alloc/
boxed.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
//! The `Box<T>` type for heap allocation.
//!
//! [`Box<T>`], casually referred to as a 'box', provides the simplest form of
//! heap allocation in Rust. Boxes provide ownership for this allocation, and
//! drop their contents when they go out of scope. Boxes also ensure that they
//! never allocate more than `isize::MAX` bytes.
//!
//! # Examples
//!
//! Move a value from the stack to the heap by creating a [`Box`]:
//!
//! ```
//! let val: u8 = 5;
//! let boxed: Box<u8> = Box::new(val);
//! ```
//!
//! Move a value from a [`Box`] back to the stack by [dereferencing]:
//!
//! ```
//! let boxed: Box<u8> = Box::new(5);
//! let val: u8 = *boxed;
//! ```
//!
//! Creating a recursive data structure:
//!
//! ```
//! ##[allow(dead_code)]
//! #[derive(Debug)]
//! enum List<T> {
//!     Cons(T, Box<List<T>>),
//!     Nil,
//! }
//!
//! let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil))));
//! println!("{list:?}");
//! ```
//!
//! This will print `Cons(1, Cons(2, Nil))`.
//!
//! Recursive structures must be boxed, because if the definition of `Cons`
//! looked like this:
//!
//! ```compile_fail,E0072
//! # enum List<T> {
//! Cons(T, List<T>),
//! # }
//! ```
//!
//! It wouldn't work. This is because the size of a `List` depends on how many
//! elements are in the list, and so we don't know how much memory to allocate
//! for a `Cons`. By introducing a [`Box<T>`], which has a defined size, we know how
//! big `Cons` needs to be.
//!
//! # Memory layout
//!
//! For non-zero-sized values, a [`Box`] will use the [`Global`] allocator for its allocation. It is
//! valid to convert both ways between a [`Box`] and a raw pointer allocated with the [`Global`]
//! allocator, given that the [`Layout`] used with the allocator is correct for the type and the raw
//! pointer points to a valid value of the right type. More precisely, a `value: *mut T` that has
//! been allocated with the [`Global`] allocator with `Layout::for_value(&*value)` may be converted
//! into a box using [`Box::<T>::from_raw(value)`]. Conversely, the memory backing a `value: *mut T`
//! obtained from [`Box::<T>::into_raw`] may be deallocated using the [`Global`] allocator with
//! [`Layout::for_value(&*value)`].
//!
//! For zero-sized values, the `Box` pointer has to be non-null and sufficiently aligned. The
//! recommended way to build a Box to a ZST if `Box::new` cannot be used is to use
//! [`ptr::NonNull::dangling`].
//!
//! On top of these basic layout requirements, a `Box<T>` must point to a valid value of `T`.
//!
//! So long as `T: Sized`, a `Box<T>` is guaranteed to be represented
//! as a single pointer and is also ABI-compatible with C pointers
//! (i.e. the C type `T*`). This means that if you have extern "C"
//! Rust functions that will be called from C, you can define those
//! Rust functions using `Box<T>` types, and use `T*` as corresponding
//! type on the C side. As an example, consider this C header which
//! declares functions that create and destroy some kind of `Foo`
//! value:
//!
//! ```c
//! /* C header */
//!
//! /* Returns ownership to the caller */
//! struct Foo* foo_new(void);
//!
//! /* Takes ownership from the caller; no-op when invoked with null */
//! void foo_delete(struct Foo*);
//! ```
//!
//! These two functions might be implemented in Rust as follows. Here, the
//! `struct Foo*` type from C is translated to `Box<Foo>`, which captures
//! the ownership constraints. Note also that the nullable argument to
//! `foo_delete` is represented in Rust as `Option<Box<Foo>>`, since `Box<Foo>`
//! cannot be null.
//!
//! ```
//! #[repr(C)]
//! pub struct Foo;
//!
//! #[no_mangle]
//! pub extern "C" fn foo_new() -> Box<Foo> {
//!     Box::new(Foo)
//! }
//!
//! #[no_mangle]
//! pub extern "C" fn foo_delete(_: Option<Box<Foo>>) {}
//! ```
//!
//! Even though `Box<T>` has the same representation and C ABI as a C pointer,
//! this does not mean that you can convert an arbitrary `T*` into a `Box<T>`
//! and expect things to work. `Box<T>` values will always be fully aligned,
//! non-null pointers. Moreover, the destructor for `Box<T>` will attempt to
//! free the value with the global allocator. In general, the best practice
//! is to only use `Box<T>` for pointers that originated from the global
//! allocator.
//!
//! **Important.** At least at present, you should avoid using
//! `Box<T>` types for functions that are defined in C but invoked
//! from Rust. In those cases, you should directly mirror the C types
//! as closely as possible. Using types like `Box<T>` where the C
//! definition is just using `T*` can lead to undefined behavior, as
//! described in [rust-lang/unsafe-code-guidelines#198][ucg#198].
//!
//! # Considerations for unsafe code
//!
//! **Warning: This section is not normative and is subject to change, possibly
//! being relaxed in the future! It is a simplified summary of the rules
//! currently implemented in the compiler.**
//!
//! The aliasing rules for `Box<T>` are the same as for `&mut T`. `Box<T>`
//! asserts uniqueness over its content. Using raw pointers derived from a box
//! after that box has been mutated through, moved or borrowed as `&mut T`
//! is not allowed. For more guidance on working with box from unsafe code, see
//! [rust-lang/unsafe-code-guidelines#326][ucg#326].
//!
//! # Editions
//!
//! A special case exists for the implementation of `IntoIterator` for arrays on the Rust 2021
//! edition, as documented [here][array]. Unfortunately, it was later found that a similar
//! workaround should be added for boxed slices, and this was applied in the 2024 edition.
//!
//! Specifically, `IntoIterator` is implemented for `Box<[T]>` on all editions, but specific calls
//! to `into_iter()` for boxed slices will defer to the slice implementation on editions before
//! 2024:
//!
//! ```rust,edition2021
//! // Rust 2015, 2018, and 2021:
//!
//! # #![allow(boxed_slice_into_iter)] // override our `deny(warnings)`
//! let boxed_slice: Box<[i32]> = vec![0; 3].into_boxed_slice();
//!
//! // This creates a slice iterator, producing references to each value.
//! for item in boxed_slice.into_iter().enumerate() {
//!     let (i, x): (usize, &i32) = item;
//!     println!("boxed_slice[{i}] = {x}");
//! }
//!
//! // The `boxed_slice_into_iter` lint suggests this change for future compatibility:
//! for item in boxed_slice.iter().enumerate() {
//!     let (i, x): (usize, &i32) = item;
//!     println!("boxed_slice[{i}] = {x}");
//! }
//!
//! // You can explicitly iterate a boxed slice by value using `IntoIterator::into_iter`
//! for item in IntoIterator::into_iter(boxed_slice).enumerate() {
//!     let (i, x): (usize, i32) = item;
//!     println!("boxed_slice[{i}] = {x}");
//! }
//! ```
//!
//! Similar to the array implementation, this may be modified in the future to remove this override,
//! and it's best to avoid relying on this edition-dependent behavior if you wish to preserve
//! compatibility with future versions of the compiler.
//!
//! [ucg#198]: https://github.com/rust-lang/unsafe-code-guidelines/issues/198
//! [ucg#326]: https://github.com/rust-lang/unsafe-code-guidelines/issues/326
//! [dereferencing]: core::ops::Deref
//! [`Box::<T>::from_raw(value)`]: Box::from_raw
//! [`Global`]: crate::alloc::Global
//! [`Layout`]: crate::alloc::Layout
//! [`Layout::for_value(&*value)`]: crate::alloc::Layout::for_value
//! [valid]: ptr#safety

#![stable(feature = "rust1", since = "1.0.0")]

use core::borrow::{Borrow, BorrowMut};
#[cfg(not(no_global_oom_handling))]
use core::clone::CloneToUninit;
use core::cmp::Ordering;
use core::error::{self, Error};
use core::fmt;
use core::future::Future;
use core::hash::{Hash, Hasher};
use core::marker::{PointerLike, Tuple, Unsize};
use core::mem::{self, SizedTypeProperties};
use core::ops::{
    AsyncFn, AsyncFnMut, AsyncFnOnce, CoerceUnsized, Coroutine, CoroutineState, Deref, DerefMut,
    DerefPure, DispatchFromDyn, LegacyReceiver,
};
use core::pin::{Pin, PinCoerceUnsized};
use core::ptr::{self, NonNull, Unique};
use core::task::{Context, Poll};

#[cfg(not(no_global_oom_handling))]
use crate::alloc::handle_alloc_error;
use crate::alloc::{AllocError, Allocator, Global, Layout};
use crate::raw_vec::RawVec;
#[cfg(not(no_global_oom_handling))]
use crate::str::from_boxed_utf8_unchecked;

/// Conversion related impls for `Box<_>` (`From`, `downcast`, etc)
mod convert;
/// Iterator related impls for `Box<_>`.
mod iter;
/// [`ThinBox`] implementation.
mod thin;

#[unstable(feature = "thin_box", issue = "92791")]
pub use thin::ThinBox;

/// A pointer type that uniquely owns a heap allocation of type `T`.
///
/// See the [module-level documentation](../../std/boxed/index.html) for more.
#[lang = "owned_box"]
#[fundamental]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_insignificant_dtor]
#[doc(search_unbox)]
// The declaration of the `Box` struct must be kept in sync with the
// compiler or ICEs will happen.
pub struct Box<
    T: ?Sized,
    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
>(Unique<T>, A);

impl<T> Box<T> {
    /// Allocates memory on the heap and then places `x` into it.
    ///
    /// This doesn't actually allocate if `T` is zero-sized.
    ///
    /// # Examples
    ///
    /// ```
    /// let five = Box::new(5);
    /// ```
    #[cfg(not(no_global_oom_handling))]
    #[inline(always)]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[must_use]
    #[rustc_diagnostic_item = "box_new"]
    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
    pub fn new(x: T) -> Self {
        #[rustc_box]
        Box::new(x)
    }

    /// Constructs a new box with uninitialized contents.
    ///
    /// # Examples
    ///
    /// ```
    /// let mut five = Box::<u32>::new_uninit();
    ///
    /// let five = unsafe {
    ///     // Deferred initialization:
    ///     five.as_mut_ptr().write(5);
    ///
    ///     five.assume_init()
    /// };
    ///
    /// assert_eq!(*five, 5)
    /// ```
    #[cfg(not(no_global_oom_handling))]
    #[stable(feature = "new_uninit", since = "1.82.0")]
    #[must_use]
    #[inline]
    pub fn new_uninit() -> Box<mem::MaybeUninit<T>> {
        Self::new_uninit_in(Global)
    }

    /// Constructs a new `Box` with uninitialized contents, with the memory
    /// being filled with `0` bytes.
    ///
    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
    /// of this method.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(new_zeroed_alloc)]
    ///
    /// let zero = Box::<u32>::new_zeroed();
    /// let zero = unsafe { zero.assume_init() };
    ///
    /// assert_eq!(*zero, 0)
    /// ```
    ///
    /// [zeroed]: mem::MaybeUninit::zeroed
    #[cfg(not(no_global_oom_handling))]
    #[inline]
    #[unstable(feature = "new_zeroed_alloc", issue = "129396")]
    #[must_use]
    pub fn new_zeroed() -> Box<mem::MaybeUninit<T>> {
        Self::new_zeroed_in(Global)
    }

    /// Constructs a new `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then
    /// `x` will be pinned in memory and unable to be moved.
    ///
    /// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin(x)`
    /// does the same as <code>[Box::into_pin]\([Box::new]\(x))</code>. Consider using
    /// [`into_pin`](Box::into_pin) if you already have a `Box<T>`, or if you want to
    /// construct a (pinned) `Box` in a different way than with [`Box::new`].
    #[cfg(not(no_global_oom_handling))]
    #[stable(feature = "pin", since = "1.33.0")]
    #[must_use]
    #[inline(always)]
    pub fn pin(x: T) -> Pin<Box<T>> {
        Box::new(x).into()
    }

    /// Allocates memory on the heap then places `x` into it,
    /// returning an error if the allocation fails
    ///
    /// This doesn't actually allocate if `T` is zero-sized.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(allocator_api)]
    ///
    /// let five = Box::try_new(5)?;
    /// # Ok::<(), std::alloc::AllocError>(())
    /// ```
    #[unstable(feature = "allocator_api", issue = "32838")]
    #[inline]
    pub fn try_new(x: T) -> Result<Self, AllocError> {
        Self::try_new_in(x, Global)
    }

    /// Constructs a new box with uninitialized contents on the heap,
    /// returning an error if the allocation fails
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(allocator_api)]
    ///
    /// let mut five = Box::<u32>::try_new_uninit()?;
    ///
    /// let five = unsafe {
    ///     // Deferred initialization:
    ///     five.as_mut_ptr().write(5);
    ///
    ///     five.assume_init()
    /// };
    ///
    /// assert_eq!(*five, 5);
    /// # Ok::<(), std::alloc::AllocError>(())
    /// ```
    #[unstable(feature = "allocator_api", issue = "32838")]
    // #[unstable(feature = "new_uninit", issue = "63291")]
    #[inline]
    pub fn try_new_uninit() -> Result<Box<mem::MaybeUninit<T>>, AllocError> {
        Box::try_new_uninit_in(Global)
    }

    /// Constructs a new `Box` with uninitialized contents, with the memory
    /// being filled with `0` bytes on the heap
    ///
    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
    /// of this method.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(allocator_api)]
    ///
    /// let zero = Box::<u32>::try_new_zeroed()?;
    /// let zero = unsafe { zero.assume_init() };
    ///
    /// assert_eq!(*zero, 0);
    /// # Ok::<(), std::alloc::AllocError>(())
    /// ```
    ///
    /// [zeroed]: mem::MaybeUninit::zeroed
    #[unstable(feature = "allocator_api", issue = "32838")]
    // #[unstable(feature = "new_uninit", issue = "63291")]
    #[inline]
    pub fn try_new_zeroed() -> Result<Box<mem::MaybeUninit<T>>, AllocError> {
        Box::try_new_zeroed_in(Global)
    }
}

impl<T, A: Allocator> Box<T, A> {
    /// Allocates memory in the given allocator then places `x` into it.
    ///
    /// This doesn't actually allocate if `T` is zero-sized.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(allocator_api)]
    ///
    /// use std::alloc::System;
    ///
    /// let five = Box::new_in(5, System);
    /// ```
    #[cfg(not(no_global_oom_handling))]
    #[unstable(feature = "allocator_api", issue = "32838")]
    #[must_use]
    #[inline]
    pub fn new_in(x: T, alloc: A) -> Self
    where
        A: Allocator,
    {
        let mut boxed = Self::new_uninit_in(alloc);
        unsafe {
            boxed.as_mut_ptr().write(x);
            boxed.assume_init()
        }
    }

    /// Allocates memory in the given allocator then places `x` into it,
    /// returning an error if the allocation fails
    ///
    /// This doesn't actually allocate if `T` is zero-sized.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(allocator_api)]
    ///
    /// use std::alloc::System;
    ///
    /// let five = Box::try_new_in(5, System)?;
    /// # Ok::<(), std::alloc::AllocError>(())
    /// ```
    #[unstable(feature = "allocator_api", issue = "32838")]
    #[inline]
    pub fn try_new_in(x: T, alloc: A) -> Result<Self, AllocError>
    where
        A: Allocator,
    {
        let mut boxed = Self::try_new_uninit_in(alloc)?;
        unsafe {
            boxed.as_mut_ptr().write(x);
            Ok(boxed.assume_init())
        }
    }

    /// Constructs a new box with uninitialized contents in the provided allocator.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(allocator_api)]
    ///
    /// use std::alloc::System;
    ///
    /// let mut five = Box::<u32, _>::new_uninit_in(System);
    ///
    /// let five = unsafe {
    ///     // Deferred initialization:
    ///     five.as_mut_ptr().write(5);
    ///
    ///     five.assume_init()
    /// };
    ///
    /// assert_eq!(*five, 5)
    /// ```
    #[unstable(feature = "allocator_api", issue = "32838")]
    #[cfg(not(no_global_oom_handling))]
    #[must_use]
    // #[unstable(feature = "new_uninit", issue = "63291")]
    pub fn new_uninit_in(alloc: A) -> Box<mem::MaybeUninit<T>, A>
    where
        A: Allocator,
    {
        let layout = Layout::new::<mem::MaybeUninit<T>>();
        // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable.
        // That would make code size bigger.
        match Box::try_new_uninit_in(alloc) {
            Ok(m) => m,
            Err(_) => handle_alloc_error(layout),
        }
    }

    /// Constructs a new box with uninitialized contents in the provided allocator,
    /// returning an error if the allocation fails
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(allocator_api)]
    ///
    /// use std::alloc::System;
    ///
    /// let mut five = Box::<u32, _>::try_new_uninit_in(System)?;
    ///
    /// let five = unsafe {
    ///     // Deferred initialization:
    ///     five.as_mut_ptr().write(5);
    ///
    ///     five.assume_init()
    /// };
    ///
    /// assert_eq!(*five, 5);
    /// # Ok::<(), std::alloc::AllocError>(())
    /// ```
    #[unstable(feature = "allocator_api", issue = "32838")]
    // #[unstable(feature = "new_uninit", issue = "63291")]
    pub fn try_new_uninit_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError>
    where
        A: Allocator,
    {
        let ptr = if T::IS_ZST {
            NonNull::dangling()
        } else {
            let layout = Layout::new::<mem::MaybeUninit<T>>();
            alloc.allocate(layout)?.cast()
        };
        unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) }
    }

    /// Constructs a new `Box` with uninitialized contents, with the memory
    /// being filled with `0` bytes in the provided allocator.
    ///
    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
    /// of this method.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(allocator_api)]
    ///
    /// use std::alloc::System;
    ///
    /// let zero = Box::<u32, _>::new_zeroed_in(System);
    /// let zero = unsafe { zero.assume_init() };
    ///
    /// assert_eq!(*zero, 0)
    /// ```
    ///
    /// [zeroed]: mem::MaybeUninit::zeroed
    #[unstable(feature = "allocator_api", issue = "32838")]
    #[cfg(not(no_global_oom_handling))]
    // #[unstable(feature = "new_uninit", issue = "63291")]
    #[must_use]
    pub fn new_zeroed_in(alloc: A) -> Box<mem::MaybeUninit<T>, A>
    where
        A: Allocator,
    {
        let layout = Layout::new::<mem::MaybeUninit<T>>();
        // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable.
        // That would make code size bigger.
        match Box::try_new_zeroed_in(alloc) {
            Ok(m) => m,
            Err(_) => handle_alloc_error(layout),
        }
    }

    /// Constructs a new `Box` with uninitialized contents, with the memory
    /// being filled with `0` bytes in the provided allocator,
    /// returning an error if the allocation fails,
    ///
    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
    /// of this method.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(allocator_api)]
    ///
    /// use std::alloc::System;
    ///
    /// let zero = Box::<u32, _>::try_new_zeroed_in(System)?;
    /// let zero = unsafe { zero.assume_init() };
    ///
    /// assert_eq!(*zero, 0);
    /// # Ok::<(), std::alloc::AllocError>(())
    /// ```
    ///
    /// [zeroed]: mem::MaybeUninit::zeroed
    #[unstable(feature = "allocator_api", issue = "32838")]
    // #[unstable(feature = "new_uninit", issue = "63291")]
    pub fn try_new_zeroed_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError>
    where
        A: Allocator,
    {
        let ptr = if T::IS_ZST {
            NonNull::dangling()
        } else {
            let layout = Layout::new::<mem::MaybeUninit<T>>();
            alloc.allocate_zeroed(layout)?.cast()
        };
        unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) }
    }

    /// Constructs a new `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then
    /// `x` will be pinned in memory and unable to be moved.
    ///
    /// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin_in(x, alloc)`
    /// does the same as <code>[Box::into_pin]\([Box::new_in]\(x, alloc))</code>. Consider using
    /// [`into_pin`](Box::into_pin) if you already have a `Box<T, A>`, or if you want to
    /// construct a (pinned) `Box` in a different way than with [`Box::new_in`].
    #[cfg(not(no_global_oom_handling))]
    #[unstable(feature = "allocator_api", issue = "32838")]
    #[must_use]
    #[inline(always)]
    pub fn pin_in(x: T, alloc: A) -> Pin<Self>
    where
        A: 'static + Allocator,
    {
        Self::into_pin(Self::new_in(x, alloc))
    }

    /// Converts a `Box<T>` into a `Box<[T]>`
    ///
    /// This conversion does not allocate on the heap and happens in place.
    #[unstable(feature = "box_into_boxed_slice", issue = "71582")]
    pub fn into_boxed_slice(boxed: Self) -> Box<[T], A> {
        let (raw, alloc) = Box::into_raw_with_allocator(boxed);
        unsafe { Box::from_raw_in(raw as *mut [T; 1], alloc) }
    }

    /// Consumes the `Box`, returning the wrapped value.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(box_into_inner)]
    ///
    /// let c = Box::new(5);
    ///
    /// assert_eq!(Box::into_inner(c), 5);
    /// ```
    #[unstable(feature = "box_into_inner", issue = "80437")]
    #[inline]
    pub fn into_inner(boxed: Self) -> T {
        *boxed
    }
}

impl<T> Box<[T]> {
    /// Constructs a new boxed slice with uninitialized contents.
    ///
    /// # Examples
    ///
    /// ```
    /// let mut values = Box::<[u32]>::new_uninit_slice(3);
    ///
    /// let values = unsafe {
    ///     // Deferred initialization:
    ///     values[0].as_mut_ptr().write(1);
    ///     values[1].as_mut_ptr().write(2);
    ///     values[2].as_mut_ptr().write(3);
    ///
    ///     values.assume_init()
    /// };
    ///
    /// assert_eq!(*values, [1, 2, 3])
    /// ```
    #[cfg(not(no_global_oom_handling))]
    #[stable(feature = "new_uninit", since = "1.82.0")]
    #[must_use]
    pub fn new_uninit_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> {
        unsafe { RawVec::with_capacity(len).into_box(len) }
    }

    /// Constructs a new boxed slice with uninitialized contents, with the memory
    /// being filled with `0` bytes.
    ///
    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
    /// of this method.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(new_zeroed_alloc)]
    ///
    /// let values = Box::<[u32]>::new_zeroed_slice(3);
    /// let values = unsafe { values.assume_init() };
    ///
    /// assert_eq!(*values, [0, 0, 0])
    /// ```
    ///
    /// [zeroed]: mem::MaybeUninit::zeroed
    #[cfg(not(no_global_oom_handling))]
    #[unstable(feature = "new_zeroed_alloc", issue = "129396")]
    #[must_use]
    pub fn new_zeroed_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> {
        unsafe { RawVec::with_capacity_zeroed(len).into_box(len) }
    }

    /// Constructs a new boxed slice with uninitialized contents. Returns an error if
    /// the allocation fails.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(allocator_api)]
    ///
    /// let mut values = Box::<[u32]>::try_new_uninit_slice(3)?;
    /// let values = unsafe {
    ///     // Deferred initialization:
    ///     values[0].as_mut_ptr().write(1);
    ///     values[1].as_mut_ptr().write(2);
    ///     values[2].as_mut_ptr().write(3);
    ///     values.assume_init()
    /// };
    ///
    /// assert_eq!(*values, [1, 2, 3]);
    /// # Ok::<(), std::alloc::AllocError>(())
    /// ```
    #[unstable(feature = "allocator_api", issue = "32838")]
    #[inline]
    pub fn try_new_uninit_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> {
        let ptr = if T::IS_ZST || len == 0 {
            NonNull::dangling()
        } else {
            let layout = match Layout::array::<mem::MaybeUninit<T>>(len) {
                Ok(l) => l,
                Err(_) => return Err(AllocError),
            };
            Global.allocate(layout)?.cast()
        };
        unsafe { Ok(RawVec::from_raw_parts_in(ptr.as_ptr(), len, Global).into_box(len)) }
    }

    /// Constructs a new boxed slice with uninitialized contents, with the memory
    /// being filled with `0` bytes. Returns an error if the allocation fails.
    ///
    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
    /// of this method.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(allocator_api)]
    ///
    /// let values = Box::<[u32]>::try_new_zeroed_slice(3)?;
    /// let values = unsafe { values.assume_init() };
    ///
    /// assert_eq!(*values, [0, 0, 0]);
    /// # Ok::<(), std::alloc::AllocError>(())
    /// ```
    ///
    /// [zeroed]: mem::MaybeUninit::zeroed
    #[unstable(feature = "allocator_api", issue = "32838")]
    #[inline]
    pub fn try_new_zeroed_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> {
        let ptr = if T::IS_ZST || len == 0 {
            NonNull::dangling()
        } else {
            let layout = match Layout::array::<mem::MaybeUninit<T>>(len) {
                Ok(l) => l,
                Err(_) => return Err(AllocError),
            };
            Global.allocate_zeroed(layout)?.cast()
        };
        unsafe { Ok(RawVec::from_raw_parts_in(ptr.as_ptr(), len, Global).into_box(len)) }
    }
}

impl<T, A: Allocator> Box<[T], A> {
    /// Constructs a new boxed slice with uninitialized contents in the provided allocator.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(allocator_api)]
    ///
    /// use std::alloc::System;
    ///
    /// let mut values = Box::<[u32], _>::new_uninit_slice_in(3, System);
    ///
    /// let values = unsafe {
    ///     // Deferred initialization:
    ///     values[0].as_mut_ptr().write(1);
    ///     values[1].as_mut_ptr().write(2);
    ///     values[2].as_mut_ptr().write(3);
    ///
    ///     values.assume_init()
    /// };
    ///
    /// assert_eq!(*values, [1, 2, 3])
    /// ```
    #[cfg(not(no_global_oom_handling))]
    #[unstable(feature = "allocator_api", issue = "32838")]
    // #[unstable(feature = "new_uninit", issue = "63291")]
    #[must_use]
    pub fn new_uninit_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> {
        unsafe { RawVec::with_capacity_in(len, alloc).into_box(len) }
    }

    /// Constructs a new boxed slice with uninitialized contents in the provided allocator,
    /// with the memory being filled with `0` bytes.
    ///
    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
    /// of this method.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(allocator_api)]
    ///
    /// use std::alloc::System;
    ///
    /// let values = Box::<[u32], _>::new_zeroed_slice_in(3, System);
    /// let values = unsafe { values.assume_init() };
    ///
    /// assert_eq!(*values, [0, 0, 0])
    /// ```
    ///
    /// [zeroed]: mem::MaybeUninit::zeroed
    #[cfg(not(no_global_oom_handling))]
    #[unstable(feature = "allocator_api", issue = "32838")]
    // #[unstable(feature = "new_uninit", issue = "63291")]
    #[must_use]
    pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> {
        unsafe { RawVec::with_capacity_zeroed_in(len, alloc).into_box(len) }
    }

    /// Constructs a new boxed slice with uninitialized contents in the provided allocator. Returns an error if
    /// the allocation fails.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(allocator_api)]
    ///
    /// use std::alloc::System;
    ///
    /// let mut values = Box::<[u32], _>::try_new_uninit_slice_in(3, System)?;
    /// let values = unsafe {
    ///     // Deferred initialization:
    ///     values[0].as_mut_ptr().write(1);
    ///     values[1].as_mut_ptr().write(2);
    ///     values[2].as_mut_ptr().write(3);
    ///     values.assume_init()
    /// };
    ///
    /// assert_eq!(*values, [1, 2, 3]);
    /// # Ok::<(), std::alloc::AllocError>(())
    /// ```
    #[unstable(feature = "allocator_api", issue = "32838")]
    #[inline]
    pub fn try_new_uninit_slice_in(
        len: usize,
        alloc: A,
    ) -> Result<Box<[mem::MaybeUninit<T>], A>, AllocError> {
        let ptr = if T::IS_ZST || len == 0 {
            NonNull::dangling()
        } else {
            let layout = match Layout::array::<mem::MaybeUninit<T>>(len) {
                Ok(l) => l,
                Err(_) => return Err(AllocError),
            };
            alloc.allocate(layout)?.cast()
        };
        unsafe { Ok(RawVec::from_raw_parts_in(ptr.as_ptr(), len, alloc).into_box(len)) }
    }

    /// Constructs a new boxed slice with uninitialized contents in the provided allocator, with the memory
    /// being filled with `0` bytes. Returns an error if the allocation fails.
    ///
    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
    /// of this method.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(allocator_api)]
    ///
    /// use std::alloc::System;
    ///
    /// let values = Box::<[u32], _>::try_new_zeroed_slice_in(3, System)?;
    /// let values = unsafe { values.assume_init() };
    ///
    /// assert_eq!(*values, [0, 0, 0]);
    /// # Ok::<(), std::alloc::AllocError>(())
    /// ```
    ///
    /// [zeroed]: mem::MaybeUninit::zeroed
    #[unstable(feature = "allocator_api", issue = "32838")]
    #[inline]
    pub fn try_new_zeroed_slice_in(
        len: usize,
        alloc: A,
    ) -> Result<Box<[mem::MaybeUninit<T>], A>, AllocError> {
        let ptr = if T::IS_ZST || len == 0 {
            NonNull::dangling()
        } else {
            let layout = match Layout::array::<mem::MaybeUninit<T>>(len) {
                Ok(l) => l,
                Err(_) => return Err(AllocError),
            };
            alloc.allocate_zeroed(layout)?.cast()
        };
        unsafe { Ok(RawVec::from_raw_parts_in(ptr.as_ptr(), len, alloc).into_box(len)) }
    }
}

impl<T, A: Allocator> Box<mem::MaybeUninit<T>, A> {
    /// Converts to `Box<T, A>`.
    ///
    /// # Safety
    ///
    /// As with [`MaybeUninit::assume_init`],
    /// it is up to the caller to guarantee that the value
    /// really is in an initialized state.
    /// Calling this when the content is not yet fully initialized
    /// causes immediate undefined behavior.
    ///
    /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
    ///
    /// # Examples
    ///
    /// ```
    /// let mut five = Box::<u32>::new_uninit();
    ///
    /// let five: Box<u32> = unsafe {
    ///     // Deferred initialization:
    ///     five.as_mut_ptr().write(5);
    ///
    ///     five.assume_init()
    /// };
    ///
    /// assert_eq!(*five, 5)
    /// ```
    #[stable(feature = "new_uninit", since = "1.82.0")]
    #[inline]
    pub unsafe fn assume_init(self) -> Box<T, A> {
        let (raw, alloc) = Box::into_raw_with_allocator(self);
        unsafe { Box::from_raw_in(raw as *mut T, alloc) }
    }

    /// Writes the value and converts to `Box<T, A>`.
    ///
    /// This method converts the box similarly to [`Box::assume_init`] but
    /// writes `value` into it before conversion thus guaranteeing safety.
    /// In some scenarios use of this method may improve performance because
    /// the compiler may be able to optimize copying from stack.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(box_uninit_write)]
    ///
    /// let big_box = Box::<[usize; 1024]>::new_uninit();
    ///
    /// let mut array = [0; 1024];
    /// for (i, place) in array.iter_mut().enumerate() {
    ///     *place = i;
    /// }
    ///
    /// // The optimizer may be able to elide this copy, so previous code writes
    /// // to heap directly.
    /// let big_box = Box::write(big_box, array);
    ///
    /// for (i, x) in big_box.iter().enumerate() {
    ///     assert_eq!(*x, i);
    /// }
    /// ```
    #[unstable(feature = "box_uninit_write", issue = "129397")]
    #[inline]
    pub fn write(mut boxed: Self, value: T) -> Box<T, A> {
        unsafe {
            (*boxed).write(value);
            boxed.assume_init()
        }
    }
}

impl<T, A: Allocator> Box<[mem::MaybeUninit<T>], A> {
    /// Converts to `Box<[T], A>`.
    ///
    /// # Safety
    ///
    /// As with [`MaybeUninit::assume_init`],
    /// it is up to the caller to guarantee that the values
    /// really are in an initialized state.
    /// Calling this when the content is not yet fully initialized
    /// causes immediate undefined behavior.
    ///
    /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
    ///
    /// # Examples
    ///
    /// ```
    /// let mut values = Box::<[u32]>::new_uninit_slice(3);
    ///
    /// let values = unsafe {
    ///     // Deferred initialization:
    ///     values[0].as_mut_ptr().write(1);
    ///     values[1].as_mut_ptr().write(2);
    ///     values[2].as_mut_ptr().write(3);
    ///
    ///     values.assume_init()
    /// };
    ///
    /// assert_eq!(*values, [1, 2, 3])
    /// ```
    #[stable(feature = "new_uninit", since = "1.82.0")]
    #[inline]
    pub unsafe fn assume_init(self) -> Box<[T], A> {
        let (raw, alloc) = Box::into_raw_with_allocator(self);
        unsafe { Box::from_raw_in(raw as *mut [T], alloc) }
    }
}

impl<T: ?Sized> Box<T> {
    /// Constructs a box from a raw pointer.
    ///
    /// After calling this function, the raw pointer is owned by the
    /// resulting `Box`. Specifically, the `Box` destructor will call
    /// the destructor of `T` and free the allocated memory. For this
    /// to be safe, the memory must have been allocated in accordance
    /// with the [memory layout] used by `Box` .
    ///
    /// # Safety
    ///
    /// This function is unsafe because improper use may lead to
    /// memory problems. For example, a double-free may occur if the
    /// function is called twice on the same raw pointer.
    ///
    /// The safety conditions are described in the [memory layout] section.
    ///
    /// # Examples
    ///
    /// Recreate a `Box` which was previously converted to a raw pointer
    /// using [`Box::into_raw`]:
    /// ```
    /// let x = Box::new(5);
    /// let ptr = Box::into_raw(x);
    /// let x = unsafe { Box::from_raw(ptr) };
    /// ```
    /// Manually create a `Box` from scratch by using the global allocator:
    /// ```
    /// use std::alloc::{alloc, Layout};
    ///
    /// unsafe {
    ///     let ptr = alloc(Layout::new::<i32>()) as *mut i32;
    ///     // In general .write is required to avoid attempting to destruct
    ///     // the (uninitialized) previous contents of `ptr`, though for this
    ///     // simple example `*ptr = 5` would have worked as well.
    ///     ptr.write(5);
    ///     let x = Box::from_raw(ptr);
    /// }
    /// ```
    ///
    /// [memory layout]: self#memory-layout
    /// [`Layout`]: crate::Layout
    #[stable(feature = "box_raw", since = "1.4.0")]
    #[inline]
    #[must_use = "call `drop(Box::from_raw(ptr))` if you intend to drop the `Box`"]
    pub unsafe fn from_raw(raw: *mut T) -> Self {
        unsafe { Self::from_raw_in(raw, Global) }
    }

    /// Constructs a box from a `NonNull` pointer.
    ///
    /// After calling this function, the `NonNull` pointer is owned by
    /// the resulting `Box`. Specifically, the `Box` destructor will call
    /// the destructor of `T` and free the allocated memory. For this
    /// to be safe, the memory must have been allocated in accordance
    /// with the [memory layout] used by `Box` .
    ///
    /// # Safety
    ///
    /// This function is unsafe because improper use may lead to
    /// memory problems. For example, a double-free may occur if the
    /// function is called twice on the same `NonNull` pointer.
    ///
    /// The safety conditions are described in the [memory layout] section.
    ///
    /// # Examples
    ///
    /// Recreate a `Box` which was previously converted to a `NonNull`
    /// pointer using [`Box::into_non_null`]:
    /// ```
    /// #![feature(box_vec_non_null)]
    ///
    /// let x = Box::new(5);
    /// let non_null = Box::into_non_null(x);
    /// let x = unsafe { Box::from_non_null(non_null) };
    /// ```
    /// Manually create a `Box` from scratch by using the global allocator:
    /// ```
    /// #![feature(box_vec_non_null)]
    ///
    /// use std::alloc::{alloc, Layout};
    /// use std::ptr::NonNull;
    ///
    /// unsafe {
    ///     let non_null = NonNull::new(alloc(Layout::new::<i32>()).cast::<i32>())
    ///         .expect("allocation failed");
    ///     // In general .write is required to avoid attempting to destruct
    ///     // the (uninitialized) previous contents of `non_null`.
    ///     non_null.write(5);
    ///     let x = Box::from_non_null(non_null);
    /// }
    /// ```
    ///
    /// [memory layout]: self#memory-layout
    /// [`Layout`]: crate::Layout
    #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
    #[inline]
    #[must_use = "call `drop(Box::from_non_null(ptr))` if you intend to drop the `Box`"]
    pub unsafe fn from_non_null(ptr: NonNull<T>) -> Self {
        unsafe { Self::from_raw(ptr.as_ptr()) }
    }
}

impl<T: ?Sized, A: Allocator> Box<T, A> {
    /// Constructs a box from a raw pointer in the given allocator.
    ///
    /// After calling this function, the raw pointer is owned by the
    /// resulting `Box`. Specifically, the `Box` destructor will call
    /// the destructor of `T` and free the allocated memory. For this
    /// to be safe, the memory must have been allocated in accordance
    /// with the [memory layout] used by `Box` .
    ///
    /// # Safety
    ///
    /// This function is unsafe because improper use may lead to
    /// memory problems. For example, a double-free may occur if the
    /// function is called twice on the same raw pointer.
    ///
    ///
    /// # Examples
    ///
    /// Recreate a `Box` which was previously converted to a raw pointer
    /// using [`Box::into_raw_with_allocator`]:
    /// ```
    /// #![feature(allocator_api)]
    ///
    /// use std::alloc::System;
    ///
    /// let x = Box::new_in(5, System);
    /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
    /// let x = unsafe { Box::from_raw_in(ptr, alloc) };
    /// ```
    /// Manually create a `Box` from scratch by using the system allocator:
    /// ```
    /// #![feature(allocator_api, slice_ptr_get)]
    ///
    /// use std::alloc::{Allocator, Layout, System};
    ///
    /// unsafe {
    ///     let ptr = System.allocate(Layout::new::<i32>())?.as_mut_ptr() as *mut i32;
    ///     // In general .write is required to avoid attempting to destruct
    ///     // the (uninitialized) previous contents of `ptr`, though for this
    ///     // simple example `*ptr = 5` would have worked as well.
    ///     ptr.write(5);
    ///     let x = Box::from_raw_in(ptr, System);
    /// }
    /// # Ok::<(), std::alloc::AllocError>(())
    /// ```
    ///
    /// [memory layout]: self#memory-layout
    /// [`Layout`]: crate::Layout
    #[unstable(feature = "allocator_api", issue = "32838")]
    #[rustc_const_unstable(feature = "const_box", issue = "92521")]
    #[inline]
    pub const unsafe fn from_raw_in(raw: *mut T, alloc: A) -> Self {
        Box(unsafe { Unique::new_unchecked(raw) }, alloc)
    }

    /// Constructs a box from a `NonNull` pointer in the given allocator.
    ///
    /// After calling this function, the `NonNull` pointer is owned by
    /// the resulting `Box`. Specifically, the `Box` destructor will call
    /// the destructor of `T` and free the allocated memory. For this
    /// to be safe, the memory must have been allocated in accordance
    /// with the [memory layout] used by `Box` .
    ///
    /// # Safety
    ///
    /// This function is unsafe because improper use may lead to
    /// memory problems. For example, a double-free may occur if the
    /// function is called twice on the same raw pointer.
    ///
    ///
    /// # Examples
    ///
    /// Recreate a `Box` which was previously converted to a `NonNull` pointer
    /// using [`Box::into_non_null_with_allocator`]:
    /// ```
    /// #![feature(allocator_api, box_vec_non_null)]
    ///
    /// use std::alloc::System;
    ///
    /// let x = Box::new_in(5, System);
    /// let (non_null, alloc) = Box::into_non_null_with_allocator(x);
    /// let x = unsafe { Box::from_non_null_in(non_null, alloc) };
    /// ```
    /// Manually create a `Box` from scratch by using the system allocator:
    /// ```
    /// #![feature(allocator_api, box_vec_non_null, slice_ptr_get)]
    ///
    /// use std::alloc::{Allocator, Layout, System};
    ///
    /// unsafe {
    ///     let non_null = System.allocate(Layout::new::<i32>())?.cast::<i32>();
    ///     // In general .write is required to avoid attempting to destruct
    ///     // the (uninitialized) previous contents of `non_null`.
    ///     non_null.write(5);
    ///     let x = Box::from_non_null_in(non_null, System);
    /// }
    /// # Ok::<(), std::alloc::AllocError>(())
    /// ```
    ///
    /// [memory layout]: self#memory-layout
    /// [`Layout`]: crate::Layout
    #[unstable(feature = "allocator_api", issue = "32838")]
    // #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
    #[rustc_const_unstable(feature = "const_box", issue = "92521")]
    #[inline]
    pub const unsafe fn from_non_null_in(raw: NonNull<T>, alloc: A) -> Self {
        // SAFETY: guaranteed by the caller.
        unsafe { Box::from_raw_in(raw.as_ptr(), alloc) }
    }

    /// Consumes the `Box`, returning a wrapped raw pointer.
    ///
    /// The pointer will be properly aligned and non-null.
    ///
    /// After calling this function, the caller is responsible for the
    /// memory previously managed by the `Box`. In particular, the
    /// caller should properly destroy `T` and release the memory, taking
    /// into account the [memory layout] used by `Box`. The easiest way to
    /// do this is to convert the raw pointer back into a `Box` with the
    /// [`Box::from_raw`] function, allowing the `Box` destructor to perform
    /// the cleanup.
    ///
    /// Note: this is an associated function, which means that you have
    /// to call it as `Box::into_raw(b)` instead of `b.into_raw()`. This
    /// is so that there is no conflict with a method on the inner type.
    ///
    /// # Examples
    /// Converting the raw pointer back into a `Box` with [`Box::from_raw`]
    /// for automatic cleanup:
    /// ```
    /// let x = Box::new(String::from("Hello"));
    /// let ptr = Box::into_raw(x);
    /// let x = unsafe { Box::from_raw(ptr) };
    /// ```
    /// Manual cleanup by explicitly running the destructor and deallocating
    /// the memory:
    /// ```
    /// use std::alloc::{dealloc, Layout};
    /// use std::ptr;
    ///
    /// let x = Box::new(String::from("Hello"));
    /// let ptr = Box::into_raw(x);
    /// unsafe {
    ///     ptr::drop_in_place(ptr);
    ///     dealloc(ptr as *mut u8, Layout::new::<String>());
    /// }
    /// ```
    /// Note: This is equivalent to the following:
    /// ```
    /// let x = Box::new(String::from("Hello"));
    /// let ptr = Box::into_raw(x);
    /// unsafe {
    ///     drop(Box::from_raw(ptr));
    /// }
    /// ```
    ///
    /// [memory layout]: self#memory-layout
    #[must_use = "losing the pointer will leak memory"]
    #[stable(feature = "box_raw", since = "1.4.0")]
    #[inline]
    pub fn into_raw(b: Self) -> *mut T {
        // Make sure Miri realizes that we transition from a noalias pointer to a raw pointer here.
        unsafe { &raw mut *&mut *Self::into_raw_with_allocator(b).0 }
    }

    /// Consumes the `Box`, returning a wrapped `NonNull` pointer.
    ///
    /// The pointer will be properly aligned.
    ///
    /// After calling this function, the caller is responsible for the
    /// memory previously managed by the `Box`. In particular, the
    /// caller should properly destroy `T` and release the memory, taking
    /// into account the [memory layout] used by `Box`. The easiest way to
    /// do this is to convert the `NonNull` pointer back into a `Box` with the
    /// [`Box::from_non_null`] function, allowing the `Box` destructor to
    /// perform the cleanup.
    ///
    /// Note: this is an associated function, which means that you have
    /// to call it as `Box::into_non_null(b)` instead of `b.into_non_null()`.
    /// This is so that there is no conflict with a method on the inner type.
    ///
    /// # Examples
    /// Converting the `NonNull` pointer back into a `Box` with [`Box::from_non_null`]
    /// for automatic cleanup:
    /// ```
    /// #![feature(box_vec_non_null)]
    ///
    /// let x = Box::new(String::from("Hello"));
    /// let non_null = Box::into_non_null(x);
    /// let x = unsafe { Box::from_non_null(non_null) };
    /// ```
    /// Manual cleanup by explicitly running the destructor and deallocating
    /// the memory:
    /// ```
    /// #![feature(box_vec_non_null)]
    ///
    /// use std::alloc::{dealloc, Layout};
    ///
    /// let x = Box::new(String::from("Hello"));
    /// let non_null = Box::into_non_null(x);
    /// unsafe {
    ///     non_null.drop_in_place();
    ///     dealloc(non_null.as_ptr().cast::<u8>(), Layout::new::<String>());
    /// }
    /// ```
    /// Note: This is equivalent to the following:
    /// ```
    /// #![feature(box_vec_non_null)]
    ///
    /// let x = Box::new(String::from("Hello"));
    /// let non_null = Box::into_non_null(x);
    /// unsafe {
    ///     drop(Box::from_non_null(non_null));
    /// }
    /// ```
    ///
    /// [memory layout]: self#memory-layout
    #[must_use = "losing the pointer will leak memory"]
    #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
    #[inline]
    pub fn into_non_null(b: Self) -> NonNull<T> {
        // SAFETY: `Box` is guaranteed to be non-null.
        unsafe { NonNull::new_unchecked(Self::into_raw(b)) }
    }

    /// Consumes the `Box`, returning a wrapped raw pointer and the allocator.
    ///
    /// The pointer will be properly aligned and non-null.
    ///
    /// After calling this function, the caller is responsible for the
    /// memory previously managed by the `Box`. In particular, the
    /// caller should properly destroy `T` and release the memory, taking
    /// into account the [memory layout] used by `Box`. The easiest way to
    /// do this is to convert the raw pointer back into a `Box` with the
    /// [`Box::from_raw_in`] function, allowing the `Box` destructor to perform
    /// the cleanup.
    ///
    /// Note: this is an associated function, which means that you have
    /// to call it as `Box::into_raw_with_allocator(b)` instead of `b.into_raw_with_allocator()`. This
    /// is so that there is no conflict with a method on the inner type.
    ///
    /// # Examples
    /// Converting the raw pointer back into a `Box` with [`Box::from_raw_in`]
    /// for automatic cleanup:
    /// ```
    /// #![feature(allocator_api)]
    ///
    /// use std::alloc::System;
    ///
    /// let x = Box::new_in(String::from("Hello"), System);
    /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
    /// let x = unsafe { Box::from_raw_in(ptr, alloc) };
    /// ```
    /// Manual cleanup by explicitly running the destructor and deallocating
    /// the memory:
    /// ```
    /// #![feature(allocator_api)]
    ///
    /// use std::alloc::{Allocator, Layout, System};
    /// use std::ptr::{self, NonNull};
    ///
    /// let x = Box::new_in(String::from("Hello"), System);
    /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
    /// unsafe {
    ///     ptr::drop_in_place(ptr);
    ///     let non_null = NonNull::new_unchecked(ptr);
    ///     alloc.deallocate(non_null.cast(), Layout::new::<String>());
    /// }
    /// ```
    ///
    /// [memory layout]: self#memory-layout
    #[must_use = "losing the pointer will leak memory"]
    #[unstable(feature = "allocator_api", issue = "32838")]
    #[inline]
    pub fn into_raw_with_allocator(b: Self) -> (*mut T, A) {
        let mut b = mem::ManuallyDrop::new(b);
        // We carefully get the raw pointer out in a way that Miri's aliasing model understands what
        // is happening: using the primitive "deref" of `Box`. In case `A` is *not* `Global`, we
        // want *no* aliasing requirements here!
        // In case `A` *is* `Global`, this does not quite have the right behavior; `into_raw`
        // works around that.
        let ptr = &raw mut **b;
        let alloc = unsafe { ptr::read(&b.1) };
        (ptr, alloc)
    }

    /// Consumes the `Box`, returning a wrapped `NonNull` pointer and the allocator.
    ///
    /// The pointer will be properly aligned.
    ///
    /// After calling this function, the caller is responsible for the
    /// memory previously managed by the `Box`. In particular, the
    /// caller should properly destroy `T` and release the memory, taking
    /// into account the [memory layout] used by `Box`. The easiest way to
    /// do this is to convert the `NonNull` pointer back into a `Box` with the
    /// [`Box::from_non_null_in`] function, allowing the `Box` destructor to
    /// perform the cleanup.
    ///
    /// Note: this is an associated function, which means that you have
    /// to call it as `Box::into_non_null_with_allocator(b)` instead of
    /// `b.into_non_null_with_allocator()`. This is so that there is no
    /// conflict with a method on the inner type.
    ///
    /// # Examples
    /// Converting the `NonNull` pointer back into a `Box` with
    /// [`Box::from_non_null_in`] for automatic cleanup:
    /// ```
    /// #![feature(allocator_api, box_vec_non_null)]
    ///
    /// use std::alloc::System;
    ///
    /// let x = Box::new_in(String::from("Hello"), System);
    /// let (non_null, alloc) = Box::into_non_null_with_allocator(x);
    /// let x = unsafe { Box::from_non_null_in(non_null, alloc) };
    /// ```
    /// Manual cleanup by explicitly running the destructor and deallocating
    /// the memory:
    /// ```
    /// #![feature(allocator_api, box_vec_non_null)]
    ///
    /// use std::alloc::{Allocator, Layout, System};
    ///
    /// let x = Box::new_in(String::from("Hello"), System);
    /// let (non_null, alloc) = Box::into_non_null_with_allocator(x);
    /// unsafe {
    ///     non_null.drop_in_place();
    ///     alloc.deallocate(non_null.cast::<u8>(), Layout::new::<String>());
    /// }
    /// ```
    ///
    /// [memory layout]: self#memory-layout
    #[must_use = "losing the pointer will leak memory"]
    #[unstable(feature = "allocator_api", issue = "32838")]
    // #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
    #[inline]
    pub fn into_non_null_with_allocator(b: Self) -> (NonNull<T>, A) {
        let (ptr, alloc) = Box::into_raw_with_allocator(b);
        // SAFETY: `Box` is guaranteed to be non-null.
        unsafe { (NonNull::new_unchecked(ptr), alloc) }
    }

    #[unstable(
        feature = "ptr_internals",
        issue = "none",
        reason = "use `Box::leak(b).into()` or `Unique::from(Box::leak(b))` instead"
    )]
    #[inline]
    #[doc(hidden)]
    pub fn into_unique(b: Self) -> (Unique<T>, A) {
        let (ptr, alloc) = Box::into_raw_with_allocator(b);
        unsafe { (Unique::from(&mut *ptr), alloc) }
    }

    /// Returns a raw mutable pointer to the `Box`'s contents.
    ///
    /// The caller must ensure that the `Box` outlives the pointer this
    /// function returns, or else it will end up dangling.
    ///
    /// This method guarantees that for the purpose of the aliasing model, this method
    /// does not materialize a reference to the underlying memory, and thus the returned pointer
    /// will remain valid when mixed with other calls to [`as_ptr`] and [`as_mut_ptr`].
    /// Note that calling other methods that materialize references to the memory
    /// may still invalidate this pointer.
    /// See the example below for how this guarantee can be used.
    ///
    /// # Examples
    ///
    /// Due to the aliasing guarantee, the following code is legal:
    ///
    /// ```rust
    /// #![feature(box_as_ptr)]
    ///
    /// unsafe {
    ///     let mut b = Box::new(0);
    ///     let ptr1 = Box::as_mut_ptr(&mut b);
    ///     ptr1.write(1);
    ///     let ptr2 = Box::as_mut_ptr(&mut b);
    ///     ptr2.write(2);
    ///     // Notably, the write to `ptr2` did *not* invalidate `ptr1`:
    ///     ptr1.write(3);
    /// }
    /// ```
    ///
    /// [`as_mut_ptr`]: Self::as_mut_ptr
    /// [`as_ptr`]: Self::as_ptr
    #[unstable(feature = "box_as_ptr", issue = "129090")]
    #[rustc_never_returns_null_ptr]
    #[rustc_as_ptr]
    #[inline]
    pub fn as_mut_ptr(b: &mut Self) -> *mut T {
        // This is a primitive deref, not going through `DerefMut`, and therefore not materializing
        // any references.
        &raw mut **b
    }

    /// Returns a raw pointer to the `Box`'s contents.
    ///
    /// The caller must ensure that the `Box` outlives the pointer this
    /// function returns, or else it will end up dangling.
    ///
    /// The caller must also ensure that the memory the pointer (non-transitively) points to
    /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
    /// derived from it. If you need to mutate the contents of the `Box`, use [`as_mut_ptr`].
    ///
    /// This method guarantees that for the purpose of the aliasing model, this method
    /// does not materialize a reference to the underlying memory, and thus the returned pointer
    /// will remain valid when mixed with other calls to [`as_ptr`] and [`as_mut_ptr`].
    /// Note that calling other methods that materialize mutable references to the memory,
    /// as well as writing to this memory, may still invalidate this pointer.
    /// See the example below for how this guarantee can be used.
    ///
    /// # Examples
    ///
    /// Due to the aliasing guarantee, the following code is legal:
    ///
    /// ```rust
    /// #![feature(box_as_ptr)]
    ///
    /// unsafe {
    ///     let mut v = Box::new(0);
    ///     let ptr1 = Box::as_ptr(&v);
    ///     let ptr2 = Box::as_mut_ptr(&mut v);
    ///     let _val = ptr2.read();
    ///     // No write to this memory has happened yet, so `ptr1` is still valid.
    ///     let _val = ptr1.read();
    ///     // However, once we do a write...
    ///     ptr2.write(1);
    ///     // ... `ptr1` is no longer valid.
    ///     // This would be UB: let _val = ptr1.read();
    /// }
    /// ```
    ///
    /// [`as_mut_ptr`]: Self::as_mut_ptr
    /// [`as_ptr`]: Self::as_ptr
    #[unstable(feature = "box_as_ptr", issue = "129090")]
    #[rustc_never_returns_null_ptr]
    #[rustc_as_ptr]
    #[inline]
    pub fn as_ptr(b: &Self) -> *const T {
        // This is a primitive deref, not going through `DerefMut`, and therefore not materializing
        // any references.
        &raw const **b
    }

    /// Returns a reference to the underlying allocator.
    ///
    /// Note: this is an associated function, which means that you have
    /// to call it as `Box::allocator(&b)` instead of `b.allocator()`. This
    /// is so that there is no conflict with a method on the inner type.
    #[unstable(feature = "allocator_api", issue = "32838")]
    #[rustc_const_unstable(feature = "const_box", issue = "92521")]
    #[inline]
    pub const fn allocator(b: &Self) -> &A {
        &b.1
    }

    /// Consumes and leaks the `Box`, returning a mutable reference,
    /// `&'a mut T`.
    ///
    /// Note that the type `T` must outlive the chosen lifetime `'a`. If the type
    /// has only static references, or none at all, then this may be chosen to be
    /// `'static`.
    ///
    /// This function is mainly useful for data that lives for the remainder of
    /// the program's life. Dropping the returned reference will cause a memory
    /// leak. If this is not acceptable, the reference should first be wrapped
    /// with the [`Box::from_raw`] function producing a `Box`. This `Box` can
    /// then be dropped which will properly destroy `T` and release the
    /// allocated memory.
    ///
    /// Note: this is an associated function, which means that you have
    /// to call it as `Box::leak(b)` instead of `b.leak()`. This
    /// is so that there is no conflict with a method on the inner type.
    ///
    /// # Examples
    ///
    /// Simple usage:
    ///
    /// ```
    /// let x = Box::new(41);
    /// let static_ref: &'static mut usize = Box::leak(x);
    /// *static_ref += 1;
    /// assert_eq!(*static_ref, 42);
    /// # // FIXME(https://github.com/rust-lang/miri/issues/3670):
    /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
    /// # drop(unsafe { Box::from_raw(static_ref) });
    /// ```
    ///
    /// Unsized data:
    ///
    /// ```
    /// let x = vec![1, 2, 3].into_boxed_slice();
    /// let static_ref = Box::leak(x);
    /// static_ref[0] = 4;
    /// assert_eq!(*static_ref, [4, 2, 3]);
    /// # // FIXME(https://github.com/rust-lang/miri/issues/3670):
    /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
    /// # drop(unsafe { Box::from_raw(static_ref) });
    /// ```
    #[stable(feature = "box_leak", since = "1.26.0")]
    #[inline]
    pub fn leak<'a>(b: Self) -> &'a mut T
    where
        A: 'a,
    {
        unsafe { &mut *Box::into_raw(b) }
    }

    /// Converts a `Box<T>` into a `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then
    /// `*boxed` will be pinned in memory and unable to be moved.
    ///
    /// This conversion does not allocate on the heap and happens in place.
    ///
    /// This is also available via [`From`].
    ///
    /// Constructing and pinning a `Box` with <code>Box::into_pin([Box::new]\(x))</code>
    /// can also be written more concisely using <code>[Box::pin]\(x)</code>.
    /// This `into_pin` method is useful if you already have a `Box<T>`, or you are
    /// constructing a (pinned) `Box` in a different way than with [`Box::new`].
    ///
    /// # Notes
    ///
    /// It's not recommended that crates add an impl like `From<Box<T>> for Pin<T>`,
    /// as it'll introduce an ambiguity when calling `Pin::from`.
    /// A demonstration of such a poor impl is shown below.
    ///
    /// ```compile_fail
    /// # use std::pin::Pin;
    /// struct Foo; // A type defined in this crate.
    /// impl From<Box<()>> for Pin<Foo> {
    ///     fn from(_: Box<()>) -> Pin<Foo> {
    ///         Pin::new(Foo)
    ///     }
    /// }
    ///
    /// let foo = Box::new(());
    /// let bar = Pin::from(foo);
    /// ```
    #[stable(feature = "box_into_pin", since = "1.63.0")]
    #[rustc_const_unstable(feature = "const_box", issue = "92521")]
    pub const fn into_pin(boxed: Self) -> Pin<Self>
    where
        A: 'static,
    {
        // It's not possible to move or replace the insides of a `Pin<Box<T>>`
        // when `T: !Unpin`, so it's safe to pin it directly without any
        // additional requirements.
        unsafe { Pin::new_unchecked(boxed) }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for Box<T, A> {
    #[inline]
    fn drop(&mut self) {
        // the T in the Box is dropped by the compiler before the destructor is run

        let ptr = self.0;

        unsafe {
            let layout = Layout::for_value_raw(ptr.as_ptr());
            if layout.size() != 0 {
                self.1.deallocate(From::from(ptr.cast()), layout);
            }
        }
    }
}

#[cfg(not(no_global_oom_handling))]
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Default> Default for Box<T> {
    /// Creates a `Box<T>`, with the `Default` value for T.
    #[inline]
    fn default() -> Self {
        Box::write(Box::new_uninit(), T::default())
    }
}

#[cfg(not(no_global_oom_handling))]
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Default for Box<[T]> {
    #[inline]
    fn default() -> Self {
        let ptr: Unique<[T]> = Unique::<[T; 0]>::dangling();
        Box(ptr, Global)
    }
}

#[cfg(not(no_global_oom_handling))]
#[stable(feature = "default_box_extra", since = "1.17.0")]
impl Default for Box<str> {
    #[inline]
    fn default() -> Self {
        // SAFETY: This is the same as `Unique::cast<U>` but with an unsized `U = str`.
        let ptr: Unique<str> = unsafe {
            let bytes: Unique<[u8]> = Unique::<[u8; 0]>::dangling();
            Unique::new_unchecked(bytes.as_ptr() as *mut str)
        };
        Box(ptr, Global)
    }
}

#[cfg(not(no_global_oom_handling))]
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Clone, A: Allocator + Clone> Clone for Box<T, A> {
    /// Returns a new box with a `clone()` of this box's contents.
    ///
    /// # Examples
    ///
    /// ```
    /// let x = Box::new(5);
    /// let y = x.clone();
    ///
    /// // The value is the same
    /// assert_eq!(x, y);
    ///
    /// // But they are unique objects
    /// assert_ne!(&*x as *const i32, &*y as *const i32);
    /// ```
    #[inline]
    fn clone(&self) -> Self {
        // Pre-allocate memory to allow writing the cloned value directly.
        let mut boxed = Self::new_uninit_in(self.1.clone());
        unsafe {
            (**self).clone_to_uninit(boxed.as_mut_ptr().cast());
            boxed.assume_init()
        }
    }

    /// Copies `source`'s contents into `self` without creating a new allocation.
    ///
    /// # Examples
    ///
    /// ```
    /// let x = Box::new(5);
    /// let mut y = Box::new(10);
    /// let yp: *const i32 = &*y;
    ///
    /// y.clone_from(&x);
    ///
    /// // The value is the same
    /// assert_eq!(x, y);
    ///
    /// // And no allocation occurred
    /// assert_eq!(yp, &*y);
    /// ```
    #[inline]
    fn clone_from(&mut self, source: &Self) {
        (**self).clone_from(&(**source));
    }
}

#[cfg(not(no_global_oom_handling))]
#[stable(feature = "box_slice_clone", since = "1.3.0")]
impl<T: Clone, A: Allocator + Clone> Clone for Box<[T], A> {
    fn clone(&self) -> Self {
        let alloc = Box::allocator(self).clone();
        self.to_vec_in(alloc).into_boxed_slice()
    }

    /// Copies `source`'s contents into `self` without creating a new allocation,
    /// so long as the two are of the same length.
    ///
    /// # Examples
    ///
    /// ```
    /// let x = Box::new([5, 6, 7]);
    /// let mut y = Box::new([8, 9, 10]);
    /// let yp: *const [i32] = &*y;
    ///
    /// y.clone_from(&x);
    ///
    /// // The value is the same
    /// assert_eq!(x, y);
    ///
    /// // And no allocation occurred
    /// assert_eq!(yp, &*y);
    /// ```
    fn clone_from(&mut self, source: &Self) {
        if self.len() == source.len() {
            self.clone_from_slice(&source);
        } else {
            *self = source.clone();
        }
    }
}

#[cfg(not(no_global_oom_handling))]
#[stable(feature = "box_slice_clone", since = "1.3.0")]
impl Clone for Box<str> {
    fn clone(&self) -> Self {
        // this makes a copy of the data
        let buf: Box<[u8]> = self.as_bytes().into();
        unsafe { from_boxed_utf8_unchecked(buf) }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for Box<T, A> {
    #[inline]
    fn eq(&self, other: &Self) -> bool {
        PartialEq::eq(&**self, &**other)
    }
    #[inline]
    fn ne(&self, other: &Self) -> bool {
        PartialEq::ne(&**self, &**other)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for Box<T, A> {
    #[inline]
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        PartialOrd::partial_cmp(&**self, &**other)
    }
    #[inline]
    fn lt(&self, other: &Self) -> bool {
        PartialOrd::lt(&**self, &**other)
    }
    #[inline]
    fn le(&self, other: &Self) -> bool {
        PartialOrd::le(&**self, &**other)
    }
    #[inline]
    fn ge(&self, other: &Self) -> bool {
        PartialOrd::ge(&**self, &**other)
    }
    #[inline]
    fn gt(&self, other: &Self) -> bool {
        PartialOrd::gt(&**self, &**other)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Ord, A: Allocator> Ord for Box<T, A> {
    #[inline]
    fn cmp(&self, other: &Self) -> Ordering {
        Ord::cmp(&**self, &**other)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Eq, A: Allocator> Eq for Box<T, A> {}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Hash, A: Allocator> Hash for Box<T, A> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        (**self).hash(state);
    }
}

#[stable(feature = "indirect_hasher_impl", since = "1.22.0")]
impl<T: ?Sized + Hasher, A: Allocator> Hasher for Box<T, A> {
    fn finish(&self) -> u64 {
        (**self).finish()
    }
    fn write(&mut self, bytes: &[u8]) {
        (**self).write(bytes)
    }
    fn write_u8(&mut self, i: u8) {
        (**self).write_u8(i)
    }
    fn write_u16(&mut self, i: u16) {
        (**self).write_u16(i)
    }
    fn write_u32(&mut self, i: u32) {
        (**self).write_u32(i)
    }
    fn write_u64(&mut self, i: u64) {
        (**self).write_u64(i)
    }
    fn write_u128(&mut self, i: u128) {
        (**self).write_u128(i)
    }
    fn write_usize(&mut self, i: usize) {
        (**self).write_usize(i)
    }
    fn write_i8(&mut self, i: i8) {
        (**self).write_i8(i)
    }
    fn write_i16(&mut self, i: i16) {
        (**self).write_i16(i)
    }
    fn write_i32(&mut self, i: i32) {
        (**self).write_i32(i)
    }
    fn write_i64(&mut self, i: i64) {
        (**self).write_i64(i)
    }
    fn write_i128(&mut self, i: i128) {
        (**self).write_i128(i)
    }
    fn write_isize(&mut self, i: isize) {
        (**self).write_isize(i)
    }
    fn write_length_prefix(&mut self, len: usize) {
        (**self).write_length_prefix(len)
    }
    fn write_str(&mut self, s: &str) {
        (**self).write_str(s)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: fmt::Display + ?Sized, A: Allocator> fmt::Display for Box<T, A> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Display::fmt(&**self, f)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: fmt::Debug + ?Sized, A: Allocator> fmt::Debug for Box<T, A> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized, A: Allocator> fmt::Pointer for Box<T, A> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        // It's not possible to extract the inner Uniq directly from the Box,
        // instead we cast it to a *const which aliases the Unique
        let ptr: *const T = &**self;
        fmt::Pointer::fmt(&ptr, f)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized, A: Allocator> Deref for Box<T, A> {
    type Target = T;

    fn deref(&self) -> &T {
        &**self
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized, A: Allocator> DerefMut for Box<T, A> {
    fn deref_mut(&mut self) -> &mut T {
        &mut **self
    }
}

#[unstable(feature = "deref_pure_trait", issue = "87121")]
unsafe impl<T: ?Sized, A: Allocator> DerefPure for Box<T, A> {}

#[unstable(feature = "legacy_receiver_trait", issue = "none")]
impl<T: ?Sized, A: Allocator> LegacyReceiver for Box<T, A> {}

#[stable(feature = "boxed_closure_impls", since = "1.35.0")]
impl<Args: Tuple, F: FnOnce<Args> + ?Sized, A: Allocator> FnOnce<Args> for Box<F, A> {
    type Output = <F as FnOnce<Args>>::Output;

    extern "rust-call" fn call_once(self, args: Args) -> Self::Output {
        <F as FnOnce<Args>>::call_once(*self, args)
    }
}

#[stable(feature = "boxed_closure_impls", since = "1.35.0")]
impl<Args: Tuple, F: FnMut<Args> + ?Sized, A: Allocator> FnMut<Args> for Box<F, A> {
    extern "rust-call" fn call_mut(&mut self, args: Args) -> Self::Output {
        <F as FnMut<Args>>::call_mut(self, args)
    }
}

#[stable(feature = "boxed_closure_impls", since = "1.35.0")]
impl<Args: Tuple, F: Fn<Args> + ?Sized, A: Allocator> Fn<Args> for Box<F, A> {
    extern "rust-call" fn call(&self, args: Args) -> Self::Output {
        <F as Fn<Args>>::call(self, args)
    }
}

#[cfg_attr(bootstrap, unstable(feature = "async_closure", issue = "62290"))]
#[cfg_attr(not(bootstrap), stable(feature = "async_closure", since = "CURRENT_RUSTC_VERSION"))]
impl<Args: Tuple, F: AsyncFnOnce<Args> + ?Sized, A: Allocator> AsyncFnOnce<Args> for Box<F, A> {
    type Output = F::Output;
    type CallOnceFuture = F::CallOnceFuture;

    extern "rust-call" fn async_call_once(self, args: Args) -> Self::CallOnceFuture {
        F::async_call_once(*self, args)
    }
}

#[cfg_attr(bootstrap, unstable(feature = "async_closure", issue = "62290"))]
#[cfg_attr(not(bootstrap), stable(feature = "async_closure", since = "CURRENT_RUSTC_VERSION"))]
impl<Args: Tuple, F: AsyncFnMut<Args> + ?Sized, A: Allocator> AsyncFnMut<Args> for Box<F, A> {
    type CallRefFuture<'a>
        = F::CallRefFuture<'a>
    where
        Self: 'a;

    extern "rust-call" fn async_call_mut(&mut self, args: Args) -> Self::CallRefFuture<'_> {
        F::async_call_mut(self, args)
    }
}

#[cfg_attr(bootstrap, unstable(feature = "async_closure", issue = "62290"))]
#[cfg_attr(not(bootstrap), stable(feature = "async_closure", since = "CURRENT_RUSTC_VERSION"))]
impl<Args: Tuple, F: AsyncFn<Args> + ?Sized, A: Allocator> AsyncFn<Args> for Box<F, A> {
    extern "rust-call" fn async_call(&self, args: Args) -> Self::CallRefFuture<'_> {
        F::async_call(self, args)
    }
}

#[unstable(feature = "coerce_unsized", issue = "18598")]
impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Box<U, A>> for Box<T, A> {}

#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
unsafe impl<T: ?Sized, A: Allocator> PinCoerceUnsized for Box<T, A> {}

// It is quite crucial that we only allow the `Global` allocator here.
// Handling arbitrary custom allocators (which can affect the `Box` layout heavily!)
// would need a lot of codegen and interpreter adjustments.
#[unstable(feature = "dispatch_from_dyn", issue = "none")]
impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Box<U>> for Box<T, Global> {}

#[stable(feature = "box_borrow", since = "1.1.0")]
impl<T: ?Sized, A: Allocator> Borrow<T> for Box<T, A> {
    fn borrow(&self) -> &T {
        &**self
    }
}

#[stable(feature = "box_borrow", since = "1.1.0")]
impl<T: ?Sized, A: Allocator> BorrowMut<T> for Box<T, A> {
    fn borrow_mut(&mut self) -> &mut T {
        &mut **self
    }
}

#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
impl<T: ?Sized, A: Allocator> AsRef<T> for Box<T, A> {
    fn as_ref(&self) -> &T {
        &**self
    }
}

#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
impl<T: ?Sized, A: Allocator> AsMut<T> for Box<T, A> {
    fn as_mut(&mut self) -> &mut T {
        &mut **self
    }
}

/* Nota bene
 *
 *  We could have chosen not to add this impl, and instead have written a
 *  function of Pin<Box<T>> to Pin<T>. Such a function would not be sound,
 *  because Box<T> implements Unpin even when T does not, as a result of
 *  this impl.
 *
 *  We chose this API instead of the alternative for a few reasons:
 *      - Logically, it is helpful to understand pinning in regard to the
 *        memory region being pointed to. For this reason none of the
 *        standard library pointer types support projecting through a pin
 *        (Box<T> is the only pointer type in std for which this would be
 *        safe.)
 *      - It is in practice very useful to have Box<T> be unconditionally
 *        Unpin because of trait objects, for which the structural auto
 *        trait functionality does not apply (e.g., Box<dyn Foo> would
 *        otherwise not be Unpin).
 *
 *  Another type with the same semantics as Box but only a conditional
 *  implementation of `Unpin` (where `T: Unpin`) would be valid/safe, and
 *  could have a method to project a Pin<T> from it.
 */
#[stable(feature = "pin", since = "1.33.0")]
impl<T: ?Sized, A: Allocator> Unpin for Box<T, A> {}

#[unstable(feature = "coroutine_trait", issue = "43122")]
impl<G: ?Sized + Coroutine<R> + Unpin, R, A: Allocator> Coroutine<R> for Box<G, A> {
    type Yield = G::Yield;
    type Return = G::Return;

    fn resume(mut self: Pin<&mut Self>, arg: R) -> CoroutineState<Self::Yield, Self::Return> {
        G::resume(Pin::new(&mut *self), arg)
    }
}

#[unstable(feature = "coroutine_trait", issue = "43122")]
impl<G: ?Sized + Coroutine<R>, R, A: Allocator> Coroutine<R> for Pin<Box<G, A>>
where
    A: 'static,
{
    type Yield = G::Yield;
    type Return = G::Return;

    fn resume(mut self: Pin<&mut Self>, arg: R) -> CoroutineState<Self::Yield, Self::Return> {
        G::resume((*self).as_mut(), arg)
    }
}

#[stable(feature = "futures_api", since = "1.36.0")]
impl<F: ?Sized + Future + Unpin, A: Allocator> Future for Box<F, A> {
    type Output = F::Output;

    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        F::poll(Pin::new(&mut *self), cx)
    }
}

#[stable(feature = "box_error", since = "1.8.0")]
impl<E: Error> Error for Box<E> {
    #[allow(deprecated, deprecated_in_future)]
    fn description(&self) -> &str {
        Error::description(&**self)
    }

    #[allow(deprecated)]
    fn cause(&self) -> Option<&dyn Error> {
        Error::cause(&**self)
    }

    fn source(&self) -> Option<&(dyn Error + 'static)> {
        Error::source(&**self)
    }

    fn provide<'b>(&'b self, request: &mut error::Request<'b>) {
        Error::provide(&**self, request);
    }
}

#[unstable(feature = "pointer_like_trait", issue = "none")]
impl<T> PointerLike for Box<T> {}