alloc/collections/btree/map.rs
1use core::borrow::Borrow;
2use core::cmp::Ordering;
3use core::error::Error;
4use core::fmt::{self, Debug};
5use core::hash::{Hash, Hasher};
6use core::iter::FusedIterator;
7use core::marker::PhantomData;
8use core::mem::{self, ManuallyDrop};
9use core::ops::{Bound, Index, RangeBounds};
10use core::ptr;
11
12use super::borrow::DormantMutRef;
13use super::dedup_sorted_iter::DedupSortedIter;
14use super::navigate::{LazyLeafRange, LeafRange};
15use super::node::ForceResult::*;
16use super::node::{self, Handle, NodeRef, Root, marker};
17use super::search::SearchBound;
18use super::search::SearchResult::*;
19use super::set_val::SetValZST;
20use crate::alloc::{Allocator, Global};
21use crate::vec::Vec;
22
23mod entry;
24
25use Entry::*;
26#[stable(feature = "rust1", since = "1.0.0")]
27pub use entry::{Entry, OccupiedEntry, OccupiedError, VacantEntry};
28
29/// Minimum number of elements in a node that is not a root.
30/// We might temporarily have fewer elements during methods.
31pub(super) const MIN_LEN: usize = node::MIN_LEN_AFTER_SPLIT;
32
33// A tree in a `BTreeMap` is a tree in the `node` module with additional invariants:
34// - Keys must appear in ascending order (according to the key's type).
35// - Every non-leaf node contains at least 1 element (has at least 2 children).
36// - Every non-root node contains at least MIN_LEN elements.
37//
38// An empty map is represented either by the absence of a root node or by a
39// root node that is an empty leaf.
40
41/// An ordered map based on a [B-Tree].
42///
43/// B-Trees represent a fundamental compromise between cache-efficiency and actually minimizing
44/// the amount of work performed in a search. In theory, a binary search tree (BST) is the optimal
45/// choice for a sorted map, as a perfectly balanced BST performs the theoretical minimum amount of
46/// comparisons necessary to find an element (log<sub>2</sub>n). However, in practice the way this
47/// is done is *very* inefficient for modern computer architectures. In particular, every element
48/// is stored in its own individually heap-allocated node. This means that every single insertion
49/// triggers a heap-allocation, and every single comparison should be a cache-miss. Since these
50/// are both notably expensive things to do in practice, we are forced to, at the very least,
51/// reconsider the BST strategy.
52///
53/// A B-Tree instead makes each node contain B-1 to 2B-1 elements in a contiguous array. By doing
54/// this, we reduce the number of allocations by a factor of B, and improve cache efficiency in
55/// searches. However, this does mean that searches will have to do *more* comparisons on average.
56/// The precise number of comparisons depends on the node search strategy used. For optimal cache
57/// efficiency, one could search the nodes linearly. For optimal comparisons, one could search
58/// the node using binary search. As a compromise, one could also perform a linear search
59/// that initially only checks every i<sup>th</sup> element for some choice of i.
60///
61/// Currently, our implementation simply performs naive linear search. This provides excellent
62/// performance on *small* nodes of elements which are cheap to compare. However in the future we
63/// would like to further explore choosing the optimal search strategy based on the choice of B,
64/// and possibly other factors. Using linear search, searching for a random element is expected
65/// to take B * log(n) comparisons, which is generally worse than a BST. In practice,
66/// however, performance is excellent.
67///
68/// It is a logic error for a key to be modified in such a way that the key's ordering relative to
69/// any other key, as determined by the [`Ord`] trait, changes while it is in the map. This is
70/// normally only possible through [`Cell`], [`RefCell`], global state, I/O, or unsafe code.
71/// The behavior resulting from such a logic error is not specified, but will be encapsulated to the
72/// `BTreeMap` that observed the logic error and not result in undefined behavior. This could
73/// include panics, incorrect results, aborts, memory leaks, and non-termination.
74///
75/// Iterators obtained from functions such as [`BTreeMap::iter`], [`BTreeMap::into_iter`], [`BTreeMap::values`], or
76/// [`BTreeMap::keys`] produce their items in order by key, and take worst-case logarithmic and
77/// amortized constant time per item returned.
78///
79/// [B-Tree]: https://en.wikipedia.org/wiki/B-tree
80/// [`Cell`]: core::cell::Cell
81/// [`RefCell`]: core::cell::RefCell
82///
83/// # Examples
84///
85/// ```
86/// use std::collections::BTreeMap;
87///
88/// // type inference lets us omit an explicit type signature (which
89/// // would be `BTreeMap<&str, &str>` in this example).
90/// let mut movie_reviews = BTreeMap::new();
91///
92/// // review some movies.
93/// movie_reviews.insert("Office Space", "Deals with real issues in the workplace.");
94/// movie_reviews.insert("Pulp Fiction", "Masterpiece.");
95/// movie_reviews.insert("The Godfather", "Very enjoyable.");
96/// movie_reviews.insert("The Blues Brothers", "Eye lyked it a lot.");
97///
98/// // check for a specific one.
99/// if !movie_reviews.contains_key("Les Misérables") {
100/// println!("We've got {} reviews, but Les Misérables ain't one.",
101/// movie_reviews.len());
102/// }
103///
104/// // oops, this review has a lot of spelling mistakes, let's delete it.
105/// movie_reviews.remove("The Blues Brothers");
106///
107/// // look up the values associated with some keys.
108/// let to_find = ["Up!", "Office Space"];
109/// for movie in &to_find {
110/// match movie_reviews.get(movie) {
111/// Some(review) => println!("{movie}: {review}"),
112/// None => println!("{movie} is unreviewed.")
113/// }
114/// }
115///
116/// // Look up the value for a key (will panic if the key is not found).
117/// println!("Movie review: {}", movie_reviews["Office Space"]);
118///
119/// // iterate over everything.
120/// for (movie, review) in &movie_reviews {
121/// println!("{movie}: \"{review}\"");
122/// }
123/// ```
124///
125/// A `BTreeMap` with a known list of items can be initialized from an array:
126///
127/// ```
128/// use std::collections::BTreeMap;
129///
130/// let solar_distance = BTreeMap::from([
131/// ("Mercury", 0.4),
132/// ("Venus", 0.7),
133/// ("Earth", 1.0),
134/// ("Mars", 1.5),
135/// ]);
136/// ```
137///
138/// `BTreeMap` implements an [`Entry API`], which allows for complex
139/// methods of getting, setting, updating and removing keys and their values:
140///
141/// [`Entry API`]: BTreeMap::entry
142///
143/// ```
144/// use std::collections::BTreeMap;
145///
146/// // type inference lets us omit an explicit type signature (which
147/// // would be `BTreeMap<&str, u8>` in this example).
148/// let mut player_stats = BTreeMap::new();
149///
150/// fn random_stat_buff() -> u8 {
151/// // could actually return some random value here - let's just return
152/// // some fixed value for now
153/// 42
154/// }
155///
156/// // insert a key only if it doesn't already exist
157/// player_stats.entry("health").or_insert(100);
158///
159/// // insert a key using a function that provides a new value only if it
160/// // doesn't already exist
161/// player_stats.entry("defence").or_insert_with(random_stat_buff);
162///
163/// // update a key, guarding against the key possibly not being set
164/// let stat = player_stats.entry("attack").or_insert(100);
165/// *stat += random_stat_buff();
166///
167/// // modify an entry before an insert with in-place mutation
168/// player_stats.entry("mana").and_modify(|mana| *mana += 200).or_insert(100);
169/// ```
170#[stable(feature = "rust1", since = "1.0.0")]
171#[cfg_attr(not(test), rustc_diagnostic_item = "BTreeMap")]
172#[rustc_insignificant_dtor]
173pub struct BTreeMap<
174 K,
175 V,
176 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator + Clone = Global,
177> {
178 root: Option<Root<K, V>>,
179 length: usize,
180 /// `ManuallyDrop` to control drop order (needs to be dropped after all the nodes).
181 pub(super) alloc: ManuallyDrop<A>,
182 // For dropck; the `Box` avoids making the `Unpin` impl more strict than before
183 _marker: PhantomData<crate::boxed::Box<(K, V), A>>,
184}
185
186#[stable(feature = "btree_drop", since = "1.7.0")]
187unsafe impl<#[may_dangle] K, #[may_dangle] V, A: Allocator + Clone> Drop for BTreeMap<K, V, A> {
188 fn drop(&mut self) {
189 drop(unsafe { ptr::read(self) }.into_iter())
190 }
191}
192
193// FIXME: This implementation is "wrong", but changing it would be a breaking change.
194// (The bounds of the automatic `UnwindSafe` implementation have been like this since Rust 1.50.)
195// Maybe we can fix it nonetheless with a crater run, or if the `UnwindSafe`
196// traits are deprecated, or disarmed (no longer causing hard errors) in the future.
197#[stable(feature = "btree_unwindsafe", since = "1.64.0")]
198impl<K, V, A: Allocator + Clone> core::panic::UnwindSafe for BTreeMap<K, V, A>
199where
200 A: core::panic::UnwindSafe,
201 K: core::panic::RefUnwindSafe,
202 V: core::panic::RefUnwindSafe,
203{
204}
205
206#[stable(feature = "rust1", since = "1.0.0")]
207impl<K: Clone, V: Clone, A: Allocator + Clone> Clone for BTreeMap<K, V, A> {
208 fn clone(&self) -> BTreeMap<K, V, A> {
209 fn clone_subtree<'a, K: Clone, V: Clone, A: Allocator + Clone>(
210 node: NodeRef<marker::Immut<'a>, K, V, marker::LeafOrInternal>,
211 alloc: A,
212 ) -> BTreeMap<K, V, A>
213 where
214 K: 'a,
215 V: 'a,
216 {
217 match node.force() {
218 Leaf(leaf) => {
219 let mut out_tree = BTreeMap {
220 root: Some(Root::new(alloc.clone())),
221 length: 0,
222 alloc: ManuallyDrop::new(alloc),
223 _marker: PhantomData,
224 };
225
226 {
227 let root = out_tree.root.as_mut().unwrap(); // unwrap succeeds because we just wrapped
228 let mut out_node = match root.borrow_mut().force() {
229 Leaf(leaf) => leaf,
230 Internal(_) => unreachable!(),
231 };
232
233 let mut in_edge = leaf.first_edge();
234 while let Ok(kv) = in_edge.right_kv() {
235 let (k, v) = kv.into_kv();
236 in_edge = kv.right_edge();
237
238 out_node.push(k.clone(), v.clone());
239 out_tree.length += 1;
240 }
241 }
242
243 out_tree
244 }
245 Internal(internal) => {
246 let mut out_tree =
247 clone_subtree(internal.first_edge().descend(), alloc.clone());
248
249 {
250 let out_root = out_tree.root.as_mut().unwrap();
251 let mut out_node = out_root.push_internal_level(alloc.clone());
252 let mut in_edge = internal.first_edge();
253 while let Ok(kv) = in_edge.right_kv() {
254 let (k, v) = kv.into_kv();
255 in_edge = kv.right_edge();
256
257 let k = (*k).clone();
258 let v = (*v).clone();
259 let subtree = clone_subtree(in_edge.descend(), alloc.clone());
260
261 // We can't destructure subtree directly
262 // because BTreeMap implements Drop
263 let (subroot, sublength) = unsafe {
264 let subtree = ManuallyDrop::new(subtree);
265 let root = ptr::read(&subtree.root);
266 let length = subtree.length;
267 (root, length)
268 };
269
270 out_node.push(
271 k,
272 v,
273 subroot.unwrap_or_else(|| Root::new(alloc.clone())),
274 );
275 out_tree.length += 1 + sublength;
276 }
277 }
278
279 out_tree
280 }
281 }
282 }
283
284 if self.is_empty() {
285 BTreeMap::new_in((*self.alloc).clone())
286 } else {
287 clone_subtree(self.root.as_ref().unwrap().reborrow(), (*self.alloc).clone()) // unwrap succeeds because not empty
288 }
289 }
290}
291
292/// Internal functionality for `BTreeSet`.
293impl<K, A: Allocator + Clone> BTreeMap<K, SetValZST, A> {
294 pub(super) fn replace(&mut self, key: K) -> Option<K>
295 where
296 K: Ord,
297 {
298 let (map, dormant_map) = DormantMutRef::new(self);
299 let root_node =
300 map.root.get_or_insert_with(|| Root::new((*map.alloc).clone())).borrow_mut();
301 match root_node.search_tree::<K>(&key) {
302 Found(mut kv) => Some(mem::replace(kv.key_mut(), key)),
303 GoDown(handle) => {
304 VacantEntry {
305 key,
306 handle: Some(handle),
307 dormant_map,
308 alloc: (*map.alloc).clone(),
309 _marker: PhantomData,
310 }
311 .insert(SetValZST);
312 None
313 }
314 }
315 }
316
317 pub(super) fn get_or_insert_with<Q: ?Sized, F>(&mut self, q: &Q, f: F) -> &K
318 where
319 K: Borrow<Q> + Ord,
320 Q: Ord,
321 F: FnOnce(&Q) -> K,
322 {
323 let (map, dormant_map) = DormantMutRef::new(self);
324 let root_node =
325 map.root.get_or_insert_with(|| Root::new((*map.alloc).clone())).borrow_mut();
326 match root_node.search_tree(q) {
327 Found(handle) => handle.into_kv_mut().0,
328 GoDown(handle) => {
329 let key = f(q);
330 assert!(*key.borrow() == *q, "new value is not equal");
331 VacantEntry {
332 key,
333 handle: Some(handle),
334 dormant_map,
335 alloc: (*map.alloc).clone(),
336 _marker: PhantomData,
337 }
338 .insert_entry(SetValZST)
339 .into_key()
340 }
341 }
342 }
343}
344
345/// An iterator over the entries of a `BTreeMap`.
346///
347/// This `struct` is created by the [`iter`] method on [`BTreeMap`]. See its
348/// documentation for more.
349///
350/// [`iter`]: BTreeMap::iter
351#[must_use = "iterators are lazy and do nothing unless consumed"]
352#[stable(feature = "rust1", since = "1.0.0")]
353pub struct Iter<'a, K: 'a, V: 'a> {
354 range: LazyLeafRange<marker::Immut<'a>, K, V>,
355 length: usize,
356}
357
358#[stable(feature = "collection_debug", since = "1.17.0")]
359impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for Iter<'_, K, V> {
360 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
361 f.debug_list().entries(self.clone()).finish()
362 }
363}
364
365#[stable(feature = "default_iters", since = "1.70.0")]
366impl<'a, K: 'a, V: 'a> Default for Iter<'a, K, V> {
367 /// Creates an empty `btree_map::Iter`.
368 ///
369 /// ```
370 /// # use std::collections::btree_map;
371 /// let iter: btree_map::Iter<'_, u8, u8> = Default::default();
372 /// assert_eq!(iter.len(), 0);
373 /// ```
374 fn default() -> Self {
375 Iter { range: Default::default(), length: 0 }
376 }
377}
378
379/// A mutable iterator over the entries of a `BTreeMap`.
380///
381/// This `struct` is created by the [`iter_mut`] method on [`BTreeMap`]. See its
382/// documentation for more.
383///
384/// [`iter_mut`]: BTreeMap::iter_mut
385#[stable(feature = "rust1", since = "1.0.0")]
386pub struct IterMut<'a, K: 'a, V: 'a> {
387 range: LazyLeafRange<marker::ValMut<'a>, K, V>,
388 length: usize,
389
390 // Be invariant in `K` and `V`
391 _marker: PhantomData<&'a mut (K, V)>,
392}
393
394#[must_use = "iterators are lazy and do nothing unless consumed"]
395#[stable(feature = "collection_debug", since = "1.17.0")]
396impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for IterMut<'_, K, V> {
397 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
398 let range = Iter { range: self.range.reborrow(), length: self.length };
399 f.debug_list().entries(range).finish()
400 }
401}
402
403#[stable(feature = "default_iters", since = "1.70.0")]
404impl<'a, K: 'a, V: 'a> Default for IterMut<'a, K, V> {
405 /// Creates an empty `btree_map::IterMut`.
406 ///
407 /// ```
408 /// # use std::collections::btree_map;
409 /// let iter: btree_map::IterMut<'_, u8, u8> = Default::default();
410 /// assert_eq!(iter.len(), 0);
411 /// ```
412 fn default() -> Self {
413 IterMut { range: Default::default(), length: 0, _marker: PhantomData {} }
414 }
415}
416
417/// An owning iterator over the entries of a `BTreeMap`, sorted by key.
418///
419/// This `struct` is created by the [`into_iter`] method on [`BTreeMap`]
420/// (provided by the [`IntoIterator`] trait). See its documentation for more.
421///
422/// [`into_iter`]: IntoIterator::into_iter
423#[stable(feature = "rust1", since = "1.0.0")]
424#[rustc_insignificant_dtor]
425pub struct IntoIter<
426 K,
427 V,
428 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator + Clone = Global,
429> {
430 range: LazyLeafRange<marker::Dying, K, V>,
431 length: usize,
432 /// The BTreeMap will outlive this IntoIter so we don't care about drop order for `alloc`.
433 alloc: A,
434}
435
436impl<K, V, A: Allocator + Clone> IntoIter<K, V, A> {
437 /// Returns an iterator of references over the remaining items.
438 #[inline]
439 pub(super) fn iter(&self) -> Iter<'_, K, V> {
440 Iter { range: self.range.reborrow(), length: self.length }
441 }
442}
443
444#[stable(feature = "collection_debug", since = "1.17.0")]
445impl<K: Debug, V: Debug, A: Allocator + Clone> Debug for IntoIter<K, V, A> {
446 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
447 f.debug_list().entries(self.iter()).finish()
448 }
449}
450
451#[stable(feature = "default_iters", since = "1.70.0")]
452impl<K, V, A> Default for IntoIter<K, V, A>
453where
454 A: Allocator + Default + Clone,
455{
456 /// Creates an empty `btree_map::IntoIter`.
457 ///
458 /// ```
459 /// # use std::collections::btree_map;
460 /// let iter: btree_map::IntoIter<u8, u8> = Default::default();
461 /// assert_eq!(iter.len(), 0);
462 /// ```
463 fn default() -> Self {
464 IntoIter { range: Default::default(), length: 0, alloc: Default::default() }
465 }
466}
467
468/// An iterator over the keys of a `BTreeMap`.
469///
470/// This `struct` is created by the [`keys`] method on [`BTreeMap`]. See its
471/// documentation for more.
472///
473/// [`keys`]: BTreeMap::keys
474#[must_use = "iterators are lazy and do nothing unless consumed"]
475#[stable(feature = "rust1", since = "1.0.0")]
476pub struct Keys<'a, K, V> {
477 inner: Iter<'a, K, V>,
478}
479
480#[stable(feature = "collection_debug", since = "1.17.0")]
481impl<K: fmt::Debug, V> fmt::Debug for Keys<'_, K, V> {
482 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
483 f.debug_list().entries(self.clone()).finish()
484 }
485}
486
487/// An iterator over the values of a `BTreeMap`.
488///
489/// This `struct` is created by the [`values`] method on [`BTreeMap`]. See its
490/// documentation for more.
491///
492/// [`values`]: BTreeMap::values
493#[must_use = "iterators are lazy and do nothing unless consumed"]
494#[stable(feature = "rust1", since = "1.0.0")]
495pub struct Values<'a, K, V> {
496 inner: Iter<'a, K, V>,
497}
498
499#[stable(feature = "collection_debug", since = "1.17.0")]
500impl<K, V: fmt::Debug> fmt::Debug for Values<'_, K, V> {
501 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
502 f.debug_list().entries(self.clone()).finish()
503 }
504}
505
506/// A mutable iterator over the values of a `BTreeMap`.
507///
508/// This `struct` is created by the [`values_mut`] method on [`BTreeMap`]. See its
509/// documentation for more.
510///
511/// [`values_mut`]: BTreeMap::values_mut
512#[must_use = "iterators are lazy and do nothing unless consumed"]
513#[stable(feature = "map_values_mut", since = "1.10.0")]
514pub struct ValuesMut<'a, K, V> {
515 inner: IterMut<'a, K, V>,
516}
517
518#[stable(feature = "map_values_mut", since = "1.10.0")]
519impl<K, V: fmt::Debug> fmt::Debug for ValuesMut<'_, K, V> {
520 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
521 f.debug_list().entries(self.inner.iter().map(|(_, val)| val)).finish()
522 }
523}
524
525/// An owning iterator over the keys of a `BTreeMap`.
526///
527/// This `struct` is created by the [`into_keys`] method on [`BTreeMap`].
528/// See its documentation for more.
529///
530/// [`into_keys`]: BTreeMap::into_keys
531#[must_use = "iterators are lazy and do nothing unless consumed"]
532#[stable(feature = "map_into_keys_values", since = "1.54.0")]
533pub struct IntoKeys<K, V, A: Allocator + Clone = Global> {
534 inner: IntoIter<K, V, A>,
535}
536
537#[stable(feature = "map_into_keys_values", since = "1.54.0")]
538impl<K: fmt::Debug, V, A: Allocator + Clone> fmt::Debug for IntoKeys<K, V, A> {
539 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
540 f.debug_list().entries(self.inner.iter().map(|(key, _)| key)).finish()
541 }
542}
543
544/// An owning iterator over the values of a `BTreeMap`.
545///
546/// This `struct` is created by the [`into_values`] method on [`BTreeMap`].
547/// See its documentation for more.
548///
549/// [`into_values`]: BTreeMap::into_values
550#[must_use = "iterators are lazy and do nothing unless consumed"]
551#[stable(feature = "map_into_keys_values", since = "1.54.0")]
552pub struct IntoValues<
553 K,
554 V,
555 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator + Clone = Global,
556> {
557 inner: IntoIter<K, V, A>,
558}
559
560#[stable(feature = "map_into_keys_values", since = "1.54.0")]
561impl<K, V: fmt::Debug, A: Allocator + Clone> fmt::Debug for IntoValues<K, V, A> {
562 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
563 f.debug_list().entries(self.inner.iter().map(|(_, val)| val)).finish()
564 }
565}
566
567/// An iterator over a sub-range of entries in a `BTreeMap`.
568///
569/// This `struct` is created by the [`range`] method on [`BTreeMap`]. See its
570/// documentation for more.
571///
572/// [`range`]: BTreeMap::range
573#[must_use = "iterators are lazy and do nothing unless consumed"]
574#[stable(feature = "btree_range", since = "1.17.0")]
575pub struct Range<'a, K: 'a, V: 'a> {
576 inner: LeafRange<marker::Immut<'a>, K, V>,
577}
578
579#[stable(feature = "collection_debug", since = "1.17.0")]
580impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for Range<'_, K, V> {
581 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
582 f.debug_list().entries(self.clone()).finish()
583 }
584}
585
586/// A mutable iterator over a sub-range of entries in a `BTreeMap`.
587///
588/// This `struct` is created by the [`range_mut`] method on [`BTreeMap`]. See its
589/// documentation for more.
590///
591/// [`range_mut`]: BTreeMap::range_mut
592#[must_use = "iterators are lazy and do nothing unless consumed"]
593#[stable(feature = "btree_range", since = "1.17.0")]
594pub struct RangeMut<'a, K: 'a, V: 'a> {
595 inner: LeafRange<marker::ValMut<'a>, K, V>,
596
597 // Be invariant in `K` and `V`
598 _marker: PhantomData<&'a mut (K, V)>,
599}
600
601#[stable(feature = "collection_debug", since = "1.17.0")]
602impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for RangeMut<'_, K, V> {
603 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
604 let range = Range { inner: self.inner.reborrow() };
605 f.debug_list().entries(range).finish()
606 }
607}
608
609impl<K, V> BTreeMap<K, V> {
610 /// Makes a new, empty `BTreeMap`.
611 ///
612 /// Does not allocate anything on its own.
613 ///
614 /// # Examples
615 ///
616 /// ```
617 /// use std::collections::BTreeMap;
618 ///
619 /// let mut map = BTreeMap::new();
620 ///
621 /// // entries can now be inserted into the empty map
622 /// map.insert(1, "a");
623 /// ```
624 #[stable(feature = "rust1", since = "1.0.0")]
625 #[rustc_const_stable(feature = "const_btree_new", since = "1.66.0")]
626 #[inline]
627 #[must_use]
628 pub const fn new() -> BTreeMap<K, V> {
629 BTreeMap { root: None, length: 0, alloc: ManuallyDrop::new(Global), _marker: PhantomData }
630 }
631}
632
633impl<K, V, A: Allocator + Clone> BTreeMap<K, V, A> {
634 /// Clears the map, removing all elements.
635 ///
636 /// # Examples
637 ///
638 /// ```
639 /// use std::collections::BTreeMap;
640 ///
641 /// let mut a = BTreeMap::new();
642 /// a.insert(1, "a");
643 /// a.clear();
644 /// assert!(a.is_empty());
645 /// ```
646 #[stable(feature = "rust1", since = "1.0.0")]
647 pub fn clear(&mut self) {
648 // avoid moving the allocator
649 drop(BTreeMap {
650 root: mem::replace(&mut self.root, None),
651 length: mem::replace(&mut self.length, 0),
652 alloc: self.alloc.clone(),
653 _marker: PhantomData,
654 });
655 }
656
657 /// Makes a new empty BTreeMap with a reasonable choice for B.
658 ///
659 /// # Examples
660 ///
661 /// ```
662 /// # #![feature(allocator_api)]
663 /// # #![feature(btreemap_alloc)]
664 /// use std::collections::BTreeMap;
665 /// use std::alloc::Global;
666 ///
667 /// let mut map = BTreeMap::new_in(Global);
668 ///
669 /// // entries can now be inserted into the empty map
670 /// map.insert(1, "a");
671 /// ```
672 #[unstable(feature = "btreemap_alloc", issue = "32838")]
673 pub const fn new_in(alloc: A) -> BTreeMap<K, V, A> {
674 BTreeMap { root: None, length: 0, alloc: ManuallyDrop::new(alloc), _marker: PhantomData }
675 }
676}
677
678impl<K, V, A: Allocator + Clone> BTreeMap<K, V, A> {
679 /// Returns a reference to the value corresponding to the key.
680 ///
681 /// The key may be any borrowed form of the map's key type, but the ordering
682 /// on the borrowed form *must* match the ordering on the key type.
683 ///
684 /// # Examples
685 ///
686 /// ```
687 /// use std::collections::BTreeMap;
688 ///
689 /// let mut map = BTreeMap::new();
690 /// map.insert(1, "a");
691 /// assert_eq!(map.get(&1), Some(&"a"));
692 /// assert_eq!(map.get(&2), None);
693 /// ```
694 #[stable(feature = "rust1", since = "1.0.0")]
695 pub fn get<Q: ?Sized>(&self, key: &Q) -> Option<&V>
696 where
697 K: Borrow<Q> + Ord,
698 Q: Ord,
699 {
700 let root_node = self.root.as_ref()?.reborrow();
701 match root_node.search_tree(key) {
702 Found(handle) => Some(handle.into_kv().1),
703 GoDown(_) => None,
704 }
705 }
706
707 /// Returns the key-value pair corresponding to the supplied key. This is
708 /// potentially useful:
709 /// - for key types where non-identical keys can be considered equal;
710 /// - for getting the `&K` stored key value from a borrowed `&Q` lookup key; or
711 /// - for getting a reference to a key with the same lifetime as the collection.
712 ///
713 /// The supplied key may be any borrowed form of the map's key type, but the ordering
714 /// on the borrowed form *must* match the ordering on the key type.
715 ///
716 /// # Examples
717 ///
718 /// ```
719 /// use std::cmp::Ordering;
720 /// use std::collections::BTreeMap;
721 ///
722 /// #[derive(Clone, Copy, Debug)]
723 /// struct S {
724 /// id: u32,
725 /// # #[allow(unused)] // prevents a "field `name` is never read" error
726 /// name: &'static str, // ignored by equality and ordering operations
727 /// }
728 ///
729 /// impl PartialEq for S {
730 /// fn eq(&self, other: &S) -> bool {
731 /// self.id == other.id
732 /// }
733 /// }
734 ///
735 /// impl Eq for S {}
736 ///
737 /// impl PartialOrd for S {
738 /// fn partial_cmp(&self, other: &S) -> Option<Ordering> {
739 /// self.id.partial_cmp(&other.id)
740 /// }
741 /// }
742 ///
743 /// impl Ord for S {
744 /// fn cmp(&self, other: &S) -> Ordering {
745 /// self.id.cmp(&other.id)
746 /// }
747 /// }
748 ///
749 /// let j_a = S { id: 1, name: "Jessica" };
750 /// let j_b = S { id: 1, name: "Jess" };
751 /// let p = S { id: 2, name: "Paul" };
752 /// assert_eq!(j_a, j_b);
753 ///
754 /// let mut map = BTreeMap::new();
755 /// map.insert(j_a, "Paris");
756 /// assert_eq!(map.get_key_value(&j_a), Some((&j_a, &"Paris")));
757 /// assert_eq!(map.get_key_value(&j_b), Some((&j_a, &"Paris"))); // the notable case
758 /// assert_eq!(map.get_key_value(&p), None);
759 /// ```
760 #[stable(feature = "map_get_key_value", since = "1.40.0")]
761 pub fn get_key_value<Q: ?Sized>(&self, k: &Q) -> Option<(&K, &V)>
762 where
763 K: Borrow<Q> + Ord,
764 Q: Ord,
765 {
766 let root_node = self.root.as_ref()?.reborrow();
767 match root_node.search_tree(k) {
768 Found(handle) => Some(handle.into_kv()),
769 GoDown(_) => None,
770 }
771 }
772
773 /// Returns the first key-value pair in the map.
774 /// The key in this pair is the minimum key in the map.
775 ///
776 /// # Examples
777 ///
778 /// ```
779 /// use std::collections::BTreeMap;
780 ///
781 /// let mut map = BTreeMap::new();
782 /// assert_eq!(map.first_key_value(), None);
783 /// map.insert(1, "b");
784 /// map.insert(2, "a");
785 /// assert_eq!(map.first_key_value(), Some((&1, &"b")));
786 /// ```
787 #[stable(feature = "map_first_last", since = "1.66.0")]
788 pub fn first_key_value(&self) -> Option<(&K, &V)>
789 where
790 K: Ord,
791 {
792 let root_node = self.root.as_ref()?.reborrow();
793 root_node.first_leaf_edge().right_kv().ok().map(Handle::into_kv)
794 }
795
796 /// Returns the first entry in the map for in-place manipulation.
797 /// The key of this entry is the minimum key in the map.
798 ///
799 /// # Examples
800 ///
801 /// ```
802 /// use std::collections::BTreeMap;
803 ///
804 /// let mut map = BTreeMap::new();
805 /// map.insert(1, "a");
806 /// map.insert(2, "b");
807 /// if let Some(mut entry) = map.first_entry() {
808 /// if *entry.key() > 0 {
809 /// entry.insert("first");
810 /// }
811 /// }
812 /// assert_eq!(*map.get(&1).unwrap(), "first");
813 /// assert_eq!(*map.get(&2).unwrap(), "b");
814 /// ```
815 #[stable(feature = "map_first_last", since = "1.66.0")]
816 pub fn first_entry(&mut self) -> Option<OccupiedEntry<'_, K, V, A>>
817 where
818 K: Ord,
819 {
820 let (map, dormant_map) = DormantMutRef::new(self);
821 let root_node = map.root.as_mut()?.borrow_mut();
822 let kv = root_node.first_leaf_edge().right_kv().ok()?;
823 Some(OccupiedEntry {
824 handle: kv.forget_node_type(),
825 dormant_map,
826 alloc: (*map.alloc).clone(),
827 _marker: PhantomData,
828 })
829 }
830
831 /// Removes and returns the first element in the map.
832 /// The key of this element is the minimum key that was in the map.
833 ///
834 /// # Examples
835 ///
836 /// Draining elements in ascending order, while keeping a usable map each iteration.
837 ///
838 /// ```
839 /// use std::collections::BTreeMap;
840 ///
841 /// let mut map = BTreeMap::new();
842 /// map.insert(1, "a");
843 /// map.insert(2, "b");
844 /// while let Some((key, _val)) = map.pop_first() {
845 /// assert!(map.iter().all(|(k, _v)| *k > key));
846 /// }
847 /// assert!(map.is_empty());
848 /// ```
849 #[stable(feature = "map_first_last", since = "1.66.0")]
850 pub fn pop_first(&mut self) -> Option<(K, V)>
851 where
852 K: Ord,
853 {
854 self.first_entry().map(|entry| entry.remove_entry())
855 }
856
857 /// Returns the last key-value pair in the map.
858 /// The key in this pair is the maximum key in the map.
859 ///
860 /// # Examples
861 ///
862 /// ```
863 /// use std::collections::BTreeMap;
864 ///
865 /// let mut map = BTreeMap::new();
866 /// map.insert(1, "b");
867 /// map.insert(2, "a");
868 /// assert_eq!(map.last_key_value(), Some((&2, &"a")));
869 /// ```
870 #[stable(feature = "map_first_last", since = "1.66.0")]
871 pub fn last_key_value(&self) -> Option<(&K, &V)>
872 where
873 K: Ord,
874 {
875 let root_node = self.root.as_ref()?.reborrow();
876 root_node.last_leaf_edge().left_kv().ok().map(Handle::into_kv)
877 }
878
879 /// Returns the last entry in the map for in-place manipulation.
880 /// The key of this entry is the maximum key in the map.
881 ///
882 /// # Examples
883 ///
884 /// ```
885 /// use std::collections::BTreeMap;
886 ///
887 /// let mut map = BTreeMap::new();
888 /// map.insert(1, "a");
889 /// map.insert(2, "b");
890 /// if let Some(mut entry) = map.last_entry() {
891 /// if *entry.key() > 0 {
892 /// entry.insert("last");
893 /// }
894 /// }
895 /// assert_eq!(*map.get(&1).unwrap(), "a");
896 /// assert_eq!(*map.get(&2).unwrap(), "last");
897 /// ```
898 #[stable(feature = "map_first_last", since = "1.66.0")]
899 pub fn last_entry(&mut self) -> Option<OccupiedEntry<'_, K, V, A>>
900 where
901 K: Ord,
902 {
903 let (map, dormant_map) = DormantMutRef::new(self);
904 let root_node = map.root.as_mut()?.borrow_mut();
905 let kv = root_node.last_leaf_edge().left_kv().ok()?;
906 Some(OccupiedEntry {
907 handle: kv.forget_node_type(),
908 dormant_map,
909 alloc: (*map.alloc).clone(),
910 _marker: PhantomData,
911 })
912 }
913
914 /// Removes and returns the last element in the map.
915 /// The key of this element is the maximum key that was in the map.
916 ///
917 /// # Examples
918 ///
919 /// Draining elements in descending order, while keeping a usable map each iteration.
920 ///
921 /// ```
922 /// use std::collections::BTreeMap;
923 ///
924 /// let mut map = BTreeMap::new();
925 /// map.insert(1, "a");
926 /// map.insert(2, "b");
927 /// while let Some((key, _val)) = map.pop_last() {
928 /// assert!(map.iter().all(|(k, _v)| *k < key));
929 /// }
930 /// assert!(map.is_empty());
931 /// ```
932 #[stable(feature = "map_first_last", since = "1.66.0")]
933 pub fn pop_last(&mut self) -> Option<(K, V)>
934 where
935 K: Ord,
936 {
937 self.last_entry().map(|entry| entry.remove_entry())
938 }
939
940 /// Returns `true` if the map contains a value for the specified key.
941 ///
942 /// The key may be any borrowed form of the map's key type, but the ordering
943 /// on the borrowed form *must* match the ordering on the key type.
944 ///
945 /// # Examples
946 ///
947 /// ```
948 /// use std::collections::BTreeMap;
949 ///
950 /// let mut map = BTreeMap::new();
951 /// map.insert(1, "a");
952 /// assert_eq!(map.contains_key(&1), true);
953 /// assert_eq!(map.contains_key(&2), false);
954 /// ```
955 #[stable(feature = "rust1", since = "1.0.0")]
956 #[cfg_attr(not(test), rustc_diagnostic_item = "btreemap_contains_key")]
957 pub fn contains_key<Q: ?Sized>(&self, key: &Q) -> bool
958 where
959 K: Borrow<Q> + Ord,
960 Q: Ord,
961 {
962 self.get(key).is_some()
963 }
964
965 /// Returns a mutable reference to the value corresponding to the key.
966 ///
967 /// The key may be any borrowed form of the map's key type, but the ordering
968 /// on the borrowed form *must* match the ordering on the key type.
969 ///
970 /// # Examples
971 ///
972 /// ```
973 /// use std::collections::BTreeMap;
974 ///
975 /// let mut map = BTreeMap::new();
976 /// map.insert(1, "a");
977 /// if let Some(x) = map.get_mut(&1) {
978 /// *x = "b";
979 /// }
980 /// assert_eq!(map[&1], "b");
981 /// ```
982 // See `get` for implementation notes, this is basically a copy-paste with mut's added
983 #[stable(feature = "rust1", since = "1.0.0")]
984 pub fn get_mut<Q: ?Sized>(&mut self, key: &Q) -> Option<&mut V>
985 where
986 K: Borrow<Q> + Ord,
987 Q: Ord,
988 {
989 let root_node = self.root.as_mut()?.borrow_mut();
990 match root_node.search_tree(key) {
991 Found(handle) => Some(handle.into_val_mut()),
992 GoDown(_) => None,
993 }
994 }
995
996 /// Inserts a key-value pair into the map.
997 ///
998 /// If the map did not have this key present, `None` is returned.
999 ///
1000 /// If the map did have this key present, the value is updated, and the old
1001 /// value is returned. The key is not updated, though; this matters for
1002 /// types that can be `==` without being identical. See the [module-level
1003 /// documentation] for more.
1004 ///
1005 /// [module-level documentation]: index.html#insert-and-complex-keys
1006 ///
1007 /// # Examples
1008 ///
1009 /// ```
1010 /// use std::collections::BTreeMap;
1011 ///
1012 /// let mut map = BTreeMap::new();
1013 /// assert_eq!(map.insert(37, "a"), None);
1014 /// assert_eq!(map.is_empty(), false);
1015 ///
1016 /// map.insert(37, "b");
1017 /// assert_eq!(map.insert(37, "c"), Some("b"));
1018 /// assert_eq!(map[&37], "c");
1019 /// ```
1020 #[stable(feature = "rust1", since = "1.0.0")]
1021 #[rustc_confusables("push", "put", "set")]
1022 #[cfg_attr(not(test), rustc_diagnostic_item = "btreemap_insert")]
1023 pub fn insert(&mut self, key: K, value: V) -> Option<V>
1024 where
1025 K: Ord,
1026 {
1027 match self.entry(key) {
1028 Occupied(mut entry) => Some(entry.insert(value)),
1029 Vacant(entry) => {
1030 entry.insert(value);
1031 None
1032 }
1033 }
1034 }
1035
1036 /// Tries to insert a key-value pair into the map, and returns
1037 /// a mutable reference to the value in the entry.
1038 ///
1039 /// If the map already had this key present, nothing is updated, and
1040 /// an error containing the occupied entry and the value is returned.
1041 ///
1042 /// # Examples
1043 ///
1044 /// ```
1045 /// #![feature(map_try_insert)]
1046 ///
1047 /// use std::collections::BTreeMap;
1048 ///
1049 /// let mut map = BTreeMap::new();
1050 /// assert_eq!(map.try_insert(37, "a").unwrap(), &"a");
1051 ///
1052 /// let err = map.try_insert(37, "b").unwrap_err();
1053 /// assert_eq!(err.entry.key(), &37);
1054 /// assert_eq!(err.entry.get(), &"a");
1055 /// assert_eq!(err.value, "b");
1056 /// ```
1057 #[unstable(feature = "map_try_insert", issue = "82766")]
1058 pub fn try_insert(&mut self, key: K, value: V) -> Result<&mut V, OccupiedError<'_, K, V, A>>
1059 where
1060 K: Ord,
1061 {
1062 match self.entry(key) {
1063 Occupied(entry) => Err(OccupiedError { entry, value }),
1064 Vacant(entry) => Ok(entry.insert(value)),
1065 }
1066 }
1067
1068 /// Removes a key from the map, returning the value at the key if the key
1069 /// was previously in the map.
1070 ///
1071 /// The key may be any borrowed form of the map's key type, but the ordering
1072 /// on the borrowed form *must* match the ordering on the key type.
1073 ///
1074 /// # Examples
1075 ///
1076 /// ```
1077 /// use std::collections::BTreeMap;
1078 ///
1079 /// let mut map = BTreeMap::new();
1080 /// map.insert(1, "a");
1081 /// assert_eq!(map.remove(&1), Some("a"));
1082 /// assert_eq!(map.remove(&1), None);
1083 /// ```
1084 #[stable(feature = "rust1", since = "1.0.0")]
1085 #[rustc_confusables("delete", "take")]
1086 pub fn remove<Q: ?Sized>(&mut self, key: &Q) -> Option<V>
1087 where
1088 K: Borrow<Q> + Ord,
1089 Q: Ord,
1090 {
1091 self.remove_entry(key).map(|(_, v)| v)
1092 }
1093
1094 /// Removes a key from the map, returning the stored key and value if the key
1095 /// was previously in the map.
1096 ///
1097 /// The key may be any borrowed form of the map's key type, but the ordering
1098 /// on the borrowed form *must* match the ordering on the key type.
1099 ///
1100 /// # Examples
1101 ///
1102 /// ```
1103 /// use std::collections::BTreeMap;
1104 ///
1105 /// let mut map = BTreeMap::new();
1106 /// map.insert(1, "a");
1107 /// assert_eq!(map.remove_entry(&1), Some((1, "a")));
1108 /// assert_eq!(map.remove_entry(&1), None);
1109 /// ```
1110 #[stable(feature = "btreemap_remove_entry", since = "1.45.0")]
1111 pub fn remove_entry<Q: ?Sized>(&mut self, key: &Q) -> Option<(K, V)>
1112 where
1113 K: Borrow<Q> + Ord,
1114 Q: Ord,
1115 {
1116 let (map, dormant_map) = DormantMutRef::new(self);
1117 let root_node = map.root.as_mut()?.borrow_mut();
1118 match root_node.search_tree(key) {
1119 Found(handle) => Some(
1120 OccupiedEntry {
1121 handle,
1122 dormant_map,
1123 alloc: (*map.alloc).clone(),
1124 _marker: PhantomData,
1125 }
1126 .remove_entry(),
1127 ),
1128 GoDown(_) => None,
1129 }
1130 }
1131
1132 /// Retains only the elements specified by the predicate.
1133 ///
1134 /// In other words, remove all pairs `(k, v)` for which `f(&k, &mut v)` returns `false`.
1135 /// The elements are visited in ascending key order.
1136 ///
1137 /// # Examples
1138 ///
1139 /// ```
1140 /// use std::collections::BTreeMap;
1141 ///
1142 /// let mut map: BTreeMap<i32, i32> = (0..8).map(|x| (x, x*10)).collect();
1143 /// // Keep only the elements with even-numbered keys.
1144 /// map.retain(|&k, _| k % 2 == 0);
1145 /// assert!(map.into_iter().eq(vec![(0, 0), (2, 20), (4, 40), (6, 60)]));
1146 /// ```
1147 #[inline]
1148 #[stable(feature = "btree_retain", since = "1.53.0")]
1149 pub fn retain<F>(&mut self, mut f: F)
1150 where
1151 K: Ord,
1152 F: FnMut(&K, &mut V) -> bool,
1153 {
1154 self.extract_if(|k, v| !f(k, v)).for_each(drop);
1155 }
1156
1157 /// Moves all elements from `other` into `self`, leaving `other` empty.
1158 ///
1159 /// If a key from `other` is already present in `self`, the respective
1160 /// value from `self` will be overwritten with the respective value from `other`.
1161 ///
1162 /// # Examples
1163 ///
1164 /// ```
1165 /// use std::collections::BTreeMap;
1166 ///
1167 /// let mut a = BTreeMap::new();
1168 /// a.insert(1, "a");
1169 /// a.insert(2, "b");
1170 /// a.insert(3, "c"); // Note: Key (3) also present in b.
1171 ///
1172 /// let mut b = BTreeMap::new();
1173 /// b.insert(3, "d"); // Note: Key (3) also present in a.
1174 /// b.insert(4, "e");
1175 /// b.insert(5, "f");
1176 ///
1177 /// a.append(&mut b);
1178 ///
1179 /// assert_eq!(a.len(), 5);
1180 /// assert_eq!(b.len(), 0);
1181 ///
1182 /// assert_eq!(a[&1], "a");
1183 /// assert_eq!(a[&2], "b");
1184 /// assert_eq!(a[&3], "d"); // Note: "c" has been overwritten.
1185 /// assert_eq!(a[&4], "e");
1186 /// assert_eq!(a[&5], "f");
1187 /// ```
1188 #[stable(feature = "btree_append", since = "1.11.0")]
1189 pub fn append(&mut self, other: &mut Self)
1190 where
1191 K: Ord,
1192 A: Clone,
1193 {
1194 // Do we have to append anything at all?
1195 if other.is_empty() {
1196 return;
1197 }
1198
1199 // We can just swap `self` and `other` if `self` is empty.
1200 if self.is_empty() {
1201 mem::swap(self, other);
1202 return;
1203 }
1204
1205 let self_iter = mem::replace(self, Self::new_in((*self.alloc).clone())).into_iter();
1206 let other_iter = mem::replace(other, Self::new_in((*self.alloc).clone())).into_iter();
1207 let root = self.root.get_or_insert_with(|| Root::new((*self.alloc).clone()));
1208 root.append_from_sorted_iters(
1209 self_iter,
1210 other_iter,
1211 &mut self.length,
1212 (*self.alloc).clone(),
1213 )
1214 }
1215
1216 /// Constructs a double-ended iterator over a sub-range of elements in the map.
1217 /// The simplest way is to use the range syntax `min..max`, thus `range(min..max)` will
1218 /// yield elements from min (inclusive) to max (exclusive).
1219 /// The range may also be entered as `(Bound<T>, Bound<T>)`, so for example
1220 /// `range((Excluded(4), Included(10)))` will yield a left-exclusive, right-inclusive
1221 /// range from 4 to 10.
1222 ///
1223 /// # Panics
1224 ///
1225 /// Panics if range `start > end`.
1226 /// Panics if range `start == end` and both bounds are `Excluded`.
1227 ///
1228 /// # Examples
1229 ///
1230 /// ```
1231 /// use std::collections::BTreeMap;
1232 /// use std::ops::Bound::Included;
1233 ///
1234 /// let mut map = BTreeMap::new();
1235 /// map.insert(3, "a");
1236 /// map.insert(5, "b");
1237 /// map.insert(8, "c");
1238 /// for (&key, &value) in map.range((Included(&4), Included(&8))) {
1239 /// println!("{key}: {value}");
1240 /// }
1241 /// assert_eq!(Some((&5, &"b")), map.range(4..).next());
1242 /// ```
1243 #[stable(feature = "btree_range", since = "1.17.0")]
1244 pub fn range<T: ?Sized, R>(&self, range: R) -> Range<'_, K, V>
1245 where
1246 T: Ord,
1247 K: Borrow<T> + Ord,
1248 R: RangeBounds<T>,
1249 {
1250 if let Some(root) = &self.root {
1251 Range { inner: root.reborrow().range_search(range) }
1252 } else {
1253 Range { inner: LeafRange::none() }
1254 }
1255 }
1256
1257 /// Constructs a mutable double-ended iterator over a sub-range of elements in the map.
1258 /// The simplest way is to use the range syntax `min..max`, thus `range(min..max)` will
1259 /// yield elements from min (inclusive) to max (exclusive).
1260 /// The range may also be entered as `(Bound<T>, Bound<T>)`, so for example
1261 /// `range((Excluded(4), Included(10)))` will yield a left-exclusive, right-inclusive
1262 /// range from 4 to 10.
1263 ///
1264 /// # Panics
1265 ///
1266 /// Panics if range `start > end`.
1267 /// Panics if range `start == end` and both bounds are `Excluded`.
1268 ///
1269 /// # Examples
1270 ///
1271 /// ```
1272 /// use std::collections::BTreeMap;
1273 ///
1274 /// let mut map: BTreeMap<&str, i32> =
1275 /// [("Alice", 0), ("Bob", 0), ("Carol", 0), ("Cheryl", 0)].into();
1276 /// for (_, balance) in map.range_mut("B".."Cheryl") {
1277 /// *balance += 100;
1278 /// }
1279 /// for (name, balance) in &map {
1280 /// println!("{name} => {balance}");
1281 /// }
1282 /// ```
1283 #[stable(feature = "btree_range", since = "1.17.0")]
1284 pub fn range_mut<T: ?Sized, R>(&mut self, range: R) -> RangeMut<'_, K, V>
1285 where
1286 T: Ord,
1287 K: Borrow<T> + Ord,
1288 R: RangeBounds<T>,
1289 {
1290 if let Some(root) = &mut self.root {
1291 RangeMut { inner: root.borrow_valmut().range_search(range), _marker: PhantomData }
1292 } else {
1293 RangeMut { inner: LeafRange::none(), _marker: PhantomData }
1294 }
1295 }
1296
1297 /// Gets the given key's corresponding entry in the map for in-place manipulation.
1298 ///
1299 /// # Examples
1300 ///
1301 /// ```
1302 /// use std::collections::BTreeMap;
1303 ///
1304 /// let mut count: BTreeMap<&str, usize> = BTreeMap::new();
1305 ///
1306 /// // count the number of occurrences of letters in the vec
1307 /// for x in ["a", "b", "a", "c", "a", "b"] {
1308 /// count.entry(x).and_modify(|curr| *curr += 1).or_insert(1);
1309 /// }
1310 ///
1311 /// assert_eq!(count["a"], 3);
1312 /// assert_eq!(count["b"], 2);
1313 /// assert_eq!(count["c"], 1);
1314 /// ```
1315 #[stable(feature = "rust1", since = "1.0.0")]
1316 pub fn entry(&mut self, key: K) -> Entry<'_, K, V, A>
1317 where
1318 K: Ord,
1319 {
1320 let (map, dormant_map) = DormantMutRef::new(self);
1321 match map.root {
1322 None => Vacant(VacantEntry {
1323 key,
1324 handle: None,
1325 dormant_map,
1326 alloc: (*map.alloc).clone(),
1327 _marker: PhantomData,
1328 }),
1329 Some(ref mut root) => match root.borrow_mut().search_tree(&key) {
1330 Found(handle) => Occupied(OccupiedEntry {
1331 handle,
1332 dormant_map,
1333 alloc: (*map.alloc).clone(),
1334 _marker: PhantomData,
1335 }),
1336 GoDown(handle) => Vacant(VacantEntry {
1337 key,
1338 handle: Some(handle),
1339 dormant_map,
1340 alloc: (*map.alloc).clone(),
1341 _marker: PhantomData,
1342 }),
1343 },
1344 }
1345 }
1346
1347 /// Splits the collection into two at the given key. Returns everything after the given key,
1348 /// including the key.
1349 ///
1350 /// # Examples
1351 ///
1352 /// ```
1353 /// use std::collections::BTreeMap;
1354 ///
1355 /// let mut a = BTreeMap::new();
1356 /// a.insert(1, "a");
1357 /// a.insert(2, "b");
1358 /// a.insert(3, "c");
1359 /// a.insert(17, "d");
1360 /// a.insert(41, "e");
1361 ///
1362 /// let b = a.split_off(&3);
1363 ///
1364 /// assert_eq!(a.len(), 2);
1365 /// assert_eq!(b.len(), 3);
1366 ///
1367 /// assert_eq!(a[&1], "a");
1368 /// assert_eq!(a[&2], "b");
1369 ///
1370 /// assert_eq!(b[&3], "c");
1371 /// assert_eq!(b[&17], "d");
1372 /// assert_eq!(b[&41], "e");
1373 /// ```
1374 #[stable(feature = "btree_split_off", since = "1.11.0")]
1375 pub fn split_off<Q: ?Sized + Ord>(&mut self, key: &Q) -> Self
1376 where
1377 K: Borrow<Q> + Ord,
1378 A: Clone,
1379 {
1380 if self.is_empty() {
1381 return Self::new_in((*self.alloc).clone());
1382 }
1383
1384 let total_num = self.len();
1385 let left_root = self.root.as_mut().unwrap(); // unwrap succeeds because not empty
1386
1387 let right_root = left_root.split_off(key, (*self.alloc).clone());
1388
1389 let (new_left_len, right_len) = Root::calc_split_length(total_num, &left_root, &right_root);
1390 self.length = new_left_len;
1391
1392 BTreeMap {
1393 root: Some(right_root),
1394 length: right_len,
1395 alloc: self.alloc.clone(),
1396 _marker: PhantomData,
1397 }
1398 }
1399
1400 /// Creates an iterator that visits all elements (key-value pairs) in
1401 /// ascending key order and uses a closure to determine if an element should
1402 /// be removed. If the closure returns `true`, the element is removed from
1403 /// the map and yielded. If the closure returns `false`, or panics, the
1404 /// element remains in the map and will not be yielded.
1405 ///
1406 /// The iterator also lets you mutate the value of each element in the
1407 /// closure, regardless of whether you choose to keep or remove it.
1408 ///
1409 /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating
1410 /// or the iteration short-circuits, then the remaining elements will be retained.
1411 /// Use [`retain`] with a negated predicate if you do not need the returned iterator.
1412 ///
1413 /// [`retain`]: BTreeMap::retain
1414 ///
1415 /// # Examples
1416 ///
1417 /// Splitting a map into even and odd keys, reusing the original map:
1418 ///
1419 /// ```
1420 /// #![feature(btree_extract_if)]
1421 /// use std::collections::BTreeMap;
1422 ///
1423 /// let mut map: BTreeMap<i32, i32> = (0..8).map(|x| (x, x)).collect();
1424 /// let evens: BTreeMap<_, _> = map.extract_if(|k, _v| k % 2 == 0).collect();
1425 /// let odds = map;
1426 /// assert_eq!(evens.keys().copied().collect::<Vec<_>>(), [0, 2, 4, 6]);
1427 /// assert_eq!(odds.keys().copied().collect::<Vec<_>>(), [1, 3, 5, 7]);
1428 /// ```
1429 #[unstable(feature = "btree_extract_if", issue = "70530")]
1430 pub fn extract_if<F>(&mut self, pred: F) -> ExtractIf<'_, K, V, F, A>
1431 where
1432 K: Ord,
1433 F: FnMut(&K, &mut V) -> bool,
1434 {
1435 let (inner, alloc) = self.extract_if_inner();
1436 ExtractIf { pred, inner, alloc }
1437 }
1438
1439 pub(super) fn extract_if_inner(&mut self) -> (ExtractIfInner<'_, K, V>, A)
1440 where
1441 K: Ord,
1442 {
1443 if let Some(root) = self.root.as_mut() {
1444 let (root, dormant_root) = DormantMutRef::new(root);
1445 let front = root.borrow_mut().first_leaf_edge();
1446 (
1447 ExtractIfInner {
1448 length: &mut self.length,
1449 dormant_root: Some(dormant_root),
1450 cur_leaf_edge: Some(front),
1451 },
1452 (*self.alloc).clone(),
1453 )
1454 } else {
1455 (
1456 ExtractIfInner {
1457 length: &mut self.length,
1458 dormant_root: None,
1459 cur_leaf_edge: None,
1460 },
1461 (*self.alloc).clone(),
1462 )
1463 }
1464 }
1465
1466 /// Creates a consuming iterator visiting all the keys, in sorted order.
1467 /// The map cannot be used after calling this.
1468 /// The iterator element type is `K`.
1469 ///
1470 /// # Examples
1471 ///
1472 /// ```
1473 /// use std::collections::BTreeMap;
1474 ///
1475 /// let mut a = BTreeMap::new();
1476 /// a.insert(2, "b");
1477 /// a.insert(1, "a");
1478 ///
1479 /// let keys: Vec<i32> = a.into_keys().collect();
1480 /// assert_eq!(keys, [1, 2]);
1481 /// ```
1482 #[inline]
1483 #[stable(feature = "map_into_keys_values", since = "1.54.0")]
1484 pub fn into_keys(self) -> IntoKeys<K, V, A> {
1485 IntoKeys { inner: self.into_iter() }
1486 }
1487
1488 /// Creates a consuming iterator visiting all the values, in order by key.
1489 /// The map cannot be used after calling this.
1490 /// The iterator element type is `V`.
1491 ///
1492 /// # Examples
1493 ///
1494 /// ```
1495 /// use std::collections::BTreeMap;
1496 ///
1497 /// let mut a = BTreeMap::new();
1498 /// a.insert(1, "hello");
1499 /// a.insert(2, "goodbye");
1500 ///
1501 /// let values: Vec<&str> = a.into_values().collect();
1502 /// assert_eq!(values, ["hello", "goodbye"]);
1503 /// ```
1504 #[inline]
1505 #[stable(feature = "map_into_keys_values", since = "1.54.0")]
1506 pub fn into_values(self) -> IntoValues<K, V, A> {
1507 IntoValues { inner: self.into_iter() }
1508 }
1509
1510 /// Makes a `BTreeMap` from a sorted iterator.
1511 pub(crate) fn bulk_build_from_sorted_iter<I>(iter: I, alloc: A) -> Self
1512 where
1513 K: Ord,
1514 I: IntoIterator<Item = (K, V)>,
1515 {
1516 let mut root = Root::new(alloc.clone());
1517 let mut length = 0;
1518 root.bulk_push(DedupSortedIter::new(iter.into_iter()), &mut length, alloc.clone());
1519 BTreeMap { root: Some(root), length, alloc: ManuallyDrop::new(alloc), _marker: PhantomData }
1520 }
1521}
1522
1523#[stable(feature = "rust1", since = "1.0.0")]
1524impl<'a, K, V, A: Allocator + Clone> IntoIterator for &'a BTreeMap<K, V, A> {
1525 type Item = (&'a K, &'a V);
1526 type IntoIter = Iter<'a, K, V>;
1527
1528 fn into_iter(self) -> Iter<'a, K, V> {
1529 self.iter()
1530 }
1531}
1532
1533#[stable(feature = "rust1", since = "1.0.0")]
1534impl<'a, K: 'a, V: 'a> Iterator for Iter<'a, K, V> {
1535 type Item = (&'a K, &'a V);
1536
1537 fn next(&mut self) -> Option<(&'a K, &'a V)> {
1538 if self.length == 0 {
1539 None
1540 } else {
1541 self.length -= 1;
1542 Some(unsafe { self.range.next_unchecked() })
1543 }
1544 }
1545
1546 fn size_hint(&self) -> (usize, Option<usize>) {
1547 (self.length, Some(self.length))
1548 }
1549
1550 fn last(mut self) -> Option<(&'a K, &'a V)> {
1551 self.next_back()
1552 }
1553
1554 fn min(mut self) -> Option<(&'a K, &'a V)>
1555 where
1556 (&'a K, &'a V): Ord,
1557 {
1558 self.next()
1559 }
1560
1561 fn max(mut self) -> Option<(&'a K, &'a V)>
1562 where
1563 (&'a K, &'a V): Ord,
1564 {
1565 self.next_back()
1566 }
1567}
1568
1569#[stable(feature = "fused", since = "1.26.0")]
1570impl<K, V> FusedIterator for Iter<'_, K, V> {}
1571
1572#[stable(feature = "rust1", since = "1.0.0")]
1573impl<'a, K: 'a, V: 'a> DoubleEndedIterator for Iter<'a, K, V> {
1574 fn next_back(&mut self) -> Option<(&'a K, &'a V)> {
1575 if self.length == 0 {
1576 None
1577 } else {
1578 self.length -= 1;
1579 Some(unsafe { self.range.next_back_unchecked() })
1580 }
1581 }
1582}
1583
1584#[stable(feature = "rust1", since = "1.0.0")]
1585impl<K, V> ExactSizeIterator for Iter<'_, K, V> {
1586 fn len(&self) -> usize {
1587 self.length
1588 }
1589}
1590
1591#[stable(feature = "rust1", since = "1.0.0")]
1592impl<K, V> Clone for Iter<'_, K, V> {
1593 fn clone(&self) -> Self {
1594 Iter { range: self.range.clone(), length: self.length }
1595 }
1596}
1597
1598#[stable(feature = "rust1", since = "1.0.0")]
1599impl<'a, K, V, A: Allocator + Clone> IntoIterator for &'a mut BTreeMap<K, V, A> {
1600 type Item = (&'a K, &'a mut V);
1601 type IntoIter = IterMut<'a, K, V>;
1602
1603 fn into_iter(self) -> IterMut<'a, K, V> {
1604 self.iter_mut()
1605 }
1606}
1607
1608#[stable(feature = "rust1", since = "1.0.0")]
1609impl<'a, K, V> Iterator for IterMut<'a, K, V> {
1610 type Item = (&'a K, &'a mut V);
1611
1612 fn next(&mut self) -> Option<(&'a K, &'a mut V)> {
1613 if self.length == 0 {
1614 None
1615 } else {
1616 self.length -= 1;
1617 Some(unsafe { self.range.next_unchecked() })
1618 }
1619 }
1620
1621 fn size_hint(&self) -> (usize, Option<usize>) {
1622 (self.length, Some(self.length))
1623 }
1624
1625 fn last(mut self) -> Option<(&'a K, &'a mut V)> {
1626 self.next_back()
1627 }
1628
1629 fn min(mut self) -> Option<(&'a K, &'a mut V)>
1630 where
1631 (&'a K, &'a mut V): Ord,
1632 {
1633 self.next()
1634 }
1635
1636 fn max(mut self) -> Option<(&'a K, &'a mut V)>
1637 where
1638 (&'a K, &'a mut V): Ord,
1639 {
1640 self.next_back()
1641 }
1642}
1643
1644#[stable(feature = "rust1", since = "1.0.0")]
1645impl<'a, K, V> DoubleEndedIterator for IterMut<'a, K, V> {
1646 fn next_back(&mut self) -> Option<(&'a K, &'a mut V)> {
1647 if self.length == 0 {
1648 None
1649 } else {
1650 self.length -= 1;
1651 Some(unsafe { self.range.next_back_unchecked() })
1652 }
1653 }
1654}
1655
1656#[stable(feature = "rust1", since = "1.0.0")]
1657impl<K, V> ExactSizeIterator for IterMut<'_, K, V> {
1658 fn len(&self) -> usize {
1659 self.length
1660 }
1661}
1662
1663#[stable(feature = "fused", since = "1.26.0")]
1664impl<K, V> FusedIterator for IterMut<'_, K, V> {}
1665
1666impl<'a, K, V> IterMut<'a, K, V> {
1667 /// Returns an iterator of references over the remaining items.
1668 #[inline]
1669 pub(super) fn iter(&self) -> Iter<'_, K, V> {
1670 Iter { range: self.range.reborrow(), length: self.length }
1671 }
1672}
1673
1674#[stable(feature = "rust1", since = "1.0.0")]
1675impl<K, V, A: Allocator + Clone> IntoIterator for BTreeMap<K, V, A> {
1676 type Item = (K, V);
1677 type IntoIter = IntoIter<K, V, A>;
1678
1679 /// Gets an owning iterator over the entries of the map, sorted by key.
1680 fn into_iter(self) -> IntoIter<K, V, A> {
1681 let mut me = ManuallyDrop::new(self);
1682 if let Some(root) = me.root.take() {
1683 let full_range = root.into_dying().full_range();
1684
1685 IntoIter {
1686 range: full_range,
1687 length: me.length,
1688 alloc: unsafe { ManuallyDrop::take(&mut me.alloc) },
1689 }
1690 } else {
1691 IntoIter {
1692 range: LazyLeafRange::none(),
1693 length: 0,
1694 alloc: unsafe { ManuallyDrop::take(&mut me.alloc) },
1695 }
1696 }
1697 }
1698}
1699
1700#[stable(feature = "btree_drop", since = "1.7.0")]
1701impl<K, V, A: Allocator + Clone> Drop for IntoIter<K, V, A> {
1702 fn drop(&mut self) {
1703 struct DropGuard<'a, K, V, A: Allocator + Clone>(&'a mut IntoIter<K, V, A>);
1704
1705 impl<'a, K, V, A: Allocator + Clone> Drop for DropGuard<'a, K, V, A> {
1706 fn drop(&mut self) {
1707 // Continue the same loop we perform below. This only runs when unwinding, so we
1708 // don't have to care about panics this time (they'll abort).
1709 while let Some(kv) = self.0.dying_next() {
1710 // SAFETY: we consume the dying handle immediately.
1711 unsafe { kv.drop_key_val() };
1712 }
1713 }
1714 }
1715
1716 while let Some(kv) = self.dying_next() {
1717 let guard = DropGuard(self);
1718 // SAFETY: we don't touch the tree before consuming the dying handle.
1719 unsafe { kv.drop_key_val() };
1720 mem::forget(guard);
1721 }
1722 }
1723}
1724
1725impl<K, V, A: Allocator + Clone> IntoIter<K, V, A> {
1726 /// Core of a `next` method returning a dying KV handle,
1727 /// invalidated by further calls to this function and some others.
1728 fn dying_next(
1729 &mut self,
1730 ) -> Option<Handle<NodeRef<marker::Dying, K, V, marker::LeafOrInternal>, marker::KV>> {
1731 if self.length == 0 {
1732 self.range.deallocating_end(self.alloc.clone());
1733 None
1734 } else {
1735 self.length -= 1;
1736 Some(unsafe { self.range.deallocating_next_unchecked(self.alloc.clone()) })
1737 }
1738 }
1739
1740 /// Core of a `next_back` method returning a dying KV handle,
1741 /// invalidated by further calls to this function and some others.
1742 fn dying_next_back(
1743 &mut self,
1744 ) -> Option<Handle<NodeRef<marker::Dying, K, V, marker::LeafOrInternal>, marker::KV>> {
1745 if self.length == 0 {
1746 self.range.deallocating_end(self.alloc.clone());
1747 None
1748 } else {
1749 self.length -= 1;
1750 Some(unsafe { self.range.deallocating_next_back_unchecked(self.alloc.clone()) })
1751 }
1752 }
1753}
1754
1755#[stable(feature = "rust1", since = "1.0.0")]
1756impl<K, V, A: Allocator + Clone> Iterator for IntoIter<K, V, A> {
1757 type Item = (K, V);
1758
1759 fn next(&mut self) -> Option<(K, V)> {
1760 // SAFETY: we consume the dying handle immediately.
1761 self.dying_next().map(unsafe { |kv| kv.into_key_val() })
1762 }
1763
1764 fn size_hint(&self) -> (usize, Option<usize>) {
1765 (self.length, Some(self.length))
1766 }
1767}
1768
1769#[stable(feature = "rust1", since = "1.0.0")]
1770impl<K, V, A: Allocator + Clone> DoubleEndedIterator for IntoIter<K, V, A> {
1771 fn next_back(&mut self) -> Option<(K, V)> {
1772 // SAFETY: we consume the dying handle immediately.
1773 self.dying_next_back().map(unsafe { |kv| kv.into_key_val() })
1774 }
1775}
1776
1777#[stable(feature = "rust1", since = "1.0.0")]
1778impl<K, V, A: Allocator + Clone> ExactSizeIterator for IntoIter<K, V, A> {
1779 fn len(&self) -> usize {
1780 self.length
1781 }
1782}
1783
1784#[stable(feature = "fused", since = "1.26.0")]
1785impl<K, V, A: Allocator + Clone> FusedIterator for IntoIter<K, V, A> {}
1786
1787#[stable(feature = "rust1", since = "1.0.0")]
1788impl<'a, K, V> Iterator for Keys<'a, K, V> {
1789 type Item = &'a K;
1790
1791 fn next(&mut self) -> Option<&'a K> {
1792 self.inner.next().map(|(k, _)| k)
1793 }
1794
1795 fn size_hint(&self) -> (usize, Option<usize>) {
1796 self.inner.size_hint()
1797 }
1798
1799 fn last(mut self) -> Option<&'a K> {
1800 self.next_back()
1801 }
1802
1803 fn min(mut self) -> Option<&'a K>
1804 where
1805 &'a K: Ord,
1806 {
1807 self.next()
1808 }
1809
1810 fn max(mut self) -> Option<&'a K>
1811 where
1812 &'a K: Ord,
1813 {
1814 self.next_back()
1815 }
1816}
1817
1818#[stable(feature = "rust1", since = "1.0.0")]
1819impl<'a, K, V> DoubleEndedIterator for Keys<'a, K, V> {
1820 fn next_back(&mut self) -> Option<&'a K> {
1821 self.inner.next_back().map(|(k, _)| k)
1822 }
1823}
1824
1825#[stable(feature = "rust1", since = "1.0.0")]
1826impl<K, V> ExactSizeIterator for Keys<'_, K, V> {
1827 fn len(&self) -> usize {
1828 self.inner.len()
1829 }
1830}
1831
1832#[stable(feature = "fused", since = "1.26.0")]
1833impl<K, V> FusedIterator for Keys<'_, K, V> {}
1834
1835#[stable(feature = "rust1", since = "1.0.0")]
1836impl<K, V> Clone for Keys<'_, K, V> {
1837 fn clone(&self) -> Self {
1838 Keys { inner: self.inner.clone() }
1839 }
1840}
1841
1842#[stable(feature = "default_iters", since = "1.70.0")]
1843impl<K, V> Default for Keys<'_, K, V> {
1844 /// Creates an empty `btree_map::Keys`.
1845 ///
1846 /// ```
1847 /// # use std::collections::btree_map;
1848 /// let iter: btree_map::Keys<'_, u8, u8> = Default::default();
1849 /// assert_eq!(iter.len(), 0);
1850 /// ```
1851 fn default() -> Self {
1852 Keys { inner: Default::default() }
1853 }
1854}
1855
1856#[stable(feature = "rust1", since = "1.0.0")]
1857impl<'a, K, V> Iterator for Values<'a, K, V> {
1858 type Item = &'a V;
1859
1860 fn next(&mut self) -> Option<&'a V> {
1861 self.inner.next().map(|(_, v)| v)
1862 }
1863
1864 fn size_hint(&self) -> (usize, Option<usize>) {
1865 self.inner.size_hint()
1866 }
1867
1868 fn last(mut self) -> Option<&'a V> {
1869 self.next_back()
1870 }
1871}
1872
1873#[stable(feature = "rust1", since = "1.0.0")]
1874impl<'a, K, V> DoubleEndedIterator for Values<'a, K, V> {
1875 fn next_back(&mut self) -> Option<&'a V> {
1876 self.inner.next_back().map(|(_, v)| v)
1877 }
1878}
1879
1880#[stable(feature = "rust1", since = "1.0.0")]
1881impl<K, V> ExactSizeIterator for Values<'_, K, V> {
1882 fn len(&self) -> usize {
1883 self.inner.len()
1884 }
1885}
1886
1887#[stable(feature = "fused", since = "1.26.0")]
1888impl<K, V> FusedIterator for Values<'_, K, V> {}
1889
1890#[stable(feature = "rust1", since = "1.0.0")]
1891impl<K, V> Clone for Values<'_, K, V> {
1892 fn clone(&self) -> Self {
1893 Values { inner: self.inner.clone() }
1894 }
1895}
1896
1897#[stable(feature = "default_iters", since = "1.70.0")]
1898impl<K, V> Default for Values<'_, K, V> {
1899 /// Creates an empty `btree_map::Values`.
1900 ///
1901 /// ```
1902 /// # use std::collections::btree_map;
1903 /// let iter: btree_map::Values<'_, u8, u8> = Default::default();
1904 /// assert_eq!(iter.len(), 0);
1905 /// ```
1906 fn default() -> Self {
1907 Values { inner: Default::default() }
1908 }
1909}
1910
1911/// An iterator produced by calling `extract_if` on BTreeMap.
1912#[unstable(feature = "btree_extract_if", issue = "70530")]
1913#[must_use = "iterators are lazy and do nothing unless consumed"]
1914pub struct ExtractIf<
1915 'a,
1916 K,
1917 V,
1918 F,
1919 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator + Clone = Global,
1920> where
1921 F: 'a + FnMut(&K, &mut V) -> bool,
1922{
1923 pred: F,
1924 inner: ExtractIfInner<'a, K, V>,
1925 /// The BTreeMap will outlive this IntoIter so we don't care about drop order for `alloc`.
1926 alloc: A,
1927}
1928/// Most of the implementation of ExtractIf are generic over the type
1929/// of the predicate, thus also serving for BTreeSet::ExtractIf.
1930pub(super) struct ExtractIfInner<'a, K, V> {
1931 /// Reference to the length field in the borrowed map, updated live.
1932 length: &'a mut usize,
1933 /// Buried reference to the root field in the borrowed map.
1934 /// Wrapped in `Option` to allow drop handler to `take` it.
1935 dormant_root: Option<DormantMutRef<'a, Root<K, V>>>,
1936 /// Contains a leaf edge preceding the next element to be returned, or the last leaf edge.
1937 /// Empty if the map has no root, if iteration went beyond the last leaf edge,
1938 /// or if a panic occurred in the predicate.
1939 cur_leaf_edge: Option<Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge>>,
1940}
1941
1942#[unstable(feature = "btree_extract_if", issue = "70530")]
1943impl<K, V, F> fmt::Debug for ExtractIf<'_, K, V, F>
1944where
1945 K: fmt::Debug,
1946 V: fmt::Debug,
1947 F: FnMut(&K, &mut V) -> bool,
1948{
1949 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1950 f.debug_tuple("ExtractIf").field(&self.inner.peek()).finish()
1951 }
1952}
1953
1954#[unstable(feature = "btree_extract_if", issue = "70530")]
1955impl<K, V, F, A: Allocator + Clone> Iterator for ExtractIf<'_, K, V, F, A>
1956where
1957 F: FnMut(&K, &mut V) -> bool,
1958{
1959 type Item = (K, V);
1960
1961 fn next(&mut self) -> Option<(K, V)> {
1962 self.inner.next(&mut self.pred, self.alloc.clone())
1963 }
1964
1965 fn size_hint(&self) -> (usize, Option<usize>) {
1966 self.inner.size_hint()
1967 }
1968}
1969
1970impl<'a, K, V> ExtractIfInner<'a, K, V> {
1971 /// Allow Debug implementations to predict the next element.
1972 pub(super) fn peek(&self) -> Option<(&K, &V)> {
1973 let edge = self.cur_leaf_edge.as_ref()?;
1974 edge.reborrow().next_kv().ok().map(Handle::into_kv)
1975 }
1976
1977 /// Implementation of a typical `ExtractIf::next` method, given the predicate.
1978 pub(super) fn next<F, A: Allocator + Clone>(&mut self, pred: &mut F, alloc: A) -> Option<(K, V)>
1979 where
1980 F: FnMut(&K, &mut V) -> bool,
1981 {
1982 while let Ok(mut kv) = self.cur_leaf_edge.take()?.next_kv() {
1983 let (k, v) = kv.kv_mut();
1984 if pred(k, v) {
1985 *self.length -= 1;
1986 let (kv, pos) = kv.remove_kv_tracking(
1987 || {
1988 // SAFETY: we will touch the root in a way that will not
1989 // invalidate the position returned.
1990 let root = unsafe { self.dormant_root.take().unwrap().awaken() };
1991 root.pop_internal_level(alloc.clone());
1992 self.dormant_root = Some(DormantMutRef::new(root).1);
1993 },
1994 alloc.clone(),
1995 );
1996 self.cur_leaf_edge = Some(pos);
1997 return Some(kv);
1998 }
1999 self.cur_leaf_edge = Some(kv.next_leaf_edge());
2000 }
2001 None
2002 }
2003
2004 /// Implementation of a typical `ExtractIf::size_hint` method.
2005 pub(super) fn size_hint(&self) -> (usize, Option<usize>) {
2006 // In most of the btree iterators, `self.length` is the number of elements
2007 // yet to be visited. Here, it includes elements that were visited and that
2008 // the predicate decided not to drain. Making this upper bound more tight
2009 // during iteration would require an extra field.
2010 (0, Some(*self.length))
2011 }
2012}
2013
2014#[unstable(feature = "btree_extract_if", issue = "70530")]
2015impl<K, V, F> FusedIterator for ExtractIf<'_, K, V, F> where F: FnMut(&K, &mut V) -> bool {}
2016
2017#[stable(feature = "btree_range", since = "1.17.0")]
2018impl<'a, K, V> Iterator for Range<'a, K, V> {
2019 type Item = (&'a K, &'a V);
2020
2021 fn next(&mut self) -> Option<(&'a K, &'a V)> {
2022 self.inner.next_checked()
2023 }
2024
2025 fn last(mut self) -> Option<(&'a K, &'a V)> {
2026 self.next_back()
2027 }
2028
2029 fn min(mut self) -> Option<(&'a K, &'a V)>
2030 where
2031 (&'a K, &'a V): Ord,
2032 {
2033 self.next()
2034 }
2035
2036 fn max(mut self) -> Option<(&'a K, &'a V)>
2037 where
2038 (&'a K, &'a V): Ord,
2039 {
2040 self.next_back()
2041 }
2042}
2043
2044#[stable(feature = "default_iters", since = "1.70.0")]
2045impl<K, V> Default for Range<'_, K, V> {
2046 /// Creates an empty `btree_map::Range`.
2047 ///
2048 /// ```
2049 /// # use std::collections::btree_map;
2050 /// let iter: btree_map::Range<'_, u8, u8> = Default::default();
2051 /// assert_eq!(iter.count(), 0);
2052 /// ```
2053 fn default() -> Self {
2054 Range { inner: Default::default() }
2055 }
2056}
2057
2058#[stable(feature = "default_iters_sequel", since = "1.82.0")]
2059impl<K, V> Default for RangeMut<'_, K, V> {
2060 /// Creates an empty `btree_map::RangeMut`.
2061 ///
2062 /// ```
2063 /// # use std::collections::btree_map;
2064 /// let iter: btree_map::RangeMut<'_, u8, u8> = Default::default();
2065 /// assert_eq!(iter.count(), 0);
2066 /// ```
2067 fn default() -> Self {
2068 RangeMut { inner: Default::default(), _marker: PhantomData }
2069 }
2070}
2071
2072#[stable(feature = "map_values_mut", since = "1.10.0")]
2073impl<'a, K, V> Iterator for ValuesMut<'a, K, V> {
2074 type Item = &'a mut V;
2075
2076 fn next(&mut self) -> Option<&'a mut V> {
2077 self.inner.next().map(|(_, v)| v)
2078 }
2079
2080 fn size_hint(&self) -> (usize, Option<usize>) {
2081 self.inner.size_hint()
2082 }
2083
2084 fn last(mut self) -> Option<&'a mut V> {
2085 self.next_back()
2086 }
2087}
2088
2089#[stable(feature = "map_values_mut", since = "1.10.0")]
2090impl<'a, K, V> DoubleEndedIterator for ValuesMut<'a, K, V> {
2091 fn next_back(&mut self) -> Option<&'a mut V> {
2092 self.inner.next_back().map(|(_, v)| v)
2093 }
2094}
2095
2096#[stable(feature = "map_values_mut", since = "1.10.0")]
2097impl<K, V> ExactSizeIterator for ValuesMut<'_, K, V> {
2098 fn len(&self) -> usize {
2099 self.inner.len()
2100 }
2101}
2102
2103#[stable(feature = "fused", since = "1.26.0")]
2104impl<K, V> FusedIterator for ValuesMut<'_, K, V> {}
2105
2106#[stable(feature = "default_iters_sequel", since = "1.82.0")]
2107impl<K, V> Default for ValuesMut<'_, K, V> {
2108 /// Creates an empty `btree_map::ValuesMut`.
2109 ///
2110 /// ```
2111 /// # use std::collections::btree_map;
2112 /// let iter: btree_map::ValuesMut<'_, u8, u8> = Default::default();
2113 /// assert_eq!(iter.count(), 0);
2114 /// ```
2115 fn default() -> Self {
2116 ValuesMut { inner: Default::default() }
2117 }
2118}
2119
2120#[stable(feature = "map_into_keys_values", since = "1.54.0")]
2121impl<K, V, A: Allocator + Clone> Iterator for IntoKeys<K, V, A> {
2122 type Item = K;
2123
2124 fn next(&mut self) -> Option<K> {
2125 self.inner.next().map(|(k, _)| k)
2126 }
2127
2128 fn size_hint(&self) -> (usize, Option<usize>) {
2129 self.inner.size_hint()
2130 }
2131
2132 fn last(mut self) -> Option<K> {
2133 self.next_back()
2134 }
2135
2136 fn min(mut self) -> Option<K>
2137 where
2138 K: Ord,
2139 {
2140 self.next()
2141 }
2142
2143 fn max(mut self) -> Option<K>
2144 where
2145 K: Ord,
2146 {
2147 self.next_back()
2148 }
2149}
2150
2151#[stable(feature = "map_into_keys_values", since = "1.54.0")]
2152impl<K, V, A: Allocator + Clone> DoubleEndedIterator for IntoKeys<K, V, A> {
2153 fn next_back(&mut self) -> Option<K> {
2154 self.inner.next_back().map(|(k, _)| k)
2155 }
2156}
2157
2158#[stable(feature = "map_into_keys_values", since = "1.54.0")]
2159impl<K, V, A: Allocator + Clone> ExactSizeIterator for IntoKeys<K, V, A> {
2160 fn len(&self) -> usize {
2161 self.inner.len()
2162 }
2163}
2164
2165#[stable(feature = "map_into_keys_values", since = "1.54.0")]
2166impl<K, V, A: Allocator + Clone> FusedIterator for IntoKeys<K, V, A> {}
2167
2168#[stable(feature = "default_iters", since = "1.70.0")]
2169impl<K, V, A> Default for IntoKeys<K, V, A>
2170where
2171 A: Allocator + Default + Clone,
2172{
2173 /// Creates an empty `btree_map::IntoKeys`.
2174 ///
2175 /// ```
2176 /// # use std::collections::btree_map;
2177 /// let iter: btree_map::IntoKeys<u8, u8> = Default::default();
2178 /// assert_eq!(iter.len(), 0);
2179 /// ```
2180 fn default() -> Self {
2181 IntoKeys { inner: Default::default() }
2182 }
2183}
2184
2185#[stable(feature = "map_into_keys_values", since = "1.54.0")]
2186impl<K, V, A: Allocator + Clone> Iterator for IntoValues<K, V, A> {
2187 type Item = V;
2188
2189 fn next(&mut self) -> Option<V> {
2190 self.inner.next().map(|(_, v)| v)
2191 }
2192
2193 fn size_hint(&self) -> (usize, Option<usize>) {
2194 self.inner.size_hint()
2195 }
2196
2197 fn last(mut self) -> Option<V> {
2198 self.next_back()
2199 }
2200}
2201
2202#[stable(feature = "map_into_keys_values", since = "1.54.0")]
2203impl<K, V, A: Allocator + Clone> DoubleEndedIterator for IntoValues<K, V, A> {
2204 fn next_back(&mut self) -> Option<V> {
2205 self.inner.next_back().map(|(_, v)| v)
2206 }
2207}
2208
2209#[stable(feature = "map_into_keys_values", since = "1.54.0")]
2210impl<K, V, A: Allocator + Clone> ExactSizeIterator for IntoValues<K, V, A> {
2211 fn len(&self) -> usize {
2212 self.inner.len()
2213 }
2214}
2215
2216#[stable(feature = "map_into_keys_values", since = "1.54.0")]
2217impl<K, V, A: Allocator + Clone> FusedIterator for IntoValues<K, V, A> {}
2218
2219#[stable(feature = "default_iters", since = "1.70.0")]
2220impl<K, V, A> Default for IntoValues<K, V, A>
2221where
2222 A: Allocator + Default + Clone,
2223{
2224 /// Creates an empty `btree_map::IntoValues`.
2225 ///
2226 /// ```
2227 /// # use std::collections::btree_map;
2228 /// let iter: btree_map::IntoValues<u8, u8> = Default::default();
2229 /// assert_eq!(iter.len(), 0);
2230 /// ```
2231 fn default() -> Self {
2232 IntoValues { inner: Default::default() }
2233 }
2234}
2235
2236#[stable(feature = "btree_range", since = "1.17.0")]
2237impl<'a, K, V> DoubleEndedIterator for Range<'a, K, V> {
2238 fn next_back(&mut self) -> Option<(&'a K, &'a V)> {
2239 self.inner.next_back_checked()
2240 }
2241}
2242
2243#[stable(feature = "fused", since = "1.26.0")]
2244impl<K, V> FusedIterator for Range<'_, K, V> {}
2245
2246#[stable(feature = "btree_range", since = "1.17.0")]
2247impl<K, V> Clone for Range<'_, K, V> {
2248 fn clone(&self) -> Self {
2249 Range { inner: self.inner.clone() }
2250 }
2251}
2252
2253#[stable(feature = "btree_range", since = "1.17.0")]
2254impl<'a, K, V> Iterator for RangeMut<'a, K, V> {
2255 type Item = (&'a K, &'a mut V);
2256
2257 fn next(&mut self) -> Option<(&'a K, &'a mut V)> {
2258 self.inner.next_checked()
2259 }
2260
2261 fn last(mut self) -> Option<(&'a K, &'a mut V)> {
2262 self.next_back()
2263 }
2264
2265 fn min(mut self) -> Option<(&'a K, &'a mut V)>
2266 where
2267 (&'a K, &'a mut V): Ord,
2268 {
2269 self.next()
2270 }
2271
2272 fn max(mut self) -> Option<(&'a K, &'a mut V)>
2273 where
2274 (&'a K, &'a mut V): Ord,
2275 {
2276 self.next_back()
2277 }
2278}
2279
2280#[stable(feature = "btree_range", since = "1.17.0")]
2281impl<'a, K, V> DoubleEndedIterator for RangeMut<'a, K, V> {
2282 fn next_back(&mut self) -> Option<(&'a K, &'a mut V)> {
2283 self.inner.next_back_checked()
2284 }
2285}
2286
2287#[stable(feature = "fused", since = "1.26.0")]
2288impl<K, V> FusedIterator for RangeMut<'_, K, V> {}
2289
2290#[stable(feature = "rust1", since = "1.0.0")]
2291impl<K: Ord, V> FromIterator<(K, V)> for BTreeMap<K, V> {
2292 /// Constructs a `BTreeMap<K, V>` from an iterator of key-value pairs.
2293 ///
2294 /// If the iterator produces any pairs with equal keys,
2295 /// all but one of the corresponding values will be dropped.
2296 fn from_iter<T: IntoIterator<Item = (K, V)>>(iter: T) -> BTreeMap<K, V> {
2297 let mut inputs: Vec<_> = iter.into_iter().collect();
2298
2299 if inputs.is_empty() {
2300 return BTreeMap::new();
2301 }
2302
2303 // use stable sort to preserve the insertion order.
2304 inputs.sort_by(|a, b| a.0.cmp(&b.0));
2305 BTreeMap::bulk_build_from_sorted_iter(inputs, Global)
2306 }
2307}
2308
2309#[stable(feature = "rust1", since = "1.0.0")]
2310impl<K: Ord, V, A: Allocator + Clone> Extend<(K, V)> for BTreeMap<K, V, A> {
2311 #[inline]
2312 fn extend<T: IntoIterator<Item = (K, V)>>(&mut self, iter: T) {
2313 iter.into_iter().for_each(move |(k, v)| {
2314 self.insert(k, v);
2315 });
2316 }
2317
2318 #[inline]
2319 fn extend_one(&mut self, (k, v): (K, V)) {
2320 self.insert(k, v);
2321 }
2322}
2323
2324#[stable(feature = "extend_ref", since = "1.2.0")]
2325impl<'a, K: Ord + Copy, V: Copy, A: Allocator + Clone> Extend<(&'a K, &'a V)>
2326 for BTreeMap<K, V, A>
2327{
2328 fn extend<I: IntoIterator<Item = (&'a K, &'a V)>>(&mut self, iter: I) {
2329 self.extend(iter.into_iter().map(|(&key, &value)| (key, value)));
2330 }
2331
2332 #[inline]
2333 fn extend_one(&mut self, (&k, &v): (&'a K, &'a V)) {
2334 self.insert(k, v);
2335 }
2336}
2337
2338#[stable(feature = "rust1", since = "1.0.0")]
2339impl<K: Hash, V: Hash, A: Allocator + Clone> Hash for BTreeMap<K, V, A> {
2340 fn hash<H: Hasher>(&self, state: &mut H) {
2341 state.write_length_prefix(self.len());
2342 for elt in self {
2343 elt.hash(state);
2344 }
2345 }
2346}
2347
2348#[stable(feature = "rust1", since = "1.0.0")]
2349impl<K, V> Default for BTreeMap<K, V> {
2350 /// Creates an empty `BTreeMap`.
2351 fn default() -> BTreeMap<K, V> {
2352 BTreeMap::new()
2353 }
2354}
2355
2356#[stable(feature = "rust1", since = "1.0.0")]
2357impl<K: PartialEq, V: PartialEq, A: Allocator + Clone> PartialEq for BTreeMap<K, V, A> {
2358 fn eq(&self, other: &BTreeMap<K, V, A>) -> bool {
2359 self.len() == other.len() && self.iter().zip(other).all(|(a, b)| a == b)
2360 }
2361}
2362
2363#[stable(feature = "rust1", since = "1.0.0")]
2364impl<K: Eq, V: Eq, A: Allocator + Clone> Eq for BTreeMap<K, V, A> {}
2365
2366#[stable(feature = "rust1", since = "1.0.0")]
2367impl<K: PartialOrd, V: PartialOrd, A: Allocator + Clone> PartialOrd for BTreeMap<K, V, A> {
2368 #[inline]
2369 fn partial_cmp(&self, other: &BTreeMap<K, V, A>) -> Option<Ordering> {
2370 self.iter().partial_cmp(other.iter())
2371 }
2372}
2373
2374#[stable(feature = "rust1", since = "1.0.0")]
2375impl<K: Ord, V: Ord, A: Allocator + Clone> Ord for BTreeMap<K, V, A> {
2376 #[inline]
2377 fn cmp(&self, other: &BTreeMap<K, V, A>) -> Ordering {
2378 self.iter().cmp(other.iter())
2379 }
2380}
2381
2382#[stable(feature = "rust1", since = "1.0.0")]
2383impl<K: Debug, V: Debug, A: Allocator + Clone> Debug for BTreeMap<K, V, A> {
2384 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2385 f.debug_map().entries(self.iter()).finish()
2386 }
2387}
2388
2389#[stable(feature = "rust1", since = "1.0.0")]
2390impl<K, Q: ?Sized, V, A: Allocator + Clone> Index<&Q> for BTreeMap<K, V, A>
2391where
2392 K: Borrow<Q> + Ord,
2393 Q: Ord,
2394{
2395 type Output = V;
2396
2397 /// Returns a reference to the value corresponding to the supplied key.
2398 ///
2399 /// # Panics
2400 ///
2401 /// Panics if the key is not present in the `BTreeMap`.
2402 #[inline]
2403 fn index(&self, key: &Q) -> &V {
2404 self.get(key).expect("no entry found for key")
2405 }
2406}
2407
2408#[stable(feature = "std_collections_from_array", since = "1.56.0")]
2409impl<K: Ord, V, const N: usize> From<[(K, V); N]> for BTreeMap<K, V> {
2410 /// Converts a `[(K, V); N]` into a `BTreeMap<K, V>`.
2411 ///
2412 /// If any entries in the array have equal keys,
2413 /// all but one of the corresponding values will be dropped.
2414 ///
2415 /// ```
2416 /// use std::collections::BTreeMap;
2417 ///
2418 /// let map1 = BTreeMap::from([(1, 2), (3, 4)]);
2419 /// let map2: BTreeMap<_, _> = [(1, 2), (3, 4)].into();
2420 /// assert_eq!(map1, map2);
2421 /// ```
2422 fn from(mut arr: [(K, V); N]) -> Self {
2423 if N == 0 {
2424 return BTreeMap::new();
2425 }
2426
2427 // use stable sort to preserve the insertion order.
2428 arr.sort_by(|a, b| a.0.cmp(&b.0));
2429 BTreeMap::bulk_build_from_sorted_iter(arr, Global)
2430 }
2431}
2432
2433impl<K, V, A: Allocator + Clone> BTreeMap<K, V, A> {
2434 /// Gets an iterator over the entries of the map, sorted by key.
2435 ///
2436 /// # Examples
2437 ///
2438 /// ```
2439 /// use std::collections::BTreeMap;
2440 ///
2441 /// let mut map = BTreeMap::new();
2442 /// map.insert(3, "c");
2443 /// map.insert(2, "b");
2444 /// map.insert(1, "a");
2445 ///
2446 /// for (key, value) in map.iter() {
2447 /// println!("{key}: {value}");
2448 /// }
2449 ///
2450 /// let (first_key, first_value) = map.iter().next().unwrap();
2451 /// assert_eq!((*first_key, *first_value), (1, "a"));
2452 /// ```
2453 #[stable(feature = "rust1", since = "1.0.0")]
2454 pub fn iter(&self) -> Iter<'_, K, V> {
2455 if let Some(root) = &self.root {
2456 let full_range = root.reborrow().full_range();
2457
2458 Iter { range: full_range, length: self.length }
2459 } else {
2460 Iter { range: LazyLeafRange::none(), length: 0 }
2461 }
2462 }
2463
2464 /// Gets a mutable iterator over the entries of the map, sorted by key.
2465 ///
2466 /// # Examples
2467 ///
2468 /// ```
2469 /// use std::collections::BTreeMap;
2470 ///
2471 /// let mut map = BTreeMap::from([
2472 /// ("a", 1),
2473 /// ("b", 2),
2474 /// ("c", 3),
2475 /// ]);
2476 ///
2477 /// // add 10 to the value if the key isn't "a"
2478 /// for (key, value) in map.iter_mut() {
2479 /// if key != &"a" {
2480 /// *value += 10;
2481 /// }
2482 /// }
2483 /// ```
2484 #[stable(feature = "rust1", since = "1.0.0")]
2485 pub fn iter_mut(&mut self) -> IterMut<'_, K, V> {
2486 if let Some(root) = &mut self.root {
2487 let full_range = root.borrow_valmut().full_range();
2488
2489 IterMut { range: full_range, length: self.length, _marker: PhantomData }
2490 } else {
2491 IterMut { range: LazyLeafRange::none(), length: 0, _marker: PhantomData }
2492 }
2493 }
2494
2495 /// Gets an iterator over the keys of the map, in sorted order.
2496 ///
2497 /// # Examples
2498 ///
2499 /// ```
2500 /// use std::collections::BTreeMap;
2501 ///
2502 /// let mut a = BTreeMap::new();
2503 /// a.insert(2, "b");
2504 /// a.insert(1, "a");
2505 ///
2506 /// let keys: Vec<_> = a.keys().cloned().collect();
2507 /// assert_eq!(keys, [1, 2]);
2508 /// ```
2509 #[stable(feature = "rust1", since = "1.0.0")]
2510 pub fn keys(&self) -> Keys<'_, K, V> {
2511 Keys { inner: self.iter() }
2512 }
2513
2514 /// Gets an iterator over the values of the map, in order by key.
2515 ///
2516 /// # Examples
2517 ///
2518 /// ```
2519 /// use std::collections::BTreeMap;
2520 ///
2521 /// let mut a = BTreeMap::new();
2522 /// a.insert(1, "hello");
2523 /// a.insert(2, "goodbye");
2524 ///
2525 /// let values: Vec<&str> = a.values().cloned().collect();
2526 /// assert_eq!(values, ["hello", "goodbye"]);
2527 /// ```
2528 #[stable(feature = "rust1", since = "1.0.0")]
2529 pub fn values(&self) -> Values<'_, K, V> {
2530 Values { inner: self.iter() }
2531 }
2532
2533 /// Gets a mutable iterator over the values of the map, in order by key.
2534 ///
2535 /// # Examples
2536 ///
2537 /// ```
2538 /// use std::collections::BTreeMap;
2539 ///
2540 /// let mut a = BTreeMap::new();
2541 /// a.insert(1, String::from("hello"));
2542 /// a.insert(2, String::from("goodbye"));
2543 ///
2544 /// for value in a.values_mut() {
2545 /// value.push_str("!");
2546 /// }
2547 ///
2548 /// let values: Vec<String> = a.values().cloned().collect();
2549 /// assert_eq!(values, [String::from("hello!"),
2550 /// String::from("goodbye!")]);
2551 /// ```
2552 #[stable(feature = "map_values_mut", since = "1.10.0")]
2553 pub fn values_mut(&mut self) -> ValuesMut<'_, K, V> {
2554 ValuesMut { inner: self.iter_mut() }
2555 }
2556
2557 /// Returns the number of elements in the map.
2558 ///
2559 /// # Examples
2560 ///
2561 /// ```
2562 /// use std::collections::BTreeMap;
2563 ///
2564 /// let mut a = BTreeMap::new();
2565 /// assert_eq!(a.len(), 0);
2566 /// a.insert(1, "a");
2567 /// assert_eq!(a.len(), 1);
2568 /// ```
2569 #[must_use]
2570 #[stable(feature = "rust1", since = "1.0.0")]
2571 #[rustc_const_unstable(
2572 feature = "const_btree_len",
2573 issue = "71835",
2574 implied_by = "const_btree_new"
2575 )]
2576 #[rustc_confusables("length", "size")]
2577 pub const fn len(&self) -> usize {
2578 self.length
2579 }
2580
2581 /// Returns `true` if the map contains no elements.
2582 ///
2583 /// # Examples
2584 ///
2585 /// ```
2586 /// use std::collections::BTreeMap;
2587 ///
2588 /// let mut a = BTreeMap::new();
2589 /// assert!(a.is_empty());
2590 /// a.insert(1, "a");
2591 /// assert!(!a.is_empty());
2592 /// ```
2593 #[must_use]
2594 #[stable(feature = "rust1", since = "1.0.0")]
2595 #[rustc_const_unstable(
2596 feature = "const_btree_len",
2597 issue = "71835",
2598 implied_by = "const_btree_new"
2599 )]
2600 pub const fn is_empty(&self) -> bool {
2601 self.len() == 0
2602 }
2603
2604 /// Returns a [`Cursor`] pointing at the gap before the smallest key
2605 /// greater than the given bound.
2606 ///
2607 /// Passing `Bound::Included(x)` will return a cursor pointing to the
2608 /// gap before the smallest key greater than or equal to `x`.
2609 ///
2610 /// Passing `Bound::Excluded(x)` will return a cursor pointing to the
2611 /// gap before the smallest key greater than `x`.
2612 ///
2613 /// Passing `Bound::Unbounded` will return a cursor pointing to the
2614 /// gap before the smallest key in the map.
2615 ///
2616 /// # Examples
2617 ///
2618 /// ```
2619 /// #![feature(btree_cursors)]
2620 ///
2621 /// use std::collections::BTreeMap;
2622 /// use std::ops::Bound;
2623 ///
2624 /// let map = BTreeMap::from([
2625 /// (1, "a"),
2626 /// (2, "b"),
2627 /// (3, "c"),
2628 /// (4, "d"),
2629 /// ]);
2630 ///
2631 /// let cursor = map.lower_bound(Bound::Included(&2));
2632 /// assert_eq!(cursor.peek_prev(), Some((&1, &"a")));
2633 /// assert_eq!(cursor.peek_next(), Some((&2, &"b")));
2634 ///
2635 /// let cursor = map.lower_bound(Bound::Excluded(&2));
2636 /// assert_eq!(cursor.peek_prev(), Some((&2, &"b")));
2637 /// assert_eq!(cursor.peek_next(), Some((&3, &"c")));
2638 ///
2639 /// let cursor = map.lower_bound(Bound::Unbounded);
2640 /// assert_eq!(cursor.peek_prev(), None);
2641 /// assert_eq!(cursor.peek_next(), Some((&1, &"a")));
2642 /// ```
2643 #[unstable(feature = "btree_cursors", issue = "107540")]
2644 pub fn lower_bound<Q: ?Sized>(&self, bound: Bound<&Q>) -> Cursor<'_, K, V>
2645 where
2646 K: Borrow<Q> + Ord,
2647 Q: Ord,
2648 {
2649 let root_node = match self.root.as_ref() {
2650 None => return Cursor { current: None, root: None },
2651 Some(root) => root.reborrow(),
2652 };
2653 let edge = root_node.lower_bound(SearchBound::from_range(bound));
2654 Cursor { current: Some(edge), root: self.root.as_ref() }
2655 }
2656
2657 /// Returns a [`CursorMut`] pointing at the gap before the smallest key
2658 /// greater than the given bound.
2659 ///
2660 /// Passing `Bound::Included(x)` will return a cursor pointing to the
2661 /// gap before the smallest key greater than or equal to `x`.
2662 ///
2663 /// Passing `Bound::Excluded(x)` will return a cursor pointing to the
2664 /// gap before the smallest key greater than `x`.
2665 ///
2666 /// Passing `Bound::Unbounded` will return a cursor pointing to the
2667 /// gap before the smallest key in the map.
2668 ///
2669 /// # Examples
2670 ///
2671 /// ```
2672 /// #![feature(btree_cursors)]
2673 ///
2674 /// use std::collections::BTreeMap;
2675 /// use std::ops::Bound;
2676 ///
2677 /// let mut map = BTreeMap::from([
2678 /// (1, "a"),
2679 /// (2, "b"),
2680 /// (3, "c"),
2681 /// (4, "d"),
2682 /// ]);
2683 ///
2684 /// let mut cursor = map.lower_bound_mut(Bound::Included(&2));
2685 /// assert_eq!(cursor.peek_prev(), Some((&1, &mut "a")));
2686 /// assert_eq!(cursor.peek_next(), Some((&2, &mut "b")));
2687 ///
2688 /// let mut cursor = map.lower_bound_mut(Bound::Excluded(&2));
2689 /// assert_eq!(cursor.peek_prev(), Some((&2, &mut "b")));
2690 /// assert_eq!(cursor.peek_next(), Some((&3, &mut "c")));
2691 ///
2692 /// let mut cursor = map.lower_bound_mut(Bound::Unbounded);
2693 /// assert_eq!(cursor.peek_prev(), None);
2694 /// assert_eq!(cursor.peek_next(), Some((&1, &mut "a")));
2695 /// ```
2696 #[unstable(feature = "btree_cursors", issue = "107540")]
2697 pub fn lower_bound_mut<Q: ?Sized>(&mut self, bound: Bound<&Q>) -> CursorMut<'_, K, V, A>
2698 where
2699 K: Borrow<Q> + Ord,
2700 Q: Ord,
2701 {
2702 let (root, dormant_root) = DormantMutRef::new(&mut self.root);
2703 let root_node = match root.as_mut() {
2704 None => {
2705 return CursorMut {
2706 inner: CursorMutKey {
2707 current: None,
2708 root: dormant_root,
2709 length: &mut self.length,
2710 alloc: &mut *self.alloc,
2711 },
2712 };
2713 }
2714 Some(root) => root.borrow_mut(),
2715 };
2716 let edge = root_node.lower_bound(SearchBound::from_range(bound));
2717 CursorMut {
2718 inner: CursorMutKey {
2719 current: Some(edge),
2720 root: dormant_root,
2721 length: &mut self.length,
2722 alloc: &mut *self.alloc,
2723 },
2724 }
2725 }
2726
2727 /// Returns a [`Cursor`] pointing at the gap after the greatest key
2728 /// smaller than the given bound.
2729 ///
2730 /// Passing `Bound::Included(x)` will return a cursor pointing to the
2731 /// gap after the greatest key smaller than or equal to `x`.
2732 ///
2733 /// Passing `Bound::Excluded(x)` will return a cursor pointing to the
2734 /// gap after the greatest key smaller than `x`.
2735 ///
2736 /// Passing `Bound::Unbounded` will return a cursor pointing to the
2737 /// gap after the greatest key in the map.
2738 ///
2739 /// # Examples
2740 ///
2741 /// ```
2742 /// #![feature(btree_cursors)]
2743 ///
2744 /// use std::collections::BTreeMap;
2745 /// use std::ops::Bound;
2746 ///
2747 /// let map = BTreeMap::from([
2748 /// (1, "a"),
2749 /// (2, "b"),
2750 /// (3, "c"),
2751 /// (4, "d"),
2752 /// ]);
2753 ///
2754 /// let cursor = map.upper_bound(Bound::Included(&3));
2755 /// assert_eq!(cursor.peek_prev(), Some((&3, &"c")));
2756 /// assert_eq!(cursor.peek_next(), Some((&4, &"d")));
2757 ///
2758 /// let cursor = map.upper_bound(Bound::Excluded(&3));
2759 /// assert_eq!(cursor.peek_prev(), Some((&2, &"b")));
2760 /// assert_eq!(cursor.peek_next(), Some((&3, &"c")));
2761 ///
2762 /// let cursor = map.upper_bound(Bound::Unbounded);
2763 /// assert_eq!(cursor.peek_prev(), Some((&4, &"d")));
2764 /// assert_eq!(cursor.peek_next(), None);
2765 /// ```
2766 #[unstable(feature = "btree_cursors", issue = "107540")]
2767 pub fn upper_bound<Q: ?Sized>(&self, bound: Bound<&Q>) -> Cursor<'_, K, V>
2768 where
2769 K: Borrow<Q> + Ord,
2770 Q: Ord,
2771 {
2772 let root_node = match self.root.as_ref() {
2773 None => return Cursor { current: None, root: None },
2774 Some(root) => root.reborrow(),
2775 };
2776 let edge = root_node.upper_bound(SearchBound::from_range(bound));
2777 Cursor { current: Some(edge), root: self.root.as_ref() }
2778 }
2779
2780 /// Returns a [`CursorMut`] pointing at the gap after the greatest key
2781 /// smaller than the given bound.
2782 ///
2783 /// Passing `Bound::Included(x)` will return a cursor pointing to the
2784 /// gap after the greatest key smaller than or equal to `x`.
2785 ///
2786 /// Passing `Bound::Excluded(x)` will return a cursor pointing to the
2787 /// gap after the greatest key smaller than `x`.
2788 ///
2789 /// Passing `Bound::Unbounded` will return a cursor pointing to the
2790 /// gap after the greatest key in the map.
2791 ///
2792 /// # Examples
2793 ///
2794 /// ```
2795 /// #![feature(btree_cursors)]
2796 ///
2797 /// use std::collections::BTreeMap;
2798 /// use std::ops::Bound;
2799 ///
2800 /// let mut map = BTreeMap::from([
2801 /// (1, "a"),
2802 /// (2, "b"),
2803 /// (3, "c"),
2804 /// (4, "d"),
2805 /// ]);
2806 ///
2807 /// let mut cursor = map.upper_bound_mut(Bound::Included(&3));
2808 /// assert_eq!(cursor.peek_prev(), Some((&3, &mut "c")));
2809 /// assert_eq!(cursor.peek_next(), Some((&4, &mut "d")));
2810 ///
2811 /// let mut cursor = map.upper_bound_mut(Bound::Excluded(&3));
2812 /// assert_eq!(cursor.peek_prev(), Some((&2, &mut "b")));
2813 /// assert_eq!(cursor.peek_next(), Some((&3, &mut "c")));
2814 ///
2815 /// let mut cursor = map.upper_bound_mut(Bound::Unbounded);
2816 /// assert_eq!(cursor.peek_prev(), Some((&4, &mut "d")));
2817 /// assert_eq!(cursor.peek_next(), None);
2818 /// ```
2819 #[unstable(feature = "btree_cursors", issue = "107540")]
2820 pub fn upper_bound_mut<Q: ?Sized>(&mut self, bound: Bound<&Q>) -> CursorMut<'_, K, V, A>
2821 where
2822 K: Borrow<Q> + Ord,
2823 Q: Ord,
2824 {
2825 let (root, dormant_root) = DormantMutRef::new(&mut self.root);
2826 let root_node = match root.as_mut() {
2827 None => {
2828 return CursorMut {
2829 inner: CursorMutKey {
2830 current: None,
2831 root: dormant_root,
2832 length: &mut self.length,
2833 alloc: &mut *self.alloc,
2834 },
2835 };
2836 }
2837 Some(root) => root.borrow_mut(),
2838 };
2839 let edge = root_node.upper_bound(SearchBound::from_range(bound));
2840 CursorMut {
2841 inner: CursorMutKey {
2842 current: Some(edge),
2843 root: dormant_root,
2844 length: &mut self.length,
2845 alloc: &mut *self.alloc,
2846 },
2847 }
2848 }
2849}
2850
2851/// A cursor over a `BTreeMap`.
2852///
2853/// A `Cursor` is like an iterator, except that it can freely seek back-and-forth.
2854///
2855/// Cursors always point to a gap between two elements in the map, and can
2856/// operate on the two immediately adjacent elements.
2857///
2858/// A `Cursor` is created with the [`BTreeMap::lower_bound`] and [`BTreeMap::upper_bound`] methods.
2859#[unstable(feature = "btree_cursors", issue = "107540")]
2860pub struct Cursor<'a, K: 'a, V: 'a> {
2861 // If current is None then it means the tree has not been allocated yet.
2862 current: Option<Handle<NodeRef<marker::Immut<'a>, K, V, marker::Leaf>, marker::Edge>>,
2863 root: Option<&'a node::Root<K, V>>,
2864}
2865
2866#[unstable(feature = "btree_cursors", issue = "107540")]
2867impl<K, V> Clone for Cursor<'_, K, V> {
2868 fn clone(&self) -> Self {
2869 let Cursor { current, root } = *self;
2870 Cursor { current, root }
2871 }
2872}
2873
2874#[unstable(feature = "btree_cursors", issue = "107540")]
2875impl<K: Debug, V: Debug> Debug for Cursor<'_, K, V> {
2876 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2877 f.write_str("Cursor")
2878 }
2879}
2880
2881/// A cursor over a `BTreeMap` with editing operations.
2882///
2883/// A `Cursor` is like an iterator, except that it can freely seek back-and-forth, and can
2884/// safely mutate the map during iteration. This is because the lifetime of its yielded
2885/// references is tied to its own lifetime, instead of just the underlying map. This means
2886/// cursors cannot yield multiple elements at once.
2887///
2888/// Cursors always point to a gap between two elements in the map, and can
2889/// operate on the two immediately adjacent elements.
2890///
2891/// A `CursorMut` is created with the [`BTreeMap::lower_bound_mut`] and [`BTreeMap::upper_bound_mut`]
2892/// methods.
2893#[unstable(feature = "btree_cursors", issue = "107540")]
2894pub struct CursorMut<
2895 'a,
2896 K: 'a,
2897 V: 'a,
2898 #[unstable(feature = "allocator_api", issue = "32838")] A = Global,
2899> {
2900 inner: CursorMutKey<'a, K, V, A>,
2901}
2902
2903#[unstable(feature = "btree_cursors", issue = "107540")]
2904impl<K: Debug, V: Debug, A> Debug for CursorMut<'_, K, V, A> {
2905 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2906 f.write_str("CursorMut")
2907 }
2908}
2909
2910/// A cursor over a `BTreeMap` with editing operations, and which allows
2911/// mutating the key of elements.
2912///
2913/// A `Cursor` is like an iterator, except that it can freely seek back-and-forth, and can
2914/// safely mutate the map during iteration. This is because the lifetime of its yielded
2915/// references is tied to its own lifetime, instead of just the underlying map. This means
2916/// cursors cannot yield multiple elements at once.
2917///
2918/// Cursors always point to a gap between two elements in the map, and can
2919/// operate on the two immediately adjacent elements.
2920///
2921/// A `CursorMutKey` is created from a [`CursorMut`] with the
2922/// [`CursorMut::with_mutable_key`] method.
2923///
2924/// # Safety
2925///
2926/// Since this cursor allows mutating keys, you must ensure that the `BTreeMap`
2927/// invariants are maintained. Specifically:
2928///
2929/// * The key of the newly inserted element must be unique in the tree.
2930/// * All keys in the tree must remain in sorted order.
2931#[unstable(feature = "btree_cursors", issue = "107540")]
2932pub struct CursorMutKey<
2933 'a,
2934 K: 'a,
2935 V: 'a,
2936 #[unstable(feature = "allocator_api", issue = "32838")] A = Global,
2937> {
2938 // If current is None then it means the tree has not been allocated yet.
2939 current: Option<Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge>>,
2940 root: DormantMutRef<'a, Option<node::Root<K, V>>>,
2941 length: &'a mut usize,
2942 alloc: &'a mut A,
2943}
2944
2945#[unstable(feature = "btree_cursors", issue = "107540")]
2946impl<K: Debug, V: Debug, A> Debug for CursorMutKey<'_, K, V, A> {
2947 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2948 f.write_str("CursorMutKey")
2949 }
2950}
2951
2952impl<'a, K, V> Cursor<'a, K, V> {
2953 /// Advances the cursor to the next gap, returning the key and value of the
2954 /// element that it moved over.
2955 ///
2956 /// If the cursor is already at the end of the map then `None` is returned
2957 /// and the cursor is not moved.
2958 #[unstable(feature = "btree_cursors", issue = "107540")]
2959 pub fn next(&mut self) -> Option<(&'a K, &'a V)> {
2960 let current = self.current.take()?;
2961 match current.next_kv() {
2962 Ok(kv) => {
2963 let result = kv.into_kv();
2964 self.current = Some(kv.next_leaf_edge());
2965 Some(result)
2966 }
2967 Err(root) => {
2968 self.current = Some(root.last_leaf_edge());
2969 None
2970 }
2971 }
2972 }
2973
2974 /// Advances the cursor to the previous gap, returning the key and value of
2975 /// the element that it moved over.
2976 ///
2977 /// If the cursor is already at the start of the map then `None` is returned
2978 /// and the cursor is not moved.
2979 #[unstable(feature = "btree_cursors", issue = "107540")]
2980 pub fn prev(&mut self) -> Option<(&'a K, &'a V)> {
2981 let current = self.current.take()?;
2982 match current.next_back_kv() {
2983 Ok(kv) => {
2984 let result = kv.into_kv();
2985 self.current = Some(kv.next_back_leaf_edge());
2986 Some(result)
2987 }
2988 Err(root) => {
2989 self.current = Some(root.first_leaf_edge());
2990 None
2991 }
2992 }
2993 }
2994
2995 /// Returns a reference to the key and value of the next element without
2996 /// moving the cursor.
2997 ///
2998 /// If the cursor is at the end of the map then `None` is returned.
2999 #[unstable(feature = "btree_cursors", issue = "107540")]
3000 pub fn peek_next(&self) -> Option<(&'a K, &'a V)> {
3001 self.clone().next()
3002 }
3003
3004 /// Returns a reference to the key and value of the previous element
3005 /// without moving the cursor.
3006 ///
3007 /// If the cursor is at the start of the map then `None` is returned.
3008 #[unstable(feature = "btree_cursors", issue = "107540")]
3009 pub fn peek_prev(&self) -> Option<(&'a K, &'a V)> {
3010 self.clone().prev()
3011 }
3012}
3013
3014impl<'a, K, V, A> CursorMut<'a, K, V, A> {
3015 /// Advances the cursor to the next gap, returning the key and value of the
3016 /// element that it moved over.
3017 ///
3018 /// If the cursor is already at the end of the map then `None` is returned
3019 /// and the cursor is not moved.
3020 #[unstable(feature = "btree_cursors", issue = "107540")]
3021 pub fn next(&mut self) -> Option<(&K, &mut V)> {
3022 let (k, v) = self.inner.next()?;
3023 Some((&*k, v))
3024 }
3025
3026 /// Advances the cursor to the previous gap, returning the key and value of
3027 /// the element that it moved over.
3028 ///
3029 /// If the cursor is already at the start of the map then `None` is returned
3030 /// and the cursor is not moved.
3031 #[unstable(feature = "btree_cursors", issue = "107540")]
3032 pub fn prev(&mut self) -> Option<(&K, &mut V)> {
3033 let (k, v) = self.inner.prev()?;
3034 Some((&*k, v))
3035 }
3036
3037 /// Returns a reference to the key and value of the next element without
3038 /// moving the cursor.
3039 ///
3040 /// If the cursor is at the end of the map then `None` is returned.
3041 #[unstable(feature = "btree_cursors", issue = "107540")]
3042 pub fn peek_next(&mut self) -> Option<(&K, &mut V)> {
3043 let (k, v) = self.inner.peek_next()?;
3044 Some((&*k, v))
3045 }
3046
3047 /// Returns a reference to the key and value of the previous element
3048 /// without moving the cursor.
3049 ///
3050 /// If the cursor is at the start of the map then `None` is returned.
3051 #[unstable(feature = "btree_cursors", issue = "107540")]
3052 pub fn peek_prev(&mut self) -> Option<(&K, &mut V)> {
3053 let (k, v) = self.inner.peek_prev()?;
3054 Some((&*k, v))
3055 }
3056
3057 /// Returns a read-only cursor pointing to the same location as the
3058 /// `CursorMut`.
3059 ///
3060 /// The lifetime of the returned `Cursor` is bound to that of the
3061 /// `CursorMut`, which means it cannot outlive the `CursorMut` and that the
3062 /// `CursorMut` is frozen for the lifetime of the `Cursor`.
3063 #[unstable(feature = "btree_cursors", issue = "107540")]
3064 pub fn as_cursor(&self) -> Cursor<'_, K, V> {
3065 self.inner.as_cursor()
3066 }
3067
3068 /// Converts the cursor into a [`CursorMutKey`], which allows mutating
3069 /// the key of elements in the tree.
3070 ///
3071 /// # Safety
3072 ///
3073 /// Since this cursor allows mutating keys, you must ensure that the `BTreeMap`
3074 /// invariants are maintained. Specifically:
3075 ///
3076 /// * The key of the newly inserted element must be unique in the tree.
3077 /// * All keys in the tree must remain in sorted order.
3078 #[unstable(feature = "btree_cursors", issue = "107540")]
3079 pub unsafe fn with_mutable_key(self) -> CursorMutKey<'a, K, V, A> {
3080 self.inner
3081 }
3082}
3083
3084impl<'a, K, V, A> CursorMutKey<'a, K, V, A> {
3085 /// Advances the cursor to the next gap, returning the key and value of the
3086 /// element that it moved over.
3087 ///
3088 /// If the cursor is already at the end of the map then `None` is returned
3089 /// and the cursor is not moved.
3090 #[unstable(feature = "btree_cursors", issue = "107540")]
3091 pub fn next(&mut self) -> Option<(&mut K, &mut V)> {
3092 let current = self.current.take()?;
3093 match current.next_kv() {
3094 Ok(mut kv) => {
3095 // SAFETY: The key/value pointers remain valid even after the
3096 // cursor is moved forward. The lifetimes then prevent any
3097 // further access to the cursor.
3098 let (k, v) = unsafe { kv.reborrow_mut().into_kv_mut() };
3099 let (k, v) = (k as *mut _, v as *mut _);
3100 self.current = Some(kv.next_leaf_edge());
3101 Some(unsafe { (&mut *k, &mut *v) })
3102 }
3103 Err(root) => {
3104 self.current = Some(root.last_leaf_edge());
3105 None
3106 }
3107 }
3108 }
3109
3110 /// Advances the cursor to the previous gap, returning the key and value of
3111 /// the element that it moved over.
3112 ///
3113 /// If the cursor is already at the start of the map then `None` is returned
3114 /// and the cursor is not moved.
3115 #[unstable(feature = "btree_cursors", issue = "107540")]
3116 pub fn prev(&mut self) -> Option<(&mut K, &mut V)> {
3117 let current = self.current.take()?;
3118 match current.next_back_kv() {
3119 Ok(mut kv) => {
3120 // SAFETY: The key/value pointers remain valid even after the
3121 // cursor is moved forward. The lifetimes then prevent any
3122 // further access to the cursor.
3123 let (k, v) = unsafe { kv.reborrow_mut().into_kv_mut() };
3124 let (k, v) = (k as *mut _, v as *mut _);
3125 self.current = Some(kv.next_back_leaf_edge());
3126 Some(unsafe { (&mut *k, &mut *v) })
3127 }
3128 Err(root) => {
3129 self.current = Some(root.first_leaf_edge());
3130 None
3131 }
3132 }
3133 }
3134
3135 /// Returns a reference to the key and value of the next element without
3136 /// moving the cursor.
3137 ///
3138 /// If the cursor is at the end of the map then `None` is returned.
3139 #[unstable(feature = "btree_cursors", issue = "107540")]
3140 pub fn peek_next(&mut self) -> Option<(&mut K, &mut V)> {
3141 let current = self.current.as_mut()?;
3142 // SAFETY: We're not using this to mutate the tree.
3143 let kv = unsafe { current.reborrow_mut() }.next_kv().ok()?.into_kv_mut();
3144 Some(kv)
3145 }
3146
3147 /// Returns a reference to the key and value of the previous element
3148 /// without moving the cursor.
3149 ///
3150 /// If the cursor is at the start of the map then `None` is returned.
3151 #[unstable(feature = "btree_cursors", issue = "107540")]
3152 pub fn peek_prev(&mut self) -> Option<(&mut K, &mut V)> {
3153 let current = self.current.as_mut()?;
3154 // SAFETY: We're not using this to mutate the tree.
3155 let kv = unsafe { current.reborrow_mut() }.next_back_kv().ok()?.into_kv_mut();
3156 Some(kv)
3157 }
3158
3159 /// Returns a read-only cursor pointing to the same location as the
3160 /// `CursorMutKey`.
3161 ///
3162 /// The lifetime of the returned `Cursor` is bound to that of the
3163 /// `CursorMutKey`, which means it cannot outlive the `CursorMutKey` and that the
3164 /// `CursorMutKey` is frozen for the lifetime of the `Cursor`.
3165 #[unstable(feature = "btree_cursors", issue = "107540")]
3166 pub fn as_cursor(&self) -> Cursor<'_, K, V> {
3167 Cursor {
3168 // SAFETY: The tree is immutable while the cursor exists.
3169 root: unsafe { self.root.reborrow_shared().as_ref() },
3170 current: self.current.as_ref().map(|current| current.reborrow()),
3171 }
3172 }
3173}
3174
3175// Now the tree editing operations
3176impl<'a, K: Ord, V, A: Allocator + Clone> CursorMutKey<'a, K, V, A> {
3177 /// Inserts a new key-value pair into the map in the gap that the
3178 /// cursor is currently pointing to.
3179 ///
3180 /// After the insertion the cursor will be pointing at the gap before the
3181 /// newly inserted element.
3182 ///
3183 /// # Safety
3184 ///
3185 /// You must ensure that the `BTreeMap` invariants are maintained.
3186 /// Specifically:
3187 ///
3188 /// * The key of the newly inserted element must be unique in the tree.
3189 /// * All keys in the tree must remain in sorted order.
3190 #[unstable(feature = "btree_cursors", issue = "107540")]
3191 pub unsafe fn insert_after_unchecked(&mut self, key: K, value: V) {
3192 let edge = match self.current.take() {
3193 None => {
3194 // Tree is empty, allocate a new root.
3195 // SAFETY: We have no other reference to the tree.
3196 let root = unsafe { self.root.reborrow() };
3197 debug_assert!(root.is_none());
3198 let mut node = NodeRef::new_leaf(self.alloc.clone());
3199 // SAFETY: We don't touch the root while the handle is alive.
3200 let handle = unsafe { node.borrow_mut().push_with_handle(key, value) };
3201 *root = Some(node.forget_type());
3202 *self.length += 1;
3203 self.current = Some(handle.left_edge());
3204 return;
3205 }
3206 Some(current) => current,
3207 };
3208
3209 let handle = edge.insert_recursing(key, value, self.alloc.clone(), |ins| {
3210 drop(ins.left);
3211 // SAFETY: The handle to the newly inserted value is always on a
3212 // leaf node, so adding a new root node doesn't invalidate it.
3213 let root = unsafe { self.root.reborrow().as_mut().unwrap() };
3214 root.push_internal_level(self.alloc.clone()).push(ins.kv.0, ins.kv.1, ins.right)
3215 });
3216 self.current = Some(handle.left_edge());
3217 *self.length += 1;
3218 }
3219
3220 /// Inserts a new key-value pair into the map in the gap that the
3221 /// cursor is currently pointing to.
3222 ///
3223 /// After the insertion the cursor will be pointing at the gap after the
3224 /// newly inserted element.
3225 ///
3226 /// # Safety
3227 ///
3228 /// You must ensure that the `BTreeMap` invariants are maintained.
3229 /// Specifically:
3230 ///
3231 /// * The key of the newly inserted element must be unique in the tree.
3232 /// * All keys in the tree must remain in sorted order.
3233 #[unstable(feature = "btree_cursors", issue = "107540")]
3234 pub unsafe fn insert_before_unchecked(&mut self, key: K, value: V) {
3235 let edge = match self.current.take() {
3236 None => {
3237 // SAFETY: We have no other reference to the tree.
3238 match unsafe { self.root.reborrow() } {
3239 root @ None => {
3240 // Tree is empty, allocate a new root.
3241 let mut node = NodeRef::new_leaf(self.alloc.clone());
3242 // SAFETY: We don't touch the root while the handle is alive.
3243 let handle = unsafe { node.borrow_mut().push_with_handle(key, value) };
3244 *root = Some(node.forget_type());
3245 *self.length += 1;
3246 self.current = Some(handle.right_edge());
3247 return;
3248 }
3249 Some(root) => root.borrow_mut().last_leaf_edge(),
3250 }
3251 }
3252 Some(current) => current,
3253 };
3254
3255 let handle = edge.insert_recursing(key, value, self.alloc.clone(), |ins| {
3256 drop(ins.left);
3257 // SAFETY: The handle to the newly inserted value is always on a
3258 // leaf node, so adding a new root node doesn't invalidate it.
3259 let root = unsafe { self.root.reborrow().as_mut().unwrap() };
3260 root.push_internal_level(self.alloc.clone()).push(ins.kv.0, ins.kv.1, ins.right)
3261 });
3262 self.current = Some(handle.right_edge());
3263 *self.length += 1;
3264 }
3265
3266 /// Inserts a new key-value pair into the map in the gap that the
3267 /// cursor is currently pointing to.
3268 ///
3269 /// After the insertion the cursor will be pointing at the gap before the
3270 /// newly inserted element.
3271 ///
3272 /// If the inserted key is not greater than the key before the cursor
3273 /// (if any), or if it not less than the key after the cursor (if any),
3274 /// then an [`UnorderedKeyError`] is returned since this would
3275 /// invalidate the [`Ord`] invariant between the keys of the map.
3276 #[unstable(feature = "btree_cursors", issue = "107540")]
3277 pub fn insert_after(&mut self, key: K, value: V) -> Result<(), UnorderedKeyError> {
3278 if let Some((prev, _)) = self.peek_prev() {
3279 if &key <= prev {
3280 return Err(UnorderedKeyError {});
3281 }
3282 }
3283 if let Some((next, _)) = self.peek_next() {
3284 if &key >= next {
3285 return Err(UnorderedKeyError {});
3286 }
3287 }
3288 unsafe {
3289 self.insert_after_unchecked(key, value);
3290 }
3291 Ok(())
3292 }
3293
3294 /// Inserts a new key-value pair into the map in the gap that the
3295 /// cursor is currently pointing to.
3296 ///
3297 /// After the insertion the cursor will be pointing at the gap after the
3298 /// newly inserted element.
3299 ///
3300 /// If the inserted key is not greater than the key before the cursor
3301 /// (if any), or if it not less than the key after the cursor (if any),
3302 /// then an [`UnorderedKeyError`] is returned since this would
3303 /// invalidate the [`Ord`] invariant between the keys of the map.
3304 #[unstable(feature = "btree_cursors", issue = "107540")]
3305 pub fn insert_before(&mut self, key: K, value: V) -> Result<(), UnorderedKeyError> {
3306 if let Some((prev, _)) = self.peek_prev() {
3307 if &key <= prev {
3308 return Err(UnorderedKeyError {});
3309 }
3310 }
3311 if let Some((next, _)) = self.peek_next() {
3312 if &key >= next {
3313 return Err(UnorderedKeyError {});
3314 }
3315 }
3316 unsafe {
3317 self.insert_before_unchecked(key, value);
3318 }
3319 Ok(())
3320 }
3321
3322 /// Removes the next element from the `BTreeMap`.
3323 ///
3324 /// The element that was removed is returned. The cursor position is
3325 /// unchanged (before the removed element).
3326 #[unstable(feature = "btree_cursors", issue = "107540")]
3327 pub fn remove_next(&mut self) -> Option<(K, V)> {
3328 let current = self.current.take()?;
3329 if current.reborrow().next_kv().is_err() {
3330 self.current = Some(current);
3331 return None;
3332 }
3333 let mut emptied_internal_root = false;
3334 let (kv, pos) = current
3335 .next_kv()
3336 // This should be unwrap(), but that doesn't work because NodeRef
3337 // doesn't implement Debug. The condition is checked above.
3338 .ok()?
3339 .remove_kv_tracking(|| emptied_internal_root = true, self.alloc.clone());
3340 self.current = Some(pos);
3341 *self.length -= 1;
3342 if emptied_internal_root {
3343 // SAFETY: This is safe since current does not point within the now
3344 // empty root node.
3345 let root = unsafe { self.root.reborrow().as_mut().unwrap() };
3346 root.pop_internal_level(self.alloc.clone());
3347 }
3348 Some(kv)
3349 }
3350
3351 /// Removes the preceding element from the `BTreeMap`.
3352 ///
3353 /// The element that was removed is returned. The cursor position is
3354 /// unchanged (after the removed element).
3355 #[unstable(feature = "btree_cursors", issue = "107540")]
3356 pub fn remove_prev(&mut self) -> Option<(K, V)> {
3357 let current = self.current.take()?;
3358 if current.reborrow().next_back_kv().is_err() {
3359 self.current = Some(current);
3360 return None;
3361 }
3362 let mut emptied_internal_root = false;
3363 let (kv, pos) = current
3364 .next_back_kv()
3365 // This should be unwrap(), but that doesn't work because NodeRef
3366 // doesn't implement Debug. The condition is checked above.
3367 .ok()?
3368 .remove_kv_tracking(|| emptied_internal_root = true, self.alloc.clone());
3369 self.current = Some(pos);
3370 *self.length -= 1;
3371 if emptied_internal_root {
3372 // SAFETY: This is safe since current does not point within the now
3373 // empty root node.
3374 let root = unsafe { self.root.reborrow().as_mut().unwrap() };
3375 root.pop_internal_level(self.alloc.clone());
3376 }
3377 Some(kv)
3378 }
3379}
3380
3381impl<'a, K: Ord, V, A: Allocator + Clone> CursorMut<'a, K, V, A> {
3382 /// Inserts a new key-value pair into the map in the gap that the
3383 /// cursor is currently pointing to.
3384 ///
3385 /// After the insertion the cursor will be pointing at the gap after the
3386 /// newly inserted element.
3387 ///
3388 /// # Safety
3389 ///
3390 /// You must ensure that the `BTreeMap` invariants are maintained.
3391 /// Specifically:
3392 ///
3393 /// * The key of the newly inserted element must be unique in the tree.
3394 /// * All keys in the tree must remain in sorted order.
3395 #[unstable(feature = "btree_cursors", issue = "107540")]
3396 pub unsafe fn insert_after_unchecked(&mut self, key: K, value: V) {
3397 unsafe { self.inner.insert_after_unchecked(key, value) }
3398 }
3399
3400 /// Inserts a new key-value pair into the map in the gap that the
3401 /// cursor is currently pointing to.
3402 ///
3403 /// After the insertion the cursor will be pointing at the gap after the
3404 /// newly inserted element.
3405 ///
3406 /// # Safety
3407 ///
3408 /// You must ensure that the `BTreeMap` invariants are maintained.
3409 /// Specifically:
3410 ///
3411 /// * The key of the newly inserted element must be unique in the tree.
3412 /// * All keys in the tree must remain in sorted order.
3413 #[unstable(feature = "btree_cursors", issue = "107540")]
3414 pub unsafe fn insert_before_unchecked(&mut self, key: K, value: V) {
3415 unsafe { self.inner.insert_before_unchecked(key, value) }
3416 }
3417
3418 /// Inserts a new key-value pair into the map in the gap that the
3419 /// cursor is currently pointing to.
3420 ///
3421 /// After the insertion the cursor will be pointing at the gap before the
3422 /// newly inserted element.
3423 ///
3424 /// If the inserted key is not greater than the key before the cursor
3425 /// (if any), or if it not less than the key after the cursor (if any),
3426 /// then an [`UnorderedKeyError`] is returned since this would
3427 /// invalidate the [`Ord`] invariant between the keys of the map.
3428 #[unstable(feature = "btree_cursors", issue = "107540")]
3429 pub fn insert_after(&mut self, key: K, value: V) -> Result<(), UnorderedKeyError> {
3430 self.inner.insert_after(key, value)
3431 }
3432
3433 /// Inserts a new key-value pair into the map in the gap that the
3434 /// cursor is currently pointing to.
3435 ///
3436 /// After the insertion the cursor will be pointing at the gap after the
3437 /// newly inserted element.
3438 ///
3439 /// If the inserted key is not greater than the key before the cursor
3440 /// (if any), or if it not less than the key after the cursor (if any),
3441 /// then an [`UnorderedKeyError`] is returned since this would
3442 /// invalidate the [`Ord`] invariant between the keys of the map.
3443 #[unstable(feature = "btree_cursors", issue = "107540")]
3444 pub fn insert_before(&mut self, key: K, value: V) -> Result<(), UnorderedKeyError> {
3445 self.inner.insert_before(key, value)
3446 }
3447
3448 /// Removes the next element from the `BTreeMap`.
3449 ///
3450 /// The element that was removed is returned. The cursor position is
3451 /// unchanged (before the removed element).
3452 #[unstable(feature = "btree_cursors", issue = "107540")]
3453 pub fn remove_next(&mut self) -> Option<(K, V)> {
3454 self.inner.remove_next()
3455 }
3456
3457 /// Removes the preceding element from the `BTreeMap`.
3458 ///
3459 /// The element that was removed is returned. The cursor position is
3460 /// unchanged (after the removed element).
3461 #[unstable(feature = "btree_cursors", issue = "107540")]
3462 pub fn remove_prev(&mut self) -> Option<(K, V)> {
3463 self.inner.remove_prev()
3464 }
3465}
3466
3467/// Error type returned by [`CursorMut::insert_before`] and
3468/// [`CursorMut::insert_after`] if the key being inserted is not properly
3469/// ordered with regards to adjacent keys.
3470#[derive(Clone, PartialEq, Eq, Debug)]
3471#[unstable(feature = "btree_cursors", issue = "107540")]
3472pub struct UnorderedKeyError {}
3473
3474#[unstable(feature = "btree_cursors", issue = "107540")]
3475impl fmt::Display for UnorderedKeyError {
3476 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3477 write!(f, "key is not properly ordered relative to neighbors")
3478 }
3479}
3480
3481#[unstable(feature = "btree_cursors", issue = "107540")]
3482impl Error for UnorderedKeyError {}
3483
3484#[cfg(test)]
3485mod tests;