std/portable-simd/crates/std_float/src/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
#![cfg_attr(
feature = "as_crate",
feature(core_intrinsics),
feature(portable_simd),
allow(internal_features)
)]
#[cfg(not(feature = "as_crate"))]
use core::simd;
#[cfg(feature = "as_crate")]
use core_simd::simd;
use core::intrinsics::simd as intrinsics;
use simd::{LaneCount, Simd, SupportedLaneCount};
#[cfg(feature = "as_crate")]
mod experimental {
pub trait Sealed {}
}
#[cfg(feature = "as_crate")]
use experimental as sealed;
use crate::sealed::Sealed;
/// This trait provides a possibly-temporary implementation of float functions
/// that may, in the absence of hardware support, canonicalize to calling an
/// operating system's `math.h` dynamically-loaded library (also known as a
/// shared object). As these conditionally require runtime support, they
/// should only appear in binaries built assuming OS support: `std`.
///
/// However, there is no reason SIMD types, in general, need OS support,
/// as for many architectures an embedded binary may simply configure that
/// support itself. This means these types must be visible in `core`
/// but have these functions available in `std`.
///
/// [`f32`] and [`f64`] achieve a similar trick by using "lang items", but
/// due to compiler limitations, it is harder to implement this approach for
/// abstract data types like [`Simd`]. From that need, this trait is born.
///
/// It is possible this trait will be replaced in some manner in the future,
/// when either the compiler or its supporting runtime functions are improved.
/// For now this trait is available to permit experimentation with SIMD float
/// operations that may lack hardware support, such as `mul_add`.
pub trait StdFloat: Sealed + Sized {
/// Elementwise fused multiply-add. Computes `(self * a) + b` with only one rounding error,
/// yielding a more accurate result than an unfused multiply-add.
///
/// Using `mul_add` *may* be more performant than an unfused multiply-add if the target
/// architecture has a dedicated `fma` CPU instruction. However, this is not always
/// true, and will be heavily dependent on designing algorithms with specific target
/// hardware in mind.
#[inline]
#[must_use = "method returns a new vector and does not mutate the original value"]
fn mul_add(self, a: Self, b: Self) -> Self {
unsafe { intrinsics::simd_fma(self, a, b) }
}
/// Produces a vector where every element has the square root value
/// of the equivalently-indexed element in `self`
#[inline]
#[must_use = "method returns a new vector and does not mutate the original value"]
fn sqrt(self) -> Self {
unsafe { intrinsics::simd_fsqrt(self) }
}
/// Produces a vector where every element has the sine of the value
/// in the equivalently-indexed element in `self`.
#[must_use = "method returns a new vector and does not mutate the original value"]
fn sin(self) -> Self;
/// Produces a vector where every element has the cosine of the value
/// in the equivalently-indexed element in `self`.
#[must_use = "method returns a new vector and does not mutate the original value"]
fn cos(self) -> Self;
/// Produces a vector where every element has the exponential (base e) of the value
/// in the equivalently-indexed element in `self`.
#[must_use = "method returns a new vector and does not mutate the original value"]
fn exp(self) -> Self;
/// Produces a vector where every element has the exponential (base 2) of the value
/// in the equivalently-indexed element in `self`.
#[must_use = "method returns a new vector and does not mutate the original value"]
fn exp2(self) -> Self;
/// Produces a vector where every element has the natural logarithm of the value
/// in the equivalently-indexed element in `self`.
#[must_use = "method returns a new vector and does not mutate the original value"]
fn ln(self) -> Self;
/// Produces a vector where every element has the logarithm with respect to an arbitrary
/// in the equivalently-indexed elements in `self` and `base`.
#[inline]
#[must_use = "method returns a new vector and does not mutate the original value"]
fn log(self, base: Self) -> Self {
unsafe { intrinsics::simd_div(self.ln(), base.ln()) }
}
/// Produces a vector where every element has the base-2 logarithm of the value
/// in the equivalently-indexed element in `self`.
#[must_use = "method returns a new vector and does not mutate the original value"]
fn log2(self) -> Self;
/// Produces a vector where every element has the base-10 logarithm of the value
/// in the equivalently-indexed element in `self`.
#[must_use = "method returns a new vector and does not mutate the original value"]
fn log10(self) -> Self;
/// Returns the smallest integer greater than or equal to each element.
#[must_use = "method returns a new vector and does not mutate the original value"]
#[inline]
fn ceil(self) -> Self {
unsafe { intrinsics::simd_ceil(self) }
}
/// Returns the largest integer value less than or equal to each element.
#[must_use = "method returns a new vector and does not mutate the original value"]
#[inline]
fn floor(self) -> Self {
unsafe { intrinsics::simd_floor(self) }
}
/// Rounds to the nearest integer value. Ties round toward zero.
#[must_use = "method returns a new vector and does not mutate the original value"]
#[inline]
fn round(self) -> Self {
unsafe { intrinsics::simd_round(self) }
}
/// Returns the floating point's integer value, with its fractional part removed.
#[must_use = "method returns a new vector and does not mutate the original value"]
#[inline]
fn trunc(self) -> Self {
unsafe { intrinsics::simd_trunc(self) }
}
/// Returns the floating point's fractional value, with its integer part removed.
#[must_use = "method returns a new vector and does not mutate the original value"]
fn fract(self) -> Self;
}
impl<const N: usize> Sealed for Simd<f32, N> where LaneCount<N>: SupportedLaneCount {}
impl<const N: usize> Sealed for Simd<f64, N> where LaneCount<N>: SupportedLaneCount {}
macro_rules! impl_float {
{
$($fn:ident: $intrinsic:ident,)*
} => {
impl<const N: usize> StdFloat for Simd<f32, N>
where
LaneCount<N>: SupportedLaneCount,
{
#[inline]
fn fract(self) -> Self {
self - self.trunc()
}
$(
#[inline]
fn $fn(self) -> Self {
unsafe { intrinsics::$intrinsic(self) }
}
)*
}
impl<const N: usize> StdFloat for Simd<f64, N>
where
LaneCount<N>: SupportedLaneCount,
{
#[inline]
fn fract(self) -> Self {
self - self.trunc()
}
$(
#[inline]
fn $fn(self) -> Self {
// https://github.com/llvm/llvm-project/issues/83729
#[cfg(target_arch = "aarch64")]
{
let mut ln = Self::splat(0f64);
for i in 0..N {
ln[i] = self[i].$fn()
}
ln
}
#[cfg(not(target_arch = "aarch64"))]
{
unsafe { intrinsics::$intrinsic(self) }
}
}
)*
}
}
}
impl_float! {
sin: simd_fsin,
cos: simd_fcos,
exp: simd_fexp,
exp2: simd_fexp2,
ln: simd_flog,
log2: simd_flog2,
log10: simd_flog10,
}