core/slice/iter/
macros.rs

1//! Macros used by iterators of slice.
2
3/// Convenience & performance macro for consuming the `end_or_len` field, by
4/// giving a `(&mut) usize` or `(&mut) NonNull<T>` depending whether `T` is
5/// or is not a ZST respectively.
6///
7/// Internally, this reads the `end` through a pointer-to-`NonNull` so that
8/// it'll get the appropriate non-null metadata in the backend without needing
9/// to call `assume` manually.
10macro_rules! if_zst {
11    (mut $this:ident, $len:ident => $zst_body:expr, $end:ident => $other_body:expr,) => {{
12        #![allow(unused_unsafe)] // we're sometimes used within an unsafe block
13
14        if T::IS_ZST {
15            // SAFETY: for ZSTs, the pointer is storing a provenance-free length,
16            // so consuming and updating it as a `usize` is fine.
17            let $len = unsafe { &mut *(&raw mut $this.end_or_len).cast::<usize>() };
18            $zst_body
19        } else {
20            // SAFETY: for non-ZSTs, the type invariant ensures it cannot be null
21            let $end = unsafe { &mut *(&raw mut $this.end_or_len).cast::<NonNull<T>>() };
22            $other_body
23        }
24    }};
25    ($this:ident, $len:ident => $zst_body:expr, $end:ident => $other_body:expr,) => {{
26        #![allow(unused_unsafe)] // we're sometimes used within an unsafe block
27
28        if T::IS_ZST {
29            let $len = $this.end_or_len.addr();
30            $zst_body
31        } else {
32            // SAFETY: for non-ZSTs, the type invariant ensures it cannot be null
33            let $end = unsafe { mem::transmute::<*const T, NonNull<T>>($this.end_or_len) };
34            $other_body
35        }
36    }};
37}
38
39// Inlining is_empty and len makes a huge performance difference
40macro_rules! is_empty {
41    ($self: ident) => {
42        if_zst!($self,
43            len => len == 0,
44            end => $self.ptr == end,
45        )
46    };
47}
48
49macro_rules! len {
50    ($self: ident) => {{
51        if_zst!($self,
52            len => len,
53            end => {
54                // To get rid of some bounds checks (see `position`), we use ptr_sub instead of
55                // offset_from (Tested by `codegen/slice-position-bounds-check`.)
56                // SAFETY: by the type invariant pointers are aligned and `start <= end`
57                unsafe { end.sub_ptr($self.ptr) }
58            },
59        )
60    }};
61}
62
63// The shared definition of the `Iter` and `IterMut` iterators
64macro_rules! iterator {
65    (
66        struct $name:ident -> $ptr:ty,
67        $elem:ty,
68        $raw_mut:tt,
69        {$( $mut_:tt )?},
70        $into_ref:ident,
71        {$($extra:tt)*}
72    ) => {
73        impl<'a, T> $name<'a, T> {
74            /// Returns the last element and moves the end of the iterator backwards by 1.
75            ///
76            /// # Safety
77            ///
78            /// The iterator must not be empty
79            #[inline]
80            unsafe fn next_back_unchecked(&mut self) -> $elem {
81                // SAFETY: the caller promised it's not empty, so
82                // the offsetting is in-bounds and there's an element to return.
83                unsafe { self.pre_dec_end(1).$into_ref() }
84            }
85
86            // Helper function for creating a slice from the iterator.
87            #[inline(always)]
88            fn make_slice(&self) -> &'a [T] {
89                // SAFETY: the iterator was created from a slice with pointer
90                // `self.ptr` and length `len!(self)`. This guarantees that all
91                // the prerequisites for `from_raw_parts` are fulfilled.
92                unsafe { from_raw_parts(self.ptr.as_ptr(), len!(self)) }
93            }
94
95            // Helper function for moving the start of the iterator forwards by `offset` elements,
96            // returning the old start.
97            // Unsafe because the offset must not exceed `self.len()`.
98            #[inline(always)]
99            unsafe fn post_inc_start(&mut self, offset: usize) -> NonNull<T> {
100                let old = self.ptr;
101
102                // SAFETY: the caller guarantees that `offset` doesn't exceed `self.len()`,
103                // so this new pointer is inside `self` and thus guaranteed to be non-null.
104                unsafe {
105                    if_zst!(mut self,
106                        // Using the intrinsic directly avoids emitting a UbCheck
107                        len => *len = crate::intrinsics::unchecked_sub(*len, offset),
108                        _end => self.ptr = self.ptr.add(offset),
109                    );
110                }
111                old
112            }
113
114            // Helper function for moving the end of the iterator backwards by `offset` elements,
115            // returning the new end.
116            // Unsafe because the offset must not exceed `self.len()`.
117            #[inline(always)]
118            unsafe fn pre_dec_end(&mut self, offset: usize) -> NonNull<T> {
119                if_zst!(mut self,
120                    // SAFETY: By our precondition, `offset` can be at most the
121                    // current length, so the subtraction can never overflow.
122                    len => unsafe {
123                        // Using the intrinsic directly avoids emitting a UbCheck
124                        *len = crate::intrinsics::unchecked_sub(*len, offset);
125                        self.ptr
126                    },
127                    // SAFETY: the caller guarantees that `offset` doesn't exceed `self.len()`,
128                    // which is guaranteed to not overflow an `isize`. Also, the resulting pointer
129                    // is in bounds of `slice`, which fulfills the other requirements for `offset`.
130                    end => unsafe {
131                        *end = end.sub(offset);
132                        *end
133                    },
134                )
135            }
136        }
137
138        #[stable(feature = "rust1", since = "1.0.0")]
139        impl<T> ExactSizeIterator for $name<'_, T> {
140            #[inline(always)]
141            fn len(&self) -> usize {
142                len!(self)
143            }
144
145            #[inline(always)]
146            fn is_empty(&self) -> bool {
147                is_empty!(self)
148            }
149        }
150
151        #[stable(feature = "rust1", since = "1.0.0")]
152        impl<'a, T> Iterator for $name<'a, T> {
153            type Item = $elem;
154
155            #[inline]
156            fn next(&mut self) -> Option<$elem> {
157                // could be implemented with slices, but this avoids bounds checks
158
159                // SAFETY: The call to `next_unchecked` is
160                // safe since we check if the iterator is empty first.
161                unsafe {
162                    if is_empty!(self) {
163                        None
164                    } else {
165                        Some(self.next_unchecked())
166                    }
167                }
168            }
169
170            #[inline]
171            fn size_hint(&self) -> (usize, Option<usize>) {
172                let exact = len!(self);
173                (exact, Some(exact))
174            }
175
176            #[inline]
177            fn count(self) -> usize {
178                len!(self)
179            }
180
181            #[inline]
182            fn nth(&mut self, n: usize) -> Option<$elem> {
183                if n >= len!(self) {
184                    // This iterator is now empty.
185                    if_zst!(mut self,
186                        len => *len = 0,
187                        end => self.ptr = *end,
188                    );
189                    return None;
190                }
191                // SAFETY: We are in bounds. `post_inc_start` does the right thing even for ZSTs.
192                unsafe {
193                    self.post_inc_start(n);
194                    Some(self.next_unchecked())
195                }
196            }
197
198            #[inline]
199            fn advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
200                let advance = cmp::min(len!(self), n);
201                // SAFETY: By construction, `advance` does not exceed `self.len()`.
202                unsafe { self.post_inc_start(advance) };
203                NonZero::new(n - advance).map_or(Ok(()), Err)
204            }
205
206            #[inline]
207            fn last(mut self) -> Option<$elem> {
208                self.next_back()
209            }
210
211            #[inline]
212            fn fold<B, F>(self, init: B, mut f: F) -> B
213                where
214                    F: FnMut(B, Self::Item) -> B,
215            {
216                // this implementation consists of the following optimizations compared to the
217                // default implementation:
218                // - do-while loop, as is llvm's preferred loop shape,
219                //   see https://releases.llvm.org/16.0.0/docs/LoopTerminology.html#more-canonical-loops
220                // - bumps an index instead of a pointer since the latter case inhibits
221                //   some optimizations, see #111603
222                // - avoids Option wrapping/matching
223                if is_empty!(self) {
224                    return init;
225                }
226                let mut acc = init;
227                let mut i = 0;
228                let len = len!(self);
229                loop {
230                    // SAFETY: the loop iterates `i in 0..len`, which always is in bounds of
231                    // the slice allocation
232                    acc = f(acc, unsafe { & $( $mut_ )? *self.ptr.add(i).as_ptr() });
233                    // SAFETY: `i` can't overflow since it'll only reach usize::MAX if the
234                    // slice had that length, in which case we'll break out of the loop
235                    // after the increment
236                    i = unsafe { i.unchecked_add(1) };
237                    if i == len {
238                        break;
239                    }
240                }
241                acc
242            }
243
244            // We override the default implementation, which uses `try_fold`,
245            // because this simple implementation generates less LLVM IR and is
246            // faster to compile.
247            #[inline]
248            fn for_each<F>(mut self, mut f: F)
249            where
250                Self: Sized,
251                F: FnMut(Self::Item),
252            {
253                while let Some(x) = self.next() {
254                    f(x);
255                }
256            }
257
258            // We override the default implementation, which uses `try_fold`,
259            // because this simple implementation generates less LLVM IR and is
260            // faster to compile.
261            #[inline]
262            fn all<F>(&mut self, mut f: F) -> bool
263            where
264                Self: Sized,
265                F: FnMut(Self::Item) -> bool,
266            {
267                while let Some(x) = self.next() {
268                    if !f(x) {
269                        return false;
270                    }
271                }
272                true
273            }
274
275            // We override the default implementation, which uses `try_fold`,
276            // because this simple implementation generates less LLVM IR and is
277            // faster to compile.
278            #[inline]
279            fn any<F>(&mut self, mut f: F) -> bool
280            where
281                Self: Sized,
282                F: FnMut(Self::Item) -> bool,
283            {
284                while let Some(x) = self.next() {
285                    if f(x) {
286                        return true;
287                    }
288                }
289                false
290            }
291
292            // We override the default implementation, which uses `try_fold`,
293            // because this simple implementation generates less LLVM IR and is
294            // faster to compile.
295            #[inline]
296            fn find<P>(&mut self, mut predicate: P) -> Option<Self::Item>
297            where
298                Self: Sized,
299                P: FnMut(&Self::Item) -> bool,
300            {
301                while let Some(x) = self.next() {
302                    if predicate(&x) {
303                        return Some(x);
304                    }
305                }
306                None
307            }
308
309            // We override the default implementation, which uses `try_fold`,
310            // because this simple implementation generates less LLVM IR and is
311            // faster to compile.
312            #[inline]
313            fn find_map<B, F>(&mut self, mut f: F) -> Option<B>
314            where
315                Self: Sized,
316                F: FnMut(Self::Item) -> Option<B>,
317            {
318                while let Some(x) = self.next() {
319                    if let Some(y) = f(x) {
320                        return Some(y);
321                    }
322                }
323                None
324            }
325
326            // We override the default implementation, which uses `try_fold`,
327            // because this simple implementation generates less LLVM IR and is
328            // faster to compile. Also, the `assume` avoids a bounds check.
329            #[inline]
330            #[rustc_inherit_overflow_checks]
331            fn position<P>(&mut self, mut predicate: P) -> Option<usize> where
332                Self: Sized,
333                P: FnMut(Self::Item) -> bool,
334            {
335                let n = len!(self);
336                let mut i = 0;
337                while let Some(x) = self.next() {
338                    if predicate(x) {
339                        // SAFETY: we are guaranteed to be in bounds by the loop invariant:
340                        // when `i >= n`, `self.next()` returns `None` and the loop breaks.
341                        unsafe { assert_unchecked(i < n) };
342                        return Some(i);
343                    }
344                    i += 1;
345                }
346                None
347            }
348
349            // We override the default implementation, which uses `try_fold`,
350            // because this simple implementation generates less LLVM IR and is
351            // faster to compile. Also, the `assume` avoids a bounds check.
352            #[inline]
353            fn rposition<P>(&mut self, mut predicate: P) -> Option<usize> where
354                P: FnMut(Self::Item) -> bool,
355                Self: Sized + ExactSizeIterator + DoubleEndedIterator
356            {
357                let n = len!(self);
358                let mut i = n;
359                while let Some(x) = self.next_back() {
360                    i -= 1;
361                    if predicate(x) {
362                        // SAFETY: `i` must be lower than `n` since it starts at `n`
363                        // and is only decreasing.
364                        unsafe { assert_unchecked(i < n) };
365                        return Some(i);
366                    }
367                }
368                None
369            }
370
371            #[inline]
372            unsafe fn __iterator_get_unchecked(&mut self, idx: usize) -> Self::Item {
373                // SAFETY: the caller must guarantee that `i` is in bounds of
374                // the underlying slice, so `i` cannot overflow an `isize`, and
375                // the returned references is guaranteed to refer to an element
376                // of the slice and thus guaranteed to be valid.
377                //
378                // Also note that the caller also guarantees that we're never
379                // called with the same index again, and that no other methods
380                // that will access this subslice are called, so it is valid
381                // for the returned reference to be mutable in the case of
382                // `IterMut`
383                unsafe { & $( $mut_ )? * self.ptr.as_ptr().add(idx) }
384            }
385
386            $($extra)*
387        }
388
389        #[stable(feature = "rust1", since = "1.0.0")]
390        impl<'a, T> DoubleEndedIterator for $name<'a, T> {
391            #[inline]
392            fn next_back(&mut self) -> Option<$elem> {
393                // could be implemented with slices, but this avoids bounds checks
394
395                // SAFETY: The call to `next_back_unchecked`
396                // is safe since we check if the iterator is empty first.
397                unsafe {
398                    if is_empty!(self) {
399                        None
400                    } else {
401                        Some(self.next_back_unchecked())
402                    }
403                }
404            }
405
406            #[inline]
407            fn nth_back(&mut self, n: usize) -> Option<$elem> {
408                if n >= len!(self) {
409                    // This iterator is now empty.
410                    if_zst!(mut self,
411                        len => *len = 0,
412                        end => *end = self.ptr,
413                    );
414                    return None;
415                }
416                // SAFETY: We are in bounds. `pre_dec_end` does the right thing even for ZSTs.
417                unsafe {
418                    self.pre_dec_end(n);
419                    Some(self.next_back_unchecked())
420                }
421            }
422
423            #[inline]
424            fn advance_back_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
425                let advance = cmp::min(len!(self), n);
426                // SAFETY: By construction, `advance` does not exceed `self.len()`.
427                unsafe { self.pre_dec_end(advance) };
428                NonZero::new(n - advance).map_or(Ok(()), Err)
429            }
430        }
431
432        #[stable(feature = "fused", since = "1.26.0")]
433        impl<T> FusedIterator for $name<'_, T> {}
434
435        #[unstable(feature = "trusted_len", issue = "37572")]
436        unsafe impl<T> TrustedLen for $name<'_, T> {}
437
438        impl<'a, T> UncheckedIterator for $name<'a, T> {
439            #[inline]
440            unsafe fn next_unchecked(&mut self) -> $elem {
441                // SAFETY: The caller promised there's at least one more item.
442                unsafe {
443                    self.post_inc_start(1).$into_ref()
444                }
445            }
446        }
447
448        #[stable(feature = "default_iters", since = "1.70.0")]
449        impl<T> Default for $name<'_, T> {
450            /// Creates an empty slice iterator.
451            ///
452            /// ```
453            #[doc = concat!("# use core::slice::", stringify!($name), ";")]
454            #[doc = concat!("let iter: ", stringify!($name<'_, u8>), " = Default::default();")]
455            /// assert_eq!(iter.len(), 0);
456            /// ```
457            fn default() -> Self {
458                (& $( $mut_ )? []).into_iter()
459            }
460        }
461    }
462}
463
464macro_rules! forward_iterator {
465    ($name:ident: $elem:ident, $iter_of:ty) => {
466        #[stable(feature = "rust1", since = "1.0.0")]
467        impl<'a, $elem, P> Iterator for $name<'a, $elem, P>
468        where
469            P: FnMut(&T) -> bool,
470        {
471            type Item = $iter_of;
472
473            #[inline]
474            fn next(&mut self) -> Option<$iter_of> {
475                self.inner.next()
476            }
477
478            #[inline]
479            fn size_hint(&self) -> (usize, Option<usize>) {
480                self.inner.size_hint()
481            }
482        }
483
484        #[stable(feature = "fused", since = "1.26.0")]
485        impl<'a, $elem, P> FusedIterator for $name<'a, $elem, P> where P: FnMut(&T) -> bool {}
486    };
487}