alloc/
slice.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
//! Utilities for the slice primitive type.
//!
//! *[See also the slice primitive type](slice).*
//!
//! Most of the structs in this module are iterator types which can only be created
//! using a certain function. For example, `slice.iter()` yields an [`Iter`].
//!
//! A few functions are provided to create a slice from a value reference
//! or from a raw pointer.
#![stable(feature = "rust1", since = "1.0.0")]
// Many of the usings in this module are only used in the test configuration.
// It's cleaner to just turn off the unused_imports warning than to fix them.
#![cfg_attr(test, allow(unused_imports, dead_code))]

use core::borrow::{Borrow, BorrowMut};
#[cfg(not(no_global_oom_handling))]
use core::cmp::Ordering::{self, Less};
#[cfg(not(no_global_oom_handling))]
use core::mem::{self, MaybeUninit};
#[cfg(not(no_global_oom_handling))]
use core::ptr;
#[unstable(feature = "array_chunks", issue = "74985")]
pub use core::slice::ArrayChunks;
#[unstable(feature = "array_chunks", issue = "74985")]
pub use core::slice::ArrayChunksMut;
#[unstable(feature = "array_windows", issue = "75027")]
pub use core::slice::ArrayWindows;
#[stable(feature = "inherent_ascii_escape", since = "1.60.0")]
pub use core::slice::EscapeAscii;
#[stable(feature = "slice_get_slice", since = "1.28.0")]
pub use core::slice::SliceIndex;
#[cfg(not(no_global_oom_handling))]
use core::slice::sort;
#[stable(feature = "slice_group_by", since = "1.77.0")]
pub use core::slice::{ChunkBy, ChunkByMut};
#[stable(feature = "rust1", since = "1.0.0")]
pub use core::slice::{Chunks, Windows};
#[stable(feature = "chunks_exact", since = "1.31.0")]
pub use core::slice::{ChunksExact, ChunksExactMut};
#[stable(feature = "rust1", since = "1.0.0")]
pub use core::slice::{ChunksMut, Split, SplitMut};
#[stable(feature = "rust1", since = "1.0.0")]
pub use core::slice::{Iter, IterMut};
#[stable(feature = "rchunks", since = "1.31.0")]
pub use core::slice::{RChunks, RChunksExact, RChunksExactMut, RChunksMut};
#[stable(feature = "slice_rsplit", since = "1.27.0")]
pub use core::slice::{RSplit, RSplitMut};
#[stable(feature = "rust1", since = "1.0.0")]
pub use core::slice::{RSplitN, RSplitNMut, SplitN, SplitNMut};
#[stable(feature = "split_inclusive", since = "1.51.0")]
pub use core::slice::{SplitInclusive, SplitInclusiveMut};
#[stable(feature = "from_ref", since = "1.28.0")]
pub use core::slice::{from_mut, from_ref};
#[unstable(feature = "slice_from_ptr_range", issue = "89792")]
pub use core::slice::{from_mut_ptr_range, from_ptr_range};
#[stable(feature = "rust1", since = "1.0.0")]
pub use core::slice::{from_raw_parts, from_raw_parts_mut};
#[unstable(feature = "slice_range", issue = "76393")]
pub use core::slice::{range, try_range};

////////////////////////////////////////////////////////////////////////////////
// Basic slice extension methods
////////////////////////////////////////////////////////////////////////////////

// HACK(japaric) needed for the implementation of `vec!` macro during testing
// N.B., see the `hack` module in this file for more details.
#[cfg(test)]
pub use hack::into_vec;
// HACK(japaric) needed for the implementation of `Vec::clone` during testing
// N.B., see the `hack` module in this file for more details.
#[cfg(test)]
pub use hack::to_vec;

use crate::alloc::Allocator;
#[cfg(not(no_global_oom_handling))]
use crate::alloc::Global;
#[cfg(not(no_global_oom_handling))]
use crate::borrow::ToOwned;
use crate::boxed::Box;
use crate::vec::Vec;

// HACK(japaric): With cfg(test) `impl [T]` is not available, these three
// functions are actually methods that are in `impl [T]` but not in
// `core::slice::SliceExt` - we need to supply these functions for the
// `test_permutations` test
pub(crate) mod hack {
    use core::alloc::Allocator;

    use crate::boxed::Box;
    use crate::vec::Vec;

    // We shouldn't add inline attribute to this since this is used in
    // `vec!` macro mostly and causes perf regression. See #71204 for
    // discussion and perf results.
    #[allow(missing_docs)]
    pub fn into_vec<T, A: Allocator>(b: Box<[T], A>) -> Vec<T, A> {
        unsafe {
            let len = b.len();
            let (b, alloc) = Box::into_raw_with_allocator(b);
            Vec::from_raw_parts_in(b as *mut T, len, len, alloc)
        }
    }

    #[cfg(not(no_global_oom_handling))]
    #[allow(missing_docs)]
    #[inline]
    pub fn to_vec<T: ConvertVec, A: Allocator>(s: &[T], alloc: A) -> Vec<T, A> {
        T::to_vec(s, alloc)
    }

    #[cfg(not(no_global_oom_handling))]
    pub trait ConvertVec {
        fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A>
        where
            Self: Sized;
    }

    #[cfg(not(no_global_oom_handling))]
    impl<T: Clone> ConvertVec for T {
        #[inline]
        default fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A> {
            struct DropGuard<'a, T, A: Allocator> {
                vec: &'a mut Vec<T, A>,
                num_init: usize,
            }
            impl<'a, T, A: Allocator> Drop for DropGuard<'a, T, A> {
                #[inline]
                fn drop(&mut self) {
                    // SAFETY:
                    // items were marked initialized in the loop below
                    unsafe {
                        self.vec.set_len(self.num_init);
                    }
                }
            }
            let mut vec = Vec::with_capacity_in(s.len(), alloc);
            let mut guard = DropGuard { vec: &mut vec, num_init: 0 };
            let slots = guard.vec.spare_capacity_mut();
            // .take(slots.len()) is necessary for LLVM to remove bounds checks
            // and has better codegen than zip.
            for (i, b) in s.iter().enumerate().take(slots.len()) {
                guard.num_init = i;
                slots[i].write(b.clone());
            }
            core::mem::forget(guard);
            // SAFETY:
            // the vec was allocated and initialized above to at least this length.
            unsafe {
                vec.set_len(s.len());
            }
            vec
        }
    }

    #[cfg(not(no_global_oom_handling))]
    impl<T: Copy> ConvertVec for T {
        #[inline]
        fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A> {
            let mut v = Vec::with_capacity_in(s.len(), alloc);
            // SAFETY:
            // allocated above with the capacity of `s`, and initialize to `s.len()` in
            // ptr::copy_to_non_overlapping below.
            unsafe {
                s.as_ptr().copy_to_nonoverlapping(v.as_mut_ptr(), s.len());
                v.set_len(s.len());
            }
            v
        }
    }
}

#[cfg(not(test))]
impl<T> [T] {
    /// Sorts the slice, preserving initial order of equal elements.
    ///
    /// This sort is stable (i.e., does not reorder equal elements) and *O*(*n* \* log(*n*))
    /// worst-case.
    ///
    /// If the implementation of [`Ord`] for `T` does not implement a [total order], the function
    /// may panic; even if the function exits normally, the resulting order of elements in the slice
    /// is unspecified. See also the note on panicking below.
    ///
    /// When applicable, unstable sorting is preferred because it is generally faster than stable
    /// sorting and it doesn't allocate auxiliary memory. See
    /// [`sort_unstable`](slice::sort_unstable). The exception are partially sorted slices, which
    /// may be better served with `slice::sort`.
    ///
    /// Sorting types that only implement [`PartialOrd`] such as [`f32`] and [`f64`] require
    /// additional precautions. For example, `f32::NAN != f32::NAN`, which doesn't fulfill the
    /// reflexivity requirement of [`Ord`]. By using an alternative comparison function with
    /// `slice::sort_by` such as [`f32::total_cmp`] or [`f64::total_cmp`] that defines a [total
    /// order] users can sort slices containing floating-point values. Alternatively, if all values
    /// in the slice are guaranteed to be in a subset for which [`PartialOrd::partial_cmp`] forms a
    /// [total order], it's possible to sort the slice with `sort_by(|a, b|
    /// a.partial_cmp(b).unwrap())`.
    ///
    /// # Current implementation
    ///
    /// The current implementation is based on [driftsort] by Orson Peters and Lukas Bergdoll, which
    /// combines the fast average case of quicksort with the fast worst case and partial run
    /// detection of mergesort, achieving linear time on fully sorted and reversed inputs. On inputs
    /// with k distinct elements, the expected time to sort the data is *O*(*n* \* log(*k*)).
    ///
    /// The auxiliary memory allocation behavior depends on the input length. Short slices are
    /// handled without allocation, medium sized slices allocate `self.len()` and beyond that it
    /// clamps at `self.len() / 2`.
    ///
    /// # Panics
    ///
    /// May panic if the implementation of [`Ord`] for `T` does not implement a [total order], or if
    /// the [`Ord`] implementation itself panics.
    ///
    /// All safe functions on slices preserve the invariant that even if the function panics, all
    /// original elements will remain in the slice and any possible modifications via interior
    /// mutability are observed in the input. This ensures that recovery code (for instance inside
    /// of a `Drop` or following a `catch_unwind`) will still have access to all the original
    /// elements. For instance, if the slice belongs to a `Vec`, the `Vec::drop` method will be able
    /// to dispose of all contained elements.
    ///
    /// # Examples
    ///
    /// ```
    /// let mut v = [4, -5, 1, -3, 2];
    ///
    /// v.sort();
    /// assert_eq!(v, [-5, -3, 1, 2, 4]);
    /// ```
    ///
    /// [driftsort]: https://github.com/Voultapher/driftsort
    /// [total order]: https://en.wikipedia.org/wiki/Total_order
    #[cfg(not(no_global_oom_handling))]
    #[rustc_allow_incoherent_impl]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn sort(&mut self)
    where
        T: Ord,
    {
        stable_sort(self, T::lt);
    }

    /// Sorts the slice with a comparison function, preserving initial order of equal elements.
    ///
    /// This sort is stable (i.e., does not reorder equal elements) and *O*(*n* \* log(*n*))
    /// worst-case.
    ///
    /// If the comparison function `compare` does not implement a [total order], the function may
    /// panic; even if the function exits normally, the resulting order of elements in the slice is
    /// unspecified. See also the note on panicking below.
    ///
    /// For example `|a, b| (a - b).cmp(a)` is a comparison function that is neither transitive nor
    /// reflexive nor total, `a < b < c < a` with `a = 1, b = 2, c = 3`. For more information and
    /// examples see the [`Ord`] documentation.
    ///
    /// # Current implementation
    ///
    /// The current implementation is based on [driftsort] by Orson Peters and Lukas Bergdoll, which
    /// combines the fast average case of quicksort with the fast worst case and partial run
    /// detection of mergesort, achieving linear time on fully sorted and reversed inputs. On inputs
    /// with k distinct elements, the expected time to sort the data is *O*(*n* \* log(*k*)).
    ///
    /// The auxiliary memory allocation behavior depends on the input length. Short slices are
    /// handled without allocation, medium sized slices allocate `self.len()` and beyond that it
    /// clamps at `self.len() / 2`.
    ///
    /// # Panics
    ///
    /// May panic if `compare` does not implement a [total order], or if `compare` itself panics.
    ///
    /// All safe functions on slices preserve the invariant that even if the function panics, all
    /// original elements will remain in the slice and any possible modifications via interior
    /// mutability are observed in the input. This ensures that recovery code (for instance inside
    /// of a `Drop` or following a `catch_unwind`) will still have access to all the original
    /// elements. For instance, if the slice belongs to a `Vec`, the `Vec::drop` method will be able
    /// to dispose of all contained elements.
    ///
    /// # Examples
    ///
    /// ```
    /// let mut v = [4, -5, 1, -3, 2];
    /// v.sort_by(|a, b| a.cmp(b));
    /// assert_eq!(v, [-5, -3, 1, 2, 4]);
    ///
    /// // reverse sorting
    /// v.sort_by(|a, b| b.cmp(a));
    /// assert_eq!(v, [4, 2, 1, -3, -5]);
    /// ```
    ///
    /// [driftsort]: https://github.com/Voultapher/driftsort
    /// [total order]: https://en.wikipedia.org/wiki/Total_order
    #[cfg(not(no_global_oom_handling))]
    #[rustc_allow_incoherent_impl]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn sort_by<F>(&mut self, mut compare: F)
    where
        F: FnMut(&T, &T) -> Ordering,
    {
        stable_sort(self, |a, b| compare(a, b) == Less);
    }

    /// Sorts the slice with a key extraction function, preserving initial order of equal elements.
    ///
    /// This sort is stable (i.e., does not reorder equal elements) and *O*(*m* \* *n* \* log(*n*))
    /// worst-case, where the key function is *O*(*m*).
    ///
    /// If the implementation of [`Ord`] for `K` does not implement a [total order], the function
    /// may panic; even if the function exits normally, the resulting order of elements in the slice
    /// is unspecified. See also the note on panicking below.
    ///
    /// # Current implementation
    ///
    /// The current implementation is based on [driftsort] by Orson Peters and Lukas Bergdoll, which
    /// combines the fast average case of quicksort with the fast worst case and partial run
    /// detection of mergesort, achieving linear time on fully sorted and reversed inputs. On inputs
    /// with k distinct elements, the expected time to sort the data is *O*(*n* \* log(*k*)).
    ///
    /// The auxiliary memory allocation behavior depends on the input length. Short slices are
    /// handled without allocation, medium sized slices allocate `self.len()` and beyond that it
    /// clamps at `self.len() / 2`.
    ///
    /// # Panics
    ///
    /// May panic if the implementation of [`Ord`] for `K` does not implement a [total order], or if
    /// the [`Ord`] implementation or the key-function `f` panics.
    ///
    /// All safe functions on slices preserve the invariant that even if the function panics, all
    /// original elements will remain in the slice and any possible modifications via interior
    /// mutability are observed in the input. This ensures that recovery code (for instance inside
    /// of a `Drop` or following a `catch_unwind`) will still have access to all the original
    /// elements. For instance, if the slice belongs to a `Vec`, the `Vec::drop` method will be able
    /// to dispose of all contained elements.
    ///
    /// # Examples
    ///
    /// ```
    /// let mut v = [4i32, -5, 1, -3, 2];
    ///
    /// v.sort_by_key(|k| k.abs());
    /// assert_eq!(v, [1, 2, -3, 4, -5]);
    /// ```
    ///
    /// [driftsort]: https://github.com/Voultapher/driftsort
    /// [total order]: https://en.wikipedia.org/wiki/Total_order
    #[cfg(not(no_global_oom_handling))]
    #[rustc_allow_incoherent_impl]
    #[stable(feature = "slice_sort_by_key", since = "1.7.0")]
    #[inline]
    pub fn sort_by_key<K, F>(&mut self, mut f: F)
    where
        F: FnMut(&T) -> K,
        K: Ord,
    {
        stable_sort(self, |a, b| f(a).lt(&f(b)));
    }

    /// Sorts the slice with a key extraction function, preserving initial order of equal elements.
    ///
    /// This sort is stable (i.e., does not reorder equal elements) and *O*(*m* \* *n* + *n* \*
    /// log(*n*)) worst-case, where the key function is *O*(*m*).
    ///
    /// During sorting, the key function is called at most once per element, by using temporary
    /// storage to remember the results of key evaluation. The order of calls to the key function is
    /// unspecified and may change in future versions of the standard library.
    ///
    /// If the implementation of [`Ord`] for `K` does not implement a [total order], the function
    /// may panic; even if the function exits normally, the resulting order of elements in the slice
    /// is unspecified. See also the note on panicking below.
    ///
    /// For simple key functions (e.g., functions that are property accesses or basic operations),
    /// [`sort_by_key`](slice::sort_by_key) is likely to be faster.
    ///
    /// # Current implementation
    ///
    /// The current implementation is based on [instruction-parallel-network sort][ipnsort] by Lukas
    /// Bergdoll, which combines the fast average case of randomized quicksort with the fast worst
    /// case of heapsort, while achieving linear time on fully sorted and reversed inputs. And
    /// *O*(*k* \* log(*n*)) where *k* is the number of distinct elements in the input. It leverages
    /// superscalar out-of-order execution capabilities commonly found in CPUs, to efficiently
    /// perform the operation.
    ///
    /// In the worst case, the algorithm allocates temporary storage in a `Vec<(K, usize)>` the
    /// length of the slice.
    ///
    /// # Panics
    ///
    /// May panic if the implementation of [`Ord`] for `K` does not implement a [total order], or if
    /// the [`Ord`] implementation panics.
    ///
    /// All safe functions on slices preserve the invariant that even if the function panics, all
    /// original elements will remain in the slice and any possible modifications via interior
    /// mutability are observed in the input. This ensures that recovery code (for instance inside
    /// of a `Drop` or following a `catch_unwind`) will still have access to all the original
    /// elements. For instance, if the slice belongs to a `Vec`, the `Vec::drop` method will be able
    /// to dispose of all contained elements.
    ///
    /// # Examples
    ///
    /// ```
    /// let mut v = [4i32, -5, 1, -3, 2, 10];
    ///
    /// // Strings are sorted by lexicographical order.
    /// v.sort_by_cached_key(|k| k.to_string());
    /// assert_eq!(v, [-3, -5, 1, 10, 2, 4]);
    /// ```
    ///
    /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
    /// [total order]: https://en.wikipedia.org/wiki/Total_order
    #[cfg(not(no_global_oom_handling))]
    #[rustc_allow_incoherent_impl]
    #[stable(feature = "slice_sort_by_cached_key", since = "1.34.0")]
    #[inline]
    pub fn sort_by_cached_key<K, F>(&mut self, f: F)
    where
        F: FnMut(&T) -> K,
        K: Ord,
    {
        // Helper macro for indexing our vector by the smallest possible type, to reduce allocation.
        macro_rules! sort_by_key {
            ($t:ty, $slice:ident, $f:ident) => {{
                let mut indices: Vec<_> =
                    $slice.iter().map($f).enumerate().map(|(i, k)| (k, i as $t)).collect();
                // The elements of `indices` are unique, as they are indexed, so any sort will be
                // stable with respect to the original slice. We use `sort_unstable` here because
                // it requires no memory allocation.
                indices.sort_unstable();
                for i in 0..$slice.len() {
                    let mut index = indices[i].1;
                    while (index as usize) < i {
                        index = indices[index as usize].1;
                    }
                    indices[i].1 = index;
                    $slice.swap(i, index as usize);
                }
            }};
        }

        let len = self.len();
        if len < 2 {
            return;
        }

        // Avoids binary-size usage in cases where the alignment doesn't work out to make this
        // beneficial or on 32-bit platforms.
        let is_using_u32_as_idx_type_helpful =
            const { mem::size_of::<(K, u32)>() < mem::size_of::<(K, usize)>() };

        // It's possible to instantiate this for u8 and u16 but, doing so is very wasteful in terms
        // of compile-times and binary-size, the peak saved heap memory for u16 is (u8 + u16) -> 4
        // bytes * u16::MAX vs (u8 + u32) -> 8 bytes * u16::MAX, the saved heap memory is at peak
        // ~262KB.
        if is_using_u32_as_idx_type_helpful && len <= (u32::MAX as usize) {
            return sort_by_key!(u32, self, f);
        }

        sort_by_key!(usize, self, f)
    }

    /// Copies `self` into a new `Vec`.
    ///
    /// # Examples
    ///
    /// ```
    /// let s = [10, 40, 30];
    /// let x = s.to_vec();
    /// // Here, `s` and `x` can be modified independently.
    /// ```
    #[cfg(not(no_global_oom_handling))]
    #[rustc_allow_incoherent_impl]
    #[rustc_conversion_suggestion]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn to_vec(&self) -> Vec<T>
    where
        T: Clone,
    {
        self.to_vec_in(Global)
    }

    /// Copies `self` into a new `Vec` with an allocator.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(allocator_api)]
    ///
    /// use std::alloc::System;
    ///
    /// let s = [10, 40, 30];
    /// let x = s.to_vec_in(System);
    /// // Here, `s` and `x` can be modified independently.
    /// ```
    #[cfg(not(no_global_oom_handling))]
    #[rustc_allow_incoherent_impl]
    #[inline]
    #[unstable(feature = "allocator_api", issue = "32838")]
    pub fn to_vec_in<A: Allocator>(&self, alloc: A) -> Vec<T, A>
    where
        T: Clone,
    {
        // N.B., see the `hack` module in this file for more details.
        hack::to_vec(self, alloc)
    }

    /// Converts `self` into a vector without clones or allocation.
    ///
    /// The resulting vector can be converted back into a box via
    /// `Vec<T>`'s `into_boxed_slice` method.
    ///
    /// # Examples
    ///
    /// ```
    /// let s: Box<[i32]> = Box::new([10, 40, 30]);
    /// let x = s.into_vec();
    /// // `s` cannot be used anymore because it has been converted into `x`.
    ///
    /// assert_eq!(x, vec![10, 40, 30]);
    /// ```
    #[rustc_allow_incoherent_impl]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    #[cfg_attr(not(test), rustc_diagnostic_item = "slice_into_vec")]
    pub fn into_vec<A: Allocator>(self: Box<Self, A>) -> Vec<T, A> {
        // N.B., see the `hack` module in this file for more details.
        hack::into_vec(self)
    }

    /// Creates a vector by copying a slice `n` times.
    ///
    /// # Panics
    ///
    /// This function will panic if the capacity would overflow.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// assert_eq!([1, 2].repeat(3), vec![1, 2, 1, 2, 1, 2]);
    /// ```
    ///
    /// A panic upon overflow:
    ///
    /// ```should_panic
    /// // this will panic at runtime
    /// b"0123456789abcdef".repeat(usize::MAX);
    /// ```
    #[rustc_allow_incoherent_impl]
    #[cfg(not(no_global_oom_handling))]
    #[stable(feature = "repeat_generic_slice", since = "1.40.0")]
    pub fn repeat(&self, n: usize) -> Vec<T>
    where
        T: Copy,
    {
        if n == 0 {
            return Vec::new();
        }

        // If `n` is larger than zero, it can be split as
        // `n = 2^expn + rem (2^expn > rem, expn >= 0, rem >= 0)`.
        // `2^expn` is the number represented by the leftmost '1' bit of `n`,
        // and `rem` is the remaining part of `n`.

        // Using `Vec` to access `set_len()`.
        let capacity = self.len().checked_mul(n).expect("capacity overflow");
        let mut buf = Vec::with_capacity(capacity);

        // `2^expn` repetition is done by doubling `buf` `expn`-times.
        buf.extend(self);
        {
            let mut m = n >> 1;
            // If `m > 0`, there are remaining bits up to the leftmost '1'.
            while m > 0 {
                // `buf.extend(buf)`:
                unsafe {
                    ptr::copy_nonoverlapping::<T>(
                        buf.as_ptr(),
                        (buf.as_mut_ptr()).add(buf.len()),
                        buf.len(),
                    );
                    // `buf` has capacity of `self.len() * n`.
                    let buf_len = buf.len();
                    buf.set_len(buf_len * 2);
                }

                m >>= 1;
            }
        }

        // `rem` (`= n - 2^expn`) repetition is done by copying
        // first `rem` repetitions from `buf` itself.
        let rem_len = capacity - buf.len(); // `self.len() * rem`
        if rem_len > 0 {
            // `buf.extend(buf[0 .. rem_len])`:
            unsafe {
                // This is non-overlapping since `2^expn > rem`.
                ptr::copy_nonoverlapping::<T>(
                    buf.as_ptr(),
                    (buf.as_mut_ptr()).add(buf.len()),
                    rem_len,
                );
                // `buf.len() + rem_len` equals to `buf.capacity()` (`= self.len() * n`).
                buf.set_len(capacity);
            }
        }
        buf
    }

    /// Flattens a slice of `T` into a single value `Self::Output`.
    ///
    /// # Examples
    ///
    /// ```
    /// assert_eq!(["hello", "world"].concat(), "helloworld");
    /// assert_eq!([[1, 2], [3, 4]].concat(), [1, 2, 3, 4]);
    /// ```
    #[rustc_allow_incoherent_impl]
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn concat<Item: ?Sized>(&self) -> <Self as Concat<Item>>::Output
    where
        Self: Concat<Item>,
    {
        Concat::concat(self)
    }

    /// Flattens a slice of `T` into a single value `Self::Output`, placing a
    /// given separator between each.
    ///
    /// # Examples
    ///
    /// ```
    /// assert_eq!(["hello", "world"].join(" "), "hello world");
    /// assert_eq!([[1, 2], [3, 4]].join(&0), [1, 2, 0, 3, 4]);
    /// assert_eq!([[1, 2], [3, 4]].join(&[0, 0][..]), [1, 2, 0, 0, 3, 4]);
    /// ```
    #[rustc_allow_incoherent_impl]
    #[stable(feature = "rename_connect_to_join", since = "1.3.0")]
    pub fn join<Separator>(&self, sep: Separator) -> <Self as Join<Separator>>::Output
    where
        Self: Join<Separator>,
    {
        Join::join(self, sep)
    }

    /// Flattens a slice of `T` into a single value `Self::Output`, placing a
    /// given separator between each.
    ///
    /// # Examples
    ///
    /// ```
    /// # #![allow(deprecated)]
    /// assert_eq!(["hello", "world"].connect(" "), "hello world");
    /// assert_eq!([[1, 2], [3, 4]].connect(&0), [1, 2, 0, 3, 4]);
    /// ```
    #[rustc_allow_incoherent_impl]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[deprecated(since = "1.3.0", note = "renamed to join", suggestion = "join")]
    pub fn connect<Separator>(&self, sep: Separator) -> <Self as Join<Separator>>::Output
    where
        Self: Join<Separator>,
    {
        Join::join(self, sep)
    }
}

#[cfg(not(test))]
impl [u8] {
    /// Returns a vector containing a copy of this slice where each byte
    /// is mapped to its ASCII upper case equivalent.
    ///
    /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
    /// but non-ASCII letters are unchanged.
    ///
    /// To uppercase the value in-place, use [`make_ascii_uppercase`].
    ///
    /// [`make_ascii_uppercase`]: slice::make_ascii_uppercase
    #[cfg(not(no_global_oom_handling))]
    #[rustc_allow_incoherent_impl]
    #[must_use = "this returns the uppercase bytes as a new Vec, \
                  without modifying the original"]
    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
    #[inline]
    pub fn to_ascii_uppercase(&self) -> Vec<u8> {
        let mut me = self.to_vec();
        me.make_ascii_uppercase();
        me
    }

    /// Returns a vector containing a copy of this slice where each byte
    /// is mapped to its ASCII lower case equivalent.
    ///
    /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
    /// but non-ASCII letters are unchanged.
    ///
    /// To lowercase the value in-place, use [`make_ascii_lowercase`].
    ///
    /// [`make_ascii_lowercase`]: slice::make_ascii_lowercase
    #[cfg(not(no_global_oom_handling))]
    #[rustc_allow_incoherent_impl]
    #[must_use = "this returns the lowercase bytes as a new Vec, \
                  without modifying the original"]
    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
    #[inline]
    pub fn to_ascii_lowercase(&self) -> Vec<u8> {
        let mut me = self.to_vec();
        me.make_ascii_lowercase();
        me
    }
}

////////////////////////////////////////////////////////////////////////////////
// Extension traits for slices over specific kinds of data
////////////////////////////////////////////////////////////////////////////////

/// Helper trait for [`[T]::concat`](slice::concat).
///
/// Note: the `Item` type parameter is not used in this trait,
/// but it allows impls to be more generic.
/// Without it, we get this error:
///
/// ```error
/// error[E0207]: the type parameter `T` is not constrained by the impl trait, self type, or predica
///    --> library/alloc/src/slice.rs:608:6
///     |
/// 608 | impl<T: Clone, V: Borrow<[T]>> Concat for [V] {
///     |      ^ unconstrained type parameter
/// ```
///
/// This is because there could exist `V` types with multiple `Borrow<[_]>` impls,
/// such that multiple `T` types would apply:
///
/// ```
/// # #[allow(dead_code)]
/// pub struct Foo(Vec<u32>, Vec<String>);
///
/// impl std::borrow::Borrow<[u32]> for Foo {
///     fn borrow(&self) -> &[u32] { &self.0 }
/// }
///
/// impl std::borrow::Borrow<[String]> for Foo {
///     fn borrow(&self) -> &[String] { &self.1 }
/// }
/// ```
#[unstable(feature = "slice_concat_trait", issue = "27747")]
pub trait Concat<Item: ?Sized> {
    #[unstable(feature = "slice_concat_trait", issue = "27747")]
    /// The resulting type after concatenation
    type Output;

    /// Implementation of [`[T]::concat`](slice::concat)
    #[unstable(feature = "slice_concat_trait", issue = "27747")]
    fn concat(slice: &Self) -> Self::Output;
}

/// Helper trait for [`[T]::join`](slice::join)
#[unstable(feature = "slice_concat_trait", issue = "27747")]
pub trait Join<Separator> {
    #[unstable(feature = "slice_concat_trait", issue = "27747")]
    /// The resulting type after concatenation
    type Output;

    /// Implementation of [`[T]::join`](slice::join)
    #[unstable(feature = "slice_concat_trait", issue = "27747")]
    fn join(slice: &Self, sep: Separator) -> Self::Output;
}

#[cfg(not(no_global_oom_handling))]
#[unstable(feature = "slice_concat_ext", issue = "27747")]
impl<T: Clone, V: Borrow<[T]>> Concat<T> for [V] {
    type Output = Vec<T>;

    fn concat(slice: &Self) -> Vec<T> {
        let size = slice.iter().map(|slice| slice.borrow().len()).sum();
        let mut result = Vec::with_capacity(size);
        for v in slice {
            result.extend_from_slice(v.borrow())
        }
        result
    }
}

#[cfg(not(no_global_oom_handling))]
#[unstable(feature = "slice_concat_ext", issue = "27747")]
impl<T: Clone, V: Borrow<[T]>> Join<&T> for [V] {
    type Output = Vec<T>;

    fn join(slice: &Self, sep: &T) -> Vec<T> {
        let mut iter = slice.iter();
        let first = match iter.next() {
            Some(first) => first,
            None => return vec![],
        };
        let size = slice.iter().map(|v| v.borrow().len()).sum::<usize>() + slice.len() - 1;
        let mut result = Vec::with_capacity(size);
        result.extend_from_slice(first.borrow());

        for v in iter {
            result.push(sep.clone());
            result.extend_from_slice(v.borrow())
        }
        result
    }
}

#[cfg(not(no_global_oom_handling))]
#[unstable(feature = "slice_concat_ext", issue = "27747")]
impl<T: Clone, V: Borrow<[T]>> Join<&[T]> for [V] {
    type Output = Vec<T>;

    fn join(slice: &Self, sep: &[T]) -> Vec<T> {
        let mut iter = slice.iter();
        let first = match iter.next() {
            Some(first) => first,
            None => return vec![],
        };
        let size =
            slice.iter().map(|v| v.borrow().len()).sum::<usize>() + sep.len() * (slice.len() - 1);
        let mut result = Vec::with_capacity(size);
        result.extend_from_slice(first.borrow());

        for v in iter {
            result.extend_from_slice(sep);
            result.extend_from_slice(v.borrow())
        }
        result
    }
}

////////////////////////////////////////////////////////////////////////////////
// Standard trait implementations for slices
////////////////////////////////////////////////////////////////////////////////

#[stable(feature = "rust1", since = "1.0.0")]
impl<T, A: Allocator> Borrow<[T]> for Vec<T, A> {
    fn borrow(&self) -> &[T] {
        &self[..]
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T, A: Allocator> BorrowMut<[T]> for Vec<T, A> {
    fn borrow_mut(&mut self) -> &mut [T] {
        &mut self[..]
    }
}

// Specializable trait for implementing ToOwned::clone_into. This is
// public in the crate and has the Allocator parameter so that
// vec::clone_from use it too.
#[cfg(not(no_global_oom_handling))]
pub(crate) trait SpecCloneIntoVec<T, A: Allocator> {
    fn clone_into(&self, target: &mut Vec<T, A>);
}

#[cfg(not(no_global_oom_handling))]
impl<T: Clone, A: Allocator> SpecCloneIntoVec<T, A> for [T] {
    default fn clone_into(&self, target: &mut Vec<T, A>) {
        // drop anything in target that will not be overwritten
        target.truncate(self.len());

        // target.len <= self.len due to the truncate above, so the
        // slices here are always in-bounds.
        let (init, tail) = self.split_at(target.len());

        // reuse the contained values' allocations/resources.
        target.clone_from_slice(init);
        target.extend_from_slice(tail);
    }
}

#[cfg(not(no_global_oom_handling))]
impl<T: Copy, A: Allocator> SpecCloneIntoVec<T, A> for [T] {
    fn clone_into(&self, target: &mut Vec<T, A>) {
        target.clear();
        target.extend_from_slice(self);
    }
}

#[cfg(not(no_global_oom_handling))]
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Clone> ToOwned for [T] {
    type Owned = Vec<T>;
    #[cfg(not(test))]
    fn to_owned(&self) -> Vec<T> {
        self.to_vec()
    }

    #[cfg(test)]
    fn to_owned(&self) -> Vec<T> {
        hack::to_vec(self, Global)
    }

    fn clone_into(&self, target: &mut Vec<T>) {
        SpecCloneIntoVec::clone_into(self, target);
    }
}

////////////////////////////////////////////////////////////////////////////////
// Sorting
////////////////////////////////////////////////////////////////////////////////

#[inline]
#[cfg(not(no_global_oom_handling))]
fn stable_sort<T, F>(v: &mut [T], mut is_less: F)
where
    F: FnMut(&T, &T) -> bool,
{
    sort::stable::sort::<T, F, Vec<T>>(v, &mut is_less);
}

#[cfg(not(no_global_oom_handling))]
#[unstable(issue = "none", feature = "std_internals")]
impl<T> sort::stable::BufGuard<T> for Vec<T> {
    fn with_capacity(capacity: usize) -> Self {
        Vec::with_capacity(capacity)
    }

    fn as_uninit_slice_mut(&mut self) -> &mut [MaybeUninit<T>] {
        self.spare_capacity_mut()
    }
}