std/io/
mod.rs

1//! Traits, helpers, and type definitions for core I/O functionality.
2//!
3//! The `std::io` module contains a number of common things you'll need
4//! when doing input and output. The most core part of this module is
5//! the [`Read`] and [`Write`] traits, which provide the
6//! most general interface for reading and writing input and output.
7//!
8//! ## Read and Write
9//!
10//! Because they are traits, [`Read`] and [`Write`] are implemented by a number
11//! of other types, and you can implement them for your types too. As such,
12//! you'll see a few different types of I/O throughout the documentation in
13//! this module: [`File`]s, [`TcpStream`]s, and sometimes even [`Vec<T>`]s. For
14//! example, [`Read`] adds a [`read`][`Read::read`] method, which we can use on
15//! [`File`]s:
16//!
17//! ```no_run
18//! use std::io;
19//! use std::io::prelude::*;
20//! use std::fs::File;
21//!
22//! fn main() -> io::Result<()> {
23//!     let mut f = File::open("foo.txt")?;
24//!     let mut buffer = [0; 10];
25//!
26//!     // read up to 10 bytes
27//!     let n = f.read(&mut buffer)?;
28//!
29//!     println!("The bytes: {:?}", &buffer[..n]);
30//!     Ok(())
31//! }
32//! ```
33//!
34//! [`Read`] and [`Write`] are so important, implementors of the two traits have a
35//! nickname: readers and writers. So you'll sometimes see 'a reader' instead
36//! of 'a type that implements the [`Read`] trait'. Much easier!
37//!
38//! ## Seek and BufRead
39//!
40//! Beyond that, there are two important traits that are provided: [`Seek`]
41//! and [`BufRead`]. Both of these build on top of a reader to control
42//! how the reading happens. [`Seek`] lets you control where the next byte is
43//! coming from:
44//!
45//! ```no_run
46//! use std::io;
47//! use std::io::prelude::*;
48//! use std::io::SeekFrom;
49//! use std::fs::File;
50//!
51//! fn main() -> io::Result<()> {
52//!     let mut f = File::open("foo.txt")?;
53//!     let mut buffer = [0; 10];
54//!
55//!     // skip to the last 10 bytes of the file
56//!     f.seek(SeekFrom::End(-10))?;
57//!
58//!     // read up to 10 bytes
59//!     let n = f.read(&mut buffer)?;
60//!
61//!     println!("The bytes: {:?}", &buffer[..n]);
62//!     Ok(())
63//! }
64//! ```
65//!
66//! [`BufRead`] uses an internal buffer to provide a number of other ways to read, but
67//! to show it off, we'll need to talk about buffers in general. Keep reading!
68//!
69//! ## BufReader and BufWriter
70//!
71//! Byte-based interfaces are unwieldy and can be inefficient, as we'd need to be
72//! making near-constant calls to the operating system. To help with this,
73//! `std::io` comes with two structs, [`BufReader`] and [`BufWriter`], which wrap
74//! readers and writers. The wrapper uses a buffer, reducing the number of
75//! calls and providing nicer methods for accessing exactly what you want.
76//!
77//! For example, [`BufReader`] works with the [`BufRead`] trait to add extra
78//! methods to any reader:
79//!
80//! ```no_run
81//! use std::io;
82//! use std::io::prelude::*;
83//! use std::io::BufReader;
84//! use std::fs::File;
85//!
86//! fn main() -> io::Result<()> {
87//!     let f = File::open("foo.txt")?;
88//!     let mut reader = BufReader::new(f);
89//!     let mut buffer = String::new();
90//!
91//!     // read a line into buffer
92//!     reader.read_line(&mut buffer)?;
93//!
94//!     println!("{buffer}");
95//!     Ok(())
96//! }
97//! ```
98//!
99//! [`BufWriter`] doesn't add any new ways of writing; it just buffers every call
100//! to [`write`][`Write::write`]:
101//!
102//! ```no_run
103//! use std::io;
104//! use std::io::prelude::*;
105//! use std::io::BufWriter;
106//! use std::fs::File;
107//!
108//! fn main() -> io::Result<()> {
109//!     let f = File::create("foo.txt")?;
110//!     {
111//!         let mut writer = BufWriter::new(f);
112//!
113//!         // write a byte to the buffer
114//!         writer.write(&[42])?;
115//!
116//!     } // the buffer is flushed once writer goes out of scope
117//!
118//!     Ok(())
119//! }
120//! ```
121//!
122//! ## Standard input and output
123//!
124//! A very common source of input is standard input:
125//!
126//! ```no_run
127//! use std::io;
128//!
129//! fn main() -> io::Result<()> {
130//!     let mut input = String::new();
131//!
132//!     io::stdin().read_line(&mut input)?;
133//!
134//!     println!("You typed: {}", input.trim());
135//!     Ok(())
136//! }
137//! ```
138//!
139//! Note that you cannot use the [`?` operator] in functions that do not return
140//! a [`Result<T, E>`][`Result`]. Instead, you can call [`.unwrap()`]
141//! or `match` on the return value to catch any possible errors:
142//!
143//! ```no_run
144//! use std::io;
145//!
146//! let mut input = String::new();
147//!
148//! io::stdin().read_line(&mut input).unwrap();
149//! ```
150//!
151//! And a very common source of output is standard output:
152//!
153//! ```no_run
154//! use std::io;
155//! use std::io::prelude::*;
156//!
157//! fn main() -> io::Result<()> {
158//!     io::stdout().write(&[42])?;
159//!     Ok(())
160//! }
161//! ```
162//!
163//! Of course, using [`io::stdout`] directly is less common than something like
164//! [`println!`].
165//!
166//! ## Iterator types
167//!
168//! A large number of the structures provided by `std::io` are for various
169//! ways of iterating over I/O. For example, [`Lines`] is used to split over
170//! lines:
171//!
172//! ```no_run
173//! use std::io;
174//! use std::io::prelude::*;
175//! use std::io::BufReader;
176//! use std::fs::File;
177//!
178//! fn main() -> io::Result<()> {
179//!     let f = File::open("foo.txt")?;
180//!     let reader = BufReader::new(f);
181//!
182//!     for line in reader.lines() {
183//!         println!("{}", line?);
184//!     }
185//!     Ok(())
186//! }
187//! ```
188//!
189//! ## Functions
190//!
191//! There are a number of [functions][functions-list] that offer access to various
192//! features. For example, we can use three of these functions to copy everything
193//! from standard input to standard output:
194//!
195//! ```no_run
196//! use std::io;
197//!
198//! fn main() -> io::Result<()> {
199//!     io::copy(&mut io::stdin(), &mut io::stdout())?;
200//!     Ok(())
201//! }
202//! ```
203//!
204//! [functions-list]: #functions-1
205//!
206//! ## io::Result
207//!
208//! Last, but certainly not least, is [`io::Result`]. This type is used
209//! as the return type of many `std::io` functions that can cause an error, and
210//! can be returned from your own functions as well. Many of the examples in this
211//! module use the [`?` operator]:
212//!
213//! ```
214//! use std::io;
215//!
216//! fn read_input() -> io::Result<()> {
217//!     let mut input = String::new();
218//!
219//!     io::stdin().read_line(&mut input)?;
220//!
221//!     println!("You typed: {}", input.trim());
222//!
223//!     Ok(())
224//! }
225//! ```
226//!
227//! The return type of `read_input()`, [`io::Result<()>`][`io::Result`], is a very
228//! common type for functions which don't have a 'real' return value, but do want to
229//! return errors if they happen. In this case, the only purpose of this function is
230//! to read the line and print it, so we use `()`.
231//!
232//! ## Platform-specific behavior
233//!
234//! Many I/O functions throughout the standard library are documented to indicate
235//! what various library or syscalls they are delegated to. This is done to help
236//! applications both understand what's happening under the hood as well as investigate
237//! any possibly unclear semantics. Note, however, that this is informative, not a binding
238//! contract. The implementation of many of these functions are subject to change over
239//! time and may call fewer or more syscalls/library functions.
240//!
241//! ## I/O Safety
242//!
243//! Rust follows an I/O safety discipline that is comparable to its memory safety discipline. This
244//! means that file descriptors can be *exclusively owned*. (Here, "file descriptor" is meant to
245//! subsume similar concepts that exist across a wide range of operating systems even if they might
246//! use a different name, such as "handle".) An exclusively owned file descriptor is one that no
247//! other code is allowed to access in any way, but the owner is allowed to access and even close
248//! it any time. A type that owns its file descriptor should usually close it in its `drop`
249//! function. Types like [`File`] own their file descriptor. Similarly, file descriptors
250//! can be *borrowed*, granting the temporary right to perform operations on this file descriptor.
251//! This indicates that the file descriptor will not be closed for the lifetime of the borrow, but
252//! it does *not* imply any right to close this file descriptor, since it will likely be owned by
253//! someone else.
254//!
255//! The platform-specific parts of the Rust standard library expose types that reflect these
256//! concepts, see [`os::unix`] and [`os::windows`].
257//!
258//! To uphold I/O safety, it is crucial that no code acts on file descriptors it does not own or
259//! borrow, and no code closes file descriptors it does not own. In other words, a safe function
260//! that takes a regular integer, treats it as a file descriptor, and acts on it, is *unsound*.
261//!
262//! Not upholding I/O safety and acting on a file descriptor without proof of ownership can lead to
263//! misbehavior and even Undefined Behavior in code that relies on ownership of its file
264//! descriptors: a closed file descriptor could be re-allocated, so the original owner of that file
265//! descriptor is now working on the wrong file. Some code might even rely on fully encapsulating
266//! its file descriptors with no operations being performed by any other part of the program.
267//!
268//! Note that exclusive ownership of a file descriptor does *not* imply exclusive ownership of the
269//! underlying kernel object that the file descriptor references (also called "open file description" on
270//! some operating systems). File descriptors basically work like [`Arc`]: when you receive an owned
271//! file descriptor, you cannot know whether there are any other file descriptors that reference the
272//! same kernel object. However, when you create a new kernel object, you know that you are holding
273//! the only reference to it. Just be careful not to lend it to anyone, since they can obtain a
274//! clone and then you can no longer know what the reference count is! In that sense, [`OwnedFd`] is
275//! like `Arc` and [`BorrowedFd<'a>`] is like `&'a Arc` (and similar for the Windows types). In
276//! particular, given a `BorrowedFd<'a>`, you are not allowed to close the file descriptor -- just
277//! like how, given a `&'a Arc`, you are not allowed to decrement the reference count and
278//! potentially free the underlying object. There is no equivalent to `Box` for file descriptors in
279//! the standard library (that would be a type that guarantees that the reference count is `1`),
280//! however, it would be possible for a crate to define a type with those semantics.
281//!
282//! [`File`]: crate::fs::File
283//! [`TcpStream`]: crate::net::TcpStream
284//! [`io::stdout`]: stdout
285//! [`io::Result`]: self::Result
286//! [`?` operator]: ../../book/appendix-02-operators.html
287//! [`Result`]: crate::result::Result
288//! [`.unwrap()`]: crate::result::Result::unwrap
289//! [`os::unix`]: ../os/unix/io/index.html
290//! [`os::windows`]: ../os/windows/io/index.html
291//! [`OwnedFd`]: ../os/fd/struct.OwnedFd.html
292//! [`BorrowedFd<'a>`]: ../os/fd/struct.BorrowedFd.html
293//! [`Arc`]: crate::sync::Arc
294
295#![stable(feature = "rust1", since = "1.0.0")]
296
297#[cfg(test)]
298mod tests;
299
300#[unstable(feature = "read_buf", issue = "78485")]
301pub use core::io::{BorrowedBuf, BorrowedCursor};
302use core::slice::memchr;
303
304#[stable(feature = "bufwriter_into_parts", since = "1.56.0")]
305pub use self::buffered::WriterPanicked;
306#[unstable(feature = "raw_os_error_ty", issue = "107792")]
307pub use self::error::RawOsError;
308#[doc(hidden)]
309#[unstable(feature = "io_const_error_internals", issue = "none")]
310pub use self::error::SimpleMessage;
311#[unstable(feature = "io_const_error", issue = "133448")]
312pub use self::error::const_error;
313#[stable(feature = "anonymous_pipe", since = "1.87.0")]
314pub use self::pipe::{PipeReader, PipeWriter, pipe};
315#[stable(feature = "is_terminal", since = "1.70.0")]
316pub use self::stdio::IsTerminal;
317pub(crate) use self::stdio::attempt_print_to_stderr;
318#[unstable(feature = "print_internals", issue = "none")]
319#[doc(hidden)]
320pub use self::stdio::{_eprint, _print};
321#[unstable(feature = "internal_output_capture", issue = "none")]
322#[doc(no_inline, hidden)]
323pub use self::stdio::{set_output_capture, try_set_output_capture};
324#[stable(feature = "rust1", since = "1.0.0")]
325pub use self::{
326    buffered::{BufReader, BufWriter, IntoInnerError, LineWriter},
327    copy::copy,
328    cursor::Cursor,
329    error::{Error, ErrorKind, Result},
330    stdio::{Stderr, StderrLock, Stdin, StdinLock, Stdout, StdoutLock, stderr, stdin, stdout},
331    util::{Empty, Repeat, Sink, empty, repeat, sink},
332};
333use crate::mem::{MaybeUninit, take};
334use crate::ops::{Deref, DerefMut};
335use crate::{cmp, fmt, slice, str, sys};
336
337mod buffered;
338pub(crate) mod copy;
339mod cursor;
340mod error;
341mod impls;
342mod pipe;
343pub mod prelude;
344mod stdio;
345mod util;
346
347const DEFAULT_BUF_SIZE: usize = crate::sys::io::DEFAULT_BUF_SIZE;
348
349pub(crate) use stdio::cleanup;
350
351struct Guard<'a> {
352    buf: &'a mut Vec<u8>,
353    len: usize,
354}
355
356impl Drop for Guard<'_> {
357    fn drop(&mut self) {
358        unsafe {
359            self.buf.set_len(self.len);
360        }
361    }
362}
363
364// Several `read_to_string` and `read_line` methods in the standard library will
365// append data into a `String` buffer, but we need to be pretty careful when
366// doing this. The implementation will just call `.as_mut_vec()` and then
367// delegate to a byte-oriented reading method, but we must ensure that when
368// returning we never leave `buf` in a state such that it contains invalid UTF-8
369// in its bounds.
370//
371// To this end, we use an RAII guard (to protect against panics) which updates
372// the length of the string when it is dropped. This guard initially truncates
373// the string to the prior length and only after we've validated that the
374// new contents are valid UTF-8 do we allow it to set a longer length.
375//
376// The unsafety in this function is twofold:
377//
378// 1. We're looking at the raw bytes of `buf`, so we take on the burden of UTF-8
379//    checks.
380// 2. We're passing a raw buffer to the function `f`, and it is expected that
381//    the function only *appends* bytes to the buffer. We'll get undefined
382//    behavior if existing bytes are overwritten to have non-UTF-8 data.
383pub(crate) unsafe fn append_to_string<F>(buf: &mut String, f: F) -> Result<usize>
384where
385    F: FnOnce(&mut Vec<u8>) -> Result<usize>,
386{
387    let mut g = Guard { len: buf.len(), buf: unsafe { buf.as_mut_vec() } };
388    let ret = f(g.buf);
389
390    // SAFETY: the caller promises to only append data to `buf`
391    let appended = unsafe { g.buf.get_unchecked(g.len..) };
392    if str::from_utf8(appended).is_err() {
393        ret.and_then(|_| Err(Error::INVALID_UTF8))
394    } else {
395        g.len = g.buf.len();
396        ret
397    }
398}
399
400// Here we must serve many masters with conflicting goals:
401//
402// - avoid allocating unless necessary
403// - avoid overallocating if we know the exact size (#89165)
404// - avoid passing large buffers to readers that always initialize the free capacity if they perform short reads (#23815, #23820)
405// - pass large buffers to readers that do not initialize the spare capacity. this can amortize per-call overheads
406// - and finally pass not-too-small and not-too-large buffers to Windows read APIs because they manage to suffer from both problems
407//   at the same time, i.e. small reads suffer from syscall overhead, all reads incur costs proportional to buffer size (#110650)
408//
409pub(crate) fn default_read_to_end<R: Read + ?Sized>(
410    r: &mut R,
411    buf: &mut Vec<u8>,
412    size_hint: Option<usize>,
413) -> Result<usize> {
414    let start_len = buf.len();
415    let start_cap = buf.capacity();
416    // Optionally limit the maximum bytes read on each iteration.
417    // This adds an arbitrary fiddle factor to allow for more data than we expect.
418    let mut max_read_size = size_hint
419        .and_then(|s| s.checked_add(1024)?.checked_next_multiple_of(DEFAULT_BUF_SIZE))
420        .unwrap_or(DEFAULT_BUF_SIZE);
421
422    const PROBE_SIZE: usize = 32;
423
424    fn small_probe_read<R: Read + ?Sized>(r: &mut R, buf: &mut Vec<u8>) -> Result<usize> {
425        let mut probe = [0u8; PROBE_SIZE];
426
427        loop {
428            match r.read(&mut probe) {
429                Ok(n) => {
430                    // there is no way to recover from allocation failure here
431                    // because the data has already been read.
432                    buf.extend_from_slice(&probe[..n]);
433                    return Ok(n);
434                }
435                Err(ref e) if e.is_interrupted() => continue,
436                Err(e) => return Err(e),
437            }
438        }
439    }
440
441    // avoid inflating empty/small vecs before we have determined that there's anything to read
442    if (size_hint.is_none() || size_hint == Some(0)) && buf.capacity() - buf.len() < PROBE_SIZE {
443        let read = small_probe_read(r, buf)?;
444
445        if read == 0 {
446            return Ok(0);
447        }
448    }
449
450    loop {
451        if buf.len() == buf.capacity() && buf.capacity() == start_cap {
452            // The buffer might be an exact fit. Let's read into a probe buffer
453            // and see if it returns `Ok(0)`. If so, we've avoided an
454            // unnecessary doubling of the capacity. But if not, append the
455            // probe buffer to the primary buffer and let its capacity grow.
456            let read = small_probe_read(r, buf)?;
457
458            if read == 0 {
459                return Ok(buf.len() - start_len);
460            }
461        }
462
463        if buf.len() == buf.capacity() {
464            // buf is full, need more space
465            buf.try_reserve(PROBE_SIZE)?;
466        }
467
468        let mut spare = buf.spare_capacity_mut();
469        let buf_len = cmp::min(spare.len(), max_read_size);
470        spare = &mut spare[..buf_len];
471        let mut read_buf: BorrowedBuf<'_> = spare.into();
472
473        let mut cursor = read_buf.unfilled();
474        let result = loop {
475            match r.read_buf(cursor.reborrow()) {
476                Err(e) if e.is_interrupted() => continue,
477                // Do not stop now in case of error: we might have received both data
478                // and an error
479                res => break res,
480            }
481        };
482
483        let bytes_read = cursor.written();
484
485        // SAFETY: BorrowedBuf's invariants mean this much memory is initialized.
486        unsafe {
487            let new_len = bytes_read + buf.len();
488            buf.set_len(new_len);
489        }
490
491        // Now that all data is pushed to the vector, we can fail without data loss
492        result?;
493
494        if bytes_read == 0 {
495            return Ok(buf.len() - start_len);
496        }
497
498        // Use heuristics to determine the max read size if no initial size hint was provided
499        if size_hint.is_none() {
500            // we have passed a larger buffer than previously and the
501            // reader still hasn't returned a short read
502            if buf_len >= max_read_size && bytes_read == buf_len {
503                max_read_size = max_read_size.saturating_mul(2);
504            }
505        }
506    }
507}
508
509pub(crate) fn default_read_to_string<R: Read + ?Sized>(
510    r: &mut R,
511    buf: &mut String,
512    size_hint: Option<usize>,
513) -> Result<usize> {
514    // Note that we do *not* call `r.read_to_end()` here. We are passing
515    // `&mut Vec<u8>` (the raw contents of `buf`) into the `read_to_end`
516    // method to fill it up. An arbitrary implementation could overwrite the
517    // entire contents of the vector, not just append to it (which is what
518    // we are expecting).
519    //
520    // To prevent extraneously checking the UTF-8-ness of the entire buffer
521    // we pass it to our hardcoded `default_read_to_end` implementation which
522    // we know is guaranteed to only read data into the end of the buffer.
523    unsafe { append_to_string(buf, |b| default_read_to_end(r, b, size_hint)) }
524}
525
526pub(crate) fn default_read_vectored<F>(read: F, bufs: &mut [IoSliceMut<'_>]) -> Result<usize>
527where
528    F: FnOnce(&mut [u8]) -> Result<usize>,
529{
530    let buf = bufs.iter_mut().find(|b| !b.is_empty()).map_or(&mut [][..], |b| &mut **b);
531    read(buf)
532}
533
534pub(crate) fn default_write_vectored<F>(write: F, bufs: &[IoSlice<'_>]) -> Result<usize>
535where
536    F: FnOnce(&[u8]) -> Result<usize>,
537{
538    let buf = bufs.iter().find(|b| !b.is_empty()).map_or(&[][..], |b| &**b);
539    write(buf)
540}
541
542pub(crate) fn default_read_exact<R: Read + ?Sized>(this: &mut R, mut buf: &mut [u8]) -> Result<()> {
543    while !buf.is_empty() {
544        match this.read(buf) {
545            Ok(0) => break,
546            Ok(n) => {
547                buf = &mut buf[n..];
548            }
549            Err(ref e) if e.is_interrupted() => {}
550            Err(e) => return Err(e),
551        }
552    }
553    if !buf.is_empty() { Err(Error::READ_EXACT_EOF) } else { Ok(()) }
554}
555
556pub(crate) fn default_read_buf<F>(read: F, mut cursor: BorrowedCursor<'_>) -> Result<()>
557where
558    F: FnOnce(&mut [u8]) -> Result<usize>,
559{
560    // SAFETY: We do not uninitialize any part of the buffer.
561    let n = read(unsafe { cursor.as_mut().write_filled(0) })?;
562    assert!(n <= cursor.capacity());
563    // SAFETY: We've initialized the entire buffer, and `read` can't make it uninitialized.
564    unsafe {
565        cursor.advance(n);
566    }
567    Ok(())
568}
569
570pub(crate) fn default_read_buf_exact<R: Read + ?Sized>(
571    this: &mut R,
572    mut cursor: BorrowedCursor<'_>,
573) -> Result<()> {
574    while cursor.capacity() > 0 {
575        let prev_written = cursor.written();
576        match this.read_buf(cursor.reborrow()) {
577            Ok(()) => {}
578            Err(e) if e.is_interrupted() => continue,
579            Err(e) => return Err(e),
580        }
581
582        if cursor.written() == prev_written {
583            return Err(Error::READ_EXACT_EOF);
584        }
585    }
586
587    Ok(())
588}
589
590pub(crate) fn default_write_fmt<W: Write + ?Sized>(
591    this: &mut W,
592    args: fmt::Arguments<'_>,
593) -> Result<()> {
594    // Create a shim which translates a `Write` to a `fmt::Write` and saves off
595    // I/O errors, instead of discarding them.
596    struct Adapter<'a, T: ?Sized + 'a> {
597        inner: &'a mut T,
598        error: Result<()>,
599    }
600
601    impl<T: Write + ?Sized> fmt::Write for Adapter<'_, T> {
602        fn write_str(&mut self, s: &str) -> fmt::Result {
603            match self.inner.write_all(s.as_bytes()) {
604                Ok(()) => Ok(()),
605                Err(e) => {
606                    self.error = Err(e);
607                    Err(fmt::Error)
608                }
609            }
610        }
611    }
612
613    let mut output = Adapter { inner: this, error: Ok(()) };
614    match fmt::write(&mut output, args) {
615        Ok(()) => Ok(()),
616        Err(..) => {
617            // Check whether the error came from the underlying `Write`.
618            if output.error.is_err() {
619                output.error
620            } else {
621                // This shouldn't happen: the underlying stream did not error,
622                // but somehow the formatter still errored?
623                panic!(
624                    "a formatting trait implementation returned an error when the underlying stream did not"
625                );
626            }
627        }
628    }
629}
630
631/// The `Read` trait allows for reading bytes from a source.
632///
633/// Implementors of the `Read` trait are called 'readers'.
634///
635/// Readers are defined by one required method, [`read()`]. Each call to [`read()`]
636/// will attempt to pull bytes from this source into a provided buffer. A
637/// number of other methods are implemented in terms of [`read()`], giving
638/// implementors a number of ways to read bytes while only needing to implement
639/// a single method.
640///
641/// Readers are intended to be composable with one another. Many implementors
642/// throughout [`std::io`] take and provide types which implement the `Read`
643/// trait.
644///
645/// Please note that each call to [`read()`] may involve a system call, and
646/// therefore, using something that implements [`BufRead`], such as
647/// [`BufReader`], will be more efficient.
648///
649/// Repeated calls to the reader use the same cursor, so for example
650/// calling `read_to_end` twice on a [`File`] will only return the file's
651/// contents once. It's recommended to first call `rewind()` in that case.
652///
653/// # Examples
654///
655/// [`File`]s implement `Read`:
656///
657/// ```no_run
658/// use std::io;
659/// use std::io::prelude::*;
660/// use std::fs::File;
661///
662/// fn main() -> io::Result<()> {
663///     let mut f = File::open("foo.txt")?;
664///     let mut buffer = [0; 10];
665///
666///     // read up to 10 bytes
667///     f.read(&mut buffer)?;
668///
669///     let mut buffer = Vec::new();
670///     // read the whole file
671///     f.read_to_end(&mut buffer)?;
672///
673///     // read into a String, so that you don't need to do the conversion.
674///     let mut buffer = String::new();
675///     f.read_to_string(&mut buffer)?;
676///
677///     // and more! See the other methods for more details.
678///     Ok(())
679/// }
680/// ```
681///
682/// Read from [`&str`] because [`&[u8]`][prim@slice] implements `Read`:
683///
684/// ```no_run
685/// # use std::io;
686/// use std::io::prelude::*;
687///
688/// fn main() -> io::Result<()> {
689///     let mut b = "This string will be read".as_bytes();
690///     let mut buffer = [0; 10];
691///
692///     // read up to 10 bytes
693///     b.read(&mut buffer)?;
694///
695///     // etc... it works exactly as a File does!
696///     Ok(())
697/// }
698/// ```
699///
700/// [`read()`]: Read::read
701/// [`&str`]: prim@str
702/// [`std::io`]: self
703/// [`File`]: crate::fs::File
704#[stable(feature = "rust1", since = "1.0.0")]
705#[doc(notable_trait)]
706#[cfg_attr(not(test), rustc_diagnostic_item = "IoRead")]
707pub trait Read {
708    /// Pull some bytes from this source into the specified buffer, returning
709    /// how many bytes were read.
710    ///
711    /// This function does not provide any guarantees about whether it blocks
712    /// waiting for data, but if an object needs to block for a read and cannot,
713    /// it will typically signal this via an [`Err`] return value.
714    ///
715    /// If the return value of this method is [`Ok(n)`], then implementations must
716    /// guarantee that `0 <= n <= buf.len()`. A nonzero `n` value indicates
717    /// that the buffer `buf` has been filled in with `n` bytes of data from this
718    /// source. If `n` is `0`, then it can indicate one of two scenarios:
719    ///
720    /// 1. This reader has reached its "end of file" and will likely no longer
721    ///    be able to produce bytes. Note that this does not mean that the
722    ///    reader will *always* no longer be able to produce bytes. As an example,
723    ///    on Linux, this method will call the `recv` syscall for a [`TcpStream`],
724    ///    where returning zero indicates the connection was shut down correctly. While
725    ///    for [`File`], it is possible to reach the end of file and get zero as result,
726    ///    but if more data is appended to the file, future calls to `read` will return
727    ///    more data.
728    /// 2. The buffer specified was 0 bytes in length.
729    ///
730    /// It is not an error if the returned value `n` is smaller than the buffer size,
731    /// even when the reader is not at the end of the stream yet.
732    /// This may happen for example because fewer bytes are actually available right now
733    /// (e. g. being close to end-of-file) or because read() was interrupted by a signal.
734    ///
735    /// As this trait is safe to implement, callers in unsafe code cannot rely on
736    /// `n <= buf.len()` for safety.
737    /// Extra care needs to be taken when `unsafe` functions are used to access the read bytes.
738    /// Callers have to ensure that no unchecked out-of-bounds accesses are possible even if
739    /// `n > buf.len()`.
740    ///
741    /// *Implementations* of this method can make no assumptions about the contents of `buf` when
742    /// this function is called. It is recommended that implementations only write data to `buf`
743    /// instead of reading its contents.
744    ///
745    /// Correspondingly, however, *callers* of this method in unsafe code must not assume
746    /// any guarantees about how the implementation uses `buf`. The trait is safe to implement,
747    /// so it is possible that the code that's supposed to write to the buffer might also read
748    /// from it. It is your responsibility to make sure that `buf` is initialized
749    /// before calling `read`. Calling `read` with an uninitialized `buf` (of the kind one
750    /// obtains via [`MaybeUninit<T>`]) is not safe, and can lead to undefined behavior.
751    ///
752    /// [`MaybeUninit<T>`]: crate::mem::MaybeUninit
753    ///
754    /// # Errors
755    ///
756    /// If this function encounters any form of I/O or other error, an error
757    /// variant will be returned. If an error is returned then it must be
758    /// guaranteed that no bytes were read.
759    ///
760    /// An error of the [`ErrorKind::Interrupted`] kind is non-fatal and the read
761    /// operation should be retried if there is nothing else to do.
762    ///
763    /// # Examples
764    ///
765    /// [`File`]s implement `Read`:
766    ///
767    /// [`Ok(n)`]: Ok
768    /// [`File`]: crate::fs::File
769    /// [`TcpStream`]: crate::net::TcpStream
770    ///
771    /// ```no_run
772    /// use std::io;
773    /// use std::io::prelude::*;
774    /// use std::fs::File;
775    ///
776    /// fn main() -> io::Result<()> {
777    ///     let mut f = File::open("foo.txt")?;
778    ///     let mut buffer = [0; 10];
779    ///
780    ///     // read up to 10 bytes
781    ///     let n = f.read(&mut buffer[..])?;
782    ///
783    ///     println!("The bytes: {:?}", &buffer[..n]);
784    ///     Ok(())
785    /// }
786    /// ```
787    #[stable(feature = "rust1", since = "1.0.0")]
788    fn read(&mut self, buf: &mut [u8]) -> Result<usize>;
789
790    /// Like `read`, except that it reads into a slice of buffers.
791    ///
792    /// Data is copied to fill each buffer in order, with the final buffer
793    /// written to possibly being only partially filled. This method must
794    /// behave equivalently to a single call to `read` with concatenated
795    /// buffers.
796    ///
797    /// The default implementation calls `read` with either the first nonempty
798    /// buffer provided, or an empty one if none exists.
799    #[stable(feature = "iovec", since = "1.36.0")]
800    fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> Result<usize> {
801        default_read_vectored(|b| self.read(b), bufs)
802    }
803
804    /// Determines if this `Read`er has an efficient `read_vectored`
805    /// implementation.
806    ///
807    /// If a `Read`er does not override the default `read_vectored`
808    /// implementation, code using it may want to avoid the method all together
809    /// and coalesce writes into a single buffer for higher performance.
810    ///
811    /// The default implementation returns `false`.
812    #[unstable(feature = "can_vector", issue = "69941")]
813    fn is_read_vectored(&self) -> bool {
814        false
815    }
816
817    /// Reads all bytes until EOF in this source, placing them into `buf`.
818    ///
819    /// All bytes read from this source will be appended to the specified buffer
820    /// `buf`. This function will continuously call [`read()`] to append more data to
821    /// `buf` until [`read()`] returns either [`Ok(0)`] or an error of
822    /// non-[`ErrorKind::Interrupted`] kind.
823    ///
824    /// If successful, this function will return the total number of bytes read.
825    ///
826    /// # Errors
827    ///
828    /// If this function encounters an error of the kind
829    /// [`ErrorKind::Interrupted`] then the error is ignored and the operation
830    /// will continue.
831    ///
832    /// If any other read error is encountered then this function immediately
833    /// returns. Any bytes which have already been read will be appended to
834    /// `buf`.
835    ///
836    /// # Examples
837    ///
838    /// [`File`]s implement `Read`:
839    ///
840    /// [`read()`]: Read::read
841    /// [`Ok(0)`]: Ok
842    /// [`File`]: crate::fs::File
843    ///
844    /// ```no_run
845    /// use std::io;
846    /// use std::io::prelude::*;
847    /// use std::fs::File;
848    ///
849    /// fn main() -> io::Result<()> {
850    ///     let mut f = File::open("foo.txt")?;
851    ///     let mut buffer = Vec::new();
852    ///
853    ///     // read the whole file
854    ///     f.read_to_end(&mut buffer)?;
855    ///     Ok(())
856    /// }
857    /// ```
858    ///
859    /// (See also the [`std::fs::read`] convenience function for reading from a
860    /// file.)
861    ///
862    /// [`std::fs::read`]: crate::fs::read
863    ///
864    /// ## Implementing `read_to_end`
865    ///
866    /// When implementing the `io::Read` trait, it is recommended to allocate
867    /// memory using [`Vec::try_reserve`]. However, this behavior is not guaranteed
868    /// by all implementations, and `read_to_end` may not handle out-of-memory
869    /// situations gracefully.
870    ///
871    /// ```no_run
872    /// # use std::io::{self, BufRead};
873    /// # struct Example { example_datasource: io::Empty } impl Example {
874    /// # fn get_some_data_for_the_example(&self) -> &'static [u8] { &[] }
875    /// fn read_to_end(&mut self, dest_vec: &mut Vec<u8>) -> io::Result<usize> {
876    ///     let initial_vec_len = dest_vec.len();
877    ///     loop {
878    ///         let src_buf = self.example_datasource.fill_buf()?;
879    ///         if src_buf.is_empty() {
880    ///             break;
881    ///         }
882    ///         dest_vec.try_reserve(src_buf.len())?;
883    ///         dest_vec.extend_from_slice(src_buf);
884    ///
885    ///         // Any irreversible side effects should happen after `try_reserve` succeeds,
886    ///         // to avoid losing data on allocation error.
887    ///         let read = src_buf.len();
888    ///         self.example_datasource.consume(read);
889    ///     }
890    ///     Ok(dest_vec.len() - initial_vec_len)
891    /// }
892    /// # }
893    /// ```
894    ///
895    /// # Usage Notes
896    ///
897    /// `read_to_end` attempts to read a source until EOF, but many sources are continuous streams
898    /// that do not send EOF. In these cases, `read_to_end` will block indefinitely. Standard input
899    /// is one such stream which may be finite if piped, but is typically continuous. For example,
900    /// `cat file | my-rust-program` will correctly terminate with an `EOF` upon closure of cat.
901    /// Reading user input or running programs that remain open indefinitely will never terminate
902    /// the stream with `EOF` (e.g. `yes | my-rust-program`).
903    ///
904    /// Using `.lines()` with a [`BufReader`] or using [`read`] can provide a better solution
905    ///
906    ///[`read`]: Read::read
907    ///
908    /// [`Vec::try_reserve`]: crate::vec::Vec::try_reserve
909    #[stable(feature = "rust1", since = "1.0.0")]
910    fn read_to_end(&mut self, buf: &mut Vec<u8>) -> Result<usize> {
911        default_read_to_end(self, buf, None)
912    }
913
914    /// Reads all bytes until EOF in this source, appending them to `buf`.
915    ///
916    /// If successful, this function returns the number of bytes which were read
917    /// and appended to `buf`.
918    ///
919    /// # Errors
920    ///
921    /// If the data in this stream is *not* valid UTF-8 then an error is
922    /// returned and `buf` is unchanged.
923    ///
924    /// See [`read_to_end`] for other error semantics.
925    ///
926    /// [`read_to_end`]: Read::read_to_end
927    ///
928    /// # Examples
929    ///
930    /// [`File`]s implement `Read`:
931    ///
932    /// [`File`]: crate::fs::File
933    ///
934    /// ```no_run
935    /// use std::io;
936    /// use std::io::prelude::*;
937    /// use std::fs::File;
938    ///
939    /// fn main() -> io::Result<()> {
940    ///     let mut f = File::open("foo.txt")?;
941    ///     let mut buffer = String::new();
942    ///
943    ///     f.read_to_string(&mut buffer)?;
944    ///     Ok(())
945    /// }
946    /// ```
947    ///
948    /// (See also the [`std::fs::read_to_string`] convenience function for
949    /// reading from a file.)
950    ///
951    /// # Usage Notes
952    ///
953    /// `read_to_string` attempts to read a source until EOF, but many sources are continuous streams
954    /// that do not send EOF. In these cases, `read_to_string` will block indefinitely. Standard input
955    /// is one such stream which may be finite if piped, but is typically continuous. For example,
956    /// `cat file | my-rust-program` will correctly terminate with an `EOF` upon closure of cat.
957    /// Reading user input or running programs that remain open indefinitely will never terminate
958    /// the stream with `EOF` (e.g. `yes | my-rust-program`).
959    ///
960    /// Using `.lines()` with a [`BufReader`] or using [`read`] can provide a better solution
961    ///
962    ///[`read`]: Read::read
963    ///
964    /// [`std::fs::read_to_string`]: crate::fs::read_to_string
965    #[stable(feature = "rust1", since = "1.0.0")]
966    fn read_to_string(&mut self, buf: &mut String) -> Result<usize> {
967        default_read_to_string(self, buf, None)
968    }
969
970    /// Reads the exact number of bytes required to fill `buf`.
971    ///
972    /// This function reads as many bytes as necessary to completely fill the
973    /// specified buffer `buf`.
974    ///
975    /// *Implementations* of this method can make no assumptions about the contents of `buf` when
976    /// this function is called. It is recommended that implementations only write data to `buf`
977    /// instead of reading its contents. The documentation on [`read`] has a more detailed
978    /// explanation of this subject.
979    ///
980    /// # Errors
981    ///
982    /// If this function encounters an error of the kind
983    /// [`ErrorKind::Interrupted`] then the error is ignored and the operation
984    /// will continue.
985    ///
986    /// If this function encounters an "end of file" before completely filling
987    /// the buffer, it returns an error of the kind [`ErrorKind::UnexpectedEof`].
988    /// The contents of `buf` are unspecified in this case.
989    ///
990    /// If any other read error is encountered then this function immediately
991    /// returns. The contents of `buf` are unspecified in this case.
992    ///
993    /// If this function returns an error, it is unspecified how many bytes it
994    /// has read, but it will never read more than would be necessary to
995    /// completely fill the buffer.
996    ///
997    /// # Examples
998    ///
999    /// [`File`]s implement `Read`:
1000    ///
1001    /// [`read`]: Read::read
1002    /// [`File`]: crate::fs::File
1003    ///
1004    /// ```no_run
1005    /// use std::io;
1006    /// use std::io::prelude::*;
1007    /// use std::fs::File;
1008    ///
1009    /// fn main() -> io::Result<()> {
1010    ///     let mut f = File::open("foo.txt")?;
1011    ///     let mut buffer = [0; 10];
1012    ///
1013    ///     // read exactly 10 bytes
1014    ///     f.read_exact(&mut buffer)?;
1015    ///     Ok(())
1016    /// }
1017    /// ```
1018    #[stable(feature = "read_exact", since = "1.6.0")]
1019    fn read_exact(&mut self, buf: &mut [u8]) -> Result<()> {
1020        default_read_exact(self, buf)
1021    }
1022
1023    /// Pull some bytes from this source into the specified buffer.
1024    ///
1025    /// This is equivalent to the [`read`](Read::read) method, except that it is passed a [`BorrowedCursor`] rather than `[u8]` to allow use
1026    /// with uninitialized buffers. The new data will be appended to any existing contents of `buf`.
1027    ///
1028    /// The default implementation delegates to `read`.
1029    ///
1030    /// This method makes it possible to return both data and an error but it is advised against.
1031    #[unstable(feature = "read_buf", issue = "78485")]
1032    fn read_buf(&mut self, buf: BorrowedCursor<'_>) -> Result<()> {
1033        default_read_buf(|b| self.read(b), buf)
1034    }
1035
1036    /// Reads the exact number of bytes required to fill `cursor`.
1037    ///
1038    /// This is similar to the [`read_exact`](Read::read_exact) method, except
1039    /// that it is passed a [`BorrowedCursor`] rather than `[u8]` to allow use
1040    /// with uninitialized buffers.
1041    ///
1042    /// # Errors
1043    ///
1044    /// If this function encounters an error of the kind [`ErrorKind::Interrupted`]
1045    /// then the error is ignored and the operation will continue.
1046    ///
1047    /// If this function encounters an "end of file" before completely filling
1048    /// the buffer, it returns an error of the kind [`ErrorKind::UnexpectedEof`].
1049    ///
1050    /// If any other read error is encountered then this function immediately
1051    /// returns.
1052    ///
1053    /// If this function returns an error, all bytes read will be appended to `cursor`.
1054    #[unstable(feature = "read_buf", issue = "78485")]
1055    fn read_buf_exact(&mut self, cursor: BorrowedCursor<'_>) -> Result<()> {
1056        default_read_buf_exact(self, cursor)
1057    }
1058
1059    /// Creates a "by reference" adapter for this instance of `Read`.
1060    ///
1061    /// The returned adapter also implements `Read` and will simply borrow this
1062    /// current reader.
1063    ///
1064    /// # Examples
1065    ///
1066    /// [`File`]s implement `Read`:
1067    ///
1068    /// [`File`]: crate::fs::File
1069    ///
1070    /// ```no_run
1071    /// use std::io;
1072    /// use std::io::Read;
1073    /// use std::fs::File;
1074    ///
1075    /// fn main() -> io::Result<()> {
1076    ///     let mut f = File::open("foo.txt")?;
1077    ///     let mut buffer = Vec::new();
1078    ///     let mut other_buffer = Vec::new();
1079    ///
1080    ///     {
1081    ///         let reference = f.by_ref();
1082    ///
1083    ///         // read at most 5 bytes
1084    ///         reference.take(5).read_to_end(&mut buffer)?;
1085    ///
1086    ///     } // drop our &mut reference so we can use f again
1087    ///
1088    ///     // original file still usable, read the rest
1089    ///     f.read_to_end(&mut other_buffer)?;
1090    ///     Ok(())
1091    /// }
1092    /// ```
1093    #[stable(feature = "rust1", since = "1.0.0")]
1094    fn by_ref(&mut self) -> &mut Self
1095    where
1096        Self: Sized,
1097    {
1098        self
1099    }
1100
1101    /// Transforms this `Read` instance to an [`Iterator`] over its bytes.
1102    ///
1103    /// The returned type implements [`Iterator`] where the [`Item`] is
1104    /// <code>[Result]<[u8], [io::Error]></code>.
1105    /// The yielded item is [`Ok`] if a byte was successfully read and [`Err`]
1106    /// otherwise. EOF is mapped to returning [`None`] from this iterator.
1107    ///
1108    /// The default implementation calls `read` for each byte,
1109    /// which can be very inefficient for data that's not in memory,
1110    /// such as [`File`]. Consider using a [`BufReader`] in such cases.
1111    ///
1112    /// # Examples
1113    ///
1114    /// [`File`]s implement `Read`:
1115    ///
1116    /// [`Item`]: Iterator::Item
1117    /// [`File`]: crate::fs::File "fs::File"
1118    /// [Result]: crate::result::Result "Result"
1119    /// [io::Error]: self::Error "io::Error"
1120    ///
1121    /// ```no_run
1122    /// use std::io;
1123    /// use std::io::prelude::*;
1124    /// use std::io::BufReader;
1125    /// use std::fs::File;
1126    ///
1127    /// fn main() -> io::Result<()> {
1128    ///     let f = BufReader::new(File::open("foo.txt")?);
1129    ///
1130    ///     for byte in f.bytes() {
1131    ///         println!("{}", byte?);
1132    ///     }
1133    ///     Ok(())
1134    /// }
1135    /// ```
1136    #[stable(feature = "rust1", since = "1.0.0")]
1137    fn bytes(self) -> Bytes<Self>
1138    where
1139        Self: Sized,
1140    {
1141        Bytes { inner: self }
1142    }
1143
1144    /// Creates an adapter which will chain this stream with another.
1145    ///
1146    /// The returned `Read` instance will first read all bytes from this object
1147    /// until EOF is encountered. Afterwards the output is equivalent to the
1148    /// output of `next`.
1149    ///
1150    /// # Examples
1151    ///
1152    /// [`File`]s implement `Read`:
1153    ///
1154    /// [`File`]: crate::fs::File
1155    ///
1156    /// ```no_run
1157    /// use std::io;
1158    /// use std::io::prelude::*;
1159    /// use std::fs::File;
1160    ///
1161    /// fn main() -> io::Result<()> {
1162    ///     let f1 = File::open("foo.txt")?;
1163    ///     let f2 = File::open("bar.txt")?;
1164    ///
1165    ///     let mut handle = f1.chain(f2);
1166    ///     let mut buffer = String::new();
1167    ///
1168    ///     // read the value into a String. We could use any Read method here,
1169    ///     // this is just one example.
1170    ///     handle.read_to_string(&mut buffer)?;
1171    ///     Ok(())
1172    /// }
1173    /// ```
1174    #[stable(feature = "rust1", since = "1.0.0")]
1175    fn chain<R: Read>(self, next: R) -> Chain<Self, R>
1176    where
1177        Self: Sized,
1178    {
1179        Chain { first: self, second: next, done_first: false }
1180    }
1181
1182    /// Creates an adapter which will read at most `limit` bytes from it.
1183    ///
1184    /// This function returns a new instance of `Read` which will read at most
1185    /// `limit` bytes, after which it will always return EOF ([`Ok(0)`]). Any
1186    /// read errors will not count towards the number of bytes read and future
1187    /// calls to [`read()`] may succeed.
1188    ///
1189    /// # Examples
1190    ///
1191    /// [`File`]s implement `Read`:
1192    ///
1193    /// [`File`]: crate::fs::File
1194    /// [`Ok(0)`]: Ok
1195    /// [`read()`]: Read::read
1196    ///
1197    /// ```no_run
1198    /// use std::io;
1199    /// use std::io::prelude::*;
1200    /// use std::fs::File;
1201    ///
1202    /// fn main() -> io::Result<()> {
1203    ///     let f = File::open("foo.txt")?;
1204    ///     let mut buffer = [0; 5];
1205    ///
1206    ///     // read at most five bytes
1207    ///     let mut handle = f.take(5);
1208    ///
1209    ///     handle.read(&mut buffer)?;
1210    ///     Ok(())
1211    /// }
1212    /// ```
1213    #[stable(feature = "rust1", since = "1.0.0")]
1214    fn take(self, limit: u64) -> Take<Self>
1215    where
1216        Self: Sized,
1217    {
1218        Take { inner: self, len: limit, limit }
1219    }
1220
1221    /// Read and return a fixed array of bytes from this source.
1222    ///
1223    /// This function uses an array sized based on a const generic size known at compile time. You
1224    /// can specify the size with turbofish (`reader.read_array::<8>()`), or let type inference
1225    /// determine the number of bytes needed based on how the return value gets used. For instance,
1226    /// this function works well with functions like [`u64::from_le_bytes`] to turn an array of
1227    /// bytes into an integer of the same size.
1228    ///
1229    /// Like `read_exact`, if this function encounters an "end of file" before reading the desired
1230    /// number of bytes, it returns an error of the kind [`ErrorKind::UnexpectedEof`].
1231    ///
1232    /// ```
1233    /// #![feature(read_array)]
1234    /// use std::io::Cursor;
1235    /// use std::io::prelude::*;
1236    ///
1237    /// fn main() -> std::io::Result<()> {
1238    ///     let mut buf = Cursor::new([1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2]);
1239    ///     let x = u64::from_le_bytes(buf.read_array()?);
1240    ///     let y = u32::from_be_bytes(buf.read_array()?);
1241    ///     let z = u16::from_be_bytes(buf.read_array()?);
1242    ///     assert_eq!(x, 0x807060504030201);
1243    ///     assert_eq!(y, 0x9080706);
1244    ///     assert_eq!(z, 0x504);
1245    ///     Ok(())
1246    /// }
1247    /// ```
1248    #[unstable(feature = "read_array", issue = "148848")]
1249    fn read_array<const N: usize>(&mut self) -> Result<[u8; N]>
1250    where
1251        Self: Sized,
1252    {
1253        let mut buf = [MaybeUninit::uninit(); N];
1254        let mut borrowed_buf = BorrowedBuf::from(buf.as_mut_slice());
1255        self.read_buf_exact(borrowed_buf.unfilled())?;
1256        // Guard against incorrect `read_buf_exact` implementations.
1257        assert_eq!(borrowed_buf.len(), N);
1258        Ok(unsafe { MaybeUninit::array_assume_init(buf) })
1259    }
1260}
1261
1262/// Reads all bytes from a [reader][Read] into a new [`String`].
1263///
1264/// This is a convenience function for [`Read::read_to_string`]. Using this
1265/// function avoids having to create a variable first and provides more type
1266/// safety since you can only get the buffer out if there were no errors. (If you
1267/// use [`Read::read_to_string`] you have to remember to check whether the read
1268/// succeeded because otherwise your buffer will be empty or only partially full.)
1269///
1270/// # Performance
1271///
1272/// The downside of this function's increased ease of use and type safety is
1273/// that it gives you less control over performance. For example, you can't
1274/// pre-allocate memory like you can using [`String::with_capacity`] and
1275/// [`Read::read_to_string`]. Also, you can't re-use the buffer if an error
1276/// occurs while reading.
1277///
1278/// In many cases, this function's performance will be adequate and the ease of use
1279/// and type safety tradeoffs will be worth it. However, there are cases where you
1280/// need more control over performance, and in those cases you should definitely use
1281/// [`Read::read_to_string`] directly.
1282///
1283/// Note that in some special cases, such as when reading files, this function will
1284/// pre-allocate memory based on the size of the input it is reading. In those
1285/// cases, the performance should be as good as if you had used
1286/// [`Read::read_to_string`] with a manually pre-allocated buffer.
1287///
1288/// # Errors
1289///
1290/// This function forces you to handle errors because the output (the `String`)
1291/// is wrapped in a [`Result`]. See [`Read::read_to_string`] for the errors
1292/// that can occur. If any error occurs, you will get an [`Err`], so you
1293/// don't have to worry about your buffer being empty or partially full.
1294///
1295/// # Examples
1296///
1297/// ```no_run
1298/// # use std::io;
1299/// fn main() -> io::Result<()> {
1300///     let stdin = io::read_to_string(io::stdin())?;
1301///     println!("Stdin was:");
1302///     println!("{stdin}");
1303///     Ok(())
1304/// }
1305/// ```
1306///
1307/// # Usage Notes
1308///
1309/// `read_to_string` attempts to read a source until EOF, but many sources are continuous streams
1310/// that do not send EOF. In these cases, `read_to_string` will block indefinitely. Standard input
1311/// is one such stream which may be finite if piped, but is typically continuous. For example,
1312/// `cat file | my-rust-program` will correctly terminate with an `EOF` upon closure of cat.
1313/// Reading user input or running programs that remain open indefinitely will never terminate
1314/// the stream with `EOF` (e.g. `yes | my-rust-program`).
1315///
1316/// Using `.lines()` with a [`BufReader`] or using [`read`] can provide a better solution
1317///
1318///[`read`]: Read::read
1319///
1320#[stable(feature = "io_read_to_string", since = "1.65.0")]
1321pub fn read_to_string<R: Read>(mut reader: R) -> Result<String> {
1322    let mut buf = String::new();
1323    reader.read_to_string(&mut buf)?;
1324    Ok(buf)
1325}
1326
1327/// A buffer type used with `Read::read_vectored`.
1328///
1329/// It is semantically a wrapper around a `&mut [u8]`, but is guaranteed to be
1330/// ABI compatible with the `iovec` type on Unix platforms and `WSABUF` on
1331/// Windows.
1332#[stable(feature = "iovec", since = "1.36.0")]
1333#[repr(transparent)]
1334pub struct IoSliceMut<'a>(sys::io::IoSliceMut<'a>);
1335
1336#[stable(feature = "iovec_send_sync", since = "1.44.0")]
1337unsafe impl<'a> Send for IoSliceMut<'a> {}
1338
1339#[stable(feature = "iovec_send_sync", since = "1.44.0")]
1340unsafe impl<'a> Sync for IoSliceMut<'a> {}
1341
1342#[stable(feature = "iovec", since = "1.36.0")]
1343impl<'a> fmt::Debug for IoSliceMut<'a> {
1344    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1345        fmt::Debug::fmt(self.0.as_slice(), fmt)
1346    }
1347}
1348
1349impl<'a> IoSliceMut<'a> {
1350    /// Creates a new `IoSliceMut` wrapping a byte slice.
1351    ///
1352    /// # Panics
1353    ///
1354    /// Panics on Windows if the slice is larger than 4GB.
1355    #[stable(feature = "iovec", since = "1.36.0")]
1356    #[inline]
1357    pub fn new(buf: &'a mut [u8]) -> IoSliceMut<'a> {
1358        IoSliceMut(sys::io::IoSliceMut::new(buf))
1359    }
1360
1361    /// Advance the internal cursor of the slice.
1362    ///
1363    /// Also see [`IoSliceMut::advance_slices`] to advance the cursors of
1364    /// multiple buffers.
1365    ///
1366    /// # Panics
1367    ///
1368    /// Panics when trying to advance beyond the end of the slice.
1369    ///
1370    /// # Examples
1371    ///
1372    /// ```
1373    /// use std::io::IoSliceMut;
1374    /// use std::ops::Deref;
1375    ///
1376    /// let mut data = [1; 8];
1377    /// let mut buf = IoSliceMut::new(&mut data);
1378    ///
1379    /// // Mark 3 bytes as read.
1380    /// buf.advance(3);
1381    /// assert_eq!(buf.deref(), [1; 5].as_ref());
1382    /// ```
1383    #[stable(feature = "io_slice_advance", since = "1.81.0")]
1384    #[inline]
1385    pub fn advance(&mut self, n: usize) {
1386        self.0.advance(n)
1387    }
1388
1389    /// Advance a slice of slices.
1390    ///
1391    /// Shrinks the slice to remove any `IoSliceMut`s that are fully advanced over.
1392    /// If the cursor ends up in the middle of an `IoSliceMut`, it is modified
1393    /// to start at that cursor.
1394    ///
1395    /// For example, if we have a slice of two 8-byte `IoSliceMut`s, and we advance by 10 bytes,
1396    /// the result will only include the second `IoSliceMut`, advanced by 2 bytes.
1397    ///
1398    /// # Panics
1399    ///
1400    /// Panics when trying to advance beyond the end of the slices.
1401    ///
1402    /// # Examples
1403    ///
1404    /// ```
1405    /// use std::io::IoSliceMut;
1406    /// use std::ops::Deref;
1407    ///
1408    /// let mut buf1 = [1; 8];
1409    /// let mut buf2 = [2; 16];
1410    /// let mut buf3 = [3; 8];
1411    /// let mut bufs = &mut [
1412    ///     IoSliceMut::new(&mut buf1),
1413    ///     IoSliceMut::new(&mut buf2),
1414    ///     IoSliceMut::new(&mut buf3),
1415    /// ][..];
1416    ///
1417    /// // Mark 10 bytes as read.
1418    /// IoSliceMut::advance_slices(&mut bufs, 10);
1419    /// assert_eq!(bufs[0].deref(), [2; 14].as_ref());
1420    /// assert_eq!(bufs[1].deref(), [3; 8].as_ref());
1421    /// ```
1422    #[stable(feature = "io_slice_advance", since = "1.81.0")]
1423    #[inline]
1424    pub fn advance_slices(bufs: &mut &mut [IoSliceMut<'a>], n: usize) {
1425        // Number of buffers to remove.
1426        let mut remove = 0;
1427        // Remaining length before reaching n.
1428        let mut left = n;
1429        for buf in bufs.iter() {
1430            if let Some(remainder) = left.checked_sub(buf.len()) {
1431                left = remainder;
1432                remove += 1;
1433            } else {
1434                break;
1435            }
1436        }
1437
1438        *bufs = &mut take(bufs)[remove..];
1439        if bufs.is_empty() {
1440            assert!(left == 0, "advancing io slices beyond their length");
1441        } else {
1442            bufs[0].advance(left);
1443        }
1444    }
1445
1446    /// Get the underlying bytes as a mutable slice with the original lifetime.
1447    ///
1448    /// # Examples
1449    ///
1450    /// ```
1451    /// #![feature(io_slice_as_bytes)]
1452    /// use std::io::IoSliceMut;
1453    ///
1454    /// let mut data = *b"abcdef";
1455    /// let io_slice = IoSliceMut::new(&mut data);
1456    /// io_slice.into_slice()[0] = b'A';
1457    ///
1458    /// assert_eq!(&data, b"Abcdef");
1459    /// ```
1460    #[unstable(feature = "io_slice_as_bytes", issue = "132818")]
1461    pub const fn into_slice(self) -> &'a mut [u8] {
1462        self.0.into_slice()
1463    }
1464}
1465
1466#[stable(feature = "iovec", since = "1.36.0")]
1467impl<'a> Deref for IoSliceMut<'a> {
1468    type Target = [u8];
1469
1470    #[inline]
1471    fn deref(&self) -> &[u8] {
1472        self.0.as_slice()
1473    }
1474}
1475
1476#[stable(feature = "iovec", since = "1.36.0")]
1477impl<'a> DerefMut for IoSliceMut<'a> {
1478    #[inline]
1479    fn deref_mut(&mut self) -> &mut [u8] {
1480        self.0.as_mut_slice()
1481    }
1482}
1483
1484/// A buffer type used with `Write::write_vectored`.
1485///
1486/// It is semantically a wrapper around a `&[u8]`, but is guaranteed to be
1487/// ABI compatible with the `iovec` type on Unix platforms and `WSABUF` on
1488/// Windows.
1489#[stable(feature = "iovec", since = "1.36.0")]
1490#[derive(Copy, Clone)]
1491#[repr(transparent)]
1492pub struct IoSlice<'a>(sys::io::IoSlice<'a>);
1493
1494#[stable(feature = "iovec_send_sync", since = "1.44.0")]
1495unsafe impl<'a> Send for IoSlice<'a> {}
1496
1497#[stable(feature = "iovec_send_sync", since = "1.44.0")]
1498unsafe impl<'a> Sync for IoSlice<'a> {}
1499
1500#[stable(feature = "iovec", since = "1.36.0")]
1501impl<'a> fmt::Debug for IoSlice<'a> {
1502    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1503        fmt::Debug::fmt(self.0.as_slice(), fmt)
1504    }
1505}
1506
1507impl<'a> IoSlice<'a> {
1508    /// Creates a new `IoSlice` wrapping a byte slice.
1509    ///
1510    /// # Panics
1511    ///
1512    /// Panics on Windows if the slice is larger than 4GB.
1513    #[stable(feature = "iovec", since = "1.36.0")]
1514    #[must_use]
1515    #[inline]
1516    pub fn new(buf: &'a [u8]) -> IoSlice<'a> {
1517        IoSlice(sys::io::IoSlice::new(buf))
1518    }
1519
1520    /// Advance the internal cursor of the slice.
1521    ///
1522    /// Also see [`IoSlice::advance_slices`] to advance the cursors of multiple
1523    /// buffers.
1524    ///
1525    /// # Panics
1526    ///
1527    /// Panics when trying to advance beyond the end of the slice.
1528    ///
1529    /// # Examples
1530    ///
1531    /// ```
1532    /// use std::io::IoSlice;
1533    /// use std::ops::Deref;
1534    ///
1535    /// let data = [1; 8];
1536    /// let mut buf = IoSlice::new(&data);
1537    ///
1538    /// // Mark 3 bytes as read.
1539    /// buf.advance(3);
1540    /// assert_eq!(buf.deref(), [1; 5].as_ref());
1541    /// ```
1542    #[stable(feature = "io_slice_advance", since = "1.81.0")]
1543    #[inline]
1544    pub fn advance(&mut self, n: usize) {
1545        self.0.advance(n)
1546    }
1547
1548    /// Advance a slice of slices.
1549    ///
1550    /// Shrinks the slice to remove any `IoSlice`s that are fully advanced over.
1551    /// If the cursor ends up in the middle of an `IoSlice`, it is modified
1552    /// to start at that cursor.
1553    ///
1554    /// For example, if we have a slice of two 8-byte `IoSlice`s, and we advance by 10 bytes,
1555    /// the result will only include the second `IoSlice`, advanced by 2 bytes.
1556    ///
1557    /// # Panics
1558    ///
1559    /// Panics when trying to advance beyond the end of the slices.
1560    ///
1561    /// # Examples
1562    ///
1563    /// ```
1564    /// use std::io::IoSlice;
1565    /// use std::ops::Deref;
1566    ///
1567    /// let buf1 = [1; 8];
1568    /// let buf2 = [2; 16];
1569    /// let buf3 = [3; 8];
1570    /// let mut bufs = &mut [
1571    ///     IoSlice::new(&buf1),
1572    ///     IoSlice::new(&buf2),
1573    ///     IoSlice::new(&buf3),
1574    /// ][..];
1575    ///
1576    /// // Mark 10 bytes as written.
1577    /// IoSlice::advance_slices(&mut bufs, 10);
1578    /// assert_eq!(bufs[0].deref(), [2; 14].as_ref());
1579    /// assert_eq!(bufs[1].deref(), [3; 8].as_ref());
1580    #[stable(feature = "io_slice_advance", since = "1.81.0")]
1581    #[inline]
1582    pub fn advance_slices(bufs: &mut &mut [IoSlice<'a>], n: usize) {
1583        // Number of buffers to remove.
1584        let mut remove = 0;
1585        // Remaining length before reaching n. This prevents overflow
1586        // that could happen if the length of slices in `bufs` were instead
1587        // accumulated. Those slice may be aliased and, if they are large
1588        // enough, their added length may overflow a `usize`.
1589        let mut left = n;
1590        for buf in bufs.iter() {
1591            if let Some(remainder) = left.checked_sub(buf.len()) {
1592                left = remainder;
1593                remove += 1;
1594            } else {
1595                break;
1596            }
1597        }
1598
1599        *bufs = &mut take(bufs)[remove..];
1600        if bufs.is_empty() {
1601            assert!(left == 0, "advancing io slices beyond their length");
1602        } else {
1603            bufs[0].advance(left);
1604        }
1605    }
1606
1607    /// Get the underlying bytes as a slice with the original lifetime.
1608    ///
1609    /// This doesn't borrow from `self`, so is less restrictive than calling
1610    /// `.deref()`, which does.
1611    ///
1612    /// # Examples
1613    ///
1614    /// ```
1615    /// #![feature(io_slice_as_bytes)]
1616    /// use std::io::IoSlice;
1617    ///
1618    /// let data = b"abcdef";
1619    ///
1620    /// let mut io_slice = IoSlice::new(data);
1621    /// let tail = &io_slice.as_slice()[3..];
1622    ///
1623    /// // This works because `tail` doesn't borrow `io_slice`
1624    /// io_slice = IoSlice::new(tail);
1625    ///
1626    /// assert_eq!(io_slice.as_slice(), b"def");
1627    /// ```
1628    #[unstable(feature = "io_slice_as_bytes", issue = "132818")]
1629    pub const fn as_slice(self) -> &'a [u8] {
1630        self.0.as_slice()
1631    }
1632}
1633
1634#[stable(feature = "iovec", since = "1.36.0")]
1635impl<'a> Deref for IoSlice<'a> {
1636    type Target = [u8];
1637
1638    #[inline]
1639    fn deref(&self) -> &[u8] {
1640        self.0.as_slice()
1641    }
1642}
1643
1644/// A trait for objects which are byte-oriented sinks.
1645///
1646/// Implementors of the `Write` trait are sometimes called 'writers'.
1647///
1648/// Writers are defined by two required methods, [`write`] and [`flush`]:
1649///
1650/// * The [`write`] method will attempt to write some data into the object,
1651///   returning how many bytes were successfully written.
1652///
1653/// * The [`flush`] method is useful for adapters and explicit buffers
1654///   themselves for ensuring that all buffered data has been pushed out to the
1655///   'true sink'.
1656///
1657/// Writers are intended to be composable with one another. Many implementors
1658/// throughout [`std::io`] take and provide types which implement the `Write`
1659/// trait.
1660///
1661/// [`write`]: Write::write
1662/// [`flush`]: Write::flush
1663/// [`std::io`]: self
1664///
1665/// # Examples
1666///
1667/// ```no_run
1668/// use std::io::prelude::*;
1669/// use std::fs::File;
1670///
1671/// fn main() -> std::io::Result<()> {
1672///     let data = b"some bytes";
1673///
1674///     let mut pos = 0;
1675///     let mut buffer = File::create("foo.txt")?;
1676///
1677///     while pos < data.len() {
1678///         let bytes_written = buffer.write(&data[pos..])?;
1679///         pos += bytes_written;
1680///     }
1681///     Ok(())
1682/// }
1683/// ```
1684///
1685/// The trait also provides convenience methods like [`write_all`], which calls
1686/// `write` in a loop until its entire input has been written.
1687///
1688/// [`write_all`]: Write::write_all
1689#[stable(feature = "rust1", since = "1.0.0")]
1690#[doc(notable_trait)]
1691#[cfg_attr(not(test), rustc_diagnostic_item = "IoWrite")]
1692pub trait Write {
1693    /// Writes a buffer into this writer, returning how many bytes were written.
1694    ///
1695    /// This function will attempt to write the entire contents of `buf`, but
1696    /// the entire write might not succeed, or the write may also generate an
1697    /// error. Typically, a call to `write` represents one attempt to write to
1698    /// any wrapped object.
1699    ///
1700    /// Calls to `write` are not guaranteed to block waiting for data to be
1701    /// written, and a write which would otherwise block can be indicated through
1702    /// an [`Err`] variant.
1703    ///
1704    /// If this method consumed `n > 0` bytes of `buf` it must return [`Ok(n)`].
1705    /// If the return value is `Ok(n)` then `n` must satisfy `n <= buf.len()`.
1706    /// A return value of `Ok(0)` typically means that the underlying object is
1707    /// no longer able to accept bytes and will likely not be able to in the
1708    /// future as well, or that the buffer provided is empty.
1709    ///
1710    /// # Errors
1711    ///
1712    /// Each call to `write` may generate an I/O error indicating that the
1713    /// operation could not be completed. If an error is returned then no bytes
1714    /// in the buffer were written to this writer.
1715    ///
1716    /// It is **not** considered an error if the entire buffer could not be
1717    /// written to this writer.
1718    ///
1719    /// An error of the [`ErrorKind::Interrupted`] kind is non-fatal and the
1720    /// write operation should be retried if there is nothing else to do.
1721    ///
1722    /// # Examples
1723    ///
1724    /// ```no_run
1725    /// use std::io::prelude::*;
1726    /// use std::fs::File;
1727    ///
1728    /// fn main() -> std::io::Result<()> {
1729    ///     let mut buffer = File::create("foo.txt")?;
1730    ///
1731    ///     // Writes some prefix of the byte string, not necessarily all of it.
1732    ///     buffer.write(b"some bytes")?;
1733    ///     Ok(())
1734    /// }
1735    /// ```
1736    ///
1737    /// [`Ok(n)`]: Ok
1738    #[stable(feature = "rust1", since = "1.0.0")]
1739    fn write(&mut self, buf: &[u8]) -> Result<usize>;
1740
1741    /// Like [`write`], except that it writes from a slice of buffers.
1742    ///
1743    /// Data is copied from each buffer in order, with the final buffer
1744    /// read from possibly being only partially consumed. This method must
1745    /// behave as a call to [`write`] with the buffers concatenated would.
1746    ///
1747    /// The default implementation calls [`write`] with either the first nonempty
1748    /// buffer provided, or an empty one if none exists.
1749    ///
1750    /// # Examples
1751    ///
1752    /// ```no_run
1753    /// use std::io::IoSlice;
1754    /// use std::io::prelude::*;
1755    /// use std::fs::File;
1756    ///
1757    /// fn main() -> std::io::Result<()> {
1758    ///     let data1 = [1; 8];
1759    ///     let data2 = [15; 8];
1760    ///     let io_slice1 = IoSlice::new(&data1);
1761    ///     let io_slice2 = IoSlice::new(&data2);
1762    ///
1763    ///     let mut buffer = File::create("foo.txt")?;
1764    ///
1765    ///     // Writes some prefix of the byte string, not necessarily all of it.
1766    ///     buffer.write_vectored(&[io_slice1, io_slice2])?;
1767    ///     Ok(())
1768    /// }
1769    /// ```
1770    ///
1771    /// [`write`]: Write::write
1772    #[stable(feature = "iovec", since = "1.36.0")]
1773    fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> Result<usize> {
1774        default_write_vectored(|b| self.write(b), bufs)
1775    }
1776
1777    /// Determines if this `Write`r has an efficient [`write_vectored`]
1778    /// implementation.
1779    ///
1780    /// If a `Write`r does not override the default [`write_vectored`]
1781    /// implementation, code using it may want to avoid the method all together
1782    /// and coalesce writes into a single buffer for higher performance.
1783    ///
1784    /// The default implementation returns `false`.
1785    ///
1786    /// [`write_vectored`]: Write::write_vectored
1787    #[unstable(feature = "can_vector", issue = "69941")]
1788    fn is_write_vectored(&self) -> bool {
1789        false
1790    }
1791
1792    /// Flushes this output stream, ensuring that all intermediately buffered
1793    /// contents reach their destination.
1794    ///
1795    /// # Errors
1796    ///
1797    /// It is considered an error if not all bytes could be written due to
1798    /// I/O errors or EOF being reached.
1799    ///
1800    /// # Examples
1801    ///
1802    /// ```no_run
1803    /// use std::io::prelude::*;
1804    /// use std::io::BufWriter;
1805    /// use std::fs::File;
1806    ///
1807    /// fn main() -> std::io::Result<()> {
1808    ///     let mut buffer = BufWriter::new(File::create("foo.txt")?);
1809    ///
1810    ///     buffer.write_all(b"some bytes")?;
1811    ///     buffer.flush()?;
1812    ///     Ok(())
1813    /// }
1814    /// ```
1815    #[stable(feature = "rust1", since = "1.0.0")]
1816    fn flush(&mut self) -> Result<()>;
1817
1818    /// Attempts to write an entire buffer into this writer.
1819    ///
1820    /// This method will continuously call [`write`] until there is no more data
1821    /// to be written or an error of non-[`ErrorKind::Interrupted`] kind is
1822    /// returned. This method will not return until the entire buffer has been
1823    /// successfully written or such an error occurs. The first error that is
1824    /// not of [`ErrorKind::Interrupted`] kind generated from this method will be
1825    /// returned.
1826    ///
1827    /// If the buffer contains no data, this will never call [`write`].
1828    ///
1829    /// # Errors
1830    ///
1831    /// This function will return the first error of
1832    /// non-[`ErrorKind::Interrupted`] kind that [`write`] returns.
1833    ///
1834    /// [`write`]: Write::write
1835    ///
1836    /// # Examples
1837    ///
1838    /// ```no_run
1839    /// use std::io::prelude::*;
1840    /// use std::fs::File;
1841    ///
1842    /// fn main() -> std::io::Result<()> {
1843    ///     let mut buffer = File::create("foo.txt")?;
1844    ///
1845    ///     buffer.write_all(b"some bytes")?;
1846    ///     Ok(())
1847    /// }
1848    /// ```
1849    #[stable(feature = "rust1", since = "1.0.0")]
1850    fn write_all(&mut self, mut buf: &[u8]) -> Result<()> {
1851        while !buf.is_empty() {
1852            match self.write(buf) {
1853                Ok(0) => {
1854                    return Err(Error::WRITE_ALL_EOF);
1855                }
1856                Ok(n) => buf = &buf[n..],
1857                Err(ref e) if e.is_interrupted() => {}
1858                Err(e) => return Err(e),
1859            }
1860        }
1861        Ok(())
1862    }
1863
1864    /// Attempts to write multiple buffers into this writer.
1865    ///
1866    /// This method will continuously call [`write_vectored`] until there is no
1867    /// more data to be written or an error of non-[`ErrorKind::Interrupted`]
1868    /// kind is returned. This method will not return until all buffers have
1869    /// been successfully written or such an error occurs. The first error that
1870    /// is not of [`ErrorKind::Interrupted`] kind generated from this method
1871    /// will be returned.
1872    ///
1873    /// If the buffer contains no data, this will never call [`write_vectored`].
1874    ///
1875    /// # Notes
1876    ///
1877    /// Unlike [`write_vectored`], this takes a *mutable* reference to
1878    /// a slice of [`IoSlice`]s, not an immutable one. That's because we need to
1879    /// modify the slice to keep track of the bytes already written.
1880    ///
1881    /// Once this function returns, the contents of `bufs` are unspecified, as
1882    /// this depends on how many calls to [`write_vectored`] were necessary. It is
1883    /// best to understand this function as taking ownership of `bufs` and to
1884    /// not use `bufs` afterwards. The underlying buffers, to which the
1885    /// [`IoSlice`]s point (but not the [`IoSlice`]s themselves), are unchanged and
1886    /// can be reused.
1887    ///
1888    /// [`write_vectored`]: Write::write_vectored
1889    ///
1890    /// # Examples
1891    ///
1892    /// ```
1893    /// #![feature(write_all_vectored)]
1894    /// # fn main() -> std::io::Result<()> {
1895    ///
1896    /// use std::io::{Write, IoSlice};
1897    ///
1898    /// let mut writer = Vec::new();
1899    /// let bufs = &mut [
1900    ///     IoSlice::new(&[1]),
1901    ///     IoSlice::new(&[2, 3]),
1902    ///     IoSlice::new(&[4, 5, 6]),
1903    /// ];
1904    ///
1905    /// writer.write_all_vectored(bufs)?;
1906    /// // Note: the contents of `bufs` is now undefined, see the Notes section.
1907    ///
1908    /// assert_eq!(writer, &[1, 2, 3, 4, 5, 6]);
1909    /// # Ok(()) }
1910    /// ```
1911    #[unstable(feature = "write_all_vectored", issue = "70436")]
1912    fn write_all_vectored(&mut self, mut bufs: &mut [IoSlice<'_>]) -> Result<()> {
1913        // Guarantee that bufs is empty if it contains no data,
1914        // to avoid calling write_vectored if there is no data to be written.
1915        IoSlice::advance_slices(&mut bufs, 0);
1916        while !bufs.is_empty() {
1917            match self.write_vectored(bufs) {
1918                Ok(0) => {
1919                    return Err(Error::WRITE_ALL_EOF);
1920                }
1921                Ok(n) => IoSlice::advance_slices(&mut bufs, n),
1922                Err(ref e) if e.is_interrupted() => {}
1923                Err(e) => return Err(e),
1924            }
1925        }
1926        Ok(())
1927    }
1928
1929    /// Writes a formatted string into this writer, returning any error
1930    /// encountered.
1931    ///
1932    /// This method is primarily used to interface with the
1933    /// [`format_args!()`] macro, and it is rare that this should
1934    /// explicitly be called. The [`write!()`] macro should be favored to
1935    /// invoke this method instead.
1936    ///
1937    /// This function internally uses the [`write_all`] method on
1938    /// this trait and hence will continuously write data so long as no errors
1939    /// are received. This also means that partial writes are not indicated in
1940    /// this signature.
1941    ///
1942    /// [`write_all`]: Write::write_all
1943    ///
1944    /// # Errors
1945    ///
1946    /// This function will return any I/O error reported while formatting.
1947    ///
1948    /// # Examples
1949    ///
1950    /// ```no_run
1951    /// use std::io::prelude::*;
1952    /// use std::fs::File;
1953    ///
1954    /// fn main() -> std::io::Result<()> {
1955    ///     let mut buffer = File::create("foo.txt")?;
1956    ///
1957    ///     // this call
1958    ///     write!(buffer, "{:.*}", 2, 1.234567)?;
1959    ///     // turns into this:
1960    ///     buffer.write_fmt(format_args!("{:.*}", 2, 1.234567))?;
1961    ///     Ok(())
1962    /// }
1963    /// ```
1964    #[stable(feature = "rust1", since = "1.0.0")]
1965    fn write_fmt(&mut self, args: fmt::Arguments<'_>) -> Result<()> {
1966        if let Some(s) = args.as_statically_known_str() {
1967            self.write_all(s.as_bytes())
1968        } else {
1969            default_write_fmt(self, args)
1970        }
1971    }
1972
1973    /// Creates a "by reference" adapter for this instance of `Write`.
1974    ///
1975    /// The returned adapter also implements `Write` and will simply borrow this
1976    /// current writer.
1977    ///
1978    /// # Examples
1979    ///
1980    /// ```no_run
1981    /// use std::io::Write;
1982    /// use std::fs::File;
1983    ///
1984    /// fn main() -> std::io::Result<()> {
1985    ///     let mut buffer = File::create("foo.txt")?;
1986    ///
1987    ///     let reference = buffer.by_ref();
1988    ///
1989    ///     // we can use reference just like our original buffer
1990    ///     reference.write_all(b"some bytes")?;
1991    ///     Ok(())
1992    /// }
1993    /// ```
1994    #[stable(feature = "rust1", since = "1.0.0")]
1995    fn by_ref(&mut self) -> &mut Self
1996    where
1997        Self: Sized,
1998    {
1999        self
2000    }
2001}
2002
2003/// The `Seek` trait provides a cursor which can be moved within a stream of
2004/// bytes.
2005///
2006/// The stream typically has a fixed size, allowing seeking relative to either
2007/// end or the current offset.
2008///
2009/// # Examples
2010///
2011/// [`File`]s implement `Seek`:
2012///
2013/// [`File`]: crate::fs::File
2014///
2015/// ```no_run
2016/// use std::io;
2017/// use std::io::prelude::*;
2018/// use std::fs::File;
2019/// use std::io::SeekFrom;
2020///
2021/// fn main() -> io::Result<()> {
2022///     let mut f = File::open("foo.txt")?;
2023///
2024///     // move the cursor 42 bytes from the start of the file
2025///     f.seek(SeekFrom::Start(42))?;
2026///     Ok(())
2027/// }
2028/// ```
2029#[stable(feature = "rust1", since = "1.0.0")]
2030#[cfg_attr(not(test), rustc_diagnostic_item = "IoSeek")]
2031pub trait Seek {
2032    /// Seek to an offset, in bytes, in a stream.
2033    ///
2034    /// A seek beyond the end of a stream is allowed, but behavior is defined
2035    /// by the implementation.
2036    ///
2037    /// If the seek operation completed successfully,
2038    /// this method returns the new position from the start of the stream.
2039    /// That position can be used later with [`SeekFrom::Start`].
2040    ///
2041    /// # Errors
2042    ///
2043    /// Seeking can fail, for example because it might involve flushing a buffer.
2044    ///
2045    /// Seeking to a negative offset is considered an error.
2046    #[stable(feature = "rust1", since = "1.0.0")]
2047    fn seek(&mut self, pos: SeekFrom) -> Result<u64>;
2048
2049    /// Rewind to the beginning of a stream.
2050    ///
2051    /// This is a convenience method, equivalent to `seek(SeekFrom::Start(0))`.
2052    ///
2053    /// # Errors
2054    ///
2055    /// Rewinding can fail, for example because it might involve flushing a buffer.
2056    ///
2057    /// # Example
2058    ///
2059    /// ```no_run
2060    /// use std::io::{Read, Seek, Write};
2061    /// use std::fs::OpenOptions;
2062    ///
2063    /// let mut f = OpenOptions::new()
2064    ///     .write(true)
2065    ///     .read(true)
2066    ///     .create(true)
2067    ///     .open("foo.txt")?;
2068    ///
2069    /// let hello = "Hello!\n";
2070    /// write!(f, "{hello}")?;
2071    /// f.rewind()?;
2072    ///
2073    /// let mut buf = String::new();
2074    /// f.read_to_string(&mut buf)?;
2075    /// assert_eq!(&buf, hello);
2076    /// # std::io::Result::Ok(())
2077    /// ```
2078    #[stable(feature = "seek_rewind", since = "1.55.0")]
2079    fn rewind(&mut self) -> Result<()> {
2080        self.seek(SeekFrom::Start(0))?;
2081        Ok(())
2082    }
2083
2084    /// Returns the length of this stream (in bytes).
2085    ///
2086    /// The default implementation uses up to three seek operations. If this
2087    /// method returns successfully, the seek position is unchanged (i.e. the
2088    /// position before calling this method is the same as afterwards).
2089    /// However, if this method returns an error, the seek position is
2090    /// unspecified.
2091    ///
2092    /// If you need to obtain the length of *many* streams and you don't care
2093    /// about the seek position afterwards, you can reduce the number of seek
2094    /// operations by simply calling `seek(SeekFrom::End(0))` and using its
2095    /// return value (it is also the stream length).
2096    ///
2097    /// Note that length of a stream can change over time (for example, when
2098    /// data is appended to a file). So calling this method multiple times does
2099    /// not necessarily return the same length each time.
2100    ///
2101    /// # Example
2102    ///
2103    /// ```no_run
2104    /// #![feature(seek_stream_len)]
2105    /// use std::{
2106    ///     io::{self, Seek},
2107    ///     fs::File,
2108    /// };
2109    ///
2110    /// fn main() -> io::Result<()> {
2111    ///     let mut f = File::open("foo.txt")?;
2112    ///
2113    ///     let len = f.stream_len()?;
2114    ///     println!("The file is currently {len} bytes long");
2115    ///     Ok(())
2116    /// }
2117    /// ```
2118    #[unstable(feature = "seek_stream_len", issue = "59359")]
2119    fn stream_len(&mut self) -> Result<u64> {
2120        stream_len_default(self)
2121    }
2122
2123    /// Returns the current seek position from the start of the stream.
2124    ///
2125    /// This is equivalent to `self.seek(SeekFrom::Current(0))`.
2126    ///
2127    /// # Example
2128    ///
2129    /// ```no_run
2130    /// use std::{
2131    ///     io::{self, BufRead, BufReader, Seek},
2132    ///     fs::File,
2133    /// };
2134    ///
2135    /// fn main() -> io::Result<()> {
2136    ///     let mut f = BufReader::new(File::open("foo.txt")?);
2137    ///
2138    ///     let before = f.stream_position()?;
2139    ///     f.read_line(&mut String::new())?;
2140    ///     let after = f.stream_position()?;
2141    ///
2142    ///     println!("The first line was {} bytes long", after - before);
2143    ///     Ok(())
2144    /// }
2145    /// ```
2146    #[stable(feature = "seek_convenience", since = "1.51.0")]
2147    fn stream_position(&mut self) -> Result<u64> {
2148        self.seek(SeekFrom::Current(0))
2149    }
2150
2151    /// Seeks relative to the current position.
2152    ///
2153    /// This is equivalent to `self.seek(SeekFrom::Current(offset))` but
2154    /// doesn't return the new position which can allow some implementations
2155    /// such as [`BufReader`] to perform more efficient seeks.
2156    ///
2157    /// # Example
2158    ///
2159    /// ```no_run
2160    /// use std::{
2161    ///     io::{self, Seek},
2162    ///     fs::File,
2163    /// };
2164    ///
2165    /// fn main() -> io::Result<()> {
2166    ///     let mut f = File::open("foo.txt")?;
2167    ///     f.seek_relative(10)?;
2168    ///     assert_eq!(f.stream_position()?, 10);
2169    ///     Ok(())
2170    /// }
2171    /// ```
2172    ///
2173    /// [`BufReader`]: crate::io::BufReader
2174    #[stable(feature = "seek_seek_relative", since = "1.80.0")]
2175    fn seek_relative(&mut self, offset: i64) -> Result<()> {
2176        self.seek(SeekFrom::Current(offset))?;
2177        Ok(())
2178    }
2179}
2180
2181pub(crate) fn stream_len_default<T: Seek + ?Sized>(self_: &mut T) -> Result<u64> {
2182    let old_pos = self_.stream_position()?;
2183    let len = self_.seek(SeekFrom::End(0))?;
2184
2185    // Avoid seeking a third time when we were already at the end of the
2186    // stream. The branch is usually way cheaper than a seek operation.
2187    if old_pos != len {
2188        self_.seek(SeekFrom::Start(old_pos))?;
2189    }
2190
2191    Ok(len)
2192}
2193
2194/// Enumeration of possible methods to seek within an I/O object.
2195///
2196/// It is used by the [`Seek`] trait.
2197#[derive(Copy, PartialEq, Eq, Clone, Debug)]
2198#[stable(feature = "rust1", since = "1.0.0")]
2199#[cfg_attr(not(test), rustc_diagnostic_item = "SeekFrom")]
2200pub enum SeekFrom {
2201    /// Sets the offset to the provided number of bytes.
2202    #[stable(feature = "rust1", since = "1.0.0")]
2203    Start(#[stable(feature = "rust1", since = "1.0.0")] u64),
2204
2205    /// Sets the offset to the size of this object plus the specified number of
2206    /// bytes.
2207    ///
2208    /// It is possible to seek beyond the end of an object, but it's an error to
2209    /// seek before byte 0.
2210    #[stable(feature = "rust1", since = "1.0.0")]
2211    End(#[stable(feature = "rust1", since = "1.0.0")] i64),
2212
2213    /// Sets the offset to the current position plus the specified number of
2214    /// bytes.
2215    ///
2216    /// It is possible to seek beyond the end of an object, but it's an error to
2217    /// seek before byte 0.
2218    #[stable(feature = "rust1", since = "1.0.0")]
2219    Current(#[stable(feature = "rust1", since = "1.0.0")] i64),
2220}
2221
2222fn read_until<R: BufRead + ?Sized>(r: &mut R, delim: u8, buf: &mut Vec<u8>) -> Result<usize> {
2223    let mut read = 0;
2224    loop {
2225        let (done, used) = {
2226            let available = match r.fill_buf() {
2227                Ok(n) => n,
2228                Err(ref e) if e.is_interrupted() => continue,
2229                Err(e) => return Err(e),
2230            };
2231            match memchr::memchr(delim, available) {
2232                Some(i) => {
2233                    buf.extend_from_slice(&available[..=i]);
2234                    (true, i + 1)
2235                }
2236                None => {
2237                    buf.extend_from_slice(available);
2238                    (false, available.len())
2239                }
2240            }
2241        };
2242        r.consume(used);
2243        read += used;
2244        if done || used == 0 {
2245            return Ok(read);
2246        }
2247    }
2248}
2249
2250fn skip_until<R: BufRead + ?Sized>(r: &mut R, delim: u8) -> Result<usize> {
2251    let mut read = 0;
2252    loop {
2253        let (done, used) = {
2254            let available = match r.fill_buf() {
2255                Ok(n) => n,
2256                Err(ref e) if e.kind() == ErrorKind::Interrupted => continue,
2257                Err(e) => return Err(e),
2258            };
2259            match memchr::memchr(delim, available) {
2260                Some(i) => (true, i + 1),
2261                None => (false, available.len()),
2262            }
2263        };
2264        r.consume(used);
2265        read += used;
2266        if done || used == 0 {
2267            return Ok(read);
2268        }
2269    }
2270}
2271
2272/// A `BufRead` is a type of `Read`er which has an internal buffer, allowing it
2273/// to perform extra ways of reading.
2274///
2275/// For example, reading line-by-line is inefficient without using a buffer, so
2276/// if you want to read by line, you'll need `BufRead`, which includes a
2277/// [`read_line`] method as well as a [`lines`] iterator.
2278///
2279/// # Examples
2280///
2281/// A locked standard input implements `BufRead`:
2282///
2283/// ```no_run
2284/// use std::io;
2285/// use std::io::prelude::*;
2286///
2287/// let stdin = io::stdin();
2288/// for line in stdin.lock().lines() {
2289///     println!("{}", line?);
2290/// }
2291/// # std::io::Result::Ok(())
2292/// ```
2293///
2294/// If you have something that implements [`Read`], you can use the [`BufReader`
2295/// type][`BufReader`] to turn it into a `BufRead`.
2296///
2297/// For example, [`File`] implements [`Read`], but not `BufRead`.
2298/// [`BufReader`] to the rescue!
2299///
2300/// [`File`]: crate::fs::File
2301/// [`read_line`]: BufRead::read_line
2302/// [`lines`]: BufRead::lines
2303///
2304/// ```no_run
2305/// use std::io::{self, BufReader};
2306/// use std::io::prelude::*;
2307/// use std::fs::File;
2308///
2309/// fn main() -> io::Result<()> {
2310///     let f = File::open("foo.txt")?;
2311///     let f = BufReader::new(f);
2312///
2313///     for line in f.lines() {
2314///         let line = line?;
2315///         println!("{line}");
2316///     }
2317///
2318///     Ok(())
2319/// }
2320/// ```
2321#[stable(feature = "rust1", since = "1.0.0")]
2322#[cfg_attr(not(test), rustc_diagnostic_item = "IoBufRead")]
2323pub trait BufRead: Read {
2324    /// Returns the contents of the internal buffer, filling it with more data, via `Read` methods, if empty.
2325    ///
2326    /// This is a lower-level method and is meant to be used together with [`consume`],
2327    /// which can be used to mark bytes that should not be returned by subsequent calls to `read`.
2328    ///
2329    /// [`consume`]: BufRead::consume
2330    ///
2331    /// Returns an empty buffer when the stream has reached EOF.
2332    ///
2333    /// # Errors
2334    ///
2335    /// This function will return an I/O error if a `Read` method was called, but returned an error.
2336    ///
2337    /// # Examples
2338    ///
2339    /// A locked standard input implements `BufRead`:
2340    ///
2341    /// ```no_run
2342    /// use std::io;
2343    /// use std::io::prelude::*;
2344    ///
2345    /// let stdin = io::stdin();
2346    /// let mut stdin = stdin.lock();
2347    ///
2348    /// let buffer = stdin.fill_buf()?;
2349    ///
2350    /// // work with buffer
2351    /// println!("{buffer:?}");
2352    ///
2353    /// // mark the bytes we worked with as read
2354    /// let length = buffer.len();
2355    /// stdin.consume(length);
2356    /// # std::io::Result::Ok(())
2357    /// ```
2358    #[stable(feature = "rust1", since = "1.0.0")]
2359    fn fill_buf(&mut self) -> Result<&[u8]>;
2360
2361    /// Marks the given `amount` of additional bytes from the internal buffer as having been read.
2362    /// Subsequent calls to `read` only return bytes that have not been marked as read.
2363    ///
2364    /// This is a lower-level method and is meant to be used together with [`fill_buf`],
2365    /// which can be used to fill the internal buffer via `Read` methods.
2366    ///
2367    /// It is a logic error if `amount` exceeds the number of unread bytes in the internal buffer, which is returned by [`fill_buf`].
2368    ///
2369    /// # Examples
2370    ///
2371    /// Since `consume()` is meant to be used with [`fill_buf`],
2372    /// that method's example includes an example of `consume()`.
2373    ///
2374    /// [`fill_buf`]: BufRead::fill_buf
2375    #[stable(feature = "rust1", since = "1.0.0")]
2376    fn consume(&mut self, amount: usize);
2377
2378    /// Checks if there is any data left to be `read`.
2379    ///
2380    /// This function may fill the buffer to check for data,
2381    /// so this function returns `Result<bool>`, not `bool`.
2382    ///
2383    /// The default implementation calls `fill_buf` and checks that the
2384    /// returned slice is empty (which means that there is no data left,
2385    /// since EOF is reached).
2386    ///
2387    /// # Errors
2388    ///
2389    /// This function will return an I/O error if a `Read` method was called, but returned an error.
2390    ///
2391    /// Examples
2392    ///
2393    /// ```
2394    /// #![feature(buf_read_has_data_left)]
2395    /// use std::io;
2396    /// use std::io::prelude::*;
2397    ///
2398    /// let stdin = io::stdin();
2399    /// let mut stdin = stdin.lock();
2400    ///
2401    /// while stdin.has_data_left()? {
2402    ///     let mut line = String::new();
2403    ///     stdin.read_line(&mut line)?;
2404    ///     // work with line
2405    ///     println!("{line:?}");
2406    /// }
2407    /// # std::io::Result::Ok(())
2408    /// ```
2409    #[unstable(feature = "buf_read_has_data_left", reason = "recently added", issue = "86423")]
2410    fn has_data_left(&mut self) -> Result<bool> {
2411        self.fill_buf().map(|b| !b.is_empty())
2412    }
2413
2414    /// Reads all bytes into `buf` until the delimiter `byte` or EOF is reached.
2415    ///
2416    /// This function will read bytes from the underlying stream until the
2417    /// delimiter or EOF is found. Once found, all bytes up to, and including,
2418    /// the delimiter (if found) will be appended to `buf`.
2419    ///
2420    /// If successful, this function will return the total number of bytes read.
2421    ///
2422    /// This function is blocking and should be used carefully: it is possible for
2423    /// an attacker to continuously send bytes without ever sending the delimiter
2424    /// or EOF.
2425    ///
2426    /// # Errors
2427    ///
2428    /// This function will ignore all instances of [`ErrorKind::Interrupted`] and
2429    /// will otherwise return any errors returned by [`fill_buf`].
2430    ///
2431    /// If an I/O error is encountered then all bytes read so far will be
2432    /// present in `buf` and its length will have been adjusted appropriately.
2433    ///
2434    /// [`fill_buf`]: BufRead::fill_buf
2435    ///
2436    /// # Examples
2437    ///
2438    /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
2439    /// this example, we use [`Cursor`] to read all the bytes in a byte slice
2440    /// in hyphen delimited segments:
2441    ///
2442    /// ```
2443    /// use std::io::{self, BufRead};
2444    ///
2445    /// let mut cursor = io::Cursor::new(b"lorem-ipsum");
2446    /// let mut buf = vec![];
2447    ///
2448    /// // cursor is at 'l'
2449    /// let num_bytes = cursor.read_until(b'-', &mut buf)
2450    ///     .expect("reading from cursor won't fail");
2451    /// assert_eq!(num_bytes, 6);
2452    /// assert_eq!(buf, b"lorem-");
2453    /// buf.clear();
2454    ///
2455    /// // cursor is at 'i'
2456    /// let num_bytes = cursor.read_until(b'-', &mut buf)
2457    ///     .expect("reading from cursor won't fail");
2458    /// assert_eq!(num_bytes, 5);
2459    /// assert_eq!(buf, b"ipsum");
2460    /// buf.clear();
2461    ///
2462    /// // cursor is at EOF
2463    /// let num_bytes = cursor.read_until(b'-', &mut buf)
2464    ///     .expect("reading from cursor won't fail");
2465    /// assert_eq!(num_bytes, 0);
2466    /// assert_eq!(buf, b"");
2467    /// ```
2468    #[stable(feature = "rust1", since = "1.0.0")]
2469    fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> Result<usize> {
2470        read_until(self, byte, buf)
2471    }
2472
2473    /// Skips all bytes until the delimiter `byte` or EOF is reached.
2474    ///
2475    /// This function will read (and discard) bytes from the underlying stream until the
2476    /// delimiter or EOF is found.
2477    ///
2478    /// If successful, this function will return the total number of bytes read,
2479    /// including the delimiter byte if found.
2480    ///
2481    /// This is useful for efficiently skipping data such as NUL-terminated strings
2482    /// in binary file formats without buffering.
2483    ///
2484    /// This function is blocking and should be used carefully: it is possible for
2485    /// an attacker to continuously send bytes without ever sending the delimiter
2486    /// or EOF.
2487    ///
2488    /// # Errors
2489    ///
2490    /// This function will ignore all instances of [`ErrorKind::Interrupted`] and
2491    /// will otherwise return any errors returned by [`fill_buf`].
2492    ///
2493    /// If an I/O error is encountered then all bytes read so far will be
2494    /// present in `buf` and its length will have been adjusted appropriately.
2495    ///
2496    /// [`fill_buf`]: BufRead::fill_buf
2497    ///
2498    /// # Examples
2499    ///
2500    /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
2501    /// this example, we use [`Cursor`] to read some NUL-terminated information
2502    /// about Ferris from a binary string, skipping the fun fact:
2503    ///
2504    /// ```
2505    /// use std::io::{self, BufRead};
2506    ///
2507    /// let mut cursor = io::Cursor::new(b"Ferris\0Likes long walks on the beach\0Crustacean\0!");
2508    ///
2509    /// // read name
2510    /// let mut name = Vec::new();
2511    /// let num_bytes = cursor.read_until(b'\0', &mut name)
2512    ///     .expect("reading from cursor won't fail");
2513    /// assert_eq!(num_bytes, 7);
2514    /// assert_eq!(name, b"Ferris\0");
2515    ///
2516    /// // skip fun fact
2517    /// let num_bytes = cursor.skip_until(b'\0')
2518    ///     .expect("reading from cursor won't fail");
2519    /// assert_eq!(num_bytes, 30);
2520    ///
2521    /// // read animal type
2522    /// let mut animal = Vec::new();
2523    /// let num_bytes = cursor.read_until(b'\0', &mut animal)
2524    ///     .expect("reading from cursor won't fail");
2525    /// assert_eq!(num_bytes, 11);
2526    /// assert_eq!(animal, b"Crustacean\0");
2527    ///
2528    /// // reach EOF
2529    /// let num_bytes = cursor.skip_until(b'\0')
2530    ///     .expect("reading from cursor won't fail");
2531    /// assert_eq!(num_bytes, 1);
2532    /// ```
2533    #[stable(feature = "bufread_skip_until", since = "1.83.0")]
2534    fn skip_until(&mut self, byte: u8) -> Result<usize> {
2535        skip_until(self, byte)
2536    }
2537
2538    /// Reads all bytes until a newline (the `0xA` byte) is reached, and append
2539    /// them to the provided `String` buffer.
2540    ///
2541    /// Previous content of the buffer will be preserved. To avoid appending to
2542    /// the buffer, you need to [`clear`] it first.
2543    ///
2544    /// This function will read bytes from the underlying stream until the
2545    /// newline delimiter (the `0xA` byte) or EOF is found. Once found, all bytes
2546    /// up to, and including, the delimiter (if found) will be appended to
2547    /// `buf`.
2548    ///
2549    /// If successful, this function will return the total number of bytes read.
2550    ///
2551    /// If this function returns [`Ok(0)`], the stream has reached EOF.
2552    ///
2553    /// This function is blocking and should be used carefully: it is possible for
2554    /// an attacker to continuously send bytes without ever sending a newline
2555    /// or EOF. You can use [`take`] to limit the maximum number of bytes read.
2556    ///
2557    /// [`Ok(0)`]: Ok
2558    /// [`clear`]: String::clear
2559    /// [`take`]: crate::io::Read::take
2560    ///
2561    /// # Errors
2562    ///
2563    /// This function has the same error semantics as [`read_until`] and will
2564    /// also return an error if the read bytes are not valid UTF-8. If an I/O
2565    /// error is encountered then `buf` may contain some bytes already read in
2566    /// the event that all data read so far was valid UTF-8.
2567    ///
2568    /// [`read_until`]: BufRead::read_until
2569    ///
2570    /// # Examples
2571    ///
2572    /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
2573    /// this example, we use [`Cursor`] to read all the lines in a byte slice:
2574    ///
2575    /// ```
2576    /// use std::io::{self, BufRead};
2577    ///
2578    /// let mut cursor = io::Cursor::new(b"foo\nbar");
2579    /// let mut buf = String::new();
2580    ///
2581    /// // cursor is at 'f'
2582    /// let num_bytes = cursor.read_line(&mut buf)
2583    ///     .expect("reading from cursor won't fail");
2584    /// assert_eq!(num_bytes, 4);
2585    /// assert_eq!(buf, "foo\n");
2586    /// buf.clear();
2587    ///
2588    /// // cursor is at 'b'
2589    /// let num_bytes = cursor.read_line(&mut buf)
2590    ///     .expect("reading from cursor won't fail");
2591    /// assert_eq!(num_bytes, 3);
2592    /// assert_eq!(buf, "bar");
2593    /// buf.clear();
2594    ///
2595    /// // cursor is at EOF
2596    /// let num_bytes = cursor.read_line(&mut buf)
2597    ///     .expect("reading from cursor won't fail");
2598    /// assert_eq!(num_bytes, 0);
2599    /// assert_eq!(buf, "");
2600    /// ```
2601    #[stable(feature = "rust1", since = "1.0.0")]
2602    fn read_line(&mut self, buf: &mut String) -> Result<usize> {
2603        // Note that we are not calling the `.read_until` method here, but
2604        // rather our hardcoded implementation. For more details as to why, see
2605        // the comments in `default_read_to_string`.
2606        unsafe { append_to_string(buf, |b| read_until(self, b'\n', b)) }
2607    }
2608
2609    /// Returns an iterator over the contents of this reader split on the byte
2610    /// `byte`.
2611    ///
2612    /// The iterator returned from this function will return instances of
2613    /// <code>[io::Result]<[Vec]\<u8>></code>. Each vector returned will *not* have
2614    /// the delimiter byte at the end.
2615    ///
2616    /// This function will yield errors whenever [`read_until`] would have
2617    /// also yielded an error.
2618    ///
2619    /// [io::Result]: self::Result "io::Result"
2620    /// [`read_until`]: BufRead::read_until
2621    ///
2622    /// # Examples
2623    ///
2624    /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
2625    /// this example, we use [`Cursor`] to iterate over all hyphen delimited
2626    /// segments in a byte slice
2627    ///
2628    /// ```
2629    /// use std::io::{self, BufRead};
2630    ///
2631    /// let cursor = io::Cursor::new(b"lorem-ipsum-dolor");
2632    ///
2633    /// let mut split_iter = cursor.split(b'-').map(|l| l.unwrap());
2634    /// assert_eq!(split_iter.next(), Some(b"lorem".to_vec()));
2635    /// assert_eq!(split_iter.next(), Some(b"ipsum".to_vec()));
2636    /// assert_eq!(split_iter.next(), Some(b"dolor".to_vec()));
2637    /// assert_eq!(split_iter.next(), None);
2638    /// ```
2639    #[stable(feature = "rust1", since = "1.0.0")]
2640    fn split(self, byte: u8) -> Split<Self>
2641    where
2642        Self: Sized,
2643    {
2644        Split { buf: self, delim: byte }
2645    }
2646
2647    /// Returns an iterator over the lines of this reader.
2648    ///
2649    /// The iterator returned from this function will yield instances of
2650    /// <code>[io::Result]<[String]></code>. Each string returned will *not* have a newline
2651    /// byte (the `0xA` byte) or `CRLF` (`0xD`, `0xA` bytes) at the end.
2652    ///
2653    /// [io::Result]: self::Result "io::Result"
2654    ///
2655    /// # Examples
2656    ///
2657    /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
2658    /// this example, we use [`Cursor`] to iterate over all the lines in a byte
2659    /// slice.
2660    ///
2661    /// ```
2662    /// use std::io::{self, BufRead};
2663    ///
2664    /// let cursor = io::Cursor::new(b"lorem\nipsum\r\ndolor");
2665    ///
2666    /// let mut lines_iter = cursor.lines().map(|l| l.unwrap());
2667    /// assert_eq!(lines_iter.next(), Some(String::from("lorem")));
2668    /// assert_eq!(lines_iter.next(), Some(String::from("ipsum")));
2669    /// assert_eq!(lines_iter.next(), Some(String::from("dolor")));
2670    /// assert_eq!(lines_iter.next(), None);
2671    /// ```
2672    ///
2673    /// # Errors
2674    ///
2675    /// Each line of the iterator has the same error semantics as [`BufRead::read_line`].
2676    #[stable(feature = "rust1", since = "1.0.0")]
2677    fn lines(self) -> Lines<Self>
2678    where
2679        Self: Sized,
2680    {
2681        Lines { buf: self }
2682    }
2683}
2684
2685/// Adapter to chain together two readers.
2686///
2687/// This struct is generally created by calling [`chain`] on a reader.
2688/// Please see the documentation of [`chain`] for more details.
2689///
2690/// [`chain`]: Read::chain
2691#[stable(feature = "rust1", since = "1.0.0")]
2692#[derive(Debug)]
2693pub struct Chain<T, U> {
2694    first: T,
2695    second: U,
2696    done_first: bool,
2697}
2698
2699impl<T, U> Chain<T, U> {
2700    /// Consumes the `Chain`, returning the wrapped readers.
2701    ///
2702    /// # Examples
2703    ///
2704    /// ```no_run
2705    /// use std::io;
2706    /// use std::io::prelude::*;
2707    /// use std::fs::File;
2708    ///
2709    /// fn main() -> io::Result<()> {
2710    ///     let mut foo_file = File::open("foo.txt")?;
2711    ///     let mut bar_file = File::open("bar.txt")?;
2712    ///
2713    ///     let chain = foo_file.chain(bar_file);
2714    ///     let (foo_file, bar_file) = chain.into_inner();
2715    ///     Ok(())
2716    /// }
2717    /// ```
2718    #[stable(feature = "more_io_inner_methods", since = "1.20.0")]
2719    pub fn into_inner(self) -> (T, U) {
2720        (self.first, self.second)
2721    }
2722
2723    /// Gets references to the underlying readers in this `Chain`.
2724    ///
2725    /// Care should be taken to avoid modifying the internal I/O state of the
2726    /// underlying readers as doing so may corrupt the internal state of this
2727    /// `Chain`.
2728    ///
2729    /// # Examples
2730    ///
2731    /// ```no_run
2732    /// use std::io;
2733    /// use std::io::prelude::*;
2734    /// use std::fs::File;
2735    ///
2736    /// fn main() -> io::Result<()> {
2737    ///     let mut foo_file = File::open("foo.txt")?;
2738    ///     let mut bar_file = File::open("bar.txt")?;
2739    ///
2740    ///     let chain = foo_file.chain(bar_file);
2741    ///     let (foo_file, bar_file) = chain.get_ref();
2742    ///     Ok(())
2743    /// }
2744    /// ```
2745    #[stable(feature = "more_io_inner_methods", since = "1.20.0")]
2746    pub fn get_ref(&self) -> (&T, &U) {
2747        (&self.first, &self.second)
2748    }
2749
2750    /// Gets mutable references to the underlying readers in this `Chain`.
2751    ///
2752    /// Care should be taken to avoid modifying the internal I/O state of the
2753    /// underlying readers as doing so may corrupt the internal state of this
2754    /// `Chain`.
2755    ///
2756    /// # Examples
2757    ///
2758    /// ```no_run
2759    /// use std::io;
2760    /// use std::io::prelude::*;
2761    /// use std::fs::File;
2762    ///
2763    /// fn main() -> io::Result<()> {
2764    ///     let mut foo_file = File::open("foo.txt")?;
2765    ///     let mut bar_file = File::open("bar.txt")?;
2766    ///
2767    ///     let mut chain = foo_file.chain(bar_file);
2768    ///     let (foo_file, bar_file) = chain.get_mut();
2769    ///     Ok(())
2770    /// }
2771    /// ```
2772    #[stable(feature = "more_io_inner_methods", since = "1.20.0")]
2773    pub fn get_mut(&mut self) -> (&mut T, &mut U) {
2774        (&mut self.first, &mut self.second)
2775    }
2776}
2777
2778#[stable(feature = "rust1", since = "1.0.0")]
2779impl<T: Read, U: Read> Read for Chain<T, U> {
2780    fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
2781        if !self.done_first {
2782            match self.first.read(buf)? {
2783                0 if !buf.is_empty() => self.done_first = true,
2784                n => return Ok(n),
2785            }
2786        }
2787        self.second.read(buf)
2788    }
2789
2790    fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> Result<usize> {
2791        if !self.done_first {
2792            match self.first.read_vectored(bufs)? {
2793                0 if bufs.iter().any(|b| !b.is_empty()) => self.done_first = true,
2794                n => return Ok(n),
2795            }
2796        }
2797        self.second.read_vectored(bufs)
2798    }
2799
2800    #[inline]
2801    fn is_read_vectored(&self) -> bool {
2802        self.first.is_read_vectored() || self.second.is_read_vectored()
2803    }
2804
2805    fn read_to_end(&mut self, buf: &mut Vec<u8>) -> Result<usize> {
2806        let mut read = 0;
2807        if !self.done_first {
2808            read += self.first.read_to_end(buf)?;
2809            self.done_first = true;
2810        }
2811        read += self.second.read_to_end(buf)?;
2812        Ok(read)
2813    }
2814
2815    // We don't override `read_to_string` here because an UTF-8 sequence could
2816    // be split between the two parts of the chain
2817
2818    fn read_buf(&mut self, mut buf: BorrowedCursor<'_>) -> Result<()> {
2819        if buf.capacity() == 0 {
2820            return Ok(());
2821        }
2822
2823        if !self.done_first {
2824            let old_len = buf.written();
2825            self.first.read_buf(buf.reborrow())?;
2826
2827            if buf.written() != old_len {
2828                return Ok(());
2829            } else {
2830                self.done_first = true;
2831            }
2832        }
2833        self.second.read_buf(buf)
2834    }
2835}
2836
2837#[stable(feature = "chain_bufread", since = "1.9.0")]
2838impl<T: BufRead, U: BufRead> BufRead for Chain<T, U> {
2839    fn fill_buf(&mut self) -> Result<&[u8]> {
2840        if !self.done_first {
2841            match self.first.fill_buf()? {
2842                buf if buf.is_empty() => self.done_first = true,
2843                buf => return Ok(buf),
2844            }
2845        }
2846        self.second.fill_buf()
2847    }
2848
2849    fn consume(&mut self, amt: usize) {
2850        if !self.done_first { self.first.consume(amt) } else { self.second.consume(amt) }
2851    }
2852
2853    fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> Result<usize> {
2854        let mut read = 0;
2855        if !self.done_first {
2856            let n = self.first.read_until(byte, buf)?;
2857            read += n;
2858
2859            match buf.last() {
2860                Some(b) if *b == byte && n != 0 => return Ok(read),
2861                _ => self.done_first = true,
2862            }
2863        }
2864        read += self.second.read_until(byte, buf)?;
2865        Ok(read)
2866    }
2867
2868    // We don't override `read_line` here because an UTF-8 sequence could be
2869    // split between the two parts of the chain
2870}
2871
2872impl<T, U> SizeHint for Chain<T, U> {
2873    #[inline]
2874    fn lower_bound(&self) -> usize {
2875        SizeHint::lower_bound(&self.first) + SizeHint::lower_bound(&self.second)
2876    }
2877
2878    #[inline]
2879    fn upper_bound(&self) -> Option<usize> {
2880        match (SizeHint::upper_bound(&self.first), SizeHint::upper_bound(&self.second)) {
2881            (Some(first), Some(second)) => first.checked_add(second),
2882            _ => None,
2883        }
2884    }
2885}
2886
2887/// Reader adapter which limits the bytes read from an underlying reader.
2888///
2889/// This struct is generally created by calling [`take`] on a reader.
2890/// Please see the documentation of [`take`] for more details.
2891///
2892/// [`take`]: Read::take
2893#[stable(feature = "rust1", since = "1.0.0")]
2894#[derive(Debug)]
2895pub struct Take<T> {
2896    inner: T,
2897    len: u64,
2898    limit: u64,
2899}
2900
2901impl<T> Take<T> {
2902    /// Returns the number of bytes that can be read before this instance will
2903    /// return EOF.
2904    ///
2905    /// # Note
2906    ///
2907    /// This instance may reach `EOF` after reading fewer bytes than indicated by
2908    /// this method if the underlying [`Read`] instance reaches EOF.
2909    ///
2910    /// # Examples
2911    ///
2912    /// ```no_run
2913    /// use std::io;
2914    /// use std::io::prelude::*;
2915    /// use std::fs::File;
2916    ///
2917    /// fn main() -> io::Result<()> {
2918    ///     let f = File::open("foo.txt")?;
2919    ///
2920    ///     // read at most five bytes
2921    ///     let handle = f.take(5);
2922    ///
2923    ///     println!("limit: {}", handle.limit());
2924    ///     Ok(())
2925    /// }
2926    /// ```
2927    #[stable(feature = "rust1", since = "1.0.0")]
2928    pub fn limit(&self) -> u64 {
2929        self.limit
2930    }
2931
2932    /// Returns the number of bytes read so far.
2933    #[unstable(feature = "seek_io_take_position", issue = "97227")]
2934    pub fn position(&self) -> u64 {
2935        self.len - self.limit
2936    }
2937
2938    /// Sets the number of bytes that can be read before this instance will
2939    /// return EOF. This is the same as constructing a new `Take` instance, so
2940    /// the amount of bytes read and the previous limit value don't matter when
2941    /// calling this method.
2942    ///
2943    /// # Examples
2944    ///
2945    /// ```no_run
2946    /// use std::io;
2947    /// use std::io::prelude::*;
2948    /// use std::fs::File;
2949    ///
2950    /// fn main() -> io::Result<()> {
2951    ///     let f = File::open("foo.txt")?;
2952    ///
2953    ///     // read at most five bytes
2954    ///     let mut handle = f.take(5);
2955    ///     handle.set_limit(10);
2956    ///
2957    ///     assert_eq!(handle.limit(), 10);
2958    ///     Ok(())
2959    /// }
2960    /// ```
2961    #[stable(feature = "take_set_limit", since = "1.27.0")]
2962    pub fn set_limit(&mut self, limit: u64) {
2963        self.len = limit;
2964        self.limit = limit;
2965    }
2966
2967    /// Consumes the `Take`, returning the wrapped reader.
2968    ///
2969    /// # Examples
2970    ///
2971    /// ```no_run
2972    /// use std::io;
2973    /// use std::io::prelude::*;
2974    /// use std::fs::File;
2975    ///
2976    /// fn main() -> io::Result<()> {
2977    ///     let mut file = File::open("foo.txt")?;
2978    ///
2979    ///     let mut buffer = [0; 5];
2980    ///     let mut handle = file.take(5);
2981    ///     handle.read(&mut buffer)?;
2982    ///
2983    ///     let file = handle.into_inner();
2984    ///     Ok(())
2985    /// }
2986    /// ```
2987    #[stable(feature = "io_take_into_inner", since = "1.15.0")]
2988    pub fn into_inner(self) -> T {
2989        self.inner
2990    }
2991
2992    /// Gets a reference to the underlying reader.
2993    ///
2994    /// Care should be taken to avoid modifying the internal I/O state of the
2995    /// underlying reader as doing so may corrupt the internal limit of this
2996    /// `Take`.
2997    ///
2998    /// # Examples
2999    ///
3000    /// ```no_run
3001    /// use std::io;
3002    /// use std::io::prelude::*;
3003    /// use std::fs::File;
3004    ///
3005    /// fn main() -> io::Result<()> {
3006    ///     let mut file = File::open("foo.txt")?;
3007    ///
3008    ///     let mut buffer = [0; 5];
3009    ///     let mut handle = file.take(5);
3010    ///     handle.read(&mut buffer)?;
3011    ///
3012    ///     let file = handle.get_ref();
3013    ///     Ok(())
3014    /// }
3015    /// ```
3016    #[stable(feature = "more_io_inner_methods", since = "1.20.0")]
3017    pub fn get_ref(&self) -> &T {
3018        &self.inner
3019    }
3020
3021    /// Gets a mutable reference to the underlying reader.
3022    ///
3023    /// Care should be taken to avoid modifying the internal I/O state of the
3024    /// underlying reader as doing so may corrupt the internal limit of this
3025    /// `Take`.
3026    ///
3027    /// # Examples
3028    ///
3029    /// ```no_run
3030    /// use std::io;
3031    /// use std::io::prelude::*;
3032    /// use std::fs::File;
3033    ///
3034    /// fn main() -> io::Result<()> {
3035    ///     let mut file = File::open("foo.txt")?;
3036    ///
3037    ///     let mut buffer = [0; 5];
3038    ///     let mut handle = file.take(5);
3039    ///     handle.read(&mut buffer)?;
3040    ///
3041    ///     let file = handle.get_mut();
3042    ///     Ok(())
3043    /// }
3044    /// ```
3045    #[stable(feature = "more_io_inner_methods", since = "1.20.0")]
3046    pub fn get_mut(&mut self) -> &mut T {
3047        &mut self.inner
3048    }
3049}
3050
3051#[stable(feature = "rust1", since = "1.0.0")]
3052impl<T: Read> Read for Take<T> {
3053    fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
3054        // Don't call into inner reader at all at EOF because it may still block
3055        if self.limit == 0 {
3056            return Ok(0);
3057        }
3058
3059        let max = cmp::min(buf.len() as u64, self.limit) as usize;
3060        let n = self.inner.read(&mut buf[..max])?;
3061        assert!(n as u64 <= self.limit, "number of read bytes exceeds limit");
3062        self.limit -= n as u64;
3063        Ok(n)
3064    }
3065
3066    fn read_buf(&mut self, mut buf: BorrowedCursor<'_>) -> Result<()> {
3067        // Don't call into inner reader at all at EOF because it may still block
3068        if self.limit == 0 {
3069            return Ok(());
3070        }
3071
3072        if self.limit < buf.capacity() as u64 {
3073            // The condition above guarantees that `self.limit` fits in `usize`.
3074            let limit = self.limit as usize;
3075
3076            // SAFETY: no uninit data is written to ibuf
3077            let ibuf = unsafe { &mut buf.as_mut()[..limit] };
3078
3079            let mut sliced_buf: BorrowedBuf<'_> = ibuf.into();
3080
3081            let mut cursor = sliced_buf.unfilled();
3082            let result = self.inner.read_buf(cursor.reborrow());
3083
3084            let filled = sliced_buf.len();
3085
3086            // cursor / sliced_buf / ibuf must drop here
3087
3088            // SAFETY: filled bytes have been filled and therefore initialized
3089            unsafe {
3090                buf.advance(filled);
3091            }
3092
3093            self.limit -= filled as u64;
3094
3095            result
3096        } else {
3097            let written = buf.written();
3098            let result = self.inner.read_buf(buf.reborrow());
3099            self.limit -= (buf.written() - written) as u64;
3100            result
3101        }
3102    }
3103}
3104
3105#[stable(feature = "rust1", since = "1.0.0")]
3106impl<T: BufRead> BufRead for Take<T> {
3107    fn fill_buf(&mut self) -> Result<&[u8]> {
3108        // Don't call into inner reader at all at EOF because it may still block
3109        if self.limit == 0 {
3110            return Ok(&[]);
3111        }
3112
3113        let buf = self.inner.fill_buf()?;
3114        let cap = cmp::min(buf.len() as u64, self.limit) as usize;
3115        Ok(&buf[..cap])
3116    }
3117
3118    fn consume(&mut self, amt: usize) {
3119        // Don't let callers reset the limit by passing an overlarge value
3120        let amt = cmp::min(amt as u64, self.limit) as usize;
3121        self.limit -= amt as u64;
3122        self.inner.consume(amt);
3123    }
3124}
3125
3126impl<T> SizeHint for Take<T> {
3127    #[inline]
3128    fn lower_bound(&self) -> usize {
3129        cmp::min(SizeHint::lower_bound(&self.inner) as u64, self.limit) as usize
3130    }
3131
3132    #[inline]
3133    fn upper_bound(&self) -> Option<usize> {
3134        match SizeHint::upper_bound(&self.inner) {
3135            Some(upper_bound) => Some(cmp::min(upper_bound as u64, self.limit) as usize),
3136            None => self.limit.try_into().ok(),
3137        }
3138    }
3139}
3140
3141#[stable(feature = "seek_io_take", since = "1.89.0")]
3142impl<T: Seek> Seek for Take<T> {
3143    fn seek(&mut self, pos: SeekFrom) -> Result<u64> {
3144        let new_position = match pos {
3145            SeekFrom::Start(v) => Some(v),
3146            SeekFrom::Current(v) => self.position().checked_add_signed(v),
3147            SeekFrom::End(v) => self.len.checked_add_signed(v),
3148        };
3149        let new_position = match new_position {
3150            Some(v) if v <= self.len => v,
3151            _ => return Err(ErrorKind::InvalidInput.into()),
3152        };
3153        while new_position != self.position() {
3154            if let Some(offset) = new_position.checked_signed_diff(self.position()) {
3155                self.inner.seek_relative(offset)?;
3156                self.limit = self.limit.wrapping_sub(offset as u64);
3157                break;
3158            }
3159            let offset = if new_position > self.position() { i64::MAX } else { i64::MIN };
3160            self.inner.seek_relative(offset)?;
3161            self.limit = self.limit.wrapping_sub(offset as u64);
3162        }
3163        Ok(new_position)
3164    }
3165
3166    fn stream_len(&mut self) -> Result<u64> {
3167        Ok(self.len)
3168    }
3169
3170    fn stream_position(&mut self) -> Result<u64> {
3171        Ok(self.position())
3172    }
3173
3174    fn seek_relative(&mut self, offset: i64) -> Result<()> {
3175        if !self.position().checked_add_signed(offset).is_some_and(|p| p <= self.len) {
3176            return Err(ErrorKind::InvalidInput.into());
3177        }
3178        self.inner.seek_relative(offset)?;
3179        self.limit = self.limit.wrapping_sub(offset as u64);
3180        Ok(())
3181    }
3182}
3183
3184/// An iterator over `u8` values of a reader.
3185///
3186/// This struct is generally created by calling [`bytes`] on a reader.
3187/// Please see the documentation of [`bytes`] for more details.
3188///
3189/// [`bytes`]: Read::bytes
3190#[stable(feature = "rust1", since = "1.0.0")]
3191#[derive(Debug)]
3192pub struct Bytes<R> {
3193    inner: R,
3194}
3195
3196#[stable(feature = "rust1", since = "1.0.0")]
3197impl<R: Read> Iterator for Bytes<R> {
3198    type Item = Result<u8>;
3199
3200    // Not `#[inline]`. This function gets inlined even without it, but having
3201    // the inline annotation can result in worse code generation. See #116785.
3202    fn next(&mut self) -> Option<Result<u8>> {
3203        SpecReadByte::spec_read_byte(&mut self.inner)
3204    }
3205
3206    #[inline]
3207    fn size_hint(&self) -> (usize, Option<usize>) {
3208        SizeHint::size_hint(&self.inner)
3209    }
3210}
3211
3212/// For the specialization of `Bytes::next`.
3213trait SpecReadByte {
3214    fn spec_read_byte(&mut self) -> Option<Result<u8>>;
3215}
3216
3217impl<R> SpecReadByte for R
3218where
3219    Self: Read,
3220{
3221    #[inline]
3222    default fn spec_read_byte(&mut self) -> Option<Result<u8>> {
3223        inlined_slow_read_byte(self)
3224    }
3225}
3226
3227/// Reads a single byte in a slow, generic way. This is used by the default
3228/// `spec_read_byte`.
3229#[inline]
3230fn inlined_slow_read_byte<R: Read>(reader: &mut R) -> Option<Result<u8>> {
3231    let mut byte = 0;
3232    loop {
3233        return match reader.read(slice::from_mut(&mut byte)) {
3234            Ok(0) => None,
3235            Ok(..) => Some(Ok(byte)),
3236            Err(ref e) if e.is_interrupted() => continue,
3237            Err(e) => Some(Err(e)),
3238        };
3239    }
3240}
3241
3242// Used by `BufReader::spec_read_byte`, for which the `inline(never)` is
3243// important.
3244#[inline(never)]
3245fn uninlined_slow_read_byte<R: Read>(reader: &mut R) -> Option<Result<u8>> {
3246    inlined_slow_read_byte(reader)
3247}
3248
3249trait SizeHint {
3250    fn lower_bound(&self) -> usize;
3251
3252    fn upper_bound(&self) -> Option<usize>;
3253
3254    fn size_hint(&self) -> (usize, Option<usize>) {
3255        (self.lower_bound(), self.upper_bound())
3256    }
3257}
3258
3259impl<T: ?Sized> SizeHint for T {
3260    #[inline]
3261    default fn lower_bound(&self) -> usize {
3262        0
3263    }
3264
3265    #[inline]
3266    default fn upper_bound(&self) -> Option<usize> {
3267        None
3268    }
3269}
3270
3271impl<T> SizeHint for &mut T {
3272    #[inline]
3273    fn lower_bound(&self) -> usize {
3274        SizeHint::lower_bound(*self)
3275    }
3276
3277    #[inline]
3278    fn upper_bound(&self) -> Option<usize> {
3279        SizeHint::upper_bound(*self)
3280    }
3281}
3282
3283impl<T> SizeHint for Box<T> {
3284    #[inline]
3285    fn lower_bound(&self) -> usize {
3286        SizeHint::lower_bound(&**self)
3287    }
3288
3289    #[inline]
3290    fn upper_bound(&self) -> Option<usize> {
3291        SizeHint::upper_bound(&**self)
3292    }
3293}
3294
3295impl SizeHint for &[u8] {
3296    #[inline]
3297    fn lower_bound(&self) -> usize {
3298        self.len()
3299    }
3300
3301    #[inline]
3302    fn upper_bound(&self) -> Option<usize> {
3303        Some(self.len())
3304    }
3305}
3306
3307/// An iterator over the contents of an instance of `BufRead` split on a
3308/// particular byte.
3309///
3310/// This struct is generally created by calling [`split`] on a `BufRead`.
3311/// Please see the documentation of [`split`] for more details.
3312///
3313/// [`split`]: BufRead::split
3314#[stable(feature = "rust1", since = "1.0.0")]
3315#[derive(Debug)]
3316pub struct Split<B> {
3317    buf: B,
3318    delim: u8,
3319}
3320
3321#[stable(feature = "rust1", since = "1.0.0")]
3322impl<B: BufRead> Iterator for Split<B> {
3323    type Item = Result<Vec<u8>>;
3324
3325    fn next(&mut self) -> Option<Result<Vec<u8>>> {
3326        let mut buf = Vec::new();
3327        match self.buf.read_until(self.delim, &mut buf) {
3328            Ok(0) => None,
3329            Ok(_n) => {
3330                if buf[buf.len() - 1] == self.delim {
3331                    buf.pop();
3332                }
3333                Some(Ok(buf))
3334            }
3335            Err(e) => Some(Err(e)),
3336        }
3337    }
3338}
3339
3340/// An iterator over the lines of an instance of `BufRead`.
3341///
3342/// This struct is generally created by calling [`lines`] on a `BufRead`.
3343/// Please see the documentation of [`lines`] for more details.
3344///
3345/// [`lines`]: BufRead::lines
3346#[stable(feature = "rust1", since = "1.0.0")]
3347#[derive(Debug)]
3348#[cfg_attr(not(test), rustc_diagnostic_item = "IoLines")]
3349pub struct Lines<B> {
3350    buf: B,
3351}
3352
3353#[stable(feature = "rust1", since = "1.0.0")]
3354impl<B: BufRead> Iterator for Lines<B> {
3355    type Item = Result<String>;
3356
3357    fn next(&mut self) -> Option<Result<String>> {
3358        let mut buf = String::new();
3359        match self.buf.read_line(&mut buf) {
3360            Ok(0) => None,
3361            Ok(_n) => {
3362                if buf.ends_with('\n') {
3363                    buf.pop();
3364                    if buf.ends_with('\r') {
3365                        buf.pop();
3366                    }
3367                }
3368                Some(Ok(buf))
3369            }
3370            Err(e) => Some(Err(e)),
3371        }
3372    }
3373}