std/
f16.rs

1//! Constants for the `f16` half-precision floating point type.
2//!
3//! *[See also the `f16` primitive type](primitive@f16).*
4//!
5//! Mathematically significant numbers are provided in the `consts` sub-module.
6
7#[unstable(feature = "f16", issue = "116909")]
8pub use core::f16::consts;
9
10#[cfg(not(test))]
11use crate::intrinsics;
12#[cfg(not(test))]
13use crate::sys::cmath;
14
15#[cfg(not(test))]
16impl f16 {
17    /// Returns the largest integer less than or equal to `self`.
18    ///
19    /// This function always returns the precise result.
20    ///
21    /// # Examples
22    ///
23    /// ```
24    /// #![feature(f16)]
25    /// # #[cfg(reliable_f16_math)] {
26    ///
27    /// let f = 3.7_f16;
28    /// let g = 3.0_f16;
29    /// let h = -3.7_f16;
30    ///
31    /// assert_eq!(f.floor(), 3.0);
32    /// assert_eq!(g.floor(), 3.0);
33    /// assert_eq!(h.floor(), -4.0);
34    /// # }
35    /// ```
36    #[inline]
37    #[rustc_allow_incoherent_impl]
38    #[unstable(feature = "f16", issue = "116909")]
39    #[must_use = "method returns a new number and does not mutate the original value"]
40    pub fn floor(self) -> f16 {
41        unsafe { intrinsics::floorf16(self) }
42    }
43
44    /// Returns the smallest integer greater than or equal to `self`.
45    ///
46    /// This function always returns the precise result.
47    ///
48    /// # Examples
49    ///
50    /// ```
51    /// #![feature(f16)]
52    /// # #[cfg(reliable_f16_math)] {
53    ///
54    /// let f = 3.01_f16;
55    /// let g = 4.0_f16;
56    ///
57    /// assert_eq!(f.ceil(), 4.0);
58    /// assert_eq!(g.ceil(), 4.0);
59    /// # }
60    /// ```
61    #[inline]
62    #[doc(alias = "ceiling")]
63    #[rustc_allow_incoherent_impl]
64    #[unstable(feature = "f16", issue = "116909")]
65    #[must_use = "method returns a new number and does not mutate the original value"]
66    pub fn ceil(self) -> f16 {
67        unsafe { intrinsics::ceilf16(self) }
68    }
69
70    /// Returns the nearest integer to `self`. If a value is half-way between two
71    /// integers, round away from `0.0`.
72    ///
73    /// This function always returns the precise result.
74    ///
75    /// # Examples
76    ///
77    /// ```
78    /// #![feature(f16)]
79    /// # #[cfg(reliable_f16_math)] {
80    ///
81    /// let f = 3.3_f16;
82    /// let g = -3.3_f16;
83    /// let h = -3.7_f16;
84    /// let i = 3.5_f16;
85    /// let j = 4.5_f16;
86    ///
87    /// assert_eq!(f.round(), 3.0);
88    /// assert_eq!(g.round(), -3.0);
89    /// assert_eq!(h.round(), -4.0);
90    /// assert_eq!(i.round(), 4.0);
91    /// assert_eq!(j.round(), 5.0);
92    /// # }
93    /// ```
94    #[inline]
95    #[rustc_allow_incoherent_impl]
96    #[unstable(feature = "f16", issue = "116909")]
97    #[must_use = "method returns a new number and does not mutate the original value"]
98    pub fn round(self) -> f16 {
99        unsafe { intrinsics::roundf16(self) }
100    }
101
102    /// Returns the nearest integer to a number. Rounds half-way cases to the number
103    /// with an even least significant digit.
104    ///
105    /// This function always returns the precise result.
106    ///
107    /// # Examples
108    ///
109    /// ```
110    /// #![feature(f16)]
111    /// # #[cfg(reliable_f16_math)] {
112    ///
113    /// let f = 3.3_f16;
114    /// let g = -3.3_f16;
115    /// let h = 3.5_f16;
116    /// let i = 4.5_f16;
117    ///
118    /// assert_eq!(f.round_ties_even(), 3.0);
119    /// assert_eq!(g.round_ties_even(), -3.0);
120    /// assert_eq!(h.round_ties_even(), 4.0);
121    /// assert_eq!(i.round_ties_even(), 4.0);
122    /// # }
123    /// ```
124    #[inline]
125    #[rustc_allow_incoherent_impl]
126    #[unstable(feature = "f16", issue = "116909")]
127    #[must_use = "method returns a new number and does not mutate the original value"]
128    pub fn round_ties_even(self) -> f16 {
129        intrinsics::round_ties_even_f16(self)
130    }
131
132    /// Returns the integer part of `self`.
133    /// This means that non-integer numbers are always truncated towards zero.
134    ///
135    /// This function always returns the precise result.
136    ///
137    /// # Examples
138    ///
139    /// ```
140    /// #![feature(f16)]
141    /// # #[cfg(reliable_f16_math)] {
142    ///
143    /// let f = 3.7_f16;
144    /// let g = 3.0_f16;
145    /// let h = -3.7_f16;
146    ///
147    /// assert_eq!(f.trunc(), 3.0);
148    /// assert_eq!(g.trunc(), 3.0);
149    /// assert_eq!(h.trunc(), -3.0);
150    /// # }
151    /// ```
152    #[inline]
153    #[doc(alias = "truncate")]
154    #[rustc_allow_incoherent_impl]
155    #[unstable(feature = "f16", issue = "116909")]
156    #[must_use = "method returns a new number and does not mutate the original value"]
157    pub fn trunc(self) -> f16 {
158        unsafe { intrinsics::truncf16(self) }
159    }
160
161    /// Returns the fractional part of `self`.
162    ///
163    /// This function always returns the precise result.
164    ///
165    /// # Examples
166    ///
167    /// ```
168    /// #![feature(f16)]
169    /// # #[cfg(reliable_f16_math)] {
170    ///
171    /// let x = 3.6_f16;
172    /// let y = -3.6_f16;
173    /// let abs_difference_x = (x.fract() - 0.6).abs();
174    /// let abs_difference_y = (y.fract() - (-0.6)).abs();
175    ///
176    /// assert!(abs_difference_x <= f16::EPSILON);
177    /// assert!(abs_difference_y <= f16::EPSILON);
178    /// # }
179    /// ```
180    #[inline]
181    #[rustc_allow_incoherent_impl]
182    #[unstable(feature = "f16", issue = "116909")]
183    #[must_use = "method returns a new number and does not mutate the original value"]
184    pub fn fract(self) -> f16 {
185        self - self.trunc()
186    }
187
188    /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
189    /// error, yielding a more accurate result than an unfused multiply-add.
190    ///
191    /// Using `mul_add` *may* be more performant than an unfused multiply-add if
192    /// the target architecture has a dedicated `fma` CPU instruction. However,
193    /// this is not always true, and will be heavily dependant on designing
194    /// algorithms with specific target hardware in mind.
195    ///
196    /// # Precision
197    ///
198    /// The result of this operation is guaranteed to be the rounded
199    /// infinite-precision result. It is specified by IEEE 754 as
200    /// `fusedMultiplyAdd` and guaranteed not to change.
201    ///
202    /// # Examples
203    ///
204    /// ```
205    /// #![feature(f16)]
206    /// # #[cfg(reliable_f16_math)] {
207    ///
208    /// let m = 10.0_f16;
209    /// let x = 4.0_f16;
210    /// let b = 60.0_f16;
211    ///
212    /// assert_eq!(m.mul_add(x, b), 100.0);
213    /// assert_eq!(m * x + b, 100.0);
214    ///
215    /// let one_plus_eps = 1.0_f16 + f16::EPSILON;
216    /// let one_minus_eps = 1.0_f16 - f16::EPSILON;
217    /// let minus_one = -1.0_f16;
218    ///
219    /// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps.
220    /// assert_eq!(one_plus_eps.mul_add(one_minus_eps, minus_one), -f16::EPSILON * f16::EPSILON);
221    /// // Different rounding with the non-fused multiply and add.
222    /// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0);
223    /// # }
224    /// ```
225    #[inline]
226    #[rustc_allow_incoherent_impl]
227    #[unstable(feature = "f16", issue = "116909")]
228    #[doc(alias = "fmaf16", alias = "fusedMultiplyAdd")]
229    #[must_use = "method returns a new number and does not mutate the original value"]
230    pub fn mul_add(self, a: f16, b: f16) -> f16 {
231        unsafe { intrinsics::fmaf16(self, a, b) }
232    }
233
234    /// Calculates Euclidean division, the matching method for `rem_euclid`.
235    ///
236    /// This computes the integer `n` such that
237    /// `self = n * rhs + self.rem_euclid(rhs)`.
238    /// In other words, the result is `self / rhs` rounded to the integer `n`
239    /// such that `self >= n * rhs`.
240    ///
241    /// # Precision
242    ///
243    /// The result of this operation is guaranteed to be the rounded
244    /// infinite-precision result.
245    ///
246    /// # Examples
247    ///
248    /// ```
249    /// #![feature(f16)]
250    /// # #[cfg(reliable_f16_math)] {
251    ///
252    /// let a: f16 = 7.0;
253    /// let b = 4.0;
254    /// assert_eq!(a.div_euclid(b), 1.0); // 7.0 > 4.0 * 1.0
255    /// assert_eq!((-a).div_euclid(b), -2.0); // -7.0 >= 4.0 * -2.0
256    /// assert_eq!(a.div_euclid(-b), -1.0); // 7.0 >= -4.0 * -1.0
257    /// assert_eq!((-a).div_euclid(-b), 2.0); // -7.0 >= -4.0 * 2.0
258    /// # }
259    /// ```
260    #[inline]
261    #[rustc_allow_incoherent_impl]
262    #[unstable(feature = "f16", issue = "116909")]
263    #[must_use = "method returns a new number and does not mutate the original value"]
264    pub fn div_euclid(self, rhs: f16) -> f16 {
265        let q = (self / rhs).trunc();
266        if self % rhs < 0.0 {
267            return if rhs > 0.0 { q - 1.0 } else { q + 1.0 };
268        }
269        q
270    }
271
272    /// Calculates the least nonnegative remainder of `self (mod rhs)`.
273    ///
274    /// In particular, the return value `r` satisfies `0.0 <= r < rhs.abs()` in
275    /// most cases. However, due to a floating point round-off error it can
276    /// result in `r == rhs.abs()`, violating the mathematical definition, if
277    /// `self` is much smaller than `rhs.abs()` in magnitude and `self < 0.0`.
278    /// This result is not an element of the function's codomain, but it is the
279    /// closest floating point number in the real numbers and thus fulfills the
280    /// property `self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)`
281    /// approximately.
282    ///
283    /// # Precision
284    ///
285    /// The result of this operation is guaranteed to be the rounded
286    /// infinite-precision result.
287    ///
288    /// # Examples
289    ///
290    /// ```
291    /// #![feature(f16)]
292    /// # #[cfg(reliable_f16_math)] {
293    ///
294    /// let a: f16 = 7.0;
295    /// let b = 4.0;
296    /// assert_eq!(a.rem_euclid(b), 3.0);
297    /// assert_eq!((-a).rem_euclid(b), 1.0);
298    /// assert_eq!(a.rem_euclid(-b), 3.0);
299    /// assert_eq!((-a).rem_euclid(-b), 1.0);
300    /// // limitation due to round-off error
301    /// assert!((-f16::EPSILON).rem_euclid(3.0) != 0.0);
302    /// # }
303    /// ```
304    #[inline]
305    #[rustc_allow_incoherent_impl]
306    #[doc(alias = "modulo", alias = "mod")]
307    #[unstable(feature = "f16", issue = "116909")]
308    #[must_use = "method returns a new number and does not mutate the original value"]
309    pub fn rem_euclid(self, rhs: f16) -> f16 {
310        let r = self % rhs;
311        if r < 0.0 { r + rhs.abs() } else { r }
312    }
313
314    /// Raises a number to an integer power.
315    ///
316    /// Using this function is generally faster than using `powf`.
317    /// It might have a different sequence of rounding operations than `powf`,
318    /// so the results are not guaranteed to agree.
319    ///
320    /// # Unspecified precision
321    ///
322    /// The precision of this function is non-deterministic. This means it varies by platform,
323    /// Rust version, and can even differ within the same execution from one invocation to the next.
324    ///
325    /// # Examples
326    ///
327    /// ```
328    /// #![feature(f16)]
329    /// # #[cfg(reliable_f16_math)] {
330    ///
331    /// let x = 2.0_f16;
332    /// let abs_difference = (x.powi(2) - (x * x)).abs();
333    /// assert!(abs_difference <= f16::EPSILON);
334    ///
335    /// assert_eq!(f16::powi(f16::NAN, 0), 1.0);
336    /// # }
337    /// ```
338    #[inline]
339    #[rustc_allow_incoherent_impl]
340    #[unstable(feature = "f16", issue = "116909")]
341    #[must_use = "method returns a new number and does not mutate the original value"]
342    pub fn powi(self, n: i32) -> f16 {
343        unsafe { intrinsics::powif16(self, n) }
344    }
345
346    /// Raises a number to a floating point power.
347    ///
348    /// # Unspecified precision
349    ///
350    /// The precision of this function is non-deterministic. This means it varies by platform,
351    /// Rust version, and can even differ within the same execution from one invocation to the next.
352    ///
353    /// # Examples
354    ///
355    /// ```
356    /// #![feature(f16)]
357    /// # #[cfg(reliable_f16_math)] {
358    ///
359    /// let x = 2.0_f16;
360    /// let abs_difference = (x.powf(2.0) - (x * x)).abs();
361    /// assert!(abs_difference <= f16::EPSILON);
362    ///
363    /// assert_eq!(f16::powf(1.0, f16::NAN), 1.0);
364    /// assert_eq!(f16::powf(f16::NAN, 0.0), 1.0);
365    /// # }
366    /// ```
367    #[inline]
368    #[rustc_allow_incoherent_impl]
369    #[unstable(feature = "f16", issue = "116909")]
370    #[must_use = "method returns a new number and does not mutate the original value"]
371    pub fn powf(self, n: f16) -> f16 {
372        unsafe { intrinsics::powf16(self, n) }
373    }
374
375    /// Returns the square root of a number.
376    ///
377    /// Returns NaN if `self` is a negative number other than `-0.0`.
378    ///
379    /// # Precision
380    ///
381    /// The result of this operation is guaranteed to be the rounded
382    /// infinite-precision result. It is specified by IEEE 754 as `squareRoot`
383    /// and guaranteed not to change.
384    ///
385    /// # Examples
386    ///
387    /// ```
388    /// #![feature(f16)]
389    /// # #[cfg(reliable_f16_math)] {
390    ///
391    /// let positive = 4.0_f16;
392    /// let negative = -4.0_f16;
393    /// let negative_zero = -0.0_f16;
394    ///
395    /// assert_eq!(positive.sqrt(), 2.0);
396    /// assert!(negative.sqrt().is_nan());
397    /// assert!(negative_zero.sqrt() == negative_zero);
398    /// # }
399    /// ```
400    #[inline]
401    #[doc(alias = "squareRoot")]
402    #[rustc_allow_incoherent_impl]
403    #[unstable(feature = "f16", issue = "116909")]
404    #[must_use = "method returns a new number and does not mutate the original value"]
405    pub fn sqrt(self) -> f16 {
406        unsafe { intrinsics::sqrtf16(self) }
407    }
408
409    /// Returns `e^(self)`, (the exponential function).
410    ///
411    /// # Unspecified precision
412    ///
413    /// The precision of this function is non-deterministic. This means it varies by platform,
414    /// Rust version, and can even differ within the same execution from one invocation to the next.
415    ///
416    /// # Examples
417    ///
418    /// ```
419    /// #![feature(f16)]
420    /// # #[cfg(reliable_f16_math)] {
421    ///
422    /// let one = 1.0f16;
423    /// // e^1
424    /// let e = one.exp();
425    ///
426    /// // ln(e) - 1 == 0
427    /// let abs_difference = (e.ln() - 1.0).abs();
428    ///
429    /// assert!(abs_difference <= f16::EPSILON);
430    /// # }
431    /// ```
432    #[inline]
433    #[rustc_allow_incoherent_impl]
434    #[unstable(feature = "f16", issue = "116909")]
435    #[must_use = "method returns a new number and does not mutate the original value"]
436    pub fn exp(self) -> f16 {
437        unsafe { intrinsics::expf16(self) }
438    }
439
440    /// Returns `2^(self)`.
441    ///
442    /// # Unspecified precision
443    ///
444    /// The precision of this function is non-deterministic. This means it varies by platform,
445    /// Rust version, and can even differ within the same execution from one invocation to the next.
446    ///
447    /// # Examples
448    ///
449    /// ```
450    /// #![feature(f16)]
451    /// # #[cfg(reliable_f16_math)] {
452    ///
453    /// let f = 2.0f16;
454    ///
455    /// // 2^2 - 4 == 0
456    /// let abs_difference = (f.exp2() - 4.0).abs();
457    ///
458    /// assert!(abs_difference <= f16::EPSILON);
459    /// # }
460    /// ```
461    #[inline]
462    #[rustc_allow_incoherent_impl]
463    #[unstable(feature = "f16", issue = "116909")]
464    #[must_use = "method returns a new number and does not mutate the original value"]
465    pub fn exp2(self) -> f16 {
466        unsafe { intrinsics::exp2f16(self) }
467    }
468
469    /// Returns the natural logarithm of the number.
470    ///
471    /// This returns NaN when the number is negative, and negative infinity when number is zero.
472    ///
473    /// # Unspecified precision
474    ///
475    /// The precision of this function is non-deterministic. This means it varies by platform,
476    /// Rust version, and can even differ within the same execution from one invocation to the next.
477    ///
478    /// # Examples
479    ///
480    /// ```
481    /// #![feature(f16)]
482    /// # #[cfg(reliable_f16_math)] {
483    ///
484    /// let one = 1.0f16;
485    /// // e^1
486    /// let e = one.exp();
487    ///
488    /// // ln(e) - 1 == 0
489    /// let abs_difference = (e.ln() - 1.0).abs();
490    ///
491    /// assert!(abs_difference <= f16::EPSILON);
492    /// # }
493    /// ```
494    ///
495    /// Non-positive values:
496    /// ```
497    /// #![feature(f16)]
498    /// # #[cfg(reliable_f16_math)] {
499    ///
500    /// assert_eq!(0_f16.ln(), f16::NEG_INFINITY);
501    /// assert!((-42_f16).ln().is_nan());
502    /// # }
503    /// ```
504    #[inline]
505    #[rustc_allow_incoherent_impl]
506    #[unstable(feature = "f16", issue = "116909")]
507    #[must_use = "method returns a new number and does not mutate the original value"]
508    pub fn ln(self) -> f16 {
509        unsafe { intrinsics::logf16(self) }
510    }
511
512    /// Returns the logarithm of the number with respect to an arbitrary base.
513    ///
514    /// This returns NaN when the number is negative, and negative infinity when number is zero.
515    ///
516    /// The result might not be correctly rounded owing to implementation details;
517    /// `self.log2()` can produce more accurate results for base 2, and
518    /// `self.log10()` can produce more accurate results for base 10.
519    ///
520    /// # Unspecified precision
521    ///
522    /// The precision of this function is non-deterministic. This means it varies by platform,
523    /// Rust version, and can even differ within the same execution from one invocation to the next.
524    ///
525    /// # Examples
526    ///
527    /// ```
528    /// #![feature(f16)]
529    /// # #[cfg(reliable_f16_math)] {
530    ///
531    /// let five = 5.0f16;
532    ///
533    /// // log5(5) - 1 == 0
534    /// let abs_difference = (five.log(5.0) - 1.0).abs();
535    ///
536    /// assert!(abs_difference <= f16::EPSILON);
537    /// # }
538    /// ```
539    ///
540    /// Non-positive values:
541    /// ```
542    /// #![feature(f16)]
543    /// # #[cfg(reliable_f16_math)] {
544    ///
545    /// assert_eq!(0_f16.log(10.0), f16::NEG_INFINITY);
546    /// assert!((-42_f16).log(10.0).is_nan());
547    /// # }
548    /// ```
549    #[inline]
550    #[rustc_allow_incoherent_impl]
551    #[unstable(feature = "f16", issue = "116909")]
552    #[must_use = "method returns a new number and does not mutate the original value"]
553    pub fn log(self, base: f16) -> f16 {
554        self.ln() / base.ln()
555    }
556
557    /// Returns the base 2 logarithm of the number.
558    ///
559    /// This returns NaN when the number is negative, and negative infinity when number is zero.
560    ///
561    /// # Unspecified precision
562    ///
563    /// The precision of this function is non-deterministic. This means it varies by platform,
564    /// Rust version, and can even differ within the same execution from one invocation to the next.
565    ///
566    /// # Examples
567    ///
568    /// ```
569    /// #![feature(f16)]
570    /// # #[cfg(reliable_f16_math)] {
571    ///
572    /// let two = 2.0f16;
573    ///
574    /// // log2(2) - 1 == 0
575    /// let abs_difference = (two.log2() - 1.0).abs();
576    ///
577    /// assert!(abs_difference <= f16::EPSILON);
578    /// # }
579    /// ```
580    ///
581    /// Non-positive values:
582    /// ```
583    /// #![feature(f16)]
584    /// # #[cfg(reliable_f16_math)] {
585    ///
586    /// assert_eq!(0_f16.log2(), f16::NEG_INFINITY);
587    /// assert!((-42_f16).log2().is_nan());
588    /// # }
589    /// ```
590    #[inline]
591    #[rustc_allow_incoherent_impl]
592    #[unstable(feature = "f16", issue = "116909")]
593    #[must_use = "method returns a new number and does not mutate the original value"]
594    pub fn log2(self) -> f16 {
595        unsafe { intrinsics::log2f16(self) }
596    }
597
598    /// Returns the base 10 logarithm of the number.
599    ///
600    /// This returns NaN when the number is negative, and negative infinity when number is zero.
601    ///
602    /// # Unspecified precision
603    ///
604    /// The precision of this function is non-deterministic. This means it varies by platform,
605    /// Rust version, and can even differ within the same execution from one invocation to the next.
606    ///
607    /// # Examples
608    ///
609    /// ```
610    /// #![feature(f16)]
611    /// # #[cfg(reliable_f16_math)] {
612    ///
613    /// let ten = 10.0f16;
614    ///
615    /// // log10(10) - 1 == 0
616    /// let abs_difference = (ten.log10() - 1.0).abs();
617    ///
618    /// assert!(abs_difference <= f16::EPSILON);
619    /// # }
620    /// ```
621    ///
622    /// Non-positive values:
623    /// ```
624    /// #![feature(f16)]
625    /// # #[cfg(reliable_f16_math)] {
626    ///
627    /// assert_eq!(0_f16.log10(), f16::NEG_INFINITY);
628    /// assert!((-42_f16).log10().is_nan());
629    /// # }
630    /// ```
631    #[inline]
632    #[rustc_allow_incoherent_impl]
633    #[unstable(feature = "f16", issue = "116909")]
634    #[must_use = "method returns a new number and does not mutate the original value"]
635    pub fn log10(self) -> f16 {
636        unsafe { intrinsics::log10f16(self) }
637    }
638
639    /// Returns the cube root of a number.
640    ///
641    /// # Unspecified precision
642    ///
643    /// The precision of this function is non-deterministic. This means it varies by platform,
644    /// Rust version, and can even differ within the same execution from one invocation to the next.
645    ///
646    /// This function currently corresponds to the `cbrtf` from libc on Unix
647    /// and Windows. Note that this might change in the future.
648    ///
649    /// # Examples
650    ///
651    /// ```
652    /// #![feature(f16)]
653    /// # #[cfg(reliable_f16_math)] {
654    ///
655    /// let x = 8.0f16;
656    ///
657    /// // x^(1/3) - 2 == 0
658    /// let abs_difference = (x.cbrt() - 2.0).abs();
659    ///
660    /// assert!(abs_difference <= f16::EPSILON);
661    /// # }
662    /// ```
663    #[inline]
664    #[rustc_allow_incoherent_impl]
665    #[unstable(feature = "f16", issue = "116909")]
666    #[must_use = "method returns a new number and does not mutate the original value"]
667    pub fn cbrt(self) -> f16 {
668        cmath::cbrtf(self as f32) as f16
669    }
670
671    /// Compute the distance between the origin and a point (`x`, `y`) on the
672    /// Euclidean plane. Equivalently, compute the length of the hypotenuse of a
673    /// right-angle triangle with other sides having length `x.abs()` and
674    /// `y.abs()`.
675    ///
676    /// # Unspecified precision
677    ///
678    /// The precision of this function is non-deterministic. This means it varies by platform,
679    /// Rust version, and can even differ within the same execution from one invocation to the next.
680    ///
681    /// This function currently corresponds to the `hypotf` from libc on Unix
682    /// and Windows. Note that this might change in the future.
683    ///
684    /// # Examples
685    ///
686    /// ```
687    /// #![feature(f16)]
688    /// # #[cfg(reliable_f16_math)] {
689    ///
690    /// let x = 2.0f16;
691    /// let y = 3.0f16;
692    ///
693    /// // sqrt(x^2 + y^2)
694    /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();
695    ///
696    /// assert!(abs_difference <= f16::EPSILON);
697    /// # }
698    /// ```
699    #[inline]
700    #[rustc_allow_incoherent_impl]
701    #[unstable(feature = "f16", issue = "116909")]
702    #[must_use = "method returns a new number and does not mutate the original value"]
703    pub fn hypot(self, other: f16) -> f16 {
704        cmath::hypotf(self as f32, other as f32) as f16
705    }
706
707    /// Computes the sine of a number (in radians).
708    ///
709    /// # Unspecified precision
710    ///
711    /// The precision of this function is non-deterministic. This means it varies by platform,
712    /// Rust version, and can even differ within the same execution from one invocation to the next.
713    ///
714    /// # Examples
715    ///
716    /// ```
717    /// #![feature(f16)]
718    /// # #[cfg(reliable_f16_math)] {
719    ///
720    /// let x = std::f16::consts::FRAC_PI_2;
721    ///
722    /// let abs_difference = (x.sin() - 1.0).abs();
723    ///
724    /// assert!(abs_difference <= f16::EPSILON);
725    /// # }
726    /// ```
727    #[inline]
728    #[rustc_allow_incoherent_impl]
729    #[unstable(feature = "f16", issue = "116909")]
730    #[must_use = "method returns a new number and does not mutate the original value"]
731    pub fn sin(self) -> f16 {
732        unsafe { intrinsics::sinf16(self) }
733    }
734
735    /// Computes the cosine of a number (in radians).
736    ///
737    /// # Unspecified precision
738    ///
739    /// The precision of this function is non-deterministic. This means it varies by platform,
740    /// Rust version, and can even differ within the same execution from one invocation to the next.
741    ///
742    /// # Examples
743    ///
744    /// ```
745    /// #![feature(f16)]
746    /// # #[cfg(reliable_f16_math)] {
747    ///
748    /// let x = 2.0 * std::f16::consts::PI;
749    ///
750    /// let abs_difference = (x.cos() - 1.0).abs();
751    ///
752    /// assert!(abs_difference <= f16::EPSILON);
753    /// # }
754    /// ```
755    #[inline]
756    #[rustc_allow_incoherent_impl]
757    #[unstable(feature = "f16", issue = "116909")]
758    #[must_use = "method returns a new number and does not mutate the original value"]
759    pub fn cos(self) -> f16 {
760        unsafe { intrinsics::cosf16(self) }
761    }
762
763    /// Computes the tangent of a number (in radians).
764    ///
765    /// # Unspecified precision
766    ///
767    /// The precision of this function is non-deterministic. This means it varies by platform,
768    /// Rust version, and can even differ within the same execution from one invocation to the next.
769    ///
770    /// This function currently corresponds to the `tanf` from libc on Unix and
771    /// Windows. Note that this might change in the future.
772    ///
773    /// # Examples
774    ///
775    /// ```
776    /// #![feature(f16)]
777    /// # #[cfg(reliable_f16_math)] {
778    ///
779    /// let x = std::f16::consts::FRAC_PI_4;
780    /// let abs_difference = (x.tan() - 1.0).abs();
781    ///
782    /// assert!(abs_difference <= f16::EPSILON);
783    /// # }
784    /// ```
785    #[inline]
786    #[rustc_allow_incoherent_impl]
787    #[unstable(feature = "f16", issue = "116909")]
788    #[must_use = "method returns a new number and does not mutate the original value"]
789    pub fn tan(self) -> f16 {
790        cmath::tanf(self as f32) as f16
791    }
792
793    /// Computes the arcsine of a number. Return value is in radians in
794    /// the range [-pi/2, pi/2] or NaN if the number is outside the range
795    /// [-1, 1].
796    ///
797    /// # Unspecified precision
798    ///
799    /// The precision of this function is non-deterministic. This means it varies by platform,
800    /// Rust version, and can even differ within the same execution from one invocation to the next.
801    ///
802    /// This function currently corresponds to the `asinf` from libc on Unix
803    /// and Windows. Note that this might change in the future.
804    ///
805    /// # Examples
806    ///
807    /// ```
808    /// #![feature(f16)]
809    /// # #[cfg(reliable_f16_math)] {
810    ///
811    /// let f = std::f16::consts::FRAC_PI_2;
812    ///
813    /// // asin(sin(pi/2))
814    /// let abs_difference = (f.sin().asin() - std::f16::consts::FRAC_PI_2).abs();
815    ///
816    /// assert!(abs_difference <= f16::EPSILON);
817    /// # }
818    /// ```
819    #[inline]
820    #[doc(alias = "arcsin")]
821    #[rustc_allow_incoherent_impl]
822    #[unstable(feature = "f16", issue = "116909")]
823    #[must_use = "method returns a new number and does not mutate the original value"]
824    pub fn asin(self) -> f16 {
825        cmath::asinf(self as f32) as f16
826    }
827
828    /// Computes the arccosine of a number. Return value is in radians in
829    /// the range [0, pi] or NaN if the number is outside the range
830    /// [-1, 1].
831    ///
832    /// # Unspecified precision
833    ///
834    /// The precision of this function is non-deterministic. This means it varies by platform,
835    /// Rust version, and can even differ within the same execution from one invocation to the next.
836    ///
837    /// This function currently corresponds to the `acosf` from libc on Unix
838    /// and Windows. Note that this might change in the future.
839    ///
840    /// # Examples
841    ///
842    /// ```
843    /// #![feature(f16)]
844    /// # #[cfg(reliable_f16_math)] {
845    ///
846    /// let f = std::f16::consts::FRAC_PI_4;
847    ///
848    /// // acos(cos(pi/4))
849    /// let abs_difference = (f.cos().acos() - std::f16::consts::FRAC_PI_4).abs();
850    ///
851    /// assert!(abs_difference <= f16::EPSILON);
852    /// # }
853    /// ```
854    #[inline]
855    #[doc(alias = "arccos")]
856    #[rustc_allow_incoherent_impl]
857    #[unstable(feature = "f16", issue = "116909")]
858    #[must_use = "method returns a new number and does not mutate the original value"]
859    pub fn acos(self) -> f16 {
860        cmath::acosf(self as f32) as f16
861    }
862
863    /// Computes the arctangent of a number. Return value is in radians in the
864    /// range [-pi/2, pi/2];
865    ///
866    /// # Unspecified precision
867    ///
868    /// The precision of this function is non-deterministic. This means it varies by platform,
869    /// Rust version, and can even differ within the same execution from one invocation to the next.
870    ///
871    /// This function currently corresponds to the `atanf` from libc on Unix
872    /// and Windows. Note that this might change in the future.
873    ///
874    /// # Examples
875    ///
876    /// ```
877    /// #![feature(f16)]
878    /// # #[cfg(reliable_f16_math)] {
879    ///
880    /// let f = 1.0f16;
881    ///
882    /// // atan(tan(1))
883    /// let abs_difference = (f.tan().atan() - 1.0).abs();
884    ///
885    /// assert!(abs_difference <= f16::EPSILON);
886    /// # }
887    /// ```
888    #[inline]
889    #[doc(alias = "arctan")]
890    #[rustc_allow_incoherent_impl]
891    #[unstable(feature = "f16", issue = "116909")]
892    #[must_use = "method returns a new number and does not mutate the original value"]
893    pub fn atan(self) -> f16 {
894        cmath::atanf(self as f32) as f16
895    }
896
897    /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`) in radians.
898    ///
899    /// * `x = 0`, `y = 0`: `0`
900    /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]`
901    /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]`
902    /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)`
903    ///
904    /// # Unspecified precision
905    ///
906    /// The precision of this function is non-deterministic. This means it varies by platform,
907    /// Rust version, and can even differ within the same execution from one invocation to the next.
908    ///
909    /// This function currently corresponds to the `atan2f` from libc on Unix
910    /// and Windows. Note that this might change in the future.
911    ///
912    /// # Examples
913    ///
914    /// ```
915    /// #![feature(f16)]
916    /// # #[cfg(reliable_f16_math)] {
917    ///
918    /// // Positive angles measured counter-clockwise
919    /// // from positive x axis
920    /// // -pi/4 radians (45 deg clockwise)
921    /// let x1 = 3.0f16;
922    /// let y1 = -3.0f16;
923    ///
924    /// // 3pi/4 radians (135 deg counter-clockwise)
925    /// let x2 = -3.0f16;
926    /// let y2 = 3.0f16;
927    ///
928    /// let abs_difference_1 = (y1.atan2(x1) - (-std::f16::consts::FRAC_PI_4)).abs();
929    /// let abs_difference_2 = (y2.atan2(x2) - (3.0 * std::f16::consts::FRAC_PI_4)).abs();
930    ///
931    /// assert!(abs_difference_1 <= f16::EPSILON);
932    /// assert!(abs_difference_2 <= f16::EPSILON);
933    /// # }
934    /// ```
935    #[inline]
936    #[rustc_allow_incoherent_impl]
937    #[unstable(feature = "f16", issue = "116909")]
938    #[must_use = "method returns a new number and does not mutate the original value"]
939    pub fn atan2(self, other: f16) -> f16 {
940        cmath::atan2f(self as f32, other as f32) as f16
941    }
942
943    /// Simultaneously computes the sine and cosine of the number, `x`. Returns
944    /// `(sin(x), cos(x))`.
945    ///
946    /// # Unspecified precision
947    ///
948    /// The precision of this function is non-deterministic. This means it varies by platform,
949    /// Rust version, and can even differ within the same execution from one invocation to the next.
950    ///
951    /// This function currently corresponds to the `(f16::sin(x),
952    /// f16::cos(x))`. Note that this might change in the future.
953    ///
954    /// # Examples
955    ///
956    /// ```
957    /// #![feature(f16)]
958    /// # #[cfg(reliable_f16_math)] {
959    ///
960    /// let x = std::f16::consts::FRAC_PI_4;
961    /// let f = x.sin_cos();
962    ///
963    /// let abs_difference_0 = (f.0 - x.sin()).abs();
964    /// let abs_difference_1 = (f.1 - x.cos()).abs();
965    ///
966    /// assert!(abs_difference_0 <= f16::EPSILON);
967    /// assert!(abs_difference_1 <= f16::EPSILON);
968    /// # }
969    /// ```
970    #[inline]
971    #[doc(alias = "sincos")]
972    #[rustc_allow_incoherent_impl]
973    #[unstable(feature = "f16", issue = "116909")]
974    pub fn sin_cos(self) -> (f16, f16) {
975        (self.sin(), self.cos())
976    }
977
978    /// Returns `e^(self) - 1` in a way that is accurate even if the
979    /// number is close to zero.
980    ///
981    /// # Unspecified precision
982    ///
983    /// The precision of this function is non-deterministic. This means it varies by platform,
984    /// Rust version, and can even differ within the same execution from one invocation to the next.
985    ///
986    /// This function currently corresponds to the `expm1f` from libc on Unix
987    /// and Windows. Note that this might change in the future.
988    ///
989    /// # Examples
990    ///
991    /// ```
992    /// #![feature(f16)]
993    /// # #[cfg(reliable_f16_math)] {
994    ///
995    /// let x = 1e-4_f16;
996    ///
997    /// // for very small x, e^x is approximately 1 + x + x^2 / 2
998    /// let approx = x + x * x / 2.0;
999    /// let abs_difference = (x.exp_m1() - approx).abs();
1000    ///
1001    /// assert!(abs_difference < 1e-4);
1002    /// # }
1003    /// ```
1004    #[inline]
1005    #[rustc_allow_incoherent_impl]
1006    #[unstable(feature = "f16", issue = "116909")]
1007    #[must_use = "method returns a new number and does not mutate the original value"]
1008    pub fn exp_m1(self) -> f16 {
1009        cmath::expm1f(self as f32) as f16
1010    }
1011
1012    /// Returns `ln(1+n)` (natural logarithm) more accurately than if
1013    /// the operations were performed separately.
1014    ///
1015    /// This returns NaN when `n < -1.0`, and negative infinity when `n == -1.0`.
1016    ///
1017    /// # Unspecified precision
1018    ///
1019    /// The precision of this function is non-deterministic. This means it varies by platform,
1020    /// Rust version, and can even differ within the same execution from one invocation to the next.
1021    ///
1022    /// This function currently corresponds to the `log1pf` from libc on Unix
1023    /// and Windows. Note that this might change in the future.
1024    ///
1025    /// # Examples
1026    ///
1027    /// ```
1028    /// #![feature(f16)]
1029    /// # #[cfg(reliable_f16_math)] {
1030    ///
1031    /// let x = 1e-4_f16;
1032    ///
1033    /// // for very small x, ln(1 + x) is approximately x - x^2 / 2
1034    /// let approx = x - x * x / 2.0;
1035    /// let abs_difference = (x.ln_1p() - approx).abs();
1036    ///
1037    /// assert!(abs_difference < 1e-4);
1038    /// # }
1039    /// ```
1040    ///
1041    /// Out-of-range values:
1042    /// ```
1043    /// #![feature(f16)]
1044    /// # #[cfg(reliable_f16_math)] {
1045    ///
1046    /// assert_eq!((-1.0_f16).ln_1p(), f16::NEG_INFINITY);
1047    /// assert!((-2.0_f16).ln_1p().is_nan());
1048    /// # }
1049    /// ```
1050    #[inline]
1051    #[doc(alias = "log1p")]
1052    #[rustc_allow_incoherent_impl]
1053    #[unstable(feature = "f16", issue = "116909")]
1054    #[must_use = "method returns a new number and does not mutate the original value"]
1055    pub fn ln_1p(self) -> f16 {
1056        cmath::log1pf(self as f32) as f16
1057    }
1058
1059    /// Hyperbolic sine function.
1060    ///
1061    /// # Unspecified precision
1062    ///
1063    /// The precision of this function is non-deterministic. This means it varies by platform,
1064    /// Rust version, and can even differ within the same execution from one invocation to the next.
1065    ///
1066    /// This function currently corresponds to the `sinhf` from libc on Unix
1067    /// and Windows. Note that this might change in the future.
1068    ///
1069    /// # Examples
1070    ///
1071    /// ```
1072    /// #![feature(f16)]
1073    /// # #[cfg(reliable_f16_math)] {
1074    ///
1075    /// let e = std::f16::consts::E;
1076    /// let x = 1.0f16;
1077    ///
1078    /// let f = x.sinh();
1079    /// // Solving sinh() at 1 gives `(e^2-1)/(2e)`
1080    /// let g = ((e * e) - 1.0) / (2.0 * e);
1081    /// let abs_difference = (f - g).abs();
1082    ///
1083    /// assert!(abs_difference <= f16::EPSILON);
1084    /// # }
1085    /// ```
1086    #[inline]
1087    #[rustc_allow_incoherent_impl]
1088    #[unstable(feature = "f16", issue = "116909")]
1089    #[must_use = "method returns a new number and does not mutate the original value"]
1090    pub fn sinh(self) -> f16 {
1091        cmath::sinhf(self as f32) as f16
1092    }
1093
1094    /// Hyperbolic cosine function.
1095    ///
1096    /// # Unspecified precision
1097    ///
1098    /// The precision of this function is non-deterministic. This means it varies by platform,
1099    /// Rust version, and can even differ within the same execution from one invocation to the next.
1100    ///
1101    /// This function currently corresponds to the `coshf` from libc on Unix
1102    /// and Windows. Note that this might change in the future.
1103    ///
1104    /// # Examples
1105    ///
1106    /// ```
1107    /// #![feature(f16)]
1108    /// # #[cfg(reliable_f16_math)] {
1109    ///
1110    /// let e = std::f16::consts::E;
1111    /// let x = 1.0f16;
1112    /// let f = x.cosh();
1113    /// // Solving cosh() at 1 gives this result
1114    /// let g = ((e * e) + 1.0) / (2.0 * e);
1115    /// let abs_difference = (f - g).abs();
1116    ///
1117    /// // Same result
1118    /// assert!(abs_difference <= f16::EPSILON);
1119    /// # }
1120    /// ```
1121    #[inline]
1122    #[rustc_allow_incoherent_impl]
1123    #[unstable(feature = "f16", issue = "116909")]
1124    #[must_use = "method returns a new number and does not mutate the original value"]
1125    pub fn cosh(self) -> f16 {
1126        cmath::coshf(self as f32) as f16
1127    }
1128
1129    /// Hyperbolic tangent function.
1130    ///
1131    /// # Unspecified precision
1132    ///
1133    /// The precision of this function is non-deterministic. This means it varies by platform,
1134    /// Rust version, and can even differ within the same execution from one invocation to the next.
1135    ///
1136    /// This function currently corresponds to the `tanhf` from libc on Unix
1137    /// and Windows. Note that this might change in the future.
1138    ///
1139    /// # Examples
1140    ///
1141    /// ```
1142    /// #![feature(f16)]
1143    /// # #[cfg(reliable_f16_math)] {
1144    ///
1145    /// let e = std::f16::consts::E;
1146    /// let x = 1.0f16;
1147    ///
1148    /// let f = x.tanh();
1149    /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))`
1150    /// let g = (1.0 - e.powi(-2)) / (1.0 + e.powi(-2));
1151    /// let abs_difference = (f - g).abs();
1152    ///
1153    /// assert!(abs_difference <= f16::EPSILON);
1154    /// # }
1155    /// ```
1156    #[inline]
1157    #[rustc_allow_incoherent_impl]
1158    #[unstable(feature = "f16", issue = "116909")]
1159    #[must_use = "method returns a new number and does not mutate the original value"]
1160    pub fn tanh(self) -> f16 {
1161        cmath::tanhf(self as f32) as f16
1162    }
1163
1164    /// Inverse hyperbolic sine function.
1165    ///
1166    /// # Unspecified precision
1167    ///
1168    /// The precision of this function is non-deterministic. This means it varies by platform,
1169    /// Rust version, and can even differ within the same execution from one invocation to the next.
1170    ///
1171    /// # Examples
1172    ///
1173    /// ```
1174    /// #![feature(f16)]
1175    /// # #[cfg(reliable_f16_math)] {
1176    ///
1177    /// let x = 1.0f16;
1178    /// let f = x.sinh().asinh();
1179    ///
1180    /// let abs_difference = (f - x).abs();
1181    ///
1182    /// assert!(abs_difference <= f16::EPSILON);
1183    /// # }
1184    /// ```
1185    #[inline]
1186    #[doc(alias = "arcsinh")]
1187    #[rustc_allow_incoherent_impl]
1188    #[unstable(feature = "f16", issue = "116909")]
1189    #[must_use = "method returns a new number and does not mutate the original value"]
1190    pub fn asinh(self) -> f16 {
1191        let ax = self.abs();
1192        let ix = 1.0 / ax;
1193        (ax + (ax / (Self::hypot(1.0, ix) + ix))).ln_1p().copysign(self)
1194    }
1195
1196    /// Inverse hyperbolic cosine function.
1197    ///
1198    /// # Unspecified precision
1199    ///
1200    /// The precision of this function is non-deterministic. This means it varies by platform,
1201    /// Rust version, and can even differ within the same execution from one invocation to the next.
1202    ///
1203    /// # Examples
1204    ///
1205    /// ```
1206    /// #![feature(f16)]
1207    /// # #[cfg(reliable_f16_math)] {
1208    ///
1209    /// let x = 1.0f16;
1210    /// let f = x.cosh().acosh();
1211    ///
1212    /// let abs_difference = (f - x).abs();
1213    ///
1214    /// assert!(abs_difference <= f16::EPSILON);
1215    /// # }
1216    /// ```
1217    #[inline]
1218    #[doc(alias = "arccosh")]
1219    #[rustc_allow_incoherent_impl]
1220    #[unstable(feature = "f16", issue = "116909")]
1221    #[must_use = "method returns a new number and does not mutate the original value"]
1222    pub fn acosh(self) -> f16 {
1223        if self < 1.0 {
1224            Self::NAN
1225        } else {
1226            (self + ((self - 1.0).sqrt() * (self + 1.0).sqrt())).ln()
1227        }
1228    }
1229
1230    /// Inverse hyperbolic tangent function.
1231    ///
1232    /// # Unspecified precision
1233    ///
1234    /// The precision of this function is non-deterministic. This means it varies by platform,
1235    /// Rust version, and can even differ within the same execution from one invocation to the next.
1236    ///
1237    /// # Examples
1238    ///
1239    /// ```
1240    /// #![feature(f16)]
1241    /// # #[cfg(reliable_f16_math)] {
1242    ///
1243    /// let e = std::f16::consts::E;
1244    /// let f = e.tanh().atanh();
1245    ///
1246    /// let abs_difference = (f - e).abs();
1247    ///
1248    /// assert!(abs_difference <= 0.01);
1249    /// # }
1250    /// ```
1251    #[inline]
1252    #[doc(alias = "arctanh")]
1253    #[rustc_allow_incoherent_impl]
1254    #[unstable(feature = "f16", issue = "116909")]
1255    #[must_use = "method returns a new number and does not mutate the original value"]
1256    pub fn atanh(self) -> f16 {
1257        0.5 * ((2.0 * self) / (1.0 - self)).ln_1p()
1258    }
1259
1260    /// Gamma function.
1261    ///
1262    /// # Unspecified precision
1263    ///
1264    /// The precision of this function is non-deterministic. This means it varies by platform,
1265    /// Rust version, and can even differ within the same execution from one invocation to the next.
1266    ///
1267    /// This function currently corresponds to the `tgammaf` from libc on Unix
1268    /// and Windows. Note that this might change in the future.
1269    ///
1270    /// # Examples
1271    ///
1272    /// ```
1273    /// #![feature(f16)]
1274    /// #![feature(float_gamma)]
1275    /// # #[cfg(reliable_f16_math)] {
1276    ///
1277    /// let x = 5.0f16;
1278    ///
1279    /// let abs_difference = (x.gamma() - 24.0).abs();
1280    ///
1281    /// assert!(abs_difference <= f16::EPSILON);
1282    /// # }
1283    /// ```
1284    #[inline]
1285    #[rustc_allow_incoherent_impl]
1286    #[unstable(feature = "f16", issue = "116909")]
1287    // #[unstable(feature = "float_gamma", issue = "99842")]
1288    #[must_use = "method returns a new number and does not mutate the original value"]
1289    pub fn gamma(self) -> f16 {
1290        cmath::tgammaf(self as f32) as f16
1291    }
1292
1293    /// Natural logarithm of the absolute value of the gamma function
1294    ///
1295    /// The integer part of the tuple indicates the sign of the gamma function.
1296    ///
1297    /// # Unspecified precision
1298    ///
1299    /// The precision of this function is non-deterministic. This means it varies by platform,
1300    /// Rust version, and can even differ within the same execution from one invocation to the next.
1301    ///
1302    /// This function currently corresponds to the `lgamma_r` from libc on Unix
1303    /// and Windows. Note that this might change in the future.
1304    ///
1305    /// # Examples
1306    ///
1307    /// ```
1308    /// #![feature(f16)]
1309    /// #![feature(float_gamma)]
1310    /// # #[cfg(reliable_f16_math)] {
1311    ///
1312    /// let x = 2.0f16;
1313    ///
1314    /// let abs_difference = (x.ln_gamma().0 - 0.0).abs();
1315    ///
1316    /// assert!(abs_difference <= f16::EPSILON);
1317    /// # }
1318    /// ```
1319    #[inline]
1320    #[rustc_allow_incoherent_impl]
1321    #[unstable(feature = "f16", issue = "116909")]
1322    // #[unstable(feature = "float_gamma", issue = "99842")]
1323    #[must_use = "method returns a new number and does not mutate the original value"]
1324    pub fn ln_gamma(self) -> (f16, i32) {
1325        let mut signgamp: i32 = 0;
1326        let x = cmath::lgammaf_r(self as f32, &mut signgamp) as f16;
1327        (x, signgamp)
1328    }
1329
1330    /// Error function.
1331    ///
1332    /// # Unspecified precision
1333    ///
1334    /// The precision of this function is non-deterministic. This means it varies by platform,
1335    /// Rust version, and can even differ within the same execution from one invocation to the next.
1336    ///
1337    /// This function currently corresponds to the `erff` from libc on Unix
1338    /// and Windows. Note that this might change in the future.
1339    ///
1340    /// # Examples
1341    ///
1342    /// ```
1343    /// #![feature(f16)]
1344    /// #![feature(float_erf)]
1345    /// # #[cfg(reliable_f16_math)] {
1346    /// /// The error function relates what percent of a normal distribution lies
1347    /// /// within `x` standard deviations (scaled by `1/sqrt(2)`).
1348    /// fn within_standard_deviations(x: f16) -> f16 {
1349    ///     (x * std::f16::consts::FRAC_1_SQRT_2).erf() * 100.0
1350    /// }
1351    ///
1352    /// // 68% of a normal distribution is within one standard deviation
1353    /// assert!((within_standard_deviations(1.0) - 68.269).abs() < 0.1);
1354    /// // 95% of a normal distribution is within two standard deviations
1355    /// assert!((within_standard_deviations(2.0) - 95.450).abs() < 0.1);
1356    /// // 99.7% of a normal distribution is within three standard deviations
1357    /// assert!((within_standard_deviations(3.0) - 99.730).abs() < 0.1);
1358    /// # }
1359    /// ```
1360    #[rustc_allow_incoherent_impl]
1361    #[must_use = "method returns a new number and does not mutate the original value"]
1362    #[unstable(feature = "f16", issue = "116909")]
1363    // #[unstable(feature = "float_erf", issue = "136321")]
1364    #[inline]
1365    pub fn erf(self) -> f16 {
1366        cmath::erff(self as f32) as f16
1367    }
1368
1369    /// Complementary error function.
1370    ///
1371    /// # Unspecified precision
1372    ///
1373    /// The precision of this function is non-deterministic. This means it varies by platform,
1374    /// Rust version, and can even differ within the same execution from one invocation to the next.
1375    ///
1376    /// This function currently corresponds to the `erfcf` from libc on Unix
1377    /// and Windows. Note that this might change in the future.
1378    ///
1379    /// # Examples
1380    ///
1381    /// ```
1382    /// #![feature(f16)]
1383    /// #![feature(float_erf)]
1384    /// # #[cfg(reliable_f16_math)] {
1385    /// let x: f16 = 0.123;
1386    ///
1387    /// let one = x.erf() + x.erfc();
1388    /// let abs_difference = (one - 1.0).abs();
1389    ///
1390    /// assert!(abs_difference <= f16::EPSILON);
1391    /// # }
1392    /// ```
1393    #[rustc_allow_incoherent_impl]
1394    #[must_use = "method returns a new number and does not mutate the original value"]
1395    #[unstable(feature = "f16", issue = "116909")]
1396    // #[unstable(feature = "float_erf", issue = "136321")]
1397    #[inline]
1398    pub fn erfc(self) -> f16 {
1399        cmath::erfcf(self as f32) as f16
1400    }
1401}