core/mem/
maybe_uninit.rs

1use crate::any::type_name;
2use crate::marker::Destruct;
3use crate::mem::ManuallyDrop;
4use crate::{fmt, intrinsics, ptr, slice};
5
6/// A wrapper type to construct uninitialized instances of `T`.
7///
8/// # Initialization invariant
9///
10/// The compiler, in general, assumes that a variable is properly initialized
11/// according to the requirements of the variable's type. For example, a variable of
12/// reference type must be aligned and non-null. This is an invariant that must
13/// *always* be upheld, even in unsafe code. As a consequence, zero-initializing a
14/// variable of reference type causes instantaneous [undefined behavior][ub],
15/// no matter whether that reference ever gets used to access memory:
16///
17/// ```rust,no_run
18/// # #![allow(invalid_value)]
19/// use std::mem::{self, MaybeUninit};
20///
21/// let x: &i32 = unsafe { mem::zeroed() }; // undefined behavior! ⚠️
22/// // The equivalent code with `MaybeUninit<&i32>`:
23/// let x: &i32 = unsafe { MaybeUninit::zeroed().assume_init() }; // undefined behavior! ⚠️
24/// ```
25///
26/// This is exploited by the compiler for various optimizations, such as eliding
27/// run-time checks and optimizing `enum` layout.
28///
29/// Similarly, entirely uninitialized memory may have any content, while a `bool` must
30/// always be `true` or `false`. Hence, creating an uninitialized `bool` is undefined behavior:
31///
32/// ```rust,no_run
33/// # #![allow(invalid_value)]
34/// use std::mem::{self, MaybeUninit};
35///
36/// let b: bool = unsafe { mem::uninitialized() }; // undefined behavior! ⚠️
37/// // The equivalent code with `MaybeUninit<bool>`:
38/// let b: bool = unsafe { MaybeUninit::uninit().assume_init() }; // undefined behavior! ⚠️
39/// ```
40///
41/// Moreover, uninitialized memory is special in that it does not have a fixed value ("fixed"
42/// meaning "it won't change without being written to"). Reading the same uninitialized byte
43/// multiple times can give different results. This makes it undefined behavior to have
44/// uninitialized data in a variable even if that variable has an integer type, which otherwise can
45/// hold any *fixed* bit pattern:
46///
47/// ```rust,no_run
48/// # #![allow(invalid_value)]
49/// use std::mem::{self, MaybeUninit};
50///
51/// let x: i32 = unsafe { mem::uninitialized() }; // undefined behavior! ⚠️
52/// // The equivalent code with `MaybeUninit<i32>`:
53/// let x: i32 = unsafe { MaybeUninit::uninit().assume_init() }; // undefined behavior! ⚠️
54/// ```
55/// On top of that, remember that most types have additional invariants beyond merely
56/// being considered initialized at the type level. For example, a `1`-initialized [`Vec<T>`]
57/// is considered initialized (under the current implementation; this does not constitute
58/// a stable guarantee) because the only requirement the compiler knows about it
59/// is that the data pointer must be non-null. Creating such a `Vec<T>` does not cause
60/// *immediate* undefined behavior, but will cause undefined behavior with most
61/// safe operations (including dropping it).
62///
63/// [`Vec<T>`]: ../../std/vec/struct.Vec.html
64///
65/// # Examples
66///
67/// `MaybeUninit<T>` serves to enable unsafe code to deal with uninitialized data.
68/// It is a signal to the compiler indicating that the data here might *not*
69/// be initialized:
70///
71/// ```rust
72/// use std::mem::MaybeUninit;
73///
74/// // Create an explicitly uninitialized reference. The compiler knows that data inside
75/// // a `MaybeUninit<T>` may be invalid, and hence this is not UB:
76/// let mut x = MaybeUninit::<&i32>::uninit();
77/// // Set it to a valid value.
78/// x.write(&0);
79/// // Extract the initialized data -- this is only allowed *after* properly
80/// // initializing `x`!
81/// let x = unsafe { x.assume_init() };
82/// ```
83///
84/// The compiler then knows to not make any incorrect assumptions or optimizations on this code.
85///
86/// You can think of `MaybeUninit<T>` as being a bit like `Option<T>` but without
87/// any of the run-time tracking and without any of the safety checks.
88///
89/// ## out-pointers
90///
91/// You can use `MaybeUninit<T>` to implement "out-pointers": instead of returning data
92/// from a function, pass it a pointer to some (uninitialized) memory to put the
93/// result into. This can be useful when it is important for the caller to control
94/// how the memory the result is stored in gets allocated, and you want to avoid
95/// unnecessary moves.
96///
97/// ```
98/// use std::mem::MaybeUninit;
99///
100/// unsafe fn make_vec(out: *mut Vec<i32>) {
101///     // `write` does not drop the old contents, which is important.
102///     unsafe { out.write(vec![1, 2, 3]); }
103/// }
104///
105/// let mut v = MaybeUninit::uninit();
106/// unsafe { make_vec(v.as_mut_ptr()); }
107/// // Now we know `v` is initialized! This also makes sure the vector gets
108/// // properly dropped.
109/// let v = unsafe { v.assume_init() };
110/// assert_eq!(&v, &[1, 2, 3]);
111/// ```
112///
113/// ## Initializing an array element-by-element
114///
115/// `MaybeUninit<T>` can be used to initialize a large array element-by-element:
116///
117/// ```
118/// use std::mem::{self, MaybeUninit};
119///
120/// let data = {
121///     // Create an uninitialized array of `MaybeUninit`.
122///     let mut data: [MaybeUninit<Vec<u32>>; 1000] = [const { MaybeUninit::uninit() }; 1000];
123///
124///     // Dropping a `MaybeUninit` does nothing, so if there is a panic during this loop,
125///     // we have a memory leak, but there is no memory safety issue.
126///     for elem in &mut data[..] {
127///         elem.write(vec![42]);
128///     }
129///
130///     // Everything is initialized. Transmute the array to the
131///     // initialized type.
132///     unsafe { mem::transmute::<_, [Vec<u32>; 1000]>(data) }
133/// };
134///
135/// assert_eq!(&data[0], &[42]);
136/// ```
137///
138/// You can also work with partially initialized arrays, which could
139/// be found in low-level datastructures.
140///
141/// ```
142/// use std::mem::MaybeUninit;
143///
144/// // Create an uninitialized array of `MaybeUninit`.
145/// let mut data: [MaybeUninit<String>; 1000] = [const { MaybeUninit::uninit() }; 1000];
146/// // Count the number of elements we have assigned.
147/// let mut data_len: usize = 0;
148///
149/// for elem in &mut data[0..500] {
150///     elem.write(String::from("hello"));
151///     data_len += 1;
152/// }
153///
154/// // For each item in the array, drop if we allocated it.
155/// for elem in &mut data[0..data_len] {
156///     unsafe { elem.assume_init_drop(); }
157/// }
158/// ```
159///
160/// ## Initializing a struct field-by-field
161///
162/// You can use `MaybeUninit<T>`, and the [`std::ptr::addr_of_mut`] macro, to initialize structs field by field:
163///
164/// ```rust
165/// use std::mem::MaybeUninit;
166/// use std::ptr::addr_of_mut;
167///
168/// #[derive(Debug, PartialEq)]
169/// pub struct Foo {
170///     name: String,
171///     list: Vec<u8>,
172/// }
173///
174/// let foo = {
175///     let mut uninit: MaybeUninit<Foo> = MaybeUninit::uninit();
176///     let ptr = uninit.as_mut_ptr();
177///
178///     // Initializing the `name` field
179///     // Using `write` instead of assignment via `=` to not call `drop` on the
180///     // old, uninitialized value.
181///     unsafe { addr_of_mut!((*ptr).name).write("Bob".to_string()); }
182///
183///     // Initializing the `list` field
184///     // If there is a panic here, then the `String` in the `name` field leaks.
185///     unsafe { addr_of_mut!((*ptr).list).write(vec![0, 1, 2]); }
186///
187///     // All the fields are initialized, so we call `assume_init` to get an initialized Foo.
188///     unsafe { uninit.assume_init() }
189/// };
190///
191/// assert_eq!(
192///     foo,
193///     Foo {
194///         name: "Bob".to_string(),
195///         list: vec![0, 1, 2]
196///     }
197/// );
198/// ```
199/// [`std::ptr::addr_of_mut`]: crate::ptr::addr_of_mut
200/// [ub]: ../../reference/behavior-considered-undefined.html
201///
202/// # Layout
203///
204/// `MaybeUninit<T>` is guaranteed to have the same size, alignment, and ABI as `T`:
205///
206/// ```rust
207/// use std::mem::MaybeUninit;
208/// assert_eq!(size_of::<MaybeUninit<u64>>(), size_of::<u64>());
209/// assert_eq!(align_of::<MaybeUninit<u64>>(), align_of::<u64>());
210/// ```
211///
212/// However remember that a type *containing* a `MaybeUninit<T>` is not necessarily the same
213/// layout; Rust does not in general guarantee that the fields of a `Foo<T>` have the same order as
214/// a `Foo<U>` even if `T` and `U` have the same size and alignment. Furthermore because any bit
215/// value is valid for a `MaybeUninit<T>` the compiler can't apply non-zero/niche-filling
216/// optimizations, potentially resulting in a larger size:
217///
218/// ```rust
219/// # use std::mem::MaybeUninit;
220/// assert_eq!(size_of::<Option<bool>>(), 1);
221/// assert_eq!(size_of::<Option<MaybeUninit<bool>>>(), 2);
222/// ```
223///
224/// If `T` is FFI-safe, then so is `MaybeUninit<T>`.
225///
226/// While `MaybeUninit` is `#[repr(transparent)]` (indicating it guarantees the same size,
227/// alignment, and ABI as `T`), this does *not* change any of the previous caveats. `Option<T>` and
228/// `Option<MaybeUninit<T>>` may still have different sizes, and types containing a field of type
229/// `T` may be laid out (and sized) differently than if that field were `MaybeUninit<T>`.
230/// `MaybeUninit` is a union type, and `#[repr(transparent)]` on unions is unstable (see [the
231/// tracking issue](https://github.com/rust-lang/rust/issues/60405)). Over time, the exact
232/// guarantees of `#[repr(transparent)]` on unions may evolve, and `MaybeUninit` may or may not
233/// remain `#[repr(transparent)]`. That said, `MaybeUninit<T>` will *always* guarantee that it has
234/// the same size, alignment, and ABI as `T`; it's just that the way `MaybeUninit` implements that
235/// guarantee may evolve.
236///
237/// Note that even though `T` and `MaybeUninit<T>` are ABI compatible it is still unsound to
238/// transmute `&mut T` to `&mut MaybeUninit<T>` and expose that to safe code because it would allow
239/// safe code to access uninitialized memory:
240///
241/// ```rust,no_run
242/// use core::mem::MaybeUninit;
243///
244/// fn unsound_transmute<T>(val: &mut T) -> &mut MaybeUninit<T> {
245///     unsafe { core::mem::transmute(val) }
246/// }
247///
248/// fn main() {
249///     let mut code = 0;
250///     let code = &mut code;
251///     let code2 = unsound_transmute(code);
252///     *code2 = MaybeUninit::uninit();
253///     std::process::exit(*code); // UB! Accessing uninitialized memory.
254/// }
255/// ```
256///
257/// # Validity
258///
259/// `MaybeUninit<T>` has no validity requirements –- any sequence of [bytes] of
260/// the appropriate length, initialized or uninitialized, are a valid
261/// representation.
262///
263/// Moving or copying a value of type `MaybeUninit<T>` (i.e., performing a
264/// "typed copy") will exactly preserve the contents, including the
265/// [provenance], of all non-padding bytes of type `T` in the value's
266/// representation.
267///
268/// Therefore `MaybeUninit` can be used to perform a round trip of a value from
269/// type `T` to type `MaybeUninit<U>` then back to type `T`, while preserving
270/// the original value, if two conditions are met. One, type `U` must have the
271/// same size as type `T`. Two, for all byte offsets where type `U` has padding,
272/// the corresponding bytes in the representation of the value must be
273/// uninitialized.
274///
275/// For example, due to the fact that the type `[u8; size_of::<T>]` has no
276/// padding, the following is sound for any type `T` and will return the
277/// original value:
278///
279/// ```rust,no_run
280/// # use core::mem::{MaybeUninit, transmute};
281/// # struct T;
282/// fn identity(t: T) -> T {
283///     unsafe {
284///         let u: MaybeUninit<[u8; size_of::<T>()]> = transmute(t);
285///         transmute(u) // OK.
286///     }
287/// }
288/// ```
289///
290/// Note: Copying a value that contains references may implicitly reborrow them
291/// causing the provenance of the returned value to differ from that of the
292/// original. This applies equally to the trivial identity function:
293///
294/// ```rust,no_run
295/// fn trivial_identity<T>(t: T) -> T { t }
296/// ```
297///
298/// Note: Moving or copying a value whose representation has initialized bytes
299/// at byte offsets where the type has padding may lose the value of those
300/// bytes, so while the original value will be preserved, the original
301/// *representation* of that value as bytes may not be. Again, this applies
302/// equally to `trivial_identity`.
303///
304/// Note: Performing this round trip when type `U` has padding at byte offsets
305/// where the representation of the original value has initialized bytes may
306/// produce undefined behavior or a different value. For example, the following
307/// is unsound since `T` requires all bytes to be initialized:
308///
309/// ```rust,no_run
310/// # use core::mem::{MaybeUninit, transmute};
311/// #[repr(C)] struct T([u8; 4]);
312/// #[repr(C)] struct U(u8, u16);
313/// fn unsound_identity(t: T) -> T {
314///     unsafe {
315///         let u: MaybeUninit<U> = transmute(t);
316///         transmute(u) // UB.
317///     }
318/// }
319/// ```
320///
321/// Conversely, the following is sound since `T` allows uninitialized bytes in
322/// the representation of a value, but the round trip may alter the value:
323///
324/// ```rust,no_run
325/// # use core::mem::{MaybeUninit, transmute};
326/// #[repr(C)] struct T(MaybeUninit<[u8; 4]>);
327/// #[repr(C)] struct U(u8, u16);
328/// fn non_identity(t: T) -> T {
329///     unsafe {
330///         // May lose an initialized byte.
331///         let u: MaybeUninit<U> = transmute(t);
332///         transmute(u)
333///     }
334/// }
335/// ```
336///
337/// [bytes]: ../../reference/memory-model.html#bytes
338/// [provenance]: crate::ptr#provenance
339#[stable(feature = "maybe_uninit", since = "1.36.0")]
340// Lang item so we can wrap other types in it. This is useful for coroutines.
341#[lang = "maybe_uninit"]
342#[derive(Copy)]
343#[repr(transparent)]
344#[rustc_pub_transparent]
345pub union MaybeUninit<T> {
346    uninit: (),
347    value: ManuallyDrop<T>,
348}
349
350#[stable(feature = "maybe_uninit", since = "1.36.0")]
351impl<T: Copy> Clone for MaybeUninit<T> {
352    #[inline(always)]
353    fn clone(&self) -> Self {
354        // Not calling `T::clone()`, we cannot know if we are initialized enough for that.
355        *self
356    }
357}
358
359#[stable(feature = "maybe_uninit_debug", since = "1.41.0")]
360impl<T> fmt::Debug for MaybeUninit<T> {
361    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
362        // NB: there is no `.pad_fmt` so we can't use a simpler `format_args!("MaybeUninit<{..}>").
363        let full_name = type_name::<Self>();
364        let prefix_len = full_name.find("MaybeUninit").unwrap();
365        f.pad(&full_name[prefix_len..])
366    }
367}
368
369impl<T> MaybeUninit<T> {
370    /// Creates a new `MaybeUninit<T>` initialized with the given value.
371    /// It is safe to call [`assume_init`] on the return value of this function.
372    ///
373    /// Note that dropping a `MaybeUninit<T>` will never call `T`'s drop code.
374    /// It is your responsibility to make sure `T` gets dropped if it got initialized.
375    ///
376    /// # Example
377    ///
378    /// ```
379    /// use std::mem::MaybeUninit;
380    ///
381    /// let v: MaybeUninit<Vec<u8>> = MaybeUninit::new(vec![42]);
382    /// # // Prevent leaks for Miri
383    /// # unsafe { let _ = MaybeUninit::assume_init(v); }
384    /// ```
385    ///
386    /// [`assume_init`]: MaybeUninit::assume_init
387    #[stable(feature = "maybe_uninit", since = "1.36.0")]
388    #[rustc_const_stable(feature = "const_maybe_uninit", since = "1.36.0")]
389    #[must_use = "use `forget` to avoid running Drop code"]
390    #[inline(always)]
391    pub const fn new(val: T) -> MaybeUninit<T> {
392        MaybeUninit { value: ManuallyDrop::new(val) }
393    }
394
395    /// Creates a new `MaybeUninit<T>` in an uninitialized state.
396    ///
397    /// Note that dropping a `MaybeUninit<T>` will never call `T`'s drop code.
398    /// It is your responsibility to make sure `T` gets dropped if it got initialized.
399    ///
400    /// See the [type-level documentation][MaybeUninit] for some examples.
401    ///
402    /// # Example
403    ///
404    /// ```
405    /// use std::mem::MaybeUninit;
406    ///
407    /// let v: MaybeUninit<String> = MaybeUninit::uninit();
408    /// ```
409    #[stable(feature = "maybe_uninit", since = "1.36.0")]
410    #[rustc_const_stable(feature = "const_maybe_uninit", since = "1.36.0")]
411    #[must_use]
412    #[inline(always)]
413    #[rustc_diagnostic_item = "maybe_uninit_uninit"]
414    pub const fn uninit() -> MaybeUninit<T> {
415        MaybeUninit { uninit: () }
416    }
417
418    /// Creates a new `MaybeUninit<T>` in an uninitialized state, with the memory being
419    /// filled with `0` bytes. It depends on `T` whether that already makes for
420    /// proper initialization. For example, `MaybeUninit<usize>::zeroed()` is initialized,
421    /// but `MaybeUninit<&'static i32>::zeroed()` is not because references must not
422    /// be null.
423    ///
424    /// Note that if `T` has padding bytes, those bytes are *not* preserved when the
425    /// `MaybeUninit<T>` value is returned from this function, so those bytes will *not* be zeroed.
426    ///
427    /// Note that dropping a `MaybeUninit<T>` will never call `T`'s drop code.
428    /// It is your responsibility to make sure `T` gets dropped if it got initialized.
429    ///
430    /// # Example
431    ///
432    /// Correct usage of this function: initializing a struct with zero, where all
433    /// fields of the struct can hold the bit-pattern 0 as a valid value.
434    ///
435    /// ```rust
436    /// use std::mem::MaybeUninit;
437    ///
438    /// let x = MaybeUninit::<(u8, bool)>::zeroed();
439    /// let x = unsafe { x.assume_init() };
440    /// assert_eq!(x, (0, false));
441    /// ```
442    ///
443    /// This can be used in const contexts, such as to indicate the end of static arrays for
444    /// plugin registration.
445    ///
446    /// *Incorrect* usage of this function: calling `x.zeroed().assume_init()`
447    /// when `0` is not a valid bit-pattern for the type:
448    ///
449    /// ```rust,no_run
450    /// use std::mem::MaybeUninit;
451    ///
452    /// enum NotZero { One = 1, Two = 2 }
453    ///
454    /// let x = MaybeUninit::<(u8, NotZero)>::zeroed();
455    /// let x = unsafe { x.assume_init() };
456    /// // Inside a pair, we create a `NotZero` that does not have a valid discriminant.
457    /// // This is undefined behavior. ⚠️
458    /// ```
459    #[inline]
460    #[must_use]
461    #[rustc_diagnostic_item = "maybe_uninit_zeroed"]
462    #[stable(feature = "maybe_uninit", since = "1.36.0")]
463    #[rustc_const_stable(feature = "const_maybe_uninit_zeroed", since = "1.75.0")]
464    pub const fn zeroed() -> MaybeUninit<T> {
465        let mut u = MaybeUninit::<T>::uninit();
466        // SAFETY: `u.as_mut_ptr()` points to allocated memory.
467        unsafe { u.as_mut_ptr().write_bytes(0u8, 1) };
468        u
469    }
470
471    /// Sets the value of the `MaybeUninit<T>`.
472    ///
473    /// This overwrites any previous value without dropping it, so be careful
474    /// not to use this twice unless you want to skip running the destructor.
475    /// For your convenience, this also returns a mutable reference to the
476    /// (now safely initialized) contents of `self`.
477    ///
478    /// As the content is stored inside a `ManuallyDrop`, the destructor is not
479    /// run for the inner data if the MaybeUninit leaves scope without a call to
480    /// [`assume_init`], [`assume_init_drop`], or similar. Code that receives
481    /// the mutable reference returned by this function needs to keep this in
482    /// mind. The safety model of Rust regards leaks as safe, but they are
483    /// usually still undesirable. This being said, the mutable reference
484    /// behaves like any other mutable reference would, so assigning a new value
485    /// to it will drop the old content.
486    ///
487    /// [`assume_init`]: Self::assume_init
488    /// [`assume_init_drop`]: Self::assume_init_drop
489    ///
490    /// # Examples
491    ///
492    /// Correct usage of this method:
493    ///
494    /// ```rust
495    /// use std::mem::MaybeUninit;
496    ///
497    /// let mut x = MaybeUninit::<Vec<u8>>::uninit();
498    ///
499    /// {
500    ///     let hello = x.write((&b"Hello, world!").to_vec());
501    ///     // Setting hello does not leak prior allocations, but drops them
502    ///     *hello = (&b"Hello").to_vec();
503    ///     hello[0] = 'h' as u8;
504    /// }
505    /// // x is initialized now:
506    /// let s = unsafe { x.assume_init() };
507    /// assert_eq!(b"hello", s.as_slice());
508    /// ```
509    ///
510    /// This usage of the method causes a leak:
511    ///
512    /// ```rust
513    /// use std::mem::MaybeUninit;
514    ///
515    /// let mut x = MaybeUninit::<String>::uninit();
516    ///
517    /// x.write("Hello".to_string());
518    /// # // FIXME(https://github.com/rust-lang/miri/issues/3670):
519    /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
520    /// # unsafe { MaybeUninit::assume_init_drop(&mut x); }
521    /// // This leaks the contained string:
522    /// x.write("hello".to_string());
523    /// // x is initialized now:
524    /// let s = unsafe { x.assume_init() };
525    /// ```
526    ///
527    /// This method can be used to avoid unsafe in some cases. The example below
528    /// shows a part of an implementation of a fixed sized arena that lends out
529    /// pinned references.
530    /// With `write`, we can avoid the need to write through a raw pointer:
531    ///
532    /// ```rust
533    /// use core::pin::Pin;
534    /// use core::mem::MaybeUninit;
535    ///
536    /// struct PinArena<T> {
537    ///     memory: Box<[MaybeUninit<T>]>,
538    ///     len: usize,
539    /// }
540    ///
541    /// impl <T> PinArena<T> {
542    ///     pub fn capacity(&self) -> usize {
543    ///         self.memory.len()
544    ///     }
545    ///     pub fn push(&mut self, val: T) -> Pin<&mut T> {
546    ///         if self.len >= self.capacity() {
547    ///             panic!("Attempted to push to a full pin arena!");
548    ///         }
549    ///         let ref_ = self.memory[self.len].write(val);
550    ///         self.len += 1;
551    ///         unsafe { Pin::new_unchecked(ref_) }
552    ///     }
553    /// }
554    /// ```
555    #[inline(always)]
556    #[stable(feature = "maybe_uninit_write", since = "1.55.0")]
557    #[rustc_const_stable(feature = "const_maybe_uninit_write", since = "1.85.0")]
558    pub const fn write(&mut self, val: T) -> &mut T {
559        *self = MaybeUninit::new(val);
560        // SAFETY: We just initialized this value.
561        unsafe { self.assume_init_mut() }
562    }
563
564    /// Gets a pointer to the contained value. Reading from this pointer or turning it
565    /// into a reference is undefined behavior unless the `MaybeUninit<T>` is initialized.
566    /// Writing to memory that this pointer (non-transitively) points to is undefined behavior
567    /// (except inside an `UnsafeCell<T>`).
568    ///
569    /// # Examples
570    ///
571    /// Correct usage of this method:
572    ///
573    /// ```rust
574    /// use std::mem::MaybeUninit;
575    ///
576    /// let mut x = MaybeUninit::<Vec<u32>>::uninit();
577    /// x.write(vec![0, 1, 2]);
578    /// // Create a reference into the `MaybeUninit<T>`. This is okay because we initialized it.
579    /// let x_vec = unsafe { &*x.as_ptr() };
580    /// assert_eq!(x_vec.len(), 3);
581    /// # // Prevent leaks for Miri
582    /// # unsafe { MaybeUninit::assume_init_drop(&mut x); }
583    /// ```
584    ///
585    /// *Incorrect* usage of this method:
586    ///
587    /// ```rust,no_run
588    /// use std::mem::MaybeUninit;
589    ///
590    /// let x = MaybeUninit::<Vec<u32>>::uninit();
591    /// let x_vec = unsafe { &*x.as_ptr() };
592    /// // We have created a reference to an uninitialized vector! This is undefined behavior. ⚠️
593    /// ```
594    ///
595    /// (Notice that the rules around references to uninitialized data are not finalized yet, but
596    /// until they are, it is advisable to avoid them.)
597    #[stable(feature = "maybe_uninit", since = "1.36.0")]
598    #[rustc_const_stable(feature = "const_maybe_uninit_as_ptr", since = "1.59.0")]
599    #[rustc_as_ptr]
600    #[inline(always)]
601    pub const fn as_ptr(&self) -> *const T {
602        // `MaybeUninit` and `ManuallyDrop` are both `repr(transparent)` so we can cast the pointer.
603        self as *const _ as *const T
604    }
605
606    /// Gets a mutable pointer to the contained value. Reading from this pointer or turning it
607    /// into a reference is undefined behavior unless the `MaybeUninit<T>` is initialized.
608    ///
609    /// # Examples
610    ///
611    /// Correct usage of this method:
612    ///
613    /// ```rust
614    /// use std::mem::MaybeUninit;
615    ///
616    /// let mut x = MaybeUninit::<Vec<u32>>::uninit();
617    /// x.write(vec![0, 1, 2]);
618    /// // Create a reference into the `MaybeUninit<Vec<u32>>`.
619    /// // This is okay because we initialized it.
620    /// let x_vec = unsafe { &mut *x.as_mut_ptr() };
621    /// x_vec.push(3);
622    /// assert_eq!(x_vec.len(), 4);
623    /// # // Prevent leaks for Miri
624    /// # unsafe { MaybeUninit::assume_init_drop(&mut x); }
625    /// ```
626    ///
627    /// *Incorrect* usage of this method:
628    ///
629    /// ```rust,no_run
630    /// use std::mem::MaybeUninit;
631    ///
632    /// let mut x = MaybeUninit::<Vec<u32>>::uninit();
633    /// let x_vec = unsafe { &mut *x.as_mut_ptr() };
634    /// // We have created a reference to an uninitialized vector! This is undefined behavior. ⚠️
635    /// ```
636    ///
637    /// (Notice that the rules around references to uninitialized data are not finalized yet, but
638    /// until they are, it is advisable to avoid them.)
639    #[stable(feature = "maybe_uninit", since = "1.36.0")]
640    #[rustc_const_stable(feature = "const_maybe_uninit_as_mut_ptr", since = "1.83.0")]
641    #[rustc_as_ptr]
642    #[inline(always)]
643    pub const fn as_mut_ptr(&mut self) -> *mut T {
644        // `MaybeUninit` and `ManuallyDrop` are both `repr(transparent)` so we can cast the pointer.
645        self as *mut _ as *mut T
646    }
647
648    /// Extracts the value from the `MaybeUninit<T>` container. This is a great way
649    /// to ensure that the data will get dropped, because the resulting `T` is
650    /// subject to the usual drop handling.
651    ///
652    /// # Safety
653    ///
654    /// It is up to the caller to guarantee that the `MaybeUninit<T>` really is in an initialized
655    /// state. Calling this when the content is not yet fully initialized causes immediate undefined
656    /// behavior. The [type-level documentation][inv] contains more information about
657    /// this initialization invariant.
658    ///
659    /// [inv]: #initialization-invariant
660    ///
661    /// On top of that, remember that most types have additional invariants beyond merely
662    /// being considered initialized at the type level. For example, a `1`-initialized [`Vec<T>`]
663    /// is considered initialized (under the current implementation; this does not constitute
664    /// a stable guarantee) because the only requirement the compiler knows about it
665    /// is that the data pointer must be non-null. Creating such a `Vec<T>` does not cause
666    /// *immediate* undefined behavior, but will cause undefined behavior with most
667    /// safe operations (including dropping it).
668    ///
669    /// [`Vec<T>`]: ../../std/vec/struct.Vec.html
670    ///
671    /// # Examples
672    ///
673    /// Correct usage of this method:
674    ///
675    /// ```rust
676    /// use std::mem::MaybeUninit;
677    ///
678    /// let mut x = MaybeUninit::<bool>::uninit();
679    /// x.write(true);
680    /// let x_init = unsafe { x.assume_init() };
681    /// assert_eq!(x_init, true);
682    /// ```
683    ///
684    /// *Incorrect* usage of this method:
685    ///
686    /// ```rust,no_run
687    /// use std::mem::MaybeUninit;
688    ///
689    /// let x = MaybeUninit::<Vec<u32>>::uninit();
690    /// let x_init = unsafe { x.assume_init() };
691    /// // `x` had not been initialized yet, so this last line caused undefined behavior. ⚠️
692    /// ```
693    #[stable(feature = "maybe_uninit", since = "1.36.0")]
694    #[rustc_const_stable(feature = "const_maybe_uninit_assume_init_by_value", since = "1.59.0")]
695    #[inline(always)]
696    #[rustc_diagnostic_item = "assume_init"]
697    #[track_caller]
698    pub const unsafe fn assume_init(self) -> T {
699        // SAFETY: the caller must guarantee that `self` is initialized.
700        // This also means that `self` must be a `value` variant.
701        unsafe {
702            intrinsics::assert_inhabited::<T>();
703            // We do this via a raw ptr read instead of `ManuallyDrop::into_inner` so that there's
704            // no trace of `ManuallyDrop` in Miri's error messages here.
705            (&raw const self.value).cast::<T>().read()
706        }
707    }
708
709    /// Reads the value from the `MaybeUninit<T>` container. The resulting `T` is subject
710    /// to the usual drop handling.
711    ///
712    /// Whenever possible, it is preferable to use [`assume_init`] instead, which
713    /// prevents duplicating the content of the `MaybeUninit<T>`.
714    ///
715    /// # Safety
716    ///
717    /// It is up to the caller to guarantee that the `MaybeUninit<T>` really is in an initialized
718    /// state. Calling this when the content is not yet fully initialized causes undefined
719    /// behavior. The [type-level documentation][inv] contains more information about
720    /// this initialization invariant.
721    ///
722    /// Moreover, similar to the [`ptr::read`] function, this function creates a
723    /// bitwise copy of the contents, regardless whether the contained type
724    /// implements the [`Copy`] trait or not. When using multiple copies of the
725    /// data (by calling `assume_init_read` multiple times, or first calling
726    /// `assume_init_read` and then [`assume_init`]), it is your responsibility
727    /// to ensure that data may indeed be duplicated.
728    ///
729    /// [inv]: #initialization-invariant
730    /// [`assume_init`]: MaybeUninit::assume_init
731    ///
732    /// # Examples
733    ///
734    /// Correct usage of this method:
735    ///
736    /// ```rust
737    /// use std::mem::MaybeUninit;
738    ///
739    /// let mut x = MaybeUninit::<u32>::uninit();
740    /// x.write(13);
741    /// let x1 = unsafe { x.assume_init_read() };
742    /// // `u32` is `Copy`, so we may read multiple times.
743    /// let x2 = unsafe { x.assume_init_read() };
744    /// assert_eq!(x1, x2);
745    ///
746    /// let mut x = MaybeUninit::<Option<Vec<u32>>>::uninit();
747    /// x.write(None);
748    /// let x1 = unsafe { x.assume_init_read() };
749    /// // Duplicating a `None` value is okay, so we may read multiple times.
750    /// let x2 = unsafe { x.assume_init_read() };
751    /// assert_eq!(x1, x2);
752    /// ```
753    ///
754    /// *Incorrect* usage of this method:
755    ///
756    /// ```rust,no_run
757    /// use std::mem::MaybeUninit;
758    ///
759    /// let mut x = MaybeUninit::<Option<Vec<u32>>>::uninit();
760    /// x.write(Some(vec![0, 1, 2]));
761    /// let x1 = unsafe { x.assume_init_read() };
762    /// let x2 = unsafe { x.assume_init_read() };
763    /// // We now created two copies of the same vector, leading to a double-free ⚠️ when
764    /// // they both get dropped!
765    /// ```
766    #[stable(feature = "maybe_uninit_extra", since = "1.60.0")]
767    #[rustc_const_stable(feature = "const_maybe_uninit_assume_init_read", since = "1.75.0")]
768    #[inline(always)]
769    #[track_caller]
770    pub const unsafe fn assume_init_read(&self) -> T {
771        // SAFETY: the caller must guarantee that `self` is initialized.
772        // Reading from `self.as_ptr()` is safe since `self` should be initialized.
773        unsafe {
774            intrinsics::assert_inhabited::<T>();
775            self.as_ptr().read()
776        }
777    }
778
779    /// Drops the contained value in place.
780    ///
781    /// If you have ownership of the `MaybeUninit`, you can also use
782    /// [`assume_init`] as an alternative.
783    ///
784    /// # Safety
785    ///
786    /// It is up to the caller to guarantee that the `MaybeUninit<T>` really is
787    /// in an initialized state. Calling this when the content is not yet fully
788    /// initialized causes undefined behavior.
789    ///
790    /// On top of that, all additional invariants of the type `T` must be
791    /// satisfied, as the `Drop` implementation of `T` (or its members) may
792    /// rely on this. For example, setting a `Vec<T>` to an invalid but
793    /// non-null address makes it initialized (under the current implementation;
794    /// this does not constitute a stable guarantee), because the only
795    /// requirement the compiler knows about it is that the data pointer must be
796    /// non-null. Dropping such a `Vec<T>` however will cause undefined
797    /// behavior.
798    ///
799    /// [`assume_init`]: MaybeUninit::assume_init
800    #[stable(feature = "maybe_uninit_extra", since = "1.60.0")]
801    #[rustc_const_unstable(feature = "const_drop_in_place", issue = "109342")]
802    pub const unsafe fn assume_init_drop(&mut self)
803    where
804        T: [const] Destruct,
805    {
806        // SAFETY: the caller must guarantee that `self` is initialized and
807        // satisfies all invariants of `T`.
808        // Dropping the value in place is safe if that is the case.
809        unsafe { ptr::drop_in_place(self.as_mut_ptr()) }
810    }
811
812    /// Gets a shared reference to the contained value.
813    ///
814    /// This can be useful when we want to access a `MaybeUninit` that has been
815    /// initialized but don't have ownership of the `MaybeUninit` (preventing the use
816    /// of `.assume_init()`).
817    ///
818    /// # Safety
819    ///
820    /// Calling this when the content is not yet fully initialized causes undefined
821    /// behavior: it is up to the caller to guarantee that the `MaybeUninit<T>` really
822    /// is in an initialized state.
823    ///
824    /// # Examples
825    ///
826    /// ### Correct usage of this method:
827    ///
828    /// ```rust
829    /// use std::mem::MaybeUninit;
830    ///
831    /// let mut x = MaybeUninit::<Vec<u32>>::uninit();
832    /// # let mut x_mu = x;
833    /// # let mut x = &mut x_mu;
834    /// // Initialize `x`:
835    /// x.write(vec![1, 2, 3]);
836    /// // Now that our `MaybeUninit<_>` is known to be initialized, it is okay to
837    /// // create a shared reference to it:
838    /// let x: &Vec<u32> = unsafe {
839    ///     // SAFETY: `x` has been initialized.
840    ///     x.assume_init_ref()
841    /// };
842    /// assert_eq!(x, &vec![1, 2, 3]);
843    /// # // Prevent leaks for Miri
844    /// # unsafe { MaybeUninit::assume_init_drop(&mut x_mu); }
845    /// ```
846    ///
847    /// ### *Incorrect* usages of this method:
848    ///
849    /// ```rust,no_run
850    /// use std::mem::MaybeUninit;
851    ///
852    /// let x = MaybeUninit::<Vec<u32>>::uninit();
853    /// let x_vec: &Vec<u32> = unsafe { x.assume_init_ref() };
854    /// // We have created a reference to an uninitialized vector! This is undefined behavior. ⚠️
855    /// ```
856    ///
857    /// ```rust,no_run
858    /// use std::{cell::Cell, mem::MaybeUninit};
859    ///
860    /// let b = MaybeUninit::<Cell<bool>>::uninit();
861    /// // Initialize the `MaybeUninit` using `Cell::set`:
862    /// unsafe {
863    ///     b.assume_init_ref().set(true);
864    ///     //^^^^^^^^^^^^^^^ Reference to an uninitialized `Cell<bool>`: UB!
865    /// }
866    /// ```
867    #[stable(feature = "maybe_uninit_ref", since = "1.55.0")]
868    #[rustc_const_stable(feature = "const_maybe_uninit_assume_init_ref", since = "1.59.0")]
869    #[inline(always)]
870    pub const unsafe fn assume_init_ref(&self) -> &T {
871        // SAFETY: the caller must guarantee that `self` is initialized.
872        // This also means that `self` must be a `value` variant.
873        unsafe {
874            intrinsics::assert_inhabited::<T>();
875            &*self.as_ptr()
876        }
877    }
878
879    /// Gets a mutable (unique) reference to the contained value.
880    ///
881    /// This can be useful when we want to access a `MaybeUninit` that has been
882    /// initialized but don't have ownership of the `MaybeUninit` (preventing the use
883    /// of `.assume_init()`).
884    ///
885    /// # Safety
886    ///
887    /// Calling this when the content is not yet fully initialized causes undefined
888    /// behavior: it is up to the caller to guarantee that the `MaybeUninit<T>` really
889    /// is in an initialized state. For instance, `.assume_init_mut()` cannot be used to
890    /// initialize a `MaybeUninit`.
891    ///
892    /// # Examples
893    ///
894    /// ### Correct usage of this method:
895    ///
896    /// ```rust
897    /// # #![allow(unexpected_cfgs)]
898    /// use std::mem::MaybeUninit;
899    ///
900    /// # unsafe extern "C" fn initialize_buffer(buf: *mut [u8; 1024]) { unsafe { *buf = [0; 1024] } }
901    /// # #[cfg(FALSE)]
902    /// extern "C" {
903    ///     /// Initializes *all* the bytes of the input buffer.
904    ///     fn initialize_buffer(buf: *mut [u8; 1024]);
905    /// }
906    ///
907    /// let mut buf = MaybeUninit::<[u8; 1024]>::uninit();
908    ///
909    /// // Initialize `buf`:
910    /// unsafe { initialize_buffer(buf.as_mut_ptr()); }
911    /// // Now we know that `buf` has been initialized, so we could `.assume_init()` it.
912    /// // However, using `.assume_init()` may trigger a `memcpy` of the 1024 bytes.
913    /// // To assert our buffer has been initialized without copying it, we upgrade
914    /// // the `&mut MaybeUninit<[u8; 1024]>` to a `&mut [u8; 1024]`:
915    /// let buf: &mut [u8; 1024] = unsafe {
916    ///     // SAFETY: `buf` has been initialized.
917    ///     buf.assume_init_mut()
918    /// };
919    ///
920    /// // Now we can use `buf` as a normal slice:
921    /// buf.sort_unstable();
922    /// assert!(
923    ///     buf.windows(2).all(|pair| pair[0] <= pair[1]),
924    ///     "buffer is sorted",
925    /// );
926    /// ```
927    ///
928    /// ### *Incorrect* usages of this method:
929    ///
930    /// You cannot use `.assume_init_mut()` to initialize a value:
931    ///
932    /// ```rust,no_run
933    /// use std::mem::MaybeUninit;
934    ///
935    /// let mut b = MaybeUninit::<bool>::uninit();
936    /// unsafe {
937    ///     *b.assume_init_mut() = true;
938    ///     // We have created a (mutable) reference to an uninitialized `bool`!
939    ///     // This is undefined behavior. ⚠️
940    /// }
941    /// ```
942    ///
943    /// For instance, you cannot [`Read`] into an uninitialized buffer:
944    ///
945    /// [`Read`]: ../../std/io/trait.Read.html
946    ///
947    /// ```rust,no_run
948    /// use std::{io, mem::MaybeUninit};
949    ///
950    /// fn read_chunk (reader: &'_ mut dyn io::Read) -> io::Result<[u8; 64]>
951    /// {
952    ///     let mut buffer = MaybeUninit::<[u8; 64]>::uninit();
953    ///     reader.read_exact(unsafe { buffer.assume_init_mut() })?;
954    ///     //                         ^^^^^^^^^^^^^^^^^^^^^^^^
955    ///     // (mutable) reference to uninitialized memory!
956    ///     // This is undefined behavior.
957    ///     Ok(unsafe { buffer.assume_init() })
958    /// }
959    /// ```
960    ///
961    /// Nor can you use direct field access to do field-by-field gradual initialization:
962    ///
963    /// ```rust,no_run
964    /// use std::{mem::MaybeUninit, ptr};
965    ///
966    /// struct Foo {
967    ///     a: u32,
968    ///     b: u8,
969    /// }
970    ///
971    /// let foo: Foo = unsafe {
972    ///     let mut foo = MaybeUninit::<Foo>::uninit();
973    ///     ptr::write(&mut foo.assume_init_mut().a as *mut u32, 1337);
974    ///     //              ^^^^^^^^^^^^^^^^^^^^^
975    ///     // (mutable) reference to uninitialized memory!
976    ///     // This is undefined behavior.
977    ///     ptr::write(&mut foo.assume_init_mut().b as *mut u8, 42);
978    ///     //              ^^^^^^^^^^^^^^^^^^^^^
979    ///     // (mutable) reference to uninitialized memory!
980    ///     // This is undefined behavior.
981    ///     foo.assume_init()
982    /// };
983    /// ```
984    #[stable(feature = "maybe_uninit_ref", since = "1.55.0")]
985    #[rustc_const_stable(feature = "const_maybe_uninit_assume_init", since = "1.84.0")]
986    #[inline(always)]
987    pub const unsafe fn assume_init_mut(&mut self) -> &mut T {
988        // SAFETY: the caller must guarantee that `self` is initialized.
989        // This also means that `self` must be a `value` variant.
990        unsafe {
991            intrinsics::assert_inhabited::<T>();
992            &mut *self.as_mut_ptr()
993        }
994    }
995
996    /// Extracts the values from an array of `MaybeUninit` containers.
997    ///
998    /// # Safety
999    ///
1000    /// It is up to the caller to guarantee that all elements of the array are
1001    /// in an initialized state.
1002    ///
1003    /// # Examples
1004    ///
1005    /// ```
1006    /// #![feature(maybe_uninit_array_assume_init)]
1007    /// use std::mem::MaybeUninit;
1008    ///
1009    /// let mut array: [MaybeUninit<i32>; 3] = [MaybeUninit::uninit(); 3];
1010    /// array[0].write(0);
1011    /// array[1].write(1);
1012    /// array[2].write(2);
1013    ///
1014    /// // SAFETY: Now safe as we initialised all elements
1015    /// let array = unsafe {
1016    ///     MaybeUninit::array_assume_init(array)
1017    /// };
1018    ///
1019    /// assert_eq!(array, [0, 1, 2]);
1020    /// ```
1021    #[unstable(feature = "maybe_uninit_array_assume_init", issue = "96097")]
1022    #[inline(always)]
1023    #[track_caller]
1024    pub const unsafe fn array_assume_init<const N: usize>(array: [Self; N]) -> [T; N] {
1025        // SAFETY:
1026        // * The caller guarantees that all elements of the array are initialized
1027        // * `MaybeUninit<T>` and T are guaranteed to have the same layout
1028        // * `MaybeUninit` does not drop, so there are no double-frees
1029        // And thus the conversion is safe
1030        unsafe {
1031            intrinsics::assert_inhabited::<[T; N]>();
1032            intrinsics::transmute_unchecked(array)
1033        }
1034    }
1035
1036    /// Returns the contents of this `MaybeUninit` as a slice of potentially uninitialized bytes.
1037    ///
1038    /// Note that even if the contents of a `MaybeUninit` have been initialized, the value may still
1039    /// contain padding bytes which are left uninitialized.
1040    ///
1041    /// # Examples
1042    ///
1043    /// ```
1044    /// #![feature(maybe_uninit_as_bytes, maybe_uninit_slice)]
1045    /// use std::mem::MaybeUninit;
1046    ///
1047    /// let val = 0x12345678_i32;
1048    /// let uninit = MaybeUninit::new(val);
1049    /// let uninit_bytes = uninit.as_bytes();
1050    /// let bytes = unsafe { uninit_bytes.assume_init_ref() };
1051    /// assert_eq!(bytes, val.to_ne_bytes());
1052    /// ```
1053    #[unstable(feature = "maybe_uninit_as_bytes", issue = "93092")]
1054    pub const fn as_bytes(&self) -> &[MaybeUninit<u8>] {
1055        // SAFETY: MaybeUninit<u8> is always valid, even for padding bytes
1056        unsafe {
1057            slice::from_raw_parts(self.as_ptr().cast::<MaybeUninit<u8>>(), super::size_of::<T>())
1058        }
1059    }
1060
1061    /// Returns the contents of this `MaybeUninit` as a mutable slice of potentially uninitialized
1062    /// bytes.
1063    ///
1064    /// Note that even if the contents of a `MaybeUninit` have been initialized, the value may still
1065    /// contain padding bytes which are left uninitialized.
1066    ///
1067    /// # Examples
1068    ///
1069    /// ```
1070    /// #![feature(maybe_uninit_as_bytes)]
1071    /// use std::mem::MaybeUninit;
1072    ///
1073    /// let val = 0x12345678_i32;
1074    /// let mut uninit = MaybeUninit::new(val);
1075    /// let uninit_bytes = uninit.as_bytes_mut();
1076    /// if cfg!(target_endian = "little") {
1077    ///     uninit_bytes[0].write(0xcd);
1078    /// } else {
1079    ///     uninit_bytes[3].write(0xcd);
1080    /// }
1081    /// let val2 = unsafe { uninit.assume_init() };
1082    /// assert_eq!(val2, 0x123456cd);
1083    /// ```
1084    #[unstable(feature = "maybe_uninit_as_bytes", issue = "93092")]
1085    pub const fn as_bytes_mut(&mut self) -> &mut [MaybeUninit<u8>] {
1086        // SAFETY: MaybeUninit<u8> is always valid, even for padding bytes
1087        unsafe {
1088            slice::from_raw_parts_mut(
1089                self.as_mut_ptr().cast::<MaybeUninit<u8>>(),
1090                super::size_of::<T>(),
1091            )
1092        }
1093    }
1094
1095    /// Gets a pointer to the first element of the array.
1096    #[unstable(feature = "maybe_uninit_slice", issue = "63569")]
1097    #[inline(always)]
1098    pub const fn slice_as_ptr(this: &[MaybeUninit<T>]) -> *const T {
1099        this.as_ptr() as *const T
1100    }
1101
1102    /// Gets a mutable pointer to the first element of the array.
1103    #[unstable(feature = "maybe_uninit_slice", issue = "63569")]
1104    #[inline(always)]
1105    pub const fn slice_as_mut_ptr(this: &mut [MaybeUninit<T>]) -> *mut T {
1106        this.as_mut_ptr() as *mut T
1107    }
1108}
1109
1110impl<T> [MaybeUninit<T>] {
1111    /// Copies the elements from `src` to `self`,
1112    /// returning a mutable reference to the now initialized contents of `self`.
1113    ///
1114    /// If `T` does not implement `Copy`, use [`write_clone_of_slice`] instead.
1115    ///
1116    /// This is similar to [`slice::copy_from_slice`].
1117    ///
1118    /// # Panics
1119    ///
1120    /// This function will panic if the two slices have different lengths.
1121    ///
1122    /// # Examples
1123    ///
1124    /// ```
1125    /// #![feature(maybe_uninit_write_slice)]
1126    /// use std::mem::MaybeUninit;
1127    ///
1128    /// let mut dst = [MaybeUninit::uninit(); 32];
1129    /// let src = [0; 32];
1130    ///
1131    /// let init = dst.write_copy_of_slice(&src);
1132    ///
1133    /// assert_eq!(init, src);
1134    /// ```
1135    ///
1136    /// ```
1137    /// #![feature(maybe_uninit_write_slice)]
1138    ///
1139    /// let mut vec = Vec::with_capacity(32);
1140    /// let src = [0; 16];
1141    ///
1142    /// vec.spare_capacity_mut()[..src.len()].write_copy_of_slice(&src);
1143    ///
1144    /// // SAFETY: we have just copied all the elements of len into the spare capacity
1145    /// // the first src.len() elements of the vec are valid now.
1146    /// unsafe {
1147    ///     vec.set_len(src.len());
1148    /// }
1149    ///
1150    /// assert_eq!(vec, src);
1151    /// ```
1152    ///
1153    /// [`write_clone_of_slice`]: slice::write_clone_of_slice
1154    #[unstable(feature = "maybe_uninit_write_slice", issue = "79995")]
1155    pub const fn write_copy_of_slice(&mut self, src: &[T]) -> &mut [T]
1156    where
1157        T: Copy,
1158    {
1159        // SAFETY: &[T] and &[MaybeUninit<T>] have the same layout
1160        let uninit_src: &[MaybeUninit<T>] = unsafe { super::transmute(src) };
1161
1162        self.copy_from_slice(uninit_src);
1163
1164        // SAFETY: Valid elements have just been copied into `self` so it is initialized
1165        unsafe { self.assume_init_mut() }
1166    }
1167
1168    /// Clones the elements from `src` to `self`,
1169    /// returning a mutable reference to the now initialized contents of `self`.
1170    /// Any already initialized elements will not be dropped.
1171    ///
1172    /// If `T` implements `Copy`, use [`write_copy_of_slice`] instead.
1173    ///
1174    /// This is similar to [`slice::clone_from_slice`] but does not drop existing elements.
1175    ///
1176    /// # Panics
1177    ///
1178    /// This function will panic if the two slices have different lengths, or if the implementation of `Clone` panics.
1179    ///
1180    /// If there is a panic, the already cloned elements will be dropped.
1181    ///
1182    /// # Examples
1183    ///
1184    /// ```
1185    /// #![feature(maybe_uninit_write_slice)]
1186    /// use std::mem::MaybeUninit;
1187    ///
1188    /// let mut dst = [const { MaybeUninit::uninit() }; 5];
1189    /// let src = ["wibbly", "wobbly", "timey", "wimey", "stuff"].map(|s| s.to_string());
1190    ///
1191    /// let init = dst.write_clone_of_slice(&src);
1192    ///
1193    /// assert_eq!(init, src);
1194    ///
1195    /// # // Prevent leaks for Miri
1196    /// # unsafe { std::ptr::drop_in_place(init); }
1197    /// ```
1198    ///
1199    /// ```
1200    /// #![feature(maybe_uninit_write_slice)]
1201    ///
1202    /// let mut vec = Vec::with_capacity(32);
1203    /// let src = ["rust", "is", "a", "pretty", "cool", "language"].map(|s| s.to_string());
1204    ///
1205    /// vec.spare_capacity_mut()[..src.len()].write_clone_of_slice(&src);
1206    ///
1207    /// // SAFETY: we have just cloned all the elements of len into the spare capacity
1208    /// // the first src.len() elements of the vec are valid now.
1209    /// unsafe {
1210    ///     vec.set_len(src.len());
1211    /// }
1212    ///
1213    /// assert_eq!(vec, src);
1214    /// ```
1215    ///
1216    /// [`write_copy_of_slice`]: slice::write_copy_of_slice
1217    #[unstable(feature = "maybe_uninit_write_slice", issue = "79995")]
1218    pub fn write_clone_of_slice(&mut self, src: &[T]) -> &mut [T]
1219    where
1220        T: Clone,
1221    {
1222        // unlike copy_from_slice this does not call clone_from_slice on the slice
1223        // this is because `MaybeUninit<T: Clone>` does not implement Clone.
1224
1225        assert_eq!(self.len(), src.len(), "destination and source slices have different lengths");
1226
1227        // NOTE: We need to explicitly slice them to the same length
1228        // for bounds checking to be elided, and the optimizer will
1229        // generate memcpy for simple cases (for example T = u8).
1230        let len = self.len();
1231        let src = &src[..len];
1232
1233        // guard is needed b/c panic might happen during a clone
1234        let mut guard = Guard { slice: self, initialized: 0 };
1235
1236        for i in 0..len {
1237            guard.slice[i].write(src[i].clone());
1238            guard.initialized += 1;
1239        }
1240
1241        super::forget(guard);
1242
1243        // SAFETY: Valid elements have just been written into `self` so it is initialized
1244        unsafe { self.assume_init_mut() }
1245    }
1246
1247    /// Fills a slice with elements by cloning `value`, returning a mutable reference to the now
1248    /// initialized contents of the slice.
1249    /// Any previously initialized elements will not be dropped.
1250    ///
1251    /// This is similar to [`slice::fill`].
1252    ///
1253    /// # Panics
1254    ///
1255    /// This function will panic if any call to `Clone` panics.
1256    ///
1257    /// If such a panic occurs, any elements previously initialized during this operation will be
1258    /// dropped.
1259    ///
1260    /// # Examples
1261    ///
1262    /// ```
1263    /// #![feature(maybe_uninit_fill)]
1264    /// use std::mem::MaybeUninit;
1265    ///
1266    /// let mut buf = [const { MaybeUninit::uninit() }; 10];
1267    /// let initialized = buf.write_filled(1);
1268    /// assert_eq!(initialized, &mut [1; 10]);
1269    /// ```
1270    #[doc(alias = "memset")]
1271    #[unstable(feature = "maybe_uninit_fill", issue = "117428")]
1272    pub fn write_filled(&mut self, value: T) -> &mut [T]
1273    where
1274        T: Clone,
1275    {
1276        SpecFill::spec_fill(self, value);
1277        // SAFETY: Valid elements have just been filled into `self` so it is initialized
1278        unsafe { self.assume_init_mut() }
1279    }
1280
1281    /// Fills a slice with elements returned by calling a closure for each index.
1282    ///
1283    /// This method uses a closure to create new values. If you'd rather `Clone` a given value, use
1284    /// [slice::write_filled]. If you want to use the `Default` trait to generate values, you can
1285    /// pass [`|_| Default::default()`][Default::default] as the argument.
1286    ///
1287    /// # Panics
1288    ///
1289    /// This function will panic if any call to the provided closure panics.
1290    ///
1291    /// If such a panic occurs, any elements previously initialized during this operation will be
1292    /// dropped.
1293    ///
1294    /// # Examples
1295    ///
1296    /// ```
1297    /// #![feature(maybe_uninit_fill)]
1298    /// use std::mem::MaybeUninit;
1299    ///
1300    /// let mut buf = [const { MaybeUninit::<usize>::uninit() }; 5];
1301    /// let initialized = buf.write_with(|idx| idx + 1);
1302    /// assert_eq!(initialized, &mut [1, 2, 3, 4, 5]);
1303    /// ```
1304    #[unstable(feature = "maybe_uninit_fill", issue = "117428")]
1305    pub fn write_with<F>(&mut self, mut f: F) -> &mut [T]
1306    where
1307        F: FnMut(usize) -> T,
1308    {
1309        let mut guard = Guard { slice: self, initialized: 0 };
1310
1311        for (idx, element) in guard.slice.iter_mut().enumerate() {
1312            element.write(f(idx));
1313            guard.initialized += 1;
1314        }
1315
1316        super::forget(guard);
1317
1318        // SAFETY: Valid elements have just been written into `this` so it is initialized
1319        unsafe { self.assume_init_mut() }
1320    }
1321
1322    /// Fills a slice with elements yielded by an iterator until either all elements have been
1323    /// initialized or the iterator is empty.
1324    ///
1325    /// Returns two slices. The first slice contains the initialized portion of the original slice.
1326    /// The second slice is the still-uninitialized remainder of the original slice.
1327    ///
1328    /// # Panics
1329    ///
1330    /// This function panics if the iterator's `next` function panics.
1331    ///
1332    /// If such a panic occurs, any elements previously initialized during this operation will be
1333    /// dropped.
1334    ///
1335    /// # Examples
1336    ///
1337    /// Completely filling the slice:
1338    ///
1339    /// ```
1340    /// #![feature(maybe_uninit_fill)]
1341    /// use std::mem::MaybeUninit;
1342    ///
1343    /// let mut buf = [const { MaybeUninit::uninit() }; 5];
1344    ///
1345    /// let iter = [1, 2, 3].into_iter().cycle();
1346    /// let (initialized, remainder) = buf.write_iter(iter);
1347    ///
1348    /// assert_eq!(initialized, &mut [1, 2, 3, 1, 2]);
1349    /// assert_eq!(remainder.len(), 0);
1350    /// ```
1351    ///
1352    /// Partially filling the slice:
1353    ///
1354    /// ```
1355    /// #![feature(maybe_uninit_fill)]
1356    /// use std::mem::MaybeUninit;
1357    ///
1358    /// let mut buf = [const { MaybeUninit::uninit() }; 5];
1359    /// let iter = [1, 2];
1360    /// let (initialized, remainder) = buf.write_iter(iter);
1361    ///
1362    /// assert_eq!(initialized, &mut [1, 2]);
1363    /// assert_eq!(remainder.len(), 3);
1364    /// ```
1365    ///
1366    /// Checking an iterator after filling a slice:
1367    ///
1368    /// ```
1369    /// #![feature(maybe_uninit_fill)]
1370    /// use std::mem::MaybeUninit;
1371    ///
1372    /// let mut buf = [const { MaybeUninit::uninit() }; 3];
1373    /// let mut iter = [1, 2, 3, 4, 5].into_iter();
1374    /// let (initialized, remainder) = buf.write_iter(iter.by_ref());
1375    ///
1376    /// assert_eq!(initialized, &mut [1, 2, 3]);
1377    /// assert_eq!(remainder.len(), 0);
1378    /// assert_eq!(iter.as_slice(), &[4, 5]);
1379    /// ```
1380    #[unstable(feature = "maybe_uninit_fill", issue = "117428")]
1381    pub fn write_iter<I>(&mut self, it: I) -> (&mut [T], &mut [MaybeUninit<T>])
1382    where
1383        I: IntoIterator<Item = T>,
1384    {
1385        let iter = it.into_iter();
1386        let mut guard = Guard { slice: self, initialized: 0 };
1387
1388        for (element, val) in guard.slice.iter_mut().zip(iter) {
1389            element.write(val);
1390            guard.initialized += 1;
1391        }
1392
1393        let initialized_len = guard.initialized;
1394        super::forget(guard);
1395
1396        // SAFETY: guard.initialized <= self.len()
1397        let (initted, remainder) = unsafe { self.split_at_mut_unchecked(initialized_len) };
1398
1399        // SAFETY: Valid elements have just been written into `init`, so that portion
1400        // of `this` is initialized.
1401        (unsafe { initted.assume_init_mut() }, remainder)
1402    }
1403
1404    /// Returns the contents of this `MaybeUninit` as a slice of potentially uninitialized bytes.
1405    ///
1406    /// Note that even if the contents of a `MaybeUninit` have been initialized, the value may still
1407    /// contain padding bytes which are left uninitialized.
1408    ///
1409    /// # Examples
1410    ///
1411    /// ```
1412    /// #![feature(maybe_uninit_as_bytes, maybe_uninit_write_slice, maybe_uninit_slice)]
1413    /// use std::mem::MaybeUninit;
1414    ///
1415    /// let uninit = [MaybeUninit::new(0x1234u16), MaybeUninit::new(0x5678u16)];
1416    /// let uninit_bytes = uninit.as_bytes();
1417    /// let bytes = unsafe { uninit_bytes.assume_init_ref() };
1418    /// let val1 = u16::from_ne_bytes(bytes[0..2].try_into().unwrap());
1419    /// let val2 = u16::from_ne_bytes(bytes[2..4].try_into().unwrap());
1420    /// assert_eq!(&[val1, val2], &[0x1234u16, 0x5678u16]);
1421    /// ```
1422    #[unstable(feature = "maybe_uninit_as_bytes", issue = "93092")]
1423    pub const fn as_bytes(&self) -> &[MaybeUninit<u8>] {
1424        // SAFETY: MaybeUninit<u8> is always valid, even for padding bytes
1425        unsafe {
1426            slice::from_raw_parts(self.as_ptr().cast::<MaybeUninit<u8>>(), super::size_of_val(self))
1427        }
1428    }
1429
1430    /// Returns the contents of this `MaybeUninit` slice as a mutable slice of potentially
1431    /// uninitialized bytes.
1432    ///
1433    /// Note that even if the contents of a `MaybeUninit` have been initialized, the value may still
1434    /// contain padding bytes which are left uninitialized.
1435    ///
1436    /// # Examples
1437    ///
1438    /// ```
1439    /// #![feature(maybe_uninit_as_bytes, maybe_uninit_write_slice, maybe_uninit_slice)]
1440    /// use std::mem::MaybeUninit;
1441    ///
1442    /// let mut uninit = [MaybeUninit::<u16>::uninit(), MaybeUninit::<u16>::uninit()];
1443    /// let uninit_bytes = uninit.as_bytes_mut();
1444    /// uninit_bytes.write_copy_of_slice(&[0x12, 0x34, 0x56, 0x78]);
1445    /// let vals = unsafe { uninit.assume_init_ref() };
1446    /// if cfg!(target_endian = "little") {
1447    ///     assert_eq!(vals, &[0x3412u16, 0x7856u16]);
1448    /// } else {
1449    ///     assert_eq!(vals, &[0x1234u16, 0x5678u16]);
1450    /// }
1451    /// ```
1452    #[unstable(feature = "maybe_uninit_as_bytes", issue = "93092")]
1453    pub const fn as_bytes_mut(&mut self) -> &mut [MaybeUninit<u8>] {
1454        // SAFETY: MaybeUninit<u8> is always valid, even for padding bytes
1455        unsafe {
1456            slice::from_raw_parts_mut(
1457                self.as_mut_ptr() as *mut MaybeUninit<u8>,
1458                super::size_of_val(self),
1459            )
1460        }
1461    }
1462
1463    /// Drops the contained values in place.
1464    ///
1465    /// # Safety
1466    ///
1467    /// It is up to the caller to guarantee that every `MaybeUninit<T>` in the slice
1468    /// really is in an initialized state. Calling this when the content is not yet
1469    /// fully initialized causes undefined behavior.
1470    ///
1471    /// On top of that, all additional invariants of the type `T` must be
1472    /// satisfied, as the `Drop` implementation of `T` (or its members) may
1473    /// rely on this. For example, setting a `Vec<T>` to an invalid but
1474    /// non-null address makes it initialized (under the current implementation;
1475    /// this does not constitute a stable guarantee), because the only
1476    /// requirement the compiler knows about it is that the data pointer must be
1477    /// non-null. Dropping such a `Vec<T>` however will cause undefined
1478    /// behaviour.
1479    #[unstable(feature = "maybe_uninit_slice", issue = "63569")]
1480    #[inline(always)]
1481    #[rustc_const_unstable(feature = "const_drop_in_place", issue = "109342")]
1482    pub const unsafe fn assume_init_drop(&mut self)
1483    where
1484        T: [const] Destruct,
1485    {
1486        if !self.is_empty() {
1487            // SAFETY: the caller must guarantee that every element of `self`
1488            // is initialized and satisfies all invariants of `T`.
1489            // Dropping the value in place is safe if that is the case.
1490            unsafe { ptr::drop_in_place(self as *mut [MaybeUninit<T>] as *mut [T]) }
1491        }
1492    }
1493
1494    /// Gets a shared reference to the contained value.
1495    ///
1496    /// # Safety
1497    ///
1498    /// Calling this when the content is not yet fully initialized causes undefined
1499    /// behavior: it is up to the caller to guarantee that every `MaybeUninit<T>` in
1500    /// the slice really is in an initialized state.
1501    #[unstable(feature = "maybe_uninit_slice", issue = "63569")]
1502    #[inline(always)]
1503    pub const unsafe fn assume_init_ref(&self) -> &[T] {
1504        // SAFETY: casting `slice` to a `*const [T]` is safe since the caller guarantees that
1505        // `slice` is initialized, and `MaybeUninit` is guaranteed to have the same layout as `T`.
1506        // The pointer obtained is valid since it refers to memory owned by `slice` which is a
1507        // reference and thus guaranteed to be valid for reads.
1508        unsafe { &*(self as *const Self as *const [T]) }
1509    }
1510
1511    /// Gets a mutable (unique) reference to the contained value.
1512    ///
1513    /// # Safety
1514    ///
1515    /// Calling this when the content is not yet fully initialized causes undefined
1516    /// behavior: it is up to the caller to guarantee that every `MaybeUninit<T>` in the
1517    /// slice really is in an initialized state. For instance, `.assume_init_mut()` cannot
1518    /// be used to initialize a `MaybeUninit` slice.
1519    #[unstable(feature = "maybe_uninit_slice", issue = "63569")]
1520    #[inline(always)]
1521    pub const unsafe fn assume_init_mut(&mut self) -> &mut [T] {
1522        // SAFETY: similar to safety notes for `slice_get_ref`, but we have a
1523        // mutable reference which is also guaranteed to be valid for writes.
1524        unsafe { &mut *(self as *mut Self as *mut [T]) }
1525    }
1526}
1527
1528impl<T, const N: usize> MaybeUninit<[T; N]> {
1529    /// Transposes a `MaybeUninit<[T; N]>` into a `[MaybeUninit<T>; N]`.
1530    ///
1531    /// # Examples
1532    ///
1533    /// ```
1534    /// #![feature(maybe_uninit_uninit_array_transpose)]
1535    /// # use std::mem::MaybeUninit;
1536    ///
1537    /// let data: [MaybeUninit<u8>; 1000] = MaybeUninit::uninit().transpose();
1538    /// ```
1539    #[unstable(feature = "maybe_uninit_uninit_array_transpose", issue = "96097")]
1540    #[inline]
1541    pub const fn transpose(self) -> [MaybeUninit<T>; N] {
1542        // SAFETY: T and MaybeUninit<T> have the same layout
1543        unsafe { intrinsics::transmute_unchecked(self) }
1544    }
1545}
1546
1547impl<T, const N: usize> [MaybeUninit<T>; N] {
1548    /// Transposes a `[MaybeUninit<T>; N]` into a `MaybeUninit<[T; N]>`.
1549    ///
1550    /// # Examples
1551    ///
1552    /// ```
1553    /// #![feature(maybe_uninit_uninit_array_transpose)]
1554    /// # use std::mem::MaybeUninit;
1555    ///
1556    /// let data = [MaybeUninit::<u8>::uninit(); 1000];
1557    /// let data: MaybeUninit<[u8; 1000]> = data.transpose();
1558    /// ```
1559    #[unstable(feature = "maybe_uninit_uninit_array_transpose", issue = "96097")]
1560    #[inline]
1561    pub const fn transpose(self) -> MaybeUninit<[T; N]> {
1562        // SAFETY: T and MaybeUninit<T> have the same layout
1563        unsafe { intrinsics::transmute_unchecked(self) }
1564    }
1565}
1566
1567struct Guard<'a, T> {
1568    slice: &'a mut [MaybeUninit<T>],
1569    initialized: usize,
1570}
1571
1572impl<'a, T> Drop for Guard<'a, T> {
1573    fn drop(&mut self) {
1574        let initialized_part = &mut self.slice[..self.initialized];
1575        // SAFETY: this raw sub-slice will contain only initialized objects.
1576        unsafe {
1577            initialized_part.assume_init_drop();
1578        }
1579    }
1580}
1581
1582trait SpecFill<T> {
1583    fn spec_fill(&mut self, value: T);
1584}
1585
1586impl<T: Clone> SpecFill<T> for [MaybeUninit<T>] {
1587    default fn spec_fill(&mut self, value: T) {
1588        let mut guard = Guard { slice: self, initialized: 0 };
1589
1590        if let Some((last, elems)) = guard.slice.split_last_mut() {
1591            for el in elems {
1592                el.write(value.clone());
1593                guard.initialized += 1;
1594            }
1595
1596            last.write(value);
1597        }
1598        super::forget(guard);
1599    }
1600}
1601
1602impl<T: Copy> SpecFill<T> for [MaybeUninit<T>] {
1603    fn spec_fill(&mut self, value: T) {
1604        self.fill(MaybeUninit::new(value));
1605    }
1606}