core/alloc/layout.rs
1// Seemingly inconsequential code changes to this file can lead to measurable
2// performance impact on compilation times, due at least in part to the fact
3// that the layout code gets called from many instantiations of the various
4// collections, resulting in having to optimize down excess IR multiple times.
5// Your performance intuition is useless. Run perf.
6
7use crate::error::Error;
8use crate::intrinsics::{unchecked_add, unchecked_mul, unchecked_sub};
9use crate::mem::SizedTypeProperties;
10use crate::ptr::{Alignment, NonNull};
11use crate::{assert_unsafe_precondition, fmt, mem};
12
13// While this function is used in one place and its implementation
14// could be inlined, the previous attempts to do so made rustc
15// slower:
16//
17// * https://github.com/rust-lang/rust/pull/72189
18// * https://github.com/rust-lang/rust/pull/79827
19const fn size_align<T>() -> (usize, usize) {
20 (mem::size_of::<T>(), mem::align_of::<T>())
21}
22
23/// Layout of a block of memory.
24///
25/// An instance of `Layout` describes a particular layout of memory.
26/// You build a `Layout` up as an input to give to an allocator.
27///
28/// All layouts have an associated size and a power-of-two alignment. The size, when rounded up to
29/// the nearest multiple of `align`, does not overflow `isize` (i.e., the rounded value will always be
30/// less than or equal to `isize::MAX`).
31///
32/// (Note that layouts are *not* required to have non-zero size,
33/// even though `GlobalAlloc` requires that all memory requests
34/// be non-zero in size. A caller must either ensure that conditions
35/// like this are met, use specific allocators with looser
36/// requirements, or use the more lenient `Allocator` interface.)
37#[stable(feature = "alloc_layout", since = "1.28.0")]
38#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
39#[lang = "alloc_layout"]
40pub struct Layout {
41 // size of the requested block of memory, measured in bytes.
42 size: usize,
43
44 // alignment of the requested block of memory, measured in bytes.
45 // we ensure that this is always a power-of-two, because API's
46 // like `posix_memalign` require it and it is a reasonable
47 // constraint to impose on Layout constructors.
48 //
49 // (However, we do not analogously require `align >= sizeof(void*)`,
50 // even though that is *also* a requirement of `posix_memalign`.)
51 align: Alignment,
52}
53
54impl Layout {
55 /// Constructs a `Layout` from a given `size` and `align`,
56 /// or returns `LayoutError` if any of the following conditions
57 /// are not met:
58 ///
59 /// * `align` must not be zero,
60 ///
61 /// * `align` must be a power of two,
62 ///
63 /// * `size`, when rounded up to the nearest multiple of `align`,
64 /// must not overflow `isize` (i.e., the rounded value must be
65 /// less than or equal to `isize::MAX`).
66 #[stable(feature = "alloc_layout", since = "1.28.0")]
67 #[rustc_const_stable(feature = "const_alloc_layout_size_align", since = "1.50.0")]
68 #[inline]
69 pub const fn from_size_align(size: usize, align: usize) -> Result<Self, LayoutError> {
70 if Layout::is_size_align_valid(size, align) {
71 // SAFETY: Layout::is_size_align_valid checks the preconditions for this call.
72 unsafe { Ok(Layout { size, align: mem::transmute(align) }) }
73 } else {
74 Err(LayoutError)
75 }
76 }
77
78 const fn is_size_align_valid(size: usize, align: usize) -> bool {
79 let Some(align) = Alignment::new(align) else { return false };
80 if size > Self::max_size_for_align(align) {
81 return false;
82 }
83 true
84 }
85
86 #[inline(always)]
87 const fn max_size_for_align(align: Alignment) -> usize {
88 // (power-of-two implies align != 0.)
89
90 // Rounded up size is:
91 // size_rounded_up = (size + align - 1) & !(align - 1);
92 //
93 // We know from above that align != 0. If adding (align - 1)
94 // does not overflow, then rounding up will be fine.
95 //
96 // Conversely, &-masking with !(align - 1) will subtract off
97 // only low-order-bits. Thus if overflow occurs with the sum,
98 // the &-mask cannot subtract enough to undo that overflow.
99 //
100 // Above implies that checking for summation overflow is both
101 // necessary and sufficient.
102
103 // SAFETY: the maximum possible alignment is `isize::MAX + 1`,
104 // so the subtraction cannot overflow.
105 unsafe { unchecked_sub(isize::MAX as usize + 1, align.as_usize()) }
106 }
107
108 /// Internal helper constructor to skip revalidating alignment validity.
109 #[inline]
110 const fn from_size_alignment(size: usize, align: Alignment) -> Result<Self, LayoutError> {
111 if size > Self::max_size_for_align(align) {
112 return Err(LayoutError);
113 }
114
115 // SAFETY: Layout::size invariants checked above.
116 Ok(Layout { size, align })
117 }
118
119 /// Creates a layout, bypassing all checks.
120 ///
121 /// # Safety
122 ///
123 /// This function is unsafe as it does not verify the preconditions from
124 /// [`Layout::from_size_align`].
125 #[stable(feature = "alloc_layout", since = "1.28.0")]
126 #[rustc_const_stable(feature = "const_alloc_layout_unchecked", since = "1.36.0")]
127 #[must_use]
128 #[inline]
129 pub const unsafe fn from_size_align_unchecked(size: usize, align: usize) -> Self {
130 assert_unsafe_precondition!(
131 check_library_ub,
132 "Layout::from_size_align_unchecked requires that align is a power of 2 \
133 and the rounded-up allocation size does not exceed isize::MAX",
134 (
135 size: usize = size,
136 align: usize = align,
137 ) => Layout::is_size_align_valid(size, align)
138 );
139 // SAFETY: the caller is required to uphold the preconditions.
140 unsafe { Layout { size, align: mem::transmute(align) } }
141 }
142
143 /// The minimum size in bytes for a memory block of this layout.
144 #[stable(feature = "alloc_layout", since = "1.28.0")]
145 #[rustc_const_stable(feature = "const_alloc_layout_size_align", since = "1.50.0")]
146 #[must_use]
147 #[inline]
148 pub const fn size(&self) -> usize {
149 self.size
150 }
151
152 /// The minimum byte alignment for a memory block of this layout.
153 ///
154 /// The returned alignment is guaranteed to be a power of two.
155 #[stable(feature = "alloc_layout", since = "1.28.0")]
156 #[rustc_const_stable(feature = "const_alloc_layout_size_align", since = "1.50.0")]
157 #[must_use = "this returns the minimum alignment, \
158 without modifying the layout"]
159 #[inline]
160 pub const fn align(&self) -> usize {
161 self.align.as_usize()
162 }
163
164 /// Constructs a `Layout` suitable for holding a value of type `T`.
165 #[stable(feature = "alloc_layout", since = "1.28.0")]
166 #[rustc_const_stable(feature = "alloc_layout_const_new", since = "1.42.0")]
167 #[must_use]
168 #[inline]
169 pub const fn new<T>() -> Self {
170 let (size, align) = size_align::<T>();
171 // SAFETY: if the type is instantiated, rustc already ensures that its
172 // layout is valid. Use the unchecked constructor to avoid inserting a
173 // panicking codepath that needs to be optimized out.
174 unsafe { Layout::from_size_align_unchecked(size, align) }
175 }
176
177 /// Produces layout describing a record that could be used to
178 /// allocate backing structure for `T` (which could be a trait
179 /// or other unsized type like a slice).
180 #[stable(feature = "alloc_layout", since = "1.28.0")]
181 #[rustc_const_stable(feature = "const_alloc_layout", since = "1.85.0")]
182 #[must_use]
183 #[inline]
184 pub const fn for_value<T: ?Sized>(t: &T) -> Self {
185 let (size, align) = (mem::size_of_val(t), mem::align_of_val(t));
186 // SAFETY: see rationale in `new` for why this is using the unsafe variant
187 unsafe { Layout::from_size_align_unchecked(size, align) }
188 }
189
190 /// Produces layout describing a record that could be used to
191 /// allocate backing structure for `T` (which could be a trait
192 /// or other unsized type like a slice).
193 ///
194 /// # Safety
195 ///
196 /// This function is only safe to call if the following conditions hold:
197 ///
198 /// - If `T` is `Sized`, this function is always safe to call.
199 /// - If the unsized tail of `T` is:
200 /// - a [slice], then the length of the slice tail must be an initialized
201 /// integer, and the size of the *entire value*
202 /// (dynamic tail length + statically sized prefix) must fit in `isize`.
203 /// For the special case where the dynamic tail length is 0, this function
204 /// is safe to call.
205 /// - a [trait object], then the vtable part of the pointer must point
206 /// to a valid vtable for the type `T` acquired by an unsizing coercion,
207 /// and the size of the *entire value*
208 /// (dynamic tail length + statically sized prefix) must fit in `isize`.
209 /// - an (unstable) [extern type], then this function is always safe to
210 /// call, but may panic or otherwise return the wrong value, as the
211 /// extern type's layout is not known. This is the same behavior as
212 /// [`Layout::for_value`] on a reference to an extern type tail.
213 /// - otherwise, it is conservatively not allowed to call this function.
214 ///
215 /// [trait object]: ../../book/ch17-02-trait-objects.html
216 /// [extern type]: ../../unstable-book/language-features/extern-types.html
217 #[unstable(feature = "layout_for_ptr", issue = "69835")]
218 #[must_use]
219 pub const unsafe fn for_value_raw<T: ?Sized>(t: *const T) -> Self {
220 // SAFETY: we pass along the prerequisites of these functions to the caller
221 let (size, align) = unsafe { (mem::size_of_val_raw(t), mem::align_of_val_raw(t)) };
222 // SAFETY: see rationale in `new` for why this is using the unsafe variant
223 unsafe { Layout::from_size_align_unchecked(size, align) }
224 }
225
226 /// Creates a `NonNull` that is dangling, but well-aligned for this Layout.
227 ///
228 /// Note that the pointer value may potentially represent a valid pointer,
229 /// which means this must not be used as a "not yet initialized"
230 /// sentinel value. Types that lazily allocate must track initialization by
231 /// some other means.
232 #[unstable(feature = "alloc_layout_extra", issue = "55724")]
233 #[must_use]
234 #[inline]
235 pub const fn dangling(&self) -> NonNull<u8> {
236 NonNull::without_provenance(self.align.as_nonzero())
237 }
238
239 /// Creates a layout describing the record that can hold a value
240 /// of the same layout as `self`, but that also is aligned to
241 /// alignment `align` (measured in bytes).
242 ///
243 /// If `self` already meets the prescribed alignment, then returns
244 /// `self`.
245 ///
246 /// Note that this method does not add any padding to the overall
247 /// size, regardless of whether the returned layout has a different
248 /// alignment. In other words, if `K` has size 16, `K.align_to(32)`
249 /// will *still* have size 16.
250 ///
251 /// Returns an error if the combination of `self.size()` and the given
252 /// `align` violates the conditions listed in [`Layout::from_size_align`].
253 #[stable(feature = "alloc_layout_manipulation", since = "1.44.0")]
254 #[rustc_const_stable(feature = "const_alloc_layout", since = "1.85.0")]
255 #[inline]
256 pub const fn align_to(&self, align: usize) -> Result<Self, LayoutError> {
257 if let Some(align) = Alignment::new(align) {
258 Layout::from_size_alignment(self.size, Alignment::max(self.align, align))
259 } else {
260 Err(LayoutError)
261 }
262 }
263
264 /// Returns the amount of padding we must insert after `self`
265 /// to ensure that the following address will satisfy `align`
266 /// (measured in bytes).
267 ///
268 /// e.g., if `self.size()` is 9, then `self.padding_needed_for(4)`
269 /// returns 3, because that is the minimum number of bytes of
270 /// padding required to get a 4-aligned address (assuming that the
271 /// corresponding memory block starts at a 4-aligned address).
272 ///
273 /// The return value of this function has no meaning if `align` is
274 /// not a power-of-two.
275 ///
276 /// Note that the utility of the returned value requires `align`
277 /// to be less than or equal to the alignment of the starting
278 /// address for the whole allocated block of memory. One way to
279 /// satisfy this constraint is to ensure `align <= self.align()`.
280 #[unstable(feature = "alloc_layout_extra", issue = "55724")]
281 #[must_use = "this returns the padding needed, \
282 without modifying the `Layout`"]
283 #[inline]
284 pub const fn padding_needed_for(&self, align: usize) -> usize {
285 // FIXME: Can we just change the type on this to `Alignment`?
286 let Some(align) = Alignment::new(align) else { return usize::MAX };
287 let len_rounded_up = self.size_rounded_up_to_custom_align(align);
288 // SAFETY: Cannot overflow because the rounded-up value is never less
289 unsafe { unchecked_sub(len_rounded_up, self.size) }
290 }
291
292 /// Returns the smallest multiple of `align` greater than or equal to `self.size()`.
293 ///
294 /// This can return at most `Alignment::MAX` (aka `isize::MAX + 1`)
295 /// because the original size is at most `isize::MAX`.
296 #[inline]
297 const fn size_rounded_up_to_custom_align(&self, align: Alignment) -> usize {
298 // SAFETY:
299 // Rounded up value is:
300 // size_rounded_up = (size + align - 1) & !(align - 1);
301 //
302 // The arithmetic we do here can never overflow:
303 //
304 // 1. align is guaranteed to be > 0, so align - 1 is always
305 // valid.
306 //
307 // 2. size is at most `isize::MAX`, so adding `align - 1` (which is at
308 // most `isize::MAX`) can never overflow a `usize`.
309 //
310 // 3. masking by the alignment can remove at most `align - 1`,
311 // which is what we just added, thus the value we return is never
312 // less than the original `size`.
313 //
314 // (Size 0 Align MAX is already aligned, so stays the same, but things like
315 // Size 1 Align MAX or Size isize::MAX Align 2 round up to `isize::MAX + 1`.)
316 unsafe {
317 let align_m1 = unchecked_sub(align.as_usize(), 1);
318 let size_rounded_up = unchecked_add(self.size, align_m1) & !align_m1;
319 size_rounded_up
320 }
321 }
322
323 /// Creates a layout by rounding the size of this layout up to a multiple
324 /// of the layout's alignment.
325 ///
326 /// This is equivalent to adding the result of `padding_needed_for`
327 /// to the layout's current size.
328 #[stable(feature = "alloc_layout_manipulation", since = "1.44.0")]
329 #[rustc_const_stable(feature = "const_alloc_layout", since = "1.85.0")]
330 #[must_use = "this returns a new `Layout`, \
331 without modifying the original"]
332 #[inline]
333 pub const fn pad_to_align(&self) -> Layout {
334 // This cannot overflow. Quoting from the invariant of Layout:
335 // > `size`, when rounded up to the nearest multiple of `align`,
336 // > must not overflow isize (i.e., the rounded value must be
337 // > less than or equal to `isize::MAX`)
338 let new_size = self.size_rounded_up_to_custom_align(self.align);
339
340 // SAFETY: padded size is guaranteed to not exceed `isize::MAX`.
341 unsafe { Layout::from_size_align_unchecked(new_size, self.align()) }
342 }
343
344 /// Creates a layout describing the record for `n` instances of
345 /// `self`, with a suitable amount of padding between each to
346 /// ensure that each instance is given its requested size and
347 /// alignment. On success, returns `(k, offs)` where `k` is the
348 /// layout of the array and `offs` is the distance between the start
349 /// of each element in the array.
350 ///
351 /// (That distance between elements is sometimes known as "stride".)
352 ///
353 /// On arithmetic overflow, returns `LayoutError`.
354 ///
355 /// # Examples
356 ///
357 /// ```
358 /// #![feature(alloc_layout_extra)]
359 /// use std::alloc::Layout;
360 ///
361 /// // All rust types have a size that's a multiple of their alignment.
362 /// let normal = Layout::from_size_align(12, 4).unwrap();
363 /// let repeated = normal.repeat(3).unwrap();
364 /// assert_eq!(repeated, (Layout::from_size_align(36, 4).unwrap(), 12));
365 ///
366 /// // But you can manually make layouts which don't meet that rule.
367 /// let padding_needed = Layout::from_size_align(6, 4).unwrap();
368 /// let repeated = padding_needed.repeat(3).unwrap();
369 /// assert_eq!(repeated, (Layout::from_size_align(24, 4).unwrap(), 8));
370 /// ```
371 #[unstable(feature = "alloc_layout_extra", issue = "55724")]
372 #[inline]
373 pub const fn repeat(&self, n: usize) -> Result<(Self, usize), LayoutError> {
374 let padded = self.pad_to_align();
375 if let Ok(repeated) = padded.repeat_packed(n) {
376 Ok((repeated, padded.size()))
377 } else {
378 Err(LayoutError)
379 }
380 }
381
382 /// Creates a layout describing the record for `self` followed by
383 /// `next`, including any necessary padding to ensure that `next`
384 /// will be properly aligned, but *no trailing padding*.
385 ///
386 /// In order to match C representation layout `repr(C)`, you should
387 /// call `pad_to_align` after extending the layout with all fields.
388 /// (There is no way to match the default Rust representation
389 /// layout `repr(Rust)`, as it is unspecified.)
390 ///
391 /// Note that the alignment of the resulting layout will be the maximum of
392 /// those of `self` and `next`, in order to ensure alignment of both parts.
393 ///
394 /// Returns `Ok((k, offset))`, where `k` is layout of the concatenated
395 /// record and `offset` is the relative location, in bytes, of the
396 /// start of the `next` embedded within the concatenated record
397 /// (assuming that the record itself starts at offset 0).
398 ///
399 /// On arithmetic overflow, returns `LayoutError`.
400 ///
401 /// # Examples
402 ///
403 /// To calculate the layout of a `#[repr(C)]` structure and the offsets of
404 /// the fields from its fields' layouts:
405 ///
406 /// ```rust
407 /// # use std::alloc::{Layout, LayoutError};
408 /// pub fn repr_c(fields: &[Layout]) -> Result<(Layout, Vec<usize>), LayoutError> {
409 /// let mut offsets = Vec::new();
410 /// let mut layout = Layout::from_size_align(0, 1)?;
411 /// for &field in fields {
412 /// let (new_layout, offset) = layout.extend(field)?;
413 /// layout = new_layout;
414 /// offsets.push(offset);
415 /// }
416 /// // Remember to finalize with `pad_to_align`!
417 /// Ok((layout.pad_to_align(), offsets))
418 /// }
419 /// # // test that it works
420 /// # #[repr(C)] struct S { a: u64, b: u32, c: u16, d: u32 }
421 /// # let s = Layout::new::<S>();
422 /// # let u16 = Layout::new::<u16>();
423 /// # let u32 = Layout::new::<u32>();
424 /// # let u64 = Layout::new::<u64>();
425 /// # assert_eq!(repr_c(&[u64, u32, u16, u32]), Ok((s, vec![0, 8, 12, 16])));
426 /// ```
427 #[stable(feature = "alloc_layout_manipulation", since = "1.44.0")]
428 #[rustc_const_stable(feature = "const_alloc_layout", since = "1.85.0")]
429 #[inline]
430 pub const fn extend(&self, next: Self) -> Result<(Self, usize), LayoutError> {
431 let new_align = Alignment::max(self.align, next.align);
432 let offset = self.size_rounded_up_to_custom_align(next.align);
433
434 // SAFETY: `offset` is at most `isize::MAX + 1` (such as from aligning
435 // to `Alignment::MAX`) and `next.size` is at most `isize::MAX` (from the
436 // `Layout` type invariant). Thus the largest possible `new_size` is
437 // `isize::MAX + 1 + isize::MAX`, which is `usize::MAX`, and cannot overflow.
438 let new_size = unsafe { unchecked_add(offset, next.size) };
439
440 if let Ok(layout) = Layout::from_size_alignment(new_size, new_align) {
441 Ok((layout, offset))
442 } else {
443 Err(LayoutError)
444 }
445 }
446
447 /// Creates a layout describing the record for `n` instances of
448 /// `self`, with no padding between each instance.
449 ///
450 /// Note that, unlike `repeat`, `repeat_packed` does not guarantee
451 /// that the repeated instances of `self` will be properly
452 /// aligned, even if a given instance of `self` is properly
453 /// aligned. In other words, if the layout returned by
454 /// `repeat_packed` is used to allocate an array, it is not
455 /// guaranteed that all elements in the array will be properly
456 /// aligned.
457 ///
458 /// On arithmetic overflow, returns `LayoutError`.
459 #[unstable(feature = "alloc_layout_extra", issue = "55724")]
460 #[inline]
461 pub const fn repeat_packed(&self, n: usize) -> Result<Self, LayoutError> {
462 if let Some(size) = self.size.checked_mul(n) {
463 // The safe constructor is called here to enforce the isize size limit.
464 Layout::from_size_alignment(size, self.align)
465 } else {
466 Err(LayoutError)
467 }
468 }
469
470 /// Creates a layout describing the record for `self` followed by
471 /// `next` with no additional padding between the two. Since no
472 /// padding is inserted, the alignment of `next` is irrelevant,
473 /// and is not incorporated *at all* into the resulting layout.
474 ///
475 /// On arithmetic overflow, returns `LayoutError`.
476 #[unstable(feature = "alloc_layout_extra", issue = "55724")]
477 #[inline]
478 pub const fn extend_packed(&self, next: Self) -> Result<Self, LayoutError> {
479 // SAFETY: each `size` is at most `isize::MAX == usize::MAX/2`, so the
480 // sum is at most `usize::MAX/2*2 == usize::MAX - 1`, and cannot overflow.
481 let new_size = unsafe { unchecked_add(self.size, next.size) };
482 // The safe constructor enforces that the new size isn't too big for the alignment
483 Layout::from_size_alignment(new_size, self.align)
484 }
485
486 /// Creates a layout describing the record for a `[T; n]`.
487 ///
488 /// On arithmetic overflow or when the total size would exceed
489 /// `isize::MAX`, returns `LayoutError`.
490 #[stable(feature = "alloc_layout_manipulation", since = "1.44.0")]
491 #[rustc_const_stable(feature = "const_alloc_layout", since = "1.85.0")]
492 #[inline]
493 pub const fn array<T>(n: usize) -> Result<Self, LayoutError> {
494 // Reduce the amount of code we need to monomorphize per `T`.
495 return inner(T::LAYOUT, n);
496
497 #[inline]
498 const fn inner(element_layout: Layout, n: usize) -> Result<Layout, LayoutError> {
499 let Layout { size: element_size, align } = element_layout;
500
501 // We need to check two things about the size:
502 // - That the total size won't overflow a `usize`, and
503 // - That the total size still fits in an `isize`.
504 // By using division we can check them both with a single threshold.
505 // That'd usually be a bad idea, but thankfully here the element size
506 // and alignment are constants, so the compiler will fold all of it.
507 if element_size != 0 && n > Layout::max_size_for_align(align) / element_size {
508 return Err(LayoutError);
509 }
510
511 // SAFETY: We just checked that we won't overflow `usize` when we multiply.
512 // This is a useless hint inside this function, but after inlining this helps
513 // deduplicate checks for whether the overall capacity is zero (e.g., in RawVec's
514 // allocation path) before/after this multiplication.
515 let array_size = unsafe { unchecked_mul(element_size, n) };
516
517 // SAFETY: We just checked above that the `array_size` will not
518 // exceed `isize::MAX` even when rounded up to the alignment.
519 // And `Alignment` guarantees it's a power of two.
520 unsafe { Ok(Layout::from_size_align_unchecked(array_size, align.as_usize())) }
521 }
522 }
523}
524
525#[stable(feature = "alloc_layout", since = "1.28.0")]
526#[deprecated(
527 since = "1.52.0",
528 note = "Name does not follow std convention, use LayoutError",
529 suggestion = "LayoutError"
530)]
531pub type LayoutErr = LayoutError;
532
533/// The `LayoutError` is returned when the parameters given
534/// to `Layout::from_size_align`
535/// or some other `Layout` constructor
536/// do not satisfy its documented constraints.
537#[stable(feature = "alloc_layout_error", since = "1.50.0")]
538#[non_exhaustive]
539#[derive(Clone, PartialEq, Eq, Debug)]
540pub struct LayoutError;
541
542#[stable(feature = "alloc_layout", since = "1.28.0")]
543impl Error for LayoutError {}
544
545// (we need this for downstream impl of trait Error)
546#[stable(feature = "alloc_layout", since = "1.28.0")]
547impl fmt::Display for LayoutError {
548 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
549 f.write_str("invalid parameters to Layout::from_size_align")
550 }
551}