alloc/collections/
linked_list.rs

1//! A doubly-linked list with owned nodes.
2//!
3//! The `LinkedList` allows pushing and popping elements at either end
4//! in constant time.
5//!
6//! NOTE: It is almost always better to use [`Vec`] or [`VecDeque`] because
7//! array-based containers are generally faster,
8//! more memory efficient, and make better use of CPU cache.
9//!
10//! [`Vec`]: crate::vec::Vec
11//! [`VecDeque`]: super::vec_deque::VecDeque
12
13#![stable(feature = "rust1", since = "1.0.0")]
14
15use core::cmp::Ordering;
16use core::hash::{Hash, Hasher};
17use core::iter::FusedIterator;
18use core::marker::PhantomData;
19use core::ptr::NonNull;
20use core::{fmt, mem};
21
22use super::SpecExtend;
23use crate::alloc::{Allocator, Global};
24use crate::boxed::Box;
25
26#[cfg(test)]
27mod tests;
28
29/// A doubly-linked list with owned nodes.
30///
31/// The `LinkedList` allows pushing and popping elements at either end
32/// in constant time.
33///
34/// A `LinkedList` with a known list of items can be initialized from an array:
35/// ```
36/// use std::collections::LinkedList;
37///
38/// let list = LinkedList::from([1, 2, 3]);
39/// ```
40///
41/// NOTE: It is almost always better to use [`Vec`] or [`VecDeque`] because
42/// array-based containers are generally faster,
43/// more memory efficient, and make better use of CPU cache.
44///
45/// [`Vec`]: crate::vec::Vec
46/// [`VecDeque`]: super::vec_deque::VecDeque
47#[stable(feature = "rust1", since = "1.0.0")]
48#[cfg_attr(not(test), rustc_diagnostic_item = "LinkedList")]
49#[rustc_insignificant_dtor]
50pub struct LinkedList<
51    T,
52    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
53> {
54    head: Option<NonNull<Node<T>>>,
55    tail: Option<NonNull<Node<T>>>,
56    len: usize,
57    alloc: A,
58    marker: PhantomData<Box<Node<T>, A>>,
59}
60
61struct Node<T> {
62    next: Option<NonNull<Node<T>>>,
63    prev: Option<NonNull<Node<T>>>,
64    element: T,
65}
66
67/// An iterator over the elements of a `LinkedList`.
68///
69/// This `struct` is created by [`LinkedList::iter()`]. See its
70/// documentation for more.
71#[must_use = "iterators are lazy and do nothing unless consumed"]
72#[stable(feature = "rust1", since = "1.0.0")]
73pub struct Iter<'a, T: 'a> {
74    head: Option<NonNull<Node<T>>>,
75    tail: Option<NonNull<Node<T>>>,
76    len: usize,
77    marker: PhantomData<&'a Node<T>>,
78}
79
80#[stable(feature = "collection_debug", since = "1.17.0")]
81impl<T: fmt::Debug> fmt::Debug for Iter<'_, T> {
82    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
83        f.debug_tuple("Iter")
84            .field(&*mem::ManuallyDrop::new(LinkedList {
85                head: self.head,
86                tail: self.tail,
87                len: self.len,
88                alloc: Global,
89                marker: PhantomData,
90            }))
91            .field(&self.len)
92            .finish()
93    }
94}
95
96// FIXME(#26925) Remove in favor of `#[derive(Clone)]`
97#[stable(feature = "rust1", since = "1.0.0")]
98impl<T> Clone for Iter<'_, T> {
99    fn clone(&self) -> Self {
100        Iter { ..*self }
101    }
102}
103
104/// A mutable iterator over the elements of a `LinkedList`.
105///
106/// This `struct` is created by [`LinkedList::iter_mut()`]. See its
107/// documentation for more.
108#[must_use = "iterators are lazy and do nothing unless consumed"]
109#[stable(feature = "rust1", since = "1.0.0")]
110pub struct IterMut<'a, T: 'a> {
111    head: Option<NonNull<Node<T>>>,
112    tail: Option<NonNull<Node<T>>>,
113    len: usize,
114    marker: PhantomData<&'a mut Node<T>>,
115}
116
117#[stable(feature = "collection_debug", since = "1.17.0")]
118impl<T: fmt::Debug> fmt::Debug for IterMut<'_, T> {
119    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
120        f.debug_tuple("IterMut")
121            .field(&*mem::ManuallyDrop::new(LinkedList {
122                head: self.head,
123                tail: self.tail,
124                len: self.len,
125                alloc: Global,
126                marker: PhantomData,
127            }))
128            .field(&self.len)
129            .finish()
130    }
131}
132
133/// An owning iterator over the elements of a `LinkedList`.
134///
135/// This `struct` is created by the [`into_iter`] method on [`LinkedList`]
136/// (provided by the [`IntoIterator`] trait). See its documentation for more.
137///
138/// [`into_iter`]: LinkedList::into_iter
139#[derive(Clone)]
140#[stable(feature = "rust1", since = "1.0.0")]
141pub struct IntoIter<
142    T,
143    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
144> {
145    list: LinkedList<T, A>,
146}
147
148#[stable(feature = "collection_debug", since = "1.17.0")]
149impl<T: fmt::Debug, A: Allocator> fmt::Debug for IntoIter<T, A> {
150    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
151        f.debug_tuple("IntoIter").field(&self.list).finish()
152    }
153}
154
155impl<T> Node<T> {
156    fn new(element: T) -> Self {
157        Node { next: None, prev: None, element }
158    }
159
160    fn into_element<A: Allocator>(self: Box<Self, A>) -> T {
161        self.element
162    }
163}
164
165// private methods
166impl<T, A: Allocator> LinkedList<T, A> {
167    /// Adds the given node to the front of the list.
168    ///
169    /// # Safety
170    /// `node` must point to a valid node that was boxed and leaked using the list's allocator.
171    /// This method takes ownership of the node, so the pointer should not be used again.
172    #[inline]
173    unsafe fn push_front_node(&mut self, node: NonNull<Node<T>>) {
174        // This method takes care not to create mutable references to whole nodes,
175        // to maintain validity of aliasing pointers into `element`.
176        unsafe {
177            (*node.as_ptr()).next = self.head;
178            (*node.as_ptr()).prev = None;
179            let node = Some(node);
180
181            match self.head {
182                None => self.tail = node,
183                // Not creating new mutable (unique!) references overlapping `element`.
184                Some(head) => (*head.as_ptr()).prev = node,
185            }
186
187            self.head = node;
188            self.len += 1;
189        }
190    }
191
192    /// Removes and returns the node at the front of the list.
193    #[inline]
194    fn pop_front_node(&mut self) -> Option<Box<Node<T>, &A>> {
195        // This method takes care not to create mutable references to whole nodes,
196        // to maintain validity of aliasing pointers into `element`.
197        self.head.map(|node| unsafe {
198            let node = Box::from_raw_in(node.as_ptr(), &self.alloc);
199            self.head = node.next;
200
201            match self.head {
202                None => self.tail = None,
203                // Not creating new mutable (unique!) references overlapping `element`.
204                Some(head) => (*head.as_ptr()).prev = None,
205            }
206
207            self.len -= 1;
208            node
209        })
210    }
211
212    /// Adds the given node to the back of the list.
213    ///
214    /// # Safety
215    /// `node` must point to a valid node that was boxed and leaked using the list's allocator.
216    /// This method takes ownership of the node, so the pointer should not be used again.
217    #[inline]
218    unsafe fn push_back_node(&mut self, node: NonNull<Node<T>>) {
219        // This method takes care not to create mutable references to whole nodes,
220        // to maintain validity of aliasing pointers into `element`.
221        unsafe {
222            (*node.as_ptr()).next = None;
223            (*node.as_ptr()).prev = self.tail;
224            let node = Some(node);
225
226            match self.tail {
227                None => self.head = node,
228                // Not creating new mutable (unique!) references overlapping `element`.
229                Some(tail) => (*tail.as_ptr()).next = node,
230            }
231
232            self.tail = node;
233            self.len += 1;
234        }
235    }
236
237    /// Removes and returns the node at the back of the list.
238    #[inline]
239    fn pop_back_node(&mut self) -> Option<Box<Node<T>, &A>> {
240        // This method takes care not to create mutable references to whole nodes,
241        // to maintain validity of aliasing pointers into `element`.
242        self.tail.map(|node| unsafe {
243            let node = Box::from_raw_in(node.as_ptr(), &self.alloc);
244            self.tail = node.prev;
245
246            match self.tail {
247                None => self.head = None,
248                // Not creating new mutable (unique!) references overlapping `element`.
249                Some(tail) => (*tail.as_ptr()).next = None,
250            }
251
252            self.len -= 1;
253            node
254        })
255    }
256
257    /// Unlinks the specified node from the current list.
258    ///
259    /// Warning: this will not check that the provided node belongs to the current list.
260    ///
261    /// This method takes care not to create mutable references to `element`, to
262    /// maintain validity of aliasing pointers.
263    #[inline]
264    unsafe fn unlink_node(&mut self, mut node: NonNull<Node<T>>) {
265        let node = unsafe { node.as_mut() }; // this one is ours now, we can create an &mut.
266
267        // Not creating new mutable (unique!) references overlapping `element`.
268        match node.prev {
269            Some(prev) => unsafe { (*prev.as_ptr()).next = node.next },
270            // this node is the head node
271            None => self.head = node.next,
272        };
273
274        match node.next {
275            Some(next) => unsafe { (*next.as_ptr()).prev = node.prev },
276            // this node is the tail node
277            None => self.tail = node.prev,
278        };
279
280        self.len -= 1;
281    }
282
283    /// Splices a series of nodes between two existing nodes.
284    ///
285    /// Warning: this will not check that the provided node belongs to the two existing lists.
286    #[inline]
287    unsafe fn splice_nodes(
288        &mut self,
289        existing_prev: Option<NonNull<Node<T>>>,
290        existing_next: Option<NonNull<Node<T>>>,
291        mut splice_start: NonNull<Node<T>>,
292        mut splice_end: NonNull<Node<T>>,
293        splice_length: usize,
294    ) {
295        // This method takes care not to create multiple mutable references to whole nodes at the same time,
296        // to maintain validity of aliasing pointers into `element`.
297        if let Some(mut existing_prev) = existing_prev {
298            unsafe {
299                existing_prev.as_mut().next = Some(splice_start);
300            }
301        } else {
302            self.head = Some(splice_start);
303        }
304        if let Some(mut existing_next) = existing_next {
305            unsafe {
306                existing_next.as_mut().prev = Some(splice_end);
307            }
308        } else {
309            self.tail = Some(splice_end);
310        }
311        unsafe {
312            splice_start.as_mut().prev = existing_prev;
313            splice_end.as_mut().next = existing_next;
314        }
315
316        self.len += splice_length;
317    }
318
319    /// Detaches all nodes from a linked list as a series of nodes.
320    #[inline]
321    fn detach_all_nodes(mut self) -> Option<(NonNull<Node<T>>, NonNull<Node<T>>, usize)> {
322        let head = self.head.take();
323        let tail = self.tail.take();
324        let len = mem::replace(&mut self.len, 0);
325        if let Some(head) = head {
326            // SAFETY: In a LinkedList, either both the head and tail are None because
327            // the list is empty, or both head and tail are Some because the list is populated.
328            // Since we have verified the head is Some, we are sure the tail is Some too.
329            let tail = unsafe { tail.unwrap_unchecked() };
330            Some((head, tail, len))
331        } else {
332            None
333        }
334    }
335
336    #[inline]
337    unsafe fn split_off_before_node(
338        &mut self,
339        split_node: Option<NonNull<Node<T>>>,
340        at: usize,
341    ) -> Self
342    where
343        A: Clone,
344    {
345        // The split node is the new head node of the second part
346        if let Some(mut split_node) = split_node {
347            let first_part_head;
348            let first_part_tail;
349            unsafe {
350                first_part_tail = split_node.as_mut().prev.take();
351            }
352            if let Some(mut tail) = first_part_tail {
353                unsafe {
354                    tail.as_mut().next = None;
355                }
356                first_part_head = self.head;
357            } else {
358                first_part_head = None;
359            }
360
361            let first_part = LinkedList {
362                head: first_part_head,
363                tail: first_part_tail,
364                len: at,
365                alloc: self.alloc.clone(),
366                marker: PhantomData,
367            };
368
369            // Fix the head ptr of the second part
370            self.head = Some(split_node);
371            self.len = self.len - at;
372
373            first_part
374        } else {
375            mem::replace(self, LinkedList::new_in(self.alloc.clone()))
376        }
377    }
378
379    #[inline]
380    unsafe fn split_off_after_node(
381        &mut self,
382        split_node: Option<NonNull<Node<T>>>,
383        at: usize,
384    ) -> Self
385    where
386        A: Clone,
387    {
388        // The split node is the new tail node of the first part and owns
389        // the head of the second part.
390        if let Some(mut split_node) = split_node {
391            let second_part_head;
392            let second_part_tail;
393            unsafe {
394                second_part_head = split_node.as_mut().next.take();
395            }
396            if let Some(mut head) = second_part_head {
397                unsafe {
398                    head.as_mut().prev = None;
399                }
400                second_part_tail = self.tail;
401            } else {
402                second_part_tail = None;
403            }
404
405            let second_part = LinkedList {
406                head: second_part_head,
407                tail: second_part_tail,
408                len: self.len - at,
409                alloc: self.alloc.clone(),
410                marker: PhantomData,
411            };
412
413            // Fix the tail ptr of the first part
414            self.tail = Some(split_node);
415            self.len = at;
416
417            second_part
418        } else {
419            mem::replace(self, LinkedList::new_in(self.alloc.clone()))
420        }
421    }
422}
423
424#[stable(feature = "rust1", since = "1.0.0")]
425impl<T> Default for LinkedList<T> {
426    /// Creates an empty `LinkedList<T>`.
427    #[inline]
428    fn default() -> Self {
429        Self::new()
430    }
431}
432
433impl<T> LinkedList<T> {
434    /// Creates an empty `LinkedList`.
435    ///
436    /// # Examples
437    ///
438    /// ```
439    /// use std::collections::LinkedList;
440    ///
441    /// let list: LinkedList<u32> = LinkedList::new();
442    /// ```
443    #[inline]
444    #[rustc_const_stable(feature = "const_linked_list_new", since = "1.39.0")]
445    #[stable(feature = "rust1", since = "1.0.0")]
446    #[must_use]
447    pub const fn new() -> Self {
448        LinkedList { head: None, tail: None, len: 0, alloc: Global, marker: PhantomData }
449    }
450
451    /// Moves all elements from `other` to the end of the list.
452    ///
453    /// This reuses all the nodes from `other` and moves them into `self`. After
454    /// this operation, `other` becomes empty.
455    ///
456    /// This operation should compute in *O*(1) time and *O*(1) memory.
457    ///
458    /// # Examples
459    ///
460    /// ```
461    /// use std::collections::LinkedList;
462    ///
463    /// let mut list1 = LinkedList::new();
464    /// list1.push_back('a');
465    ///
466    /// let mut list2 = LinkedList::new();
467    /// list2.push_back('b');
468    /// list2.push_back('c');
469    ///
470    /// list1.append(&mut list2);
471    ///
472    /// let mut iter = list1.iter();
473    /// assert_eq!(iter.next(), Some(&'a'));
474    /// assert_eq!(iter.next(), Some(&'b'));
475    /// assert_eq!(iter.next(), Some(&'c'));
476    /// assert!(iter.next().is_none());
477    ///
478    /// assert!(list2.is_empty());
479    /// ```
480    #[stable(feature = "rust1", since = "1.0.0")]
481    pub fn append(&mut self, other: &mut Self) {
482        match self.tail {
483            None => mem::swap(self, other),
484            Some(mut tail) => {
485                // `as_mut` is okay here because we have exclusive access to the entirety
486                // of both lists.
487                if let Some(mut other_head) = other.head.take() {
488                    unsafe {
489                        tail.as_mut().next = Some(other_head);
490                        other_head.as_mut().prev = Some(tail);
491                    }
492
493                    self.tail = other.tail.take();
494                    self.len += mem::replace(&mut other.len, 0);
495                }
496            }
497        }
498    }
499}
500
501impl<T, A: Allocator> LinkedList<T, A> {
502    /// Constructs an empty `LinkedList<T, A>`.
503    ///
504    /// # Examples
505    ///
506    /// ```
507    /// #![feature(allocator_api)]
508    ///
509    /// use std::alloc::System;
510    /// use std::collections::LinkedList;
511    ///
512    /// let list: LinkedList<u32, _> = LinkedList::new_in(System);
513    /// ```
514    #[inline]
515    #[unstable(feature = "allocator_api", issue = "32838")]
516    pub const fn new_in(alloc: A) -> Self {
517        LinkedList { head: None, tail: None, len: 0, alloc, marker: PhantomData }
518    }
519    /// Provides a forward iterator.
520    ///
521    /// # Examples
522    ///
523    /// ```
524    /// use std::collections::LinkedList;
525    ///
526    /// let mut list: LinkedList<u32> = LinkedList::new();
527    ///
528    /// list.push_back(0);
529    /// list.push_back(1);
530    /// list.push_back(2);
531    ///
532    /// let mut iter = list.iter();
533    /// assert_eq!(iter.next(), Some(&0));
534    /// assert_eq!(iter.next(), Some(&1));
535    /// assert_eq!(iter.next(), Some(&2));
536    /// assert_eq!(iter.next(), None);
537    /// ```
538    #[inline]
539    #[stable(feature = "rust1", since = "1.0.0")]
540    pub fn iter(&self) -> Iter<'_, T> {
541        Iter { head: self.head, tail: self.tail, len: self.len, marker: PhantomData }
542    }
543
544    /// Provides a forward iterator with mutable references.
545    ///
546    /// # Examples
547    ///
548    /// ```
549    /// use std::collections::LinkedList;
550    ///
551    /// let mut list: LinkedList<u32> = LinkedList::new();
552    ///
553    /// list.push_back(0);
554    /// list.push_back(1);
555    /// list.push_back(2);
556    ///
557    /// for element in list.iter_mut() {
558    ///     *element += 10;
559    /// }
560    ///
561    /// let mut iter = list.iter();
562    /// assert_eq!(iter.next(), Some(&10));
563    /// assert_eq!(iter.next(), Some(&11));
564    /// assert_eq!(iter.next(), Some(&12));
565    /// assert_eq!(iter.next(), None);
566    /// ```
567    #[inline]
568    #[stable(feature = "rust1", since = "1.0.0")]
569    pub fn iter_mut(&mut self) -> IterMut<'_, T> {
570        IterMut { head: self.head, tail: self.tail, len: self.len, marker: PhantomData }
571    }
572
573    /// Provides a cursor at the front element.
574    ///
575    /// The cursor is pointing to the "ghost" non-element if the list is empty.
576    #[inline]
577    #[must_use]
578    #[unstable(feature = "linked_list_cursors", issue = "58533")]
579    pub fn cursor_front(&self) -> Cursor<'_, T, A> {
580        Cursor { index: 0, current: self.head, list: self }
581    }
582
583    /// Provides a cursor with editing operations at the front element.
584    ///
585    /// The cursor is pointing to the "ghost" non-element if the list is empty.
586    #[inline]
587    #[must_use]
588    #[unstable(feature = "linked_list_cursors", issue = "58533")]
589    pub fn cursor_front_mut(&mut self) -> CursorMut<'_, T, A> {
590        CursorMut { index: 0, current: self.head, list: self }
591    }
592
593    /// Provides a cursor at the back element.
594    ///
595    /// The cursor is pointing to the "ghost" non-element if the list is empty.
596    #[inline]
597    #[must_use]
598    #[unstable(feature = "linked_list_cursors", issue = "58533")]
599    pub fn cursor_back(&self) -> Cursor<'_, T, A> {
600        Cursor { index: self.len.checked_sub(1).unwrap_or(0), current: self.tail, list: self }
601    }
602
603    /// Provides a cursor with editing operations at the back element.
604    ///
605    /// The cursor is pointing to the "ghost" non-element if the list is empty.
606    #[inline]
607    #[must_use]
608    #[unstable(feature = "linked_list_cursors", issue = "58533")]
609    pub fn cursor_back_mut(&mut self) -> CursorMut<'_, T, A> {
610        CursorMut { index: self.len.checked_sub(1).unwrap_or(0), current: self.tail, list: self }
611    }
612
613    /// Returns `true` if the `LinkedList` is empty.
614    ///
615    /// This operation should compute in *O*(1) time.
616    ///
617    /// # Examples
618    ///
619    /// ```
620    /// use std::collections::LinkedList;
621    ///
622    /// let mut dl = LinkedList::new();
623    /// assert!(dl.is_empty());
624    ///
625    /// dl.push_front("foo");
626    /// assert!(!dl.is_empty());
627    /// ```
628    #[inline]
629    #[must_use]
630    #[stable(feature = "rust1", since = "1.0.0")]
631    pub fn is_empty(&self) -> bool {
632        self.head.is_none()
633    }
634
635    /// Returns the length of the `LinkedList`.
636    ///
637    /// This operation should compute in *O*(1) time.
638    ///
639    /// # Examples
640    ///
641    /// ```
642    /// use std::collections::LinkedList;
643    ///
644    /// let mut dl = LinkedList::new();
645    ///
646    /// dl.push_front(2);
647    /// assert_eq!(dl.len(), 1);
648    ///
649    /// dl.push_front(1);
650    /// assert_eq!(dl.len(), 2);
651    ///
652    /// dl.push_back(3);
653    /// assert_eq!(dl.len(), 3);
654    /// ```
655    #[inline]
656    #[must_use]
657    #[stable(feature = "rust1", since = "1.0.0")]
658    #[rustc_confusables("length", "size")]
659    pub fn len(&self) -> usize {
660        self.len
661    }
662
663    /// Removes all elements from the `LinkedList`.
664    ///
665    /// This operation should compute in *O*(*n*) time.
666    ///
667    /// # Examples
668    ///
669    /// ```
670    /// use std::collections::LinkedList;
671    ///
672    /// let mut dl = LinkedList::new();
673    ///
674    /// dl.push_front(2);
675    /// dl.push_front(1);
676    /// assert_eq!(dl.len(), 2);
677    /// assert_eq!(dl.front(), Some(&1));
678    ///
679    /// dl.clear();
680    /// assert_eq!(dl.len(), 0);
681    /// assert_eq!(dl.front(), None);
682    /// ```
683    #[inline]
684    #[stable(feature = "rust1", since = "1.0.0")]
685    pub fn clear(&mut self) {
686        // We need to drop the nodes while keeping self.alloc
687        // We can do this by moving (head, tail, len) into a new list that borrows self.alloc
688        drop(LinkedList {
689            head: self.head.take(),
690            tail: self.tail.take(),
691            len: mem::take(&mut self.len),
692            alloc: &self.alloc,
693            marker: PhantomData,
694        });
695    }
696
697    /// Returns `true` if the `LinkedList` contains an element equal to the
698    /// given value.
699    ///
700    /// This operation should compute linearly in *O*(*n*) time.
701    ///
702    /// # Examples
703    ///
704    /// ```
705    /// use std::collections::LinkedList;
706    ///
707    /// let mut list: LinkedList<u32> = LinkedList::new();
708    ///
709    /// list.push_back(0);
710    /// list.push_back(1);
711    /// list.push_back(2);
712    ///
713    /// assert_eq!(list.contains(&0), true);
714    /// assert_eq!(list.contains(&10), false);
715    /// ```
716    #[stable(feature = "linked_list_contains", since = "1.12.0")]
717    pub fn contains(&self, x: &T) -> bool
718    where
719        T: PartialEq<T>,
720    {
721        self.iter().any(|e| e == x)
722    }
723
724    /// Provides a reference to the front element, or `None` if the list is
725    /// empty.
726    ///
727    /// This operation should compute in *O*(1) time.
728    ///
729    /// # Examples
730    ///
731    /// ```
732    /// use std::collections::LinkedList;
733    ///
734    /// let mut dl = LinkedList::new();
735    /// assert_eq!(dl.front(), None);
736    ///
737    /// dl.push_front(1);
738    /// assert_eq!(dl.front(), Some(&1));
739    /// ```
740    #[inline]
741    #[must_use]
742    #[stable(feature = "rust1", since = "1.0.0")]
743    #[rustc_confusables("first")]
744    pub fn front(&self) -> Option<&T> {
745        unsafe { self.head.as_ref().map(|node| &node.as_ref().element) }
746    }
747
748    /// Provides a mutable reference to the front element, or `None` if the list
749    /// is empty.
750    ///
751    /// This operation should compute in *O*(1) time.
752    ///
753    /// # Examples
754    ///
755    /// ```
756    /// use std::collections::LinkedList;
757    ///
758    /// let mut dl = LinkedList::new();
759    /// assert_eq!(dl.front(), None);
760    ///
761    /// dl.push_front(1);
762    /// assert_eq!(dl.front(), Some(&1));
763    ///
764    /// match dl.front_mut() {
765    ///     None => {},
766    ///     Some(x) => *x = 5,
767    /// }
768    /// assert_eq!(dl.front(), Some(&5));
769    /// ```
770    #[inline]
771    #[must_use]
772    #[stable(feature = "rust1", since = "1.0.0")]
773    pub fn front_mut(&mut self) -> Option<&mut T> {
774        unsafe { self.head.as_mut().map(|node| &mut node.as_mut().element) }
775    }
776
777    /// Provides a reference to the back element, or `None` if the list is
778    /// empty.
779    ///
780    /// This operation should compute in *O*(1) time.
781    ///
782    /// # Examples
783    ///
784    /// ```
785    /// use std::collections::LinkedList;
786    ///
787    /// let mut dl = LinkedList::new();
788    /// assert_eq!(dl.back(), None);
789    ///
790    /// dl.push_back(1);
791    /// assert_eq!(dl.back(), Some(&1));
792    /// ```
793    #[inline]
794    #[must_use]
795    #[stable(feature = "rust1", since = "1.0.0")]
796    pub fn back(&self) -> Option<&T> {
797        unsafe { self.tail.as_ref().map(|node| &node.as_ref().element) }
798    }
799
800    /// Provides a mutable reference to the back element, or `None` if the list
801    /// is empty.
802    ///
803    /// This operation should compute in *O*(1) time.
804    ///
805    /// # Examples
806    ///
807    /// ```
808    /// use std::collections::LinkedList;
809    ///
810    /// let mut dl = LinkedList::new();
811    /// assert_eq!(dl.back(), None);
812    ///
813    /// dl.push_back(1);
814    /// assert_eq!(dl.back(), Some(&1));
815    ///
816    /// match dl.back_mut() {
817    ///     None => {},
818    ///     Some(x) => *x = 5,
819    /// }
820    /// assert_eq!(dl.back(), Some(&5));
821    /// ```
822    #[inline]
823    #[stable(feature = "rust1", since = "1.0.0")]
824    pub fn back_mut(&mut self) -> Option<&mut T> {
825        unsafe { self.tail.as_mut().map(|node| &mut node.as_mut().element) }
826    }
827
828    /// Adds an element first in the list.
829    ///
830    /// This operation should compute in *O*(1) time.
831    ///
832    /// # Examples
833    ///
834    /// ```
835    /// use std::collections::LinkedList;
836    ///
837    /// let mut dl = LinkedList::new();
838    ///
839    /// dl.push_front(2);
840    /// assert_eq!(dl.front().unwrap(), &2);
841    ///
842    /// dl.push_front(1);
843    /// assert_eq!(dl.front().unwrap(), &1);
844    /// ```
845    #[stable(feature = "rust1", since = "1.0.0")]
846    pub fn push_front(&mut self, elt: T) {
847        let node = Box::new_in(Node::new(elt), &self.alloc);
848        let node_ptr = NonNull::from(Box::leak(node));
849        // SAFETY: node_ptr is a unique pointer to a node we boxed with self.alloc and leaked
850        unsafe {
851            self.push_front_node(node_ptr);
852        }
853    }
854
855    /// Removes the first element and returns it, or `None` if the list is
856    /// empty.
857    ///
858    /// This operation should compute in *O*(1) time.
859    ///
860    /// # Examples
861    ///
862    /// ```
863    /// use std::collections::LinkedList;
864    ///
865    /// let mut d = LinkedList::new();
866    /// assert_eq!(d.pop_front(), None);
867    ///
868    /// d.push_front(1);
869    /// d.push_front(3);
870    /// assert_eq!(d.pop_front(), Some(3));
871    /// assert_eq!(d.pop_front(), Some(1));
872    /// assert_eq!(d.pop_front(), None);
873    /// ```
874    #[stable(feature = "rust1", since = "1.0.0")]
875    pub fn pop_front(&mut self) -> Option<T> {
876        self.pop_front_node().map(Node::into_element)
877    }
878
879    /// Appends an element to the back of a list.
880    ///
881    /// This operation should compute in *O*(1) time.
882    ///
883    /// # Examples
884    ///
885    /// ```
886    /// use std::collections::LinkedList;
887    ///
888    /// let mut d = LinkedList::new();
889    /// d.push_back(1);
890    /// d.push_back(3);
891    /// assert_eq!(3, *d.back().unwrap());
892    /// ```
893    #[stable(feature = "rust1", since = "1.0.0")]
894    #[rustc_confusables("push", "append")]
895    pub fn push_back(&mut self, elt: T) {
896        let node = Box::new_in(Node::new(elt), &self.alloc);
897        let node_ptr = NonNull::from(Box::leak(node));
898        // SAFETY: node_ptr is a unique pointer to a node we boxed with self.alloc and leaked
899        unsafe {
900            self.push_back_node(node_ptr);
901        }
902    }
903
904    /// Removes the last element from a list and returns it, or `None` if
905    /// it is empty.
906    ///
907    /// This operation should compute in *O*(1) time.
908    ///
909    /// # Examples
910    ///
911    /// ```
912    /// use std::collections::LinkedList;
913    ///
914    /// let mut d = LinkedList::new();
915    /// assert_eq!(d.pop_back(), None);
916    /// d.push_back(1);
917    /// d.push_back(3);
918    /// assert_eq!(d.pop_back(), Some(3));
919    /// ```
920    #[stable(feature = "rust1", since = "1.0.0")]
921    pub fn pop_back(&mut self) -> Option<T> {
922        self.pop_back_node().map(Node::into_element)
923    }
924
925    /// Splits the list into two at the given index. Returns everything after the given index,
926    /// including the index.
927    ///
928    /// This operation should compute in *O*(*n*) time.
929    ///
930    /// # Panics
931    ///
932    /// Panics if `at > len`.
933    ///
934    /// # Examples
935    ///
936    /// ```
937    /// use std::collections::LinkedList;
938    ///
939    /// let mut d = LinkedList::new();
940    ///
941    /// d.push_front(1);
942    /// d.push_front(2);
943    /// d.push_front(3);
944    ///
945    /// let mut split = d.split_off(2);
946    ///
947    /// assert_eq!(split.pop_front(), Some(1));
948    /// assert_eq!(split.pop_front(), None);
949    /// ```
950    #[stable(feature = "rust1", since = "1.0.0")]
951    pub fn split_off(&mut self, at: usize) -> LinkedList<T, A>
952    where
953        A: Clone,
954    {
955        let len = self.len();
956        assert!(at <= len, "Cannot split off at a nonexistent index");
957        if at == 0 {
958            return mem::replace(self, Self::new_in(self.alloc.clone()));
959        } else if at == len {
960            return Self::new_in(self.alloc.clone());
961        }
962
963        // Below, we iterate towards the `i-1`th node, either from the start or the end,
964        // depending on which would be faster.
965        let split_node = if at - 1 <= len - 1 - (at - 1) {
966            let mut iter = self.iter_mut();
967            // instead of skipping using .skip() (which creates a new struct),
968            // we skip manually so we can access the head field without
969            // depending on implementation details of Skip
970            for _ in 0..at - 1 {
971                iter.next();
972            }
973            iter.head
974        } else {
975            // better off starting from the end
976            let mut iter = self.iter_mut();
977            for _ in 0..len - 1 - (at - 1) {
978                iter.next_back();
979            }
980            iter.tail
981        };
982        unsafe { self.split_off_after_node(split_node, at) }
983    }
984
985    /// Removes the element at the given index and returns it.
986    ///
987    /// This operation should compute in *O*(*n*) time.
988    ///
989    /// # Panics
990    /// Panics if at >= len
991    ///
992    /// # Examples
993    ///
994    /// ```
995    /// #![feature(linked_list_remove)]
996    /// use std::collections::LinkedList;
997    ///
998    /// let mut d = LinkedList::new();
999    ///
1000    /// d.push_front(1);
1001    /// d.push_front(2);
1002    /// d.push_front(3);
1003    ///
1004    /// assert_eq!(d.remove(1), 2);
1005    /// assert_eq!(d.remove(0), 3);
1006    /// assert_eq!(d.remove(0), 1);
1007    /// ```
1008    #[unstable(feature = "linked_list_remove", issue = "69210")]
1009    #[rustc_confusables("delete", "take")]
1010    pub fn remove(&mut self, at: usize) -> T {
1011        let len = self.len();
1012        assert!(at < len, "Cannot remove at an index outside of the list bounds");
1013
1014        // Below, we iterate towards the node at the given index, either from
1015        // the start or the end, depending on which would be faster.
1016        let offset_from_end = len - at - 1;
1017        if at <= offset_from_end {
1018            let mut cursor = self.cursor_front_mut();
1019            for _ in 0..at {
1020                cursor.move_next();
1021            }
1022            cursor.remove_current().unwrap()
1023        } else {
1024            let mut cursor = self.cursor_back_mut();
1025            for _ in 0..offset_from_end {
1026                cursor.move_prev();
1027            }
1028            cursor.remove_current().unwrap()
1029        }
1030    }
1031
1032    /// Retains only the elements specified by the predicate.
1033    ///
1034    /// In other words, remove all elements `e` for which `f(&e)` returns false.
1035    /// This method operates in place, visiting each element exactly once in the
1036    /// original order, and preserves the order of the retained elements.
1037    ///
1038    /// # Examples
1039    ///
1040    /// ```
1041    /// #![feature(linked_list_retain)]
1042    /// use std::collections::LinkedList;
1043    ///
1044    /// let mut d = LinkedList::new();
1045    ///
1046    /// d.push_front(1);
1047    /// d.push_front(2);
1048    /// d.push_front(3);
1049    ///
1050    /// d.retain(|&x| x % 2 == 0);
1051    ///
1052    /// assert_eq!(d.pop_front(), Some(2));
1053    /// assert_eq!(d.pop_front(), None);
1054    /// ```
1055    ///
1056    /// Because the elements are visited exactly once in the original order,
1057    /// external state may be used to decide which elements to keep.
1058    ///
1059    /// ```
1060    /// #![feature(linked_list_retain)]
1061    /// use std::collections::LinkedList;
1062    ///
1063    /// let mut d = LinkedList::new();
1064    ///
1065    /// d.push_front(1);
1066    /// d.push_front(2);
1067    /// d.push_front(3);
1068    ///
1069    /// let keep = [false, true, false];
1070    /// let mut iter = keep.iter();
1071    /// d.retain(|_| *iter.next().unwrap());
1072    /// assert_eq!(d.pop_front(), Some(2));
1073    /// assert_eq!(d.pop_front(), None);
1074    /// ```
1075    #[unstable(feature = "linked_list_retain", issue = "114135")]
1076    pub fn retain<F>(&mut self, mut f: F)
1077    where
1078        F: FnMut(&T) -> bool,
1079    {
1080        self.retain_mut(|elem| f(elem));
1081    }
1082
1083    /// Retains only the elements specified by the predicate.
1084    ///
1085    /// In other words, remove all elements `e` for which `f(&mut e)` returns false.
1086    /// This method operates in place, visiting each element exactly once in the
1087    /// original order, and preserves the order of the retained elements.
1088    ///
1089    /// # Examples
1090    ///
1091    /// ```
1092    /// #![feature(linked_list_retain)]
1093    /// use std::collections::LinkedList;
1094    ///
1095    /// let mut d = LinkedList::new();
1096    ///
1097    /// d.push_front(1);
1098    /// d.push_front(2);
1099    /// d.push_front(3);
1100    ///
1101    /// d.retain_mut(|x| if *x % 2 == 0 {
1102    ///     *x += 1;
1103    ///     true
1104    /// } else {
1105    ///     false
1106    /// });
1107    /// assert_eq!(d.pop_front(), Some(3));
1108    /// assert_eq!(d.pop_front(), None);
1109    /// ```
1110    #[unstable(feature = "linked_list_retain", issue = "114135")]
1111    pub fn retain_mut<F>(&mut self, mut f: F)
1112    where
1113        F: FnMut(&mut T) -> bool,
1114    {
1115        let mut cursor = self.cursor_front_mut();
1116        while let Some(node) = cursor.current() {
1117            if !f(node) {
1118                cursor.remove_current().unwrap();
1119            } else {
1120                cursor.move_next();
1121            }
1122        }
1123    }
1124
1125    /// Creates an iterator which uses a closure to determine if an element should be removed.
1126    ///
1127    /// If the closure returns true, then the element is removed and yielded.
1128    /// If the closure returns false, the element will remain in the list and will not be yielded
1129    /// by the iterator.
1130    ///
1131    /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating
1132    /// or the iteration short-circuits, then the remaining elements will be retained.
1133    /// Use `extract_if().for_each(drop)` if you do not need the returned iterator.
1134    ///
1135    /// Note that `extract_if` lets you mutate every element in the filter closure, regardless of
1136    /// whether you choose to keep or remove it.
1137    ///
1138    /// # Examples
1139    ///
1140    /// Splitting a list into evens and odds, reusing the original list:
1141    ///
1142    /// ```
1143    /// #![feature(extract_if)]
1144    /// use std::collections::LinkedList;
1145    ///
1146    /// let mut numbers: LinkedList<u32> = LinkedList::new();
1147    /// numbers.extend(&[1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15]);
1148    ///
1149    /// let evens = numbers.extract_if(|x| *x % 2 == 0).collect::<LinkedList<_>>();
1150    /// let odds = numbers;
1151    ///
1152    /// assert_eq!(evens.into_iter().collect::<Vec<_>>(), vec![2, 4, 6, 8, 14]);
1153    /// assert_eq!(odds.into_iter().collect::<Vec<_>>(), vec![1, 3, 5, 9, 11, 13, 15]);
1154    /// ```
1155    #[unstable(feature = "extract_if", reason = "recently added", issue = "43244")]
1156    pub fn extract_if<F>(&mut self, filter: F) -> ExtractIf<'_, T, F, A>
1157    where
1158        F: FnMut(&mut T) -> bool,
1159    {
1160        // avoid borrow issues.
1161        let it = self.head;
1162        let old_len = self.len;
1163
1164        ExtractIf { list: self, it, pred: filter, idx: 0, old_len }
1165    }
1166}
1167
1168#[stable(feature = "rust1", since = "1.0.0")]
1169unsafe impl<#[may_dangle] T, A: Allocator> Drop for LinkedList<T, A> {
1170    fn drop(&mut self) {
1171        struct DropGuard<'a, T, A: Allocator>(&'a mut LinkedList<T, A>);
1172
1173        impl<'a, T, A: Allocator> Drop for DropGuard<'a, T, A> {
1174            fn drop(&mut self) {
1175                // Continue the same loop we do below. This only runs when a destructor has
1176                // panicked. If another one panics this will abort.
1177                while self.0.pop_front_node().is_some() {}
1178            }
1179        }
1180
1181        // Wrap self so that if a destructor panics, we can try to keep looping
1182        let guard = DropGuard(self);
1183        while guard.0.pop_front_node().is_some() {}
1184        mem::forget(guard);
1185    }
1186}
1187
1188#[stable(feature = "rust1", since = "1.0.0")]
1189impl<'a, T> Iterator for Iter<'a, T> {
1190    type Item = &'a T;
1191
1192    #[inline]
1193    fn next(&mut self) -> Option<&'a T> {
1194        if self.len == 0 {
1195            None
1196        } else {
1197            self.head.map(|node| unsafe {
1198                // Need an unbound lifetime to get 'a
1199                let node = &*node.as_ptr();
1200                self.len -= 1;
1201                self.head = node.next;
1202                &node.element
1203            })
1204        }
1205    }
1206
1207    #[inline]
1208    fn size_hint(&self) -> (usize, Option<usize>) {
1209        (self.len, Some(self.len))
1210    }
1211
1212    #[inline]
1213    fn last(mut self) -> Option<&'a T> {
1214        self.next_back()
1215    }
1216}
1217
1218#[stable(feature = "rust1", since = "1.0.0")]
1219impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
1220    #[inline]
1221    fn next_back(&mut self) -> Option<&'a T> {
1222        if self.len == 0 {
1223            None
1224        } else {
1225            self.tail.map(|node| unsafe {
1226                // Need an unbound lifetime to get 'a
1227                let node = &*node.as_ptr();
1228                self.len -= 1;
1229                self.tail = node.prev;
1230                &node.element
1231            })
1232        }
1233    }
1234}
1235
1236#[stable(feature = "rust1", since = "1.0.0")]
1237impl<T> ExactSizeIterator for Iter<'_, T> {}
1238
1239#[stable(feature = "fused", since = "1.26.0")]
1240impl<T> FusedIterator for Iter<'_, T> {}
1241
1242#[stable(feature = "default_iters", since = "1.70.0")]
1243impl<T> Default for Iter<'_, T> {
1244    /// Creates an empty `linked_list::Iter`.
1245    ///
1246    /// ```
1247    /// # use std::collections::linked_list;
1248    /// let iter: linked_list::Iter<'_, u8> = Default::default();
1249    /// assert_eq!(iter.len(), 0);
1250    /// ```
1251    fn default() -> Self {
1252        Iter { head: None, tail: None, len: 0, marker: Default::default() }
1253    }
1254}
1255
1256#[stable(feature = "rust1", since = "1.0.0")]
1257impl<'a, T> Iterator for IterMut<'a, T> {
1258    type Item = &'a mut T;
1259
1260    #[inline]
1261    fn next(&mut self) -> Option<&'a mut T> {
1262        if self.len == 0 {
1263            None
1264        } else {
1265            self.head.map(|node| unsafe {
1266                // Need an unbound lifetime to get 'a
1267                let node = &mut *node.as_ptr();
1268                self.len -= 1;
1269                self.head = node.next;
1270                &mut node.element
1271            })
1272        }
1273    }
1274
1275    #[inline]
1276    fn size_hint(&self) -> (usize, Option<usize>) {
1277        (self.len, Some(self.len))
1278    }
1279
1280    #[inline]
1281    fn last(mut self) -> Option<&'a mut T> {
1282        self.next_back()
1283    }
1284}
1285
1286#[stable(feature = "rust1", since = "1.0.0")]
1287impl<'a, T> DoubleEndedIterator for IterMut<'a, T> {
1288    #[inline]
1289    fn next_back(&mut self) -> Option<&'a mut T> {
1290        if self.len == 0 {
1291            None
1292        } else {
1293            self.tail.map(|node| unsafe {
1294                // Need an unbound lifetime to get 'a
1295                let node = &mut *node.as_ptr();
1296                self.len -= 1;
1297                self.tail = node.prev;
1298                &mut node.element
1299            })
1300        }
1301    }
1302}
1303
1304#[stable(feature = "rust1", since = "1.0.0")]
1305impl<T> ExactSizeIterator for IterMut<'_, T> {}
1306
1307#[stable(feature = "fused", since = "1.26.0")]
1308impl<T> FusedIterator for IterMut<'_, T> {}
1309
1310#[stable(feature = "default_iters", since = "1.70.0")]
1311impl<T> Default for IterMut<'_, T> {
1312    fn default() -> Self {
1313        IterMut { head: None, tail: None, len: 0, marker: Default::default() }
1314    }
1315}
1316
1317/// A cursor over a `LinkedList`.
1318///
1319/// A `Cursor` is like an iterator, except that it can freely seek back-and-forth.
1320///
1321/// Cursors always rest between two elements in the list, and index in a logically circular way.
1322/// To accommodate this, there is a "ghost" non-element that yields `None` between the head and
1323/// tail of the list.
1324///
1325/// When created, cursors start at the front of the list, or the "ghost" non-element if the list is empty.
1326#[unstable(feature = "linked_list_cursors", issue = "58533")]
1327pub struct Cursor<
1328    'a,
1329    T: 'a,
1330    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
1331> {
1332    index: usize,
1333    current: Option<NonNull<Node<T>>>,
1334    list: &'a LinkedList<T, A>,
1335}
1336
1337#[unstable(feature = "linked_list_cursors", issue = "58533")]
1338impl<T, A: Allocator> Clone for Cursor<'_, T, A> {
1339    fn clone(&self) -> Self {
1340        let Cursor { index, current, list } = *self;
1341        Cursor { index, current, list }
1342    }
1343}
1344
1345#[unstable(feature = "linked_list_cursors", issue = "58533")]
1346impl<T: fmt::Debug, A: Allocator> fmt::Debug for Cursor<'_, T, A> {
1347    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1348        f.debug_tuple("Cursor").field(&self.list).field(&self.index()).finish()
1349    }
1350}
1351
1352/// A cursor over a `LinkedList` with editing operations.
1353///
1354/// A `Cursor` is like an iterator, except that it can freely seek back-and-forth, and can
1355/// safely mutate the list during iteration. This is because the lifetime of its yielded
1356/// references is tied to its own lifetime, instead of just the underlying list. This means
1357/// cursors cannot yield multiple elements at once.
1358///
1359/// Cursors always rest between two elements in the list, and index in a logically circular way.
1360/// To accommodate this, there is a "ghost" non-element that yields `None` between the head and
1361/// tail of the list.
1362#[unstable(feature = "linked_list_cursors", issue = "58533")]
1363pub struct CursorMut<
1364    'a,
1365    T: 'a,
1366    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
1367> {
1368    index: usize,
1369    current: Option<NonNull<Node<T>>>,
1370    list: &'a mut LinkedList<T, A>,
1371}
1372
1373#[unstable(feature = "linked_list_cursors", issue = "58533")]
1374impl<T: fmt::Debug, A: Allocator> fmt::Debug for CursorMut<'_, T, A> {
1375    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1376        f.debug_tuple("CursorMut").field(&self.list).field(&self.index()).finish()
1377    }
1378}
1379
1380impl<'a, T, A: Allocator> Cursor<'a, T, A> {
1381    /// Returns the cursor position index within the `LinkedList`.
1382    ///
1383    /// This returns `None` if the cursor is currently pointing to the
1384    /// "ghost" non-element.
1385    #[must_use]
1386    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1387    pub fn index(&self) -> Option<usize> {
1388        let _ = self.current?;
1389        Some(self.index)
1390    }
1391
1392    /// Moves the cursor to the next element of the `LinkedList`.
1393    ///
1394    /// If the cursor is pointing to the "ghost" non-element then this will move it to
1395    /// the first element of the `LinkedList`. If it is pointing to the last
1396    /// element of the `LinkedList` then this will move it to the "ghost" non-element.
1397    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1398    pub fn move_next(&mut self) {
1399        match self.current.take() {
1400            // We had no current element; the cursor was sitting at the start position
1401            // Next element should be the head of the list
1402            None => {
1403                self.current = self.list.head;
1404                self.index = 0;
1405            }
1406            // We had a previous element, so let's go to its next
1407            Some(current) => unsafe {
1408                self.current = current.as_ref().next;
1409                self.index += 1;
1410            },
1411        }
1412    }
1413
1414    /// Moves the cursor to the previous element of the `LinkedList`.
1415    ///
1416    /// If the cursor is pointing to the "ghost" non-element then this will move it to
1417    /// the last element of the `LinkedList`. If it is pointing to the first
1418    /// element of the `LinkedList` then this will move it to the "ghost" non-element.
1419    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1420    pub fn move_prev(&mut self) {
1421        match self.current.take() {
1422            // No current. We're at the start of the list. Yield None and jump to the end.
1423            None => {
1424                self.current = self.list.tail;
1425                self.index = self.list.len().checked_sub(1).unwrap_or(0);
1426            }
1427            // Have a prev. Yield it and go to the previous element.
1428            Some(current) => unsafe {
1429                self.current = current.as_ref().prev;
1430                self.index = self.index.checked_sub(1).unwrap_or_else(|| self.list.len());
1431            },
1432        }
1433    }
1434
1435    /// Returns a reference to the element that the cursor is currently
1436    /// pointing to.
1437    ///
1438    /// This returns `None` if the cursor is currently pointing to the
1439    /// "ghost" non-element.
1440    #[must_use]
1441    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1442    pub fn current(&self) -> Option<&'a T> {
1443        unsafe { self.current.map(|current| &(*current.as_ptr()).element) }
1444    }
1445
1446    /// Returns a reference to the next element.
1447    ///
1448    /// If the cursor is pointing to the "ghost" non-element then this returns
1449    /// the first element of the `LinkedList`. If it is pointing to the last
1450    /// element of the `LinkedList` then this returns `None`.
1451    #[must_use]
1452    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1453    pub fn peek_next(&self) -> Option<&'a T> {
1454        unsafe {
1455            let next = match self.current {
1456                None => self.list.head,
1457                Some(current) => current.as_ref().next,
1458            };
1459            next.map(|next| &(*next.as_ptr()).element)
1460        }
1461    }
1462
1463    /// Returns a reference to the previous element.
1464    ///
1465    /// If the cursor is pointing to the "ghost" non-element then this returns
1466    /// the last element of the `LinkedList`. If it is pointing to the first
1467    /// element of the `LinkedList` then this returns `None`.
1468    #[must_use]
1469    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1470    pub fn peek_prev(&self) -> Option<&'a T> {
1471        unsafe {
1472            let prev = match self.current {
1473                None => self.list.tail,
1474                Some(current) => current.as_ref().prev,
1475            };
1476            prev.map(|prev| &(*prev.as_ptr()).element)
1477        }
1478    }
1479
1480    /// Provides a reference to the front element of the cursor's parent list,
1481    /// or None if the list is empty.
1482    #[must_use]
1483    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1484    #[rustc_confusables("first")]
1485    pub fn front(&self) -> Option<&'a T> {
1486        self.list.front()
1487    }
1488
1489    /// Provides a reference to the back element of the cursor's parent list,
1490    /// or None if the list is empty.
1491    #[must_use]
1492    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1493    #[rustc_confusables("last")]
1494    pub fn back(&self) -> Option<&'a T> {
1495        self.list.back()
1496    }
1497
1498    /// Provides a reference to the cursor's parent list.
1499    #[must_use]
1500    #[inline(always)]
1501    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1502    pub fn as_list(&self) -> &'a LinkedList<T, A> {
1503        self.list
1504    }
1505}
1506
1507impl<'a, T, A: Allocator> CursorMut<'a, T, A> {
1508    /// Returns the cursor position index within the `LinkedList`.
1509    ///
1510    /// This returns `None` if the cursor is currently pointing to the
1511    /// "ghost" non-element.
1512    #[must_use]
1513    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1514    pub fn index(&self) -> Option<usize> {
1515        let _ = self.current?;
1516        Some(self.index)
1517    }
1518
1519    /// Moves the cursor to the next element of the `LinkedList`.
1520    ///
1521    /// If the cursor is pointing to the "ghost" non-element then this will move it to
1522    /// the first element of the `LinkedList`. If it is pointing to the last
1523    /// element of the `LinkedList` then this will move it to the "ghost" non-element.
1524    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1525    pub fn move_next(&mut self) {
1526        match self.current.take() {
1527            // We had no current element; the cursor was sitting at the start position
1528            // Next element should be the head of the list
1529            None => {
1530                self.current = self.list.head;
1531                self.index = 0;
1532            }
1533            // We had a previous element, so let's go to its next
1534            Some(current) => unsafe {
1535                self.current = current.as_ref().next;
1536                self.index += 1;
1537            },
1538        }
1539    }
1540
1541    /// Moves the cursor to the previous element of the `LinkedList`.
1542    ///
1543    /// If the cursor is pointing to the "ghost" non-element then this will move it to
1544    /// the last element of the `LinkedList`. If it is pointing to the first
1545    /// element of the `LinkedList` then this will move it to the "ghost" non-element.
1546    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1547    pub fn move_prev(&mut self) {
1548        match self.current.take() {
1549            // No current. We're at the start of the list. Yield None and jump to the end.
1550            None => {
1551                self.current = self.list.tail;
1552                self.index = self.list.len().checked_sub(1).unwrap_or(0);
1553            }
1554            // Have a prev. Yield it and go to the previous element.
1555            Some(current) => unsafe {
1556                self.current = current.as_ref().prev;
1557                self.index = self.index.checked_sub(1).unwrap_or_else(|| self.list.len());
1558            },
1559        }
1560    }
1561
1562    /// Returns a reference to the element that the cursor is currently
1563    /// pointing to.
1564    ///
1565    /// This returns `None` if the cursor is currently pointing to the
1566    /// "ghost" non-element.
1567    #[must_use]
1568    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1569    pub fn current(&mut self) -> Option<&mut T> {
1570        unsafe { self.current.map(|current| &mut (*current.as_ptr()).element) }
1571    }
1572
1573    /// Returns a reference to the next element.
1574    ///
1575    /// If the cursor is pointing to the "ghost" non-element then this returns
1576    /// the first element of the `LinkedList`. If it is pointing to the last
1577    /// element of the `LinkedList` then this returns `None`.
1578    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1579    pub fn peek_next(&mut self) -> Option<&mut T> {
1580        unsafe {
1581            let next = match self.current {
1582                None => self.list.head,
1583                Some(current) => current.as_ref().next,
1584            };
1585            next.map(|next| &mut (*next.as_ptr()).element)
1586        }
1587    }
1588
1589    /// Returns a reference to the previous element.
1590    ///
1591    /// If the cursor is pointing to the "ghost" non-element then this returns
1592    /// the last element of the `LinkedList`. If it is pointing to the first
1593    /// element of the `LinkedList` then this returns `None`.
1594    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1595    pub fn peek_prev(&mut self) -> Option<&mut T> {
1596        unsafe {
1597            let prev = match self.current {
1598                None => self.list.tail,
1599                Some(current) => current.as_ref().prev,
1600            };
1601            prev.map(|prev| &mut (*prev.as_ptr()).element)
1602        }
1603    }
1604
1605    /// Returns a read-only cursor pointing to the current element.
1606    ///
1607    /// The lifetime of the returned `Cursor` is bound to that of the
1608    /// `CursorMut`, which means it cannot outlive the `CursorMut` and that the
1609    /// `CursorMut` is frozen for the lifetime of the `Cursor`.
1610    #[must_use]
1611    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1612    pub fn as_cursor(&self) -> Cursor<'_, T, A> {
1613        Cursor { list: self.list, current: self.current, index: self.index }
1614    }
1615
1616    /// Provides a read-only reference to the cursor's parent list.
1617    ///
1618    /// The lifetime of the returned reference is bound to that of the
1619    /// `CursorMut`, which means it cannot outlive the `CursorMut` and that the
1620    /// `CursorMut` is frozen for the lifetime of the reference.
1621    #[must_use]
1622    #[inline(always)]
1623    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1624    pub fn as_list(&self) -> &LinkedList<T, A> {
1625        self.list
1626    }
1627}
1628
1629// Now the list editing operations
1630
1631impl<'a, T> CursorMut<'a, T> {
1632    /// Inserts the elements from the given `LinkedList` after the current one.
1633    ///
1634    /// If the cursor is pointing at the "ghost" non-element then the new elements are
1635    /// inserted at the start of the `LinkedList`.
1636    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1637    pub fn splice_after(&mut self, list: LinkedList<T>) {
1638        unsafe {
1639            let (splice_head, splice_tail, splice_len) = match list.detach_all_nodes() {
1640                Some(parts) => parts,
1641                _ => return,
1642            };
1643            let node_next = match self.current {
1644                None => self.list.head,
1645                Some(node) => node.as_ref().next,
1646            };
1647            self.list.splice_nodes(self.current, node_next, splice_head, splice_tail, splice_len);
1648            if self.current.is_none() {
1649                // The "ghost" non-element's index has changed.
1650                self.index = self.list.len;
1651            }
1652        }
1653    }
1654
1655    /// Inserts the elements from the given `LinkedList` before the current one.
1656    ///
1657    /// If the cursor is pointing at the "ghost" non-element then the new elements are
1658    /// inserted at the end of the `LinkedList`.
1659    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1660    pub fn splice_before(&mut self, list: LinkedList<T>) {
1661        unsafe {
1662            let (splice_head, splice_tail, splice_len) = match list.detach_all_nodes() {
1663                Some(parts) => parts,
1664                _ => return,
1665            };
1666            let node_prev = match self.current {
1667                None => self.list.tail,
1668                Some(node) => node.as_ref().prev,
1669            };
1670            self.list.splice_nodes(node_prev, self.current, splice_head, splice_tail, splice_len);
1671            self.index += splice_len;
1672        }
1673    }
1674}
1675
1676impl<'a, T, A: Allocator> CursorMut<'a, T, A> {
1677    /// Inserts a new element into the `LinkedList` after the current one.
1678    ///
1679    /// If the cursor is pointing at the "ghost" non-element then the new element is
1680    /// inserted at the front of the `LinkedList`.
1681    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1682    pub fn insert_after(&mut self, item: T) {
1683        unsafe {
1684            let spliced_node = Box::leak(Box::new_in(Node::new(item), &self.list.alloc)).into();
1685            let node_next = match self.current {
1686                None => self.list.head,
1687                Some(node) => node.as_ref().next,
1688            };
1689            self.list.splice_nodes(self.current, node_next, spliced_node, spliced_node, 1);
1690            if self.current.is_none() {
1691                // The "ghost" non-element's index has changed.
1692                self.index = self.list.len;
1693            }
1694        }
1695    }
1696
1697    /// Inserts a new element into the `LinkedList` before the current one.
1698    ///
1699    /// If the cursor is pointing at the "ghost" non-element then the new element is
1700    /// inserted at the end of the `LinkedList`.
1701    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1702    pub fn insert_before(&mut self, item: T) {
1703        unsafe {
1704            let spliced_node = Box::leak(Box::new_in(Node::new(item), &self.list.alloc)).into();
1705            let node_prev = match self.current {
1706                None => self.list.tail,
1707                Some(node) => node.as_ref().prev,
1708            };
1709            self.list.splice_nodes(node_prev, self.current, spliced_node, spliced_node, 1);
1710            self.index += 1;
1711        }
1712    }
1713
1714    /// Removes the current element from the `LinkedList`.
1715    ///
1716    /// The element that was removed is returned, and the cursor is
1717    /// moved to point to the next element in the `LinkedList`.
1718    ///
1719    /// If the cursor is currently pointing to the "ghost" non-element then no element
1720    /// is removed and `None` is returned.
1721    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1722    pub fn remove_current(&mut self) -> Option<T> {
1723        let unlinked_node = self.current?;
1724        unsafe {
1725            self.current = unlinked_node.as_ref().next;
1726            self.list.unlink_node(unlinked_node);
1727            let unlinked_node = Box::from_raw_in(unlinked_node.as_ptr(), &self.list.alloc);
1728            Some(unlinked_node.element)
1729        }
1730    }
1731
1732    /// Removes the current element from the `LinkedList` without deallocating the list node.
1733    ///
1734    /// The node that was removed is returned as a new `LinkedList` containing only this node.
1735    /// The cursor is moved to point to the next element in the current `LinkedList`.
1736    ///
1737    /// If the cursor is currently pointing to the "ghost" non-element then no element
1738    /// is removed and `None` is returned.
1739    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1740    pub fn remove_current_as_list(&mut self) -> Option<LinkedList<T, A>>
1741    where
1742        A: Clone,
1743    {
1744        let mut unlinked_node = self.current?;
1745        unsafe {
1746            self.current = unlinked_node.as_ref().next;
1747            self.list.unlink_node(unlinked_node);
1748
1749            unlinked_node.as_mut().prev = None;
1750            unlinked_node.as_mut().next = None;
1751            Some(LinkedList {
1752                head: Some(unlinked_node),
1753                tail: Some(unlinked_node),
1754                len: 1,
1755                alloc: self.list.alloc.clone(),
1756                marker: PhantomData,
1757            })
1758        }
1759    }
1760
1761    /// Splits the list into two after the current element. This will return a
1762    /// new list consisting of everything after the cursor, with the original
1763    /// list retaining everything before.
1764    ///
1765    /// If the cursor is pointing at the "ghost" non-element then the entire contents
1766    /// of the `LinkedList` are moved.
1767    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1768    pub fn split_after(&mut self) -> LinkedList<T, A>
1769    where
1770        A: Clone,
1771    {
1772        let split_off_idx = if self.index == self.list.len { 0 } else { self.index + 1 };
1773        if self.index == self.list.len {
1774            // The "ghost" non-element's index has changed to 0.
1775            self.index = 0;
1776        }
1777        unsafe { self.list.split_off_after_node(self.current, split_off_idx) }
1778    }
1779
1780    /// Splits the list into two before the current element. This will return a
1781    /// new list consisting of everything before the cursor, with the original
1782    /// list retaining everything after.
1783    ///
1784    /// If the cursor is pointing at the "ghost" non-element then the entire contents
1785    /// of the `LinkedList` are moved.
1786    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1787    pub fn split_before(&mut self) -> LinkedList<T, A>
1788    where
1789        A: Clone,
1790    {
1791        let split_off_idx = self.index;
1792        self.index = 0;
1793        unsafe { self.list.split_off_before_node(self.current, split_off_idx) }
1794    }
1795
1796    /// Appends an element to the front of the cursor's parent list. The node
1797    /// that the cursor points to is unchanged, even if it is the "ghost" node.
1798    ///
1799    /// This operation should compute in *O*(1) time.
1800    // `push_front` continues to point to "ghost" when it adds a node to mimic
1801    // the behavior of `insert_before` on an empty list.
1802    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1803    pub fn push_front(&mut self, elt: T) {
1804        // Safety: We know that `push_front` does not change the position in
1805        // memory of other nodes. This ensures that `self.current` remains
1806        // valid.
1807        self.list.push_front(elt);
1808        self.index += 1;
1809    }
1810
1811    /// Appends an element to the back of the cursor's parent list. The node
1812    /// that the cursor points to is unchanged, even if it is the "ghost" node.
1813    ///
1814    /// This operation should compute in *O*(1) time.
1815    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1816    #[rustc_confusables("push", "append")]
1817    pub fn push_back(&mut self, elt: T) {
1818        // Safety: We know that `push_back` does not change the position in
1819        // memory of other nodes. This ensures that `self.current` remains
1820        // valid.
1821        self.list.push_back(elt);
1822        if self.current().is_none() {
1823            // The index of "ghost" is the length of the list, so we just need
1824            // to increment self.index to reflect the new length of the list.
1825            self.index += 1;
1826        }
1827    }
1828
1829    /// Removes the first element from the cursor's parent list and returns it,
1830    /// or None if the list is empty. The element the cursor points to remains
1831    /// unchanged, unless it was pointing to the front element. In that case, it
1832    /// points to the new front element.
1833    ///
1834    /// This operation should compute in *O*(1) time.
1835    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1836    pub fn pop_front(&mut self) -> Option<T> {
1837        // We can't check if current is empty, we must check the list directly.
1838        // It is possible for `self.current == None` and the list to be
1839        // non-empty.
1840        if self.list.is_empty() {
1841            None
1842        } else {
1843            // We can't point to the node that we pop. Copying the behavior of
1844            // `remove_current`, we move on to the next node in the sequence.
1845            // If the list is of length 1 then we end pointing to the "ghost"
1846            // node at index 0, which is expected.
1847            if self.list.head == self.current {
1848                self.move_next();
1849            } else {
1850                self.index -= 1;
1851            }
1852            self.list.pop_front()
1853        }
1854    }
1855
1856    /// Removes the last element from the cursor's parent list and returns it,
1857    /// or None if the list is empty. The element the cursor points to remains
1858    /// unchanged, unless it was pointing to the back element. In that case, it
1859    /// points to the "ghost" element.
1860    ///
1861    /// This operation should compute in *O*(1) time.
1862    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1863    #[rustc_confusables("pop")]
1864    pub fn pop_back(&mut self) -> Option<T> {
1865        if self.list.is_empty() {
1866            None
1867        } else {
1868            if self.list.tail == self.current {
1869                // The index now reflects the length of the list. It was the
1870                // length of the list minus 1, but now the list is 1 smaller. No
1871                // change is needed for `index`.
1872                self.current = None;
1873            } else if self.current.is_none() {
1874                self.index = self.list.len - 1;
1875            }
1876            self.list.pop_back()
1877        }
1878    }
1879
1880    /// Provides a reference to the front element of the cursor's parent list,
1881    /// or None if the list is empty.
1882    #[must_use]
1883    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1884    #[rustc_confusables("first")]
1885    pub fn front(&self) -> Option<&T> {
1886        self.list.front()
1887    }
1888
1889    /// Provides a mutable reference to the front element of the cursor's
1890    /// parent list, or None if the list is empty.
1891    #[must_use]
1892    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1893    pub fn front_mut(&mut self) -> Option<&mut T> {
1894        self.list.front_mut()
1895    }
1896
1897    /// Provides a reference to the back element of the cursor's parent list,
1898    /// or None if the list is empty.
1899    #[must_use]
1900    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1901    #[rustc_confusables("last")]
1902    pub fn back(&self) -> Option<&T> {
1903        self.list.back()
1904    }
1905
1906    /// Provides a mutable reference to back element of the cursor's parent
1907    /// list, or `None` if the list is empty.
1908    ///
1909    /// # Examples
1910    /// Building and mutating a list with a cursor, then getting the back element:
1911    /// ```
1912    /// #![feature(linked_list_cursors)]
1913    /// use std::collections::LinkedList;
1914    /// let mut dl = LinkedList::new();
1915    /// dl.push_front(3);
1916    /// dl.push_front(2);
1917    /// dl.push_front(1);
1918    /// let mut cursor = dl.cursor_front_mut();
1919    /// *cursor.current().unwrap() = 99;
1920    /// *cursor.back_mut().unwrap() = 0;
1921    /// let mut contents = dl.into_iter();
1922    /// assert_eq!(contents.next(), Some(99));
1923    /// assert_eq!(contents.next(), Some(2));
1924    /// assert_eq!(contents.next(), Some(0));
1925    /// assert_eq!(contents.next(), None);
1926    /// ```
1927    #[must_use]
1928    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1929    pub fn back_mut(&mut self) -> Option<&mut T> {
1930        self.list.back_mut()
1931    }
1932}
1933
1934/// An iterator produced by calling `extract_if` on LinkedList.
1935#[unstable(feature = "extract_if", reason = "recently added", issue = "43244")]
1936#[must_use = "iterators are lazy and do nothing unless consumed"]
1937pub struct ExtractIf<
1938    'a,
1939    T: 'a,
1940    F: 'a,
1941    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
1942> {
1943    list: &'a mut LinkedList<T, A>,
1944    it: Option<NonNull<Node<T>>>,
1945    pred: F,
1946    idx: usize,
1947    old_len: usize,
1948}
1949
1950#[unstable(feature = "extract_if", reason = "recently added", issue = "43244")]
1951impl<T, F, A: Allocator> Iterator for ExtractIf<'_, T, F, A>
1952where
1953    F: FnMut(&mut T) -> bool,
1954{
1955    type Item = T;
1956
1957    fn next(&mut self) -> Option<T> {
1958        while let Some(mut node) = self.it {
1959            unsafe {
1960                self.it = node.as_ref().next;
1961                self.idx += 1;
1962
1963                if (self.pred)(&mut node.as_mut().element) {
1964                    // `unlink_node` is okay with aliasing `element` references.
1965                    self.list.unlink_node(node);
1966                    return Some(Box::from_raw_in(node.as_ptr(), &self.list.alloc).element);
1967                }
1968            }
1969        }
1970
1971        None
1972    }
1973
1974    fn size_hint(&self) -> (usize, Option<usize>) {
1975        (0, Some(self.old_len - self.idx))
1976    }
1977}
1978
1979#[unstable(feature = "extract_if", reason = "recently added", issue = "43244")]
1980impl<T: fmt::Debug, F> fmt::Debug for ExtractIf<'_, T, F> {
1981    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1982        f.debug_tuple("ExtractIf").field(&self.list).finish()
1983    }
1984}
1985
1986#[stable(feature = "rust1", since = "1.0.0")]
1987impl<T, A: Allocator> Iterator for IntoIter<T, A> {
1988    type Item = T;
1989
1990    #[inline]
1991    fn next(&mut self) -> Option<T> {
1992        self.list.pop_front()
1993    }
1994
1995    #[inline]
1996    fn size_hint(&self) -> (usize, Option<usize>) {
1997        (self.list.len, Some(self.list.len))
1998    }
1999}
2000
2001#[stable(feature = "rust1", since = "1.0.0")]
2002impl<T, A: Allocator> DoubleEndedIterator for IntoIter<T, A> {
2003    #[inline]
2004    fn next_back(&mut self) -> Option<T> {
2005        self.list.pop_back()
2006    }
2007}
2008
2009#[stable(feature = "rust1", since = "1.0.0")]
2010impl<T, A: Allocator> ExactSizeIterator for IntoIter<T, A> {}
2011
2012#[stable(feature = "fused", since = "1.26.0")]
2013impl<T, A: Allocator> FusedIterator for IntoIter<T, A> {}
2014
2015#[stable(feature = "default_iters", since = "1.70.0")]
2016impl<T> Default for IntoIter<T> {
2017    /// Creates an empty `linked_list::IntoIter`.
2018    ///
2019    /// ```
2020    /// # use std::collections::linked_list;
2021    /// let iter: linked_list::IntoIter<u8> = Default::default();
2022    /// assert_eq!(iter.len(), 0);
2023    /// ```
2024    fn default() -> Self {
2025        LinkedList::new().into_iter()
2026    }
2027}
2028
2029#[stable(feature = "rust1", since = "1.0.0")]
2030impl<T> FromIterator<T> for LinkedList<T> {
2031    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
2032        let mut list = Self::new();
2033        list.extend(iter);
2034        list
2035    }
2036}
2037
2038#[stable(feature = "rust1", since = "1.0.0")]
2039impl<T, A: Allocator> IntoIterator for LinkedList<T, A> {
2040    type Item = T;
2041    type IntoIter = IntoIter<T, A>;
2042
2043    /// Consumes the list into an iterator yielding elements by value.
2044    #[inline]
2045    fn into_iter(self) -> IntoIter<T, A> {
2046        IntoIter { list: self }
2047    }
2048}
2049
2050#[stable(feature = "rust1", since = "1.0.0")]
2051impl<'a, T, A: Allocator> IntoIterator for &'a LinkedList<T, A> {
2052    type Item = &'a T;
2053    type IntoIter = Iter<'a, T>;
2054
2055    fn into_iter(self) -> Iter<'a, T> {
2056        self.iter()
2057    }
2058}
2059
2060#[stable(feature = "rust1", since = "1.0.0")]
2061impl<'a, T, A: Allocator> IntoIterator for &'a mut LinkedList<T, A> {
2062    type Item = &'a mut T;
2063    type IntoIter = IterMut<'a, T>;
2064
2065    fn into_iter(self) -> IterMut<'a, T> {
2066        self.iter_mut()
2067    }
2068}
2069
2070#[stable(feature = "rust1", since = "1.0.0")]
2071impl<T, A: Allocator> Extend<T> for LinkedList<T, A> {
2072    fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
2073        <Self as SpecExtend<I>>::spec_extend(self, iter);
2074    }
2075
2076    #[inline]
2077    fn extend_one(&mut self, elem: T) {
2078        self.push_back(elem);
2079    }
2080}
2081
2082impl<I: IntoIterator, A: Allocator> SpecExtend<I> for LinkedList<I::Item, A> {
2083    default fn spec_extend(&mut self, iter: I) {
2084        iter.into_iter().for_each(move |elt| self.push_back(elt));
2085    }
2086}
2087
2088impl<T> SpecExtend<LinkedList<T>> for LinkedList<T> {
2089    fn spec_extend(&mut self, ref mut other: LinkedList<T>) {
2090        self.append(other);
2091    }
2092}
2093
2094#[stable(feature = "extend_ref", since = "1.2.0")]
2095impl<'a, T: 'a + Copy, A: Allocator> Extend<&'a T> for LinkedList<T, A> {
2096    fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
2097        self.extend(iter.into_iter().cloned());
2098    }
2099
2100    #[inline]
2101    fn extend_one(&mut self, &elem: &'a T) {
2102        self.push_back(elem);
2103    }
2104}
2105
2106#[stable(feature = "rust1", since = "1.0.0")]
2107impl<T: PartialEq, A: Allocator> PartialEq for LinkedList<T, A> {
2108    fn eq(&self, other: &Self) -> bool {
2109        self.len() == other.len() && self.iter().eq(other)
2110    }
2111
2112    fn ne(&self, other: &Self) -> bool {
2113        self.len() != other.len() || self.iter().ne(other)
2114    }
2115}
2116
2117#[stable(feature = "rust1", since = "1.0.0")]
2118impl<T: Eq, A: Allocator> Eq for LinkedList<T, A> {}
2119
2120#[stable(feature = "rust1", since = "1.0.0")]
2121impl<T: PartialOrd, A: Allocator> PartialOrd for LinkedList<T, A> {
2122    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
2123        self.iter().partial_cmp(other)
2124    }
2125}
2126
2127#[stable(feature = "rust1", since = "1.0.0")]
2128impl<T: Ord, A: Allocator> Ord for LinkedList<T, A> {
2129    #[inline]
2130    fn cmp(&self, other: &Self) -> Ordering {
2131        self.iter().cmp(other)
2132    }
2133}
2134
2135#[stable(feature = "rust1", since = "1.0.0")]
2136impl<T: Clone, A: Allocator + Clone> Clone for LinkedList<T, A> {
2137    fn clone(&self) -> Self {
2138        let mut list = Self::new_in(self.alloc.clone());
2139        list.extend(self.iter().cloned());
2140        list
2141    }
2142
2143    /// Overwrites the contents of `self` with a clone of the contents of `source`.
2144    ///
2145    /// This method is preferred over simply assigning `source.clone()` to `self`,
2146    /// as it avoids reallocation of the nodes of the linked list. Additionally,
2147    /// if the element type `T` overrides `clone_from()`, this will reuse the
2148    /// resources of `self`'s elements as well.
2149    fn clone_from(&mut self, source: &Self) {
2150        let mut source_iter = source.iter();
2151        if self.len() > source.len() {
2152            self.split_off(source.len());
2153        }
2154        for (elem, source_elem) in self.iter_mut().zip(&mut source_iter) {
2155            elem.clone_from(source_elem);
2156        }
2157        if !source_iter.is_empty() {
2158            self.extend(source_iter.cloned());
2159        }
2160    }
2161}
2162
2163#[stable(feature = "rust1", since = "1.0.0")]
2164impl<T: fmt::Debug, A: Allocator> fmt::Debug for LinkedList<T, A> {
2165    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2166        f.debug_list().entries(self).finish()
2167    }
2168}
2169
2170#[stable(feature = "rust1", since = "1.0.0")]
2171impl<T: Hash, A: Allocator> Hash for LinkedList<T, A> {
2172    fn hash<H: Hasher>(&self, state: &mut H) {
2173        state.write_length_prefix(self.len());
2174        for elt in self {
2175            elt.hash(state);
2176        }
2177    }
2178}
2179
2180#[stable(feature = "std_collections_from_array", since = "1.56.0")]
2181impl<T, const N: usize> From<[T; N]> for LinkedList<T> {
2182    /// Converts a `[T; N]` into a `LinkedList<T>`.
2183    ///
2184    /// ```
2185    /// use std::collections::LinkedList;
2186    ///
2187    /// let list1 = LinkedList::from([1, 2, 3, 4]);
2188    /// let list2: LinkedList<_> = [1, 2, 3, 4].into();
2189    /// assert_eq!(list1, list2);
2190    /// ```
2191    fn from(arr: [T; N]) -> Self {
2192        Self::from_iter(arr)
2193    }
2194}
2195
2196// Ensure that `LinkedList` and its read-only iterators are covariant in their type parameters.
2197#[allow(dead_code)]
2198fn assert_covariance() {
2199    fn a<'a>(x: LinkedList<&'static str>) -> LinkedList<&'a str> {
2200        x
2201    }
2202    fn b<'i, 'a>(x: Iter<'i, &'static str>) -> Iter<'i, &'a str> {
2203        x
2204    }
2205    fn c<'a>(x: IntoIter<&'static str>) -> IntoIter<&'a str> {
2206        x
2207    }
2208}
2209
2210#[stable(feature = "rust1", since = "1.0.0")]
2211unsafe impl<T: Send, A: Allocator + Send> Send for LinkedList<T, A> {}
2212
2213#[stable(feature = "rust1", since = "1.0.0")]
2214unsafe impl<T: Sync, A: Allocator + Sync> Sync for LinkedList<T, A> {}
2215
2216#[stable(feature = "rust1", since = "1.0.0")]
2217unsafe impl<T: Sync> Send for Iter<'_, T> {}
2218
2219#[stable(feature = "rust1", since = "1.0.0")]
2220unsafe impl<T: Sync> Sync for Iter<'_, T> {}
2221
2222#[stable(feature = "rust1", since = "1.0.0")]
2223unsafe impl<T: Send> Send for IterMut<'_, T> {}
2224
2225#[stable(feature = "rust1", since = "1.0.0")]
2226unsafe impl<T: Sync> Sync for IterMut<'_, T> {}
2227
2228#[unstable(feature = "linked_list_cursors", issue = "58533")]
2229unsafe impl<T: Sync, A: Allocator + Sync> Send for Cursor<'_, T, A> {}
2230
2231#[unstable(feature = "linked_list_cursors", issue = "58533")]
2232unsafe impl<T: Sync, A: Allocator + Sync> Sync for Cursor<'_, T, A> {}
2233
2234#[unstable(feature = "linked_list_cursors", issue = "58533")]
2235unsafe impl<T: Send, A: Allocator + Send> Send for CursorMut<'_, T, A> {}
2236
2237#[unstable(feature = "linked_list_cursors", issue = "58533")]
2238unsafe impl<T: Sync, A: Allocator + Sync> Sync for CursorMut<'_, T, A> {}