std/io/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
//! Traits, helpers, and type definitions for core I/O functionality.
//!
//! The `std::io` module contains a number of common things you'll need
//! when doing input and output. The most core part of this module is
//! the [`Read`] and [`Write`] traits, which provide the
//! most general interface for reading and writing input and output.
//!
//! ## Read and Write
//!
//! Because they are traits, [`Read`] and [`Write`] are implemented by a number
//! of other types, and you can implement them for your types too. As such,
//! you'll see a few different types of I/O throughout the documentation in
//! this module: [`File`]s, [`TcpStream`]s, and sometimes even [`Vec<T>`]s. For
//! example, [`Read`] adds a [`read`][`Read::read`] method, which we can use on
//! [`File`]s:
//!
//! ```no_run
//! use std::io;
//! use std::io::prelude::*;
//! use std::fs::File;
//!
//! fn main() -> io::Result<()> {
//!     let mut f = File::open("foo.txt")?;
//!     let mut buffer = [0; 10];
//!
//!     // read up to 10 bytes
//!     let n = f.read(&mut buffer)?;
//!
//!     println!("The bytes: {:?}", &buffer[..n]);
//!     Ok(())
//! }
//! ```
//!
//! [`Read`] and [`Write`] are so important, implementors of the two traits have a
//! nickname: readers and writers. So you'll sometimes see 'a reader' instead
//! of 'a type that implements the [`Read`] trait'. Much easier!
//!
//! ## Seek and BufRead
//!
//! Beyond that, there are two important traits that are provided: [`Seek`]
//! and [`BufRead`]. Both of these build on top of a reader to control
//! how the reading happens. [`Seek`] lets you control where the next byte is
//! coming from:
//!
//! ```no_run
//! use std::io;
//! use std::io::prelude::*;
//! use std::io::SeekFrom;
//! use std::fs::File;
//!
//! fn main() -> io::Result<()> {
//!     let mut f = File::open("foo.txt")?;
//!     let mut buffer = [0; 10];
//!
//!     // skip to the last 10 bytes of the file
//!     f.seek(SeekFrom::End(-10))?;
//!
//!     // read up to 10 bytes
//!     let n = f.read(&mut buffer)?;
//!
//!     println!("The bytes: {:?}", &buffer[..n]);
//!     Ok(())
//! }
//! ```
//!
//! [`BufRead`] uses an internal buffer to provide a number of other ways to read, but
//! to show it off, we'll need to talk about buffers in general. Keep reading!
//!
//! ## BufReader and BufWriter
//!
//! Byte-based interfaces are unwieldy and can be inefficient, as we'd need to be
//! making near-constant calls to the operating system. To help with this,
//! `std::io` comes with two structs, [`BufReader`] and [`BufWriter`], which wrap
//! readers and writers. The wrapper uses a buffer, reducing the number of
//! calls and providing nicer methods for accessing exactly what you want.
//!
//! For example, [`BufReader`] works with the [`BufRead`] trait to add extra
//! methods to any reader:
//!
//! ```no_run
//! use std::io;
//! use std::io::prelude::*;
//! use std::io::BufReader;
//! use std::fs::File;
//!
//! fn main() -> io::Result<()> {
//!     let f = File::open("foo.txt")?;
//!     let mut reader = BufReader::new(f);
//!     let mut buffer = String::new();
//!
//!     // read a line into buffer
//!     reader.read_line(&mut buffer)?;
//!
//!     println!("{buffer}");
//!     Ok(())
//! }
//! ```
//!
//! [`BufWriter`] doesn't add any new ways of writing; it just buffers every call
//! to [`write`][`Write::write`]:
//!
//! ```no_run
//! use std::io;
//! use std::io::prelude::*;
//! use std::io::BufWriter;
//! use std::fs::File;
//!
//! fn main() -> io::Result<()> {
//!     let f = File::create("foo.txt")?;
//!     {
//!         let mut writer = BufWriter::new(f);
//!
//!         // write a byte to the buffer
//!         writer.write(&[42])?;
//!
//!     } // the buffer is flushed once writer goes out of scope
//!
//!     Ok(())
//! }
//! ```
//!
//! ## Standard input and output
//!
//! A very common source of input is standard input:
//!
//! ```no_run
//! use std::io;
//!
//! fn main() -> io::Result<()> {
//!     let mut input = String::new();
//!
//!     io::stdin().read_line(&mut input)?;
//!
//!     println!("You typed: {}", input.trim());
//!     Ok(())
//! }
//! ```
//!
//! Note that you cannot use the [`?` operator] in functions that do not return
//! a [`Result<T, E>`][`Result`]. Instead, you can call [`.unwrap()`]
//! or `match` on the return value to catch any possible errors:
//!
//! ```no_run
//! use std::io;
//!
//! let mut input = String::new();
//!
//! io::stdin().read_line(&mut input).unwrap();
//! ```
//!
//! And a very common source of output is standard output:
//!
//! ```no_run
//! use std::io;
//! use std::io::prelude::*;
//!
//! fn main() -> io::Result<()> {
//!     io::stdout().write(&[42])?;
//!     Ok(())
//! }
//! ```
//!
//! Of course, using [`io::stdout`] directly is less common than something like
//! [`println!`].
//!
//! ## Iterator types
//!
//! A large number of the structures provided by `std::io` are for various
//! ways of iterating over I/O. For example, [`Lines`] is used to split over
//! lines:
//!
//! ```no_run
//! use std::io;
//! use std::io::prelude::*;
//! use std::io::BufReader;
//! use std::fs::File;
//!
//! fn main() -> io::Result<()> {
//!     let f = File::open("foo.txt")?;
//!     let reader = BufReader::new(f);
//!
//!     for line in reader.lines() {
//!         println!("{}", line?);
//!     }
//!     Ok(())
//! }
//! ```
//!
//! ## Functions
//!
//! There are a number of [functions][functions-list] that offer access to various
//! features. For example, we can use three of these functions to copy everything
//! from standard input to standard output:
//!
//! ```no_run
//! use std::io;
//!
//! fn main() -> io::Result<()> {
//!     io::copy(&mut io::stdin(), &mut io::stdout())?;
//!     Ok(())
//! }
//! ```
//!
//! [functions-list]: #functions-1
//!
//! ## io::Result
//!
//! Last, but certainly not least, is [`io::Result`]. This type is used
//! as the return type of many `std::io` functions that can cause an error, and
//! can be returned from your own functions as well. Many of the examples in this
//! module use the [`?` operator]:
//!
//! ```
//! use std::io;
//!
//! fn read_input() -> io::Result<()> {
//!     let mut input = String::new();
//!
//!     io::stdin().read_line(&mut input)?;
//!
//!     println!("You typed: {}", input.trim());
//!
//!     Ok(())
//! }
//! ```
//!
//! The return type of `read_input()`, [`io::Result<()>`][`io::Result`], is a very
//! common type for functions which don't have a 'real' return value, but do want to
//! return errors if they happen. In this case, the only purpose of this function is
//! to read the line and print it, so we use `()`.
//!
//! ## Platform-specific behavior
//!
//! Many I/O functions throughout the standard library are documented to indicate
//! what various library or syscalls they are delegated to. This is done to help
//! applications both understand what's happening under the hood as well as investigate
//! any possibly unclear semantics. Note, however, that this is informative, not a binding
//! contract. The implementation of many of these functions are subject to change over
//! time and may call fewer or more syscalls/library functions.
//!
//! ## I/O Safety
//!
//! Rust follows an I/O safety discipline that is comparable to its memory safety discipline. This
//! means that file descriptors can be *exclusively owned*. (Here, "file descriptor" is meant to
//! subsume similar concepts that exist across a wide range of operating systems even if they might
//! use a different name, such as "handle".) An exclusively owned file descriptor is one that no
//! other code is allowed to access in any way, but the owner is allowed to access and even close
//! it any time. A type that owns its file descriptor should usually close it in its `drop`
//! function. Types like [`File`] own their file descriptor. Similarly, file descriptors
//! can be *borrowed*, granting the temporary right to perform operations on this file descriptor.
//! This indicates that the file descriptor will not be closed for the lifetime of the borrow, but
//! it does *not* imply any right to close this file descriptor, since it will likely be owned by
//! someone else.
//!
//! The platform-specific parts of the Rust standard library expose types that reflect these
//! concepts, see [`os::unix`] and [`os::windows`].
//!
//! To uphold I/O safety, it is crucial that no code acts on file descriptors it does not own or
//! borrow, and no code closes file descriptors it does not own. In other words, a safe function
//! that takes a regular integer, treats it as a file descriptor, and acts on it, is *unsound*.
//!
//! Not upholding I/O safety and acting on a file descriptor without proof of ownership can lead to
//! misbehavior and even Undefined Behavior in code that relies on ownership of its file
//! descriptors: a closed file descriptor could be re-allocated, so the original owner of that file
//! descriptor is now working on the wrong file. Some code might even rely on fully encapsulating
//! its file descriptors with no operations being performed by any other part of the program.
//!
//! Note that exclusive ownership of a file descriptor does *not* imply exclusive ownership of the
//! underlying kernel object that the file descriptor references (also called "open file description" on
//! some operating systems). File descriptors basically work like [`Arc`]: when you receive an owned
//! file descriptor, you cannot know whether there are any other file descriptors that reference the
//! same kernel object. However, when you create a new kernel object, you know that you are holding
//! the only reference to it. Just be careful not to lend it to anyone, since they can obtain a
//! clone and then you can no longer know what the reference count is! In that sense, [`OwnedFd`] is
//! like `Arc` and [`BorrowedFd<'a>`] is like `&'a Arc` (and similar for the Windows types). In
//! particular, given a `BorrowedFd<'a>`, you are not allowed to close the file descriptor -- just
//! like how, given a `&'a Arc`, you are not allowed to decrement the reference count and
//! potentially free the underlying object. There is no equivalent to `Box` for file descriptors in
//! the standard library (that would be a type that guarantees that the reference count is `1`),
//! however, it would be possible for a crate to define a type with those semantics.
//!
//! [`File`]: crate::fs::File
//! [`TcpStream`]: crate::net::TcpStream
//! [`io::stdout`]: stdout
//! [`io::Result`]: self::Result
//! [`?` operator]: ../../book/appendix-02-operators.html
//! [`Result`]: crate::result::Result
//! [`.unwrap()`]: crate::result::Result::unwrap
//! [`os::unix`]: ../os/unix/io/index.html
//! [`os::windows`]: ../os/windows/io/index.html
//! [`OwnedFd`]: ../os/fd/struct.OwnedFd.html
//! [`BorrowedFd<'a>`]: ../os/fd/struct.BorrowedFd.html
//! [`Arc`]: crate::sync::Arc

#![stable(feature = "rust1", since = "1.0.0")]

#[cfg(test)]
mod tests;

#[unstable(feature = "read_buf", issue = "78485")]
pub use core::io::{BorrowedBuf, BorrowedCursor};
use core::slice::memchr;

pub(crate) use error::const_io_error;

#[stable(feature = "bufwriter_into_parts", since = "1.56.0")]
pub use self::buffered::WriterPanicked;
#[unstable(feature = "raw_os_error_ty", issue = "107792")]
pub use self::error::RawOsError;
#[stable(feature = "is_terminal", since = "1.70.0")]
pub use self::stdio::IsTerminal;
pub(crate) use self::stdio::attempt_print_to_stderr;
#[unstable(feature = "print_internals", issue = "none")]
#[doc(hidden)]
pub use self::stdio::{_eprint, _print};
#[unstable(feature = "internal_output_capture", issue = "none")]
#[doc(no_inline, hidden)]
pub use self::stdio::{set_output_capture, try_set_output_capture};
#[stable(feature = "rust1", since = "1.0.0")]
pub use self::{
    buffered::{BufReader, BufWriter, IntoInnerError, LineWriter},
    copy::copy,
    cursor::Cursor,
    error::{Error, ErrorKind, Result},
    stdio::{Stderr, StderrLock, Stdin, StdinLock, Stdout, StdoutLock, stderr, stdin, stdout},
    util::{Empty, Repeat, Sink, empty, repeat, sink},
};
use crate::mem::take;
use crate::ops::{Deref, DerefMut};
use crate::{cmp, fmt, slice, str, sys};

mod buffered;
pub(crate) mod copy;
mod cursor;
mod error;
mod impls;
pub mod prelude;
mod stdio;
mod util;

const DEFAULT_BUF_SIZE: usize = crate::sys_common::io::DEFAULT_BUF_SIZE;

pub(crate) use stdio::cleanup;

struct Guard<'a> {
    buf: &'a mut Vec<u8>,
    len: usize,
}

impl Drop for Guard<'_> {
    fn drop(&mut self) {
        unsafe {
            self.buf.set_len(self.len);
        }
    }
}

// Several `read_to_string` and `read_line` methods in the standard library will
// append data into a `String` buffer, but we need to be pretty careful when
// doing this. The implementation will just call `.as_mut_vec()` and then
// delegate to a byte-oriented reading method, but we must ensure that when
// returning we never leave `buf` in a state such that it contains invalid UTF-8
// in its bounds.
//
// To this end, we use an RAII guard (to protect against panics) which updates
// the length of the string when it is dropped. This guard initially truncates
// the string to the prior length and only after we've validated that the
// new contents are valid UTF-8 do we allow it to set a longer length.
//
// The unsafety in this function is twofold:
//
// 1. We're looking at the raw bytes of `buf`, so we take on the burden of UTF-8
//    checks.
// 2. We're passing a raw buffer to the function `f`, and it is expected that
//    the function only *appends* bytes to the buffer. We'll get undefined
//    behavior if existing bytes are overwritten to have non-UTF-8 data.
pub(crate) unsafe fn append_to_string<F>(buf: &mut String, f: F) -> Result<usize>
where
    F: FnOnce(&mut Vec<u8>) -> Result<usize>,
{
    let mut g = Guard { len: buf.len(), buf: unsafe { buf.as_mut_vec() } };
    let ret = f(g.buf);

    // SAFETY: the caller promises to only append data to `buf`
    let appended = unsafe { g.buf.get_unchecked(g.len..) };
    if str::from_utf8(appended).is_err() {
        ret.and_then(|_| Err(Error::INVALID_UTF8))
    } else {
        g.len = g.buf.len();
        ret
    }
}

// Here we must serve many masters with conflicting goals:
//
// - avoid allocating unless necessary
// - avoid overallocating if we know the exact size (#89165)
// - avoid passing large buffers to readers that always initialize the free capacity if they perform short reads (#23815, #23820)
// - pass large buffers to readers that do not initialize the spare capacity. this can amortize per-call overheads
// - and finally pass not-too-small and not-too-large buffers to Windows read APIs because they manage to suffer from both problems
//   at the same time, i.e. small reads suffer from syscall overhead, all reads incur costs proportional to buffer size (#110650)
//
pub(crate) fn default_read_to_end<R: Read + ?Sized>(
    r: &mut R,
    buf: &mut Vec<u8>,
    size_hint: Option<usize>,
) -> Result<usize> {
    let start_len = buf.len();
    let start_cap = buf.capacity();
    // Optionally limit the maximum bytes read on each iteration.
    // This adds an arbitrary fiddle factor to allow for more data than we expect.
    let mut max_read_size = size_hint
        .and_then(|s| s.checked_add(1024)?.checked_next_multiple_of(DEFAULT_BUF_SIZE))
        .unwrap_or(DEFAULT_BUF_SIZE);

    let mut initialized = 0; // Extra initialized bytes from previous loop iteration

    const PROBE_SIZE: usize = 32;

    fn small_probe_read<R: Read + ?Sized>(r: &mut R, buf: &mut Vec<u8>) -> Result<usize> {
        let mut probe = [0u8; PROBE_SIZE];

        loop {
            match r.read(&mut probe) {
                Ok(n) => {
                    // there is no way to recover from allocation failure here
                    // because the data has already been read.
                    buf.extend_from_slice(&probe[..n]);
                    return Ok(n);
                }
                Err(ref e) if e.is_interrupted() => continue,
                Err(e) => return Err(e),
            }
        }
    }

    // avoid inflating empty/small vecs before we have determined that there's anything to read
    if (size_hint.is_none() || size_hint == Some(0)) && buf.capacity() - buf.len() < PROBE_SIZE {
        let read = small_probe_read(r, buf)?;

        if read == 0 {
            return Ok(0);
        }
    }

    let mut consecutive_short_reads = 0;

    loop {
        if buf.len() == buf.capacity() && buf.capacity() == start_cap {
            // The buffer might be an exact fit. Let's read into a probe buffer
            // and see if it returns `Ok(0)`. If so, we've avoided an
            // unnecessary doubling of the capacity. But if not, append the
            // probe buffer to the primary buffer and let its capacity grow.
            let read = small_probe_read(r, buf)?;

            if read == 0 {
                return Ok(buf.len() - start_len);
            }
        }

        if buf.len() == buf.capacity() {
            // buf is full, need more space
            buf.try_reserve(PROBE_SIZE)?;
        }

        let mut spare = buf.spare_capacity_mut();
        let buf_len = cmp::min(spare.len(), max_read_size);
        spare = &mut spare[..buf_len];
        let mut read_buf: BorrowedBuf<'_> = spare.into();

        // SAFETY: These bytes were initialized but not filled in the previous loop
        unsafe {
            read_buf.set_init(initialized);
        }

        let mut cursor = read_buf.unfilled();
        let result = loop {
            match r.read_buf(cursor.reborrow()) {
                Err(e) if e.is_interrupted() => continue,
                // Do not stop now in case of error: we might have received both data
                // and an error
                res => break res,
            }
        };

        let unfilled_but_initialized = cursor.init_ref().len();
        let bytes_read = cursor.written();
        let was_fully_initialized = read_buf.init_len() == buf_len;

        // SAFETY: BorrowedBuf's invariants mean this much memory is initialized.
        unsafe {
            let new_len = bytes_read + buf.len();
            buf.set_len(new_len);
        }

        // Now that all data is pushed to the vector, we can fail without data loss
        result?;

        if bytes_read == 0 {
            return Ok(buf.len() - start_len);
        }

        if bytes_read < buf_len {
            consecutive_short_reads += 1;
        } else {
            consecutive_short_reads = 0;
        }

        // store how much was initialized but not filled
        initialized = unfilled_but_initialized;

        // Use heuristics to determine the max read size if no initial size hint was provided
        if size_hint.is_none() {
            // The reader is returning short reads but it doesn't call ensure_init().
            // In that case we no longer need to restrict read sizes to avoid
            // initialization costs.
            // When reading from disk we usually don't get any short reads except at EOF.
            // So we wait for at least 2 short reads before uncapping the read buffer;
            // this helps with the Windows issue.
            if !was_fully_initialized && consecutive_short_reads > 1 {
                max_read_size = usize::MAX;
            }

            // we have passed a larger buffer than previously and the
            // reader still hasn't returned a short read
            if buf_len >= max_read_size && bytes_read == buf_len {
                max_read_size = max_read_size.saturating_mul(2);
            }
        }
    }
}

pub(crate) fn default_read_to_string<R: Read + ?Sized>(
    r: &mut R,
    buf: &mut String,
    size_hint: Option<usize>,
) -> Result<usize> {
    // Note that we do *not* call `r.read_to_end()` here. We are passing
    // `&mut Vec<u8>` (the raw contents of `buf`) into the `read_to_end`
    // method to fill it up. An arbitrary implementation could overwrite the
    // entire contents of the vector, not just append to it (which is what
    // we are expecting).
    //
    // To prevent extraneously checking the UTF-8-ness of the entire buffer
    // we pass it to our hardcoded `default_read_to_end` implementation which
    // we know is guaranteed to only read data into the end of the buffer.
    unsafe { append_to_string(buf, |b| default_read_to_end(r, b, size_hint)) }
}

pub(crate) fn default_read_vectored<F>(read: F, bufs: &mut [IoSliceMut<'_>]) -> Result<usize>
where
    F: FnOnce(&mut [u8]) -> Result<usize>,
{
    let buf = bufs.iter_mut().find(|b| !b.is_empty()).map_or(&mut [][..], |b| &mut **b);
    read(buf)
}

pub(crate) fn default_write_vectored<F>(write: F, bufs: &[IoSlice<'_>]) -> Result<usize>
where
    F: FnOnce(&[u8]) -> Result<usize>,
{
    let buf = bufs.iter().find(|b| !b.is_empty()).map_or(&[][..], |b| &**b);
    write(buf)
}

pub(crate) fn default_read_exact<R: Read + ?Sized>(this: &mut R, mut buf: &mut [u8]) -> Result<()> {
    while !buf.is_empty() {
        match this.read(buf) {
            Ok(0) => break,
            Ok(n) => {
                buf = &mut buf[n..];
            }
            Err(ref e) if e.is_interrupted() => {}
            Err(e) => return Err(e),
        }
    }
    if !buf.is_empty() { Err(Error::READ_EXACT_EOF) } else { Ok(()) }
}

pub(crate) fn default_read_buf<F>(read: F, mut cursor: BorrowedCursor<'_>) -> Result<()>
where
    F: FnOnce(&mut [u8]) -> Result<usize>,
{
    let n = read(cursor.ensure_init().init_mut())?;
    cursor.advance(n);
    Ok(())
}

pub(crate) fn default_read_buf_exact<R: Read + ?Sized>(
    this: &mut R,
    mut cursor: BorrowedCursor<'_>,
) -> Result<()> {
    while cursor.capacity() > 0 {
        let prev_written = cursor.written();
        match this.read_buf(cursor.reborrow()) {
            Ok(()) => {}
            Err(e) if e.is_interrupted() => continue,
            Err(e) => return Err(e),
        }

        if cursor.written() == prev_written {
            return Err(Error::READ_EXACT_EOF);
        }
    }

    Ok(())
}

/// The `Read` trait allows for reading bytes from a source.
///
/// Implementors of the `Read` trait are called 'readers'.
///
/// Readers are defined by one required method, [`read()`]. Each call to [`read()`]
/// will attempt to pull bytes from this source into a provided buffer. A
/// number of other methods are implemented in terms of [`read()`], giving
/// implementors a number of ways to read bytes while only needing to implement
/// a single method.
///
/// Readers are intended to be composable with one another. Many implementors
/// throughout [`std::io`] take and provide types which implement the `Read`
/// trait.
///
/// Please note that each call to [`read()`] may involve a system call, and
/// therefore, using something that implements [`BufRead`], such as
/// [`BufReader`], will be more efficient.
///
/// Repeated calls to the reader use the same cursor, so for example
/// calling `read_to_end` twice on a [`File`] will only return the file's
/// contents once. It's recommended to first call `rewind()` in that case.
///
/// # Examples
///
/// [`File`]s implement `Read`:
///
/// ```no_run
/// use std::io;
/// use std::io::prelude::*;
/// use std::fs::File;
///
/// fn main() -> io::Result<()> {
///     let mut f = File::open("foo.txt")?;
///     let mut buffer = [0; 10];
///
///     // read up to 10 bytes
///     f.read(&mut buffer)?;
///
///     let mut buffer = Vec::new();
///     // read the whole file
///     f.read_to_end(&mut buffer)?;
///
///     // read into a String, so that you don't need to do the conversion.
///     let mut buffer = String::new();
///     f.read_to_string(&mut buffer)?;
///
///     // and more! See the other methods for more details.
///     Ok(())
/// }
/// ```
///
/// Read from [`&str`] because [`&[u8]`][prim@slice] implements `Read`:
///
/// ```no_run
/// # use std::io;
/// use std::io::prelude::*;
///
/// fn main() -> io::Result<()> {
///     let mut b = "This string will be read".as_bytes();
///     let mut buffer = [0; 10];
///
///     // read up to 10 bytes
///     b.read(&mut buffer)?;
///
///     // etc... it works exactly as a File does!
///     Ok(())
/// }
/// ```
///
/// [`read()`]: Read::read
/// [`&str`]: prim@str
/// [`std::io`]: self
/// [`File`]: crate::fs::File
#[stable(feature = "rust1", since = "1.0.0")]
#[doc(notable_trait)]
#[cfg_attr(not(test), rustc_diagnostic_item = "IoRead")]
pub trait Read {
    /// Pull some bytes from this source into the specified buffer, returning
    /// how many bytes were read.
    ///
    /// This function does not provide any guarantees about whether it blocks
    /// waiting for data, but if an object needs to block for a read and cannot,
    /// it will typically signal this via an [`Err`] return value.
    ///
    /// If the return value of this method is [`Ok(n)`], then implementations must
    /// guarantee that `0 <= n <= buf.len()`. A nonzero `n` value indicates
    /// that the buffer `buf` has been filled in with `n` bytes of data from this
    /// source. If `n` is `0`, then it can indicate one of two scenarios:
    ///
    /// 1. This reader has reached its "end of file" and will likely no longer
    ///    be able to produce bytes. Note that this does not mean that the
    ///    reader will *always* no longer be able to produce bytes. As an example,
    ///    on Linux, this method will call the `recv` syscall for a [`TcpStream`],
    ///    where returning zero indicates the connection was shut down correctly. While
    ///    for [`File`], it is possible to reach the end of file and get zero as result,
    ///    but if more data is appended to the file, future calls to `read` will return
    ///    more data.
    /// 2. The buffer specified was 0 bytes in length.
    ///
    /// It is not an error if the returned value `n` is smaller than the buffer size,
    /// even when the reader is not at the end of the stream yet.
    /// This may happen for example because fewer bytes are actually available right now
    /// (e. g. being close to end-of-file) or because read() was interrupted by a signal.
    ///
    /// As this trait is safe to implement, callers in unsafe code cannot rely on
    /// `n <= buf.len()` for safety.
    /// Extra care needs to be taken when `unsafe` functions are used to access the read bytes.
    /// Callers have to ensure that no unchecked out-of-bounds accesses are possible even if
    /// `n > buf.len()`.
    ///
    /// *Implementations* of this method can make no assumptions about the contents of `buf` when
    /// this function is called. It is recommended that implementations only write data to `buf`
    /// instead of reading its contents.
    ///
    /// Correspondingly, however, *callers* of this method in unsafe code must not assume
    /// any guarantees about how the implementation uses `buf`. The trait is safe to implement,
    /// so it is possible that the code that's supposed to write to the buffer might also read
    /// from it. It is your responsibility to make sure that `buf` is initialized
    /// before calling `read`. Calling `read` with an uninitialized `buf` (of the kind one
    /// obtains via [`MaybeUninit<T>`]) is not safe, and can lead to undefined behavior.
    ///
    /// [`MaybeUninit<T>`]: crate::mem::MaybeUninit
    ///
    /// # Errors
    ///
    /// If this function encounters any form of I/O or other error, an error
    /// variant will be returned. If an error is returned then it must be
    /// guaranteed that no bytes were read.
    ///
    /// An error of the [`ErrorKind::Interrupted`] kind is non-fatal and the read
    /// operation should be retried if there is nothing else to do.
    ///
    /// # Examples
    ///
    /// [`File`]s implement `Read`:
    ///
    /// [`Ok(n)`]: Ok
    /// [`File`]: crate::fs::File
    /// [`TcpStream`]: crate::net::TcpStream
    ///
    /// ```no_run
    /// use std::io;
    /// use std::io::prelude::*;
    /// use std::fs::File;
    ///
    /// fn main() -> io::Result<()> {
    ///     let mut f = File::open("foo.txt")?;
    ///     let mut buffer = [0; 10];
    ///
    ///     // read up to 10 bytes
    ///     let n = f.read(&mut buffer[..])?;
    ///
    ///     println!("The bytes: {:?}", &buffer[..n]);
    ///     Ok(())
    /// }
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    fn read(&mut self, buf: &mut [u8]) -> Result<usize>;

    /// Like `read`, except that it reads into a slice of buffers.
    ///
    /// Data is copied to fill each buffer in order, with the final buffer
    /// written to possibly being only partially filled. This method must
    /// behave equivalently to a single call to `read` with concatenated
    /// buffers.
    ///
    /// The default implementation calls `read` with either the first nonempty
    /// buffer provided, or an empty one if none exists.
    #[stable(feature = "iovec", since = "1.36.0")]
    fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> Result<usize> {
        default_read_vectored(|b| self.read(b), bufs)
    }

    /// Determines if this `Read`er has an efficient `read_vectored`
    /// implementation.
    ///
    /// If a `Read`er does not override the default `read_vectored`
    /// implementation, code using it may want to avoid the method all together
    /// and coalesce writes into a single buffer for higher performance.
    ///
    /// The default implementation returns `false`.
    #[unstable(feature = "can_vector", issue = "69941")]
    fn is_read_vectored(&self) -> bool {
        false
    }

    /// Reads all bytes until EOF in this source, placing them into `buf`.
    ///
    /// All bytes read from this source will be appended to the specified buffer
    /// `buf`. This function will continuously call [`read()`] to append more data to
    /// `buf` until [`read()`] returns either [`Ok(0)`] or an error of
    /// non-[`ErrorKind::Interrupted`] kind.
    ///
    /// If successful, this function will return the total number of bytes read.
    ///
    /// # Errors
    ///
    /// If this function encounters an error of the kind
    /// [`ErrorKind::Interrupted`] then the error is ignored and the operation
    /// will continue.
    ///
    /// If any other read error is encountered then this function immediately
    /// returns. Any bytes which have already been read will be appended to
    /// `buf`.
    ///
    /// # Examples
    ///
    /// [`File`]s implement `Read`:
    ///
    /// [`read()`]: Read::read
    /// [`Ok(0)`]: Ok
    /// [`File`]: crate::fs::File
    ///
    /// ```no_run
    /// use std::io;
    /// use std::io::prelude::*;
    /// use std::fs::File;
    ///
    /// fn main() -> io::Result<()> {
    ///     let mut f = File::open("foo.txt")?;
    ///     let mut buffer = Vec::new();
    ///
    ///     // read the whole file
    ///     f.read_to_end(&mut buffer)?;
    ///     Ok(())
    /// }
    /// ```
    ///
    /// (See also the [`std::fs::read`] convenience function for reading from a
    /// file.)
    ///
    /// [`std::fs::read`]: crate::fs::read
    ///
    /// ## Implementing `read_to_end`
    ///
    /// When implementing the `io::Read` trait, it is recommended to allocate
    /// memory using [`Vec::try_reserve`]. However, this behavior is not guaranteed
    /// by all implementations, and `read_to_end` may not handle out-of-memory
    /// situations gracefully.
    ///
    /// ```no_run
    /// # use std::io::{self, BufRead};
    /// # struct Example { example_datasource: io::Empty } impl Example {
    /// # fn get_some_data_for_the_example(&self) -> &'static [u8] { &[] }
    /// fn read_to_end(&mut self, dest_vec: &mut Vec<u8>) -> io::Result<usize> {
    ///     let initial_vec_len = dest_vec.len();
    ///     loop {
    ///         let src_buf = self.example_datasource.fill_buf()?;
    ///         if src_buf.is_empty() {
    ///             break;
    ///         }
    ///         dest_vec.try_reserve(src_buf.len())?;
    ///         dest_vec.extend_from_slice(src_buf);
    ///
    ///         // Any irreversible side effects should happen after `try_reserve` succeeds,
    ///         // to avoid losing data on allocation error.
    ///         let read = src_buf.len();
    ///         self.example_datasource.consume(read);
    ///     }
    ///     Ok(dest_vec.len() - initial_vec_len)
    /// }
    /// # }
    /// ```
    ///
    /// [`Vec::try_reserve`]: crate::vec::Vec::try_reserve
    #[stable(feature = "rust1", since = "1.0.0")]
    fn read_to_end(&mut self, buf: &mut Vec<u8>) -> Result<usize> {
        default_read_to_end(self, buf, None)
    }

    /// Reads all bytes until EOF in this source, appending them to `buf`.
    ///
    /// If successful, this function returns the number of bytes which were read
    /// and appended to `buf`.
    ///
    /// # Errors
    ///
    /// If the data in this stream is *not* valid UTF-8 then an error is
    /// returned and `buf` is unchanged.
    ///
    /// See [`read_to_end`] for other error semantics.
    ///
    /// [`read_to_end`]: Read::read_to_end
    ///
    /// # Examples
    ///
    /// [`File`]s implement `Read`:
    ///
    /// [`File`]: crate::fs::File
    ///
    /// ```no_run
    /// use std::io;
    /// use std::io::prelude::*;
    /// use std::fs::File;
    ///
    /// fn main() -> io::Result<()> {
    ///     let mut f = File::open("foo.txt")?;
    ///     let mut buffer = String::new();
    ///
    ///     f.read_to_string(&mut buffer)?;
    ///     Ok(())
    /// }
    /// ```
    ///
    /// (See also the [`std::fs::read_to_string`] convenience function for
    /// reading from a file.)
    ///
    /// [`std::fs::read_to_string`]: crate::fs::read_to_string
    #[stable(feature = "rust1", since = "1.0.0")]
    fn read_to_string(&mut self, buf: &mut String) -> Result<usize> {
        default_read_to_string(self, buf, None)
    }

    /// Reads the exact number of bytes required to fill `buf`.
    ///
    /// This function reads as many bytes as necessary to completely fill the
    /// specified buffer `buf`.
    ///
    /// *Implementations* of this method can make no assumptions about the contents of `buf` when
    /// this function is called. It is recommended that implementations only write data to `buf`
    /// instead of reading its contents. The documentation on [`read`] has a more detailed
    /// explanation of this subject.
    ///
    /// # Errors
    ///
    /// If this function encounters an error of the kind
    /// [`ErrorKind::Interrupted`] then the error is ignored and the operation
    /// will continue.
    ///
    /// If this function encounters an "end of file" before completely filling
    /// the buffer, it returns an error of the kind [`ErrorKind::UnexpectedEof`].
    /// The contents of `buf` are unspecified in this case.
    ///
    /// If any other read error is encountered then this function immediately
    /// returns. The contents of `buf` are unspecified in this case.
    ///
    /// If this function returns an error, it is unspecified how many bytes it
    /// has read, but it will never read more than would be necessary to
    /// completely fill the buffer.
    ///
    /// # Examples
    ///
    /// [`File`]s implement `Read`:
    ///
    /// [`read`]: Read::read
    /// [`File`]: crate::fs::File
    ///
    /// ```no_run
    /// use std::io;
    /// use std::io::prelude::*;
    /// use std::fs::File;
    ///
    /// fn main() -> io::Result<()> {
    ///     let mut f = File::open("foo.txt")?;
    ///     let mut buffer = [0; 10];
    ///
    ///     // read exactly 10 bytes
    ///     f.read_exact(&mut buffer)?;
    ///     Ok(())
    /// }
    /// ```
    #[stable(feature = "read_exact", since = "1.6.0")]
    fn read_exact(&mut self, buf: &mut [u8]) -> Result<()> {
        default_read_exact(self, buf)
    }

    /// Pull some bytes from this source into the specified buffer.
    ///
    /// This is equivalent to the [`read`](Read::read) method, except that it is passed a [`BorrowedCursor`] rather than `[u8]` to allow use
    /// with uninitialized buffers. The new data will be appended to any existing contents of `buf`.
    ///
    /// The default implementation delegates to `read`.
    ///
    /// This method makes it possible to return both data and an error but it is advised against.
    #[unstable(feature = "read_buf", issue = "78485")]
    fn read_buf(&mut self, buf: BorrowedCursor<'_>) -> Result<()> {
        default_read_buf(|b| self.read(b), buf)
    }

    /// Reads the exact number of bytes required to fill `cursor`.
    ///
    /// This is similar to the [`read_exact`](Read::read_exact) method, except
    /// that it is passed a [`BorrowedCursor`] rather than `[u8]` to allow use
    /// with uninitialized buffers.
    ///
    /// # Errors
    ///
    /// If this function encounters an error of the kind [`ErrorKind::Interrupted`]
    /// then the error is ignored and the operation will continue.
    ///
    /// If this function encounters an "end of file" before completely filling
    /// the buffer, it returns an error of the kind [`ErrorKind::UnexpectedEof`].
    ///
    /// If any other read error is encountered then this function immediately
    /// returns.
    ///
    /// If this function returns an error, all bytes read will be appended to `cursor`.
    #[unstable(feature = "read_buf", issue = "78485")]
    fn read_buf_exact(&mut self, cursor: BorrowedCursor<'_>) -> Result<()> {
        default_read_buf_exact(self, cursor)
    }

    /// Creates a "by reference" adaptor for this instance of `Read`.
    ///
    /// The returned adapter also implements `Read` and will simply borrow this
    /// current reader.
    ///
    /// # Examples
    ///
    /// [`File`]s implement `Read`:
    ///
    /// [`File`]: crate::fs::File
    ///
    /// ```no_run
    /// use std::io;
    /// use std::io::Read;
    /// use std::fs::File;
    ///
    /// fn main() -> io::Result<()> {
    ///     let mut f = File::open("foo.txt")?;
    ///     let mut buffer = Vec::new();
    ///     let mut other_buffer = Vec::new();
    ///
    ///     {
    ///         let reference = f.by_ref();
    ///
    ///         // read at most 5 bytes
    ///         reference.take(5).read_to_end(&mut buffer)?;
    ///
    ///     } // drop our &mut reference so we can use f again
    ///
    ///     // original file still usable, read the rest
    ///     f.read_to_end(&mut other_buffer)?;
    ///     Ok(())
    /// }
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    fn by_ref(&mut self) -> &mut Self
    where
        Self: Sized,
    {
        self
    }

    /// Transforms this `Read` instance to an [`Iterator`] over its bytes.
    ///
    /// The returned type implements [`Iterator`] where the [`Item`] is
    /// <code>[Result]<[u8], [io::Error]></code>.
    /// The yielded item is [`Ok`] if a byte was successfully read and [`Err`]
    /// otherwise. EOF is mapped to returning [`None`] from this iterator.
    ///
    /// The default implementation calls `read` for each byte,
    /// which can be very inefficient for data that's not in memory,
    /// such as [`File`]. Consider using a [`BufReader`] in such cases.
    ///
    /// # Examples
    ///
    /// [`File`]s implement `Read`:
    ///
    /// [`Item`]: Iterator::Item
    /// [`File`]: crate::fs::File "fs::File"
    /// [Result]: crate::result::Result "Result"
    /// [io::Error]: self::Error "io::Error"
    ///
    /// ```no_run
    /// use std::io;
    /// use std::io::prelude::*;
    /// use std::io::BufReader;
    /// use std::fs::File;
    ///
    /// fn main() -> io::Result<()> {
    ///     let f = BufReader::new(File::open("foo.txt")?);
    ///
    ///     for byte in f.bytes() {
    ///         println!("{}", byte.unwrap());
    ///     }
    ///     Ok(())
    /// }
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    fn bytes(self) -> Bytes<Self>
    where
        Self: Sized,
    {
        Bytes { inner: self }
    }

    /// Creates an adapter which will chain this stream with another.
    ///
    /// The returned `Read` instance will first read all bytes from this object
    /// until EOF is encountered. Afterwards the output is equivalent to the
    /// output of `next`.
    ///
    /// # Examples
    ///
    /// [`File`]s implement `Read`:
    ///
    /// [`File`]: crate::fs::File
    ///
    /// ```no_run
    /// use std::io;
    /// use std::io::prelude::*;
    /// use std::fs::File;
    ///
    /// fn main() -> io::Result<()> {
    ///     let f1 = File::open("foo.txt")?;
    ///     let f2 = File::open("bar.txt")?;
    ///
    ///     let mut handle = f1.chain(f2);
    ///     let mut buffer = String::new();
    ///
    ///     // read the value into a String. We could use any Read method here,
    ///     // this is just one example.
    ///     handle.read_to_string(&mut buffer)?;
    ///     Ok(())
    /// }
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    fn chain<R: Read>(self, next: R) -> Chain<Self, R>
    where
        Self: Sized,
    {
        Chain { first: self, second: next, done_first: false }
    }

    /// Creates an adapter which will read at most `limit` bytes from it.
    ///
    /// This function returns a new instance of `Read` which will read at most
    /// `limit` bytes, after which it will always return EOF ([`Ok(0)`]). Any
    /// read errors will not count towards the number of bytes read and future
    /// calls to [`read()`] may succeed.
    ///
    /// # Examples
    ///
    /// [`File`]s implement `Read`:
    ///
    /// [`File`]: crate::fs::File
    /// [`Ok(0)`]: Ok
    /// [`read()`]: Read::read
    ///
    /// ```no_run
    /// use std::io;
    /// use std::io::prelude::*;
    /// use std::fs::File;
    ///
    /// fn main() -> io::Result<()> {
    ///     let f = File::open("foo.txt")?;
    ///     let mut buffer = [0; 5];
    ///
    ///     // read at most five bytes
    ///     let mut handle = f.take(5);
    ///
    ///     handle.read(&mut buffer)?;
    ///     Ok(())
    /// }
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    fn take(self, limit: u64) -> Take<Self>
    where
        Self: Sized,
    {
        Take { inner: self, limit }
    }
}

/// Reads all bytes from a [reader][Read] into a new [`String`].
///
/// This is a convenience function for [`Read::read_to_string`]. Using this
/// function avoids having to create a variable first and provides more type
/// safety since you can only get the buffer out if there were no errors. (If you
/// use [`Read::read_to_string`] you have to remember to check whether the read
/// succeeded because otherwise your buffer will be empty or only partially full.)
///
/// # Performance
///
/// The downside of this function's increased ease of use and type safety is
/// that it gives you less control over performance. For example, you can't
/// pre-allocate memory like you can using [`String::with_capacity`] and
/// [`Read::read_to_string`]. Also, you can't re-use the buffer if an error
/// occurs while reading.
///
/// In many cases, this function's performance will be adequate and the ease of use
/// and type safety tradeoffs will be worth it. However, there are cases where you
/// need more control over performance, and in those cases you should definitely use
/// [`Read::read_to_string`] directly.
///
/// Note that in some special cases, such as when reading files, this function will
/// pre-allocate memory based on the size of the input it is reading. In those
/// cases, the performance should be as good as if you had used
/// [`Read::read_to_string`] with a manually pre-allocated buffer.
///
/// # Errors
///
/// This function forces you to handle errors because the output (the `String`)
/// is wrapped in a [`Result`]. See [`Read::read_to_string`] for the errors
/// that can occur. If any error occurs, you will get an [`Err`], so you
/// don't have to worry about your buffer being empty or partially full.
///
/// # Examples
///
/// ```no_run
/// # use std::io;
/// fn main() -> io::Result<()> {
///     let stdin = io::read_to_string(io::stdin())?;
///     println!("Stdin was:");
///     println!("{stdin}");
///     Ok(())
/// }
/// ```
#[stable(feature = "io_read_to_string", since = "1.65.0")]
pub fn read_to_string<R: Read>(mut reader: R) -> Result<String> {
    let mut buf = String::new();
    reader.read_to_string(&mut buf)?;
    Ok(buf)
}

/// A buffer type used with `Read::read_vectored`.
///
/// It is semantically a wrapper around a `&mut [u8]`, but is guaranteed to be
/// ABI compatible with the `iovec` type on Unix platforms and `WSABUF` on
/// Windows.
#[stable(feature = "iovec", since = "1.36.0")]
#[repr(transparent)]
pub struct IoSliceMut<'a>(sys::io::IoSliceMut<'a>);

#[stable(feature = "iovec_send_sync", since = "1.44.0")]
unsafe impl<'a> Send for IoSliceMut<'a> {}

#[stable(feature = "iovec_send_sync", since = "1.44.0")]
unsafe impl<'a> Sync for IoSliceMut<'a> {}

#[stable(feature = "iovec", since = "1.36.0")]
impl<'a> fmt::Debug for IoSliceMut<'a> {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(self.0.as_slice(), fmt)
    }
}

impl<'a> IoSliceMut<'a> {
    /// Creates a new `IoSliceMut` wrapping a byte slice.
    ///
    /// # Panics
    ///
    /// Panics on Windows if the slice is larger than 4GB.
    #[stable(feature = "iovec", since = "1.36.0")]
    #[inline]
    pub fn new(buf: &'a mut [u8]) -> IoSliceMut<'a> {
        IoSliceMut(sys::io::IoSliceMut::new(buf))
    }

    /// Advance the internal cursor of the slice.
    ///
    /// Also see [`IoSliceMut::advance_slices`] to advance the cursors of
    /// multiple buffers.
    ///
    /// # Panics
    ///
    /// Panics when trying to advance beyond the end of the slice.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::io::IoSliceMut;
    /// use std::ops::Deref;
    ///
    /// let mut data = [1; 8];
    /// let mut buf = IoSliceMut::new(&mut data);
    ///
    /// // Mark 3 bytes as read.
    /// buf.advance(3);
    /// assert_eq!(buf.deref(), [1; 5].as_ref());
    /// ```
    #[stable(feature = "io_slice_advance", since = "1.81.0")]
    #[inline]
    pub fn advance(&mut self, n: usize) {
        self.0.advance(n)
    }

    /// Advance a slice of slices.
    ///
    /// Shrinks the slice to remove any `IoSliceMut`s that are fully advanced over.
    /// If the cursor ends up in the middle of an `IoSliceMut`, it is modified
    /// to start at that cursor.
    ///
    /// For example, if we have a slice of two 8-byte `IoSliceMut`s, and we advance by 10 bytes,
    /// the result will only include the second `IoSliceMut`, advanced by 2 bytes.
    ///
    /// # Panics
    ///
    /// Panics when trying to advance beyond the end of the slices.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::io::IoSliceMut;
    /// use std::ops::Deref;
    ///
    /// let mut buf1 = [1; 8];
    /// let mut buf2 = [2; 16];
    /// let mut buf3 = [3; 8];
    /// let mut bufs = &mut [
    ///     IoSliceMut::new(&mut buf1),
    ///     IoSliceMut::new(&mut buf2),
    ///     IoSliceMut::new(&mut buf3),
    /// ][..];
    ///
    /// // Mark 10 bytes as read.
    /// IoSliceMut::advance_slices(&mut bufs, 10);
    /// assert_eq!(bufs[0].deref(), [2; 14].as_ref());
    /// assert_eq!(bufs[1].deref(), [3; 8].as_ref());
    /// ```
    #[stable(feature = "io_slice_advance", since = "1.81.0")]
    #[inline]
    pub fn advance_slices(bufs: &mut &mut [IoSliceMut<'a>], n: usize) {
        // Number of buffers to remove.
        let mut remove = 0;
        // Remaining length before reaching n.
        let mut left = n;
        for buf in bufs.iter() {
            if let Some(remainder) = left.checked_sub(buf.len()) {
                left = remainder;
                remove += 1;
            } else {
                break;
            }
        }

        *bufs = &mut take(bufs)[remove..];
        if bufs.is_empty() {
            assert!(left == 0, "advancing io slices beyond their length");
        } else {
            bufs[0].advance(left);
        }
    }
}

#[stable(feature = "iovec", since = "1.36.0")]
impl<'a> Deref for IoSliceMut<'a> {
    type Target = [u8];

    #[inline]
    fn deref(&self) -> &[u8] {
        self.0.as_slice()
    }
}

#[stable(feature = "iovec", since = "1.36.0")]
impl<'a> DerefMut for IoSliceMut<'a> {
    #[inline]
    fn deref_mut(&mut self) -> &mut [u8] {
        self.0.as_mut_slice()
    }
}

/// A buffer type used with `Write::write_vectored`.
///
/// It is semantically a wrapper around a `&[u8]`, but is guaranteed to be
/// ABI compatible with the `iovec` type on Unix platforms and `WSABUF` on
/// Windows.
#[stable(feature = "iovec", since = "1.36.0")]
#[derive(Copy, Clone)]
#[repr(transparent)]
pub struct IoSlice<'a>(sys::io::IoSlice<'a>);

#[stable(feature = "iovec_send_sync", since = "1.44.0")]
unsafe impl<'a> Send for IoSlice<'a> {}

#[stable(feature = "iovec_send_sync", since = "1.44.0")]
unsafe impl<'a> Sync for IoSlice<'a> {}

#[stable(feature = "iovec", since = "1.36.0")]
impl<'a> fmt::Debug for IoSlice<'a> {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(self.0.as_slice(), fmt)
    }
}

impl<'a> IoSlice<'a> {
    /// Creates a new `IoSlice` wrapping a byte slice.
    ///
    /// # Panics
    ///
    /// Panics on Windows if the slice is larger than 4GB.
    #[stable(feature = "iovec", since = "1.36.0")]
    #[must_use]
    #[inline]
    pub fn new(buf: &'a [u8]) -> IoSlice<'a> {
        IoSlice(sys::io::IoSlice::new(buf))
    }

    /// Advance the internal cursor of the slice.
    ///
    /// Also see [`IoSlice::advance_slices`] to advance the cursors of multiple
    /// buffers.
    ///
    /// # Panics
    ///
    /// Panics when trying to advance beyond the end of the slice.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::io::IoSlice;
    /// use std::ops::Deref;
    ///
    /// let data = [1; 8];
    /// let mut buf = IoSlice::new(&data);
    ///
    /// // Mark 3 bytes as read.
    /// buf.advance(3);
    /// assert_eq!(buf.deref(), [1; 5].as_ref());
    /// ```
    #[stable(feature = "io_slice_advance", since = "1.81.0")]
    #[inline]
    pub fn advance(&mut self, n: usize) {
        self.0.advance(n)
    }

    /// Advance a slice of slices.
    ///
    /// Shrinks the slice to remove any `IoSlice`s that are fully advanced over.
    /// If the cursor ends up in the middle of an `IoSlice`, it is modified
    /// to start at that cursor.
    ///
    /// For example, if we have a slice of two 8-byte `IoSlice`s, and we advance by 10 bytes,
    /// the result will only include the second `IoSlice`, advanced by 2 bytes.
    ///
    /// # Panics
    ///
    /// Panics when trying to advance beyond the end of the slices.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::io::IoSlice;
    /// use std::ops::Deref;
    ///
    /// let buf1 = [1; 8];
    /// let buf2 = [2; 16];
    /// let buf3 = [3; 8];
    /// let mut bufs = &mut [
    ///     IoSlice::new(&buf1),
    ///     IoSlice::new(&buf2),
    ///     IoSlice::new(&buf3),
    /// ][..];
    ///
    /// // Mark 10 bytes as written.
    /// IoSlice::advance_slices(&mut bufs, 10);
    /// assert_eq!(bufs[0].deref(), [2; 14].as_ref());
    /// assert_eq!(bufs[1].deref(), [3; 8].as_ref());
    #[stable(feature = "io_slice_advance", since = "1.81.0")]
    #[inline]
    pub fn advance_slices(bufs: &mut &mut [IoSlice<'a>], n: usize) {
        // Number of buffers to remove.
        let mut remove = 0;
        // Remaining length before reaching n. This prevents overflow
        // that could happen if the length of slices in `bufs` were instead
        // accumulated. Those slice may be aliased and, if they are large
        // enough, their added length may overflow a `usize`.
        let mut left = n;
        for buf in bufs.iter() {
            if let Some(remainder) = left.checked_sub(buf.len()) {
                left = remainder;
                remove += 1;
            } else {
                break;
            }
        }

        *bufs = &mut take(bufs)[remove..];
        if bufs.is_empty() {
            assert!(left == 0, "advancing io slices beyond their length");
        } else {
            bufs[0].advance(left);
        }
    }
}

#[stable(feature = "iovec", since = "1.36.0")]
impl<'a> Deref for IoSlice<'a> {
    type Target = [u8];

    #[inline]
    fn deref(&self) -> &[u8] {
        self.0.as_slice()
    }
}

/// A trait for objects which are byte-oriented sinks.
///
/// Implementors of the `Write` trait are sometimes called 'writers'.
///
/// Writers are defined by two required methods, [`write`] and [`flush`]:
///
/// * The [`write`] method will attempt to write some data into the object,
///   returning how many bytes were successfully written.
///
/// * The [`flush`] method is useful for adapters and explicit buffers
///   themselves for ensuring that all buffered data has been pushed out to the
///   'true sink'.
///
/// Writers are intended to be composable with one another. Many implementors
/// throughout [`std::io`] take and provide types which implement the `Write`
/// trait.
///
/// [`write`]: Write::write
/// [`flush`]: Write::flush
/// [`std::io`]: self
///
/// # Examples
///
/// ```no_run
/// use std::io::prelude::*;
/// use std::fs::File;
///
/// fn main() -> std::io::Result<()> {
///     let data = b"some bytes";
///
///     let mut pos = 0;
///     let mut buffer = File::create("foo.txt")?;
///
///     while pos < data.len() {
///         let bytes_written = buffer.write(&data[pos..])?;
///         pos += bytes_written;
///     }
///     Ok(())
/// }
/// ```
///
/// The trait also provides convenience methods like [`write_all`], which calls
/// `write` in a loop until its entire input has been written.
///
/// [`write_all`]: Write::write_all
#[stable(feature = "rust1", since = "1.0.0")]
#[doc(notable_trait)]
#[cfg_attr(not(test), rustc_diagnostic_item = "IoWrite")]
pub trait Write {
    /// Writes a buffer into this writer, returning how many bytes were written.
    ///
    /// This function will attempt to write the entire contents of `buf`, but
    /// the entire write might not succeed, or the write may also generate an
    /// error. Typically, a call to `write` represents one attempt to write to
    /// any wrapped object.
    ///
    /// Calls to `write` are not guaranteed to block waiting for data to be
    /// written, and a write which would otherwise block can be indicated through
    /// an [`Err`] variant.
    ///
    /// If this method consumed `n > 0` bytes of `buf` it must return [`Ok(n)`].
    /// If the return value is `Ok(n)` then `n` must satisfy `n <= buf.len()`.
    /// A return value of `Ok(0)` typically means that the underlying object is
    /// no longer able to accept bytes and will likely not be able to in the
    /// future as well, or that the buffer provided is empty.
    ///
    /// # Errors
    ///
    /// Each call to `write` may generate an I/O error indicating that the
    /// operation could not be completed. If an error is returned then no bytes
    /// in the buffer were written to this writer.
    ///
    /// It is **not** considered an error if the entire buffer could not be
    /// written to this writer.
    ///
    /// An error of the [`ErrorKind::Interrupted`] kind is non-fatal and the
    /// write operation should be retried if there is nothing else to do.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use std::io::prelude::*;
    /// use std::fs::File;
    ///
    /// fn main() -> std::io::Result<()> {
    ///     let mut buffer = File::create("foo.txt")?;
    ///
    ///     // Writes some prefix of the byte string, not necessarily all of it.
    ///     buffer.write(b"some bytes")?;
    ///     Ok(())
    /// }
    /// ```
    ///
    /// [`Ok(n)`]: Ok
    #[stable(feature = "rust1", since = "1.0.0")]
    fn write(&mut self, buf: &[u8]) -> Result<usize>;

    /// Like [`write`], except that it writes from a slice of buffers.
    ///
    /// Data is copied from each buffer in order, with the final buffer
    /// read from possibly being only partially consumed. This method must
    /// behave as a call to [`write`] with the buffers concatenated would.
    ///
    /// The default implementation calls [`write`] with either the first nonempty
    /// buffer provided, or an empty one if none exists.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use std::io::IoSlice;
    /// use std::io::prelude::*;
    /// use std::fs::File;
    ///
    /// fn main() -> std::io::Result<()> {
    ///     let data1 = [1; 8];
    ///     let data2 = [15; 8];
    ///     let io_slice1 = IoSlice::new(&data1);
    ///     let io_slice2 = IoSlice::new(&data2);
    ///
    ///     let mut buffer = File::create("foo.txt")?;
    ///
    ///     // Writes some prefix of the byte string, not necessarily all of it.
    ///     buffer.write_vectored(&[io_slice1, io_slice2])?;
    ///     Ok(())
    /// }
    /// ```
    ///
    /// [`write`]: Write::write
    #[stable(feature = "iovec", since = "1.36.0")]
    fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> Result<usize> {
        default_write_vectored(|b| self.write(b), bufs)
    }

    /// Determines if this `Write`r has an efficient [`write_vectored`]
    /// implementation.
    ///
    /// If a `Write`r does not override the default [`write_vectored`]
    /// implementation, code using it may want to avoid the method all together
    /// and coalesce writes into a single buffer for higher performance.
    ///
    /// The default implementation returns `false`.
    ///
    /// [`write_vectored`]: Write::write_vectored
    #[unstable(feature = "can_vector", issue = "69941")]
    fn is_write_vectored(&self) -> bool {
        false
    }

    /// Flushes this output stream, ensuring that all intermediately buffered
    /// contents reach their destination.
    ///
    /// # Errors
    ///
    /// It is considered an error if not all bytes could be written due to
    /// I/O errors or EOF being reached.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use std::io::prelude::*;
    /// use std::io::BufWriter;
    /// use std::fs::File;
    ///
    /// fn main() -> std::io::Result<()> {
    ///     let mut buffer = BufWriter::new(File::create("foo.txt")?);
    ///
    ///     buffer.write_all(b"some bytes")?;
    ///     buffer.flush()?;
    ///     Ok(())
    /// }
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    fn flush(&mut self) -> Result<()>;

    /// Attempts to write an entire buffer into this writer.
    ///
    /// This method will continuously call [`write`] until there is no more data
    /// to be written or an error of non-[`ErrorKind::Interrupted`] kind is
    /// returned. This method will not return until the entire buffer has been
    /// successfully written or such an error occurs. The first error that is
    /// not of [`ErrorKind::Interrupted`] kind generated from this method will be
    /// returned.
    ///
    /// If the buffer contains no data, this will never call [`write`].
    ///
    /// # Errors
    ///
    /// This function will return the first error of
    /// non-[`ErrorKind::Interrupted`] kind that [`write`] returns.
    ///
    /// [`write`]: Write::write
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use std::io::prelude::*;
    /// use std::fs::File;
    ///
    /// fn main() -> std::io::Result<()> {
    ///     let mut buffer = File::create("foo.txt")?;
    ///
    ///     buffer.write_all(b"some bytes")?;
    ///     Ok(())
    /// }
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    fn write_all(&mut self, mut buf: &[u8]) -> Result<()> {
        while !buf.is_empty() {
            match self.write(buf) {
                Ok(0) => {
                    return Err(Error::WRITE_ALL_EOF);
                }
                Ok(n) => buf = &buf[n..],
                Err(ref e) if e.is_interrupted() => {}
                Err(e) => return Err(e),
            }
        }
        Ok(())
    }

    /// Attempts to write multiple buffers into this writer.
    ///
    /// This method will continuously call [`write_vectored`] until there is no
    /// more data to be written or an error of non-[`ErrorKind::Interrupted`]
    /// kind is returned. This method will not return until all buffers have
    /// been successfully written or such an error occurs. The first error that
    /// is not of [`ErrorKind::Interrupted`] kind generated from this method
    /// will be returned.
    ///
    /// If the buffer contains no data, this will never call [`write_vectored`].
    ///
    /// # Notes
    ///
    /// Unlike [`write_vectored`], this takes a *mutable* reference to
    /// a slice of [`IoSlice`]s, not an immutable one. That's because we need to
    /// modify the slice to keep track of the bytes already written.
    ///
    /// Once this function returns, the contents of `bufs` are unspecified, as
    /// this depends on how many calls to [`write_vectored`] were necessary. It is
    /// best to understand this function as taking ownership of `bufs` and to
    /// not use `bufs` afterwards. The underlying buffers, to which the
    /// [`IoSlice`]s point (but not the [`IoSlice`]s themselves), are unchanged and
    /// can be reused.
    ///
    /// [`write_vectored`]: Write::write_vectored
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(write_all_vectored)]
    /// # fn main() -> std::io::Result<()> {
    ///
    /// use std::io::{Write, IoSlice};
    ///
    /// let mut writer = Vec::new();
    /// let bufs = &mut [
    ///     IoSlice::new(&[1]),
    ///     IoSlice::new(&[2, 3]),
    ///     IoSlice::new(&[4, 5, 6]),
    /// ];
    ///
    /// writer.write_all_vectored(bufs)?;
    /// // Note: the contents of `bufs` is now undefined, see the Notes section.
    ///
    /// assert_eq!(writer, &[1, 2, 3, 4, 5, 6]);
    /// # Ok(()) }
    /// ```
    #[unstable(feature = "write_all_vectored", issue = "70436")]
    fn write_all_vectored(&mut self, mut bufs: &mut [IoSlice<'_>]) -> Result<()> {
        // Guarantee that bufs is empty if it contains no data,
        // to avoid calling write_vectored if there is no data to be written.
        IoSlice::advance_slices(&mut bufs, 0);
        while !bufs.is_empty() {
            match self.write_vectored(bufs) {
                Ok(0) => {
                    return Err(Error::WRITE_ALL_EOF);
                }
                Ok(n) => IoSlice::advance_slices(&mut bufs, n),
                Err(ref e) if e.is_interrupted() => {}
                Err(e) => return Err(e),
            }
        }
        Ok(())
    }

    /// Writes a formatted string into this writer, returning any error
    /// encountered.
    ///
    /// This method is primarily used to interface with the
    /// [`format_args!()`] macro, and it is rare that this should
    /// explicitly be called. The [`write!()`] macro should be favored to
    /// invoke this method instead.
    ///
    /// This function internally uses the [`write_all`] method on
    /// this trait and hence will continuously write data so long as no errors
    /// are received. This also means that partial writes are not indicated in
    /// this signature.
    ///
    /// [`write_all`]: Write::write_all
    ///
    /// # Errors
    ///
    /// This function will return any I/O error reported while formatting.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use std::io::prelude::*;
    /// use std::fs::File;
    ///
    /// fn main() -> std::io::Result<()> {
    ///     let mut buffer = File::create("foo.txt")?;
    ///
    ///     // this call
    ///     write!(buffer, "{:.*}", 2, 1.234567)?;
    ///     // turns into this:
    ///     buffer.write_fmt(format_args!("{:.*}", 2, 1.234567))?;
    ///     Ok(())
    /// }
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    fn write_fmt(&mut self, fmt: fmt::Arguments<'_>) -> Result<()> {
        // Create a shim which translates a Write to a fmt::Write and saves
        // off I/O errors. instead of discarding them
        struct Adapter<'a, T: ?Sized + 'a> {
            inner: &'a mut T,
            error: Result<()>,
        }

        impl<T: Write + ?Sized> fmt::Write for Adapter<'_, T> {
            fn write_str(&mut self, s: &str) -> fmt::Result {
                match self.inner.write_all(s.as_bytes()) {
                    Ok(()) => Ok(()),
                    Err(e) => {
                        self.error = Err(e);
                        Err(fmt::Error)
                    }
                }
            }
        }

        let mut output = Adapter { inner: self, error: Ok(()) };
        match fmt::write(&mut output, fmt) {
            Ok(()) => Ok(()),
            Err(..) => {
                // check if the error came from the underlying `Write` or not
                if output.error.is_err() {
                    output.error
                } else {
                    // This shouldn't happen: the underlying stream did not error, but somehow
                    // the formatter still errored?
                    panic!(
                        "a formatting trait implementation returned an error when the underlying stream did not"
                    );
                }
            }
        }
    }

    /// Creates a "by reference" adapter for this instance of `Write`.
    ///
    /// The returned adapter also implements `Write` and will simply borrow this
    /// current writer.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use std::io::Write;
    /// use std::fs::File;
    ///
    /// fn main() -> std::io::Result<()> {
    ///     let mut buffer = File::create("foo.txt")?;
    ///
    ///     let reference = buffer.by_ref();
    ///
    ///     // we can use reference just like our original buffer
    ///     reference.write_all(b"some bytes")?;
    ///     Ok(())
    /// }
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    fn by_ref(&mut self) -> &mut Self
    where
        Self: Sized,
    {
        self
    }
}

/// The `Seek` trait provides a cursor which can be moved within a stream of
/// bytes.
///
/// The stream typically has a fixed size, allowing seeking relative to either
/// end or the current offset.
///
/// # Examples
///
/// [`File`]s implement `Seek`:
///
/// [`File`]: crate::fs::File
///
/// ```no_run
/// use std::io;
/// use std::io::prelude::*;
/// use std::fs::File;
/// use std::io::SeekFrom;
///
/// fn main() -> io::Result<()> {
///     let mut f = File::open("foo.txt")?;
///
///     // move the cursor 42 bytes from the start of the file
///     f.seek(SeekFrom::Start(42))?;
///     Ok(())
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[cfg_attr(not(test), rustc_diagnostic_item = "IoSeek")]
pub trait Seek {
    /// Seek to an offset, in bytes, in a stream.
    ///
    /// A seek beyond the end of a stream is allowed, but behavior is defined
    /// by the implementation.
    ///
    /// If the seek operation completed successfully,
    /// this method returns the new position from the start of the stream.
    /// That position can be used later with [`SeekFrom::Start`].
    ///
    /// # Errors
    ///
    /// Seeking can fail, for example because it might involve flushing a buffer.
    ///
    /// Seeking to a negative offset is considered an error.
    #[stable(feature = "rust1", since = "1.0.0")]
    fn seek(&mut self, pos: SeekFrom) -> Result<u64>;

    /// Rewind to the beginning of a stream.
    ///
    /// This is a convenience method, equivalent to `seek(SeekFrom::Start(0))`.
    ///
    /// # Errors
    ///
    /// Rewinding can fail, for example because it might involve flushing a buffer.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use std::io::{Read, Seek, Write};
    /// use std::fs::OpenOptions;
    ///
    /// let mut f = OpenOptions::new()
    ///     .write(true)
    ///     .read(true)
    ///     .create(true)
    ///     .open("foo.txt").unwrap();
    ///
    /// let hello = "Hello!\n";
    /// write!(f, "{hello}").unwrap();
    /// f.rewind().unwrap();
    ///
    /// let mut buf = String::new();
    /// f.read_to_string(&mut buf).unwrap();
    /// assert_eq!(&buf, hello);
    /// ```
    #[stable(feature = "seek_rewind", since = "1.55.0")]
    fn rewind(&mut self) -> Result<()> {
        self.seek(SeekFrom::Start(0))?;
        Ok(())
    }

    /// Returns the length of this stream (in bytes).
    ///
    /// This method is implemented using up to three seek operations. If this
    /// method returns successfully, the seek position is unchanged (i.e. the
    /// position before calling this method is the same as afterwards).
    /// However, if this method returns an error, the seek position is
    /// unspecified.
    ///
    /// If you need to obtain the length of *many* streams and you don't care
    /// about the seek position afterwards, you can reduce the number of seek
    /// operations by simply calling `seek(SeekFrom::End(0))` and using its
    /// return value (it is also the stream length).
    ///
    /// Note that length of a stream can change over time (for example, when
    /// data is appended to a file). So calling this method multiple times does
    /// not necessarily return the same length each time.
    ///
    /// # Example
    ///
    /// ```no_run
    /// #![feature(seek_stream_len)]
    /// use std::{
    ///     io::{self, Seek},
    ///     fs::File,
    /// };
    ///
    /// fn main() -> io::Result<()> {
    ///     let mut f = File::open("foo.txt")?;
    ///
    ///     let len = f.stream_len()?;
    ///     println!("The file is currently {len} bytes long");
    ///     Ok(())
    /// }
    /// ```
    #[unstable(feature = "seek_stream_len", issue = "59359")]
    fn stream_len(&mut self) -> Result<u64> {
        let old_pos = self.stream_position()?;
        let len = self.seek(SeekFrom::End(0))?;

        // Avoid seeking a third time when we were already at the end of the
        // stream. The branch is usually way cheaper than a seek operation.
        if old_pos != len {
            self.seek(SeekFrom::Start(old_pos))?;
        }

        Ok(len)
    }

    /// Returns the current seek position from the start of the stream.
    ///
    /// This is equivalent to `self.seek(SeekFrom::Current(0))`.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use std::{
    ///     io::{self, BufRead, BufReader, Seek},
    ///     fs::File,
    /// };
    ///
    /// fn main() -> io::Result<()> {
    ///     let mut f = BufReader::new(File::open("foo.txt")?);
    ///
    ///     let before = f.stream_position()?;
    ///     f.read_line(&mut String::new())?;
    ///     let after = f.stream_position()?;
    ///
    ///     println!("The first line was {} bytes long", after - before);
    ///     Ok(())
    /// }
    /// ```
    #[stable(feature = "seek_convenience", since = "1.51.0")]
    fn stream_position(&mut self) -> Result<u64> {
        self.seek(SeekFrom::Current(0))
    }

    /// Seeks relative to the current position.
    ///
    /// This is equivalent to `self.seek(SeekFrom::Current(offset))` but
    /// doesn't return the new position which can allow some implementations
    /// such as [`BufReader`] to perform more efficient seeks.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use std::{
    ///     io::{self, Seek},
    ///     fs::File,
    /// };
    ///
    /// fn main() -> io::Result<()> {
    ///     let mut f = File::open("foo.txt")?;
    ///     f.seek_relative(10)?;
    ///     assert_eq!(f.stream_position()?, 10);
    ///     Ok(())
    /// }
    /// ```
    ///
    /// [`BufReader`]: crate::io::BufReader
    #[stable(feature = "seek_seek_relative", since = "1.80.0")]
    fn seek_relative(&mut self, offset: i64) -> Result<()> {
        self.seek(SeekFrom::Current(offset))?;
        Ok(())
    }
}

/// Enumeration of possible methods to seek within an I/O object.
///
/// It is used by the [`Seek`] trait.
#[derive(Copy, PartialEq, Eq, Clone, Debug)]
#[stable(feature = "rust1", since = "1.0.0")]
#[cfg_attr(not(test), rustc_diagnostic_item = "SeekFrom")]
pub enum SeekFrom {
    /// Sets the offset to the provided number of bytes.
    #[stable(feature = "rust1", since = "1.0.0")]
    Start(#[stable(feature = "rust1", since = "1.0.0")] u64),

    /// Sets the offset to the size of this object plus the specified number of
    /// bytes.
    ///
    /// It is possible to seek beyond the end of an object, but it's an error to
    /// seek before byte 0.
    #[stable(feature = "rust1", since = "1.0.0")]
    End(#[stable(feature = "rust1", since = "1.0.0")] i64),

    /// Sets the offset to the current position plus the specified number of
    /// bytes.
    ///
    /// It is possible to seek beyond the end of an object, but it's an error to
    /// seek before byte 0.
    #[stable(feature = "rust1", since = "1.0.0")]
    Current(#[stable(feature = "rust1", since = "1.0.0")] i64),
}

fn read_until<R: BufRead + ?Sized>(r: &mut R, delim: u8, buf: &mut Vec<u8>) -> Result<usize> {
    let mut read = 0;
    loop {
        let (done, used) = {
            let available = match r.fill_buf() {
                Ok(n) => n,
                Err(ref e) if e.is_interrupted() => continue,
                Err(e) => return Err(e),
            };
            match memchr::memchr(delim, available) {
                Some(i) => {
                    buf.extend_from_slice(&available[..=i]);
                    (true, i + 1)
                }
                None => {
                    buf.extend_from_slice(available);
                    (false, available.len())
                }
            }
        };
        r.consume(used);
        read += used;
        if done || used == 0 {
            return Ok(read);
        }
    }
}

fn skip_until<R: BufRead + ?Sized>(r: &mut R, delim: u8) -> Result<usize> {
    let mut read = 0;
    loop {
        let (done, used) = {
            let available = match r.fill_buf() {
                Ok(n) => n,
                Err(ref e) if e.kind() == ErrorKind::Interrupted => continue,
                Err(e) => return Err(e),
            };
            match memchr::memchr(delim, available) {
                Some(i) => (true, i + 1),
                None => (false, available.len()),
            }
        };
        r.consume(used);
        read += used;
        if done || used == 0 {
            return Ok(read);
        }
    }
}

/// A `BufRead` is a type of `Read`er which has an internal buffer, allowing it
/// to perform extra ways of reading.
///
/// For example, reading line-by-line is inefficient without using a buffer, so
/// if you want to read by line, you'll need `BufRead`, which includes a
/// [`read_line`] method as well as a [`lines`] iterator.
///
/// # Examples
///
/// A locked standard input implements `BufRead`:
///
/// ```no_run
/// use std::io;
/// use std::io::prelude::*;
///
/// let stdin = io::stdin();
/// for line in stdin.lock().lines() {
///     println!("{}", line.unwrap());
/// }
/// ```
///
/// If you have something that implements [`Read`], you can use the [`BufReader`
/// type][`BufReader`] to turn it into a `BufRead`.
///
/// For example, [`File`] implements [`Read`], but not `BufRead`.
/// [`BufReader`] to the rescue!
///
/// [`File`]: crate::fs::File
/// [`read_line`]: BufRead::read_line
/// [`lines`]: BufRead::lines
///
/// ```no_run
/// use std::io::{self, BufReader};
/// use std::io::prelude::*;
/// use std::fs::File;
///
/// fn main() -> io::Result<()> {
///     let f = File::open("foo.txt")?;
///     let f = BufReader::new(f);
///
///     for line in f.lines() {
///         println!("{}", line.unwrap());
///     }
///
///     Ok(())
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub trait BufRead: Read {
    /// Returns the contents of the internal buffer, filling it with more data
    /// from the inner reader if it is empty.
    ///
    /// This function is a lower-level call. It needs to be paired with the
    /// [`consume`] method to function properly. When calling this
    /// method, none of the contents will be "read" in the sense that later
    /// calling `read` may return the same contents. As such, [`consume`] must
    /// be called with the number of bytes that are consumed from this buffer to
    /// ensure that the bytes are never returned twice.
    ///
    /// [`consume`]: BufRead::consume
    ///
    /// An empty buffer returned indicates that the stream has reached EOF.
    ///
    /// # Errors
    ///
    /// This function will return an I/O error if the underlying reader was
    /// read, but returned an error.
    ///
    /// # Examples
    ///
    /// A locked standard input implements `BufRead`:
    ///
    /// ```no_run
    /// use std::io;
    /// use std::io::prelude::*;
    ///
    /// let stdin = io::stdin();
    /// let mut stdin = stdin.lock();
    ///
    /// let buffer = stdin.fill_buf().unwrap();
    ///
    /// // work with buffer
    /// println!("{buffer:?}");
    ///
    /// // ensure the bytes we worked with aren't returned again later
    /// let length = buffer.len();
    /// stdin.consume(length);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    fn fill_buf(&mut self) -> Result<&[u8]>;

    /// Tells this buffer that `amt` bytes have been consumed from the buffer,
    /// so they should no longer be returned in calls to `read`.
    ///
    /// This function is a lower-level call. It needs to be paired with the
    /// [`fill_buf`] method to function properly. This function does
    /// not perform any I/O, it simply informs this object that some amount of
    /// its buffer, returned from [`fill_buf`], has been consumed and should
    /// no longer be returned. As such, this function may do odd things if
    /// [`fill_buf`] isn't called before calling it.
    ///
    /// The `amt` must be `<=` the number of bytes in the buffer returned by
    /// [`fill_buf`].
    ///
    /// # Examples
    ///
    /// Since `consume()` is meant to be used with [`fill_buf`],
    /// that method's example includes an example of `consume()`.
    ///
    /// [`fill_buf`]: BufRead::fill_buf
    #[stable(feature = "rust1", since = "1.0.0")]
    fn consume(&mut self, amt: usize);

    /// Checks if the underlying `Read` has any data left to be read.
    ///
    /// This function may fill the buffer to check for data,
    /// so this functions returns `Result<bool>`, not `bool`.
    ///
    /// Default implementation calls `fill_buf` and checks that
    /// returned slice is empty (which means that there is no data left,
    /// since EOF is reached).
    ///
    /// Examples
    ///
    /// ```
    /// #![feature(buf_read_has_data_left)]
    /// use std::io;
    /// use std::io::prelude::*;
    ///
    /// let stdin = io::stdin();
    /// let mut stdin = stdin.lock();
    ///
    /// while stdin.has_data_left().unwrap() {
    ///     let mut line = String::new();
    ///     stdin.read_line(&mut line).unwrap();
    ///     // work with line
    ///     println!("{line:?}");
    /// }
    /// ```
    #[unstable(feature = "buf_read_has_data_left", reason = "recently added", issue = "86423")]
    fn has_data_left(&mut self) -> Result<bool> {
        self.fill_buf().map(|b| !b.is_empty())
    }

    /// Reads all bytes into `buf` until the delimiter `byte` or EOF is reached.
    ///
    /// This function will read bytes from the underlying stream until the
    /// delimiter or EOF is found. Once found, all bytes up to, and including,
    /// the delimiter (if found) will be appended to `buf`.
    ///
    /// If successful, this function will return the total number of bytes read.
    ///
    /// This function is blocking and should be used carefully: it is possible for
    /// an attacker to continuously send bytes without ever sending the delimiter
    /// or EOF.
    ///
    /// # Errors
    ///
    /// This function will ignore all instances of [`ErrorKind::Interrupted`] and
    /// will otherwise return any errors returned by [`fill_buf`].
    ///
    /// If an I/O error is encountered then all bytes read so far will be
    /// present in `buf` and its length will have been adjusted appropriately.
    ///
    /// [`fill_buf`]: BufRead::fill_buf
    ///
    /// # Examples
    ///
    /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
    /// this example, we use [`Cursor`] to read all the bytes in a byte slice
    /// in hyphen delimited segments:
    ///
    /// ```
    /// use std::io::{self, BufRead};
    ///
    /// let mut cursor = io::Cursor::new(b"lorem-ipsum");
    /// let mut buf = vec![];
    ///
    /// // cursor is at 'l'
    /// let num_bytes = cursor.read_until(b'-', &mut buf)
    ///     .expect("reading from cursor won't fail");
    /// assert_eq!(num_bytes, 6);
    /// assert_eq!(buf, b"lorem-");
    /// buf.clear();
    ///
    /// // cursor is at 'i'
    /// let num_bytes = cursor.read_until(b'-', &mut buf)
    ///     .expect("reading from cursor won't fail");
    /// assert_eq!(num_bytes, 5);
    /// assert_eq!(buf, b"ipsum");
    /// buf.clear();
    ///
    /// // cursor is at EOF
    /// let num_bytes = cursor.read_until(b'-', &mut buf)
    ///     .expect("reading from cursor won't fail");
    /// assert_eq!(num_bytes, 0);
    /// assert_eq!(buf, b"");
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> Result<usize> {
        read_until(self, byte, buf)
    }

    /// Skips all bytes until the delimiter `byte` or EOF is reached.
    ///
    /// This function will read (and discard) bytes from the underlying stream until the
    /// delimiter or EOF is found.
    ///
    /// If successful, this function will return the total number of bytes read,
    /// including the delimiter byte.
    ///
    /// This is useful for efficiently skipping data such as NUL-terminated strings
    /// in binary file formats without buffering.
    ///
    /// This function is blocking and should be used carefully: it is possible for
    /// an attacker to continuously send bytes without ever sending the delimiter
    /// or EOF.
    ///
    /// # Errors
    ///
    /// This function will ignore all instances of [`ErrorKind::Interrupted`] and
    /// will otherwise return any errors returned by [`fill_buf`].
    ///
    /// If an I/O error is encountered then all bytes read so far will be
    /// present in `buf` and its length will have been adjusted appropriately.
    ///
    /// [`fill_buf`]: BufRead::fill_buf
    ///
    /// # Examples
    ///
    /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
    /// this example, we use [`Cursor`] to read some NUL-terminated information
    /// about Ferris from a binary string, skipping the fun fact:
    ///
    /// ```
    /// use std::io::{self, BufRead};
    ///
    /// let mut cursor = io::Cursor::new(b"Ferris\0Likes long walks on the beach\0Crustacean\0");
    ///
    /// // read name
    /// let mut name = Vec::new();
    /// let num_bytes = cursor.read_until(b'\0', &mut name)
    ///     .expect("reading from cursor won't fail");
    /// assert_eq!(num_bytes, 7);
    /// assert_eq!(name, b"Ferris\0");
    ///
    /// // skip fun fact
    /// let num_bytes = cursor.skip_until(b'\0')
    ///     .expect("reading from cursor won't fail");
    /// assert_eq!(num_bytes, 30);
    ///
    /// // read animal type
    /// let mut animal = Vec::new();
    /// let num_bytes = cursor.read_until(b'\0', &mut animal)
    ///     .expect("reading from cursor won't fail");
    /// assert_eq!(num_bytes, 11);
    /// assert_eq!(animal, b"Crustacean\0");
    /// ```
    #[stable(feature = "bufread_skip_until", since = "1.83.0")]
    fn skip_until(&mut self, byte: u8) -> Result<usize> {
        skip_until(self, byte)
    }

    /// Reads all bytes until a newline (the `0xA` byte) is reached, and append
    /// them to the provided `String` buffer.
    ///
    /// Previous content of the buffer will be preserved. To avoid appending to
    /// the buffer, you need to [`clear`] it first.
    ///
    /// This function will read bytes from the underlying stream until the
    /// newline delimiter (the `0xA` byte) or EOF is found. Once found, all bytes
    /// up to, and including, the delimiter (if found) will be appended to
    /// `buf`.
    ///
    /// If successful, this function will return the total number of bytes read.
    ///
    /// If this function returns [`Ok(0)`], the stream has reached EOF.
    ///
    /// This function is blocking and should be used carefully: it is possible for
    /// an attacker to continuously send bytes without ever sending a newline
    /// or EOF. You can use [`take`] to limit the maximum number of bytes read.
    ///
    /// [`Ok(0)`]: Ok
    /// [`clear`]: String::clear
    /// [`take`]: crate::io::Read::take
    ///
    /// # Errors
    ///
    /// This function has the same error semantics as [`read_until`] and will
    /// also return an error if the read bytes are not valid UTF-8. If an I/O
    /// error is encountered then `buf` may contain some bytes already read in
    /// the event that all data read so far was valid UTF-8.
    ///
    /// [`read_until`]: BufRead::read_until
    ///
    /// # Examples
    ///
    /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
    /// this example, we use [`Cursor`] to read all the lines in a byte slice:
    ///
    /// ```
    /// use std::io::{self, BufRead};
    ///
    /// let mut cursor = io::Cursor::new(b"foo\nbar");
    /// let mut buf = String::new();
    ///
    /// // cursor is at 'f'
    /// let num_bytes = cursor.read_line(&mut buf)
    ///     .expect("reading from cursor won't fail");
    /// assert_eq!(num_bytes, 4);
    /// assert_eq!(buf, "foo\n");
    /// buf.clear();
    ///
    /// // cursor is at 'b'
    /// let num_bytes = cursor.read_line(&mut buf)
    ///     .expect("reading from cursor won't fail");
    /// assert_eq!(num_bytes, 3);
    /// assert_eq!(buf, "bar");
    /// buf.clear();
    ///
    /// // cursor is at EOF
    /// let num_bytes = cursor.read_line(&mut buf)
    ///     .expect("reading from cursor won't fail");
    /// assert_eq!(num_bytes, 0);
    /// assert_eq!(buf, "");
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    fn read_line(&mut self, buf: &mut String) -> Result<usize> {
        // Note that we are not calling the `.read_until` method here, but
        // rather our hardcoded implementation. For more details as to why, see
        // the comments in `read_to_end`.
        unsafe { append_to_string(buf, |b| read_until(self, b'\n', b)) }
    }

    /// Returns an iterator over the contents of this reader split on the byte
    /// `byte`.
    ///
    /// The iterator returned from this function will return instances of
    /// <code>[io::Result]<[Vec]\<u8>></code>. Each vector returned will *not* have
    /// the delimiter byte at the end.
    ///
    /// This function will yield errors whenever [`read_until`] would have
    /// also yielded an error.
    ///
    /// [io::Result]: self::Result "io::Result"
    /// [`read_until`]: BufRead::read_until
    ///
    /// # Examples
    ///
    /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
    /// this example, we use [`Cursor`] to iterate over all hyphen delimited
    /// segments in a byte slice
    ///
    /// ```
    /// use std::io::{self, BufRead};
    ///
    /// let cursor = io::Cursor::new(b"lorem-ipsum-dolor");
    ///
    /// let mut split_iter = cursor.split(b'-').map(|l| l.unwrap());
    /// assert_eq!(split_iter.next(), Some(b"lorem".to_vec()));
    /// assert_eq!(split_iter.next(), Some(b"ipsum".to_vec()));
    /// assert_eq!(split_iter.next(), Some(b"dolor".to_vec()));
    /// assert_eq!(split_iter.next(), None);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    fn split(self, byte: u8) -> Split<Self>
    where
        Self: Sized,
    {
        Split { buf: self, delim: byte }
    }

    /// Returns an iterator over the lines of this reader.
    ///
    /// The iterator returned from this function will yield instances of
    /// <code>[io::Result]<[String]></code>. Each string returned will *not* have a newline
    /// byte (the `0xA` byte) or `CRLF` (`0xD`, `0xA` bytes) at the end.
    ///
    /// [io::Result]: self::Result "io::Result"
    ///
    /// # Examples
    ///
    /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
    /// this example, we use [`Cursor`] to iterate over all the lines in a byte
    /// slice.
    ///
    /// ```
    /// use std::io::{self, BufRead};
    ///
    /// let cursor = io::Cursor::new(b"lorem\nipsum\r\ndolor");
    ///
    /// let mut lines_iter = cursor.lines().map(|l| l.unwrap());
    /// assert_eq!(lines_iter.next(), Some(String::from("lorem")));
    /// assert_eq!(lines_iter.next(), Some(String::from("ipsum")));
    /// assert_eq!(lines_iter.next(), Some(String::from("dolor")));
    /// assert_eq!(lines_iter.next(), None);
    /// ```
    ///
    /// # Errors
    ///
    /// Each line of the iterator has the same error semantics as [`BufRead::read_line`].
    #[stable(feature = "rust1", since = "1.0.0")]
    fn lines(self) -> Lines<Self>
    where
        Self: Sized,
    {
        Lines { buf: self }
    }
}

/// Adapter to chain together two readers.
///
/// This struct is generally created by calling [`chain`] on a reader.
/// Please see the documentation of [`chain`] for more details.
///
/// [`chain`]: Read::chain
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Debug)]
pub struct Chain<T, U> {
    first: T,
    second: U,
    done_first: bool,
}

impl<T, U> Chain<T, U> {
    /// Consumes the `Chain`, returning the wrapped readers.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use std::io;
    /// use std::io::prelude::*;
    /// use std::fs::File;
    ///
    /// fn main() -> io::Result<()> {
    ///     let mut foo_file = File::open("foo.txt")?;
    ///     let mut bar_file = File::open("bar.txt")?;
    ///
    ///     let chain = foo_file.chain(bar_file);
    ///     let (foo_file, bar_file) = chain.into_inner();
    ///     Ok(())
    /// }
    /// ```
    #[stable(feature = "more_io_inner_methods", since = "1.20.0")]
    pub fn into_inner(self) -> (T, U) {
        (self.first, self.second)
    }

    /// Gets references to the underlying readers in this `Chain`.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use std::io;
    /// use std::io::prelude::*;
    /// use std::fs::File;
    ///
    /// fn main() -> io::Result<()> {
    ///     let mut foo_file = File::open("foo.txt")?;
    ///     let mut bar_file = File::open("bar.txt")?;
    ///
    ///     let chain = foo_file.chain(bar_file);
    ///     let (foo_file, bar_file) = chain.get_ref();
    ///     Ok(())
    /// }
    /// ```
    #[stable(feature = "more_io_inner_methods", since = "1.20.0")]
    pub fn get_ref(&self) -> (&T, &U) {
        (&self.first, &self.second)
    }

    /// Gets mutable references to the underlying readers in this `Chain`.
    ///
    /// Care should be taken to avoid modifying the internal I/O state of the
    /// underlying readers as doing so may corrupt the internal state of this
    /// `Chain`.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use std::io;
    /// use std::io::prelude::*;
    /// use std::fs::File;
    ///
    /// fn main() -> io::Result<()> {
    ///     let mut foo_file = File::open("foo.txt")?;
    ///     let mut bar_file = File::open("bar.txt")?;
    ///
    ///     let mut chain = foo_file.chain(bar_file);
    ///     let (foo_file, bar_file) = chain.get_mut();
    ///     Ok(())
    /// }
    /// ```
    #[stable(feature = "more_io_inner_methods", since = "1.20.0")]
    pub fn get_mut(&mut self) -> (&mut T, &mut U) {
        (&mut self.first, &mut self.second)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Read, U: Read> Read for Chain<T, U> {
    fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
        if !self.done_first {
            match self.first.read(buf)? {
                0 if !buf.is_empty() => self.done_first = true,
                n => return Ok(n),
            }
        }
        self.second.read(buf)
    }

    fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> Result<usize> {
        if !self.done_first {
            match self.first.read_vectored(bufs)? {
                0 if bufs.iter().any(|b| !b.is_empty()) => self.done_first = true,
                n => return Ok(n),
            }
        }
        self.second.read_vectored(bufs)
    }

    #[inline]
    fn is_read_vectored(&self) -> bool {
        self.first.is_read_vectored() || self.second.is_read_vectored()
    }

    fn read_to_end(&mut self, buf: &mut Vec<u8>) -> Result<usize> {
        let mut read = 0;
        if !self.done_first {
            read += self.first.read_to_end(buf)?;
            self.done_first = true;
        }
        read += self.second.read_to_end(buf)?;
        Ok(read)
    }

    // We don't override `read_to_string` here because an UTF-8 sequence could
    // be split between the two parts of the chain

    fn read_buf(&mut self, mut buf: BorrowedCursor<'_>) -> Result<()> {
        if buf.capacity() == 0 {
            return Ok(());
        }

        if !self.done_first {
            let old_len = buf.written();
            self.first.read_buf(buf.reborrow())?;

            if buf.written() != old_len {
                return Ok(());
            } else {
                self.done_first = true;
            }
        }
        self.second.read_buf(buf)
    }
}

#[stable(feature = "chain_bufread", since = "1.9.0")]
impl<T: BufRead, U: BufRead> BufRead for Chain<T, U> {
    fn fill_buf(&mut self) -> Result<&[u8]> {
        if !self.done_first {
            match self.first.fill_buf()? {
                buf if buf.is_empty() => self.done_first = true,
                buf => return Ok(buf),
            }
        }
        self.second.fill_buf()
    }

    fn consume(&mut self, amt: usize) {
        if !self.done_first { self.first.consume(amt) } else { self.second.consume(amt) }
    }

    fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> Result<usize> {
        let mut read = 0;
        if !self.done_first {
            let n = self.first.read_until(byte, buf)?;
            read += n;

            match buf.last() {
                Some(b) if *b == byte && n != 0 => return Ok(read),
                _ => self.done_first = true,
            }
        }
        read += self.second.read_until(byte, buf)?;
        Ok(read)
    }

    // We don't override `read_line` here because an UTF-8 sequence could be
    // split between the two parts of the chain
}

impl<T, U> SizeHint for Chain<T, U> {
    #[inline]
    fn lower_bound(&self) -> usize {
        SizeHint::lower_bound(&self.first) + SizeHint::lower_bound(&self.second)
    }

    #[inline]
    fn upper_bound(&self) -> Option<usize> {
        match (SizeHint::upper_bound(&self.first), SizeHint::upper_bound(&self.second)) {
            (Some(first), Some(second)) => first.checked_add(second),
            _ => None,
        }
    }
}

/// Reader adapter which limits the bytes read from an underlying reader.
///
/// This struct is generally created by calling [`take`] on a reader.
/// Please see the documentation of [`take`] for more details.
///
/// [`take`]: Read::take
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Debug)]
pub struct Take<T> {
    inner: T,
    limit: u64,
}

impl<T> Take<T> {
    /// Returns the number of bytes that can be read before this instance will
    /// return EOF.
    ///
    /// # Note
    ///
    /// This instance may reach `EOF` after reading fewer bytes than indicated by
    /// this method if the underlying [`Read`] instance reaches EOF.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use std::io;
    /// use std::io::prelude::*;
    /// use std::fs::File;
    ///
    /// fn main() -> io::Result<()> {
    ///     let f = File::open("foo.txt")?;
    ///
    ///     // read at most five bytes
    ///     let handle = f.take(5);
    ///
    ///     println!("limit: {}", handle.limit());
    ///     Ok(())
    /// }
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn limit(&self) -> u64 {
        self.limit
    }

    /// Sets the number of bytes that can be read before this instance will
    /// return EOF. This is the same as constructing a new `Take` instance, so
    /// the amount of bytes read and the previous limit value don't matter when
    /// calling this method.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use std::io;
    /// use std::io::prelude::*;
    /// use std::fs::File;
    ///
    /// fn main() -> io::Result<()> {
    ///     let f = File::open("foo.txt")?;
    ///
    ///     // read at most five bytes
    ///     let mut handle = f.take(5);
    ///     handle.set_limit(10);
    ///
    ///     assert_eq!(handle.limit(), 10);
    ///     Ok(())
    /// }
    /// ```
    #[stable(feature = "take_set_limit", since = "1.27.0")]
    pub fn set_limit(&mut self, limit: u64) {
        self.limit = limit;
    }

    /// Consumes the `Take`, returning the wrapped reader.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use std::io;
    /// use std::io::prelude::*;
    /// use std::fs::File;
    ///
    /// fn main() -> io::Result<()> {
    ///     let mut file = File::open("foo.txt")?;
    ///
    ///     let mut buffer = [0; 5];
    ///     let mut handle = file.take(5);
    ///     handle.read(&mut buffer)?;
    ///
    ///     let file = handle.into_inner();
    ///     Ok(())
    /// }
    /// ```
    #[stable(feature = "io_take_into_inner", since = "1.15.0")]
    pub fn into_inner(self) -> T {
        self.inner
    }

    /// Gets a reference to the underlying reader.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use std::io;
    /// use std::io::prelude::*;
    /// use std::fs::File;
    ///
    /// fn main() -> io::Result<()> {
    ///     let mut file = File::open("foo.txt")?;
    ///
    ///     let mut buffer = [0; 5];
    ///     let mut handle = file.take(5);
    ///     handle.read(&mut buffer)?;
    ///
    ///     let file = handle.get_ref();
    ///     Ok(())
    /// }
    /// ```
    #[stable(feature = "more_io_inner_methods", since = "1.20.0")]
    pub fn get_ref(&self) -> &T {
        &self.inner
    }

    /// Gets a mutable reference to the underlying reader.
    ///
    /// Care should be taken to avoid modifying the internal I/O state of the
    /// underlying reader as doing so may corrupt the internal limit of this
    /// `Take`.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use std::io;
    /// use std::io::prelude::*;
    /// use std::fs::File;
    ///
    /// fn main() -> io::Result<()> {
    ///     let mut file = File::open("foo.txt")?;
    ///
    ///     let mut buffer = [0; 5];
    ///     let mut handle = file.take(5);
    ///     handle.read(&mut buffer)?;
    ///
    ///     let file = handle.get_mut();
    ///     Ok(())
    /// }
    /// ```
    #[stable(feature = "more_io_inner_methods", since = "1.20.0")]
    pub fn get_mut(&mut self) -> &mut T {
        &mut self.inner
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Read> Read for Take<T> {
    fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
        // Don't call into inner reader at all at EOF because it may still block
        if self.limit == 0 {
            return Ok(0);
        }

        let max = cmp::min(buf.len() as u64, self.limit) as usize;
        let n = self.inner.read(&mut buf[..max])?;
        assert!(n as u64 <= self.limit, "number of read bytes exceeds limit");
        self.limit -= n as u64;
        Ok(n)
    }

    fn read_buf(&mut self, mut buf: BorrowedCursor<'_>) -> Result<()> {
        // Don't call into inner reader at all at EOF because it may still block
        if self.limit == 0 {
            return Ok(());
        }

        if self.limit <= buf.capacity() as u64 {
            // if we just use an as cast to convert, limit may wrap around on a 32 bit target
            let limit = cmp::min(self.limit, usize::MAX as u64) as usize;

            let extra_init = cmp::min(limit as usize, buf.init_ref().len());

            // SAFETY: no uninit data is written to ibuf
            let ibuf = unsafe { &mut buf.as_mut()[..limit] };

            let mut sliced_buf: BorrowedBuf<'_> = ibuf.into();

            // SAFETY: extra_init bytes of ibuf are known to be initialized
            unsafe {
                sliced_buf.set_init(extra_init);
            }

            let mut cursor = sliced_buf.unfilled();
            let result = self.inner.read_buf(cursor.reborrow());

            let new_init = cursor.init_ref().len();
            let filled = sliced_buf.len();

            // cursor / sliced_buf / ibuf must drop here

            unsafe {
                // SAFETY: filled bytes have been filled and therefore initialized
                buf.advance_unchecked(filled);
                // SAFETY: new_init bytes of buf's unfilled buffer have been initialized
                buf.set_init(new_init);
            }

            self.limit -= filled as u64;

            result
        } else {
            let written = buf.written();
            let result = self.inner.read_buf(buf.reborrow());
            self.limit -= (buf.written() - written) as u64;
            result
        }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: BufRead> BufRead for Take<T> {
    fn fill_buf(&mut self) -> Result<&[u8]> {
        // Don't call into inner reader at all at EOF because it may still block
        if self.limit == 0 {
            return Ok(&[]);
        }

        let buf = self.inner.fill_buf()?;
        let cap = cmp::min(buf.len() as u64, self.limit) as usize;
        Ok(&buf[..cap])
    }

    fn consume(&mut self, amt: usize) {
        // Don't let callers reset the limit by passing an overlarge value
        let amt = cmp::min(amt as u64, self.limit) as usize;
        self.limit -= amt as u64;
        self.inner.consume(amt);
    }
}

impl<T> SizeHint for Take<T> {
    #[inline]
    fn lower_bound(&self) -> usize {
        cmp::min(SizeHint::lower_bound(&self.inner) as u64, self.limit) as usize
    }

    #[inline]
    fn upper_bound(&self) -> Option<usize> {
        match SizeHint::upper_bound(&self.inner) {
            Some(upper_bound) => Some(cmp::min(upper_bound as u64, self.limit) as usize),
            None => self.limit.try_into().ok(),
        }
    }
}

/// An iterator over `u8` values of a reader.
///
/// This struct is generally created by calling [`bytes`] on a reader.
/// Please see the documentation of [`bytes`] for more details.
///
/// [`bytes`]: Read::bytes
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Debug)]
pub struct Bytes<R> {
    inner: R,
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<R: Read> Iterator for Bytes<R> {
    type Item = Result<u8>;

    // Not `#[inline]`. This function gets inlined even without it, but having
    // the inline annotation can result in worse code generation. See #116785.
    fn next(&mut self) -> Option<Result<u8>> {
        SpecReadByte::spec_read_byte(&mut self.inner)
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        SizeHint::size_hint(&self.inner)
    }
}

/// For the specialization of `Bytes::next`.
trait SpecReadByte {
    fn spec_read_byte(&mut self) -> Option<Result<u8>>;
}

impl<R> SpecReadByte for R
where
    Self: Read,
{
    #[inline]
    default fn spec_read_byte(&mut self) -> Option<Result<u8>> {
        inlined_slow_read_byte(self)
    }
}

/// Reads a single byte in a slow, generic way. This is used by the default
/// `spec_read_byte`.
#[inline]
fn inlined_slow_read_byte<R: Read>(reader: &mut R) -> Option<Result<u8>> {
    let mut byte = 0;
    loop {
        return match reader.read(slice::from_mut(&mut byte)) {
            Ok(0) => None,
            Ok(..) => Some(Ok(byte)),
            Err(ref e) if e.is_interrupted() => continue,
            Err(e) => Some(Err(e)),
        };
    }
}

// Used by `BufReader::spec_read_byte`, for which the `inline(ever)` is
// important.
#[inline(never)]
fn uninlined_slow_read_byte<R: Read>(reader: &mut R) -> Option<Result<u8>> {
    inlined_slow_read_byte(reader)
}

trait SizeHint {
    fn lower_bound(&self) -> usize;

    fn upper_bound(&self) -> Option<usize>;

    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.lower_bound(), self.upper_bound())
    }
}

impl<T: ?Sized> SizeHint for T {
    #[inline]
    default fn lower_bound(&self) -> usize {
        0
    }

    #[inline]
    default fn upper_bound(&self) -> Option<usize> {
        None
    }
}

impl<T> SizeHint for &mut T {
    #[inline]
    fn lower_bound(&self) -> usize {
        SizeHint::lower_bound(*self)
    }

    #[inline]
    fn upper_bound(&self) -> Option<usize> {
        SizeHint::upper_bound(*self)
    }
}

impl<T> SizeHint for Box<T> {
    #[inline]
    fn lower_bound(&self) -> usize {
        SizeHint::lower_bound(&**self)
    }

    #[inline]
    fn upper_bound(&self) -> Option<usize> {
        SizeHint::upper_bound(&**self)
    }
}

impl SizeHint for &[u8] {
    #[inline]
    fn lower_bound(&self) -> usize {
        self.len()
    }

    #[inline]
    fn upper_bound(&self) -> Option<usize> {
        Some(self.len())
    }
}

/// An iterator over the contents of an instance of `BufRead` split on a
/// particular byte.
///
/// This struct is generally created by calling [`split`] on a `BufRead`.
/// Please see the documentation of [`split`] for more details.
///
/// [`split`]: BufRead::split
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Debug)]
pub struct Split<B> {
    buf: B,
    delim: u8,
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<B: BufRead> Iterator for Split<B> {
    type Item = Result<Vec<u8>>;

    fn next(&mut self) -> Option<Result<Vec<u8>>> {
        let mut buf = Vec::new();
        match self.buf.read_until(self.delim, &mut buf) {
            Ok(0) => None,
            Ok(_n) => {
                if buf[buf.len() - 1] == self.delim {
                    buf.pop();
                }
                Some(Ok(buf))
            }
            Err(e) => Some(Err(e)),
        }
    }
}

/// An iterator over the lines of an instance of `BufRead`.
///
/// This struct is generally created by calling [`lines`] on a `BufRead`.
/// Please see the documentation of [`lines`] for more details.
///
/// [`lines`]: BufRead::lines
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Debug)]
#[cfg_attr(not(test), rustc_diagnostic_item = "IoLines")]
pub struct Lines<B> {
    buf: B,
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<B: BufRead> Iterator for Lines<B> {
    type Item = Result<String>;

    fn next(&mut self) -> Option<Result<String>> {
        let mut buf = String::new();
        match self.buf.read_line(&mut buf) {
            Ok(0) => None,
            Ok(_n) => {
                if buf.ends_with('\n') {
                    buf.pop();
                    if buf.ends_with('\r') {
                        buf.pop();
                    }
                }
                Some(Ok(buf))
            }
            Err(e) => Some(Err(e)),
        }
    }
}