) -> NonNull<T> {
1236        // SAFETY: `Box` is guaranteed to be non-null.
1237        unsafe { NonNull::new_unchecked(Self::into_raw(b)) }
1238    }
1239}
1240
1241impl<T: ?Sized, A: Allocator> Box<T, A> {
1242    /// Constructs a box from a raw pointer in the given allocator.
1243    ///
1244    /// After calling this function, the raw pointer is owned by the
1245    /// resulting `Box`. Specifically, the `Box` destructor will call
1246    /// the destructor of `T` and free the allocated memory. For this
1247    /// to be safe, the memory must have been allocated in accordance
1248    /// with the [memory layout] used by `Box` .
1249    ///
1250    /// # Safety
1251    ///
1252    /// This function is unsafe because improper use may lead to
1253    /// memory problems. For example, a double-free may occur if the
1254    /// function is called twice on the same raw pointer.
1255    ///
1256    /// The raw pointer must point to a block of memory allocated by `alloc`.
1257    ///
1258    /// # Examples
1259    ///
1260    /// Recreate a `Box` which was previously converted to a raw pointer
1261    /// using [`Box::into_raw_with_allocator`]:
1262    /// ```
1263    /// #![feature(allocator_api)]
1264    ///
1265    /// use std::alloc::System;
1266    ///
1267    /// let x = Box::new_in(5, System);
1268    /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
1269    /// let x = unsafe { Box::from_raw_in(ptr, alloc) };
1270    /// ```
1271    /// Manually create a `Box` from scratch by using the system allocator:
1272    /// ```
1273    /// #![feature(allocator_api, slice_ptr_get)]
1274    ///
1275    /// use std::alloc::{Allocator, Layout, System};
1276    ///
1277    /// unsafe {
1278    ///     let ptr = System.allocate(Layout::new::<i32>())?.as_mut_ptr() as *mut i32;
1279    ///     // In general .write is required to avoid attempting to destruct
1280    ///     // the (uninitialized) previous contents of `ptr`, though for this
1281    ///     // simple example `*ptr = 5` would have worked as well.
1282    ///     ptr.write(5);
1283    ///     let x = Box::from_raw_in(ptr, System);
1284    /// }
1285    /// # Ok::<(), std::alloc::AllocError>(())
1286    /// ```
1287    ///
1288    /// [memory layout]: self#memory-layout
1289    #[unstable(feature = "allocator_api", issue = "32838")]
1290    #[inline]
1291    pub unsafe fn from_raw_in(raw: *mut T, alloc: A) -> Self {
1292        Box(unsafe { Unique::new_unchecked(raw) }, alloc)
1293    }
1294
1295    /// Constructs a box from a `NonNull` pointer in the given allocator.
1296    ///
1297    /// After calling this function, the `NonNull` pointer is owned by
1298    /// the resulting `Box`. Specifically, the `Box` destructor will call
1299    /// the destructor of `T` and free the allocated memory. For this
1300    /// to be safe, the memory must have been allocated in accordance
1301    /// with the [memory layout] used by `Box` .
1302    ///
1303    /// # Safety
1304    ///
1305    /// This function is unsafe because improper use may lead to
1306    /// memory problems. For example, a double-free may occur if the
1307    /// function is called twice on the same raw pointer.
1308    ///
1309    /// The non-null pointer must point to a block of memory allocated by `alloc`.
1310    ///
1311    /// # Examples
1312    ///
1313    /// Recreate a `Box` which was previously converted to a `NonNull` pointer
1314    /// using [`Box::into_non_null_with_allocator`]:
1315    /// ```
1316    /// #![feature(allocator_api, box_vec_non_null)]
1317    ///
1318    /// use std::alloc::System;
1319    ///
1320    /// let x = Box::new_in(5, System);
1321    /// let (non_null, alloc) = Box::into_non_null_with_allocator(x);
1322    /// let x = unsafe { Box::from_non_null_in(non_null, alloc) };
1323    /// ```
1324    /// Manually create a `Box` from scratch by using the system allocator:
1325    /// ```
1326    /// #![feature(allocator_api, box_vec_non_null, slice_ptr_get)]
1327    ///
1328    /// use std::alloc::{Allocator, Layout, System};
1329    ///
1330    /// unsafe {
1331    ///     let non_null = System.allocate(Layout::new::<i32>())?.cast::<i32>();
1332    ///     // In general .write is required to avoid attempting to destruct
1333    ///     // the (uninitialized) previous contents of `non_null`.
1334    ///     non_null.write(5);
1335    ///     let x = Box::from_non_null_in(non_null, System);
1336    /// }
1337    /// # Ok::<(), std::alloc::AllocError>(())
1338    /// ```
1339    ///
1340    /// [memory layout]: self#memory-layout
1341    #[unstable(feature = "allocator_api", issue = "32838")]
1342    // #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
1343    #[inline]
1344    pub unsafe fn from_non_null_in(raw: NonNull<T>, alloc: A) -> Self {
1345        // SAFETY: guaranteed by the caller.
1346        unsafe { Box::from_raw_in(raw.as_ptr(), alloc) }
1347    }
1348
1349    /// Consumes the `Box`, returning a wrapped raw pointer and the allocator.
1350    ///
1351    /// The pointer will be properly aligned and non-null.
1352    ///
1353    /// After calling this function, the caller is responsible for the
1354    /// memory previously managed by the `Box`. In particular, the
1355    /// caller should properly destroy `T` and release the memory, taking
1356    /// into account the [memory layout] used by `Box`. The easiest way to
1357    /// do this is to convert the raw pointer back into a `Box` with the
1358    /// [`Box::from_raw_in`] function, allowing the `Box` destructor to perform
1359    /// the cleanup.
1360    ///
1361    /// Note: this is an associated function, which means that you have
1362    /// to call it as `Box::into_raw_with_allocator(b)` instead of `b.into_raw_with_allocator()`. This
1363    /// is so that there is no conflict with a method on the inner type.
1364    ///
1365    /// # Examples
1366    /// Converting the raw pointer back into a `Box` with [`Box::from_raw_in`]
1367    /// for automatic cleanup:
1368    /// ```
1369    /// #![feature(allocator_api)]
1370    ///
1371    /// use std::alloc::System;
1372    ///
1373    /// let x = Box::new_in(String::from("Hello"), System);
1374    /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
1375    /// let x = unsafe { Box::from_raw_in(ptr, alloc) };
1376    /// ```
1377    /// Manual cleanup by explicitly running the destructor and deallocating
1378    /// the memory:
1379    /// ```
1380    /// #![feature(allocator_api)]
1381    ///
1382    /// use std::alloc::{Allocator, Layout, System};
1383    /// use std::ptr::{self, NonNull};
1384    ///
1385    /// let x = Box::new_in(String::from("Hello"), System);
1386    /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
1387    /// unsafe {
1388    ///     ptr::drop_in_place(ptr);
1389    ///     let non_null = NonNull::new_unchecked(ptr);
1390    ///     alloc.deallocate(non_null.cast(), Layout::new::<String>());
1391    /// }
1392    /// ```
1393    ///
1394    /// [memory layout]: self#memory-layout
1395    #[must_use = "losing the pointer will leak memory"]
1396    #[unstable(feature = "allocator_api", issue = "32838")]
1397    #[inline]
1398    pub fn into_raw_with_allocator(b: Self) -> (*mut T, A) {
1399        let mut b = mem::ManuallyDrop::new(b);
1400        // We carefully get the raw pointer out in a way that Miri's aliasing model understands what
1401        // is happening: using the primitive "deref" of `Box`. In case `A` is *not* `Global`, we
1402        // want *no* aliasing requirements here!
1403        // In case `A` *is* `Global`, this does not quite have the right behavior; `into_raw`
1404        // works around that.
1405        let ptr = &raw mut **b;
1406        let alloc = unsafe { ptr::read(&b.1) };
1407        (ptr, alloc)
1408    }
1409
1410    /// Consumes the `Box`, returning a wrapped `NonNull` pointer and the allocator.
1411    ///
1412    /// The pointer will be properly aligned.
1413    ///
1414    /// After calling this function, the caller is responsible for the
1415    /// memory previously managed by the `Box`. In particular, the
1416    /// caller should properly destroy `T` and release the memory, taking
1417    /// into account the [memory layout] used by `Box`. The easiest way to
1418    /// do this is to convert the `NonNull` pointer back into a `Box` with the
1419    /// [`Box::from_non_null_in`] function, allowing the `Box` destructor to
1420    /// perform the cleanup.
1421    ///
1422    /// Note: this is an associated function, which means that you have
1423    /// to call it as `Box::into_non_null_with_allocator(b)` instead of
1424    /// `b.into_non_null_with_allocator()`. This is so that there is no
1425    /// conflict with a method on the inner type.
1426    ///
1427    /// # Examples
1428    /// Converting the `NonNull` pointer back into a `Box` with
1429    /// [`Box::from_non_null_in`] for automatic cleanup:
1430    /// ```
1431    /// #![feature(allocator_api, box_vec_non_null)]
1432    ///
1433    /// use std::alloc::System;
1434    ///
1435    /// let x = Box::new_in(String::from("Hello"), System);
1436    /// let (non_null, alloc) = Box::into_non_null_with_allocator(x);
1437    /// let x = unsafe { Box::from_non_null_in(non_null, alloc) };
1438    /// ```
1439    /// Manual cleanup by explicitly running the destructor and deallocating
1440    /// the memory:
1441    /// ```
1442    /// #![feature(allocator_api, box_vec_non_null)]
1443    ///
1444    /// use std::alloc::{Allocator, Layout, System};
1445    ///
1446    /// let x = Box::new_in(String::from("Hello"), System);
1447    /// let (non_null, alloc) = Box::into_non_null_with_allocator(x);
1448    /// unsafe {
1449    ///     non_null.drop_in_place();
1450    ///     alloc.deallocate(non_null.cast::<u8>(), Layout::new::<String>());
1451    /// }
1452    /// ```
1453    ///
1454    /// [memory layout]: self#memory-layout
1455    #[must_use = "losing the pointer will leak memory"]
1456    #[unstable(feature = "allocator_api", issue = "32838")]
1457    // #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
1458    #[inline]
1459    pub fn into_non_null_with_allocator(b: Self) -> (NonNull<T>, A) {
1460        let (ptr, alloc) = Box::into_raw_with_allocator(b);
1461        // SAFETY: `Box` is guaranteed to be non-null.
1462        unsafe { (NonNull::new_unchecked(ptr), alloc) }
1463    }
1464
1465    #[unstable(
1466        feature = "ptr_internals",
1467        issue = "none",
1468        reason = "use `Box::leak(b).into()` or `Unique::from(Box::leak(b))` instead"
1469    )]
1470    #[inline]
1471    #[doc(hidden)]
1472    pub fn into_unique(b: Self) -> (Unique<T>, A) {
1473        let (ptr, alloc) = Box::into_raw_with_allocator(b);
1474        unsafe { (Unique::from(&mut *ptr), alloc) }
1475    }
1476
1477    /// Returns a raw mutable pointer to the `Box`'s contents.
1478    ///
1479    /// The caller must ensure that the `Box` outlives the pointer this
1480    /// function returns, or else it will end up dangling.
1481    ///
1482    /// This method guarantees that for the purpose of the aliasing model, this method
1483    /// does not materialize a reference to the underlying memory, and thus the returned pointer
1484    /// will remain valid when mixed with other calls to [`as_ptr`] and [`as_mut_ptr`].
1485    /// Note that calling other methods that materialize references to the memory
1486    /// may still invalidate this pointer.
1487    /// See the example below for how this guarantee can be used.
1488    ///
1489    /// # Examples
1490    ///
1491    /// Due to the aliasing guarantee, the following code is legal:
1492    ///
1493    /// ```rust
1494    /// #![feature(box_as_ptr)]
1495    ///
1496    /// unsafe {
1497    ///     let mut b = Box::new(0);
1498    ///     let ptr1 = Box::as_mut_ptr(&mut b);
1499    ///     ptr1.write(1);
1500    ///     let ptr2 = Box::as_mut_ptr(&mut b);
1501    ///     ptr2.write(2);
1502    ///     // Notably, the write to `ptr2` did *not* invalidate `ptr1`:
1503    ///     ptr1.write(3);
1504    /// }
1505    /// ```
1506    ///
1507    /// [`as_mut_ptr`]: Self::as_mut_ptr
1508    /// [`as_ptr`]: Self::as_ptr
1509    #[unstable(feature = "box_as_ptr", issue = "129090")]
1510    #[rustc_never_returns_null_ptr]
1511    #[rustc_as_ptr]
1512    #[inline]
1513    pub fn as_mut_ptr(b: &mut Self) -> *mut T {
1514        // This is a primitive deref, not going through `DerefMut`, and therefore not materializing
1515        // any references.
1516        &raw mut **b
1517    }
1518
1519    /// Returns a raw pointer to the `Box`'s contents.
1520    ///
1521    /// The caller must ensure that the `Box` outlives the pointer this
1522    /// function returns, or else it will end up dangling.
1523    ///
1524    /// The caller must also ensure that the memory the pointer (non-transitively) points to
1525    /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
1526    /// derived from it. If you need to mutate the contents of the `Box`, use [`as_mut_ptr`].
1527    ///
1528    /// This method guarantees that for the purpose of the aliasing model, this method
1529    /// does not materialize a reference to the underlying memory, and thus the returned pointer
1530    /// will remain valid when mixed with other calls to [`as_ptr`] and [`as_mut_ptr`].
1531    /// Note that calling other methods that materialize mutable references to the memory,
1532    /// as well as writing to this memory, may still invalidate this pointer.
1533    /// See the example below for how this guarantee can be used.
1534    ///
1535    /// # Examples
1536    ///
1537    /// Due to the aliasing guarantee, the following code is legal:
1538    ///
1539    /// ```rust
1540    /// #![feature(box_as_ptr)]
1541    ///
1542    /// unsafe {
1543    ///     let mut v = Box::new(0);
1544    ///     let ptr1 = Box::as_ptr(&v);
1545    ///     let ptr2 = Box::as_mut_ptr(&mut v);
1546    ///     let _val = ptr2.read();
1547    ///     // No write to this memory has happened yet, so `ptr1` is still valid.
1548    ///     let _val = ptr1.read();
1549    ///     // However, once we do a write...
1550    ///     ptr2.write(1);
1551    ///     // ... `ptr1` is no longer valid.
1552    ///     // This would be UB: let _val = ptr1.read();
1553    /// }
1554    /// ```
1555    ///
1556    /// [`as_mut_ptr`]: Self::as_mut_ptr
1557    /// [`as_ptr`]: Self::as_ptr
1558    #[unstable(feature = "box_as_ptr", issue = "129090")]
1559    #[rustc_never_returns_null_ptr]
1560    #[rustc_as_ptr]
1561    #[inline]
1562    pub fn as_ptr(b: &Self) -> *const T {
1563        // This is a primitive deref, not going through `DerefMut`, and therefore not materializing
1564        // any references.
1565        &raw const **b
1566    }
1567
1568    /// Returns a reference to the underlying allocator.
1569    ///
1570    /// Note: this is an associated function, which means that you have
1571    /// to call it as `Box::allocator(&b)` instead of `b.allocator()`. This
1572    /// is so that there is no conflict with a method on the inner type.
1573    #[unstable(feature = "allocator_api", issue = "32838")]
1574    #[inline]
1575    pub fn allocator(b: &Self) -> &A {
1576        &b.1
1577    }
1578
1579    /// Consumes and leaks the `Box`, returning a mutable reference,
1580    /// `&'a mut T`.
1581    ///
1582    /// Note that the type `T` must outlive the chosen lifetime `'a`. If the type
1583    /// has only static references, or none at all, then this may be chosen to be
1584    /// `'static`.
1585    ///
1586    /// This function is mainly useful for data that lives for the remainder of
1587    /// the program's life. Dropping the returned reference will cause a memory
1588    /// leak. If this is not acceptable, the reference should first be wrapped
1589    /// with the [`Box::from_raw`] function producing a `Box`. This `Box` can
1590    /// then be dropped which will properly destroy `T` and release the
1591    /// allocated memory.
1592    ///
1593    /// Note: this is an associated function, which means that you have
1594    /// to call it as `Box::leak(b)` instead of `b.leak()`. This
1595    /// is so that there is no conflict with a method on the inner type.
1596    ///
1597    /// # Examples
1598    ///
1599    /// Simple usage:
1600    ///
1601    /// ```
1602    /// let x = Box::new(41);
1603    /// let static_ref: &'static mut usize = Box::leak(x);
1604    /// *static_ref += 1;
1605    /// assert_eq!(*static_ref, 42);
1606    /// # // FIXME(https://github.com/rust-lang/miri/issues/3670):
1607    /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
1608    /// # drop(unsafe { Box::from_raw(static_ref) });
1609    /// ```
1610    ///
1611    /// Unsized data:
1612    ///
1613    /// ```
1614    /// let x = vec![1, 2, 3].into_boxed_slice();
1615    /// let static_ref = Box::leak(x);
1616    /// static_ref[0] = 4;
1617    /// assert_eq!(*static_ref, [4, 2, 3]);
1618    /// # // FIXME(https://github.com/rust-lang/miri/issues/3670):
1619    /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
1620    /// # drop(unsafe { Box::from_raw(static_ref) });
1621    /// ```
1622    #[stable(feature = "box_leak", since = "1.26.0")]
1623    #[inline]
1624    pub fn leak<'a>(b: Self) -> &'a mut T
1625    where
1626        A: 'a,
1627    {
1628        let (ptr, alloc) = Box::into_raw_with_allocator(b);
1629        mem::forget(alloc);
1630        unsafe { &mut *ptr }
1631    }
1632
1633    /// Converts a `Box<T>` into a `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then
1634    /// `*boxed` will be pinned in memory and unable to be moved.
1635    ///
1636    /// This conversion does not allocate on the heap and happens in place.
1637    ///
1638    /// This is also available via [`From`].
1639    ///
1640    /// Constructing and pinning a `Box` with <code>Box::into_pin([Box::new]\(x))</code>
1641    /// can also be written more concisely using <code>[Box::pin]\(x)</code>.
1642    /// This `into_pin` method is useful if you already have a `Box<T>`, or you are
1643    /// constructing a (pinned) `Box` in a different way than with [`Box::new`].
1644    ///
1645    /// # Notes
1646    ///
1647    /// It's not recommended that crates add an impl like `From<Box<T>> for Pin<T>`,
1648    /// as it'll introduce an ambiguity when calling `Pin::from`.
1649    /// A demonstration of such a poor impl is shown below.
1650    ///
1651    /// ```compile_fail
1652    /// # use std::pin::Pin;
1653    /// struct Foo; // A type defined in this crate.
1654    /// impl From<Box<()>> for Pin<Foo> {
1655    ///     fn from(_: Box<()>) -> Pin<Foo> {
1656    ///         Pin::new(Foo)
1657    ///     }
1658    /// }
1659    ///
1660    /// let foo = Box::new(());
1661    /// let bar = Pin::from(foo);
1662    /// ```
1663    #[stable(feature = "box_into_pin", since = "1.63.0")]
1664    pub fn into_pin(boxed: Self) -> Pin<Self>
1665    where
1666        A: 'static,
1667    {
1668        // It's not possible to move or replace the insides of a `Pin<Box<T>>`
1669        // when `T: !Unpin`, so it's safe to pin it directly without any
1670        // additional requirements.
1671        unsafe { Pin::new_unchecked(boxed) }
1672    }
1673}
1674
1675#[stable(feature = "rust1", since = "1.0.0")]
1676unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for Box<T, A> {
1677    #[inline]
1678    fn drop(&mut self) {
1679        // the T in the Box is dropped by the compiler before the destructor is run
1680
1681        let ptr = self.0;
1682
1683        unsafe {
1684            let layout = Layout::for_value_raw(ptr.as_ptr());
1685            if layout.size() != 0 {
1686                self.1.deallocate(From::from(ptr.cast()), layout);
1687            }
1688        }
1689    }
1690}
1691
1692#[cfg(not(no_global_oom_handling))]
1693#[stable(feature = "rust1", since = "1.0.0")]
1694impl<T: Default> Default for Box<T> {
1695    /// Creates a `Box<T>`, with the `Default` value for `T`.
1696    #[inline]
1697    fn default() -> Self {
1698        let mut x: Box<mem::MaybeUninit<T>> = Box::new_uninit();
1699        unsafe {
1700            // SAFETY: `x` is valid for writing and has the same layout as `T`.
1701            // If `T::default()` panics, dropping `x` will just deallocate the Box as `MaybeUninit<T>`
1702            // does not have a destructor.
1703            //
1704            // We use `ptr::write` as `MaybeUninit::write` creates
1705            // extra stack copies of `T` in debug mode.
1706            //
1707            // See https://github.com/rust-lang/rust/issues/136043 for more context.
1708            ptr::write(&raw mut *x as *mut T, T::default());
1709            // SAFETY: `x` was just initialized above.
1710            x.assume_init()
1711        }
1712    }
1713}
1714
1715#[cfg(not(no_global_oom_handling))]
1716#[stable(feature = "rust1", since = "1.0.0")]
1717impl<T> Default for Box<[T]> {
1718    /// Creates an empty `[T]` inside a `Box`.
1719    #[inline]
1720    fn default() -> Self {
1721        let ptr: Unique<[T]> = Unique::<[T; 0]>::dangling();
1722        Box(ptr, Global)
1723    }
1724}
1725
1726#[cfg(not(no_global_oom_handling))]
1727#[stable(feature = "default_box_extra", since = "1.17.0")]
1728impl Default for Box<str> {
1729    #[inline]
1730    fn default() -> Self {
1731        // SAFETY: This is the same as `Unique::cast<U>` but with an unsized `U = str`.
1732        let ptr: Unique<str> = unsafe {
1733            let bytes: Unique<[u8]> = Unique::<[u8; 0]>::dangling();
1734            Unique::new_unchecked(bytes.as_ptr() as *mut str)
1735        };
1736        Box(ptr, Global)
1737    }
1738}
1739
1740#[cfg(not(no_global_oom_handling))]
1741#[stable(feature = "pin_default_impls", since = "1.91.0")]
1742impl<T> Default for Pin<Box<T>>
1743where
1744    T: ?Sized,
1745    Box<T>: Default,
1746{
1747    #[inline]
1748    fn default() -> Self {
1749        Box::into_pin(Box::<T>::default())
1750    }
1751}
1752
1753#[cfg(not(no_global_oom_handling))]
1754#[stable(feature = "rust1", since = "1.0.0")]
1755impl<T: Clone, A: Allocator + Clone> Clone for Box<T, A> {
1756    /// Returns a new box with a `clone()` of this box's contents.
1757    ///
1758    /// # Examples
1759    ///
1760    /// ```
1761    /// let x = Box::new(5);
1762    /// let y = x.clone();
1763    ///
1764    /// // The value is the same
1765    /// assert_eq!(x, y);
1766    ///
1767    /// // But they are unique objects
1768    /// assert_ne!(&*x as *const i32, &*y as *const i32);
1769    /// ```
1770    #[inline]
1771    fn clone(&self) -> Self {
1772        // Pre-allocate memory to allow writing the cloned value directly.
1773        let mut boxed = Self::new_uninit_in(self.1.clone());
1774        unsafe {
1775            (**self).clone_to_uninit(boxed.as_mut_ptr().cast());
1776            boxed.assume_init()
1777        }
1778    }
1779
1780    /// Copies `source`'s contents into `self` without creating a new allocation.
1781    ///
1782    /// # Examples
1783    ///
1784    /// ```
1785    /// let x = Box::new(5);
1786    /// let mut y = Box::new(10);
1787    /// let yp: *const i32 = &*y;
1788    ///
1789    /// y.clone_from(&x);
1790    ///
1791    /// // The value is the same
1792    /// assert_eq!(x, y);
1793    ///
1794    /// // And no allocation occurred
1795    /// assert_eq!(yp, &*y);
1796    /// ```
1797    #[inline]
1798    fn clone_from(&mut self, source: &Self) {
1799        (**self).clone_from(&(**source));
1800    }
1801}
1802
1803#[cfg(not(no_global_oom_handling))]
1804#[stable(feature = "box_slice_clone", since = "1.3.0")]
1805impl<T: Clone, A: Allocator + Clone> Clone for Box<[T], A> {
1806    fn clone(&self) -> Self {
1807        let alloc = Box::allocator(self).clone();
1808        self.to_vec_in(alloc).into_boxed_slice()
1809    }
1810
1811    /// Copies `source`'s contents into `self` without creating a new allocation,
1812    /// so long as the two are of the same length.
1813    ///
1814    /// # Examples
1815    ///
1816    /// ```
1817    /// let x = Box::new([5, 6, 7]);
1818    /// let mut y = Box::new([8, 9, 10]);
1819    /// let yp: *const [i32] = &*y;
1820    ///
1821    /// y.clone_from(&x);
1822    ///
1823    /// // The value is the same
1824    /// assert_eq!(x, y);
1825    ///
1826    /// // And no allocation occurred
1827    /// assert_eq!(yp, &*y);
1828    /// ```
1829    fn clone_from(&mut self, source: &Self) {
1830        if self.len() == source.len() {
1831            self.clone_from_slice(&source);
1832        } else {
1833            *self = source.clone();
1834        }
1835    }
1836}
1837
1838#[cfg(not(no_global_oom_handling))]
1839#[stable(feature = "box_slice_clone", since = "1.3.0")]
1840impl Clone for Box<str> {
1841    fn clone(&self) -> Self {
1842        // this makes a copy of the data
1843        let buf: Box<[u8]> = self.as_bytes().into();
1844        unsafe { from_boxed_utf8_unchecked(buf) }
1845    }
1846}
1847
1848#[stable(feature = "rust1", since = "1.0.0")]
1849impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for Box<T, A> {
1850    #[inline]
1851    fn eq(&self, other: &Self) -> bool {
1852        PartialEq::eq(&**self, &**other)
1853    }
1854    #[inline]
1855    fn ne(&self, other: &Self) -> bool {
1856        PartialEq::ne(&**self, &**other)
1857    }
1858}
1859
1860#[stable(feature = "rust1", since = "1.0.0")]
1861impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for Box<T, A> {
1862    #[inline]
1863    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1864        PartialOrd::partial_cmp(&**self, &**other)
1865    }
1866    #[inline]
1867    fn lt(&self, other: &Self) -> bool {
1868        PartialOrd::lt(&**self, &**other)
1869    }
1870    #[inline]
1871    fn le(&self, other: &Self) -> bool {
1872        PartialOrd::le(&**self, &**other)
1873    }
1874    #[inline]
1875    fn ge(&self, other: &Self) -> bool {
1876        PartialOrd::ge(&**self, &**other)
1877    }
1878    #[inline]
1879    fn gt(&self, other: &Self) -> bool {
1880        PartialOrd::gt(&**self, &**other)
1881    }
1882}
1883
1884#[stable(feature = "rust1", since = "1.0.0")]
1885impl<T: ?Sized + Ord, A: Allocator> Ord for Box<T, A> {
1886    #[inline]
1887    fn cmp(&self, other: &Self) -> Ordering {
1888        Ord::cmp(&**self, &**other)
1889    }
1890}
1891
1892#[stable(feature = "rust1", since = "1.0.0")]
1893impl<T: ?Sized + Eq, A: Allocator> Eq for Box<T, A> {}
1894
1895#[stable(feature = "rust1", since = "1.0.0")]
1896impl<T: ?Sized + Hash, A: Allocator> Hash for Box<T, A> {
1897    fn hash<H: Hasher>(&self, state: &mut H) {
1898        (**self).hash(state);
1899    }
1900}
1901
1902#[stable(feature = "indirect_hasher_impl", since = "1.22.0")]
1903impl<T: ?Sized + Hasher, A: Allocator> Hasher for Box<T, A> {
1904    fn finish(&self) -> u64 {
1905        (**self).finish()
1906    }
1907    fn write(&mut self, bytes: &[u8]) {
1908        (**self).write(bytes)
1909    }
1910    fn write_u8(&mut self, i: u8) {
1911        (**self).write_u8(i)
1912    }
1913    fn write_u16(&mut self, i: u16) {
1914        (**self).write_u16(i)
1915    }
1916    fn write_u32(&mut self, i: u32) {
1917        (**self).write_u32(i)
1918    }
1919    fn write_u64(&mut self, i: u64) {
1920        (**self).write_u64(i)
1921    }
1922    fn write_u128(&mut self, i: u128) {
1923        (**self).write_u128(i)
1924    }
1925    fn write_usize(&mut self, i: usize) {
1926        (**self).write_usize(i)
1927    }
1928    fn write_i8(&mut self, i: i8) {
1929        (**self).write_i8(i)
1930    }
1931    fn write_i16(&mut self, i: i16) {
1932        (**self).write_i16(i)
1933    }
1934    fn write_i32(&mut self, i: i32) {
1935        (**self).write_i32(i)
1936    }
1937    fn write_i64(&mut self, i: i64) {
1938        (**self).write_i64(i)
1939    }
1940    fn write_i128(&mut self, i: i128) {
1941        (**self).write_i128(i)
1942    }
1943    fn write_isize(&mut self, i: isize) {
1944        (**self).write_isize(i)
1945    }
1946    fn write_length_prefix(&mut self, len: usize) {
1947        (**self).write_length_prefix(len)
1948    }
1949    fn write_str(&mut self, s: &str) {
1950        (**self).write_str(s)
1951    }
1952}
1953
1954#[stable(feature = "rust1", since = "1.0.0")]
1955impl<T: fmt::Display + ?Sized, A: Allocator> fmt::Display for Box<T, A> {
1956    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1957        fmt::Display::fmt(&**self, f)
1958    }
1959}
1960
1961#[stable(feature = "rust1", since = "1.0.0")]
1962impl<T: fmt::Debug + ?Sized, A: Allocator> fmt::Debug for Box<T, A> {
1963    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1964        fmt::Debug::fmt(&**self, f)
1965    }
1966}
1967
1968#[stable(feature = "rust1", since = "1.0.0")]
1969impl<T: ?Sized, A: Allocator> fmt::Pointer for Box<T, A> {
1970    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1971        // It's not possible to extract the inner Uniq directly from the Box,
1972        // instead we cast it to a *const which aliases the Unique
1973        let ptr: *const T = &**self;
1974        fmt::Pointer::fmt(&ptr, f)
1975    }
1976}
1977
1978#[stable(feature = "rust1", since = "1.0.0")]
1979impl<T: ?Sized, A: Allocator> Deref for Box<T, A> {
1980    type Target = T;
1981
1982    fn deref(&self) -> &T {
1983        &**self
1984    }
1985}
1986
1987#[stable(feature = "rust1", since = "1.0.0")]
1988impl<T: ?Sized, A: Allocator> DerefMut for Box<T, A> {
1989    fn deref_mut(&mut self) -> &mut T {
1990        &mut **self
1991    }
1992}
1993
1994#[unstable(feature = "deref_pure_trait", issue = "87121")]
1995unsafe impl<T: ?Sized, A: Allocator> DerefPure for Box<T, A> {}
1996
1997#[unstable(feature = "legacy_receiver_trait", issue = "none")]
1998impl<T: ?Sized, A: Allocator> LegacyReceiver for Box<T, A> {}
1999
2000#[stable(feature = "boxed_closure_impls", since = "1.35.0")]
2001impl<Args: Tuple, F: FnOnce<Args> + ?Sized, A: Allocator> FnOnce<Args> for Box<F, A> {
2002    type Output = <F as FnOnce<Args>>::Output;
2003
2004    extern "rust-call" fn call_once(self, args: Args) -> Self::Output {
2005        <F as FnOnce<Args>>::call_once(*self, args)
2006    }
2007}
2008
2009#[stable(feature = "boxed_closure_impls", since = "1.35.0")]
2010impl<Args: Tuple, F: FnMut<Args> + ?Sized, A: Allocator> FnMut<Args> for Box<F, A> {
2011    extern "rust-call" fn call_mut(&mut self, args: Args) -> Self::Output {
2012        <F as FnMut<Args>>::call_mut(self, args)
2013    }
2014}
2015
2016#[stable(feature = "boxed_closure_impls", since = "1.35.0")]
2017impl<Args: Tuple, F: Fn<Args> + ?Sized, A: Allocator> Fn<Args> for Box<F, A> {
2018    extern "rust-call" fn call(&self, args: Args) -> Self::Output {
2019        <F as Fn<Args>>::call(self, args)
2020    }
2021}
2022
2023#[stable(feature = "async_closure", since = "1.85.0")]
2024impl<Args: Tuple, F: AsyncFnOnce<Args> + ?Sized, A: Allocator> AsyncFnOnce<Args> for Box<F, A> {
2025    type Output = F::Output;
2026    type CallOnceFuture = F::CallOnceFuture;
2027
2028    extern "rust-call" fn async_call_once(self, args: Args) -> Self::CallOnceFuture {
2029        F::async_call_once(*self, args)
2030    }
2031}
2032
2033#[stable(feature = "async_closure", since = "1.85.0")]
2034impl<Args: Tuple, F: AsyncFnMut<Args> + ?Sized, A: Allocator> AsyncFnMut<Args> for Box<F, A> {
2035    type CallRefFuture<'a>
2036        = F::CallRefFuture<'a>
2037    where
2038        Self: 'a;
2039
2040    extern "rust-call" fn async_call_mut(&mut self, args: Args) -> Self::CallRefFuture<'_> {
2041        F::async_call_mut(self, args)
2042    }
2043}
2044
2045#[stable(feature = "async_closure", since = "1.85.0")]
2046impl<Args: Tuple, F: AsyncFn<Args> + ?Sized, A: Allocator> AsyncFn<Args> for Box<F, A> {
2047    extern "rust-call" fn async_call(&self, args: Args) -> Self::CallRefFuture<'_> {
2048        F::async_call(self, args)
2049    }
2050}
2051
2052#[unstable(feature = "coerce_unsized", issue = "18598")]
2053impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Box<U, A>> for Box<T, A> {}
2054
2055#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2056unsafe impl<T: ?Sized, A: Allocator> PinCoerceUnsized for Box<T, A> {}
2057
2058// It is quite crucial that we only allow the `Global` allocator here.
2059// Handling arbitrary custom allocators (which can affect the `Box` layout heavily!)
2060// would need a lot of codegen and interpreter adjustments.
2061#[unstable(feature = "dispatch_from_dyn", issue = "none")]
2062impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Box<U>> for Box<T, Global> {}
2063
2064#[stable(feature = "box_borrow", since = "1.1.0")]
2065impl<T: ?Sized, A: Allocator> Borrow<T> for Box<T, A> {
2066    fn borrow(&self) -> &T {
2067        &**self
2068    }
2069}
2070
2071#[stable(feature = "box_borrow", since = "1.1.0")]
2072impl<T: ?Sized, A: Allocator> BorrowMut<T> for Box<T, A> {
2073    fn borrow_mut(&mut self) -> &mut T {
2074        &mut **self
2075    }
2076}
2077
2078#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
2079impl<T: ?Sized, A: Allocator> AsRef<T> for Box<T, A> {
2080    fn as_ref(&self) -> &T {
2081        &**self
2082    }
2083}
2084
2085#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
2086impl<T: ?Sized, A: Allocator> AsMut<T> for Box<T, A> {
2087    fn as_mut(&mut self) -> &mut T {
2088        &mut **self
2089    }
2090}
2091
2092/* Nota bene
2093 *
2094 *  We could have chosen not to add this impl, and instead have written a
2095 *  function of Pin<Box<T>> to Pin<T>. Such a function would not be sound,
2096 *  because Box<T> implements Unpin even when T does not, as a result of
2097 *  this impl.
2098 *
2099 *  We chose this API instead of the alternative for a few reasons:
2100 *      - Logically, it is helpful to understand pinning in regard to the
2101 *        memory region being pointed to. For this reason none of the
2102 *        standard library pointer types support projecting through a pin
2103 *        (Box<T> is the only pointer type in std for which this would be
2104 *        safe.)
2105 *      - It is in practice very useful to have Box<T> be unconditionally
2106 *        Unpin because of trait objects, for which the structural auto
2107 *        trait functionality does not apply (e.g., Box<dyn Foo> would
2108 *        otherwise not be Unpin).
2109 *
2110 *  Another type with the same semantics as Box but only a conditional
2111 *  implementation of `Unpin` (where `T: Unpin`) would be valid/safe, and
2112 *  could have a method to project a Pin<T> from it.
2113 */
2114#[stable(feature = "pin", since = "1.33.0")]
2115impl<T: ?Sized, A: Allocator> Unpin for Box<T, A> {}
2116
2117#[unstable(feature = "coroutine_trait", issue = "43122")]
2118impl<G: ?Sized + Coroutine<R> + Unpin, R, A: Allocator> Coroutine<R> for Box<G, A> {
2119    type Yield = G::Yield;
2120    type Return = G::Return;
2121
2122    fn resume(mut self: Pin<&mut Self>, arg: R) -> CoroutineState<Self::Yield, Self::Return> {
2123        G::resume(Pin::new(&mut *self), arg)
2124    }
2125}
2126
2127#[unstable(feature = "coroutine_trait", issue = "43122")]
2128impl<G: ?Sized + Coroutine<R>, R, A: Allocator> Coroutine<R> for Pin<Box<G, A>>
2129where
2130    A: 'static,
2131{
2132    type Yield = G::Yield;
2133    type Return = G::Return;
2134
2135    fn resume(mut self: Pin<&mut Self>, arg: R) -> CoroutineState<Self::Yield, Self::Return> {
2136        G::resume((*self).as_mut(), arg)
2137    }
2138}
2139
2140#[stable(feature = "futures_api", since = "1.36.0")]
2141impl<F: ?Sized + Future + Unpin, A: Allocator> Future for Box<F, A> {
2142    type Output = F::Output;
2143
2144    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
2145        F::poll(Pin::new(&mut *self), cx)
2146    }
2147}
2148
2149#[stable(feature = "box_error", since = "1.8.0")]
2150impl<E: Error> Error for Box<E> {
2151    #[allow(deprecated)]
2152    fn cause(&self) -> Option<&dyn Error> {
2153        Error::cause(&**self)
2154    }
2155
2156    fn source(&self) -> Option<&(dyn Error + 'static)> {
2157        Error::source(&**self)
2158    }
2159
2160    fn provide<'b>(&'b self, request: &mut error::Request<'b>) {
2161        Error::provide(&**self, request);
2162    }
2163}