std/sync/
lazy_lock.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
use super::once::ExclusiveState;
use crate::cell::UnsafeCell;
use crate::mem::ManuallyDrop;
use crate::ops::Deref;
use crate::panic::{RefUnwindSafe, UnwindSafe};
use crate::sync::Once;
use crate::{fmt, ptr};

// We use the state of a Once as discriminant value. Upon creation, the state is
// "incomplete" and `f` contains the initialization closure. In the first call to
// `call_once`, `f` is taken and run. If it succeeds, `value` is set and the state
// is changed to "complete". If it panics, the Once is poisoned, so none of the
// two fields is initialized.
union Data<T, F> {
    value: ManuallyDrop<T>,
    f: ManuallyDrop<F>,
}

/// A value which is initialized on the first access.
///
/// This type is a thread-safe [`LazyCell`], and can be used in statics.
/// Since initialization may be called from multiple threads, any
/// dereferencing call will block the calling thread if another
/// initialization routine is currently running.
///
/// [`LazyCell`]: crate::cell::LazyCell
///
/// # Examples
///
/// Initialize static variables with `LazyLock`.
/// ```
/// use std::sync::LazyLock;
///
/// // n.b. static items do not call [`Drop`] on program termination, so this won't be deallocated.
/// // this is fine, as the OS can deallocate the terminated program faster than we can free memory
/// // but tools like valgrind might report "memory leaks" as it isn't obvious this is intentional.
/// static DEEP_THOUGHT: LazyLock<String> = LazyLock::new(|| {
/// # mod another_crate {
/// #     pub fn great_question() -> String { "42".to_string() }
/// # }
///     // M3 Ultra takes about 16 million years in --release config
///     another_crate::great_question()
/// });
///
/// // The `String` is built, stored in the `LazyLock`, and returned as `&String`.
/// let _ = &*DEEP_THOUGHT;
/// ```
///
/// Initialize fields with `LazyLock`.
/// ```
/// use std::sync::LazyLock;
///
/// #[derive(Debug)]
/// struct UseCellLock {
///     number: LazyLock<u32>,
/// }
/// fn main() {
///     let lock: LazyLock<u32> = LazyLock::new(|| 0u32);
///
///     let data = UseCellLock { number: lock };
///     println!("{}", *data.number);
/// }
/// ```
#[stable(feature = "lazy_cell", since = "1.80.0")]
pub struct LazyLock<T, F = fn() -> T> {
    once: Once,
    data: UnsafeCell<Data<T, F>>,
}

impl<T, F: FnOnce() -> T> LazyLock<T, F> {
    /// Creates a new lazy value with the given initializing function.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::LazyLock;
    ///
    /// let hello = "Hello, World!".to_string();
    ///
    /// let lazy = LazyLock::new(|| hello.to_uppercase());
    ///
    /// assert_eq!(&*lazy, "HELLO, WORLD!");
    /// ```
    #[inline]
    #[stable(feature = "lazy_cell", since = "1.80.0")]
    #[rustc_const_stable(feature = "lazy_cell", since = "1.80.0")]
    pub const fn new(f: F) -> LazyLock<T, F> {
        LazyLock { once: Once::new(), data: UnsafeCell::new(Data { f: ManuallyDrop::new(f) }) }
    }

    /// Creates a new lazy value that is already initialized.
    #[inline]
    #[cfg(test)]
    pub(crate) fn preinit(value: T) -> LazyLock<T, F> {
        let once = Once::new();
        once.call_once(|| {});
        LazyLock { once, data: UnsafeCell::new(Data { value: ManuallyDrop::new(value) }) }
    }

    /// Consumes this `LazyLock` returning the stored value.
    ///
    /// Returns `Ok(value)` if `Lazy` is initialized and `Err(f)` otherwise.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(lazy_cell_into_inner)]
    ///
    /// use std::sync::LazyLock;
    ///
    /// let hello = "Hello, World!".to_string();
    ///
    /// let lazy = LazyLock::new(|| hello.to_uppercase());
    ///
    /// assert_eq!(&*lazy, "HELLO, WORLD!");
    /// assert_eq!(LazyLock::into_inner(lazy).ok(), Some("HELLO, WORLD!".to_string()));
    /// ```
    #[unstable(feature = "lazy_cell_into_inner", issue = "125623")]
    pub fn into_inner(mut this: Self) -> Result<T, F> {
        let state = this.once.state();
        match state {
            ExclusiveState::Poisoned => panic_poisoned(),
            state => {
                let this = ManuallyDrop::new(this);
                let data = unsafe { ptr::read(&this.data) }.into_inner();
                match state {
                    ExclusiveState::Incomplete => Err(ManuallyDrop::into_inner(unsafe { data.f })),
                    ExclusiveState::Complete => Ok(ManuallyDrop::into_inner(unsafe { data.value })),
                    ExclusiveState::Poisoned => unreachable!(),
                }
            }
        }
    }

    /// Forces the evaluation of this lazy value and returns a mutable reference to
    /// the result.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(lazy_get)]
    /// use std::sync::LazyLock;
    ///
    /// let mut lazy = LazyLock::new(|| 92);
    ///
    /// let p = LazyLock::force_mut(&mut lazy);
    /// assert_eq!(*p, 92);
    /// *p = 44;
    /// assert_eq!(*lazy, 44);
    /// ```
    #[inline]
    #[unstable(feature = "lazy_get", issue = "129333")]
    pub fn force_mut(this: &mut LazyLock<T, F>) -> &mut T {
        #[cold]
        /// # Safety
        /// May only be called when the state is `Incomplete`.
        unsafe fn really_init_mut<T, F: FnOnce() -> T>(this: &mut LazyLock<T, F>) -> &mut T {
            struct PoisonOnPanic<'a, T, F>(&'a mut LazyLock<T, F>);
            impl<T, F> Drop for PoisonOnPanic<'_, T, F> {
                #[inline]
                fn drop(&mut self) {
                    self.0.once.set_state(ExclusiveState::Poisoned);
                }
            }

            // SAFETY: We always poison if the initializer panics (then we never check the data),
            // or set the data on success.
            let f = unsafe { ManuallyDrop::take(&mut this.data.get_mut().f) };
            // INVARIANT: Initiated from mutable reference, don't drop because we read it.
            let guard = PoisonOnPanic(this);
            let data = f();
            guard.0.data.get_mut().value = ManuallyDrop::new(data);
            guard.0.once.set_state(ExclusiveState::Complete);
            core::mem::forget(guard);
            // SAFETY: We put the value there above.
            unsafe { &mut this.data.get_mut().value }
        }

        let state = this.once.state();
        match state {
            ExclusiveState::Poisoned => panic_poisoned(),
            // SAFETY: The `Once` states we completed the initialization.
            ExclusiveState::Complete => unsafe { &mut this.data.get_mut().value },
            // SAFETY: The state is `Incomplete`.
            ExclusiveState::Incomplete => unsafe { really_init_mut(this) },
        }
    }

    /// Forces the evaluation of this lazy value and returns a reference to
    /// result. This is equivalent to the `Deref` impl, but is explicit.
    ///
    /// This method will block the calling thread if another initialization
    /// routine is currently running.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::LazyLock;
    ///
    /// let lazy = LazyLock::new(|| 92);
    ///
    /// assert_eq!(LazyLock::force(&lazy), &92);
    /// assert_eq!(&*lazy, &92);
    /// ```
    #[inline]
    #[stable(feature = "lazy_cell", since = "1.80.0")]
    pub fn force(this: &LazyLock<T, F>) -> &T {
        this.once.call_once(|| {
            // SAFETY: `call_once` only runs this closure once, ever.
            let data = unsafe { &mut *this.data.get() };
            let f = unsafe { ManuallyDrop::take(&mut data.f) };
            let value = f();
            data.value = ManuallyDrop::new(value);
        });

        // SAFETY:
        // There are four possible scenarios:
        // * the closure was called and initialized `value`.
        // * the closure was called and panicked, so this point is never reached.
        // * the closure was not called, but a previous call initialized `value`.
        // * the closure was not called because the Once is poisoned, so this point
        //   is never reached.
        // So `value` has definitely been initialized and will not be modified again.
        unsafe { &*(*this.data.get()).value }
    }
}

impl<T, F> LazyLock<T, F> {
    /// Returns a mutable reference to the value if initialized, or `None` if not.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(lazy_get)]
    ///
    /// use std::sync::LazyLock;
    ///
    /// let mut lazy = LazyLock::new(|| 92);
    ///
    /// assert_eq!(LazyLock::get_mut(&mut lazy), None);
    /// let _ = LazyLock::force(&lazy);
    /// *LazyLock::get_mut(&mut lazy).unwrap() = 44;
    /// assert_eq!(*lazy, 44);
    /// ```
    #[inline]
    #[unstable(feature = "lazy_get", issue = "129333")]
    pub fn get_mut(this: &mut LazyLock<T, F>) -> Option<&mut T> {
        // `state()` does not perform an atomic load, so prefer it over `is_complete()`.
        let state = this.once.state();
        match state {
            // SAFETY:
            // The closure has been run successfully, so `value` has been initialized.
            ExclusiveState::Complete => Some(unsafe { &mut this.data.get_mut().value }),
            _ => None,
        }
    }

    /// Returns a reference to the value if initialized, or `None` if not.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(lazy_get)]
    ///
    /// use std::sync::LazyLock;
    ///
    /// let lazy = LazyLock::new(|| 92);
    ///
    /// assert_eq!(LazyLock::get(&lazy), None);
    /// let _ = LazyLock::force(&lazy);
    /// assert_eq!(LazyLock::get(&lazy), Some(&92));
    /// ```
    #[inline]
    #[unstable(feature = "lazy_get", issue = "129333")]
    pub fn get(this: &LazyLock<T, F>) -> Option<&T> {
        if this.once.is_completed() {
            // SAFETY:
            // The closure has been run successfully, so `value` has been initialized
            // and will not be modified again.
            Some(unsafe { &(*this.data.get()).value })
        } else {
            None
        }
    }
}

#[stable(feature = "lazy_cell", since = "1.80.0")]
impl<T, F> Drop for LazyLock<T, F> {
    fn drop(&mut self) {
        match self.once.state() {
            ExclusiveState::Incomplete => unsafe { ManuallyDrop::drop(&mut self.data.get_mut().f) },
            ExclusiveState::Complete => unsafe {
                ManuallyDrop::drop(&mut self.data.get_mut().value)
            },
            ExclusiveState::Poisoned => {}
        }
    }
}

#[stable(feature = "lazy_cell", since = "1.80.0")]
impl<T, F: FnOnce() -> T> Deref for LazyLock<T, F> {
    type Target = T;

    /// Dereferences the value.
    ///
    /// This method will block the calling thread if another initialization
    /// routine is currently running.
    ///
    #[inline]
    fn deref(&self) -> &T {
        LazyLock::force(self)
    }
}

#[stable(feature = "lazy_cell", since = "1.80.0")]
impl<T: Default> Default for LazyLock<T> {
    /// Creates a new lazy value using `Default` as the initializing function.
    #[inline]
    fn default() -> LazyLock<T> {
        LazyLock::new(T::default)
    }
}

#[stable(feature = "lazy_cell", since = "1.80.0")]
impl<T: fmt::Debug, F> fmt::Debug for LazyLock<T, F> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let mut d = f.debug_tuple("LazyLock");
        match LazyLock::get(self) {
            Some(v) => d.field(v),
            None => d.field(&format_args!("<uninit>")),
        };
        d.finish()
    }
}

#[cold]
#[inline(never)]
fn panic_poisoned() -> ! {
    panic!("LazyLock instance has previously been poisoned")
}

// We never create a `&F` from a `&LazyLock<T, F>` so it is fine
// to not impl `Sync` for `F`.
#[stable(feature = "lazy_cell", since = "1.80.0")]
unsafe impl<T: Sync + Send, F: Send> Sync for LazyLock<T, F> {}
// auto-derived `Send` impl is OK.

#[stable(feature = "lazy_cell", since = "1.80.0")]
impl<T: RefUnwindSafe + UnwindSafe, F: UnwindSafe> RefUnwindSafe for LazyLock<T, F> {}
#[stable(feature = "lazy_cell", since = "1.80.0")]
impl<T: UnwindSafe, F: UnwindSafe> UnwindSafe for LazyLock<T, F> {}

#[cfg(test)]
mod tests;