core/str/
mod.rs

1//! String manipulation.
2//!
3//! For more details, see the [`std::str`] module.
4//!
5//! [`std::str`]: ../../std/str/index.html
6
7#![stable(feature = "rust1", since = "1.0.0")]
8
9mod converts;
10mod count;
11mod error;
12mod iter;
13mod traits;
14mod validations;
15
16use self::pattern::{DoubleEndedSearcher, Pattern, ReverseSearcher, Searcher};
17use crate::char::{self, EscapeDebugExtArgs};
18use crate::ops::Range;
19use crate::slice::{self, SliceIndex};
20use crate::{ascii, mem};
21
22pub mod pattern;
23
24mod lossy;
25#[unstable(feature = "str_from_raw_parts", issue = "119206")]
26pub use converts::{from_raw_parts, from_raw_parts_mut};
27#[stable(feature = "rust1", since = "1.0.0")]
28pub use converts::{from_utf8, from_utf8_unchecked};
29#[stable(feature = "str_mut_extras", since = "1.20.0")]
30pub use converts::{from_utf8_mut, from_utf8_unchecked_mut};
31#[stable(feature = "rust1", since = "1.0.0")]
32pub use error::{ParseBoolError, Utf8Error};
33#[stable(feature = "encode_utf16", since = "1.8.0")]
34pub use iter::EncodeUtf16;
35#[stable(feature = "rust1", since = "1.0.0")]
36#[allow(deprecated)]
37pub use iter::LinesAny;
38#[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
39pub use iter::SplitAsciiWhitespace;
40#[stable(feature = "split_inclusive", since = "1.51.0")]
41pub use iter::SplitInclusive;
42#[stable(feature = "rust1", since = "1.0.0")]
43pub use iter::{Bytes, CharIndices, Chars, Lines, SplitWhitespace};
44#[stable(feature = "str_escape", since = "1.34.0")]
45pub use iter::{EscapeDebug, EscapeDefault, EscapeUnicode};
46#[stable(feature = "str_match_indices", since = "1.5.0")]
47pub use iter::{MatchIndices, RMatchIndices};
48use iter::{MatchIndicesInternal, MatchesInternal, SplitInternal, SplitNInternal};
49#[stable(feature = "str_matches", since = "1.2.0")]
50pub use iter::{Matches, RMatches};
51#[stable(feature = "rust1", since = "1.0.0")]
52pub use iter::{RSplit, RSplitTerminator, Split, SplitTerminator};
53#[stable(feature = "rust1", since = "1.0.0")]
54pub use iter::{RSplitN, SplitN};
55#[stable(feature = "utf8_chunks", since = "1.79.0")]
56pub use lossy::{Utf8Chunk, Utf8Chunks};
57#[stable(feature = "rust1", since = "1.0.0")]
58pub use traits::FromStr;
59#[unstable(feature = "str_internals", issue = "none")]
60pub use validations::{next_code_point, utf8_char_width};
61
62#[inline(never)]
63#[cold]
64#[track_caller]
65#[rustc_allow_const_fn_unstable(const_eval_select)]
66#[cfg(not(feature = "panic_immediate_abort"))]
67const fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! {
68    crate::intrinsics::const_eval_select((s, begin, end), slice_error_fail_ct, slice_error_fail_rt)
69}
70
71#[cfg(feature = "panic_immediate_abort")]
72const fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! {
73    slice_error_fail_ct(s, begin, end)
74}
75
76#[track_caller]
77const fn slice_error_fail_ct(_: &str, _: usize, _: usize) -> ! {
78    panic!("failed to slice string");
79}
80
81#[track_caller]
82fn slice_error_fail_rt(s: &str, begin: usize, end: usize) -> ! {
83    const MAX_DISPLAY_LENGTH: usize = 256;
84    let trunc_len = s.floor_char_boundary(MAX_DISPLAY_LENGTH);
85    let s_trunc = &s[..trunc_len];
86    let ellipsis = if trunc_len < s.len() { "[...]" } else { "" };
87
88    // 1. out of bounds
89    if begin > s.len() || end > s.len() {
90        let oob_index = if begin > s.len() { begin } else { end };
91        panic!("byte index {oob_index} is out of bounds of `{s_trunc}`{ellipsis}");
92    }
93
94    // 2. begin <= end
95    assert!(
96        begin <= end,
97        "begin <= end ({} <= {}) when slicing `{}`{}",
98        begin,
99        end,
100        s_trunc,
101        ellipsis
102    );
103
104    // 3. character boundary
105    let index = if !s.is_char_boundary(begin) { begin } else { end };
106    // find the character
107    let char_start = s.floor_char_boundary(index);
108    // `char_start` must be less than len and a char boundary
109    let ch = s[char_start..].chars().next().unwrap();
110    let char_range = char_start..char_start + ch.len_utf8();
111    panic!(
112        "byte index {} is not a char boundary; it is inside {:?} (bytes {:?}) of `{}`{}",
113        index, ch, char_range, s_trunc, ellipsis
114    );
115}
116
117impl str {
118    /// Returns the length of `self`.
119    ///
120    /// This length is in bytes, not [`char`]s or graphemes. In other words,
121    /// it might not be what a human considers the length of the string.
122    ///
123    /// [`char`]: prim@char
124    ///
125    /// # Examples
126    ///
127    /// ```
128    /// let len = "foo".len();
129    /// assert_eq!(3, len);
130    ///
131    /// assert_eq!("ƒoo".len(), 4); // fancy f!
132    /// assert_eq!("ƒoo".chars().count(), 3);
133    /// ```
134    #[stable(feature = "rust1", since = "1.0.0")]
135    #[rustc_const_stable(feature = "const_str_len", since = "1.39.0")]
136    #[rustc_diagnostic_item = "str_len"]
137    #[must_use]
138    #[inline]
139    pub const fn len(&self) -> usize {
140        self.as_bytes().len()
141    }
142
143    /// Returns `true` if `self` has a length of zero bytes.
144    ///
145    /// # Examples
146    ///
147    /// ```
148    /// let s = "";
149    /// assert!(s.is_empty());
150    ///
151    /// let s = "not empty";
152    /// assert!(!s.is_empty());
153    /// ```
154    #[stable(feature = "rust1", since = "1.0.0")]
155    #[rustc_const_stable(feature = "const_str_is_empty", since = "1.39.0")]
156    #[must_use]
157    #[inline]
158    pub const fn is_empty(&self) -> bool {
159        self.len() == 0
160    }
161
162    /// Converts a slice of bytes to a string slice.
163    ///
164    /// A string slice ([`&str`]) is made of bytes ([`u8`]), and a byte slice
165    /// ([`&[u8]`][byteslice]) is made of bytes, so this function converts between
166    /// the two. Not all byte slices are valid string slices, however: [`&str`] requires
167    /// that it is valid UTF-8. `from_utf8()` checks to ensure that the bytes are valid
168    /// UTF-8, and then does the conversion.
169    ///
170    /// [`&str`]: str
171    /// [byteslice]: prim@slice
172    ///
173    /// If you are sure that the byte slice is valid UTF-8, and you don't want to
174    /// incur the overhead of the validity check, there is an unsafe version of
175    /// this function, [`from_utf8_unchecked`], which has the same
176    /// behavior but skips the check.
177    ///
178    /// If you need a `String` instead of a `&str`, consider
179    /// [`String::from_utf8`][string].
180    ///
181    /// [string]: ../std/string/struct.String.html#method.from_utf8
182    ///
183    /// Because you can stack-allocate a `[u8; N]`, and you can take a
184    /// [`&[u8]`][byteslice] of it, this function is one way to have a
185    /// stack-allocated string. There is an example of this in the
186    /// examples section below.
187    ///
188    /// [byteslice]: slice
189    ///
190    /// # Errors
191    ///
192    /// Returns `Err` if the slice is not UTF-8 with a description as to why the
193    /// provided slice is not UTF-8.
194    ///
195    /// # Examples
196    ///
197    /// Basic usage:
198    ///
199    /// ```
200    /// // some bytes, in a vector
201    /// let sparkle_heart = vec![240, 159, 146, 150];
202    ///
203    /// // We can use the ? (try) operator to check if the bytes are valid
204    /// let sparkle_heart = str::from_utf8(&sparkle_heart)?;
205    ///
206    /// assert_eq!("💖", sparkle_heart);
207    /// # Ok::<_, std::str::Utf8Error>(())
208    /// ```
209    ///
210    /// Incorrect bytes:
211    ///
212    /// ```
213    /// // some invalid bytes, in a vector
214    /// let sparkle_heart = vec![0, 159, 146, 150];
215    ///
216    /// assert!(str::from_utf8(&sparkle_heart).is_err());
217    /// ```
218    ///
219    /// See the docs for [`Utf8Error`] for more details on the kinds of
220    /// errors that can be returned.
221    ///
222    /// A "stack allocated string":
223    ///
224    /// ```
225    /// // some bytes, in a stack-allocated array
226    /// let sparkle_heart = [240, 159, 146, 150];
227    ///
228    /// // We know these bytes are valid, so just use `unwrap()`.
229    /// let sparkle_heart: &str = str::from_utf8(&sparkle_heart).unwrap();
230    ///
231    /// assert_eq!("💖", sparkle_heart);
232    /// ```
233    #[stable(feature = "inherent_str_constructors", since = "CURRENT_RUSTC_VERSION")]
234    #[rustc_const_stable(feature = "inherent_str_constructors", since = "CURRENT_RUSTC_VERSION")]
235    #[rustc_diagnostic_item = "str_inherent_from_utf8"]
236    pub const fn from_utf8(v: &[u8]) -> Result<&str, Utf8Error> {
237        converts::from_utf8(v)
238    }
239
240    /// Converts a mutable slice of bytes to a mutable string slice.
241    ///
242    /// # Examples
243    ///
244    /// Basic usage:
245    ///
246    /// ```
247    /// // "Hello, Rust!" as a mutable vector
248    /// let mut hellorust = vec![72, 101, 108, 108, 111, 44, 32, 82, 117, 115, 116, 33];
249    ///
250    /// // As we know these bytes are valid, we can use `unwrap()`
251    /// let outstr = str::from_utf8_mut(&mut hellorust).unwrap();
252    ///
253    /// assert_eq!("Hello, Rust!", outstr);
254    /// ```
255    ///
256    /// Incorrect bytes:
257    ///
258    /// ```
259    /// // Some invalid bytes in a mutable vector
260    /// let mut invalid = vec![128, 223];
261    ///
262    /// assert!(str::from_utf8_mut(&mut invalid).is_err());
263    /// ```
264    /// See the docs for [`Utf8Error`] for more details on the kinds of
265    /// errors that can be returned.
266    #[stable(feature = "inherent_str_constructors", since = "CURRENT_RUSTC_VERSION")]
267    #[rustc_const_stable(feature = "const_str_from_utf8", since = "CURRENT_RUSTC_VERSION")]
268    #[rustc_diagnostic_item = "str_inherent_from_utf8_mut"]
269    pub const fn from_utf8_mut(v: &mut [u8]) -> Result<&mut str, Utf8Error> {
270        converts::from_utf8_mut(v)
271    }
272
273    /// Converts a slice of bytes to a string slice without checking
274    /// that the string contains valid UTF-8.
275    ///
276    /// See the safe version, [`from_utf8`], for more information.
277    ///
278    /// # Safety
279    ///
280    /// The bytes passed in must be valid UTF-8.
281    ///
282    /// # Examples
283    ///
284    /// Basic usage:
285    ///
286    /// ```
287    /// // some bytes, in a vector
288    /// let sparkle_heart = vec![240, 159, 146, 150];
289    ///
290    /// let sparkle_heart = unsafe {
291    ///     str::from_utf8_unchecked(&sparkle_heart)
292    /// };
293    ///
294    /// assert_eq!("💖", sparkle_heart);
295    /// ```
296    #[inline]
297    #[must_use]
298    #[stable(feature = "inherent_str_constructors", since = "CURRENT_RUSTC_VERSION")]
299    #[rustc_const_stable(feature = "inherent_str_constructors", since = "CURRENT_RUSTC_VERSION")]
300    #[rustc_diagnostic_item = "str_inherent_from_utf8_unchecked"]
301    pub const unsafe fn from_utf8_unchecked(v: &[u8]) -> &str {
302        // SAFETY: converts::from_utf8_unchecked has the same safety requirements as this function.
303        unsafe { converts::from_utf8_unchecked(v) }
304    }
305
306    /// Converts a slice of bytes to a string slice without checking
307    /// that the string contains valid UTF-8; mutable version.
308    ///
309    /// See the immutable version, [`from_utf8_unchecked()`] for more information.
310    ///
311    /// # Examples
312    ///
313    /// Basic usage:
314    ///
315    /// ```
316    /// let mut heart = vec![240, 159, 146, 150];
317    /// let heart = unsafe { str::from_utf8_unchecked_mut(&mut heart) };
318    ///
319    /// assert_eq!("💖", heart);
320    /// ```
321    #[inline]
322    #[must_use]
323    #[stable(feature = "inherent_str_constructors", since = "CURRENT_RUSTC_VERSION")]
324    #[rustc_const_stable(feature = "inherent_str_constructors", since = "CURRENT_RUSTC_VERSION")]
325    #[rustc_diagnostic_item = "str_inherent_from_utf8_unchecked_mut"]
326    pub const unsafe fn from_utf8_unchecked_mut(v: &mut [u8]) -> &mut str {
327        // SAFETY: converts::from_utf8_unchecked_mut has the same safety requirements as this function.
328        unsafe { converts::from_utf8_unchecked_mut(v) }
329    }
330
331    /// Checks that `index`-th byte is the first byte in a UTF-8 code point
332    /// sequence or the end of the string.
333    ///
334    /// The start and end of the string (when `index == self.len()`) are
335    /// considered to be boundaries.
336    ///
337    /// Returns `false` if `index` is greater than `self.len()`.
338    ///
339    /// # Examples
340    ///
341    /// ```
342    /// let s = "Löwe 老虎 Léopard";
343    /// assert!(s.is_char_boundary(0));
344    /// // start of `老`
345    /// assert!(s.is_char_boundary(6));
346    /// assert!(s.is_char_boundary(s.len()));
347    ///
348    /// // second byte of `ö`
349    /// assert!(!s.is_char_boundary(2));
350    ///
351    /// // third byte of `老`
352    /// assert!(!s.is_char_boundary(8));
353    /// ```
354    #[must_use]
355    #[stable(feature = "is_char_boundary", since = "1.9.0")]
356    #[rustc_const_stable(feature = "const_is_char_boundary", since = "1.86.0")]
357    #[inline]
358    pub const fn is_char_boundary(&self, index: usize) -> bool {
359        // 0 is always ok.
360        // Test for 0 explicitly so that it can optimize out the check
361        // easily and skip reading string data for that case.
362        // Note that optimizing `self.get(..index)` relies on this.
363        if index == 0 {
364            return true;
365        }
366
367        if index >= self.len() {
368            // For `true` we have two options:
369            //
370            // - index == self.len()
371            //   Empty strings are valid, so return true
372            // - index > self.len()
373            //   In this case return false
374            //
375            // The check is placed exactly here, because it improves generated
376            // code on higher opt-levels. See PR #84751 for more details.
377            index == self.len()
378        } else {
379            self.as_bytes()[index].is_utf8_char_boundary()
380        }
381    }
382
383    /// Finds the closest `x` not exceeding `index` where [`is_char_boundary(x)`] is `true`.
384    ///
385    /// This method can help you truncate a string so that it's still valid UTF-8, but doesn't
386    /// exceed a given number of bytes. Note that this is done purely at the character level
387    /// and can still visually split graphemes, even though the underlying characters aren't
388    /// split. For example, the emoji 🧑‍🔬 (scientist) could be split so that the string only
389    /// includes 🧑 (person) instead.
390    ///
391    /// [`is_char_boundary(x)`]: Self::is_char_boundary
392    ///
393    /// # Examples
394    ///
395    /// ```
396    /// #![feature(round_char_boundary)]
397    /// let s = "❤️🧡💛💚💙💜";
398    /// assert_eq!(s.len(), 26);
399    /// assert!(!s.is_char_boundary(13));
400    ///
401    /// let closest = s.floor_char_boundary(13);
402    /// assert_eq!(closest, 10);
403    /// assert_eq!(&s[..closest], "❤️🧡");
404    /// ```
405    #[unstable(feature = "round_char_boundary", issue = "93743")]
406    #[inline]
407    pub fn floor_char_boundary(&self, index: usize) -> usize {
408        if index >= self.len() {
409            self.len()
410        } else {
411            let lower_bound = index.saturating_sub(3);
412            let new_index = self.as_bytes()[lower_bound..=index]
413                .iter()
414                .rposition(|b| b.is_utf8_char_boundary());
415
416            // SAFETY: we know that the character boundary will be within four bytes
417            unsafe { lower_bound + new_index.unwrap_unchecked() }
418        }
419    }
420
421    /// Finds the closest `x` not below `index` where [`is_char_boundary(x)`] is `true`.
422    ///
423    /// If `index` is greater than the length of the string, this returns the length of the string.
424    ///
425    /// This method is the natural complement to [`floor_char_boundary`]. See that method
426    /// for more details.
427    ///
428    /// [`floor_char_boundary`]: str::floor_char_boundary
429    /// [`is_char_boundary(x)`]: Self::is_char_boundary
430    ///
431    /// # Examples
432    ///
433    /// ```
434    /// #![feature(round_char_boundary)]
435    /// let s = "❤️🧡💛💚💙💜";
436    /// assert_eq!(s.len(), 26);
437    /// assert!(!s.is_char_boundary(13));
438    ///
439    /// let closest = s.ceil_char_boundary(13);
440    /// assert_eq!(closest, 14);
441    /// assert_eq!(&s[..closest], "❤️🧡💛");
442    /// ```
443    #[unstable(feature = "round_char_boundary", issue = "93743")]
444    #[inline]
445    pub fn ceil_char_boundary(&self, index: usize) -> usize {
446        if index > self.len() {
447            self.len()
448        } else {
449            let upper_bound = Ord::min(index + 4, self.len());
450            self.as_bytes()[index..upper_bound]
451                .iter()
452                .position(|b| b.is_utf8_char_boundary())
453                .map_or(upper_bound, |pos| pos + index)
454        }
455    }
456
457    /// Converts a string slice to a byte slice. To convert the byte slice back
458    /// into a string slice, use the [`from_utf8`] function.
459    ///
460    /// # Examples
461    ///
462    /// ```
463    /// let bytes = "bors".as_bytes();
464    /// assert_eq!(b"bors", bytes);
465    /// ```
466    #[stable(feature = "rust1", since = "1.0.0")]
467    #[rustc_const_stable(feature = "str_as_bytes", since = "1.39.0")]
468    #[must_use]
469    #[inline(always)]
470    #[allow(unused_attributes)]
471    pub const fn as_bytes(&self) -> &[u8] {
472        // SAFETY: const sound because we transmute two types with the same layout
473        unsafe { mem::transmute(self) }
474    }
475
476    /// Converts a mutable string slice to a mutable byte slice.
477    ///
478    /// # Safety
479    ///
480    /// The caller must ensure that the content of the slice is valid UTF-8
481    /// before the borrow ends and the underlying `str` is used.
482    ///
483    /// Use of a `str` whose contents are not valid UTF-8 is undefined behavior.
484    ///
485    /// # Examples
486    ///
487    /// Basic usage:
488    ///
489    /// ```
490    /// let mut s = String::from("Hello");
491    /// let bytes = unsafe { s.as_bytes_mut() };
492    ///
493    /// assert_eq!(b"Hello", bytes);
494    /// ```
495    ///
496    /// Mutability:
497    ///
498    /// ```
499    /// let mut s = String::from("🗻∈🌏");
500    ///
501    /// unsafe {
502    ///     let bytes = s.as_bytes_mut();
503    ///
504    ///     bytes[0] = 0xF0;
505    ///     bytes[1] = 0x9F;
506    ///     bytes[2] = 0x8D;
507    ///     bytes[3] = 0x94;
508    /// }
509    ///
510    /// assert_eq!("🍔∈🌏", s);
511    /// ```
512    #[stable(feature = "str_mut_extras", since = "1.20.0")]
513    #[rustc_const_stable(feature = "const_str_as_mut", since = "1.83.0")]
514    #[must_use]
515    #[inline(always)]
516    pub const unsafe fn as_bytes_mut(&mut self) -> &mut [u8] {
517        // SAFETY: the cast from `&str` to `&[u8]` is safe since `str`
518        // has the same layout as `&[u8]` (only std can make this guarantee).
519        // The pointer dereference is safe since it comes from a mutable reference which
520        // is guaranteed to be valid for writes.
521        unsafe { &mut *(self as *mut str as *mut [u8]) }
522    }
523
524    /// Converts a string slice to a raw pointer.
525    ///
526    /// As string slices are a slice of bytes, the raw pointer points to a
527    /// [`u8`]. This pointer will be pointing to the first byte of the string
528    /// slice.
529    ///
530    /// The caller must ensure that the returned pointer is never written to.
531    /// If you need to mutate the contents of the string slice, use [`as_mut_ptr`].
532    ///
533    /// [`as_mut_ptr`]: str::as_mut_ptr
534    ///
535    /// # Examples
536    ///
537    /// ```
538    /// let s = "Hello";
539    /// let ptr = s.as_ptr();
540    /// ```
541    #[stable(feature = "rust1", since = "1.0.0")]
542    #[rustc_const_stable(feature = "rustc_str_as_ptr", since = "1.32.0")]
543    #[rustc_never_returns_null_ptr]
544    #[rustc_as_ptr]
545    #[must_use]
546    #[inline(always)]
547    pub const fn as_ptr(&self) -> *const u8 {
548        self as *const str as *const u8
549    }
550
551    /// Converts a mutable string slice to a raw pointer.
552    ///
553    /// As string slices are a slice of bytes, the raw pointer points to a
554    /// [`u8`]. This pointer will be pointing to the first byte of the string
555    /// slice.
556    ///
557    /// It is your responsibility to make sure that the string slice only gets
558    /// modified in a way that it remains valid UTF-8.
559    #[stable(feature = "str_as_mut_ptr", since = "1.36.0")]
560    #[rustc_const_stable(feature = "const_str_as_mut", since = "1.83.0")]
561    #[rustc_never_returns_null_ptr]
562    #[rustc_as_ptr]
563    #[must_use]
564    #[inline(always)]
565    pub const fn as_mut_ptr(&mut self) -> *mut u8 {
566        self as *mut str as *mut u8
567    }
568
569    /// Returns a subslice of `str`.
570    ///
571    /// This is the non-panicking alternative to indexing the `str`. Returns
572    /// [`None`] whenever equivalent indexing operation would panic.
573    ///
574    /// # Examples
575    ///
576    /// ```
577    /// let v = String::from("🗻∈🌏");
578    ///
579    /// assert_eq!(Some("🗻"), v.get(0..4));
580    ///
581    /// // indices not on UTF-8 sequence boundaries
582    /// assert!(v.get(1..).is_none());
583    /// assert!(v.get(..8).is_none());
584    ///
585    /// // out of bounds
586    /// assert!(v.get(..42).is_none());
587    /// ```
588    #[stable(feature = "str_checked_slicing", since = "1.20.0")]
589    #[inline]
590    pub fn get<I: SliceIndex<str>>(&self, i: I) -> Option<&I::Output> {
591        i.get(self)
592    }
593
594    /// Returns a mutable subslice of `str`.
595    ///
596    /// This is the non-panicking alternative to indexing the `str`. Returns
597    /// [`None`] whenever equivalent indexing operation would panic.
598    ///
599    /// # Examples
600    ///
601    /// ```
602    /// let mut v = String::from("hello");
603    /// // correct length
604    /// assert!(v.get_mut(0..5).is_some());
605    /// // out of bounds
606    /// assert!(v.get_mut(..42).is_none());
607    /// assert_eq!(Some("he"), v.get_mut(0..2).map(|v| &*v));
608    ///
609    /// assert_eq!("hello", v);
610    /// {
611    ///     let s = v.get_mut(0..2);
612    ///     let s = s.map(|s| {
613    ///         s.make_ascii_uppercase();
614    ///         &*s
615    ///     });
616    ///     assert_eq!(Some("HE"), s);
617    /// }
618    /// assert_eq!("HEllo", v);
619    /// ```
620    #[stable(feature = "str_checked_slicing", since = "1.20.0")]
621    #[inline]
622    pub fn get_mut<I: SliceIndex<str>>(&mut self, i: I) -> Option<&mut I::Output> {
623        i.get_mut(self)
624    }
625
626    /// Returns an unchecked subslice of `str`.
627    ///
628    /// This is the unchecked alternative to indexing the `str`.
629    ///
630    /// # Safety
631    ///
632    /// Callers of this function are responsible that these preconditions are
633    /// satisfied:
634    ///
635    /// * The starting index must not exceed the ending index;
636    /// * Indexes must be within bounds of the original slice;
637    /// * Indexes must lie on UTF-8 sequence boundaries.
638    ///
639    /// Failing that, the returned string slice may reference invalid memory or
640    /// violate the invariants communicated by the `str` type.
641    ///
642    /// # Examples
643    ///
644    /// ```
645    /// let v = "🗻∈🌏";
646    /// unsafe {
647    ///     assert_eq!("🗻", v.get_unchecked(0..4));
648    ///     assert_eq!("∈", v.get_unchecked(4..7));
649    ///     assert_eq!("🌏", v.get_unchecked(7..11));
650    /// }
651    /// ```
652    #[stable(feature = "str_checked_slicing", since = "1.20.0")]
653    #[inline]
654    pub unsafe fn get_unchecked<I: SliceIndex<str>>(&self, i: I) -> &I::Output {
655        // SAFETY: the caller must uphold the safety contract for `get_unchecked`;
656        // the slice is dereferenceable because `self` is a safe reference.
657        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
658        unsafe { &*i.get_unchecked(self) }
659    }
660
661    /// Returns a mutable, unchecked subslice of `str`.
662    ///
663    /// This is the unchecked alternative to indexing the `str`.
664    ///
665    /// # Safety
666    ///
667    /// Callers of this function are responsible that these preconditions are
668    /// satisfied:
669    ///
670    /// * The starting index must not exceed the ending index;
671    /// * Indexes must be within bounds of the original slice;
672    /// * Indexes must lie on UTF-8 sequence boundaries.
673    ///
674    /// Failing that, the returned string slice may reference invalid memory or
675    /// violate the invariants communicated by the `str` type.
676    ///
677    /// # Examples
678    ///
679    /// ```
680    /// let mut v = String::from("🗻∈🌏");
681    /// unsafe {
682    ///     assert_eq!("🗻", v.get_unchecked_mut(0..4));
683    ///     assert_eq!("∈", v.get_unchecked_mut(4..7));
684    ///     assert_eq!("🌏", v.get_unchecked_mut(7..11));
685    /// }
686    /// ```
687    #[stable(feature = "str_checked_slicing", since = "1.20.0")]
688    #[inline]
689    pub unsafe fn get_unchecked_mut<I: SliceIndex<str>>(&mut self, i: I) -> &mut I::Output {
690        // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`;
691        // the slice is dereferenceable because `self` is a safe reference.
692        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
693        unsafe { &mut *i.get_unchecked_mut(self) }
694    }
695
696    /// Creates a string slice from another string slice, bypassing safety
697    /// checks.
698    ///
699    /// This is generally not recommended, use with caution! For a safe
700    /// alternative see [`str`] and [`Index`].
701    ///
702    /// [`Index`]: crate::ops::Index
703    ///
704    /// This new slice goes from `begin` to `end`, including `begin` but
705    /// excluding `end`.
706    ///
707    /// To get a mutable string slice instead, see the
708    /// [`slice_mut_unchecked`] method.
709    ///
710    /// [`slice_mut_unchecked`]: str::slice_mut_unchecked
711    ///
712    /// # Safety
713    ///
714    /// Callers of this function are responsible that three preconditions are
715    /// satisfied:
716    ///
717    /// * `begin` must not exceed `end`.
718    /// * `begin` and `end` must be byte positions within the string slice.
719    /// * `begin` and `end` must lie on UTF-8 sequence boundaries.
720    ///
721    /// # Examples
722    ///
723    /// ```
724    /// let s = "Löwe 老虎 Léopard";
725    ///
726    /// unsafe {
727    ///     assert_eq!("Löwe 老虎 Léopard", s.slice_unchecked(0, 21));
728    /// }
729    ///
730    /// let s = "Hello, world!";
731    ///
732    /// unsafe {
733    ///     assert_eq!("world", s.slice_unchecked(7, 12));
734    /// }
735    /// ```
736    #[stable(feature = "rust1", since = "1.0.0")]
737    #[deprecated(since = "1.29.0", note = "use `get_unchecked(begin..end)` instead")]
738    #[must_use]
739    #[inline]
740    pub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str {
741        // SAFETY: the caller must uphold the safety contract for `get_unchecked`;
742        // the slice is dereferenceable because `self` is a safe reference.
743        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
744        unsafe { &*(begin..end).get_unchecked(self) }
745    }
746
747    /// Creates a string slice from another string slice, bypassing safety
748    /// checks.
749    ///
750    /// This is generally not recommended, use with caution! For a safe
751    /// alternative see [`str`] and [`IndexMut`].
752    ///
753    /// [`IndexMut`]: crate::ops::IndexMut
754    ///
755    /// This new slice goes from `begin` to `end`, including `begin` but
756    /// excluding `end`.
757    ///
758    /// To get an immutable string slice instead, see the
759    /// [`slice_unchecked`] method.
760    ///
761    /// [`slice_unchecked`]: str::slice_unchecked
762    ///
763    /// # Safety
764    ///
765    /// Callers of this function are responsible that three preconditions are
766    /// satisfied:
767    ///
768    /// * `begin` must not exceed `end`.
769    /// * `begin` and `end` must be byte positions within the string slice.
770    /// * `begin` and `end` must lie on UTF-8 sequence boundaries.
771    #[stable(feature = "str_slice_mut", since = "1.5.0")]
772    #[deprecated(since = "1.29.0", note = "use `get_unchecked_mut(begin..end)` instead")]
773    #[inline]
774    pub unsafe fn slice_mut_unchecked(&mut self, begin: usize, end: usize) -> &mut str {
775        // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`;
776        // the slice is dereferenceable because `self` is a safe reference.
777        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
778        unsafe { &mut *(begin..end).get_unchecked_mut(self) }
779    }
780
781    /// Divides one string slice into two at an index.
782    ///
783    /// The argument, `mid`, should be a byte offset from the start of the
784    /// string. It must also be on the boundary of a UTF-8 code point.
785    ///
786    /// The two slices returned go from the start of the string slice to `mid`,
787    /// and from `mid` to the end of the string slice.
788    ///
789    /// To get mutable string slices instead, see the [`split_at_mut`]
790    /// method.
791    ///
792    /// [`split_at_mut`]: str::split_at_mut
793    ///
794    /// # Panics
795    ///
796    /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is past
797    /// the end of the last code point of the string slice.  For a non-panicking
798    /// alternative see [`split_at_checked`](str::split_at_checked).
799    ///
800    /// # Examples
801    ///
802    /// ```
803    /// let s = "Per Martin-Löf";
804    ///
805    /// let (first, last) = s.split_at(3);
806    ///
807    /// assert_eq!("Per", first);
808    /// assert_eq!(" Martin-Löf", last);
809    /// ```
810    #[inline]
811    #[must_use]
812    #[stable(feature = "str_split_at", since = "1.4.0")]
813    #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
814    pub const fn split_at(&self, mid: usize) -> (&str, &str) {
815        match self.split_at_checked(mid) {
816            None => slice_error_fail(self, 0, mid),
817            Some(pair) => pair,
818        }
819    }
820
821    /// Divides one mutable string slice into two at an index.
822    ///
823    /// The argument, `mid`, should be a byte offset from the start of the
824    /// string. It must also be on the boundary of a UTF-8 code point.
825    ///
826    /// The two slices returned go from the start of the string slice to `mid`,
827    /// and from `mid` to the end of the string slice.
828    ///
829    /// To get immutable string slices instead, see the [`split_at`] method.
830    ///
831    /// [`split_at`]: str::split_at
832    ///
833    /// # Panics
834    ///
835    /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is past
836    /// the end of the last code point of the string slice.  For a non-panicking
837    /// alternative see [`split_at_mut_checked`](str::split_at_mut_checked).
838    ///
839    /// # Examples
840    ///
841    /// ```
842    /// let mut s = "Per Martin-Löf".to_string();
843    /// {
844    ///     let (first, last) = s.split_at_mut(3);
845    ///     first.make_ascii_uppercase();
846    ///     assert_eq!("PER", first);
847    ///     assert_eq!(" Martin-Löf", last);
848    /// }
849    /// assert_eq!("PER Martin-Löf", s);
850    /// ```
851    #[inline]
852    #[must_use]
853    #[stable(feature = "str_split_at", since = "1.4.0")]
854    #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
855    pub const fn split_at_mut(&mut self, mid: usize) -> (&mut str, &mut str) {
856        // is_char_boundary checks that the index is in [0, .len()]
857        if self.is_char_boundary(mid) {
858            // SAFETY: just checked that `mid` is on a char boundary.
859            unsafe { self.split_at_mut_unchecked(mid) }
860        } else {
861            slice_error_fail(self, 0, mid)
862        }
863    }
864
865    /// Divides one string slice into two at an index.
866    ///
867    /// The argument, `mid`, should be a valid byte offset from the start of the
868    /// string. It must also be on the boundary of a UTF-8 code point. The
869    /// method returns `None` if that’s not the case.
870    ///
871    /// The two slices returned go from the start of the string slice to `mid`,
872    /// and from `mid` to the end of the string slice.
873    ///
874    /// To get mutable string slices instead, see the [`split_at_mut_checked`]
875    /// method.
876    ///
877    /// [`split_at_mut_checked`]: str::split_at_mut_checked
878    ///
879    /// # Examples
880    ///
881    /// ```
882    /// let s = "Per Martin-Löf";
883    ///
884    /// let (first, last) = s.split_at_checked(3).unwrap();
885    /// assert_eq!("Per", first);
886    /// assert_eq!(" Martin-Löf", last);
887    ///
888    /// assert_eq!(None, s.split_at_checked(13));  // Inside “ö”
889    /// assert_eq!(None, s.split_at_checked(16));  // Beyond the string length
890    /// ```
891    #[inline]
892    #[must_use]
893    #[stable(feature = "split_at_checked", since = "1.80.0")]
894    #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
895    pub const fn split_at_checked(&self, mid: usize) -> Option<(&str, &str)> {
896        // is_char_boundary checks that the index is in [0, .len()]
897        if self.is_char_boundary(mid) {
898            // SAFETY: just checked that `mid` is on a char boundary.
899            Some(unsafe { self.split_at_unchecked(mid) })
900        } else {
901            None
902        }
903    }
904
905    /// Divides one mutable string slice into two at an index.
906    ///
907    /// The argument, `mid`, should be a valid byte offset from the start of the
908    /// string. It must also be on the boundary of a UTF-8 code point. The
909    /// method returns `None` if that’s not the case.
910    ///
911    /// The two slices returned go from the start of the string slice to `mid`,
912    /// and from `mid` to the end of the string slice.
913    ///
914    /// To get immutable string slices instead, see the [`split_at_checked`] method.
915    ///
916    /// [`split_at_checked`]: str::split_at_checked
917    ///
918    /// # Examples
919    ///
920    /// ```
921    /// let mut s = "Per Martin-Löf".to_string();
922    /// if let Some((first, last)) = s.split_at_mut_checked(3) {
923    ///     first.make_ascii_uppercase();
924    ///     assert_eq!("PER", first);
925    ///     assert_eq!(" Martin-Löf", last);
926    /// }
927    /// assert_eq!("PER Martin-Löf", s);
928    ///
929    /// assert_eq!(None, s.split_at_mut_checked(13));  // Inside “ö”
930    /// assert_eq!(None, s.split_at_mut_checked(16));  // Beyond the string length
931    /// ```
932    #[inline]
933    #[must_use]
934    #[stable(feature = "split_at_checked", since = "1.80.0")]
935    #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
936    pub const fn split_at_mut_checked(&mut self, mid: usize) -> Option<(&mut str, &mut str)> {
937        // is_char_boundary checks that the index is in [0, .len()]
938        if self.is_char_boundary(mid) {
939            // SAFETY: just checked that `mid` is on a char boundary.
940            Some(unsafe { self.split_at_mut_unchecked(mid) })
941        } else {
942            None
943        }
944    }
945
946    /// Divides one string slice into two at an index.
947    ///
948    /// # Safety
949    ///
950    /// The caller must ensure that `mid` is a valid byte offset from the start
951    /// of the string and falls on the boundary of a UTF-8 code point.
952    const unsafe fn split_at_unchecked(&self, mid: usize) -> (&str, &str) {
953        let len = self.len();
954        let ptr = self.as_ptr();
955        // SAFETY: caller guarantees `mid` is on a char boundary.
956        unsafe {
957            (
958                from_utf8_unchecked(slice::from_raw_parts(ptr, mid)),
959                from_utf8_unchecked(slice::from_raw_parts(ptr.add(mid), len - mid)),
960            )
961        }
962    }
963
964    /// Divides one string slice into two at an index.
965    ///
966    /// # Safety
967    ///
968    /// The caller must ensure that `mid` is a valid byte offset from the start
969    /// of the string and falls on the boundary of a UTF-8 code point.
970    const unsafe fn split_at_mut_unchecked(&mut self, mid: usize) -> (&mut str, &mut str) {
971        let len = self.len();
972        let ptr = self.as_mut_ptr();
973        // SAFETY: caller guarantees `mid` is on a char boundary.
974        unsafe {
975            (
976                from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr, mid)),
977                from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr.add(mid), len - mid)),
978            )
979        }
980    }
981
982    /// Returns an iterator over the [`char`]s of a string slice.
983    ///
984    /// As a string slice consists of valid UTF-8, we can iterate through a
985    /// string slice by [`char`]. This method returns such an iterator.
986    ///
987    /// It's important to remember that [`char`] represents a Unicode Scalar
988    /// Value, and might not match your idea of what a 'character' is. Iteration
989    /// over grapheme clusters may be what you actually want. This functionality
990    /// is not provided by Rust's standard library, check crates.io instead.
991    ///
992    /// # Examples
993    ///
994    /// Basic usage:
995    ///
996    /// ```
997    /// let word = "goodbye";
998    ///
999    /// let count = word.chars().count();
1000    /// assert_eq!(7, count);
1001    ///
1002    /// let mut chars = word.chars();
1003    ///
1004    /// assert_eq!(Some('g'), chars.next());
1005    /// assert_eq!(Some('o'), chars.next());
1006    /// assert_eq!(Some('o'), chars.next());
1007    /// assert_eq!(Some('d'), chars.next());
1008    /// assert_eq!(Some('b'), chars.next());
1009    /// assert_eq!(Some('y'), chars.next());
1010    /// assert_eq!(Some('e'), chars.next());
1011    ///
1012    /// assert_eq!(None, chars.next());
1013    /// ```
1014    ///
1015    /// Remember, [`char`]s might not match your intuition about characters:
1016    ///
1017    /// [`char`]: prim@char
1018    ///
1019    /// ```
1020    /// let y = "y̆";
1021    ///
1022    /// let mut chars = y.chars();
1023    ///
1024    /// assert_eq!(Some('y'), chars.next()); // not 'y̆'
1025    /// assert_eq!(Some('\u{0306}'), chars.next());
1026    ///
1027    /// assert_eq!(None, chars.next());
1028    /// ```
1029    #[stable(feature = "rust1", since = "1.0.0")]
1030    #[inline]
1031    #[rustc_diagnostic_item = "str_chars"]
1032    pub fn chars(&self) -> Chars<'_> {
1033        Chars { iter: self.as_bytes().iter() }
1034    }
1035
1036    /// Returns an iterator over the [`char`]s of a string slice, and their
1037    /// positions.
1038    ///
1039    /// As a string slice consists of valid UTF-8, we can iterate through a
1040    /// string slice by [`char`]. This method returns an iterator of both
1041    /// these [`char`]s, as well as their byte positions.
1042    ///
1043    /// The iterator yields tuples. The position is first, the [`char`] is
1044    /// second.
1045    ///
1046    /// # Examples
1047    ///
1048    /// Basic usage:
1049    ///
1050    /// ```
1051    /// let word = "goodbye";
1052    ///
1053    /// let count = word.char_indices().count();
1054    /// assert_eq!(7, count);
1055    ///
1056    /// let mut char_indices = word.char_indices();
1057    ///
1058    /// assert_eq!(Some((0, 'g')), char_indices.next());
1059    /// assert_eq!(Some((1, 'o')), char_indices.next());
1060    /// assert_eq!(Some((2, 'o')), char_indices.next());
1061    /// assert_eq!(Some((3, 'd')), char_indices.next());
1062    /// assert_eq!(Some((4, 'b')), char_indices.next());
1063    /// assert_eq!(Some((5, 'y')), char_indices.next());
1064    /// assert_eq!(Some((6, 'e')), char_indices.next());
1065    ///
1066    /// assert_eq!(None, char_indices.next());
1067    /// ```
1068    ///
1069    /// Remember, [`char`]s might not match your intuition about characters:
1070    ///
1071    /// [`char`]: prim@char
1072    ///
1073    /// ```
1074    /// let yes = "y̆es";
1075    ///
1076    /// let mut char_indices = yes.char_indices();
1077    ///
1078    /// assert_eq!(Some((0, 'y')), char_indices.next()); // not (0, 'y̆')
1079    /// assert_eq!(Some((1, '\u{0306}')), char_indices.next());
1080    ///
1081    /// // note the 3 here - the previous character took up two bytes
1082    /// assert_eq!(Some((3, 'e')), char_indices.next());
1083    /// assert_eq!(Some((4, 's')), char_indices.next());
1084    ///
1085    /// assert_eq!(None, char_indices.next());
1086    /// ```
1087    #[stable(feature = "rust1", since = "1.0.0")]
1088    #[inline]
1089    pub fn char_indices(&self) -> CharIndices<'_> {
1090        CharIndices { front_offset: 0, iter: self.chars() }
1091    }
1092
1093    /// Returns an iterator over the bytes of a string slice.
1094    ///
1095    /// As a string slice consists of a sequence of bytes, we can iterate
1096    /// through a string slice by byte. This method returns such an iterator.
1097    ///
1098    /// # Examples
1099    ///
1100    /// ```
1101    /// let mut bytes = "bors".bytes();
1102    ///
1103    /// assert_eq!(Some(b'b'), bytes.next());
1104    /// assert_eq!(Some(b'o'), bytes.next());
1105    /// assert_eq!(Some(b'r'), bytes.next());
1106    /// assert_eq!(Some(b's'), bytes.next());
1107    ///
1108    /// assert_eq!(None, bytes.next());
1109    /// ```
1110    #[stable(feature = "rust1", since = "1.0.0")]
1111    #[inline]
1112    pub fn bytes(&self) -> Bytes<'_> {
1113        Bytes(self.as_bytes().iter().copied())
1114    }
1115
1116    /// Splits a string slice by whitespace.
1117    ///
1118    /// The iterator returned will return string slices that are sub-slices of
1119    /// the original string slice, separated by any amount of whitespace.
1120    ///
1121    /// 'Whitespace' is defined according to the terms of the Unicode Derived
1122    /// Core Property `White_Space`. If you only want to split on ASCII whitespace
1123    /// instead, use [`split_ascii_whitespace`].
1124    ///
1125    /// [`split_ascii_whitespace`]: str::split_ascii_whitespace
1126    ///
1127    /// # Examples
1128    ///
1129    /// Basic usage:
1130    ///
1131    /// ```
1132    /// let mut iter = "A few words".split_whitespace();
1133    ///
1134    /// assert_eq!(Some("A"), iter.next());
1135    /// assert_eq!(Some("few"), iter.next());
1136    /// assert_eq!(Some("words"), iter.next());
1137    ///
1138    /// assert_eq!(None, iter.next());
1139    /// ```
1140    ///
1141    /// All kinds of whitespace are considered:
1142    ///
1143    /// ```
1144    /// let mut iter = " Mary   had\ta\u{2009}little  \n\t lamb".split_whitespace();
1145    /// assert_eq!(Some("Mary"), iter.next());
1146    /// assert_eq!(Some("had"), iter.next());
1147    /// assert_eq!(Some("a"), iter.next());
1148    /// assert_eq!(Some("little"), iter.next());
1149    /// assert_eq!(Some("lamb"), iter.next());
1150    ///
1151    /// assert_eq!(None, iter.next());
1152    /// ```
1153    ///
1154    /// If the string is empty or all whitespace, the iterator yields no string slices:
1155    /// ```
1156    /// assert_eq!("".split_whitespace().next(), None);
1157    /// assert_eq!("   ".split_whitespace().next(), None);
1158    /// ```
1159    #[must_use = "this returns the split string as an iterator, \
1160                  without modifying the original"]
1161    #[stable(feature = "split_whitespace", since = "1.1.0")]
1162    #[rustc_diagnostic_item = "str_split_whitespace"]
1163    #[inline]
1164    pub fn split_whitespace(&self) -> SplitWhitespace<'_> {
1165        SplitWhitespace { inner: self.split(IsWhitespace).filter(IsNotEmpty) }
1166    }
1167
1168    /// Splits a string slice by ASCII whitespace.
1169    ///
1170    /// The iterator returned will return string slices that are sub-slices of
1171    /// the original string slice, separated by any amount of ASCII whitespace.
1172    ///
1173    /// To split by Unicode `Whitespace` instead, use [`split_whitespace`].
1174    ///
1175    /// [`split_whitespace`]: str::split_whitespace
1176    ///
1177    /// # Examples
1178    ///
1179    /// Basic usage:
1180    ///
1181    /// ```
1182    /// let mut iter = "A few words".split_ascii_whitespace();
1183    ///
1184    /// assert_eq!(Some("A"), iter.next());
1185    /// assert_eq!(Some("few"), iter.next());
1186    /// assert_eq!(Some("words"), iter.next());
1187    ///
1188    /// assert_eq!(None, iter.next());
1189    /// ```
1190    ///
1191    /// All kinds of ASCII whitespace are considered:
1192    ///
1193    /// ```
1194    /// let mut iter = " Mary   had\ta little  \n\t lamb".split_ascii_whitespace();
1195    /// assert_eq!(Some("Mary"), iter.next());
1196    /// assert_eq!(Some("had"), iter.next());
1197    /// assert_eq!(Some("a"), iter.next());
1198    /// assert_eq!(Some("little"), iter.next());
1199    /// assert_eq!(Some("lamb"), iter.next());
1200    ///
1201    /// assert_eq!(None, iter.next());
1202    /// ```
1203    ///
1204    /// If the string is empty or all ASCII whitespace, the iterator yields no string slices:
1205    /// ```
1206    /// assert_eq!("".split_ascii_whitespace().next(), None);
1207    /// assert_eq!("   ".split_ascii_whitespace().next(), None);
1208    /// ```
1209    #[must_use = "this returns the split string as an iterator, \
1210                  without modifying the original"]
1211    #[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
1212    #[inline]
1213    pub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace<'_> {
1214        let inner =
1215            self.as_bytes().split(IsAsciiWhitespace).filter(BytesIsNotEmpty).map(UnsafeBytesToStr);
1216        SplitAsciiWhitespace { inner }
1217    }
1218
1219    /// Returns an iterator over the lines of a string, as string slices.
1220    ///
1221    /// Lines are split at line endings that are either newlines (`\n`) or
1222    /// sequences of a carriage return followed by a line feed (`\r\n`).
1223    ///
1224    /// Line terminators are not included in the lines returned by the iterator.
1225    ///
1226    /// Note that any carriage return (`\r`) not immediately followed by a
1227    /// line feed (`\n`) does not split a line. These carriage returns are
1228    /// thereby included in the produced lines.
1229    ///
1230    /// The final line ending is optional. A string that ends with a final line
1231    /// ending will return the same lines as an otherwise identical string
1232    /// without a final line ending.
1233    ///
1234    /// # Examples
1235    ///
1236    /// Basic usage:
1237    ///
1238    /// ```
1239    /// let text = "foo\r\nbar\n\nbaz\r";
1240    /// let mut lines = text.lines();
1241    ///
1242    /// assert_eq!(Some("foo"), lines.next());
1243    /// assert_eq!(Some("bar"), lines.next());
1244    /// assert_eq!(Some(""), lines.next());
1245    /// // Trailing carriage return is included in the last line
1246    /// assert_eq!(Some("baz\r"), lines.next());
1247    ///
1248    /// assert_eq!(None, lines.next());
1249    /// ```
1250    ///
1251    /// The final line does not require any ending:
1252    ///
1253    /// ```
1254    /// let text = "foo\nbar\n\r\nbaz";
1255    /// let mut lines = text.lines();
1256    ///
1257    /// assert_eq!(Some("foo"), lines.next());
1258    /// assert_eq!(Some("bar"), lines.next());
1259    /// assert_eq!(Some(""), lines.next());
1260    /// assert_eq!(Some("baz"), lines.next());
1261    ///
1262    /// assert_eq!(None, lines.next());
1263    /// ```
1264    #[stable(feature = "rust1", since = "1.0.0")]
1265    #[inline]
1266    pub fn lines(&self) -> Lines<'_> {
1267        Lines(self.split_inclusive('\n').map(LinesMap))
1268    }
1269
1270    /// Returns an iterator over the lines of a string.
1271    #[stable(feature = "rust1", since = "1.0.0")]
1272    #[deprecated(since = "1.4.0", note = "use lines() instead now", suggestion = "lines")]
1273    #[inline]
1274    #[allow(deprecated)]
1275    pub fn lines_any(&self) -> LinesAny<'_> {
1276        LinesAny(self.lines())
1277    }
1278
1279    /// Returns an iterator of `u16` over the string encoded
1280    /// as native endian UTF-16 (without byte-order mark).
1281    ///
1282    /// # Examples
1283    ///
1284    /// ```
1285    /// let text = "Zażółć gęślą jaźń";
1286    ///
1287    /// let utf8_len = text.len();
1288    /// let utf16_len = text.encode_utf16().count();
1289    ///
1290    /// assert!(utf16_len <= utf8_len);
1291    /// ```
1292    #[must_use = "this returns the encoded string as an iterator, \
1293                  without modifying the original"]
1294    #[stable(feature = "encode_utf16", since = "1.8.0")]
1295    pub fn encode_utf16(&self) -> EncodeUtf16<'_> {
1296        EncodeUtf16 { chars: self.chars(), extra: 0 }
1297    }
1298
1299    /// Returns `true` if the given pattern matches a sub-slice of
1300    /// this string slice.
1301    ///
1302    /// Returns `false` if it does not.
1303    ///
1304    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1305    /// function or closure that determines if a character matches.
1306    ///
1307    /// [`char`]: prim@char
1308    /// [pattern]: self::pattern
1309    ///
1310    /// # Examples
1311    ///
1312    /// ```
1313    /// let bananas = "bananas";
1314    ///
1315    /// assert!(bananas.contains("nana"));
1316    /// assert!(!bananas.contains("apples"));
1317    /// ```
1318    #[stable(feature = "rust1", since = "1.0.0")]
1319    #[inline]
1320    pub fn contains<P: Pattern>(&self, pat: P) -> bool {
1321        pat.is_contained_in(self)
1322    }
1323
1324    /// Returns `true` if the given pattern matches a prefix of this
1325    /// string slice.
1326    ///
1327    /// Returns `false` if it does not.
1328    ///
1329    /// The [pattern] can be a `&str`, in which case this function will return true if
1330    /// the `&str` is a prefix of this string slice.
1331    ///
1332    /// The [pattern] can also be a [`char`], a slice of [`char`]s, or a
1333    /// function or closure that determines if a character matches.
1334    /// These will only be checked against the first character of this string slice.
1335    /// Look at the second example below regarding behavior for slices of [`char`]s.
1336    ///
1337    /// [`char`]: prim@char
1338    /// [pattern]: self::pattern
1339    ///
1340    /// # Examples
1341    ///
1342    /// ```
1343    /// let bananas = "bananas";
1344    ///
1345    /// assert!(bananas.starts_with("bana"));
1346    /// assert!(!bananas.starts_with("nana"));
1347    /// ```
1348    ///
1349    /// ```
1350    /// let bananas = "bananas";
1351    ///
1352    /// // Note that both of these assert successfully.
1353    /// assert!(bananas.starts_with(&['b', 'a', 'n', 'a']));
1354    /// assert!(bananas.starts_with(&['a', 'b', 'c', 'd']));
1355    /// ```
1356    #[stable(feature = "rust1", since = "1.0.0")]
1357    #[rustc_diagnostic_item = "str_starts_with"]
1358    pub fn starts_with<P: Pattern>(&self, pat: P) -> bool {
1359        pat.is_prefix_of(self)
1360    }
1361
1362    /// Returns `true` if the given pattern matches a suffix of this
1363    /// string slice.
1364    ///
1365    /// Returns `false` if it does not.
1366    ///
1367    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1368    /// function or closure that determines if a character matches.
1369    ///
1370    /// [`char`]: prim@char
1371    /// [pattern]: self::pattern
1372    ///
1373    /// # Examples
1374    ///
1375    /// ```
1376    /// let bananas = "bananas";
1377    ///
1378    /// assert!(bananas.ends_with("anas"));
1379    /// assert!(!bananas.ends_with("nana"));
1380    /// ```
1381    #[stable(feature = "rust1", since = "1.0.0")]
1382    #[rustc_diagnostic_item = "str_ends_with"]
1383    pub fn ends_with<P: Pattern>(&self, pat: P) -> bool
1384    where
1385        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1386    {
1387        pat.is_suffix_of(self)
1388    }
1389
1390    /// Returns the byte index of the first character of this string slice that
1391    /// matches the pattern.
1392    ///
1393    /// Returns [`None`] if the pattern doesn't match.
1394    ///
1395    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1396    /// function or closure that determines if a character matches.
1397    ///
1398    /// [`char`]: prim@char
1399    /// [pattern]: self::pattern
1400    ///
1401    /// # Examples
1402    ///
1403    /// Simple patterns:
1404    ///
1405    /// ```
1406    /// let s = "Löwe 老虎 Léopard Gepardi";
1407    ///
1408    /// assert_eq!(s.find('L'), Some(0));
1409    /// assert_eq!(s.find('é'), Some(14));
1410    /// assert_eq!(s.find("pard"), Some(17));
1411    /// ```
1412    ///
1413    /// More complex patterns using point-free style and closures:
1414    ///
1415    /// ```
1416    /// let s = "Löwe 老虎 Léopard";
1417    ///
1418    /// assert_eq!(s.find(char::is_whitespace), Some(5));
1419    /// assert_eq!(s.find(char::is_lowercase), Some(1));
1420    /// assert_eq!(s.find(|c: char| c.is_whitespace() || c.is_lowercase()), Some(1));
1421    /// assert_eq!(s.find(|c: char| (c < 'o') && (c > 'a')), Some(4));
1422    /// ```
1423    ///
1424    /// Not finding the pattern:
1425    ///
1426    /// ```
1427    /// let s = "Löwe 老虎 Léopard";
1428    /// let x: &[_] = &['1', '2'];
1429    ///
1430    /// assert_eq!(s.find(x), None);
1431    /// ```
1432    #[stable(feature = "rust1", since = "1.0.0")]
1433    #[inline]
1434    pub fn find<P: Pattern>(&self, pat: P) -> Option<usize> {
1435        pat.into_searcher(self).next_match().map(|(i, _)| i)
1436    }
1437
1438    /// Returns the byte index for the first character of the last match of the pattern in
1439    /// this string slice.
1440    ///
1441    /// Returns [`None`] if the pattern doesn't match.
1442    ///
1443    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1444    /// function or closure that determines if a character matches.
1445    ///
1446    /// [`char`]: prim@char
1447    /// [pattern]: self::pattern
1448    ///
1449    /// # Examples
1450    ///
1451    /// Simple patterns:
1452    ///
1453    /// ```
1454    /// let s = "Löwe 老虎 Léopard Gepardi";
1455    ///
1456    /// assert_eq!(s.rfind('L'), Some(13));
1457    /// assert_eq!(s.rfind('é'), Some(14));
1458    /// assert_eq!(s.rfind("pard"), Some(24));
1459    /// ```
1460    ///
1461    /// More complex patterns with closures:
1462    ///
1463    /// ```
1464    /// let s = "Löwe 老虎 Léopard";
1465    ///
1466    /// assert_eq!(s.rfind(char::is_whitespace), Some(12));
1467    /// assert_eq!(s.rfind(char::is_lowercase), Some(20));
1468    /// ```
1469    ///
1470    /// Not finding the pattern:
1471    ///
1472    /// ```
1473    /// let s = "Löwe 老虎 Léopard";
1474    /// let x: &[_] = &['1', '2'];
1475    ///
1476    /// assert_eq!(s.rfind(x), None);
1477    /// ```
1478    #[stable(feature = "rust1", since = "1.0.0")]
1479    #[inline]
1480    pub fn rfind<P: Pattern>(&self, pat: P) -> Option<usize>
1481    where
1482        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1483    {
1484        pat.into_searcher(self).next_match_back().map(|(i, _)| i)
1485    }
1486
1487    /// Returns an iterator over substrings of this string slice, separated by
1488    /// characters matched by a pattern.
1489    ///
1490    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1491    /// function or closure that determines if a character matches.
1492    ///
1493    /// [`char`]: prim@char
1494    /// [pattern]: self::pattern
1495    ///
1496    /// # Iterator behavior
1497    ///
1498    /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1499    /// allows a reverse search and forward/reverse search yields the same
1500    /// elements. This is true for, e.g., [`char`], but not for `&str`.
1501    ///
1502    /// If the pattern allows a reverse search but its results might differ
1503    /// from a forward search, the [`rsplit`] method can be used.
1504    ///
1505    /// [`rsplit`]: str::rsplit
1506    ///
1507    /// # Examples
1508    ///
1509    /// Simple patterns:
1510    ///
1511    /// ```
1512    /// let v: Vec<&str> = "Mary had a little lamb".split(' ').collect();
1513    /// assert_eq!(v, ["Mary", "had", "a", "little", "lamb"]);
1514    ///
1515    /// let v: Vec<&str> = "".split('X').collect();
1516    /// assert_eq!(v, [""]);
1517    ///
1518    /// let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect();
1519    /// assert_eq!(v, ["lion", "", "tiger", "leopard"]);
1520    ///
1521    /// let v: Vec<&str> = "lion::tiger::leopard".split("::").collect();
1522    /// assert_eq!(v, ["lion", "tiger", "leopard"]);
1523    ///
1524    /// let v: Vec<&str> = "abc1def2ghi".split(char::is_numeric).collect();
1525    /// assert_eq!(v, ["abc", "def", "ghi"]);
1526    ///
1527    /// let v: Vec<&str> = "lionXtigerXleopard".split(char::is_uppercase).collect();
1528    /// assert_eq!(v, ["lion", "tiger", "leopard"]);
1529    /// ```
1530    ///
1531    /// If the pattern is a slice of chars, split on each occurrence of any of the characters:
1532    ///
1533    /// ```
1534    /// let v: Vec<&str> = "2020-11-03 23:59".split(&['-', ' ', ':', '@'][..]).collect();
1535    /// assert_eq!(v, ["2020", "11", "03", "23", "59"]);
1536    /// ```
1537    ///
1538    /// A more complex pattern, using a closure:
1539    ///
1540    /// ```
1541    /// let v: Vec<&str> = "abc1defXghi".split(|c| c == '1' || c == 'X').collect();
1542    /// assert_eq!(v, ["abc", "def", "ghi"]);
1543    /// ```
1544    ///
1545    /// If a string contains multiple contiguous separators, you will end up
1546    /// with empty strings in the output:
1547    ///
1548    /// ```
1549    /// let x = "||||a||b|c".to_string();
1550    /// let d: Vec<_> = x.split('|').collect();
1551    ///
1552    /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
1553    /// ```
1554    ///
1555    /// Contiguous separators are separated by the empty string.
1556    ///
1557    /// ```
1558    /// let x = "(///)".to_string();
1559    /// let d: Vec<_> = x.split('/').collect();
1560    ///
1561    /// assert_eq!(d, &["(", "", "", ")"]);
1562    /// ```
1563    ///
1564    /// Separators at the start or end of a string are neighbored
1565    /// by empty strings.
1566    ///
1567    /// ```
1568    /// let d: Vec<_> = "010".split("0").collect();
1569    /// assert_eq!(d, &["", "1", ""]);
1570    /// ```
1571    ///
1572    /// When the empty string is used as a separator, it separates
1573    /// every character in the string, along with the beginning
1574    /// and end of the string.
1575    ///
1576    /// ```
1577    /// let f: Vec<_> = "rust".split("").collect();
1578    /// assert_eq!(f, &["", "r", "u", "s", "t", ""]);
1579    /// ```
1580    ///
1581    /// Contiguous separators can lead to possibly surprising behavior
1582    /// when whitespace is used as the separator. This code is correct:
1583    ///
1584    /// ```
1585    /// let x = "    a  b c".to_string();
1586    /// let d: Vec<_> = x.split(' ').collect();
1587    ///
1588    /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
1589    /// ```
1590    ///
1591    /// It does _not_ give you:
1592    ///
1593    /// ```,ignore
1594    /// assert_eq!(d, &["a", "b", "c"]);
1595    /// ```
1596    ///
1597    /// Use [`split_whitespace`] for this behavior.
1598    ///
1599    /// [`split_whitespace`]: str::split_whitespace
1600    #[stable(feature = "rust1", since = "1.0.0")]
1601    #[inline]
1602    pub fn split<P: Pattern>(&self, pat: P) -> Split<'_, P> {
1603        Split(SplitInternal {
1604            start: 0,
1605            end: self.len(),
1606            matcher: pat.into_searcher(self),
1607            allow_trailing_empty: true,
1608            finished: false,
1609        })
1610    }
1611
1612    /// Returns an iterator over substrings of this string slice, separated by
1613    /// characters matched by a pattern.
1614    ///
1615    /// Differs from the iterator produced by `split` in that `split_inclusive`
1616    /// leaves the matched part as the terminator of the substring.
1617    ///
1618    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1619    /// function or closure that determines if a character matches.
1620    ///
1621    /// [`char`]: prim@char
1622    /// [pattern]: self::pattern
1623    ///
1624    /// # Examples
1625    ///
1626    /// ```
1627    /// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb."
1628    ///     .split_inclusive('\n').collect();
1629    /// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb."]);
1630    /// ```
1631    ///
1632    /// If the last element of the string is matched,
1633    /// that element will be considered the terminator of the preceding substring.
1634    /// That substring will be the last item returned by the iterator.
1635    ///
1636    /// ```
1637    /// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb.\n"
1638    ///     .split_inclusive('\n').collect();
1639    /// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb.\n"]);
1640    /// ```
1641    #[stable(feature = "split_inclusive", since = "1.51.0")]
1642    #[inline]
1643    pub fn split_inclusive<P: Pattern>(&self, pat: P) -> SplitInclusive<'_, P> {
1644        SplitInclusive(SplitInternal {
1645            start: 0,
1646            end: self.len(),
1647            matcher: pat.into_searcher(self),
1648            allow_trailing_empty: false,
1649            finished: false,
1650        })
1651    }
1652
1653    /// Returns an iterator over substrings of the given string slice, separated
1654    /// by characters matched by a pattern and yielded in reverse order.
1655    ///
1656    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1657    /// function or closure that determines if a character matches.
1658    ///
1659    /// [`char`]: prim@char
1660    /// [pattern]: self::pattern
1661    ///
1662    /// # Iterator behavior
1663    ///
1664    /// The returned iterator requires that the pattern supports a reverse
1665    /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
1666    /// search yields the same elements.
1667    ///
1668    /// For iterating from the front, the [`split`] method can be used.
1669    ///
1670    /// [`split`]: str::split
1671    ///
1672    /// # Examples
1673    ///
1674    /// Simple patterns:
1675    ///
1676    /// ```
1677    /// let v: Vec<&str> = "Mary had a little lamb".rsplit(' ').collect();
1678    /// assert_eq!(v, ["lamb", "little", "a", "had", "Mary"]);
1679    ///
1680    /// let v: Vec<&str> = "".rsplit('X').collect();
1681    /// assert_eq!(v, [""]);
1682    ///
1683    /// let v: Vec<&str> = "lionXXtigerXleopard".rsplit('X').collect();
1684    /// assert_eq!(v, ["leopard", "tiger", "", "lion"]);
1685    ///
1686    /// let v: Vec<&str> = "lion::tiger::leopard".rsplit("::").collect();
1687    /// assert_eq!(v, ["leopard", "tiger", "lion"]);
1688    /// ```
1689    ///
1690    /// A more complex pattern, using a closure:
1691    ///
1692    /// ```
1693    /// let v: Vec<&str> = "abc1defXghi".rsplit(|c| c == '1' || c == 'X').collect();
1694    /// assert_eq!(v, ["ghi", "def", "abc"]);
1695    /// ```
1696    #[stable(feature = "rust1", since = "1.0.0")]
1697    #[inline]
1698    pub fn rsplit<P: Pattern>(&self, pat: P) -> RSplit<'_, P>
1699    where
1700        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1701    {
1702        RSplit(self.split(pat).0)
1703    }
1704
1705    /// Returns an iterator over substrings of the given string slice, separated
1706    /// by characters matched by a pattern.
1707    ///
1708    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1709    /// function or closure that determines if a character matches.
1710    ///
1711    /// [`char`]: prim@char
1712    /// [pattern]: self::pattern
1713    ///
1714    /// Equivalent to [`split`], except that the trailing substring
1715    /// is skipped if empty.
1716    ///
1717    /// [`split`]: str::split
1718    ///
1719    /// This method can be used for string data that is _terminated_,
1720    /// rather than _separated_ by a pattern.
1721    ///
1722    /// # Iterator behavior
1723    ///
1724    /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1725    /// allows a reverse search and forward/reverse search yields the same
1726    /// elements. This is true for, e.g., [`char`], but not for `&str`.
1727    ///
1728    /// If the pattern allows a reverse search but its results might differ
1729    /// from a forward search, the [`rsplit_terminator`] method can be used.
1730    ///
1731    /// [`rsplit_terminator`]: str::rsplit_terminator
1732    ///
1733    /// # Examples
1734    ///
1735    /// ```
1736    /// let v: Vec<&str> = "A.B.".split_terminator('.').collect();
1737    /// assert_eq!(v, ["A", "B"]);
1738    ///
1739    /// let v: Vec<&str> = "A..B..".split_terminator(".").collect();
1740    /// assert_eq!(v, ["A", "", "B", ""]);
1741    ///
1742    /// let v: Vec<&str> = "A.B:C.D".split_terminator(&['.', ':'][..]).collect();
1743    /// assert_eq!(v, ["A", "B", "C", "D"]);
1744    /// ```
1745    #[stable(feature = "rust1", since = "1.0.0")]
1746    #[inline]
1747    pub fn split_terminator<P: Pattern>(&self, pat: P) -> SplitTerminator<'_, P> {
1748        SplitTerminator(SplitInternal { allow_trailing_empty: false, ..self.split(pat).0 })
1749    }
1750
1751    /// Returns an iterator over substrings of `self`, separated by characters
1752    /// matched by a pattern and yielded in reverse order.
1753    ///
1754    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1755    /// function or closure that determines if a character matches.
1756    ///
1757    /// [`char`]: prim@char
1758    /// [pattern]: self::pattern
1759    ///
1760    /// Equivalent to [`split`], except that the trailing substring is
1761    /// skipped if empty.
1762    ///
1763    /// [`split`]: str::split
1764    ///
1765    /// This method can be used for string data that is _terminated_,
1766    /// rather than _separated_ by a pattern.
1767    ///
1768    /// # Iterator behavior
1769    ///
1770    /// The returned iterator requires that the pattern supports a
1771    /// reverse search, and it will be double ended if a forward/reverse
1772    /// search yields the same elements.
1773    ///
1774    /// For iterating from the front, the [`split_terminator`] method can be
1775    /// used.
1776    ///
1777    /// [`split_terminator`]: str::split_terminator
1778    ///
1779    /// # Examples
1780    ///
1781    /// ```
1782    /// let v: Vec<&str> = "A.B.".rsplit_terminator('.').collect();
1783    /// assert_eq!(v, ["B", "A"]);
1784    ///
1785    /// let v: Vec<&str> = "A..B..".rsplit_terminator(".").collect();
1786    /// assert_eq!(v, ["", "B", "", "A"]);
1787    ///
1788    /// let v: Vec<&str> = "A.B:C.D".rsplit_terminator(&['.', ':'][..]).collect();
1789    /// assert_eq!(v, ["D", "C", "B", "A"]);
1790    /// ```
1791    #[stable(feature = "rust1", since = "1.0.0")]
1792    #[inline]
1793    pub fn rsplit_terminator<P: Pattern>(&self, pat: P) -> RSplitTerminator<'_, P>
1794    where
1795        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1796    {
1797        RSplitTerminator(self.split_terminator(pat).0)
1798    }
1799
1800    /// Returns an iterator over substrings of the given string slice, separated
1801    /// by a pattern, restricted to returning at most `n` items.
1802    ///
1803    /// If `n` substrings are returned, the last substring (the `n`th substring)
1804    /// will contain the remainder of the string.
1805    ///
1806    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1807    /// function or closure that determines if a character matches.
1808    ///
1809    /// [`char`]: prim@char
1810    /// [pattern]: self::pattern
1811    ///
1812    /// # Iterator behavior
1813    ///
1814    /// The returned iterator will not be double ended, because it is
1815    /// not efficient to support.
1816    ///
1817    /// If the pattern allows a reverse search, the [`rsplitn`] method can be
1818    /// used.
1819    ///
1820    /// [`rsplitn`]: str::rsplitn
1821    ///
1822    /// # Examples
1823    ///
1824    /// Simple patterns:
1825    ///
1826    /// ```
1827    /// let v: Vec<&str> = "Mary had a little lambda".splitn(3, ' ').collect();
1828    /// assert_eq!(v, ["Mary", "had", "a little lambda"]);
1829    ///
1830    /// let v: Vec<&str> = "lionXXtigerXleopard".splitn(3, "X").collect();
1831    /// assert_eq!(v, ["lion", "", "tigerXleopard"]);
1832    ///
1833    /// let v: Vec<&str> = "abcXdef".splitn(1, 'X').collect();
1834    /// assert_eq!(v, ["abcXdef"]);
1835    ///
1836    /// let v: Vec<&str> = "".splitn(1, 'X').collect();
1837    /// assert_eq!(v, [""]);
1838    /// ```
1839    ///
1840    /// A more complex pattern, using a closure:
1841    ///
1842    /// ```
1843    /// let v: Vec<&str> = "abc1defXghi".splitn(2, |c| c == '1' || c == 'X').collect();
1844    /// assert_eq!(v, ["abc", "defXghi"]);
1845    /// ```
1846    #[stable(feature = "rust1", since = "1.0.0")]
1847    #[inline]
1848    pub fn splitn<P: Pattern>(&self, n: usize, pat: P) -> SplitN<'_, P> {
1849        SplitN(SplitNInternal { iter: self.split(pat).0, count: n })
1850    }
1851
1852    /// Returns an iterator over substrings of this string slice, separated by a
1853    /// pattern, starting from the end of the string, restricted to returning at
1854    /// most `n` items.
1855    ///
1856    /// If `n` substrings are returned, the last substring (the `n`th substring)
1857    /// will contain the remainder of the string.
1858    ///
1859    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1860    /// function or closure that determines if a character matches.
1861    ///
1862    /// [`char`]: prim@char
1863    /// [pattern]: self::pattern
1864    ///
1865    /// # Iterator behavior
1866    ///
1867    /// The returned iterator will not be double ended, because it is not
1868    /// efficient to support.
1869    ///
1870    /// For splitting from the front, the [`splitn`] method can be used.
1871    ///
1872    /// [`splitn`]: str::splitn
1873    ///
1874    /// # Examples
1875    ///
1876    /// Simple patterns:
1877    ///
1878    /// ```
1879    /// let v: Vec<&str> = "Mary had a little lamb".rsplitn(3, ' ').collect();
1880    /// assert_eq!(v, ["lamb", "little", "Mary had a"]);
1881    ///
1882    /// let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(3, 'X').collect();
1883    /// assert_eq!(v, ["leopard", "tiger", "lionX"]);
1884    ///
1885    /// let v: Vec<&str> = "lion::tiger::leopard".rsplitn(2, "::").collect();
1886    /// assert_eq!(v, ["leopard", "lion::tiger"]);
1887    /// ```
1888    ///
1889    /// A more complex pattern, using a closure:
1890    ///
1891    /// ```
1892    /// let v: Vec<&str> = "abc1defXghi".rsplitn(2, |c| c == '1' || c == 'X').collect();
1893    /// assert_eq!(v, ["ghi", "abc1def"]);
1894    /// ```
1895    #[stable(feature = "rust1", since = "1.0.0")]
1896    #[inline]
1897    pub fn rsplitn<P: Pattern>(&self, n: usize, pat: P) -> RSplitN<'_, P>
1898    where
1899        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1900    {
1901        RSplitN(self.splitn(n, pat).0)
1902    }
1903
1904    /// Splits the string on the first occurrence of the specified delimiter and
1905    /// returns prefix before delimiter and suffix after delimiter.
1906    ///
1907    /// # Examples
1908    ///
1909    /// ```
1910    /// assert_eq!("cfg".split_once('='), None);
1911    /// assert_eq!("cfg=".split_once('='), Some(("cfg", "")));
1912    /// assert_eq!("cfg=foo".split_once('='), Some(("cfg", "foo")));
1913    /// assert_eq!("cfg=foo=bar".split_once('='), Some(("cfg", "foo=bar")));
1914    /// ```
1915    #[stable(feature = "str_split_once", since = "1.52.0")]
1916    #[inline]
1917    pub fn split_once<P: Pattern>(&self, delimiter: P) -> Option<(&'_ str, &'_ str)> {
1918        let (start, end) = delimiter.into_searcher(self).next_match()?;
1919        // SAFETY: `Searcher` is known to return valid indices.
1920        unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) }
1921    }
1922
1923    /// Splits the string on the last occurrence of the specified delimiter and
1924    /// returns prefix before delimiter and suffix after delimiter.
1925    ///
1926    /// # Examples
1927    ///
1928    /// ```
1929    /// assert_eq!("cfg".rsplit_once('='), None);
1930    /// assert_eq!("cfg=foo".rsplit_once('='), Some(("cfg", "foo")));
1931    /// assert_eq!("cfg=foo=bar".rsplit_once('='), Some(("cfg=foo", "bar")));
1932    /// ```
1933    #[stable(feature = "str_split_once", since = "1.52.0")]
1934    #[inline]
1935    pub fn rsplit_once<P: Pattern>(&self, delimiter: P) -> Option<(&'_ str, &'_ str)>
1936    where
1937        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1938    {
1939        let (start, end) = delimiter.into_searcher(self).next_match_back()?;
1940        // SAFETY: `Searcher` is known to return valid indices.
1941        unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) }
1942    }
1943
1944    /// Returns an iterator over the disjoint matches of a pattern within the
1945    /// given string slice.
1946    ///
1947    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1948    /// function or closure that determines if a character matches.
1949    ///
1950    /// [`char`]: prim@char
1951    /// [pattern]: self::pattern
1952    ///
1953    /// # Iterator behavior
1954    ///
1955    /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1956    /// allows a reverse search and forward/reverse search yields the same
1957    /// elements. This is true for, e.g., [`char`], but not for `&str`.
1958    ///
1959    /// If the pattern allows a reverse search but its results might differ
1960    /// from a forward search, the [`rmatches`] method can be used.
1961    ///
1962    /// [`rmatches`]: str::rmatches
1963    ///
1964    /// # Examples
1965    ///
1966    /// ```
1967    /// let v: Vec<&str> = "abcXXXabcYYYabc".matches("abc").collect();
1968    /// assert_eq!(v, ["abc", "abc", "abc"]);
1969    ///
1970    /// let v: Vec<&str> = "1abc2abc3".matches(char::is_numeric).collect();
1971    /// assert_eq!(v, ["1", "2", "3"]);
1972    /// ```
1973    #[stable(feature = "str_matches", since = "1.2.0")]
1974    #[inline]
1975    pub fn matches<P: Pattern>(&self, pat: P) -> Matches<'_, P> {
1976        Matches(MatchesInternal(pat.into_searcher(self)))
1977    }
1978
1979    /// Returns an iterator over the disjoint matches of a pattern within this
1980    /// string slice, yielded in reverse order.
1981    ///
1982    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1983    /// function or closure that determines if a character matches.
1984    ///
1985    /// [`char`]: prim@char
1986    /// [pattern]: self::pattern
1987    ///
1988    /// # Iterator behavior
1989    ///
1990    /// The returned iterator requires that the pattern supports a reverse
1991    /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
1992    /// search yields the same elements.
1993    ///
1994    /// For iterating from the front, the [`matches`] method can be used.
1995    ///
1996    /// [`matches`]: str::matches
1997    ///
1998    /// # Examples
1999    ///
2000    /// ```
2001    /// let v: Vec<&str> = "abcXXXabcYYYabc".rmatches("abc").collect();
2002    /// assert_eq!(v, ["abc", "abc", "abc"]);
2003    ///
2004    /// let v: Vec<&str> = "1abc2abc3".rmatches(char::is_numeric).collect();
2005    /// assert_eq!(v, ["3", "2", "1"]);
2006    /// ```
2007    #[stable(feature = "str_matches", since = "1.2.0")]
2008    #[inline]
2009    pub fn rmatches<P: Pattern>(&self, pat: P) -> RMatches<'_, P>
2010    where
2011        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2012    {
2013        RMatches(self.matches(pat).0)
2014    }
2015
2016    /// Returns an iterator over the disjoint matches of a pattern within this string
2017    /// slice as well as the index that the match starts at.
2018    ///
2019    /// For matches of `pat` within `self` that overlap, only the indices
2020    /// corresponding to the first match are returned.
2021    ///
2022    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2023    /// function or closure that determines if a character matches.
2024    ///
2025    /// [`char`]: prim@char
2026    /// [pattern]: self::pattern
2027    ///
2028    /// # Iterator behavior
2029    ///
2030    /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
2031    /// allows a reverse search and forward/reverse search yields the same
2032    /// elements. This is true for, e.g., [`char`], but not for `&str`.
2033    ///
2034    /// If the pattern allows a reverse search but its results might differ
2035    /// from a forward search, the [`rmatch_indices`] method can be used.
2036    ///
2037    /// [`rmatch_indices`]: str::rmatch_indices
2038    ///
2039    /// # Examples
2040    ///
2041    /// ```
2042    /// let v: Vec<_> = "abcXXXabcYYYabc".match_indices("abc").collect();
2043    /// assert_eq!(v, [(0, "abc"), (6, "abc"), (12, "abc")]);
2044    ///
2045    /// let v: Vec<_> = "1abcabc2".match_indices("abc").collect();
2046    /// assert_eq!(v, [(1, "abc"), (4, "abc")]);
2047    ///
2048    /// let v: Vec<_> = "ababa".match_indices("aba").collect();
2049    /// assert_eq!(v, [(0, "aba")]); // only the first `aba`
2050    /// ```
2051    #[stable(feature = "str_match_indices", since = "1.5.0")]
2052    #[inline]
2053    pub fn match_indices<P: Pattern>(&self, pat: P) -> MatchIndices<'_, P> {
2054        MatchIndices(MatchIndicesInternal(pat.into_searcher(self)))
2055    }
2056
2057    /// Returns an iterator over the disjoint matches of a pattern within `self`,
2058    /// yielded in reverse order along with the index of the match.
2059    ///
2060    /// For matches of `pat` within `self` that overlap, only the indices
2061    /// corresponding to the last match are returned.
2062    ///
2063    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2064    /// function or closure that determines if a character matches.
2065    ///
2066    /// [`char`]: prim@char
2067    /// [pattern]: self::pattern
2068    ///
2069    /// # Iterator behavior
2070    ///
2071    /// The returned iterator requires that the pattern supports a reverse
2072    /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
2073    /// search yields the same elements.
2074    ///
2075    /// For iterating from the front, the [`match_indices`] method can be used.
2076    ///
2077    /// [`match_indices`]: str::match_indices
2078    ///
2079    /// # Examples
2080    ///
2081    /// ```
2082    /// let v: Vec<_> = "abcXXXabcYYYabc".rmatch_indices("abc").collect();
2083    /// assert_eq!(v, [(12, "abc"), (6, "abc"), (0, "abc")]);
2084    ///
2085    /// let v: Vec<_> = "1abcabc2".rmatch_indices("abc").collect();
2086    /// assert_eq!(v, [(4, "abc"), (1, "abc")]);
2087    ///
2088    /// let v: Vec<_> = "ababa".rmatch_indices("aba").collect();
2089    /// assert_eq!(v, [(2, "aba")]); // only the last `aba`
2090    /// ```
2091    #[stable(feature = "str_match_indices", since = "1.5.0")]
2092    #[inline]
2093    pub fn rmatch_indices<P: Pattern>(&self, pat: P) -> RMatchIndices<'_, P>
2094    where
2095        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2096    {
2097        RMatchIndices(self.match_indices(pat).0)
2098    }
2099
2100    /// Returns a string slice with leading and trailing whitespace removed.
2101    ///
2102    /// 'Whitespace' is defined according to the terms of the Unicode Derived
2103    /// Core Property `White_Space`, which includes newlines.
2104    ///
2105    /// # Examples
2106    ///
2107    /// ```
2108    /// let s = "\n Hello\tworld\t\n";
2109    ///
2110    /// assert_eq!("Hello\tworld", s.trim());
2111    /// ```
2112    #[inline]
2113    #[must_use = "this returns the trimmed string as a slice, \
2114                  without modifying the original"]
2115    #[stable(feature = "rust1", since = "1.0.0")]
2116    #[rustc_diagnostic_item = "str_trim"]
2117    pub fn trim(&self) -> &str {
2118        self.trim_matches(|c: char| c.is_whitespace())
2119    }
2120
2121    /// Returns a string slice with leading whitespace removed.
2122    ///
2123    /// 'Whitespace' is defined according to the terms of the Unicode Derived
2124    /// Core Property `White_Space`, which includes newlines.
2125    ///
2126    /// # Text directionality
2127    ///
2128    /// A string is a sequence of bytes. `start` in this context means the first
2129    /// position of that byte string; for a left-to-right language like English or
2130    /// Russian, this will be left side, and for right-to-left languages like
2131    /// Arabic or Hebrew, this will be the right side.
2132    ///
2133    /// # Examples
2134    ///
2135    /// Basic usage:
2136    ///
2137    /// ```
2138    /// let s = "\n Hello\tworld\t\n";
2139    /// assert_eq!("Hello\tworld\t\n", s.trim_start());
2140    /// ```
2141    ///
2142    /// Directionality:
2143    ///
2144    /// ```
2145    /// let s = "  English  ";
2146    /// assert!(Some('E') == s.trim_start().chars().next());
2147    ///
2148    /// let s = "  עברית  ";
2149    /// assert!(Some('ע') == s.trim_start().chars().next());
2150    /// ```
2151    #[inline]
2152    #[must_use = "this returns the trimmed string as a new slice, \
2153                  without modifying the original"]
2154    #[stable(feature = "trim_direction", since = "1.30.0")]
2155    #[rustc_diagnostic_item = "str_trim_start"]
2156    pub fn trim_start(&self) -> &str {
2157        self.trim_start_matches(|c: char| c.is_whitespace())
2158    }
2159
2160    /// Returns a string slice with trailing whitespace removed.
2161    ///
2162    /// 'Whitespace' is defined according to the terms of the Unicode Derived
2163    /// Core Property `White_Space`, which includes newlines.
2164    ///
2165    /// # Text directionality
2166    ///
2167    /// A string is a sequence of bytes. `end` in this context means the last
2168    /// position of that byte string; for a left-to-right language like English or
2169    /// Russian, this will be right side, and for right-to-left languages like
2170    /// Arabic or Hebrew, this will be the left side.
2171    ///
2172    /// # Examples
2173    ///
2174    /// Basic usage:
2175    ///
2176    /// ```
2177    /// let s = "\n Hello\tworld\t\n";
2178    /// assert_eq!("\n Hello\tworld", s.trim_end());
2179    /// ```
2180    ///
2181    /// Directionality:
2182    ///
2183    /// ```
2184    /// let s = "  English  ";
2185    /// assert!(Some('h') == s.trim_end().chars().rev().next());
2186    ///
2187    /// let s = "  עברית  ";
2188    /// assert!(Some('ת') == s.trim_end().chars().rev().next());
2189    /// ```
2190    #[inline]
2191    #[must_use = "this returns the trimmed string as a new slice, \
2192                  without modifying the original"]
2193    #[stable(feature = "trim_direction", since = "1.30.0")]
2194    #[rustc_diagnostic_item = "str_trim_end"]
2195    pub fn trim_end(&self) -> &str {
2196        self.trim_end_matches(|c: char| c.is_whitespace())
2197    }
2198
2199    /// Returns a string slice with leading whitespace removed.
2200    ///
2201    /// 'Whitespace' is defined according to the terms of the Unicode Derived
2202    /// Core Property `White_Space`.
2203    ///
2204    /// # Text directionality
2205    ///
2206    /// A string is a sequence of bytes. 'Left' in this context means the first
2207    /// position of that byte string; for a language like Arabic or Hebrew
2208    /// which are 'right to left' rather than 'left to right', this will be
2209    /// the _right_ side, not the left.
2210    ///
2211    /// # Examples
2212    ///
2213    /// Basic usage:
2214    ///
2215    /// ```
2216    /// let s = " Hello\tworld\t";
2217    ///
2218    /// assert_eq!("Hello\tworld\t", s.trim_left());
2219    /// ```
2220    ///
2221    /// Directionality:
2222    ///
2223    /// ```
2224    /// let s = "  English";
2225    /// assert!(Some('E') == s.trim_left().chars().next());
2226    ///
2227    /// let s = "  עברית";
2228    /// assert!(Some('ע') == s.trim_left().chars().next());
2229    /// ```
2230    #[must_use = "this returns the trimmed string as a new slice, \
2231                  without modifying the original"]
2232    #[inline]
2233    #[stable(feature = "rust1", since = "1.0.0")]
2234    #[deprecated(since = "1.33.0", note = "superseded by `trim_start`", suggestion = "trim_start")]
2235    pub fn trim_left(&self) -> &str {
2236        self.trim_start()
2237    }
2238
2239    /// Returns a string slice with trailing whitespace removed.
2240    ///
2241    /// 'Whitespace' is defined according to the terms of the Unicode Derived
2242    /// Core Property `White_Space`.
2243    ///
2244    /// # Text directionality
2245    ///
2246    /// A string is a sequence of bytes. 'Right' in this context means the last
2247    /// position of that byte string; for a language like Arabic or Hebrew
2248    /// which are 'right to left' rather than 'left to right', this will be
2249    /// the _left_ side, not the right.
2250    ///
2251    /// # Examples
2252    ///
2253    /// Basic usage:
2254    ///
2255    /// ```
2256    /// let s = " Hello\tworld\t";
2257    ///
2258    /// assert_eq!(" Hello\tworld", s.trim_right());
2259    /// ```
2260    ///
2261    /// Directionality:
2262    ///
2263    /// ```
2264    /// let s = "English  ";
2265    /// assert!(Some('h') == s.trim_right().chars().rev().next());
2266    ///
2267    /// let s = "עברית  ";
2268    /// assert!(Some('ת') == s.trim_right().chars().rev().next());
2269    /// ```
2270    #[must_use = "this returns the trimmed string as a new slice, \
2271                  without modifying the original"]
2272    #[inline]
2273    #[stable(feature = "rust1", since = "1.0.0")]
2274    #[deprecated(since = "1.33.0", note = "superseded by `trim_end`", suggestion = "trim_end")]
2275    pub fn trim_right(&self) -> &str {
2276        self.trim_end()
2277    }
2278
2279    /// Returns a string slice with all prefixes and suffixes that match a
2280    /// pattern repeatedly removed.
2281    ///
2282    /// The [pattern] can be a [`char`], a slice of [`char`]s, or a function
2283    /// or closure that determines if a character matches.
2284    ///
2285    /// [`char`]: prim@char
2286    /// [pattern]: self::pattern
2287    ///
2288    /// # Examples
2289    ///
2290    /// Simple patterns:
2291    ///
2292    /// ```
2293    /// assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar");
2294    /// assert_eq!("123foo1bar123".trim_matches(char::is_numeric), "foo1bar");
2295    ///
2296    /// let x: &[_] = &['1', '2'];
2297    /// assert_eq!("12foo1bar12".trim_matches(x), "foo1bar");
2298    /// ```
2299    ///
2300    /// A more complex pattern, using a closure:
2301    ///
2302    /// ```
2303    /// assert_eq!("1foo1barXX".trim_matches(|c| c == '1' || c == 'X'), "foo1bar");
2304    /// ```
2305    #[must_use = "this returns the trimmed string as a new slice, \
2306                  without modifying the original"]
2307    #[stable(feature = "rust1", since = "1.0.0")]
2308    pub fn trim_matches<P: Pattern>(&self, pat: P) -> &str
2309    where
2310        for<'a> P::Searcher<'a>: DoubleEndedSearcher<'a>,
2311    {
2312        let mut i = 0;
2313        let mut j = 0;
2314        let mut matcher = pat.into_searcher(self);
2315        if let Some((a, b)) = matcher.next_reject() {
2316            i = a;
2317            j = b; // Remember earliest known match, correct it below if
2318            // last match is different
2319        }
2320        if let Some((_, b)) = matcher.next_reject_back() {
2321            j = b;
2322        }
2323        // SAFETY: `Searcher` is known to return valid indices.
2324        unsafe { self.get_unchecked(i..j) }
2325    }
2326
2327    /// Returns a string slice with all prefixes that match a pattern
2328    /// repeatedly removed.
2329    ///
2330    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2331    /// function or closure that determines if a character matches.
2332    ///
2333    /// [`char`]: prim@char
2334    /// [pattern]: self::pattern
2335    ///
2336    /// # Text directionality
2337    ///
2338    /// A string is a sequence of bytes. `start` in this context means the first
2339    /// position of that byte string; for a left-to-right language like English or
2340    /// Russian, this will be left side, and for right-to-left languages like
2341    /// Arabic or Hebrew, this will be the right side.
2342    ///
2343    /// # Examples
2344    ///
2345    /// ```
2346    /// assert_eq!("11foo1bar11".trim_start_matches('1'), "foo1bar11");
2347    /// assert_eq!("123foo1bar123".trim_start_matches(char::is_numeric), "foo1bar123");
2348    ///
2349    /// let x: &[_] = &['1', '2'];
2350    /// assert_eq!("12foo1bar12".trim_start_matches(x), "foo1bar12");
2351    /// ```
2352    #[must_use = "this returns the trimmed string as a new slice, \
2353                  without modifying the original"]
2354    #[stable(feature = "trim_direction", since = "1.30.0")]
2355    pub fn trim_start_matches<P: Pattern>(&self, pat: P) -> &str {
2356        let mut i = self.len();
2357        let mut matcher = pat.into_searcher(self);
2358        if let Some((a, _)) = matcher.next_reject() {
2359            i = a;
2360        }
2361        // SAFETY: `Searcher` is known to return valid indices.
2362        unsafe { self.get_unchecked(i..self.len()) }
2363    }
2364
2365    /// Returns a string slice with the prefix removed.
2366    ///
2367    /// If the string starts with the pattern `prefix`, returns the substring after the prefix,
2368    /// wrapped in `Some`. Unlike [`trim_start_matches`], this method removes the prefix exactly once.
2369    ///
2370    /// If the string does not start with `prefix`, returns `None`.
2371    ///
2372    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2373    /// function or closure that determines if a character matches.
2374    ///
2375    /// [`char`]: prim@char
2376    /// [pattern]: self::pattern
2377    /// [`trim_start_matches`]: Self::trim_start_matches
2378    ///
2379    /// # Examples
2380    ///
2381    /// ```
2382    /// assert_eq!("foo:bar".strip_prefix("foo:"), Some("bar"));
2383    /// assert_eq!("foo:bar".strip_prefix("bar"), None);
2384    /// assert_eq!("foofoo".strip_prefix("foo"), Some("foo"));
2385    /// ```
2386    #[must_use = "this returns the remaining substring as a new slice, \
2387                  without modifying the original"]
2388    #[stable(feature = "str_strip", since = "1.45.0")]
2389    pub fn strip_prefix<P: Pattern>(&self, prefix: P) -> Option<&str> {
2390        prefix.strip_prefix_of(self)
2391    }
2392
2393    /// Returns a string slice with the suffix removed.
2394    ///
2395    /// If the string ends with the pattern `suffix`, returns the substring before the suffix,
2396    /// wrapped in `Some`.  Unlike [`trim_end_matches`], this method removes the suffix exactly once.
2397    ///
2398    /// If the string does not end with `suffix`, returns `None`.
2399    ///
2400    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2401    /// function or closure that determines if a character matches.
2402    ///
2403    /// [`char`]: prim@char
2404    /// [pattern]: self::pattern
2405    /// [`trim_end_matches`]: Self::trim_end_matches
2406    ///
2407    /// # Examples
2408    ///
2409    /// ```
2410    /// assert_eq!("bar:foo".strip_suffix(":foo"), Some("bar"));
2411    /// assert_eq!("bar:foo".strip_suffix("bar"), None);
2412    /// assert_eq!("foofoo".strip_suffix("foo"), Some("foo"));
2413    /// ```
2414    #[must_use = "this returns the remaining substring as a new slice, \
2415                  without modifying the original"]
2416    #[stable(feature = "str_strip", since = "1.45.0")]
2417    pub fn strip_suffix<P: Pattern>(&self, suffix: P) -> Option<&str>
2418    where
2419        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2420    {
2421        suffix.strip_suffix_of(self)
2422    }
2423
2424    /// Returns a string slice with all suffixes that match a pattern
2425    /// repeatedly removed.
2426    ///
2427    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2428    /// function or closure that determines if a character matches.
2429    ///
2430    /// [`char`]: prim@char
2431    /// [pattern]: self::pattern
2432    ///
2433    /// # Text directionality
2434    ///
2435    /// A string is a sequence of bytes. `end` in this context means the last
2436    /// position of that byte string; for a left-to-right language like English or
2437    /// Russian, this will be right side, and for right-to-left languages like
2438    /// Arabic or Hebrew, this will be the left side.
2439    ///
2440    /// # Examples
2441    ///
2442    /// Simple patterns:
2443    ///
2444    /// ```
2445    /// assert_eq!("11foo1bar11".trim_end_matches('1'), "11foo1bar");
2446    /// assert_eq!("123foo1bar123".trim_end_matches(char::is_numeric), "123foo1bar");
2447    ///
2448    /// let x: &[_] = &['1', '2'];
2449    /// assert_eq!("12foo1bar12".trim_end_matches(x), "12foo1bar");
2450    /// ```
2451    ///
2452    /// A more complex pattern, using a closure:
2453    ///
2454    /// ```
2455    /// assert_eq!("1fooX".trim_end_matches(|c| c == '1' || c == 'X'), "1foo");
2456    /// ```
2457    #[must_use = "this returns the trimmed string as a new slice, \
2458                  without modifying the original"]
2459    #[stable(feature = "trim_direction", since = "1.30.0")]
2460    pub fn trim_end_matches<P: Pattern>(&self, pat: P) -> &str
2461    where
2462        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2463    {
2464        let mut j = 0;
2465        let mut matcher = pat.into_searcher(self);
2466        if let Some((_, b)) = matcher.next_reject_back() {
2467            j = b;
2468        }
2469        // SAFETY: `Searcher` is known to return valid indices.
2470        unsafe { self.get_unchecked(0..j) }
2471    }
2472
2473    /// Returns a string slice with all prefixes that match a pattern
2474    /// repeatedly removed.
2475    ///
2476    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2477    /// function or closure that determines if a character matches.
2478    ///
2479    /// [`char`]: prim@char
2480    /// [pattern]: self::pattern
2481    ///
2482    /// # Text directionality
2483    ///
2484    /// A string is a sequence of bytes. 'Left' in this context means the first
2485    /// position of that byte string; for a language like Arabic or Hebrew
2486    /// which are 'right to left' rather than 'left to right', this will be
2487    /// the _right_ side, not the left.
2488    ///
2489    /// # Examples
2490    ///
2491    /// ```
2492    /// assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11");
2493    /// assert_eq!("123foo1bar123".trim_left_matches(char::is_numeric), "foo1bar123");
2494    ///
2495    /// let x: &[_] = &['1', '2'];
2496    /// assert_eq!("12foo1bar12".trim_left_matches(x), "foo1bar12");
2497    /// ```
2498    #[stable(feature = "rust1", since = "1.0.0")]
2499    #[deprecated(
2500        since = "1.33.0",
2501        note = "superseded by `trim_start_matches`",
2502        suggestion = "trim_start_matches"
2503    )]
2504    pub fn trim_left_matches<P: Pattern>(&self, pat: P) -> &str {
2505        self.trim_start_matches(pat)
2506    }
2507
2508    /// Returns a string slice with all suffixes that match a pattern
2509    /// repeatedly removed.
2510    ///
2511    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2512    /// function or closure that determines if a character matches.
2513    ///
2514    /// [`char`]: prim@char
2515    /// [pattern]: self::pattern
2516    ///
2517    /// # Text directionality
2518    ///
2519    /// A string is a sequence of bytes. 'Right' in this context means the last
2520    /// position of that byte string; for a language like Arabic or Hebrew
2521    /// which are 'right to left' rather than 'left to right', this will be
2522    /// the _left_ side, not the right.
2523    ///
2524    /// # Examples
2525    ///
2526    /// Simple patterns:
2527    ///
2528    /// ```
2529    /// assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar");
2530    /// assert_eq!("123foo1bar123".trim_right_matches(char::is_numeric), "123foo1bar");
2531    ///
2532    /// let x: &[_] = &['1', '2'];
2533    /// assert_eq!("12foo1bar12".trim_right_matches(x), "12foo1bar");
2534    /// ```
2535    ///
2536    /// A more complex pattern, using a closure:
2537    ///
2538    /// ```
2539    /// assert_eq!("1fooX".trim_right_matches(|c| c == '1' || c == 'X'), "1foo");
2540    /// ```
2541    #[stable(feature = "rust1", since = "1.0.0")]
2542    #[deprecated(
2543        since = "1.33.0",
2544        note = "superseded by `trim_end_matches`",
2545        suggestion = "trim_end_matches"
2546    )]
2547    pub fn trim_right_matches<P: Pattern>(&self, pat: P) -> &str
2548    where
2549        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2550    {
2551        self.trim_end_matches(pat)
2552    }
2553
2554    /// Parses this string slice into another type.
2555    ///
2556    /// Because `parse` is so general, it can cause problems with type
2557    /// inference. As such, `parse` is one of the few times you'll see
2558    /// the syntax affectionately known as the 'turbofish': `::<>`. This
2559    /// helps the inference algorithm understand specifically which type
2560    /// you're trying to parse into.
2561    ///
2562    /// `parse` can parse into any type that implements the [`FromStr`] trait.
2563
2564    ///
2565    /// # Errors
2566    ///
2567    /// Will return [`Err`] if it's not possible to parse this string slice into
2568    /// the desired type.
2569    ///
2570    /// [`Err`]: FromStr::Err
2571    ///
2572    /// # Examples
2573    ///
2574    /// Basic usage:
2575    ///
2576    /// ```
2577    /// let four: u32 = "4".parse().unwrap();
2578    ///
2579    /// assert_eq!(4, four);
2580    /// ```
2581    ///
2582    /// Using the 'turbofish' instead of annotating `four`:
2583    ///
2584    /// ```
2585    /// let four = "4".parse::<u32>();
2586    ///
2587    /// assert_eq!(Ok(4), four);
2588    /// ```
2589    ///
2590    /// Failing to parse:
2591    ///
2592    /// ```
2593    /// let nope = "j".parse::<u32>();
2594    ///
2595    /// assert!(nope.is_err());
2596    /// ```
2597    #[inline]
2598    #[stable(feature = "rust1", since = "1.0.0")]
2599    pub fn parse<F: FromStr>(&self) -> Result<F, F::Err> {
2600        FromStr::from_str(self)
2601    }
2602
2603    /// Checks if all characters in this string are within the ASCII range.
2604    ///
2605    /// # Examples
2606    ///
2607    /// ```
2608    /// let ascii = "hello!\n";
2609    /// let non_ascii = "Grüße, Jürgen ❤";
2610    ///
2611    /// assert!(ascii.is_ascii());
2612    /// assert!(!non_ascii.is_ascii());
2613    /// ```
2614    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2615    #[rustc_const_stable(feature = "const_slice_is_ascii", since = "1.74.0")]
2616    #[must_use]
2617    #[inline]
2618    pub const fn is_ascii(&self) -> bool {
2619        // We can treat each byte as character here: all multibyte characters
2620        // start with a byte that is not in the ASCII range, so we will stop
2621        // there already.
2622        self.as_bytes().is_ascii()
2623    }
2624
2625    /// If this string slice [`is_ascii`](Self::is_ascii), returns it as a slice
2626    /// of [ASCII characters](`ascii::Char`), otherwise returns `None`.
2627    #[unstable(feature = "ascii_char", issue = "110998")]
2628    #[must_use]
2629    #[inline]
2630    pub const fn as_ascii(&self) -> Option<&[ascii::Char]> {
2631        // Like in `is_ascii`, we can work on the bytes directly.
2632        self.as_bytes().as_ascii()
2633    }
2634
2635    /// Checks that two strings are an ASCII case-insensitive match.
2636    ///
2637    /// Same as `to_ascii_lowercase(a) == to_ascii_lowercase(b)`,
2638    /// but without allocating and copying temporaries.
2639    ///
2640    /// # Examples
2641    ///
2642    /// ```
2643    /// assert!("Ferris".eq_ignore_ascii_case("FERRIS"));
2644    /// assert!("Ferrös".eq_ignore_ascii_case("FERRöS"));
2645    /// assert!(!"Ferrös".eq_ignore_ascii_case("FERRÖS"));
2646    /// ```
2647    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2648    #[rustc_const_unstable(feature = "const_eq_ignore_ascii_case", issue = "131719")]
2649    #[must_use]
2650    #[inline]
2651    pub const fn eq_ignore_ascii_case(&self, other: &str) -> bool {
2652        self.as_bytes().eq_ignore_ascii_case(other.as_bytes())
2653    }
2654
2655    /// Converts this string to its ASCII upper case equivalent in-place.
2656    ///
2657    /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
2658    /// but non-ASCII letters are unchanged.
2659    ///
2660    /// To return a new uppercased value without modifying the existing one, use
2661    /// [`to_ascii_uppercase()`].
2662    ///
2663    /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase
2664    ///
2665    /// # Examples
2666    ///
2667    /// ```
2668    /// let mut s = String::from("Grüße, Jürgen ❤");
2669    ///
2670    /// s.make_ascii_uppercase();
2671    ///
2672    /// assert_eq!("GRüßE, JüRGEN ❤", s);
2673    /// ```
2674    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2675    #[rustc_const_stable(feature = "const_make_ascii", since = "1.84.0")]
2676    #[inline]
2677    pub const fn make_ascii_uppercase(&mut self) {
2678        // SAFETY: changing ASCII letters only does not invalidate UTF-8.
2679        let me = unsafe { self.as_bytes_mut() };
2680        me.make_ascii_uppercase()
2681    }
2682
2683    /// Converts this string to its ASCII lower case equivalent in-place.
2684    ///
2685    /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
2686    /// but non-ASCII letters are unchanged.
2687    ///
2688    /// To return a new lowercased value without modifying the existing one, use
2689    /// [`to_ascii_lowercase()`].
2690    ///
2691    /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase
2692    ///
2693    /// # Examples
2694    ///
2695    /// ```
2696    /// let mut s = String::from("GRÜßE, JÜRGEN ❤");
2697    ///
2698    /// s.make_ascii_lowercase();
2699    ///
2700    /// assert_eq!("grÜße, jÜrgen ❤", s);
2701    /// ```
2702    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2703    #[rustc_const_stable(feature = "const_make_ascii", since = "1.84.0")]
2704    #[inline]
2705    pub const fn make_ascii_lowercase(&mut self) {
2706        // SAFETY: changing ASCII letters only does not invalidate UTF-8.
2707        let me = unsafe { self.as_bytes_mut() };
2708        me.make_ascii_lowercase()
2709    }
2710
2711    /// Returns a string slice with leading ASCII whitespace removed.
2712    ///
2713    /// 'Whitespace' refers to the definition used by
2714    /// [`u8::is_ascii_whitespace`].
2715    ///
2716    /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
2717    ///
2718    /// # Examples
2719    ///
2720    /// ```
2721    /// assert_eq!(" \t \u{3000}hello world\n".trim_ascii_start(), "\u{3000}hello world\n");
2722    /// assert_eq!("  ".trim_ascii_start(), "");
2723    /// assert_eq!("".trim_ascii_start(), "");
2724    /// ```
2725    #[must_use = "this returns the trimmed string as a new slice, \
2726                  without modifying the original"]
2727    #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2728    #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2729    #[inline]
2730    pub const fn trim_ascii_start(&self) -> &str {
2731        // SAFETY: Removing ASCII characters from a `&str` does not invalidate
2732        // UTF-8.
2733        unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii_start()) }
2734    }
2735
2736    /// Returns a string slice with trailing ASCII whitespace removed.
2737    ///
2738    /// 'Whitespace' refers to the definition used by
2739    /// [`u8::is_ascii_whitespace`].
2740    ///
2741    /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
2742    ///
2743    /// # Examples
2744    ///
2745    /// ```
2746    /// assert_eq!("\r hello world\u{3000}\n ".trim_ascii_end(), "\r hello world\u{3000}");
2747    /// assert_eq!("  ".trim_ascii_end(), "");
2748    /// assert_eq!("".trim_ascii_end(), "");
2749    /// ```
2750    #[must_use = "this returns the trimmed string as a new slice, \
2751                  without modifying the original"]
2752    #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2753    #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2754    #[inline]
2755    pub const fn trim_ascii_end(&self) -> &str {
2756        // SAFETY: Removing ASCII characters from a `&str` does not invalidate
2757        // UTF-8.
2758        unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii_end()) }
2759    }
2760
2761    /// Returns a string slice with leading and trailing ASCII whitespace
2762    /// removed.
2763    ///
2764    /// 'Whitespace' refers to the definition used by
2765    /// [`u8::is_ascii_whitespace`].
2766    ///
2767    /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
2768    ///
2769    /// # Examples
2770    ///
2771    /// ```
2772    /// assert_eq!("\r hello world\n ".trim_ascii(), "hello world");
2773    /// assert_eq!("  ".trim_ascii(), "");
2774    /// assert_eq!("".trim_ascii(), "");
2775    /// ```
2776    #[must_use = "this returns the trimmed string as a new slice, \
2777                  without modifying the original"]
2778    #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2779    #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2780    #[inline]
2781    pub const fn trim_ascii(&self) -> &str {
2782        // SAFETY: Removing ASCII characters from a `&str` does not invalidate
2783        // UTF-8.
2784        unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii()) }
2785    }
2786
2787    /// Returns an iterator that escapes each char in `self` with [`char::escape_debug`].
2788    ///
2789    /// Note: only extended grapheme codepoints that begin the string will be
2790    /// escaped.
2791    ///
2792    /// # Examples
2793    ///
2794    /// As an iterator:
2795    ///
2796    /// ```
2797    /// for c in "❤\n!".escape_debug() {
2798    ///     print!("{c}");
2799    /// }
2800    /// println!();
2801    /// ```
2802    ///
2803    /// Using `println!` directly:
2804    ///
2805    /// ```
2806    /// println!("{}", "❤\n!".escape_debug());
2807    /// ```
2808    ///
2809    ///
2810    /// Both are equivalent to:
2811    ///
2812    /// ```
2813    /// println!("❤\\n!");
2814    /// ```
2815    ///
2816    /// Using `to_string`:
2817    ///
2818    /// ```
2819    /// assert_eq!("❤\n!".escape_debug().to_string(), "❤\\n!");
2820    /// ```
2821    #[must_use = "this returns the escaped string as an iterator, \
2822                  without modifying the original"]
2823    #[stable(feature = "str_escape", since = "1.34.0")]
2824    pub fn escape_debug(&self) -> EscapeDebug<'_> {
2825        let mut chars = self.chars();
2826        EscapeDebug {
2827            inner: chars
2828                .next()
2829                .map(|first| first.escape_debug_ext(EscapeDebugExtArgs::ESCAPE_ALL))
2830                .into_iter()
2831                .flatten()
2832                .chain(chars.flat_map(CharEscapeDebugContinue)),
2833        }
2834    }
2835
2836    /// Returns an iterator that escapes each char in `self` with [`char::escape_default`].
2837    ///
2838    /// # Examples
2839    ///
2840    /// As an iterator:
2841    ///
2842    /// ```
2843    /// for c in "❤\n!".escape_default() {
2844    ///     print!("{c}");
2845    /// }
2846    /// println!();
2847    /// ```
2848    ///
2849    /// Using `println!` directly:
2850    ///
2851    /// ```
2852    /// println!("{}", "❤\n!".escape_default());
2853    /// ```
2854    ///
2855    ///
2856    /// Both are equivalent to:
2857    ///
2858    /// ```
2859    /// println!("\\u{{2764}}\\n!");
2860    /// ```
2861    ///
2862    /// Using `to_string`:
2863    ///
2864    /// ```
2865    /// assert_eq!("❤\n!".escape_default().to_string(), "\\u{2764}\\n!");
2866    /// ```
2867    #[must_use = "this returns the escaped string as an iterator, \
2868                  without modifying the original"]
2869    #[stable(feature = "str_escape", since = "1.34.0")]
2870    pub fn escape_default(&self) -> EscapeDefault<'_> {
2871        EscapeDefault { inner: self.chars().flat_map(CharEscapeDefault) }
2872    }
2873
2874    /// Returns an iterator that escapes each char in `self` with [`char::escape_unicode`].
2875    ///
2876    /// # Examples
2877    ///
2878    /// As an iterator:
2879    ///
2880    /// ```
2881    /// for c in "❤\n!".escape_unicode() {
2882    ///     print!("{c}");
2883    /// }
2884    /// println!();
2885    /// ```
2886    ///
2887    /// Using `println!` directly:
2888    ///
2889    /// ```
2890    /// println!("{}", "❤\n!".escape_unicode());
2891    /// ```
2892    ///
2893    ///
2894    /// Both are equivalent to:
2895    ///
2896    /// ```
2897    /// println!("\\u{{2764}}\\u{{a}}\\u{{21}}");
2898    /// ```
2899    ///
2900    /// Using `to_string`:
2901    ///
2902    /// ```
2903    /// assert_eq!("❤\n!".escape_unicode().to_string(), "\\u{2764}\\u{a}\\u{21}");
2904    /// ```
2905    #[must_use = "this returns the escaped string as an iterator, \
2906                  without modifying the original"]
2907    #[stable(feature = "str_escape", since = "1.34.0")]
2908    pub fn escape_unicode(&self) -> EscapeUnicode<'_> {
2909        EscapeUnicode { inner: self.chars().flat_map(CharEscapeUnicode) }
2910    }
2911
2912    /// Returns the range that a substring points to.
2913    ///
2914    /// Returns `None` if `substr` does not point within `self`.
2915    ///
2916    /// Unlike [`str::find`], **this does not search through the string**.
2917    /// Instead, it uses pointer arithmetic to find where in the string
2918    /// `substr` is derived from.
2919    ///
2920    /// This is useful for extending [`str::split`] and similar methods.
2921    ///
2922    /// Note that this method may return false positives (typically either
2923    /// `Some(0..0)` or `Some(self.len()..self.len())`) if `substr` is a
2924    /// zero-length `str` that points at the beginning or end of another,
2925    /// independent, `str`.
2926    ///
2927    /// # Examples
2928    /// ```
2929    /// #![feature(substr_range)]
2930    ///
2931    /// let data = "a, b, b, a";
2932    /// let mut iter = data.split(", ").map(|s| data.substr_range(s).unwrap());
2933    ///
2934    /// assert_eq!(iter.next(), Some(0..1));
2935    /// assert_eq!(iter.next(), Some(3..4));
2936    /// assert_eq!(iter.next(), Some(6..7));
2937    /// assert_eq!(iter.next(), Some(9..10));
2938    /// ```
2939    #[must_use]
2940    #[unstable(feature = "substr_range", issue = "126769")]
2941    pub fn substr_range(&self, substr: &str) -> Option<Range<usize>> {
2942        self.as_bytes().subslice_range(substr.as_bytes())
2943    }
2944
2945    /// Returns the same string as a string slice `&str`.
2946    ///
2947    /// This method is redundant when used directly on `&str`, but
2948    /// it helps dereferencing other string-like types to string slices,
2949    /// for example references to `Box<str>` or `Arc<str>`.
2950    #[inline]
2951    #[unstable(feature = "str_as_str", issue = "130366")]
2952    pub fn as_str(&self) -> &str {
2953        self
2954    }
2955}
2956
2957#[stable(feature = "rust1", since = "1.0.0")]
2958impl AsRef<[u8]> for str {
2959    #[inline]
2960    fn as_ref(&self) -> &[u8] {
2961        self.as_bytes()
2962    }
2963}
2964
2965#[stable(feature = "rust1", since = "1.0.0")]
2966impl Default for &str {
2967    /// Creates an empty str
2968    #[inline]
2969    fn default() -> Self {
2970        ""
2971    }
2972}
2973
2974#[stable(feature = "default_mut_str", since = "1.28.0")]
2975impl Default for &mut str {
2976    /// Creates an empty mutable str
2977    #[inline]
2978    fn default() -> Self {
2979        // SAFETY: The empty string is valid UTF-8.
2980        unsafe { from_utf8_unchecked_mut(&mut []) }
2981    }
2982}
2983
2984impl_fn_for_zst! {
2985    /// A nameable, cloneable fn type
2986    #[derive(Clone)]
2987    struct LinesMap impl<'a> Fn = |line: &'a str| -> &'a str {
2988        let Some(line) = line.strip_suffix('\n') else { return line };
2989        let Some(line) = line.strip_suffix('\r') else { return line };
2990        line
2991    };
2992
2993    #[derive(Clone)]
2994    struct CharEscapeDebugContinue impl Fn = |c: char| -> char::EscapeDebug {
2995        c.escape_debug_ext(EscapeDebugExtArgs {
2996            escape_grapheme_extended: false,
2997            escape_single_quote: true,
2998            escape_double_quote: true
2999        })
3000    };
3001
3002    #[derive(Clone)]
3003    struct CharEscapeUnicode impl Fn = |c: char| -> char::EscapeUnicode {
3004        c.escape_unicode()
3005    };
3006    #[derive(Clone)]
3007    struct CharEscapeDefault impl Fn = |c: char| -> char::EscapeDefault {
3008        c.escape_default()
3009    };
3010
3011    #[derive(Clone)]
3012    struct IsWhitespace impl Fn = |c: char| -> bool {
3013        c.is_whitespace()
3014    };
3015
3016    #[derive(Clone)]
3017    struct IsAsciiWhitespace impl Fn = |byte: &u8| -> bool {
3018        byte.is_ascii_whitespace()
3019    };
3020
3021    #[derive(Clone)]
3022    struct IsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b str| -> bool {
3023        !s.is_empty()
3024    };
3025
3026    #[derive(Clone)]
3027    struct BytesIsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b [u8]| -> bool {
3028        !s.is_empty()
3029    };
3030
3031    #[derive(Clone)]
3032    struct UnsafeBytesToStr impl<'a> Fn = |bytes: &'a [u8]| -> &'a str {
3033        // SAFETY: not safe
3034        unsafe { from_utf8_unchecked(bytes) }
3035    };
3036}
3037
3038// This is required to make `impl From<&str> for Box<dyn Error>` and `impl<E> From<E> for Box<dyn Error>` not overlap.
3039#[stable(feature = "error_in_core_neg_impl", since = "1.65.0")]
3040impl !crate::error::Error for &str {}