std/sync/
lazy_lock.rs

1use super::once::OnceExclusiveState;
2use crate::cell::UnsafeCell;
3use crate::mem::ManuallyDrop;
4use crate::ops::{Deref, DerefMut};
5use crate::panic::{RefUnwindSafe, UnwindSafe};
6use crate::sync::Once;
7use crate::{fmt, ptr};
8
9// We use the state of a Once as discriminant value. Upon creation, the state is
10// "incomplete" and `f` contains the initialization closure. In the first call to
11// `call_once`, `f` is taken and run. If it succeeds, `value` is set and the state
12// is changed to "complete". If it panics, the Once is poisoned, so none of the
13// two fields is initialized.
14union Data<T, F> {
15    value: ManuallyDrop<T>,
16    f: ManuallyDrop<F>,
17}
18
19/// A value which is initialized on the first access.
20///
21/// This type is a thread-safe [`LazyCell`], and can be used in statics.
22/// Since initialization may be called from multiple threads, any
23/// dereferencing call will block the calling thread if another
24/// initialization routine is currently running.
25///
26/// [`LazyCell`]: crate::cell::LazyCell
27///
28/// # Poisoning
29///
30/// If the initialization closure passed to [`LazyLock::new`] panics, the lock will be poisoned.
31/// Once the lock is poisoned, any threads that attempt to access this lock (via a dereference
32/// or via an explicit call to [`force()`]) will panic.
33///
34/// This concept is similar to that of poisoning in the [`std::sync::poison`] module. A key
35/// difference, however, is that poisoning in `LazyLock` is _unrecoverable_. All future accesses of
36/// the lock from other threads will panic, whereas a type in [`std::sync::poison`] like
37/// [`std::sync::poison::Mutex`] allows recovery via [`PoisonError::into_inner()`].
38///
39/// [`force()`]: LazyLock::force
40/// [`std::sync::poison`]: crate::sync::poison
41/// [`std::sync::poison::Mutex`]: crate::sync::poison::Mutex
42/// [`PoisonError::into_inner()`]: crate::sync::poison::PoisonError::into_inner
43///
44/// # Examples
45///
46/// Initialize static variables with `LazyLock`.
47/// ```
48/// use std::sync::LazyLock;
49///
50/// // Note: static items do not call [`Drop`] on program termination, so this won't be deallocated.
51/// // this is fine, as the OS can deallocate the terminated program faster than we can free memory
52/// // but tools like valgrind might report "memory leaks" as it isn't obvious this is intentional.
53/// static DEEP_THOUGHT: LazyLock<String> = LazyLock::new(|| {
54/// # mod another_crate {
55/// #     pub fn great_question() -> String { "42".to_string() }
56/// # }
57///     // M3 Ultra takes about 16 million years in --release config
58///     another_crate::great_question()
59/// });
60///
61/// // The `String` is built, stored in the `LazyLock`, and returned as `&String`.
62/// let _ = &*DEEP_THOUGHT;
63/// ```
64///
65/// Initialize fields with `LazyLock`.
66/// ```
67/// use std::sync::LazyLock;
68///
69/// #[derive(Debug)]
70/// struct UseCellLock {
71///     number: LazyLock<u32>,
72/// }
73/// fn main() {
74///     let lock: LazyLock<u32> = LazyLock::new(|| 0u32);
75///
76///     let data = UseCellLock { number: lock };
77///     println!("{}", *data.number);
78/// }
79/// ```
80#[stable(feature = "lazy_cell", since = "1.80.0")]
81pub struct LazyLock<T, F = fn() -> T> {
82    // FIXME(nonpoison_once): if possible, switch to nonpoison version once it is available
83    once: Once,
84    data: UnsafeCell<Data<T, F>>,
85}
86
87impl<T, F: FnOnce() -> T> LazyLock<T, F> {
88    /// Creates a new lazy value with the given initializing function.
89    ///
90    /// # Examples
91    ///
92    /// ```
93    /// use std::sync::LazyLock;
94    ///
95    /// let hello = "Hello, World!".to_string();
96    ///
97    /// let lazy = LazyLock::new(|| hello.to_uppercase());
98    ///
99    /// assert_eq!(&*lazy, "HELLO, WORLD!");
100    /// ```
101    #[inline]
102    #[stable(feature = "lazy_cell", since = "1.80.0")]
103    #[rustc_const_stable(feature = "lazy_cell", since = "1.80.0")]
104    pub const fn new(f: F) -> LazyLock<T, F> {
105        LazyLock { once: Once::new(), data: UnsafeCell::new(Data { f: ManuallyDrop::new(f) }) }
106    }
107
108    /// Creates a new lazy value that is already initialized.
109    #[inline]
110    #[cfg(test)]
111    pub(crate) fn preinit(value: T) -> LazyLock<T, F> {
112        let once = Once::new();
113        once.call_once(|| {});
114        LazyLock { once, data: UnsafeCell::new(Data { value: ManuallyDrop::new(value) }) }
115    }
116
117    /// Consumes this `LazyLock` returning the stored value.
118    ///
119    /// Returns `Ok(value)` if `Lazy` is initialized and `Err(f)` otherwise.
120    ///
121    /// # Panics
122    ///
123    /// Panics if the lock is poisoned.
124    ///
125    /// # Examples
126    ///
127    /// ```
128    /// #![feature(lazy_cell_into_inner)]
129    ///
130    /// use std::sync::LazyLock;
131    ///
132    /// let hello = "Hello, World!".to_string();
133    ///
134    /// let lazy = LazyLock::new(|| hello.to_uppercase());
135    ///
136    /// assert_eq!(&*lazy, "HELLO, WORLD!");
137    /// assert_eq!(LazyLock::into_inner(lazy).ok(), Some("HELLO, WORLD!".to_string()));
138    /// ```
139    #[unstable(feature = "lazy_cell_into_inner", issue = "125623")]
140    pub fn into_inner(mut this: Self) -> Result<T, F> {
141        let state = this.once.state();
142        match state {
143            OnceExclusiveState::Poisoned => panic_poisoned(),
144            state => {
145                let this = ManuallyDrop::new(this);
146                let data = unsafe { ptr::read(&this.data) }.into_inner();
147                match state {
148                    OnceExclusiveState::Incomplete => {
149                        Err(ManuallyDrop::into_inner(unsafe { data.f }))
150                    }
151                    OnceExclusiveState::Complete => {
152                        Ok(ManuallyDrop::into_inner(unsafe { data.value }))
153                    }
154                    OnceExclusiveState::Poisoned => unreachable!(),
155                }
156            }
157        }
158    }
159
160    /// Forces the evaluation of this lazy value and returns a mutable reference to
161    /// the result.
162    ///
163    /// # Panics
164    ///
165    /// If the initialization closure panics (the one that is passed to the [`new()`] method), the
166    /// panic is propagated to the caller, and the lock becomes poisoned. This will cause all future
167    /// accesses of the lock (via [`force()`] or a dereference) to panic.
168    ///
169    /// [`new()`]: LazyLock::new
170    /// [`force()`]: LazyLock::force
171    ///
172    /// # Examples
173    ///
174    /// ```
175    /// #![feature(lazy_get)]
176    /// use std::sync::LazyLock;
177    ///
178    /// let mut lazy = LazyLock::new(|| 92);
179    ///
180    /// let p = LazyLock::force_mut(&mut lazy);
181    /// assert_eq!(*p, 92);
182    /// *p = 44;
183    /// assert_eq!(*lazy, 44);
184    /// ```
185    #[inline]
186    #[unstable(feature = "lazy_get", issue = "129333")]
187    pub fn force_mut(this: &mut LazyLock<T, F>) -> &mut T {
188        #[cold]
189        /// # Safety
190        /// May only be called when the state is `Incomplete`.
191        unsafe fn really_init_mut<T, F: FnOnce() -> T>(this: &mut LazyLock<T, F>) -> &mut T {
192            struct PoisonOnPanic<'a, T, F>(&'a mut LazyLock<T, F>);
193            impl<T, F> Drop for PoisonOnPanic<'_, T, F> {
194                #[inline]
195                fn drop(&mut self) {
196                    self.0.once.set_state(OnceExclusiveState::Poisoned);
197                }
198            }
199
200            // SAFETY: We always poison if the initializer panics (then we never check the data),
201            // or set the data on success.
202            let f = unsafe { ManuallyDrop::take(&mut this.data.get_mut().f) };
203            // INVARIANT: Initiated from mutable reference, don't drop because we read it.
204            let guard = PoisonOnPanic(this);
205            let data = f();
206            guard.0.data.get_mut().value = ManuallyDrop::new(data);
207            guard.0.once.set_state(OnceExclusiveState::Complete);
208            core::mem::forget(guard);
209            // SAFETY: We put the value there above.
210            unsafe { &mut this.data.get_mut().value }
211        }
212
213        let state = this.once.state();
214        match state {
215            OnceExclusiveState::Poisoned => panic_poisoned(),
216            // SAFETY: The `Once` states we completed the initialization.
217            OnceExclusiveState::Complete => unsafe { &mut this.data.get_mut().value },
218            // SAFETY: The state is `Incomplete`.
219            OnceExclusiveState::Incomplete => unsafe { really_init_mut(this) },
220        }
221    }
222
223    /// Forces the evaluation of this lazy value and returns a reference to
224    /// result. This is equivalent to the `Deref` impl, but is explicit.
225    ///
226    /// This method will block the calling thread if another initialization
227    /// routine is currently running.
228    ///
229    /// # Panics
230    ///
231    /// If the initialization closure panics (the one that is passed to the [`new()`] method), the
232    /// panic is propagated to the caller, and the lock becomes poisoned. This will cause all future
233    /// accesses of the lock (via [`force()`] or a dereference) to panic.
234    ///
235    /// [`new()`]: LazyLock::new
236    /// [`force()`]: LazyLock::force
237    ///
238    /// # Examples
239    ///
240    /// ```
241    /// use std::sync::LazyLock;
242    ///
243    /// let lazy = LazyLock::new(|| 92);
244    ///
245    /// assert_eq!(LazyLock::force(&lazy), &92);
246    /// assert_eq!(&*lazy, &92);
247    /// ```
248    #[inline]
249    #[stable(feature = "lazy_cell", since = "1.80.0")]
250    pub fn force(this: &LazyLock<T, F>) -> &T {
251        this.once.call_once_force(|state| {
252            if state.is_poisoned() {
253                panic_poisoned();
254            }
255
256            // SAFETY: `call_once` only runs this closure once, ever.
257            let data = unsafe { &mut *this.data.get() };
258            let f = unsafe { ManuallyDrop::take(&mut data.f) };
259            let value = f();
260            data.value = ManuallyDrop::new(value);
261        });
262
263        // SAFETY:
264        // There are four possible scenarios:
265        // * the closure was called and initialized `value`.
266        // * the closure was called and panicked, so this point is never reached.
267        // * the closure was not called, but a previous call initialized `value`.
268        // * the closure was not called because the Once is poisoned, which we handled above.
269        // So `value` has definitely been initialized and will not be modified again.
270        unsafe { &*(*this.data.get()).value }
271    }
272}
273
274impl<T, F> LazyLock<T, F> {
275    /// Returns a mutable reference to the value if initialized. Otherwise (if uninitialized or
276    /// poisoned), returns `None`.
277    ///
278    /// # Examples
279    ///
280    /// ```
281    /// #![feature(lazy_get)]
282    ///
283    /// use std::sync::LazyLock;
284    ///
285    /// let mut lazy = LazyLock::new(|| 92);
286    ///
287    /// assert_eq!(LazyLock::get_mut(&mut lazy), None);
288    /// let _ = LazyLock::force(&lazy);
289    /// *LazyLock::get_mut(&mut lazy).unwrap() = 44;
290    /// assert_eq!(*lazy, 44);
291    /// ```
292    #[inline]
293    #[unstable(feature = "lazy_get", issue = "129333")]
294    pub fn get_mut(this: &mut LazyLock<T, F>) -> Option<&mut T> {
295        // `state()` does not perform an atomic load, so prefer it over `is_complete()`.
296        let state = this.once.state();
297        match state {
298            // SAFETY:
299            // The closure has been run successfully, so `value` has been initialized.
300            OnceExclusiveState::Complete => Some(unsafe { &mut this.data.get_mut().value }),
301            _ => None,
302        }
303    }
304
305    /// Returns a reference to the value if initialized. Otherwise (if uninitialized or poisoned),
306    /// returns `None`.
307    ///
308    /// # Examples
309    ///
310    /// ```
311    /// #![feature(lazy_get)]
312    ///
313    /// use std::sync::LazyLock;
314    ///
315    /// let lazy = LazyLock::new(|| 92);
316    ///
317    /// assert_eq!(LazyLock::get(&lazy), None);
318    /// let _ = LazyLock::force(&lazy);
319    /// assert_eq!(LazyLock::get(&lazy), Some(&92));
320    /// ```
321    #[inline]
322    #[unstable(feature = "lazy_get", issue = "129333")]
323    pub fn get(this: &LazyLock<T, F>) -> Option<&T> {
324        if this.once.is_completed() {
325            // SAFETY:
326            // The closure has been run successfully, so `value` has been initialized
327            // and will not be modified again.
328            Some(unsafe { &(*this.data.get()).value })
329        } else {
330            None
331        }
332    }
333}
334
335#[stable(feature = "lazy_cell", since = "1.80.0")]
336impl<T, F> Drop for LazyLock<T, F> {
337    fn drop(&mut self) {
338        match self.once.state() {
339            OnceExclusiveState::Incomplete => unsafe {
340                ManuallyDrop::drop(&mut self.data.get_mut().f)
341            },
342            OnceExclusiveState::Complete => unsafe {
343                ManuallyDrop::drop(&mut self.data.get_mut().value)
344            },
345            OnceExclusiveState::Poisoned => {}
346        }
347    }
348}
349
350#[stable(feature = "lazy_cell", since = "1.80.0")]
351impl<T, F: FnOnce() -> T> Deref for LazyLock<T, F> {
352    type Target = T;
353
354    /// Dereferences the value.
355    ///
356    /// This method will block the calling thread if another initialization
357    /// routine is currently running.
358    ///
359    /// # Panics
360    ///
361    /// If the initialization closure panics (the one that is passed to the [`new()`] method), the
362    /// panic is propagated to the caller, and the lock becomes poisoned. This will cause all future
363    /// accesses of the lock (via [`force()`] or a dereference) to panic.
364    ///
365    /// [`new()`]: LazyLock::new
366    /// [`force()`]: LazyLock::force
367    #[inline]
368    fn deref(&self) -> &T {
369        LazyLock::force(self)
370    }
371}
372
373#[stable(feature = "lazy_deref_mut", since = "1.89.0")]
374impl<T, F: FnOnce() -> T> DerefMut for LazyLock<T, F> {
375    /// # Panics
376    ///
377    /// If the initialization closure panics (the one that is passed to the [`new()`] method), the
378    /// panic is propagated to the caller, and the lock becomes poisoned. This will cause all future
379    /// accesses of the lock (via [`force()`] or a dereference) to panic.
380    ///
381    /// [`new()`]: LazyLock::new
382    /// [`force()`]: LazyLock::force
383    #[inline]
384    fn deref_mut(&mut self) -> &mut T {
385        LazyLock::force_mut(self)
386    }
387}
388
389#[stable(feature = "lazy_cell", since = "1.80.0")]
390impl<T: Default> Default for LazyLock<T> {
391    /// Creates a new lazy value using `Default` as the initializing function.
392    #[inline]
393    fn default() -> LazyLock<T> {
394        LazyLock::new(T::default)
395    }
396}
397
398#[stable(feature = "lazy_cell", since = "1.80.0")]
399impl<T: fmt::Debug, F> fmt::Debug for LazyLock<T, F> {
400    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
401        let mut d = f.debug_tuple("LazyLock");
402        match LazyLock::get(self) {
403            Some(v) => d.field(v),
404            None => d.field(&format_args!("<uninit>")),
405        };
406        d.finish()
407    }
408}
409
410#[cold]
411#[inline(never)]
412fn panic_poisoned() -> ! {
413    panic!("LazyLock instance has previously been poisoned")
414}
415
416// We never create a `&F` from a `&LazyLock<T, F>` so it is fine
417// to not impl `Sync` for `F`.
418#[stable(feature = "lazy_cell", since = "1.80.0")]
419unsafe impl<T: Sync + Send, F: Send> Sync for LazyLock<T, F> {}
420// auto-derived `Send` impl is OK.
421
422#[stable(feature = "lazy_cell", since = "1.80.0")]
423impl<T: RefUnwindSafe + UnwindSafe, F: UnwindSafe> RefUnwindSafe for LazyLock<T, F> {}
424#[stable(feature = "lazy_cell", since = "1.80.0")]
425impl<T: UnwindSafe, F: UnwindSafe> UnwindSafe for LazyLock<T, F> {}