core/bool.rs
1//! impl bool {}
2
3impl bool {
4 /// Returns `Some(t)` if the `bool` is [`true`](../std/keyword.true.html),
5 /// or `None` otherwise.
6 ///
7 /// Arguments passed to `then_some` are eagerly evaluated; if you are
8 /// passing the result of a function call, it is recommended to use
9 /// [`then`], which is lazily evaluated.
10 ///
11 /// [`then`]: bool::then
12 ///
13 /// # Examples
14 ///
15 /// ```
16 /// assert_eq!(false.then_some(0), None);
17 /// assert_eq!(true.then_some(0), Some(0));
18 /// ```
19 ///
20 /// ```
21 /// let mut a = 0;
22 /// let mut function_with_side_effects = || { a += 1; };
23 ///
24 /// true.then_some(function_with_side_effects());
25 /// false.then_some(function_with_side_effects());
26 ///
27 /// // `a` is incremented twice because the value passed to `then_some` is
28 /// // evaluated eagerly.
29 /// assert_eq!(a, 2);
30 /// ```
31 #[stable(feature = "bool_to_option", since = "1.62.0")]
32 #[inline]
33 pub fn then_some<T>(self, t: T) -> Option<T> {
34 if self { Some(t) } else { None }
35 }
36
37 /// Returns `Some(f())` if the `bool` is [`true`](../std/keyword.true.html),
38 /// or `None` otherwise.
39 ///
40 /// # Examples
41 ///
42 /// ```
43 /// assert_eq!(false.then(|| 0), None);
44 /// assert_eq!(true.then(|| 0), Some(0));
45 /// ```
46 ///
47 /// ```
48 /// let mut a = 0;
49 ///
50 /// true.then(|| { a += 1; });
51 /// false.then(|| { a += 1; });
52 ///
53 /// // `a` is incremented once because the closure is evaluated lazily by
54 /// // `then`.
55 /// assert_eq!(a, 1);
56 /// ```
57 #[doc(alias = "then_with")]
58 #[stable(feature = "lazy_bool_to_option", since = "1.50.0")]
59 #[cfg_attr(not(test), rustc_diagnostic_item = "bool_then")]
60 #[inline]
61 pub fn then<T, F: FnOnce() -> T>(self, f: F) -> Option<T> {
62 if self { Some(f()) } else { None }
63 }
64
65 /// Returns either `true_val` or `false_val` depending on the value of
66 /// `self`, with a hint to the compiler that `self` is unlikely
67 /// to be correctly predicted by a CPU’s branch predictor.
68 ///
69 /// This method is functionally equivalent to
70 /// ```ignore (this is just for illustrative purposes)
71 /// fn select_unpredictable<T>(b: bool, true_val: T, false_val: T) -> T {
72 /// if b { true_val } else { false_val }
73 /// }
74 /// ```
75 /// but might generate different assembly. In particular, on platforms with
76 /// a conditional move or select instruction (like `cmov` on x86 or `csel`
77 /// on ARM) the optimizer might use these instructions to avoid branches,
78 /// which can benefit performance if the branch predictor is struggling
79 /// with predicting `condition`, such as in an implementation of binary
80 /// search.
81 ///
82 /// Note however that this lowering is not guaranteed (on any platform) and
83 /// should not be relied upon when trying to write constant-time code. Also
84 /// be aware that this lowering might *decrease* performance if `condition`
85 /// is well-predictable. It is advisable to perform benchmarks to tell if
86 /// this function is useful.
87 ///
88 /// # Examples
89 ///
90 /// Distribute values evenly between two buckets:
91 /// ```
92 /// #![feature(select_unpredictable)]
93 ///
94 /// use std::hash::BuildHasher;
95 ///
96 /// fn append<H: BuildHasher>(hasher: &H, v: i32, bucket_one: &mut Vec<i32>, bucket_two: &mut Vec<i32>) {
97 /// let hash = hasher.hash_one(&v);
98 /// let bucket = (hash % 2 == 0).select_unpredictable(bucket_one, bucket_two);
99 /// bucket.push(v);
100 /// }
101 /// # let hasher = std::collections::hash_map::RandomState::new();
102 /// # let mut bucket_one = Vec::new();
103 /// # let mut bucket_two = Vec::new();
104 /// # append(&hasher, 42, &mut bucket_one, &mut bucket_two);
105 /// # assert_eq!(bucket_one.len() + bucket_two.len(), 1);
106 /// ```
107 #[inline(always)]
108 #[unstable(feature = "select_unpredictable", issue = "133962")]
109 pub fn select_unpredictable<T>(self, true_val: T, false_val: T) -> T {
110 crate::intrinsics::select_unpredictable(self, true_val, false_val)
111 }
112}