core/sync/
atomic.rs

1//! Atomic types
2//!
3//! Atomic types provide primitive shared-memory communication between
4//! threads, and are the building blocks of other concurrent
5//! types.
6//!
7//! This module defines atomic versions of a select number of primitive
8//! types, including [`AtomicBool`], [`AtomicIsize`], [`AtomicUsize`],
9//! [`AtomicI8`], [`AtomicU16`], etc.
10//! Atomic types present operations that, when used correctly, synchronize
11//! updates between threads.
12//!
13//! Atomic variables are safe to share between threads (they implement [`Sync`])
14//! but they do not themselves provide the mechanism for sharing and follow the
15//! [threading model](../../../std/thread/index.html#the-threading-model) of Rust.
16//! The most common way to share an atomic variable is to put it into an [`Arc`][arc] (an
17//! atomically-reference-counted shared pointer).
18//!
19//! [arc]: ../../../std/sync/struct.Arc.html
20//!
21//! Atomic types may be stored in static variables, initialized using
22//! the constant initializers like [`AtomicBool::new`]. Atomic statics
23//! are often used for lazy global initialization.
24//!
25//! ## Memory model for atomic accesses
26//!
27//! Rust atomics currently follow the same rules as [C++20 atomics][cpp], specifically the rules
28//! from the [`intro.races`][cpp-intro.races] section, without the "consume" memory ordering. Since
29//! C++ uses an object-based memory model whereas Rust is access-based, a bit of translation work
30//! has to be done to apply the C++ rules to Rust: whenever C++ talks about "the value of an
31//! object", we understand that to mean the resulting bytes obtained when doing a read. When the C++
32//! standard talks about "the value of an atomic object", this refers to the result of doing an
33//! atomic load (via the operations provided in this module). A "modification of an atomic object"
34//! refers to an atomic store.
35//!
36//! The end result is *almost* equivalent to saying that creating a *shared reference* to one of the
37//! Rust atomic types corresponds to creating an `atomic_ref` in C++, with the `atomic_ref` being
38//! destroyed when the lifetime of the shared reference ends. The main difference is that Rust
39//! permits concurrent atomic and non-atomic reads to the same memory as those cause no issue in the
40//! C++ memory model, they are just forbidden in C++ because memory is partitioned into "atomic
41//! objects" and "non-atomic objects" (with `atomic_ref` temporarily converting a non-atomic object
42//! into an atomic object).
43//!
44//! The most important aspect of this model is that *data races* are undefined behavior. A data race
45//! is defined as conflicting non-synchronized accesses where at least one of the accesses is
46//! non-atomic. Here, accesses are *conflicting* if they affect overlapping regions of memory and at
47//! least one of them is a write. (A `compare_exchange` or `compare_exchange_weak` that does not
48//! succeed is not considered a write.) They are *non-synchronized* if neither of them
49//! *happens-before* the other, according to the happens-before order of the memory model.
50//!
51//! The other possible cause of undefined behavior in the memory model are mixed-size accesses: Rust
52//! inherits the C++ limitation that non-synchronized conflicting atomic accesses may not partially
53//! overlap. In other words, every pair of non-synchronized atomic accesses must be either disjoint,
54//! access the exact same memory (including using the same access size), or both be reads.
55//!
56//! Each atomic access takes an [`Ordering`] which defines how the operation interacts with the
57//! happens-before order. These orderings behave the same as the corresponding [C++20 atomic
58//! orderings][cpp_memory_order]. For more information, see the [nomicon].
59//!
60//! [cpp]: https://en.cppreference.com/w/cpp/atomic
61//! [cpp-intro.races]: https://timsong-cpp.github.io/cppwp/n4868/intro.multithread#intro.races
62//! [cpp_memory_order]: https://en.cppreference.com/w/cpp/atomic/memory_order
63//! [nomicon]: ../../../nomicon/atomics.html
64//!
65//! ```rust,no_run undefined_behavior
66//! use std::sync::atomic::{AtomicU16, AtomicU8, Ordering};
67//! use std::mem::transmute;
68//! use std::thread;
69//!
70//! let atomic = AtomicU16::new(0);
71//!
72//! thread::scope(|s| {
73//!     // This is UB: conflicting non-synchronized accesses, at least one of which is non-atomic.
74//!     s.spawn(|| atomic.store(1, Ordering::Relaxed)); // atomic store
75//!     s.spawn(|| unsafe { atomic.as_ptr().write(2) }); // non-atomic write
76//! });
77//!
78//! thread::scope(|s| {
79//!     // This is fine: the accesses do not conflict (as none of them performs any modification).
80//!     // In C++ this would be disallowed since creating an `atomic_ref` precludes
81//!     // further non-atomic accesses, but Rust does not have that limitation.
82//!     s.spawn(|| atomic.load(Ordering::Relaxed)); // atomic load
83//!     s.spawn(|| unsafe { atomic.as_ptr().read() }); // non-atomic read
84//! });
85//!
86//! thread::scope(|s| {
87//!     // This is fine: `join` synchronizes the code in a way such that the atomic
88//!     // store happens-before the non-atomic write.
89//!     let handle = s.spawn(|| atomic.store(1, Ordering::Relaxed)); // atomic store
90//!     handle.join().expect("thread won't panic"); // synchronize
91//!     s.spawn(|| unsafe { atomic.as_ptr().write(2) }); // non-atomic write
92//! });
93//!
94//! thread::scope(|s| {
95//!     // This is UB: non-synchronized conflicting differently-sized atomic accesses.
96//!     s.spawn(|| atomic.store(1, Ordering::Relaxed));
97//!     s.spawn(|| unsafe {
98//!         let differently_sized = transmute::<&AtomicU16, &AtomicU8>(&atomic);
99//!         differently_sized.store(2, Ordering::Relaxed);
100//!     });
101//! });
102//!
103//! thread::scope(|s| {
104//!     // This is fine: `join` synchronizes the code in a way such that
105//!     // the 1-byte store happens-before the 2-byte store.
106//!     let handle = s.spawn(|| atomic.store(1, Ordering::Relaxed));
107//!     handle.join().expect("thread won't panic");
108//!     s.spawn(|| unsafe {
109//!         let differently_sized = transmute::<&AtomicU16, &AtomicU8>(&atomic);
110//!         differently_sized.store(2, Ordering::Relaxed);
111//!     });
112//! });
113//! ```
114//!
115//! # Portability
116//!
117//! All atomic types in this module are guaranteed to be [lock-free] if they're
118//! available. This means they don't internally acquire a global mutex. Atomic
119//! types and operations are not guaranteed to be wait-free. This means that
120//! operations like `fetch_or` may be implemented with a compare-and-swap loop.
121//!
122//! Atomic operations may be implemented at the instruction layer with
123//! larger-size atomics. For example some platforms use 4-byte atomic
124//! instructions to implement `AtomicI8`. Note that this emulation should not
125//! have an impact on correctness of code, it's just something to be aware of.
126//!
127//! The atomic types in this module might not be available on all platforms. The
128//! atomic types here are all widely available, however, and can generally be
129//! relied upon existing. Some notable exceptions are:
130//!
131//! * PowerPC and MIPS platforms with 32-bit pointers do not have `AtomicU64` or
132//!   `AtomicI64` types.
133//! * ARM platforms like `armv5te` that aren't for Linux only provide `load`
134//!   and `store` operations, and do not support Compare and Swap (CAS)
135//!   operations, such as `swap`, `fetch_add`, etc. Additionally on Linux,
136//!   these CAS operations are implemented via [operating system support], which
137//!   may come with a performance penalty.
138//! * ARM targets with `thumbv6m` only provide `load` and `store` operations,
139//!   and do not support Compare and Swap (CAS) operations, such as `swap`,
140//!   `fetch_add`, etc.
141//!
142//! [operating system support]: https://www.kernel.org/doc/Documentation/arm/kernel_user_helpers.txt
143//!
144//! Note that future platforms may be added that also do not have support for
145//! some atomic operations. Maximally portable code will want to be careful
146//! about which atomic types are used. `AtomicUsize` and `AtomicIsize` are
147//! generally the most portable, but even then they're not available everywhere.
148//! For reference, the `std` library requires `AtomicBool`s and pointer-sized atomics, although
149//! `core` does not.
150//!
151//! The `#[cfg(target_has_atomic)]` attribute can be used to conditionally
152//! compile based on the target's supported bit widths. It is a key-value
153//! option set for each supported size, with values "8", "16", "32", "64",
154//! "128", and "ptr" for pointer-sized atomics.
155//!
156//! [lock-free]: https://en.wikipedia.org/wiki/Non-blocking_algorithm
157//!
158//! # Atomic accesses to read-only memory
159//!
160//! In general, *all* atomic accesses on read-only memory are undefined behavior. For instance, attempting
161//! to do a `compare_exchange` that will definitely fail (making it conceptually a read-only
162//! operation) can still cause a segmentation fault if the underlying memory page is mapped read-only. Since
163//! atomic `load`s might be implemented using compare-exchange operations, even a `load` can fault
164//! on read-only memory.
165//!
166//! For the purpose of this section, "read-only memory" is defined as memory that is read-only in
167//! the underlying target, i.e., the pages are mapped with a read-only flag and any attempt to write
168//! will cause a page fault. In particular, an `&u128` reference that points to memory that is
169//! read-write mapped is *not* considered to point to "read-only memory". In Rust, almost all memory
170//! is read-write; the only exceptions are memory created by `const` items or `static` items without
171//! interior mutability, and memory that was specifically marked as read-only by the operating
172//! system via platform-specific APIs.
173//!
174//! As an exception from the general rule stated above, "sufficiently small" atomic loads with
175//! `Ordering::Relaxed` are implemented in a way that works on read-only memory, and are hence not
176//! undefined behavior. The exact size limit for what makes a load "sufficiently small" varies
177//! depending on the target:
178//!
179//! | `target_arch` | Size limit |
180//! |---------------|---------|
181//! | `x86`, `arm`, `mips`, `mips32r6`, `powerpc`, `riscv32`, `sparc`, `hexagon` | 4 bytes |
182//! | `x86_64`, `aarch64`, `loongarch64`, `mips64`, `mips64r6`, `powerpc64`, `riscv64`, `sparc64`, `s390x` | 8 bytes |
183//!
184//! Atomics loads that are larger than this limit as well as atomic loads with ordering other
185//! than `Relaxed`, as well as *all* atomic loads on targets not listed in the table, might still be
186//! read-only under certain conditions, but that is not a stable guarantee and should not be relied
187//! upon.
188//!
189//! If you need to do an acquire load on read-only memory, you can do a relaxed load followed by an
190//! acquire fence instead.
191//!
192//! # Examples
193//!
194//! A simple spinlock:
195//!
196//! ```
197//! use std::sync::Arc;
198//! use std::sync::atomic::{AtomicUsize, Ordering};
199//! use std::{hint, thread};
200//!
201//! fn main() {
202//!     let spinlock = Arc::new(AtomicUsize::new(1));
203//!
204//!     let spinlock_clone = Arc::clone(&spinlock);
205//!
206//!     let thread = thread::spawn(move || {
207//!         spinlock_clone.store(0, Ordering::Release);
208//!     });
209//!
210//!     // Wait for the other thread to release the lock
211//!     while spinlock.load(Ordering::Acquire) != 0 {
212//!         hint::spin_loop();
213//!     }
214//!
215//!     if let Err(panic) = thread.join() {
216//!         println!("Thread had an error: {panic:?}");
217//!     }
218//! }
219//! ```
220//!
221//! Keep a global count of live threads:
222//!
223//! ```
224//! use std::sync::atomic::{AtomicUsize, Ordering};
225//!
226//! static GLOBAL_THREAD_COUNT: AtomicUsize = AtomicUsize::new(0);
227//!
228//! // Note that Relaxed ordering doesn't synchronize anything
229//! // except the global thread counter itself.
230//! let old_thread_count = GLOBAL_THREAD_COUNT.fetch_add(1, Ordering::Relaxed);
231//! // Note that this number may not be true at the moment of printing
232//! // because some other thread may have changed static value already.
233//! println!("live threads: {}", old_thread_count + 1);
234//! ```
235
236#![stable(feature = "rust1", since = "1.0.0")]
237#![cfg_attr(not(target_has_atomic_load_store = "8"), allow(dead_code))]
238#![cfg_attr(not(target_has_atomic_load_store = "8"), allow(unused_imports))]
239#![rustc_diagnostic_item = "atomic_mod"]
240// Clippy complains about the pattern of "safe function calling unsafe function taking pointers".
241// This happens with AtomicPtr intrinsics but is fine, as the pointers clippy is concerned about
242// are just normal values that get loaded/stored, but not dereferenced.
243#![allow(clippy::not_unsafe_ptr_arg_deref)]
244
245use self::Ordering::*;
246use crate::cell::UnsafeCell;
247use crate::hint::spin_loop;
248use crate::{fmt, intrinsics};
249
250// Some architectures don't have byte-sized atomics, which results in LLVM
251// emulating them using a LL/SC loop. However for AtomicBool we can take
252// advantage of the fact that it only ever contains 0 or 1 and use atomic OR/AND
253// instead, which LLVM can emulate using a larger atomic OR/AND operation.
254//
255// This list should only contain architectures which have word-sized atomic-or/
256// atomic-and instructions but don't natively support byte-sized atomics.
257#[cfg(target_has_atomic = "8")]
258const EMULATE_ATOMIC_BOOL: bool =
259    cfg!(any(target_arch = "riscv32", target_arch = "riscv64", target_arch = "loongarch64"));
260
261/// A boolean type which can be safely shared between threads.
262///
263/// This type has the same size, alignment, and bit validity as a [`bool`].
264///
265/// **Note**: This type is only available on platforms that support atomic
266/// loads and stores of `u8`.
267#[cfg(target_has_atomic_load_store = "8")]
268#[stable(feature = "rust1", since = "1.0.0")]
269#[rustc_diagnostic_item = "AtomicBool"]
270#[repr(C, align(1))]
271pub struct AtomicBool {
272    v: UnsafeCell<u8>,
273}
274
275#[cfg(target_has_atomic_load_store = "8")]
276#[stable(feature = "rust1", since = "1.0.0")]
277impl Default for AtomicBool {
278    /// Creates an `AtomicBool` initialized to `false`.
279    #[inline]
280    fn default() -> Self {
281        Self::new(false)
282    }
283}
284
285// Send is implicitly implemented for AtomicBool.
286#[cfg(target_has_atomic_load_store = "8")]
287#[stable(feature = "rust1", since = "1.0.0")]
288unsafe impl Sync for AtomicBool {}
289
290/// A raw pointer type which can be safely shared between threads.
291///
292/// This type has the same size and bit validity as a `*mut T`.
293///
294/// **Note**: This type is only available on platforms that support atomic
295/// loads and stores of pointers. Its size depends on the target pointer's size.
296#[cfg(target_has_atomic_load_store = "ptr")]
297#[stable(feature = "rust1", since = "1.0.0")]
298#[rustc_diagnostic_item = "AtomicPtr"]
299#[cfg_attr(target_pointer_width = "16", repr(C, align(2)))]
300#[cfg_attr(target_pointer_width = "32", repr(C, align(4)))]
301#[cfg_attr(target_pointer_width = "64", repr(C, align(8)))]
302pub struct AtomicPtr<T> {
303    p: UnsafeCell<*mut T>,
304}
305
306#[cfg(target_has_atomic_load_store = "ptr")]
307#[stable(feature = "rust1", since = "1.0.0")]
308impl<T> Default for AtomicPtr<T> {
309    /// Creates a null `AtomicPtr<T>`.
310    fn default() -> AtomicPtr<T> {
311        AtomicPtr::new(crate::ptr::null_mut())
312    }
313}
314
315#[cfg(target_has_atomic_load_store = "ptr")]
316#[stable(feature = "rust1", since = "1.0.0")]
317unsafe impl<T> Send for AtomicPtr<T> {}
318#[cfg(target_has_atomic_load_store = "ptr")]
319#[stable(feature = "rust1", since = "1.0.0")]
320unsafe impl<T> Sync for AtomicPtr<T> {}
321
322/// Atomic memory orderings
323///
324/// Memory orderings specify the way atomic operations synchronize memory.
325/// In its weakest [`Ordering::Relaxed`], only the memory directly touched by the
326/// operation is synchronized. On the other hand, a store-load pair of [`Ordering::SeqCst`]
327/// operations synchronize other memory while additionally preserving a total order of such
328/// operations across all threads.
329///
330/// Rust's memory orderings are [the same as those of
331/// C++20](https://en.cppreference.com/w/cpp/atomic/memory_order).
332///
333/// For more information see the [nomicon].
334///
335/// [nomicon]: ../../../nomicon/atomics.html
336#[stable(feature = "rust1", since = "1.0.0")]
337#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
338#[non_exhaustive]
339#[rustc_diagnostic_item = "Ordering"]
340pub enum Ordering {
341    /// No ordering constraints, only atomic operations.
342    ///
343    /// Corresponds to [`memory_order_relaxed`] in C++20.
344    ///
345    /// [`memory_order_relaxed`]: https://en.cppreference.com/w/cpp/atomic/memory_order#Relaxed_ordering
346    #[stable(feature = "rust1", since = "1.0.0")]
347    Relaxed,
348    /// When coupled with a store, all previous operations become ordered
349    /// before any load of this value with [`Acquire`] (or stronger) ordering.
350    /// In particular, all previous writes become visible to all threads
351    /// that perform an [`Acquire`] (or stronger) load of this value.
352    ///
353    /// Notice that using this ordering for an operation that combines loads
354    /// and stores leads to a [`Relaxed`] load operation!
355    ///
356    /// This ordering is only applicable for operations that can perform a store.
357    ///
358    /// Corresponds to [`memory_order_release`] in C++20.
359    ///
360    /// [`memory_order_release`]: https://en.cppreference.com/w/cpp/atomic/memory_order#Release-Acquire_ordering
361    #[stable(feature = "rust1", since = "1.0.0")]
362    Release,
363    /// When coupled with a load, if the loaded value was written by a store operation with
364    /// [`Release`] (or stronger) ordering, then all subsequent operations
365    /// become ordered after that store. In particular, all subsequent loads will see data
366    /// written before the store.
367    ///
368    /// Notice that using this ordering for an operation that combines loads
369    /// and stores leads to a [`Relaxed`] store operation!
370    ///
371    /// This ordering is only applicable for operations that can perform a load.
372    ///
373    /// Corresponds to [`memory_order_acquire`] in C++20.
374    ///
375    /// [`memory_order_acquire`]: https://en.cppreference.com/w/cpp/atomic/memory_order#Release-Acquire_ordering
376    #[stable(feature = "rust1", since = "1.0.0")]
377    Acquire,
378    /// Has the effects of both [`Acquire`] and [`Release`] together:
379    /// For loads it uses [`Acquire`] ordering. For stores it uses the [`Release`] ordering.
380    ///
381    /// Notice that in the case of `compare_and_swap`, it is possible that the operation ends up
382    /// not performing any store and hence it has just [`Acquire`] ordering. However,
383    /// `AcqRel` will never perform [`Relaxed`] accesses.
384    ///
385    /// This ordering is only applicable for operations that combine both loads and stores.
386    ///
387    /// Corresponds to [`memory_order_acq_rel`] in C++20.
388    ///
389    /// [`memory_order_acq_rel`]: https://en.cppreference.com/w/cpp/atomic/memory_order#Release-Acquire_ordering
390    #[stable(feature = "rust1", since = "1.0.0")]
391    AcqRel,
392    /// Like [`Acquire`]/[`Release`]/[`AcqRel`] (for load, store, and load-with-store
393    /// operations, respectively) with the additional guarantee that all threads see all
394    /// sequentially consistent operations in the same order.
395    ///
396    /// Corresponds to [`memory_order_seq_cst`] in C++20.
397    ///
398    /// [`memory_order_seq_cst`]: https://en.cppreference.com/w/cpp/atomic/memory_order#Sequentially-consistent_ordering
399    #[stable(feature = "rust1", since = "1.0.0")]
400    SeqCst,
401}
402
403/// An [`AtomicBool`] initialized to `false`.
404#[cfg(target_has_atomic_load_store = "8")]
405#[stable(feature = "rust1", since = "1.0.0")]
406#[deprecated(
407    since = "1.34.0",
408    note = "the `new` function is now preferred",
409    suggestion = "AtomicBool::new(false)"
410)]
411pub const ATOMIC_BOOL_INIT: AtomicBool = AtomicBool::new(false);
412
413#[cfg(target_has_atomic_load_store = "8")]
414impl AtomicBool {
415    /// Creates a new `AtomicBool`.
416    ///
417    /// # Examples
418    ///
419    /// ```
420    /// use std::sync::atomic::AtomicBool;
421    ///
422    /// let atomic_true = AtomicBool::new(true);
423    /// let atomic_false = AtomicBool::new(false);
424    /// ```
425    #[inline]
426    #[stable(feature = "rust1", since = "1.0.0")]
427    #[rustc_const_stable(feature = "const_atomic_new", since = "1.24.0")]
428    #[must_use]
429    pub const fn new(v: bool) -> AtomicBool {
430        AtomicBool { v: UnsafeCell::new(v as u8) }
431    }
432
433    /// Creates a new `AtomicBool` from a pointer.
434    ///
435    /// # Examples
436    ///
437    /// ```
438    /// use std::sync::atomic::{self, AtomicBool};
439    ///
440    /// // Get a pointer to an allocated value
441    /// let ptr: *mut bool = Box::into_raw(Box::new(false));
442    ///
443    /// assert!(ptr.cast::<AtomicBool>().is_aligned());
444    ///
445    /// {
446    ///     // Create an atomic view of the allocated value
447    ///     let atomic = unsafe { AtomicBool::from_ptr(ptr) };
448    ///
449    ///     // Use `atomic` for atomic operations, possibly share it with other threads
450    ///     atomic.store(true, atomic::Ordering::Relaxed);
451    /// }
452    ///
453    /// // It's ok to non-atomically access the value behind `ptr`,
454    /// // since the reference to the atomic ended its lifetime in the block above
455    /// assert_eq!(unsafe { *ptr }, true);
456    ///
457    /// // Deallocate the value
458    /// unsafe { drop(Box::from_raw(ptr)) }
459    /// ```
460    ///
461    /// # Safety
462    ///
463    /// * `ptr` must be aligned to `align_of::<AtomicBool>()` (note that this is always true, since
464    ///   `align_of::<AtomicBool>() == 1`).
465    /// * `ptr` must be [valid] for both reads and writes for the whole lifetime `'a`.
466    /// * You must adhere to the [Memory model for atomic accesses]. In particular, it is not
467    ///   allowed to mix atomic and non-atomic accesses, or atomic accesses of different sizes,
468    ///   without synchronization.
469    ///
470    /// [valid]: crate::ptr#safety
471    /// [Memory model for atomic accesses]: self#memory-model-for-atomic-accesses
472    #[inline]
473    #[stable(feature = "atomic_from_ptr", since = "1.75.0")]
474    #[rustc_const_stable(feature = "const_atomic_from_ptr", since = "1.84.0")]
475    pub const unsafe fn from_ptr<'a>(ptr: *mut bool) -> &'a AtomicBool {
476        // SAFETY: guaranteed by the caller
477        unsafe { &*ptr.cast() }
478    }
479
480    /// Returns a mutable reference to the underlying [`bool`].
481    ///
482    /// This is safe because the mutable reference guarantees that no other threads are
483    /// concurrently accessing the atomic data.
484    ///
485    /// # Examples
486    ///
487    /// ```
488    /// use std::sync::atomic::{AtomicBool, Ordering};
489    ///
490    /// let mut some_bool = AtomicBool::new(true);
491    /// assert_eq!(*some_bool.get_mut(), true);
492    /// *some_bool.get_mut() = false;
493    /// assert_eq!(some_bool.load(Ordering::SeqCst), false);
494    /// ```
495    #[inline]
496    #[stable(feature = "atomic_access", since = "1.15.0")]
497    pub fn get_mut(&mut self) -> &mut bool {
498        // SAFETY: the mutable reference guarantees unique ownership.
499        unsafe { &mut *(self.v.get() as *mut bool) }
500    }
501
502    /// Gets atomic access to a `&mut bool`.
503    ///
504    /// # Examples
505    ///
506    /// ```
507    /// #![feature(atomic_from_mut)]
508    /// use std::sync::atomic::{AtomicBool, Ordering};
509    ///
510    /// let mut some_bool = true;
511    /// let a = AtomicBool::from_mut(&mut some_bool);
512    /// a.store(false, Ordering::Relaxed);
513    /// assert_eq!(some_bool, false);
514    /// ```
515    #[inline]
516    #[cfg(target_has_atomic_equal_alignment = "8")]
517    #[unstable(feature = "atomic_from_mut", issue = "76314")]
518    pub fn from_mut(v: &mut bool) -> &mut Self {
519        // SAFETY: the mutable reference guarantees unique ownership, and
520        // alignment of both `bool` and `Self` is 1.
521        unsafe { &mut *(v as *mut bool as *mut Self) }
522    }
523
524    /// Gets non-atomic access to a `&mut [AtomicBool]` slice.
525    ///
526    /// This is safe because the mutable reference guarantees that no other threads are
527    /// concurrently accessing the atomic data.
528    ///
529    /// # Examples
530    ///
531    /// ```
532    /// #![feature(atomic_from_mut)]
533    /// use std::sync::atomic::{AtomicBool, Ordering};
534    ///
535    /// let mut some_bools = [const { AtomicBool::new(false) }; 10];
536    ///
537    /// let view: &mut [bool] = AtomicBool::get_mut_slice(&mut some_bools);
538    /// assert_eq!(view, [false; 10]);
539    /// view[..5].copy_from_slice(&[true; 5]);
540    ///
541    /// std::thread::scope(|s| {
542    ///     for t in &some_bools[..5] {
543    ///         s.spawn(move || assert_eq!(t.load(Ordering::Relaxed), true));
544    ///     }
545    ///
546    ///     for f in &some_bools[5..] {
547    ///         s.spawn(move || assert_eq!(f.load(Ordering::Relaxed), false));
548    ///     }
549    /// });
550    /// ```
551    #[inline]
552    #[unstable(feature = "atomic_from_mut", issue = "76314")]
553    pub fn get_mut_slice(this: &mut [Self]) -> &mut [bool] {
554        // SAFETY: the mutable reference guarantees unique ownership.
555        unsafe { &mut *(this as *mut [Self] as *mut [bool]) }
556    }
557
558    /// Gets atomic access to a `&mut [bool]` slice.
559    ///
560    /// # Examples
561    ///
562    /// ```
563    /// #![feature(atomic_from_mut)]
564    /// use std::sync::atomic::{AtomicBool, Ordering};
565    ///
566    /// let mut some_bools = [false; 10];
567    /// let a = &*AtomicBool::from_mut_slice(&mut some_bools);
568    /// std::thread::scope(|s| {
569    ///     for i in 0..a.len() {
570    ///         s.spawn(move || a[i].store(true, Ordering::Relaxed));
571    ///     }
572    /// });
573    /// assert_eq!(some_bools, [true; 10]);
574    /// ```
575    #[inline]
576    #[cfg(target_has_atomic_equal_alignment = "8")]
577    #[unstable(feature = "atomic_from_mut", issue = "76314")]
578    pub fn from_mut_slice(v: &mut [bool]) -> &mut [Self] {
579        // SAFETY: the mutable reference guarantees unique ownership, and
580        // alignment of both `bool` and `Self` is 1.
581        unsafe { &mut *(v as *mut [bool] as *mut [Self]) }
582    }
583
584    /// Consumes the atomic and returns the contained value.
585    ///
586    /// This is safe because passing `self` by value guarantees that no other threads are
587    /// concurrently accessing the atomic data.
588    ///
589    /// # Examples
590    ///
591    /// ```
592    /// use std::sync::atomic::AtomicBool;
593    ///
594    /// let some_bool = AtomicBool::new(true);
595    /// assert_eq!(some_bool.into_inner(), true);
596    /// ```
597    #[inline]
598    #[stable(feature = "atomic_access", since = "1.15.0")]
599    #[rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0")]
600    pub const fn into_inner(self) -> bool {
601        self.v.into_inner() != 0
602    }
603
604    /// Loads a value from the bool.
605    ///
606    /// `load` takes an [`Ordering`] argument which describes the memory ordering
607    /// of this operation. Possible values are [`SeqCst`], [`Acquire`] and [`Relaxed`].
608    ///
609    /// # Panics
610    ///
611    /// Panics if `order` is [`Release`] or [`AcqRel`].
612    ///
613    /// # Examples
614    ///
615    /// ```
616    /// use std::sync::atomic::{AtomicBool, Ordering};
617    ///
618    /// let some_bool = AtomicBool::new(true);
619    ///
620    /// assert_eq!(some_bool.load(Ordering::Relaxed), true);
621    /// ```
622    #[inline]
623    #[stable(feature = "rust1", since = "1.0.0")]
624    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
625    pub fn load(&self, order: Ordering) -> bool {
626        // SAFETY: any data races are prevented by atomic intrinsics and the raw
627        // pointer passed in is valid because we got it from a reference.
628        unsafe { atomic_load(self.v.get(), order) != 0 }
629    }
630
631    /// Stores a value into the bool.
632    ///
633    /// `store` takes an [`Ordering`] argument which describes the memory ordering
634    /// of this operation. Possible values are [`SeqCst`], [`Release`] and [`Relaxed`].
635    ///
636    /// # Panics
637    ///
638    /// Panics if `order` is [`Acquire`] or [`AcqRel`].
639    ///
640    /// # Examples
641    ///
642    /// ```
643    /// use std::sync::atomic::{AtomicBool, Ordering};
644    ///
645    /// let some_bool = AtomicBool::new(true);
646    ///
647    /// some_bool.store(false, Ordering::Relaxed);
648    /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
649    /// ```
650    #[inline]
651    #[stable(feature = "rust1", since = "1.0.0")]
652    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
653    pub fn store(&self, val: bool, order: Ordering) {
654        // SAFETY: any data races are prevented by atomic intrinsics and the raw
655        // pointer passed in is valid because we got it from a reference.
656        unsafe {
657            atomic_store(self.v.get(), val as u8, order);
658        }
659    }
660
661    /// Stores a value into the bool, returning the previous value.
662    ///
663    /// `swap` takes an [`Ordering`] argument which describes the memory ordering
664    /// of this operation. All ordering modes are possible. Note that using
665    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
666    /// using [`Release`] makes the load part [`Relaxed`].
667    ///
668    /// **Note:** This method is only available on platforms that support atomic
669    /// operations on `u8`.
670    ///
671    /// # Examples
672    ///
673    /// ```
674    /// use std::sync::atomic::{AtomicBool, Ordering};
675    ///
676    /// let some_bool = AtomicBool::new(true);
677    ///
678    /// assert_eq!(some_bool.swap(false, Ordering::Relaxed), true);
679    /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
680    /// ```
681    #[inline]
682    #[stable(feature = "rust1", since = "1.0.0")]
683    #[cfg(target_has_atomic = "8")]
684    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
685    pub fn swap(&self, val: bool, order: Ordering) -> bool {
686        if EMULATE_ATOMIC_BOOL {
687            if val { self.fetch_or(true, order) } else { self.fetch_and(false, order) }
688        } else {
689            // SAFETY: data races are prevented by atomic intrinsics.
690            unsafe { atomic_swap(self.v.get(), val as u8, order) != 0 }
691        }
692    }
693
694    /// Stores a value into the [`bool`] if the current value is the same as the `current` value.
695    ///
696    /// The return value is always the previous value. If it is equal to `current`, then the value
697    /// was updated.
698    ///
699    /// `compare_and_swap` also takes an [`Ordering`] argument which describes the memory
700    /// ordering of this operation. Notice that even when using [`AcqRel`], the operation
701    /// might fail and hence just perform an `Acquire` load, but not have `Release` semantics.
702    /// Using [`Acquire`] makes the store part of this operation [`Relaxed`] if it
703    /// happens, and using [`Release`] makes the load part [`Relaxed`].
704    ///
705    /// **Note:** This method is only available on platforms that support atomic
706    /// operations on `u8`.
707    ///
708    /// # Migrating to `compare_exchange` and `compare_exchange_weak`
709    ///
710    /// `compare_and_swap` is equivalent to `compare_exchange` with the following mapping for
711    /// memory orderings:
712    ///
713    /// Original | Success | Failure
714    /// -------- | ------- | -------
715    /// Relaxed  | Relaxed | Relaxed
716    /// Acquire  | Acquire | Acquire
717    /// Release  | Release | Relaxed
718    /// AcqRel   | AcqRel  | Acquire
719    /// SeqCst   | SeqCst  | SeqCst
720    ///
721    /// `compare_and_swap` and `compare_exchange` also differ in their return type. You can use
722    /// `compare_exchange(...).unwrap_or_else(|x| x)` to recover the behavior of `compare_and_swap`,
723    /// but in most cases it is more idiomatic to check whether the return value is `Ok` or `Err`
724    /// rather than to infer success vs failure based on the value that was read.
725    ///
726    /// During migration, consider whether it makes sense to use `compare_exchange_weak` instead.
727    /// `compare_exchange_weak` is allowed to fail spuriously even when the comparison succeeds,
728    /// which allows the compiler to generate better assembly code when the compare and swap
729    /// is used in a loop.
730    ///
731    /// # Examples
732    ///
733    /// ```
734    /// use std::sync::atomic::{AtomicBool, Ordering};
735    ///
736    /// let some_bool = AtomicBool::new(true);
737    ///
738    /// assert_eq!(some_bool.compare_and_swap(true, false, Ordering::Relaxed), true);
739    /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
740    ///
741    /// assert_eq!(some_bool.compare_and_swap(true, true, Ordering::Relaxed), false);
742    /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
743    /// ```
744    #[inline]
745    #[stable(feature = "rust1", since = "1.0.0")]
746    #[deprecated(
747        since = "1.50.0",
748        note = "Use `compare_exchange` or `compare_exchange_weak` instead"
749    )]
750    #[cfg(target_has_atomic = "8")]
751    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
752    pub fn compare_and_swap(&self, current: bool, new: bool, order: Ordering) -> bool {
753        match self.compare_exchange(current, new, order, strongest_failure_ordering(order)) {
754            Ok(x) => x,
755            Err(x) => x,
756        }
757    }
758
759    /// Stores a value into the [`bool`] if the current value is the same as the `current` value.
760    ///
761    /// The return value is a result indicating whether the new value was written and containing
762    /// the previous value. On success this value is guaranteed to be equal to `current`.
763    ///
764    /// `compare_exchange` takes two [`Ordering`] arguments to describe the memory
765    /// ordering of this operation. `success` describes the required ordering for the
766    /// read-modify-write operation that takes place if the comparison with `current` succeeds.
767    /// `failure` describes the required ordering for the load operation that takes place when
768    /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
769    /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
770    /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
771    ///
772    /// **Note:** This method is only available on platforms that support atomic
773    /// operations on `u8`.
774    ///
775    /// # Examples
776    ///
777    /// ```
778    /// use std::sync::atomic::{AtomicBool, Ordering};
779    ///
780    /// let some_bool = AtomicBool::new(true);
781    ///
782    /// assert_eq!(some_bool.compare_exchange(true,
783    ///                                       false,
784    ///                                       Ordering::Acquire,
785    ///                                       Ordering::Relaxed),
786    ///            Ok(true));
787    /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
788    ///
789    /// assert_eq!(some_bool.compare_exchange(true, true,
790    ///                                       Ordering::SeqCst,
791    ///                                       Ordering::Acquire),
792    ///            Err(false));
793    /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
794    /// ```
795    #[inline]
796    #[stable(feature = "extended_compare_and_swap", since = "1.10.0")]
797    #[doc(alias = "compare_and_swap")]
798    #[cfg(target_has_atomic = "8")]
799    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
800    pub fn compare_exchange(
801        &self,
802        current: bool,
803        new: bool,
804        success: Ordering,
805        failure: Ordering,
806    ) -> Result<bool, bool> {
807        if EMULATE_ATOMIC_BOOL {
808            // Pick the strongest ordering from success and failure.
809            let order = match (success, failure) {
810                (SeqCst, _) => SeqCst,
811                (_, SeqCst) => SeqCst,
812                (AcqRel, _) => AcqRel,
813                (_, AcqRel) => {
814                    panic!("there is no such thing as an acquire-release failure ordering")
815                }
816                (Release, Acquire) => AcqRel,
817                (Acquire, _) => Acquire,
818                (_, Acquire) => Acquire,
819                (Release, Relaxed) => Release,
820                (_, Release) => panic!("there is no such thing as a release failure ordering"),
821                (Relaxed, Relaxed) => Relaxed,
822            };
823            let old = if current == new {
824                // This is a no-op, but we still need to perform the operation
825                // for memory ordering reasons.
826                self.fetch_or(false, order)
827            } else {
828                // This sets the value to the new one and returns the old one.
829                self.swap(new, order)
830            };
831            if old == current { Ok(old) } else { Err(old) }
832        } else {
833            // SAFETY: data races are prevented by atomic intrinsics.
834            match unsafe {
835                atomic_compare_exchange(self.v.get(), current as u8, new as u8, success, failure)
836            } {
837                Ok(x) => Ok(x != 0),
838                Err(x) => Err(x != 0),
839            }
840        }
841    }
842
843    /// Stores a value into the [`bool`] if the current value is the same as the `current` value.
844    ///
845    /// Unlike [`AtomicBool::compare_exchange`], this function is allowed to spuriously fail even when the
846    /// comparison succeeds, which can result in more efficient code on some platforms. The
847    /// return value is a result indicating whether the new value was written and containing the
848    /// previous value.
849    ///
850    /// `compare_exchange_weak` takes two [`Ordering`] arguments to describe the memory
851    /// ordering of this operation. `success` describes the required ordering for the
852    /// read-modify-write operation that takes place if the comparison with `current` succeeds.
853    /// `failure` describes the required ordering for the load operation that takes place when
854    /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
855    /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
856    /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
857    ///
858    /// **Note:** This method is only available on platforms that support atomic
859    /// operations on `u8`.
860    ///
861    /// # Examples
862    ///
863    /// ```
864    /// use std::sync::atomic::{AtomicBool, Ordering};
865    ///
866    /// let val = AtomicBool::new(false);
867    ///
868    /// let new = true;
869    /// let mut old = val.load(Ordering::Relaxed);
870    /// loop {
871    ///     match val.compare_exchange_weak(old, new, Ordering::SeqCst, Ordering::Relaxed) {
872    ///         Ok(_) => break,
873    ///         Err(x) => old = x,
874    ///     }
875    /// }
876    /// ```
877    #[inline]
878    #[stable(feature = "extended_compare_and_swap", since = "1.10.0")]
879    #[doc(alias = "compare_and_swap")]
880    #[cfg(target_has_atomic = "8")]
881    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
882    pub fn compare_exchange_weak(
883        &self,
884        current: bool,
885        new: bool,
886        success: Ordering,
887        failure: Ordering,
888    ) -> Result<bool, bool> {
889        if EMULATE_ATOMIC_BOOL {
890            return self.compare_exchange(current, new, success, failure);
891        }
892
893        // SAFETY: data races are prevented by atomic intrinsics.
894        match unsafe {
895            atomic_compare_exchange_weak(self.v.get(), current as u8, new as u8, success, failure)
896        } {
897            Ok(x) => Ok(x != 0),
898            Err(x) => Err(x != 0),
899        }
900    }
901
902    /// Logical "and" with a boolean value.
903    ///
904    /// Performs a logical "and" operation on the current value and the argument `val`, and sets
905    /// the new value to the result.
906    ///
907    /// Returns the previous value.
908    ///
909    /// `fetch_and` takes an [`Ordering`] argument which describes the memory ordering
910    /// of this operation. All ordering modes are possible. Note that using
911    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
912    /// using [`Release`] makes the load part [`Relaxed`].
913    ///
914    /// **Note:** This method is only available on platforms that support atomic
915    /// operations on `u8`.
916    ///
917    /// # Examples
918    ///
919    /// ```
920    /// use std::sync::atomic::{AtomicBool, Ordering};
921    ///
922    /// let foo = AtomicBool::new(true);
923    /// assert_eq!(foo.fetch_and(false, Ordering::SeqCst), true);
924    /// assert_eq!(foo.load(Ordering::SeqCst), false);
925    ///
926    /// let foo = AtomicBool::new(true);
927    /// assert_eq!(foo.fetch_and(true, Ordering::SeqCst), true);
928    /// assert_eq!(foo.load(Ordering::SeqCst), true);
929    ///
930    /// let foo = AtomicBool::new(false);
931    /// assert_eq!(foo.fetch_and(false, Ordering::SeqCst), false);
932    /// assert_eq!(foo.load(Ordering::SeqCst), false);
933    /// ```
934    #[inline]
935    #[stable(feature = "rust1", since = "1.0.0")]
936    #[cfg(target_has_atomic = "8")]
937    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
938    pub fn fetch_and(&self, val: bool, order: Ordering) -> bool {
939        // SAFETY: data races are prevented by atomic intrinsics.
940        unsafe { atomic_and(self.v.get(), val as u8, order) != 0 }
941    }
942
943    /// Logical "nand" with a boolean value.
944    ///
945    /// Performs a logical "nand" operation on the current value and the argument `val`, and sets
946    /// the new value to the result.
947    ///
948    /// Returns the previous value.
949    ///
950    /// `fetch_nand` takes an [`Ordering`] argument which describes the memory ordering
951    /// of this operation. All ordering modes are possible. Note that using
952    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
953    /// using [`Release`] makes the load part [`Relaxed`].
954    ///
955    /// **Note:** This method is only available on platforms that support atomic
956    /// operations on `u8`.
957    ///
958    /// # Examples
959    ///
960    /// ```
961    /// use std::sync::atomic::{AtomicBool, Ordering};
962    ///
963    /// let foo = AtomicBool::new(true);
964    /// assert_eq!(foo.fetch_nand(false, Ordering::SeqCst), true);
965    /// assert_eq!(foo.load(Ordering::SeqCst), true);
966    ///
967    /// let foo = AtomicBool::new(true);
968    /// assert_eq!(foo.fetch_nand(true, Ordering::SeqCst), true);
969    /// assert_eq!(foo.load(Ordering::SeqCst) as usize, 0);
970    /// assert_eq!(foo.load(Ordering::SeqCst), false);
971    ///
972    /// let foo = AtomicBool::new(false);
973    /// assert_eq!(foo.fetch_nand(false, Ordering::SeqCst), false);
974    /// assert_eq!(foo.load(Ordering::SeqCst), true);
975    /// ```
976    #[inline]
977    #[stable(feature = "rust1", since = "1.0.0")]
978    #[cfg(target_has_atomic = "8")]
979    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
980    pub fn fetch_nand(&self, val: bool, order: Ordering) -> bool {
981        // We can't use atomic_nand here because it can result in a bool with
982        // an invalid value. This happens because the atomic operation is done
983        // with an 8-bit integer internally, which would set the upper 7 bits.
984        // So we just use fetch_xor or swap instead.
985        if val {
986            // !(x & true) == !x
987            // We must invert the bool.
988            self.fetch_xor(true, order)
989        } else {
990            // !(x & false) == true
991            // We must set the bool to true.
992            self.swap(true, order)
993        }
994    }
995
996    /// Logical "or" with a boolean value.
997    ///
998    /// Performs a logical "or" operation on the current value and the argument `val`, and sets the
999    /// new value to the result.
1000    ///
1001    /// Returns the previous value.
1002    ///
1003    /// `fetch_or` takes an [`Ordering`] argument which describes the memory ordering
1004    /// of this operation. All ordering modes are possible. Note that using
1005    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
1006    /// using [`Release`] makes the load part [`Relaxed`].
1007    ///
1008    /// **Note:** This method is only available on platforms that support atomic
1009    /// operations on `u8`.
1010    ///
1011    /// # Examples
1012    ///
1013    /// ```
1014    /// use std::sync::atomic::{AtomicBool, Ordering};
1015    ///
1016    /// let foo = AtomicBool::new(true);
1017    /// assert_eq!(foo.fetch_or(false, Ordering::SeqCst), true);
1018    /// assert_eq!(foo.load(Ordering::SeqCst), true);
1019    ///
1020    /// let foo = AtomicBool::new(true);
1021    /// assert_eq!(foo.fetch_or(true, Ordering::SeqCst), true);
1022    /// assert_eq!(foo.load(Ordering::SeqCst), true);
1023    ///
1024    /// let foo = AtomicBool::new(false);
1025    /// assert_eq!(foo.fetch_or(false, Ordering::SeqCst), false);
1026    /// assert_eq!(foo.load(Ordering::SeqCst), false);
1027    /// ```
1028    #[inline]
1029    #[stable(feature = "rust1", since = "1.0.0")]
1030    #[cfg(target_has_atomic = "8")]
1031    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1032    pub fn fetch_or(&self, val: bool, order: Ordering) -> bool {
1033        // SAFETY: data races are prevented by atomic intrinsics.
1034        unsafe { atomic_or(self.v.get(), val as u8, order) != 0 }
1035    }
1036
1037    /// Logical "xor" with a boolean value.
1038    ///
1039    /// Performs a logical "xor" operation on the current value and the argument `val`, and sets
1040    /// the new value to the result.
1041    ///
1042    /// Returns the previous value.
1043    ///
1044    /// `fetch_xor` takes an [`Ordering`] argument which describes the memory ordering
1045    /// of this operation. All ordering modes are possible. Note that using
1046    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
1047    /// using [`Release`] makes the load part [`Relaxed`].
1048    ///
1049    /// **Note:** This method is only available on platforms that support atomic
1050    /// operations on `u8`.
1051    ///
1052    /// # Examples
1053    ///
1054    /// ```
1055    /// use std::sync::atomic::{AtomicBool, Ordering};
1056    ///
1057    /// let foo = AtomicBool::new(true);
1058    /// assert_eq!(foo.fetch_xor(false, Ordering::SeqCst), true);
1059    /// assert_eq!(foo.load(Ordering::SeqCst), true);
1060    ///
1061    /// let foo = AtomicBool::new(true);
1062    /// assert_eq!(foo.fetch_xor(true, Ordering::SeqCst), true);
1063    /// assert_eq!(foo.load(Ordering::SeqCst), false);
1064    ///
1065    /// let foo = AtomicBool::new(false);
1066    /// assert_eq!(foo.fetch_xor(false, Ordering::SeqCst), false);
1067    /// assert_eq!(foo.load(Ordering::SeqCst), false);
1068    /// ```
1069    #[inline]
1070    #[stable(feature = "rust1", since = "1.0.0")]
1071    #[cfg(target_has_atomic = "8")]
1072    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1073    pub fn fetch_xor(&self, val: bool, order: Ordering) -> bool {
1074        // SAFETY: data races are prevented by atomic intrinsics.
1075        unsafe { atomic_xor(self.v.get(), val as u8, order) != 0 }
1076    }
1077
1078    /// Logical "not" with a boolean value.
1079    ///
1080    /// Performs a logical "not" operation on the current value, and sets
1081    /// the new value to the result.
1082    ///
1083    /// Returns the previous value.
1084    ///
1085    /// `fetch_not` takes an [`Ordering`] argument which describes the memory ordering
1086    /// of this operation. All ordering modes are possible. Note that using
1087    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
1088    /// using [`Release`] makes the load part [`Relaxed`].
1089    ///
1090    /// **Note:** This method is only available on platforms that support atomic
1091    /// operations on `u8`.
1092    ///
1093    /// # Examples
1094    ///
1095    /// ```
1096    /// use std::sync::atomic::{AtomicBool, Ordering};
1097    ///
1098    /// let foo = AtomicBool::new(true);
1099    /// assert_eq!(foo.fetch_not(Ordering::SeqCst), true);
1100    /// assert_eq!(foo.load(Ordering::SeqCst), false);
1101    ///
1102    /// let foo = AtomicBool::new(false);
1103    /// assert_eq!(foo.fetch_not(Ordering::SeqCst), false);
1104    /// assert_eq!(foo.load(Ordering::SeqCst), true);
1105    /// ```
1106    #[inline]
1107    #[stable(feature = "atomic_bool_fetch_not", since = "1.81.0")]
1108    #[cfg(target_has_atomic = "8")]
1109    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1110    pub fn fetch_not(&self, order: Ordering) -> bool {
1111        self.fetch_xor(true, order)
1112    }
1113
1114    /// Returns a mutable pointer to the underlying [`bool`].
1115    ///
1116    /// Doing non-atomic reads and writes on the resulting boolean can be a data race.
1117    /// This method is mostly useful for FFI, where the function signature may use
1118    /// `*mut bool` instead of `&AtomicBool`.
1119    ///
1120    /// Returning an `*mut` pointer from a shared reference to this atomic is safe because the
1121    /// atomic types work with interior mutability. All modifications of an atomic change the value
1122    /// through a shared reference, and can do so safely as long as they use atomic operations. Any
1123    /// use of the returned raw pointer requires an `unsafe` block and still has to uphold the same
1124    /// restriction: operations on it must be atomic.
1125    ///
1126    /// # Examples
1127    ///
1128    /// ```ignore (extern-declaration)
1129    /// # fn main() {
1130    /// use std::sync::atomic::AtomicBool;
1131    ///
1132    /// extern "C" {
1133    ///     fn my_atomic_op(arg: *mut bool);
1134    /// }
1135    ///
1136    /// let mut atomic = AtomicBool::new(true);
1137    /// unsafe {
1138    ///     my_atomic_op(atomic.as_ptr());
1139    /// }
1140    /// # }
1141    /// ```
1142    #[inline]
1143    #[stable(feature = "atomic_as_ptr", since = "1.70.0")]
1144    #[rustc_const_stable(feature = "atomic_as_ptr", since = "1.70.0")]
1145    #[rustc_never_returns_null_ptr]
1146    pub const fn as_ptr(&self) -> *mut bool {
1147        self.v.get().cast()
1148    }
1149
1150    /// Fetches the value, and applies a function to it that returns an optional
1151    /// new value. Returns a `Result` of `Ok(previous_value)` if the function
1152    /// returned `Some(_)`, else `Err(previous_value)`.
1153    ///
1154    /// Note: This may call the function multiple times if the value has been
1155    /// changed from other threads in the meantime, as long as the function
1156    /// returns `Some(_)`, but the function will have been applied only once to
1157    /// the stored value.
1158    ///
1159    /// `fetch_update` takes two [`Ordering`] arguments to describe the memory
1160    /// ordering of this operation. The first describes the required ordering for
1161    /// when the operation finally succeeds while the second describes the
1162    /// required ordering for loads. These correspond to the success and failure
1163    /// orderings of [`AtomicBool::compare_exchange`] respectively.
1164    ///
1165    /// Using [`Acquire`] as success ordering makes the store part of this
1166    /// operation [`Relaxed`], and using [`Release`] makes the final successful
1167    /// load [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`],
1168    /// [`Acquire`] or [`Relaxed`].
1169    ///
1170    /// **Note:** This method is only available on platforms that support atomic
1171    /// operations on `u8`.
1172    ///
1173    /// # Considerations
1174    ///
1175    /// This method is not magic; it is not provided by the hardware.
1176    /// It is implemented in terms of [`AtomicBool::compare_exchange_weak`], and suffers from the same drawbacks.
1177    /// In particular, this method will not circumvent the [ABA Problem].
1178    ///
1179    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1180    ///
1181    /// # Examples
1182    ///
1183    /// ```rust
1184    /// use std::sync::atomic::{AtomicBool, Ordering};
1185    ///
1186    /// let x = AtomicBool::new(false);
1187    /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(false));
1188    /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(!x)), Ok(false));
1189    /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(!x)), Ok(true));
1190    /// assert_eq!(x.load(Ordering::SeqCst), false);
1191    /// ```
1192    #[inline]
1193    #[stable(feature = "atomic_fetch_update", since = "1.53.0")]
1194    #[cfg(target_has_atomic = "8")]
1195    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1196    pub fn fetch_update<F>(
1197        &self,
1198        set_order: Ordering,
1199        fetch_order: Ordering,
1200        mut f: F,
1201    ) -> Result<bool, bool>
1202    where
1203        F: FnMut(bool) -> Option<bool>,
1204    {
1205        let mut prev = self.load(fetch_order);
1206        while let Some(next) = f(prev) {
1207            match self.compare_exchange_weak(prev, next, set_order, fetch_order) {
1208                x @ Ok(_) => return x,
1209                Err(next_prev) => prev = next_prev,
1210            }
1211        }
1212        Err(prev)
1213    }
1214
1215    /// Fetches the value, and applies a function to it that returns an optional
1216    /// new value. Returns a `Result` of `Ok(previous_value)` if the function
1217    /// returned `Some(_)`, else `Err(previous_value)`.
1218    ///
1219    /// See also: [`update`](`AtomicBool::update`).
1220    ///
1221    /// Note: This may call the function multiple times if the value has been
1222    /// changed from other threads in the meantime, as long as the function
1223    /// returns `Some(_)`, but the function will have been applied only once to
1224    /// the stored value.
1225    ///
1226    /// `try_update` takes two [`Ordering`] arguments to describe the memory
1227    /// ordering of this operation. The first describes the required ordering for
1228    /// when the operation finally succeeds while the second describes the
1229    /// required ordering for loads. These correspond to the success and failure
1230    /// orderings of [`AtomicBool::compare_exchange`] respectively.
1231    ///
1232    /// Using [`Acquire`] as success ordering makes the store part of this
1233    /// operation [`Relaxed`], and using [`Release`] makes the final successful
1234    /// load [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`],
1235    /// [`Acquire`] or [`Relaxed`].
1236    ///
1237    /// **Note:** This method is only available on platforms that support atomic
1238    /// operations on `u8`.
1239    ///
1240    /// # Considerations
1241    ///
1242    /// This method is not magic; it is not provided by the hardware.
1243    /// It is implemented in terms of [`AtomicBool::compare_exchange_weak`], and suffers from the same drawbacks.
1244    /// In particular, this method will not circumvent the [ABA Problem].
1245    ///
1246    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1247    ///
1248    /// # Examples
1249    ///
1250    /// ```rust
1251    /// #![feature(atomic_try_update)]
1252    /// use std::sync::atomic::{AtomicBool, Ordering};
1253    ///
1254    /// let x = AtomicBool::new(false);
1255    /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(false));
1256    /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(!x)), Ok(false));
1257    /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(!x)), Ok(true));
1258    /// assert_eq!(x.load(Ordering::SeqCst), false);
1259    /// ```
1260    #[inline]
1261    #[unstable(feature = "atomic_try_update", issue = "135894")]
1262    #[cfg(target_has_atomic = "8")]
1263    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1264    pub fn try_update(
1265        &self,
1266        set_order: Ordering,
1267        fetch_order: Ordering,
1268        f: impl FnMut(bool) -> Option<bool>,
1269    ) -> Result<bool, bool> {
1270        // FIXME(atomic_try_update): this is currently an unstable alias to `fetch_update`;
1271        //      when stabilizing, turn `fetch_update` into a deprecated alias to `try_update`.
1272        self.fetch_update(set_order, fetch_order, f)
1273    }
1274
1275    /// Fetches the value, applies a function to it that it return a new value.
1276    /// The new value is stored and the old value is returned.
1277    ///
1278    /// See also: [`try_update`](`AtomicBool::try_update`).
1279    ///
1280    /// Note: This may call the function multiple times if the value has been changed from other threads in
1281    /// the meantime, but the function will have been applied only once to the stored value.
1282    ///
1283    /// `update` takes two [`Ordering`] arguments to describe the memory
1284    /// ordering of this operation. The first describes the required ordering for
1285    /// when the operation finally succeeds while the second describes the
1286    /// required ordering for loads. These correspond to the success and failure
1287    /// orderings of [`AtomicBool::compare_exchange`] respectively.
1288    ///
1289    /// Using [`Acquire`] as success ordering makes the store part
1290    /// of this operation [`Relaxed`], and using [`Release`] makes the final successful load
1291    /// [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
1292    ///
1293    /// **Note:** This method is only available on platforms that support atomic operations on `u8`.
1294    ///
1295    /// # Considerations
1296    ///
1297    /// This method is not magic; it is not provided by the hardware.
1298    /// It is implemented in terms of [`AtomicBool::compare_exchange_weak`], and suffers from the same drawbacks.
1299    /// In particular, this method will not circumvent the [ABA Problem].
1300    ///
1301    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1302    ///
1303    /// # Examples
1304    ///
1305    /// ```rust
1306    /// #![feature(atomic_try_update)]
1307    ///
1308    /// use std::sync::atomic::{AtomicBool, Ordering};
1309    ///
1310    /// let x = AtomicBool::new(false);
1311    /// assert_eq!(x.update(Ordering::SeqCst, Ordering::SeqCst, |x| !x), false);
1312    /// assert_eq!(x.update(Ordering::SeqCst, Ordering::SeqCst, |x| !x), true);
1313    /// assert_eq!(x.load(Ordering::SeqCst), false);
1314    /// ```
1315    #[inline]
1316    #[unstable(feature = "atomic_try_update", issue = "135894")]
1317    #[cfg(target_has_atomic = "8")]
1318    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1319    pub fn update(
1320        &self,
1321        set_order: Ordering,
1322        fetch_order: Ordering,
1323        mut f: impl FnMut(bool) -> bool,
1324    ) -> bool {
1325        let mut prev = self.load(fetch_order);
1326        loop {
1327            match self.compare_exchange_weak(prev, f(prev), set_order, fetch_order) {
1328                Ok(x) => break x,
1329                Err(next_prev) => prev = next_prev,
1330            }
1331        }
1332    }
1333}
1334
1335#[cfg(target_has_atomic_load_store = "ptr")]
1336impl<T> AtomicPtr<T> {
1337    /// Creates a new `AtomicPtr`.
1338    ///
1339    /// # Examples
1340    ///
1341    /// ```
1342    /// use std::sync::atomic::AtomicPtr;
1343    ///
1344    /// let ptr = &mut 5;
1345    /// let atomic_ptr = AtomicPtr::new(ptr);
1346    /// ```
1347    #[inline]
1348    #[stable(feature = "rust1", since = "1.0.0")]
1349    #[rustc_const_stable(feature = "const_atomic_new", since = "1.24.0")]
1350    pub const fn new(p: *mut T) -> AtomicPtr<T> {
1351        AtomicPtr { p: UnsafeCell::new(p) }
1352    }
1353
1354    /// Creates a new `AtomicPtr` from a pointer.
1355    ///
1356    /// # Examples
1357    ///
1358    /// ```
1359    /// use std::sync::atomic::{self, AtomicPtr};
1360    ///
1361    /// // Get a pointer to an allocated value
1362    /// let ptr: *mut *mut u8 = Box::into_raw(Box::new(std::ptr::null_mut()));
1363    ///
1364    /// assert!(ptr.cast::<AtomicPtr<u8>>().is_aligned());
1365    ///
1366    /// {
1367    ///     // Create an atomic view of the allocated value
1368    ///     let atomic = unsafe { AtomicPtr::from_ptr(ptr) };
1369    ///
1370    ///     // Use `atomic` for atomic operations, possibly share it with other threads
1371    ///     atomic.store(std::ptr::NonNull::dangling().as_ptr(), atomic::Ordering::Relaxed);
1372    /// }
1373    ///
1374    /// // It's ok to non-atomically access the value behind `ptr`,
1375    /// // since the reference to the atomic ended its lifetime in the block above
1376    /// assert!(!unsafe { *ptr }.is_null());
1377    ///
1378    /// // Deallocate the value
1379    /// unsafe { drop(Box::from_raw(ptr)) }
1380    /// ```
1381    ///
1382    /// # Safety
1383    ///
1384    /// * `ptr` must be aligned to `align_of::<AtomicPtr<T>>()` (note that on some platforms this
1385    ///   can be bigger than `align_of::<*mut T>()`).
1386    /// * `ptr` must be [valid] for both reads and writes for the whole lifetime `'a`.
1387    /// * You must adhere to the [Memory model for atomic accesses]. In particular, it is not
1388    ///   allowed to mix atomic and non-atomic accesses, or atomic accesses of different sizes,
1389    ///   without synchronization.
1390    ///
1391    /// [valid]: crate::ptr#safety
1392    /// [Memory model for atomic accesses]: self#memory-model-for-atomic-accesses
1393    #[inline]
1394    #[stable(feature = "atomic_from_ptr", since = "1.75.0")]
1395    #[rustc_const_stable(feature = "const_atomic_from_ptr", since = "1.84.0")]
1396    pub const unsafe fn from_ptr<'a>(ptr: *mut *mut T) -> &'a AtomicPtr<T> {
1397        // SAFETY: guaranteed by the caller
1398        unsafe { &*ptr.cast() }
1399    }
1400
1401    /// Returns a mutable reference to the underlying pointer.
1402    ///
1403    /// This is safe because the mutable reference guarantees that no other threads are
1404    /// concurrently accessing the atomic data.
1405    ///
1406    /// # Examples
1407    ///
1408    /// ```
1409    /// use std::sync::atomic::{AtomicPtr, Ordering};
1410    ///
1411    /// let mut data = 10;
1412    /// let mut atomic_ptr = AtomicPtr::new(&mut data);
1413    /// let mut other_data = 5;
1414    /// *atomic_ptr.get_mut() = &mut other_data;
1415    /// assert_eq!(unsafe { *atomic_ptr.load(Ordering::SeqCst) }, 5);
1416    /// ```
1417    #[inline]
1418    #[stable(feature = "atomic_access", since = "1.15.0")]
1419    pub fn get_mut(&mut self) -> &mut *mut T {
1420        self.p.get_mut()
1421    }
1422
1423    /// Gets atomic access to a pointer.
1424    ///
1425    /// # Examples
1426    ///
1427    /// ```
1428    /// #![feature(atomic_from_mut)]
1429    /// use std::sync::atomic::{AtomicPtr, Ordering};
1430    ///
1431    /// let mut data = 123;
1432    /// let mut some_ptr = &mut data as *mut i32;
1433    /// let a = AtomicPtr::from_mut(&mut some_ptr);
1434    /// let mut other_data = 456;
1435    /// a.store(&mut other_data, Ordering::Relaxed);
1436    /// assert_eq!(unsafe { *some_ptr }, 456);
1437    /// ```
1438    #[inline]
1439    #[cfg(target_has_atomic_equal_alignment = "ptr")]
1440    #[unstable(feature = "atomic_from_mut", issue = "76314")]
1441    pub fn from_mut(v: &mut *mut T) -> &mut Self {
1442        let [] = [(); align_of::<AtomicPtr<()>>() - align_of::<*mut ()>()];
1443        // SAFETY:
1444        //  - the mutable reference guarantees unique ownership.
1445        //  - the alignment of `*mut T` and `Self` is the same on all platforms
1446        //    supported by rust, as verified above.
1447        unsafe { &mut *(v as *mut *mut T as *mut Self) }
1448    }
1449
1450    /// Gets non-atomic access to a `&mut [AtomicPtr]` slice.
1451    ///
1452    /// This is safe because the mutable reference guarantees that no other threads are
1453    /// concurrently accessing the atomic data.
1454    ///
1455    /// # Examples
1456    ///
1457    /// ```
1458    /// #![feature(atomic_from_mut)]
1459    /// use std::ptr::null_mut;
1460    /// use std::sync::atomic::{AtomicPtr, Ordering};
1461    ///
1462    /// let mut some_ptrs = [const { AtomicPtr::new(null_mut::<String>()) }; 10];
1463    ///
1464    /// let view: &mut [*mut String] = AtomicPtr::get_mut_slice(&mut some_ptrs);
1465    /// assert_eq!(view, [null_mut::<String>(); 10]);
1466    /// view
1467    ///     .iter_mut()
1468    ///     .enumerate()
1469    ///     .for_each(|(i, ptr)| *ptr = Box::into_raw(Box::new(format!("iteration#{i}"))));
1470    ///
1471    /// std::thread::scope(|s| {
1472    ///     for ptr in &some_ptrs {
1473    ///         s.spawn(move || {
1474    ///             let ptr = ptr.load(Ordering::Relaxed);
1475    ///             assert!(!ptr.is_null());
1476    ///
1477    ///             let name = unsafe { Box::from_raw(ptr) };
1478    ///             println!("Hello, {name}!");
1479    ///         });
1480    ///     }
1481    /// });
1482    /// ```
1483    #[inline]
1484    #[unstable(feature = "atomic_from_mut", issue = "76314")]
1485    pub fn get_mut_slice(this: &mut [Self]) -> &mut [*mut T] {
1486        // SAFETY: the mutable reference guarantees unique ownership.
1487        unsafe { &mut *(this as *mut [Self] as *mut [*mut T]) }
1488    }
1489
1490    /// Gets atomic access to a slice of pointers.
1491    ///
1492    /// # Examples
1493    ///
1494    /// ```
1495    /// #![feature(atomic_from_mut)]
1496    /// use std::ptr::null_mut;
1497    /// use std::sync::atomic::{AtomicPtr, Ordering};
1498    ///
1499    /// let mut some_ptrs = [null_mut::<String>(); 10];
1500    /// let a = &*AtomicPtr::from_mut_slice(&mut some_ptrs);
1501    /// std::thread::scope(|s| {
1502    ///     for i in 0..a.len() {
1503    ///         s.spawn(move || {
1504    ///             let name = Box::new(format!("thread{i}"));
1505    ///             a[i].store(Box::into_raw(name), Ordering::Relaxed);
1506    ///         });
1507    ///     }
1508    /// });
1509    /// for p in some_ptrs {
1510    ///     assert!(!p.is_null());
1511    ///     let name = unsafe { Box::from_raw(p) };
1512    ///     println!("Hello, {name}!");
1513    /// }
1514    /// ```
1515    #[inline]
1516    #[cfg(target_has_atomic_equal_alignment = "ptr")]
1517    #[unstable(feature = "atomic_from_mut", issue = "76314")]
1518    pub fn from_mut_slice(v: &mut [*mut T]) -> &mut [Self] {
1519        // SAFETY:
1520        //  - the mutable reference guarantees unique ownership.
1521        //  - the alignment of `*mut T` and `Self` is the same on all platforms
1522        //    supported by rust, as verified above.
1523        unsafe { &mut *(v as *mut [*mut T] as *mut [Self]) }
1524    }
1525
1526    /// Consumes the atomic and returns the contained value.
1527    ///
1528    /// This is safe because passing `self` by value guarantees that no other threads are
1529    /// concurrently accessing the atomic data.
1530    ///
1531    /// # Examples
1532    ///
1533    /// ```
1534    /// use std::sync::atomic::AtomicPtr;
1535    ///
1536    /// let mut data = 5;
1537    /// let atomic_ptr = AtomicPtr::new(&mut data);
1538    /// assert_eq!(unsafe { *atomic_ptr.into_inner() }, 5);
1539    /// ```
1540    #[inline]
1541    #[stable(feature = "atomic_access", since = "1.15.0")]
1542    #[rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0")]
1543    pub const fn into_inner(self) -> *mut T {
1544        self.p.into_inner()
1545    }
1546
1547    /// Loads a value from the pointer.
1548    ///
1549    /// `load` takes an [`Ordering`] argument which describes the memory ordering
1550    /// of this operation. Possible values are [`SeqCst`], [`Acquire`] and [`Relaxed`].
1551    ///
1552    /// # Panics
1553    ///
1554    /// Panics if `order` is [`Release`] or [`AcqRel`].
1555    ///
1556    /// # Examples
1557    ///
1558    /// ```
1559    /// use std::sync::atomic::{AtomicPtr, Ordering};
1560    ///
1561    /// let ptr = &mut 5;
1562    /// let some_ptr = AtomicPtr::new(ptr);
1563    ///
1564    /// let value = some_ptr.load(Ordering::Relaxed);
1565    /// ```
1566    #[inline]
1567    #[stable(feature = "rust1", since = "1.0.0")]
1568    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1569    pub fn load(&self, order: Ordering) -> *mut T {
1570        // SAFETY: data races are prevented by atomic intrinsics.
1571        unsafe { atomic_load(self.p.get(), order) }
1572    }
1573
1574    /// Stores a value into the pointer.
1575    ///
1576    /// `store` takes an [`Ordering`] argument which describes the memory ordering
1577    /// of this operation. Possible values are [`SeqCst`], [`Release`] and [`Relaxed`].
1578    ///
1579    /// # Panics
1580    ///
1581    /// Panics if `order` is [`Acquire`] or [`AcqRel`].
1582    ///
1583    /// # Examples
1584    ///
1585    /// ```
1586    /// use std::sync::atomic::{AtomicPtr, Ordering};
1587    ///
1588    /// let ptr = &mut 5;
1589    /// let some_ptr = AtomicPtr::new(ptr);
1590    ///
1591    /// let other_ptr = &mut 10;
1592    ///
1593    /// some_ptr.store(other_ptr, Ordering::Relaxed);
1594    /// ```
1595    #[inline]
1596    #[stable(feature = "rust1", since = "1.0.0")]
1597    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1598    pub fn store(&self, ptr: *mut T, order: Ordering) {
1599        // SAFETY: data races are prevented by atomic intrinsics.
1600        unsafe {
1601            atomic_store(self.p.get(), ptr, order);
1602        }
1603    }
1604
1605    /// Stores a value into the pointer, returning the previous value.
1606    ///
1607    /// `swap` takes an [`Ordering`] argument which describes the memory ordering
1608    /// of this operation. All ordering modes are possible. Note that using
1609    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
1610    /// using [`Release`] makes the load part [`Relaxed`].
1611    ///
1612    /// **Note:** This method is only available on platforms that support atomic
1613    /// operations on pointers.
1614    ///
1615    /// # Examples
1616    ///
1617    /// ```
1618    /// use std::sync::atomic::{AtomicPtr, Ordering};
1619    ///
1620    /// let ptr = &mut 5;
1621    /// let some_ptr = AtomicPtr::new(ptr);
1622    ///
1623    /// let other_ptr = &mut 10;
1624    ///
1625    /// let value = some_ptr.swap(other_ptr, Ordering::Relaxed);
1626    /// ```
1627    #[inline]
1628    #[stable(feature = "rust1", since = "1.0.0")]
1629    #[cfg(target_has_atomic = "ptr")]
1630    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1631    pub fn swap(&self, ptr: *mut T, order: Ordering) -> *mut T {
1632        // SAFETY: data races are prevented by atomic intrinsics.
1633        unsafe { atomic_swap(self.p.get(), ptr, order) }
1634    }
1635
1636    /// Stores a value into the pointer if the current value is the same as the `current` value.
1637    ///
1638    /// The return value is always the previous value. If it is equal to `current`, then the value
1639    /// was updated.
1640    ///
1641    /// `compare_and_swap` also takes an [`Ordering`] argument which describes the memory
1642    /// ordering of this operation. Notice that even when using [`AcqRel`], the operation
1643    /// might fail and hence just perform an `Acquire` load, but not have `Release` semantics.
1644    /// Using [`Acquire`] makes the store part of this operation [`Relaxed`] if it
1645    /// happens, and using [`Release`] makes the load part [`Relaxed`].
1646    ///
1647    /// **Note:** This method is only available on platforms that support atomic
1648    /// operations on pointers.
1649    ///
1650    /// # Migrating to `compare_exchange` and `compare_exchange_weak`
1651    ///
1652    /// `compare_and_swap` is equivalent to `compare_exchange` with the following mapping for
1653    /// memory orderings:
1654    ///
1655    /// Original | Success | Failure
1656    /// -------- | ------- | -------
1657    /// Relaxed  | Relaxed | Relaxed
1658    /// Acquire  | Acquire | Acquire
1659    /// Release  | Release | Relaxed
1660    /// AcqRel   | AcqRel  | Acquire
1661    /// SeqCst   | SeqCst  | SeqCst
1662    ///
1663    /// `compare_and_swap` and `compare_exchange` also differ in their return type. You can use
1664    /// `compare_exchange(...).unwrap_or_else(|x| x)` to recover the behavior of `compare_and_swap`,
1665    /// but in most cases it is more idiomatic to check whether the return value is `Ok` or `Err`
1666    /// rather than to infer success vs failure based on the value that was read.
1667    ///
1668    /// During migration, consider whether it makes sense to use `compare_exchange_weak` instead.
1669    /// `compare_exchange_weak` is allowed to fail spuriously even when the comparison succeeds,
1670    /// which allows the compiler to generate better assembly code when the compare and swap
1671    /// is used in a loop.
1672    ///
1673    /// # Examples
1674    ///
1675    /// ```
1676    /// use std::sync::atomic::{AtomicPtr, Ordering};
1677    ///
1678    /// let ptr = &mut 5;
1679    /// let some_ptr = AtomicPtr::new(ptr);
1680    ///
1681    /// let other_ptr = &mut 10;
1682    ///
1683    /// let value = some_ptr.compare_and_swap(ptr, other_ptr, Ordering::Relaxed);
1684    /// ```
1685    #[inline]
1686    #[stable(feature = "rust1", since = "1.0.0")]
1687    #[deprecated(
1688        since = "1.50.0",
1689        note = "Use `compare_exchange` or `compare_exchange_weak` instead"
1690    )]
1691    #[cfg(target_has_atomic = "ptr")]
1692    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1693    pub fn compare_and_swap(&self, current: *mut T, new: *mut T, order: Ordering) -> *mut T {
1694        match self.compare_exchange(current, new, order, strongest_failure_ordering(order)) {
1695            Ok(x) => x,
1696            Err(x) => x,
1697        }
1698    }
1699
1700    /// Stores a value into the pointer if the current value is the same as the `current` value.
1701    ///
1702    /// The return value is a result indicating whether the new value was written and containing
1703    /// the previous value. On success this value is guaranteed to be equal to `current`.
1704    ///
1705    /// `compare_exchange` takes two [`Ordering`] arguments to describe the memory
1706    /// ordering of this operation. `success` describes the required ordering for the
1707    /// read-modify-write operation that takes place if the comparison with `current` succeeds.
1708    /// `failure` describes the required ordering for the load operation that takes place when
1709    /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
1710    /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
1711    /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
1712    ///
1713    /// **Note:** This method is only available on platforms that support atomic
1714    /// operations on pointers.
1715    ///
1716    /// # Examples
1717    ///
1718    /// ```
1719    /// use std::sync::atomic::{AtomicPtr, Ordering};
1720    ///
1721    /// let ptr = &mut 5;
1722    /// let some_ptr = AtomicPtr::new(ptr);
1723    ///
1724    /// let other_ptr = &mut 10;
1725    ///
1726    /// let value = some_ptr.compare_exchange(ptr, other_ptr,
1727    ///                                       Ordering::SeqCst, Ordering::Relaxed);
1728    /// ```
1729    #[inline]
1730    #[stable(feature = "extended_compare_and_swap", since = "1.10.0")]
1731    #[cfg(target_has_atomic = "ptr")]
1732    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1733    pub fn compare_exchange(
1734        &self,
1735        current: *mut T,
1736        new: *mut T,
1737        success: Ordering,
1738        failure: Ordering,
1739    ) -> Result<*mut T, *mut T> {
1740        // SAFETY: data races are prevented by atomic intrinsics.
1741        unsafe { atomic_compare_exchange(self.p.get(), current, new, success, failure) }
1742    }
1743
1744    /// Stores a value into the pointer if the current value is the same as the `current` value.
1745    ///
1746    /// Unlike [`AtomicPtr::compare_exchange`], this function is allowed to spuriously fail even when the
1747    /// comparison succeeds, which can result in more efficient code on some platforms. The
1748    /// return value is a result indicating whether the new value was written and containing the
1749    /// previous value.
1750    ///
1751    /// `compare_exchange_weak` takes two [`Ordering`] arguments to describe the memory
1752    /// ordering of this operation. `success` describes the required ordering for the
1753    /// read-modify-write operation that takes place if the comparison with `current` succeeds.
1754    /// `failure` describes the required ordering for the load operation that takes place when
1755    /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
1756    /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
1757    /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
1758    ///
1759    /// **Note:** This method is only available on platforms that support atomic
1760    /// operations on pointers.
1761    ///
1762    /// # Examples
1763    ///
1764    /// ```
1765    /// use std::sync::atomic::{AtomicPtr, Ordering};
1766    ///
1767    /// let some_ptr = AtomicPtr::new(&mut 5);
1768    ///
1769    /// let new = &mut 10;
1770    /// let mut old = some_ptr.load(Ordering::Relaxed);
1771    /// loop {
1772    ///     match some_ptr.compare_exchange_weak(old, new, Ordering::SeqCst, Ordering::Relaxed) {
1773    ///         Ok(_) => break,
1774    ///         Err(x) => old = x,
1775    ///     }
1776    /// }
1777    /// ```
1778    #[inline]
1779    #[stable(feature = "extended_compare_and_swap", since = "1.10.0")]
1780    #[cfg(target_has_atomic = "ptr")]
1781    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1782    pub fn compare_exchange_weak(
1783        &self,
1784        current: *mut T,
1785        new: *mut T,
1786        success: Ordering,
1787        failure: Ordering,
1788    ) -> Result<*mut T, *mut T> {
1789        // SAFETY: This intrinsic is unsafe because it operates on a raw pointer
1790        // but we know for sure that the pointer is valid (we just got it from
1791        // an `UnsafeCell` that we have by reference) and the atomic operation
1792        // itself allows us to safely mutate the `UnsafeCell` contents.
1793        unsafe { atomic_compare_exchange_weak(self.p.get(), current, new, success, failure) }
1794    }
1795
1796    /// Fetches the value, and applies a function to it that returns an optional
1797    /// new value. Returns a `Result` of `Ok(previous_value)` if the function
1798    /// returned `Some(_)`, else `Err(previous_value)`.
1799    ///
1800    /// Note: This may call the function multiple times if the value has been
1801    /// changed from other threads in the meantime, as long as the function
1802    /// returns `Some(_)`, but the function will have been applied only once to
1803    /// the stored value.
1804    ///
1805    /// `fetch_update` takes two [`Ordering`] arguments to describe the memory
1806    /// ordering of this operation. The first describes the required ordering for
1807    /// when the operation finally succeeds while the second describes the
1808    /// required ordering for loads. These correspond to the success and failure
1809    /// orderings of [`AtomicPtr::compare_exchange`] respectively.
1810    ///
1811    /// Using [`Acquire`] as success ordering makes the store part of this
1812    /// operation [`Relaxed`], and using [`Release`] makes the final successful
1813    /// load [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`],
1814    /// [`Acquire`] or [`Relaxed`].
1815    ///
1816    /// **Note:** This method is only available on platforms that support atomic
1817    /// operations on pointers.
1818    ///
1819    /// # Considerations
1820    ///
1821    /// This method is not magic; it is not provided by the hardware.
1822    /// It is implemented in terms of [`AtomicPtr::compare_exchange_weak`], and suffers from the same drawbacks.
1823    /// In particular, this method will not circumvent the [ABA Problem].
1824    ///
1825    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1826    ///
1827    /// # Examples
1828    ///
1829    /// ```rust
1830    /// use std::sync::atomic::{AtomicPtr, Ordering};
1831    ///
1832    /// let ptr: *mut _ = &mut 5;
1833    /// let some_ptr = AtomicPtr::new(ptr);
1834    ///
1835    /// let new: *mut _ = &mut 10;
1836    /// assert_eq!(some_ptr.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(ptr));
1837    /// let result = some_ptr.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| {
1838    ///     if x == ptr {
1839    ///         Some(new)
1840    ///     } else {
1841    ///         None
1842    ///     }
1843    /// });
1844    /// assert_eq!(result, Ok(ptr));
1845    /// assert_eq!(some_ptr.load(Ordering::SeqCst), new);
1846    /// ```
1847    #[inline]
1848    #[stable(feature = "atomic_fetch_update", since = "1.53.0")]
1849    #[cfg(target_has_atomic = "ptr")]
1850    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1851    pub fn fetch_update<F>(
1852        &self,
1853        set_order: Ordering,
1854        fetch_order: Ordering,
1855        mut f: F,
1856    ) -> Result<*mut T, *mut T>
1857    where
1858        F: FnMut(*mut T) -> Option<*mut T>,
1859    {
1860        let mut prev = self.load(fetch_order);
1861        while let Some(next) = f(prev) {
1862            match self.compare_exchange_weak(prev, next, set_order, fetch_order) {
1863                x @ Ok(_) => return x,
1864                Err(next_prev) => prev = next_prev,
1865            }
1866        }
1867        Err(prev)
1868    }
1869    /// Fetches the value, and applies a function to it that returns an optional
1870    /// new value. Returns a `Result` of `Ok(previous_value)` if the function
1871    /// returned `Some(_)`, else `Err(previous_value)`.
1872    ///
1873    /// See also: [`update`](`AtomicPtr::update`).
1874    ///
1875    /// Note: This may call the function multiple times if the value has been
1876    /// changed from other threads in the meantime, as long as the function
1877    /// returns `Some(_)`, but the function will have been applied only once to
1878    /// the stored value.
1879    ///
1880    /// `try_update` takes two [`Ordering`] arguments to describe the memory
1881    /// ordering of this operation. The first describes the required ordering for
1882    /// when the operation finally succeeds while the second describes the
1883    /// required ordering for loads. These correspond to the success and failure
1884    /// orderings of [`AtomicPtr::compare_exchange`] respectively.
1885    ///
1886    /// Using [`Acquire`] as success ordering makes the store part of this
1887    /// operation [`Relaxed`], and using [`Release`] makes the final successful
1888    /// load [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`],
1889    /// [`Acquire`] or [`Relaxed`].
1890    ///
1891    /// **Note:** This method is only available on platforms that support atomic
1892    /// operations on pointers.
1893    ///
1894    /// # Considerations
1895    ///
1896    /// This method is not magic; it is not provided by the hardware.
1897    /// It is implemented in terms of [`AtomicPtr::compare_exchange_weak`], and suffers from the same drawbacks.
1898    /// In particular, this method will not circumvent the [ABA Problem].
1899    ///
1900    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1901    ///
1902    /// # Examples
1903    ///
1904    /// ```rust
1905    /// #![feature(atomic_try_update)]
1906    /// use std::sync::atomic::{AtomicPtr, Ordering};
1907    ///
1908    /// let ptr: *mut _ = &mut 5;
1909    /// let some_ptr = AtomicPtr::new(ptr);
1910    ///
1911    /// let new: *mut _ = &mut 10;
1912    /// assert_eq!(some_ptr.try_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(ptr));
1913    /// let result = some_ptr.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| {
1914    ///     if x == ptr {
1915    ///         Some(new)
1916    ///     } else {
1917    ///         None
1918    ///     }
1919    /// });
1920    /// assert_eq!(result, Ok(ptr));
1921    /// assert_eq!(some_ptr.load(Ordering::SeqCst), new);
1922    /// ```
1923    #[inline]
1924    #[unstable(feature = "atomic_try_update", issue = "135894")]
1925    #[cfg(target_has_atomic = "ptr")]
1926    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1927    pub fn try_update(
1928        &self,
1929        set_order: Ordering,
1930        fetch_order: Ordering,
1931        f: impl FnMut(*mut T) -> Option<*mut T>,
1932    ) -> Result<*mut T, *mut T> {
1933        // FIXME(atomic_try_update): this is currently an unstable alias to `fetch_update`;
1934        //      when stabilizing, turn `fetch_update` into a deprecated alias to `try_update`.
1935        self.fetch_update(set_order, fetch_order, f)
1936    }
1937
1938    /// Fetches the value, applies a function to it that it return a new value.
1939    /// The new value is stored and the old value is returned.
1940    ///
1941    /// See also: [`try_update`](`AtomicPtr::try_update`).
1942    ///
1943    /// Note: This may call the function multiple times if the value has been changed from other threads in
1944    /// the meantime, but the function will have been applied only once to the stored value.
1945    ///
1946    /// `update` takes two [`Ordering`] arguments to describe the memory
1947    /// ordering of this operation. The first describes the required ordering for
1948    /// when the operation finally succeeds while the second describes the
1949    /// required ordering for loads. These correspond to the success and failure
1950    /// orderings of [`AtomicPtr::compare_exchange`] respectively.
1951    ///
1952    /// Using [`Acquire`] as success ordering makes the store part
1953    /// of this operation [`Relaxed`], and using [`Release`] makes the final successful load
1954    /// [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
1955    ///
1956    /// **Note:** This method is only available on platforms that support atomic
1957    /// operations on pointers.
1958    ///
1959    /// # Considerations
1960    ///
1961    /// This method is not magic; it is not provided by the hardware.
1962    /// It is implemented in terms of [`AtomicPtr::compare_exchange_weak`], and suffers from the same drawbacks.
1963    /// In particular, this method will not circumvent the [ABA Problem].
1964    ///
1965    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1966    ///
1967    /// # Examples
1968    ///
1969    /// ```rust
1970    /// #![feature(atomic_try_update)]
1971    ///
1972    /// use std::sync::atomic::{AtomicPtr, Ordering};
1973    ///
1974    /// let ptr: *mut _ = &mut 5;
1975    /// let some_ptr = AtomicPtr::new(ptr);
1976    ///
1977    /// let new: *mut _ = &mut 10;
1978    /// let result = some_ptr.update(Ordering::SeqCst, Ordering::SeqCst, |_| new);
1979    /// assert_eq!(result, ptr);
1980    /// assert_eq!(some_ptr.load(Ordering::SeqCst), new);
1981    /// ```
1982    #[inline]
1983    #[unstable(feature = "atomic_try_update", issue = "135894")]
1984    #[cfg(target_has_atomic = "8")]
1985    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1986    pub fn update(
1987        &self,
1988        set_order: Ordering,
1989        fetch_order: Ordering,
1990        mut f: impl FnMut(*mut T) -> *mut T,
1991    ) -> *mut T {
1992        let mut prev = self.load(fetch_order);
1993        loop {
1994            match self.compare_exchange_weak(prev, f(prev), set_order, fetch_order) {
1995                Ok(x) => break x,
1996                Err(next_prev) => prev = next_prev,
1997            }
1998        }
1999    }
2000
2001    /// Offsets the pointer's address by adding `val` (in units of `T`),
2002    /// returning the previous pointer.
2003    ///
2004    /// This is equivalent to using [`wrapping_add`] to atomically perform the
2005    /// equivalent of `ptr = ptr.wrapping_add(val);`.
2006    ///
2007    /// This method operates in units of `T`, which means that it cannot be used
2008    /// to offset the pointer by an amount which is not a multiple of
2009    /// `size_of::<T>()`. This can sometimes be inconvenient, as you may want to
2010    /// work with a deliberately misaligned pointer. In such cases, you may use
2011    /// the [`fetch_byte_add`](Self::fetch_byte_add) method instead.
2012    ///
2013    /// `fetch_ptr_add` takes an [`Ordering`] argument which describes the
2014    /// memory ordering of this operation. All ordering modes are possible. Note
2015    /// that using [`Acquire`] makes the store part of this operation
2016    /// [`Relaxed`], and using [`Release`] makes the load part [`Relaxed`].
2017    ///
2018    /// **Note**: This method is only available on platforms that support atomic
2019    /// operations on [`AtomicPtr`].
2020    ///
2021    /// [`wrapping_add`]: pointer::wrapping_add
2022    ///
2023    /// # Examples
2024    ///
2025    /// ```
2026    /// #![feature(strict_provenance_atomic_ptr)]
2027    /// use core::sync::atomic::{AtomicPtr, Ordering};
2028    ///
2029    /// let atom = AtomicPtr::<i64>::new(core::ptr::null_mut());
2030    /// assert_eq!(atom.fetch_ptr_add(1, Ordering::Relaxed).addr(), 0);
2031    /// // Note: units of `size_of::<i64>()`.
2032    /// assert_eq!(atom.load(Ordering::Relaxed).addr(), 8);
2033    /// ```
2034    #[inline]
2035    #[cfg(target_has_atomic = "ptr")]
2036    #[unstable(feature = "strict_provenance_atomic_ptr", issue = "99108")]
2037    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2038    pub fn fetch_ptr_add(&self, val: usize, order: Ordering) -> *mut T {
2039        self.fetch_byte_add(val.wrapping_mul(size_of::<T>()), order)
2040    }
2041
2042    /// Offsets the pointer's address by subtracting `val` (in units of `T`),
2043    /// returning the previous pointer.
2044    ///
2045    /// This is equivalent to using [`wrapping_sub`] to atomically perform the
2046    /// equivalent of `ptr = ptr.wrapping_sub(val);`.
2047    ///
2048    /// This method operates in units of `T`, which means that it cannot be used
2049    /// to offset the pointer by an amount which is not a multiple of
2050    /// `size_of::<T>()`. This can sometimes be inconvenient, as you may want to
2051    /// work with a deliberately misaligned pointer. In such cases, you may use
2052    /// the [`fetch_byte_sub`](Self::fetch_byte_sub) method instead.
2053    ///
2054    /// `fetch_ptr_sub` takes an [`Ordering`] argument which describes the memory
2055    /// ordering of this operation. All ordering modes are possible. Note that
2056    /// using [`Acquire`] makes the store part of this operation [`Relaxed`],
2057    /// and using [`Release`] makes the load part [`Relaxed`].
2058    ///
2059    /// **Note**: This method is only available on platforms that support atomic
2060    /// operations on [`AtomicPtr`].
2061    ///
2062    /// [`wrapping_sub`]: pointer::wrapping_sub
2063    ///
2064    /// # Examples
2065    ///
2066    /// ```
2067    /// #![feature(strict_provenance_atomic_ptr)]
2068    /// use core::sync::atomic::{AtomicPtr, Ordering};
2069    ///
2070    /// let array = [1i32, 2i32];
2071    /// let atom = AtomicPtr::new(array.as_ptr().wrapping_add(1) as *mut _);
2072    ///
2073    /// assert!(core::ptr::eq(
2074    ///     atom.fetch_ptr_sub(1, Ordering::Relaxed),
2075    ///     &array[1],
2076    /// ));
2077    /// assert!(core::ptr::eq(atom.load(Ordering::Relaxed), &array[0]));
2078    /// ```
2079    #[inline]
2080    #[cfg(target_has_atomic = "ptr")]
2081    #[unstable(feature = "strict_provenance_atomic_ptr", issue = "99108")]
2082    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2083    pub fn fetch_ptr_sub(&self, val: usize, order: Ordering) -> *mut T {
2084        self.fetch_byte_sub(val.wrapping_mul(size_of::<T>()), order)
2085    }
2086
2087    /// Offsets the pointer's address by adding `val` *bytes*, returning the
2088    /// previous pointer.
2089    ///
2090    /// This is equivalent to using [`wrapping_byte_add`] to atomically
2091    /// perform `ptr = ptr.wrapping_byte_add(val)`.
2092    ///
2093    /// `fetch_byte_add` takes an [`Ordering`] argument which describes the
2094    /// memory ordering of this operation. All ordering modes are possible. Note
2095    /// that using [`Acquire`] makes the store part of this operation
2096    /// [`Relaxed`], and using [`Release`] makes the load part [`Relaxed`].
2097    ///
2098    /// **Note**: This method is only available on platforms that support atomic
2099    /// operations on [`AtomicPtr`].
2100    ///
2101    /// [`wrapping_byte_add`]: pointer::wrapping_byte_add
2102    ///
2103    /// # Examples
2104    ///
2105    /// ```
2106    /// #![feature(strict_provenance_atomic_ptr)]
2107    /// use core::sync::atomic::{AtomicPtr, Ordering};
2108    ///
2109    /// let atom = AtomicPtr::<i64>::new(core::ptr::null_mut());
2110    /// assert_eq!(atom.fetch_byte_add(1, Ordering::Relaxed).addr(), 0);
2111    /// // Note: in units of bytes, not `size_of::<i64>()`.
2112    /// assert_eq!(atom.load(Ordering::Relaxed).addr(), 1);
2113    /// ```
2114    #[inline]
2115    #[cfg(target_has_atomic = "ptr")]
2116    #[unstable(feature = "strict_provenance_atomic_ptr", issue = "99108")]
2117    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2118    pub fn fetch_byte_add(&self, val: usize, order: Ordering) -> *mut T {
2119        // SAFETY: data races are prevented by atomic intrinsics.
2120        unsafe { atomic_add(self.p.get(), core::ptr::without_provenance_mut(val), order).cast() }
2121    }
2122
2123    /// Offsets the pointer's address by subtracting `val` *bytes*, returning the
2124    /// previous pointer.
2125    ///
2126    /// This is equivalent to using [`wrapping_byte_sub`] to atomically
2127    /// perform `ptr = ptr.wrapping_byte_sub(val)`.
2128    ///
2129    /// `fetch_byte_sub` takes an [`Ordering`] argument which describes the
2130    /// memory ordering of this operation. All ordering modes are possible. Note
2131    /// that using [`Acquire`] makes the store part of this operation
2132    /// [`Relaxed`], and using [`Release`] makes the load part [`Relaxed`].
2133    ///
2134    /// **Note**: This method is only available on platforms that support atomic
2135    /// operations on [`AtomicPtr`].
2136    ///
2137    /// [`wrapping_byte_sub`]: pointer::wrapping_byte_sub
2138    ///
2139    /// # Examples
2140    ///
2141    /// ```
2142    /// #![feature(strict_provenance_atomic_ptr)]
2143    /// use core::sync::atomic::{AtomicPtr, Ordering};
2144    ///
2145    /// let atom = AtomicPtr::<i64>::new(core::ptr::without_provenance_mut(1));
2146    /// assert_eq!(atom.fetch_byte_sub(1, Ordering::Relaxed).addr(), 1);
2147    /// assert_eq!(atom.load(Ordering::Relaxed).addr(), 0);
2148    /// ```
2149    #[inline]
2150    #[cfg(target_has_atomic = "ptr")]
2151    #[unstable(feature = "strict_provenance_atomic_ptr", issue = "99108")]
2152    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2153    pub fn fetch_byte_sub(&self, val: usize, order: Ordering) -> *mut T {
2154        // SAFETY: data races are prevented by atomic intrinsics.
2155        unsafe { atomic_sub(self.p.get(), core::ptr::without_provenance_mut(val), order).cast() }
2156    }
2157
2158    /// Performs a bitwise "or" operation on the address of the current pointer,
2159    /// and the argument `val`, and stores a pointer with provenance of the
2160    /// current pointer and the resulting address.
2161    ///
2162    /// This is equivalent to using [`map_addr`] to atomically perform
2163    /// `ptr = ptr.map_addr(|a| a | val)`. This can be used in tagged
2164    /// pointer schemes to atomically set tag bits.
2165    ///
2166    /// **Caveat**: This operation returns the previous value. To compute the
2167    /// stored value without losing provenance, you may use [`map_addr`]. For
2168    /// example: `a.fetch_or(val).map_addr(|a| a | val)`.
2169    ///
2170    /// `fetch_or` takes an [`Ordering`] argument which describes the memory
2171    /// ordering of this operation. All ordering modes are possible. Note that
2172    /// using [`Acquire`] makes the store part of this operation [`Relaxed`],
2173    /// and using [`Release`] makes the load part [`Relaxed`].
2174    ///
2175    /// **Note**: This method is only available on platforms that support atomic
2176    /// operations on [`AtomicPtr`].
2177    ///
2178    /// This API and its claimed semantics are part of the Strict Provenance
2179    /// experiment, see the [module documentation for `ptr`][crate::ptr] for
2180    /// details.
2181    ///
2182    /// [`map_addr`]: pointer::map_addr
2183    ///
2184    /// # Examples
2185    ///
2186    /// ```
2187    /// #![feature(strict_provenance_atomic_ptr)]
2188    /// use core::sync::atomic::{AtomicPtr, Ordering};
2189    ///
2190    /// let pointer = &mut 3i64 as *mut i64;
2191    ///
2192    /// let atom = AtomicPtr::<i64>::new(pointer);
2193    /// // Tag the bottom bit of the pointer.
2194    /// assert_eq!(atom.fetch_or(1, Ordering::Relaxed).addr() & 1, 0);
2195    /// // Extract and untag.
2196    /// let tagged = atom.load(Ordering::Relaxed);
2197    /// assert_eq!(tagged.addr() & 1, 1);
2198    /// assert_eq!(tagged.map_addr(|p| p & !1), pointer);
2199    /// ```
2200    #[inline]
2201    #[cfg(target_has_atomic = "ptr")]
2202    #[unstable(feature = "strict_provenance_atomic_ptr", issue = "99108")]
2203    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2204    pub fn fetch_or(&self, val: usize, order: Ordering) -> *mut T {
2205        // SAFETY: data races are prevented by atomic intrinsics.
2206        unsafe { atomic_or(self.p.get(), core::ptr::without_provenance_mut(val), order).cast() }
2207    }
2208
2209    /// Performs a bitwise "and" operation on the address of the current
2210    /// pointer, and the argument `val`, and stores a pointer with provenance of
2211    /// the current pointer and the resulting address.
2212    ///
2213    /// This is equivalent to using [`map_addr`] to atomically perform
2214    /// `ptr = ptr.map_addr(|a| a & val)`. This can be used in tagged
2215    /// pointer schemes to atomically unset tag bits.
2216    ///
2217    /// **Caveat**: This operation returns the previous value. To compute the
2218    /// stored value without losing provenance, you may use [`map_addr`]. For
2219    /// example: `a.fetch_and(val).map_addr(|a| a & val)`.
2220    ///
2221    /// `fetch_and` takes an [`Ordering`] argument which describes the memory
2222    /// ordering of this operation. All ordering modes are possible. Note that
2223    /// using [`Acquire`] makes the store part of this operation [`Relaxed`],
2224    /// and using [`Release`] makes the load part [`Relaxed`].
2225    ///
2226    /// **Note**: This method is only available on platforms that support atomic
2227    /// operations on [`AtomicPtr`].
2228    ///
2229    /// This API and its claimed semantics are part of the Strict Provenance
2230    /// experiment, see the [module documentation for `ptr`][crate::ptr] for
2231    /// details.
2232    ///
2233    /// [`map_addr`]: pointer::map_addr
2234    ///
2235    /// # Examples
2236    ///
2237    /// ```
2238    /// #![feature(strict_provenance_atomic_ptr)]
2239    /// use core::sync::atomic::{AtomicPtr, Ordering};
2240    ///
2241    /// let pointer = &mut 3i64 as *mut i64;
2242    /// // A tagged pointer
2243    /// let atom = AtomicPtr::<i64>::new(pointer.map_addr(|a| a | 1));
2244    /// assert_eq!(atom.fetch_or(1, Ordering::Relaxed).addr() & 1, 1);
2245    /// // Untag, and extract the previously tagged pointer.
2246    /// let untagged = atom.fetch_and(!1, Ordering::Relaxed)
2247    ///     .map_addr(|a| a & !1);
2248    /// assert_eq!(untagged, pointer);
2249    /// ```
2250    #[inline]
2251    #[cfg(target_has_atomic = "ptr")]
2252    #[unstable(feature = "strict_provenance_atomic_ptr", issue = "99108")]
2253    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2254    pub fn fetch_and(&self, val: usize, order: Ordering) -> *mut T {
2255        // SAFETY: data races are prevented by atomic intrinsics.
2256        unsafe { atomic_and(self.p.get(), core::ptr::without_provenance_mut(val), order).cast() }
2257    }
2258
2259    /// Performs a bitwise "xor" operation on the address of the current
2260    /// pointer, and the argument `val`, and stores a pointer with provenance of
2261    /// the current pointer and the resulting address.
2262    ///
2263    /// This is equivalent to using [`map_addr`] to atomically perform
2264    /// `ptr = ptr.map_addr(|a| a ^ val)`. This can be used in tagged
2265    /// pointer schemes to atomically toggle tag bits.
2266    ///
2267    /// **Caveat**: This operation returns the previous value. To compute the
2268    /// stored value without losing provenance, you may use [`map_addr`]. For
2269    /// example: `a.fetch_xor(val).map_addr(|a| a ^ val)`.
2270    ///
2271    /// `fetch_xor` takes an [`Ordering`] argument which describes the memory
2272    /// ordering of this operation. All ordering modes are possible. Note that
2273    /// using [`Acquire`] makes the store part of this operation [`Relaxed`],
2274    /// and using [`Release`] makes the load part [`Relaxed`].
2275    ///
2276    /// **Note**: This method is only available on platforms that support atomic
2277    /// operations on [`AtomicPtr`].
2278    ///
2279    /// This API and its claimed semantics are part of the Strict Provenance
2280    /// experiment, see the [module documentation for `ptr`][crate::ptr] for
2281    /// details.
2282    ///
2283    /// [`map_addr`]: pointer::map_addr
2284    ///
2285    /// # Examples
2286    ///
2287    /// ```
2288    /// #![feature(strict_provenance_atomic_ptr)]
2289    /// use core::sync::atomic::{AtomicPtr, Ordering};
2290    ///
2291    /// let pointer = &mut 3i64 as *mut i64;
2292    /// let atom = AtomicPtr::<i64>::new(pointer);
2293    ///
2294    /// // Toggle a tag bit on the pointer.
2295    /// atom.fetch_xor(1, Ordering::Relaxed);
2296    /// assert_eq!(atom.load(Ordering::Relaxed).addr() & 1, 1);
2297    /// ```
2298    #[inline]
2299    #[cfg(target_has_atomic = "ptr")]
2300    #[unstable(feature = "strict_provenance_atomic_ptr", issue = "99108")]
2301    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2302    pub fn fetch_xor(&self, val: usize, order: Ordering) -> *mut T {
2303        // SAFETY: data races are prevented by atomic intrinsics.
2304        unsafe { atomic_xor(self.p.get(), core::ptr::without_provenance_mut(val), order).cast() }
2305    }
2306
2307    /// Returns a mutable pointer to the underlying pointer.
2308    ///
2309    /// Doing non-atomic reads and writes on the resulting pointer can be a data race.
2310    /// This method is mostly useful for FFI, where the function signature may use
2311    /// `*mut *mut T` instead of `&AtomicPtr<T>`.
2312    ///
2313    /// Returning an `*mut` pointer from a shared reference to this atomic is safe because the
2314    /// atomic types work with interior mutability. All modifications of an atomic change the value
2315    /// through a shared reference, and can do so safely as long as they use atomic operations. Any
2316    /// use of the returned raw pointer requires an `unsafe` block and still has to uphold the same
2317    /// restriction: operations on it must be atomic.
2318    ///
2319    /// # Examples
2320    ///
2321    /// ```ignore (extern-declaration)
2322    /// use std::sync::atomic::AtomicPtr;
2323    ///
2324    /// extern "C" {
2325    ///     fn my_atomic_op(arg: *mut *mut u32);
2326    /// }
2327    ///
2328    /// let mut value = 17;
2329    /// let atomic = AtomicPtr::new(&mut value);
2330    ///
2331    /// // SAFETY: Safe as long as `my_atomic_op` is atomic.
2332    /// unsafe {
2333    ///     my_atomic_op(atomic.as_ptr());
2334    /// }
2335    /// ```
2336    #[inline]
2337    #[stable(feature = "atomic_as_ptr", since = "1.70.0")]
2338    #[rustc_const_stable(feature = "atomic_as_ptr", since = "1.70.0")]
2339    #[rustc_never_returns_null_ptr]
2340    pub const fn as_ptr(&self) -> *mut *mut T {
2341        self.p.get()
2342    }
2343}
2344
2345#[cfg(target_has_atomic_load_store = "8")]
2346#[stable(feature = "atomic_bool_from", since = "1.24.0")]
2347impl From<bool> for AtomicBool {
2348    /// Converts a `bool` into an `AtomicBool`.
2349    ///
2350    /// # Examples
2351    ///
2352    /// ```
2353    /// use std::sync::atomic::AtomicBool;
2354    /// let atomic_bool = AtomicBool::from(true);
2355    /// assert_eq!(format!("{atomic_bool:?}"), "true")
2356    /// ```
2357    #[inline]
2358    fn from(b: bool) -> Self {
2359        Self::new(b)
2360    }
2361}
2362
2363#[cfg(target_has_atomic_load_store = "ptr")]
2364#[stable(feature = "atomic_from", since = "1.23.0")]
2365impl<T> From<*mut T> for AtomicPtr<T> {
2366    /// Converts a `*mut T` into an `AtomicPtr<T>`.
2367    #[inline]
2368    fn from(p: *mut T) -> Self {
2369        Self::new(p)
2370    }
2371}
2372
2373#[allow(unused_macros)] // This macro ends up being unused on some architectures.
2374macro_rules! if_8_bit {
2375    (u8, $( yes = [$($yes:tt)*], )? $( no = [$($no:tt)*], )? ) => { concat!("", $($($yes)*)?) };
2376    (i8, $( yes = [$($yes:tt)*], )? $( no = [$($no:tt)*], )? ) => { concat!("", $($($yes)*)?) };
2377    ($_:ident, $( yes = [$($yes:tt)*], )? $( no = [$($no:tt)*], )? ) => { concat!("", $($($no)*)?) };
2378}
2379
2380#[cfg(target_has_atomic_load_store)]
2381macro_rules! atomic_int {
2382    ($cfg_cas:meta,
2383     $cfg_align:meta,
2384     $stable:meta,
2385     $stable_cxchg:meta,
2386     $stable_debug:meta,
2387     $stable_access:meta,
2388     $stable_from:meta,
2389     $stable_nand:meta,
2390     $const_stable_new:meta,
2391     $const_stable_into_inner:meta,
2392     $diagnostic_item:meta,
2393     $s_int_type:literal,
2394     $extra_feature:expr,
2395     $min_fn:ident, $max_fn:ident,
2396     $align:expr,
2397     $int_type:ident $atomic_type:ident) => {
2398        /// An integer type which can be safely shared between threads.
2399        ///
2400        /// This type has the same
2401        #[doc = if_8_bit!(
2402            $int_type,
2403            yes = ["size, alignment, and bit validity"],
2404            no = ["size and bit validity"],
2405        )]
2406        /// as the underlying integer type, [`
2407        #[doc = $s_int_type]
2408        /// `].
2409        #[doc = if_8_bit! {
2410            $int_type,
2411            no = [
2412                "However, the alignment of this type is always equal to its ",
2413                "size, even on targets where [`", $s_int_type, "`] has a ",
2414                "lesser alignment."
2415            ],
2416        }]
2417        ///
2418        /// For more about the differences between atomic types and
2419        /// non-atomic types as well as information about the portability of
2420        /// this type, please see the [module-level documentation].
2421        ///
2422        /// **Note:** This type is only available on platforms that support
2423        /// atomic loads and stores of [`
2424        #[doc = $s_int_type]
2425        /// `].
2426        ///
2427        /// [module-level documentation]: crate::sync::atomic
2428        #[$stable]
2429        #[$diagnostic_item]
2430        #[repr(C, align($align))]
2431        pub struct $atomic_type {
2432            v: UnsafeCell<$int_type>,
2433        }
2434
2435        #[$stable]
2436        impl Default for $atomic_type {
2437            #[inline]
2438            fn default() -> Self {
2439                Self::new(Default::default())
2440            }
2441        }
2442
2443        #[$stable_from]
2444        impl From<$int_type> for $atomic_type {
2445            #[doc = concat!("Converts an `", stringify!($int_type), "` into an `", stringify!($atomic_type), "`.")]
2446            #[inline]
2447            fn from(v: $int_type) -> Self { Self::new(v) }
2448        }
2449
2450        #[$stable_debug]
2451        impl fmt::Debug for $atomic_type {
2452            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2453                fmt::Debug::fmt(&self.load(Ordering::Relaxed), f)
2454            }
2455        }
2456
2457        // Send is implicitly implemented.
2458        #[$stable]
2459        unsafe impl Sync for $atomic_type {}
2460
2461        impl $atomic_type {
2462            /// Creates a new atomic integer.
2463            ///
2464            /// # Examples
2465            ///
2466            /// ```
2467            #[doc = concat!($extra_feature, "use std::sync::atomic::", stringify!($atomic_type), ";")]
2468            ///
2469            #[doc = concat!("let atomic_forty_two = ", stringify!($atomic_type), "::new(42);")]
2470            /// ```
2471            #[inline]
2472            #[$stable]
2473            #[$const_stable_new]
2474            #[must_use]
2475            pub const fn new(v: $int_type) -> Self {
2476                Self {v: UnsafeCell::new(v)}
2477            }
2478
2479            /// Creates a new reference to an atomic integer from a pointer.
2480            ///
2481            /// # Examples
2482            ///
2483            /// ```
2484            #[doc = concat!($extra_feature, "use std::sync::atomic::{self, ", stringify!($atomic_type), "};")]
2485            ///
2486            /// // Get a pointer to an allocated value
2487            #[doc = concat!("let ptr: *mut ", stringify!($int_type), " = Box::into_raw(Box::new(0));")]
2488            ///
2489            #[doc = concat!("assert!(ptr.cast::<", stringify!($atomic_type), ">().is_aligned());")]
2490            ///
2491            /// {
2492            ///     // Create an atomic view of the allocated value
2493            // SAFETY: this is a doc comment, tidy, it can't hurt you (also guaranteed by the construction of `ptr` and the assert above)
2494            #[doc = concat!("    let atomic = unsafe {", stringify!($atomic_type), "::from_ptr(ptr) };")]
2495            ///
2496            ///     // Use `atomic` for atomic operations, possibly share it with other threads
2497            ///     atomic.store(1, atomic::Ordering::Relaxed);
2498            /// }
2499            ///
2500            /// // It's ok to non-atomically access the value behind `ptr`,
2501            /// // since the reference to the atomic ended its lifetime in the block above
2502            /// assert_eq!(unsafe { *ptr }, 1);
2503            ///
2504            /// // Deallocate the value
2505            /// unsafe { drop(Box::from_raw(ptr)) }
2506            /// ```
2507            ///
2508            /// # Safety
2509            ///
2510            /// * `ptr` must be aligned to
2511            #[doc = concat!("  `align_of::<", stringify!($atomic_type), ">()`")]
2512            #[doc = if_8_bit!{
2513                $int_type,
2514                yes = [
2515                    "  (note that this is always true, since `align_of::<",
2516                    stringify!($atomic_type), ">() == 1`)."
2517                ],
2518                no = [
2519                    "  (note that on some platforms this can be bigger than `align_of::<",
2520                    stringify!($int_type), ">()`)."
2521                ],
2522            }]
2523            /// * `ptr` must be [valid] for both reads and writes for the whole lifetime `'a`.
2524            /// * You must adhere to the [Memory model for atomic accesses]. In particular, it is not
2525            ///   allowed to mix atomic and non-atomic accesses, or atomic accesses of different sizes,
2526            ///   without synchronization.
2527            ///
2528            /// [valid]: crate::ptr#safety
2529            /// [Memory model for atomic accesses]: self#memory-model-for-atomic-accesses
2530            #[inline]
2531            #[stable(feature = "atomic_from_ptr", since = "1.75.0")]
2532            #[rustc_const_stable(feature = "const_atomic_from_ptr", since = "1.84.0")]
2533            pub const unsafe fn from_ptr<'a>(ptr: *mut $int_type) -> &'a $atomic_type {
2534                // SAFETY: guaranteed by the caller
2535                unsafe { &*ptr.cast() }
2536            }
2537
2538
2539            /// Returns a mutable reference to the underlying integer.
2540            ///
2541            /// This is safe because the mutable reference guarantees that no other threads are
2542            /// concurrently accessing the atomic data.
2543            ///
2544            /// # Examples
2545            ///
2546            /// ```
2547            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2548            ///
2549            #[doc = concat!("let mut some_var = ", stringify!($atomic_type), "::new(10);")]
2550            /// assert_eq!(*some_var.get_mut(), 10);
2551            /// *some_var.get_mut() = 5;
2552            /// assert_eq!(some_var.load(Ordering::SeqCst), 5);
2553            /// ```
2554            #[inline]
2555            #[$stable_access]
2556            pub fn get_mut(&mut self) -> &mut $int_type {
2557                self.v.get_mut()
2558            }
2559
2560            #[doc = concat!("Get atomic access to a `&mut ", stringify!($int_type), "`.")]
2561            ///
2562            #[doc = if_8_bit! {
2563                $int_type,
2564                no = [
2565                    "**Note:** This function is only available on targets where `",
2566                    stringify!($atomic_type), "` has the same alignment as `", stringify!($int_type), "`."
2567                ],
2568            }]
2569            ///
2570            /// # Examples
2571            ///
2572            /// ```
2573            /// #![feature(atomic_from_mut)]
2574            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2575            ///
2576            /// let mut some_int = 123;
2577            #[doc = concat!("let a = ", stringify!($atomic_type), "::from_mut(&mut some_int);")]
2578            /// a.store(100, Ordering::Relaxed);
2579            /// assert_eq!(some_int, 100);
2580            /// ```
2581            ///
2582            #[inline]
2583            #[$cfg_align]
2584            #[unstable(feature = "atomic_from_mut", issue = "76314")]
2585            pub fn from_mut(v: &mut $int_type) -> &mut Self {
2586                let [] = [(); align_of::<Self>() - align_of::<$int_type>()];
2587                // SAFETY:
2588                //  - the mutable reference guarantees unique ownership.
2589                //  - the alignment of `$int_type` and `Self` is the
2590                //    same, as promised by $cfg_align and verified above.
2591                unsafe { &mut *(v as *mut $int_type as *mut Self) }
2592            }
2593
2594            #[doc = concat!("Get non-atomic access to a `&mut [", stringify!($atomic_type), "]` slice")]
2595            ///
2596            /// This is safe because the mutable reference guarantees that no other threads are
2597            /// concurrently accessing the atomic data.
2598            ///
2599            /// # Examples
2600            ///
2601            /// ```
2602            /// #![feature(atomic_from_mut)]
2603            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2604            ///
2605            #[doc = concat!("let mut some_ints = [const { ", stringify!($atomic_type), "::new(0) }; 10];")]
2606            ///
2607            #[doc = concat!("let view: &mut [", stringify!($int_type), "] = ", stringify!($atomic_type), "::get_mut_slice(&mut some_ints);")]
2608            /// assert_eq!(view, [0; 10]);
2609            /// view
2610            ///     .iter_mut()
2611            ///     .enumerate()
2612            ///     .for_each(|(idx, int)| *int = idx as _);
2613            ///
2614            /// std::thread::scope(|s| {
2615            ///     some_ints
2616            ///         .iter()
2617            ///         .enumerate()
2618            ///         .for_each(|(idx, int)| {
2619            ///             s.spawn(move || assert_eq!(int.load(Ordering::Relaxed), idx as _));
2620            ///         })
2621            /// });
2622            /// ```
2623            #[inline]
2624            #[unstable(feature = "atomic_from_mut", issue = "76314")]
2625            pub fn get_mut_slice(this: &mut [Self]) -> &mut [$int_type] {
2626                // SAFETY: the mutable reference guarantees unique ownership.
2627                unsafe { &mut *(this as *mut [Self] as *mut [$int_type]) }
2628            }
2629
2630            #[doc = concat!("Get atomic access to a `&mut [", stringify!($int_type), "]` slice.")]
2631            ///
2632            /// # Examples
2633            ///
2634            /// ```
2635            /// #![feature(atomic_from_mut)]
2636            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2637            ///
2638            /// let mut some_ints = [0; 10];
2639            #[doc = concat!("let a = &*", stringify!($atomic_type), "::from_mut_slice(&mut some_ints);")]
2640            /// std::thread::scope(|s| {
2641            ///     for i in 0..a.len() {
2642            ///         s.spawn(move || a[i].store(i as _, Ordering::Relaxed));
2643            ///     }
2644            /// });
2645            /// for (i, n) in some_ints.into_iter().enumerate() {
2646            ///     assert_eq!(i, n as usize);
2647            /// }
2648            /// ```
2649            #[inline]
2650            #[$cfg_align]
2651            #[unstable(feature = "atomic_from_mut", issue = "76314")]
2652            pub fn from_mut_slice(v: &mut [$int_type]) -> &mut [Self] {
2653                let [] = [(); align_of::<Self>() - align_of::<$int_type>()];
2654                // SAFETY:
2655                //  - the mutable reference guarantees unique ownership.
2656                //  - the alignment of `$int_type` and `Self` is the
2657                //    same, as promised by $cfg_align and verified above.
2658                unsafe { &mut *(v as *mut [$int_type] as *mut [Self]) }
2659            }
2660
2661            /// Consumes the atomic and returns the contained value.
2662            ///
2663            /// This is safe because passing `self` by value guarantees that no other threads are
2664            /// concurrently accessing the atomic data.
2665            ///
2666            /// # Examples
2667            ///
2668            /// ```
2669            #[doc = concat!($extra_feature, "use std::sync::atomic::", stringify!($atomic_type), ";")]
2670            ///
2671            #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
2672            /// assert_eq!(some_var.into_inner(), 5);
2673            /// ```
2674            #[inline]
2675            #[$stable_access]
2676            #[$const_stable_into_inner]
2677            pub const fn into_inner(self) -> $int_type {
2678                self.v.into_inner()
2679            }
2680
2681            /// Loads a value from the atomic integer.
2682            ///
2683            /// `load` takes an [`Ordering`] argument which describes the memory ordering of this operation.
2684            /// Possible values are [`SeqCst`], [`Acquire`] and [`Relaxed`].
2685            ///
2686            /// # Panics
2687            ///
2688            /// Panics if `order` is [`Release`] or [`AcqRel`].
2689            ///
2690            /// # Examples
2691            ///
2692            /// ```
2693            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2694            ///
2695            #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
2696            ///
2697            /// assert_eq!(some_var.load(Ordering::Relaxed), 5);
2698            /// ```
2699            #[inline]
2700            #[$stable]
2701            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2702            pub fn load(&self, order: Ordering) -> $int_type {
2703                // SAFETY: data races are prevented by atomic intrinsics.
2704                unsafe { atomic_load(self.v.get(), order) }
2705            }
2706
2707            /// Stores a value into the atomic integer.
2708            ///
2709            /// `store` takes an [`Ordering`] argument which describes the memory ordering of this operation.
2710            ///  Possible values are [`SeqCst`], [`Release`] and [`Relaxed`].
2711            ///
2712            /// # Panics
2713            ///
2714            /// Panics if `order` is [`Acquire`] or [`AcqRel`].
2715            ///
2716            /// # Examples
2717            ///
2718            /// ```
2719            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2720            ///
2721            #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
2722            ///
2723            /// some_var.store(10, Ordering::Relaxed);
2724            /// assert_eq!(some_var.load(Ordering::Relaxed), 10);
2725            /// ```
2726            #[inline]
2727            #[$stable]
2728            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2729            pub fn store(&self, val: $int_type, order: Ordering) {
2730                // SAFETY: data races are prevented by atomic intrinsics.
2731                unsafe { atomic_store(self.v.get(), val, order); }
2732            }
2733
2734            /// Stores a value into the atomic integer, returning the previous value.
2735            ///
2736            /// `swap` takes an [`Ordering`] argument which describes the memory ordering
2737            /// of this operation. All ordering modes are possible. Note that using
2738            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
2739            /// using [`Release`] makes the load part [`Relaxed`].
2740            ///
2741            /// **Note**: This method is only available on platforms that support atomic operations on
2742            #[doc = concat!("[`", $s_int_type, "`].")]
2743            ///
2744            /// # Examples
2745            ///
2746            /// ```
2747            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2748            ///
2749            #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
2750            ///
2751            /// assert_eq!(some_var.swap(10, Ordering::Relaxed), 5);
2752            /// ```
2753            #[inline]
2754            #[$stable]
2755            #[$cfg_cas]
2756            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2757            pub fn swap(&self, val: $int_type, order: Ordering) -> $int_type {
2758                // SAFETY: data races are prevented by atomic intrinsics.
2759                unsafe { atomic_swap(self.v.get(), val, order) }
2760            }
2761
2762            /// Stores a value into the atomic integer if the current value is the same as
2763            /// the `current` value.
2764            ///
2765            /// The return value is always the previous value. If it is equal to `current`, then the
2766            /// value was updated.
2767            ///
2768            /// `compare_and_swap` also takes an [`Ordering`] argument which describes the memory
2769            /// ordering of this operation. Notice that even when using [`AcqRel`], the operation
2770            /// might fail and hence just perform an `Acquire` load, but not have `Release` semantics.
2771            /// Using [`Acquire`] makes the store part of this operation [`Relaxed`] if it
2772            /// happens, and using [`Release`] makes the load part [`Relaxed`].
2773            ///
2774            /// **Note**: This method is only available on platforms that support atomic operations on
2775            #[doc = concat!("[`", $s_int_type, "`].")]
2776            ///
2777            /// # Migrating to `compare_exchange` and `compare_exchange_weak`
2778            ///
2779            /// `compare_and_swap` is equivalent to `compare_exchange` with the following mapping for
2780            /// memory orderings:
2781            ///
2782            /// Original | Success | Failure
2783            /// -------- | ------- | -------
2784            /// Relaxed  | Relaxed | Relaxed
2785            /// Acquire  | Acquire | Acquire
2786            /// Release  | Release | Relaxed
2787            /// AcqRel   | AcqRel  | Acquire
2788            /// SeqCst   | SeqCst  | SeqCst
2789            ///
2790            /// `compare_and_swap` and `compare_exchange` also differ in their return type. You can use
2791            /// `compare_exchange(...).unwrap_or_else(|x| x)` to recover the behavior of `compare_and_swap`,
2792            /// but in most cases it is more idiomatic to check whether the return value is `Ok` or `Err`
2793            /// rather than to infer success vs failure based on the value that was read.
2794            ///
2795            /// During migration, consider whether it makes sense to use `compare_exchange_weak` instead.
2796            /// `compare_exchange_weak` is allowed to fail spuriously even when the comparison succeeds,
2797            /// which allows the compiler to generate better assembly code when the compare and swap
2798            /// is used in a loop.
2799            ///
2800            /// # Examples
2801            ///
2802            /// ```
2803            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2804            ///
2805            #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
2806            ///
2807            /// assert_eq!(some_var.compare_and_swap(5, 10, Ordering::Relaxed), 5);
2808            /// assert_eq!(some_var.load(Ordering::Relaxed), 10);
2809            ///
2810            /// assert_eq!(some_var.compare_and_swap(6, 12, Ordering::Relaxed), 10);
2811            /// assert_eq!(some_var.load(Ordering::Relaxed), 10);
2812            /// ```
2813            #[inline]
2814            #[$stable]
2815            #[deprecated(
2816                since = "1.50.0",
2817                note = "Use `compare_exchange` or `compare_exchange_weak` instead")
2818            ]
2819            #[$cfg_cas]
2820            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2821            pub fn compare_and_swap(&self,
2822                                    current: $int_type,
2823                                    new: $int_type,
2824                                    order: Ordering) -> $int_type {
2825                match self.compare_exchange(current,
2826                                            new,
2827                                            order,
2828                                            strongest_failure_ordering(order)) {
2829                    Ok(x) => x,
2830                    Err(x) => x,
2831                }
2832            }
2833
2834            /// Stores a value into the atomic integer if the current value is the same as
2835            /// the `current` value.
2836            ///
2837            /// The return value is a result indicating whether the new value was written and
2838            /// containing the previous value. On success this value is guaranteed to be equal to
2839            /// `current`.
2840            ///
2841            /// `compare_exchange` takes two [`Ordering`] arguments to describe the memory
2842            /// ordering of this operation. `success` describes the required ordering for the
2843            /// read-modify-write operation that takes place if the comparison with `current` succeeds.
2844            /// `failure` describes the required ordering for the load operation that takes place when
2845            /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
2846            /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
2847            /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
2848            ///
2849            /// **Note**: This method is only available on platforms that support atomic operations on
2850            #[doc = concat!("[`", $s_int_type, "`].")]
2851            ///
2852            /// # Examples
2853            ///
2854            /// ```
2855            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2856            ///
2857            #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
2858            ///
2859            /// assert_eq!(some_var.compare_exchange(5, 10,
2860            ///                                      Ordering::Acquire,
2861            ///                                      Ordering::Relaxed),
2862            ///            Ok(5));
2863            /// assert_eq!(some_var.load(Ordering::Relaxed), 10);
2864            ///
2865            /// assert_eq!(some_var.compare_exchange(6, 12,
2866            ///                                      Ordering::SeqCst,
2867            ///                                      Ordering::Acquire),
2868            ///            Err(10));
2869            /// assert_eq!(some_var.load(Ordering::Relaxed), 10);
2870            /// ```
2871            #[inline]
2872            #[$stable_cxchg]
2873            #[$cfg_cas]
2874            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2875            pub fn compare_exchange(&self,
2876                                    current: $int_type,
2877                                    new: $int_type,
2878                                    success: Ordering,
2879                                    failure: Ordering) -> Result<$int_type, $int_type> {
2880                // SAFETY: data races are prevented by atomic intrinsics.
2881                unsafe { atomic_compare_exchange(self.v.get(), current, new, success, failure) }
2882            }
2883
2884            /// Stores a value into the atomic integer if the current value is the same as
2885            /// the `current` value.
2886            ///
2887            #[doc = concat!("Unlike [`", stringify!($atomic_type), "::compare_exchange`],")]
2888            /// this function is allowed to spuriously fail even
2889            /// when the comparison succeeds, which can result in more efficient code on some
2890            /// platforms. The return value is a result indicating whether the new value was
2891            /// written and containing the previous value.
2892            ///
2893            /// `compare_exchange_weak` takes two [`Ordering`] arguments to describe the memory
2894            /// ordering of this operation. `success` describes the required ordering for the
2895            /// read-modify-write operation that takes place if the comparison with `current` succeeds.
2896            /// `failure` describes the required ordering for the load operation that takes place when
2897            /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
2898            /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
2899            /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
2900            ///
2901            /// **Note**: This method is only available on platforms that support atomic operations on
2902            #[doc = concat!("[`", $s_int_type, "`].")]
2903            ///
2904            /// # Examples
2905            ///
2906            /// ```
2907            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2908            ///
2909            #[doc = concat!("let val = ", stringify!($atomic_type), "::new(4);")]
2910            ///
2911            /// let mut old = val.load(Ordering::Relaxed);
2912            /// loop {
2913            ///     let new = old * 2;
2914            ///     match val.compare_exchange_weak(old, new, Ordering::SeqCst, Ordering::Relaxed) {
2915            ///         Ok(_) => break,
2916            ///         Err(x) => old = x,
2917            ///     }
2918            /// }
2919            /// ```
2920            #[inline]
2921            #[$stable_cxchg]
2922            #[$cfg_cas]
2923            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2924            pub fn compare_exchange_weak(&self,
2925                                         current: $int_type,
2926                                         new: $int_type,
2927                                         success: Ordering,
2928                                         failure: Ordering) -> Result<$int_type, $int_type> {
2929                // SAFETY: data races are prevented by atomic intrinsics.
2930                unsafe {
2931                    atomic_compare_exchange_weak(self.v.get(), current, new, success, failure)
2932                }
2933            }
2934
2935            /// Adds to the current value, returning the previous value.
2936            ///
2937            /// This operation wraps around on overflow.
2938            ///
2939            /// `fetch_add` takes an [`Ordering`] argument which describes the memory ordering
2940            /// of this operation. All ordering modes are possible. Note that using
2941            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
2942            /// using [`Release`] makes the load part [`Relaxed`].
2943            ///
2944            /// **Note**: This method is only available on platforms that support atomic operations on
2945            #[doc = concat!("[`", $s_int_type, "`].")]
2946            ///
2947            /// # Examples
2948            ///
2949            /// ```
2950            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2951            ///
2952            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(0);")]
2953            /// assert_eq!(foo.fetch_add(10, Ordering::SeqCst), 0);
2954            /// assert_eq!(foo.load(Ordering::SeqCst), 10);
2955            /// ```
2956            #[inline]
2957            #[$stable]
2958            #[$cfg_cas]
2959            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2960            pub fn fetch_add(&self, val: $int_type, order: Ordering) -> $int_type {
2961                // SAFETY: data races are prevented by atomic intrinsics.
2962                unsafe { atomic_add(self.v.get(), val, order) }
2963            }
2964
2965            /// Subtracts from the current value, returning the previous value.
2966            ///
2967            /// This operation wraps around on overflow.
2968            ///
2969            /// `fetch_sub` takes an [`Ordering`] argument which describes the memory ordering
2970            /// of this operation. All ordering modes are possible. Note that using
2971            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
2972            /// using [`Release`] makes the load part [`Relaxed`].
2973            ///
2974            /// **Note**: This method is only available on platforms that support atomic operations on
2975            #[doc = concat!("[`", $s_int_type, "`].")]
2976            ///
2977            /// # Examples
2978            ///
2979            /// ```
2980            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2981            ///
2982            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(20);")]
2983            /// assert_eq!(foo.fetch_sub(10, Ordering::SeqCst), 20);
2984            /// assert_eq!(foo.load(Ordering::SeqCst), 10);
2985            /// ```
2986            #[inline]
2987            #[$stable]
2988            #[$cfg_cas]
2989            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2990            pub fn fetch_sub(&self, val: $int_type, order: Ordering) -> $int_type {
2991                // SAFETY: data races are prevented by atomic intrinsics.
2992                unsafe { atomic_sub(self.v.get(), val, order) }
2993            }
2994
2995            /// Bitwise "and" with the current value.
2996            ///
2997            /// Performs a bitwise "and" operation on the current value and the argument `val`, and
2998            /// sets the new value to the result.
2999            ///
3000            /// Returns the previous value.
3001            ///
3002            /// `fetch_and` takes an [`Ordering`] argument which describes the memory ordering
3003            /// of this operation. All ordering modes are possible. Note that using
3004            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3005            /// using [`Release`] makes the load part [`Relaxed`].
3006            ///
3007            /// **Note**: This method is only available on platforms that support atomic operations on
3008            #[doc = concat!("[`", $s_int_type, "`].")]
3009            ///
3010            /// # Examples
3011            ///
3012            /// ```
3013            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3014            ///
3015            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(0b101101);")]
3016            /// assert_eq!(foo.fetch_and(0b110011, Ordering::SeqCst), 0b101101);
3017            /// assert_eq!(foo.load(Ordering::SeqCst), 0b100001);
3018            /// ```
3019            #[inline]
3020            #[$stable]
3021            #[$cfg_cas]
3022            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3023            pub fn fetch_and(&self, val: $int_type, order: Ordering) -> $int_type {
3024                // SAFETY: data races are prevented by atomic intrinsics.
3025                unsafe { atomic_and(self.v.get(), val, order) }
3026            }
3027
3028            /// Bitwise "nand" with the current value.
3029            ///
3030            /// Performs a bitwise "nand" operation on the current value and the argument `val`, and
3031            /// sets the new value to the result.
3032            ///
3033            /// Returns the previous value.
3034            ///
3035            /// `fetch_nand` takes an [`Ordering`] argument which describes the memory ordering
3036            /// of this operation. All ordering modes are possible. Note that using
3037            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3038            /// using [`Release`] makes the load part [`Relaxed`].
3039            ///
3040            /// **Note**: This method is only available on platforms that support atomic operations on
3041            #[doc = concat!("[`", $s_int_type, "`].")]
3042            ///
3043            /// # Examples
3044            ///
3045            /// ```
3046            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3047            ///
3048            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(0x13);")]
3049            /// assert_eq!(foo.fetch_nand(0x31, Ordering::SeqCst), 0x13);
3050            /// assert_eq!(foo.load(Ordering::SeqCst), !(0x13 & 0x31));
3051            /// ```
3052            #[inline]
3053            #[$stable_nand]
3054            #[$cfg_cas]
3055            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3056            pub fn fetch_nand(&self, val: $int_type, order: Ordering) -> $int_type {
3057                // SAFETY: data races are prevented by atomic intrinsics.
3058                unsafe { atomic_nand(self.v.get(), val, order) }
3059            }
3060
3061            /// Bitwise "or" with the current value.
3062            ///
3063            /// Performs a bitwise "or" operation on the current value and the argument `val`, and
3064            /// sets the new value to the result.
3065            ///
3066            /// Returns the previous value.
3067            ///
3068            /// `fetch_or` takes an [`Ordering`] argument which describes the memory ordering
3069            /// of this operation. All ordering modes are possible. Note that using
3070            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3071            /// using [`Release`] makes the load part [`Relaxed`].
3072            ///
3073            /// **Note**: This method is only available on platforms that support atomic operations on
3074            #[doc = concat!("[`", $s_int_type, "`].")]
3075            ///
3076            /// # Examples
3077            ///
3078            /// ```
3079            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3080            ///
3081            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(0b101101);")]
3082            /// assert_eq!(foo.fetch_or(0b110011, Ordering::SeqCst), 0b101101);
3083            /// assert_eq!(foo.load(Ordering::SeqCst), 0b111111);
3084            /// ```
3085            #[inline]
3086            #[$stable]
3087            #[$cfg_cas]
3088            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3089            pub fn fetch_or(&self, val: $int_type, order: Ordering) -> $int_type {
3090                // SAFETY: data races are prevented by atomic intrinsics.
3091                unsafe { atomic_or(self.v.get(), val, order) }
3092            }
3093
3094            /// Bitwise "xor" with the current value.
3095            ///
3096            /// Performs a bitwise "xor" operation on the current value and the argument `val`, and
3097            /// sets the new value to the result.
3098            ///
3099            /// Returns the previous value.
3100            ///
3101            /// `fetch_xor` takes an [`Ordering`] argument which describes the memory ordering
3102            /// of this operation. All ordering modes are possible. Note that using
3103            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3104            /// using [`Release`] makes the load part [`Relaxed`].
3105            ///
3106            /// **Note**: This method is only available on platforms that support atomic operations on
3107            #[doc = concat!("[`", $s_int_type, "`].")]
3108            ///
3109            /// # Examples
3110            ///
3111            /// ```
3112            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3113            ///
3114            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(0b101101);")]
3115            /// assert_eq!(foo.fetch_xor(0b110011, Ordering::SeqCst), 0b101101);
3116            /// assert_eq!(foo.load(Ordering::SeqCst), 0b011110);
3117            /// ```
3118            #[inline]
3119            #[$stable]
3120            #[$cfg_cas]
3121            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3122            pub fn fetch_xor(&self, val: $int_type, order: Ordering) -> $int_type {
3123                // SAFETY: data races are prevented by atomic intrinsics.
3124                unsafe { atomic_xor(self.v.get(), val, order) }
3125            }
3126
3127            /// Fetches the value, and applies a function to it that returns an optional
3128            /// new value. Returns a `Result` of `Ok(previous_value)` if the function returned `Some(_)`, else
3129            /// `Err(previous_value)`.
3130            ///
3131            /// Note: This may call the function multiple times if the value has been changed from other threads in
3132            /// the meantime, as long as the function returns `Some(_)`, but the function will have been applied
3133            /// only once to the stored value.
3134            ///
3135            /// `fetch_update` takes two [`Ordering`] arguments to describe the memory ordering of this operation.
3136            /// The first describes the required ordering for when the operation finally succeeds while the second
3137            /// describes the required ordering for loads. These correspond to the success and failure orderings of
3138            #[doc = concat!("[`", stringify!($atomic_type), "::compare_exchange`]")]
3139            /// respectively.
3140            ///
3141            /// Using [`Acquire`] as success ordering makes the store part
3142            /// of this operation [`Relaxed`], and using [`Release`] makes the final successful load
3143            /// [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
3144            ///
3145            /// **Note**: This method is only available on platforms that support atomic operations on
3146            #[doc = concat!("[`", $s_int_type, "`].")]
3147            ///
3148            /// # Considerations
3149            ///
3150            /// This method is not magic; it is not provided by the hardware.
3151            /// It is implemented in terms of
3152            #[doc = concat!("[`", stringify!($atomic_type), "::compare_exchange_weak`],")]
3153            /// and suffers from the same drawbacks.
3154            /// In particular, this method will not circumvent the [ABA Problem].
3155            ///
3156            /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
3157            ///
3158            /// # Examples
3159            ///
3160            /// ```rust
3161            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3162            ///
3163            #[doc = concat!("let x = ", stringify!($atomic_type), "::new(7);")]
3164            /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(7));
3165            /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(7));
3166            /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(8));
3167            /// assert_eq!(x.load(Ordering::SeqCst), 9);
3168            /// ```
3169            #[inline]
3170            #[stable(feature = "no_more_cas", since = "1.45.0")]
3171            #[$cfg_cas]
3172            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3173            pub fn fetch_update<F>(&self,
3174                                   set_order: Ordering,
3175                                   fetch_order: Ordering,
3176                                   mut f: F) -> Result<$int_type, $int_type>
3177            where F: FnMut($int_type) -> Option<$int_type> {
3178                let mut prev = self.load(fetch_order);
3179                while let Some(next) = f(prev) {
3180                    match self.compare_exchange_weak(prev, next, set_order, fetch_order) {
3181                        x @ Ok(_) => return x,
3182                        Err(next_prev) => prev = next_prev
3183                    }
3184                }
3185                Err(prev)
3186            }
3187
3188            /// Fetches the value, and applies a function to it that returns an optional
3189            /// new value. Returns a `Result` of `Ok(previous_value)` if the function returned `Some(_)`, else
3190            /// `Err(previous_value)`.
3191            ///
3192            #[doc = concat!("See also: [`update`](`", stringify!($atomic_type), "::update`).")]
3193            ///
3194            /// Note: This may call the function multiple times if the value has been changed from other threads in
3195            /// the meantime, as long as the function returns `Some(_)`, but the function will have been applied
3196            /// only once to the stored value.
3197            ///
3198            /// `try_update` takes two [`Ordering`] arguments to describe the memory ordering of this operation.
3199            /// The first describes the required ordering for when the operation finally succeeds while the second
3200            /// describes the required ordering for loads. These correspond to the success and failure orderings of
3201            #[doc = concat!("[`", stringify!($atomic_type), "::compare_exchange`]")]
3202            /// respectively.
3203            ///
3204            /// Using [`Acquire`] as success ordering makes the store part
3205            /// of this operation [`Relaxed`], and using [`Release`] makes the final successful load
3206            /// [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
3207            ///
3208            /// **Note**: This method is only available on platforms that support atomic operations on
3209            #[doc = concat!("[`", $s_int_type, "`].")]
3210            ///
3211            /// # Considerations
3212            ///
3213            /// This method is not magic; it is not provided by the hardware.
3214            /// It is implemented in terms of
3215            #[doc = concat!("[`", stringify!($atomic_type), "::compare_exchange_weak`],")]
3216            /// and suffers from the same drawbacks.
3217            /// In particular, this method will not circumvent the [ABA Problem].
3218            ///
3219            /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
3220            ///
3221            /// # Examples
3222            ///
3223            /// ```rust
3224            /// #![feature(atomic_try_update)]
3225            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3226            ///
3227            #[doc = concat!("let x = ", stringify!($atomic_type), "::new(7);")]
3228            /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(7));
3229            /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(7));
3230            /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(8));
3231            /// assert_eq!(x.load(Ordering::SeqCst), 9);
3232            /// ```
3233            #[inline]
3234            #[unstable(feature = "atomic_try_update", issue = "135894")]
3235            #[$cfg_cas]
3236            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3237            pub fn try_update(
3238                &self,
3239                set_order: Ordering,
3240                fetch_order: Ordering,
3241                f: impl FnMut($int_type) -> Option<$int_type>,
3242            ) -> Result<$int_type, $int_type> {
3243                // FIXME(atomic_try_update): this is currently an unstable alias to `fetch_update`;
3244                //      when stabilizing, turn `fetch_update` into a deprecated alias to `try_update`.
3245                self.fetch_update(set_order, fetch_order, f)
3246            }
3247
3248            /// Fetches the value, applies a function to it that it return a new value.
3249            /// The new value is stored and the old value is returned.
3250            ///
3251            #[doc = concat!("See also: [`try_update`](`", stringify!($atomic_type), "::try_update`).")]
3252            ///
3253            /// Note: This may call the function multiple times if the value has been changed from other threads in
3254            /// the meantime, but the function will have been applied only once to the stored value.
3255            ///
3256            /// `update` takes two [`Ordering`] arguments to describe the memory ordering of this operation.
3257            /// The first describes the required ordering for when the operation finally succeeds while the second
3258            /// describes the required ordering for loads. These correspond to the success and failure orderings of
3259            #[doc = concat!("[`", stringify!($atomic_type), "::compare_exchange`]")]
3260            /// respectively.
3261            ///
3262            /// Using [`Acquire`] as success ordering makes the store part
3263            /// of this operation [`Relaxed`], and using [`Release`] makes the final successful load
3264            /// [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
3265            ///
3266            /// **Note**: This method is only available on platforms that support atomic operations on
3267            #[doc = concat!("[`", $s_int_type, "`].")]
3268            ///
3269            /// # Considerations
3270            ///
3271            /// This method is not magic; it is not provided by the hardware.
3272            /// It is implemented in terms of
3273            #[doc = concat!("[`", stringify!($atomic_type), "::compare_exchange_weak`],")]
3274            /// and suffers from the same drawbacks.
3275            /// In particular, this method will not circumvent the [ABA Problem].
3276            ///
3277            /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
3278            ///
3279            /// # Examples
3280            ///
3281            /// ```rust
3282            /// #![feature(atomic_try_update)]
3283            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3284            ///
3285            #[doc = concat!("let x = ", stringify!($atomic_type), "::new(7);")]
3286            /// assert_eq!(x.update(Ordering::SeqCst, Ordering::SeqCst, |x| x + 1), 7);
3287            /// assert_eq!(x.update(Ordering::SeqCst, Ordering::SeqCst, |x| x + 1), 8);
3288            /// assert_eq!(x.load(Ordering::SeqCst), 9);
3289            /// ```
3290            #[inline]
3291            #[unstable(feature = "atomic_try_update", issue = "135894")]
3292            #[$cfg_cas]
3293            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3294            pub fn update(
3295                &self,
3296                set_order: Ordering,
3297                fetch_order: Ordering,
3298                mut f: impl FnMut($int_type) -> $int_type,
3299            ) -> $int_type {
3300                let mut prev = self.load(fetch_order);
3301                loop {
3302                    match self.compare_exchange_weak(prev, f(prev), set_order, fetch_order) {
3303                        Ok(x) => break x,
3304                        Err(next_prev) => prev = next_prev,
3305                    }
3306                }
3307            }
3308
3309            /// Maximum with the current value.
3310            ///
3311            /// Finds the maximum of the current value and the argument `val`, and
3312            /// sets the new value to the result.
3313            ///
3314            /// Returns the previous value.
3315            ///
3316            /// `fetch_max` takes an [`Ordering`] argument which describes the memory ordering
3317            /// of this operation. All ordering modes are possible. Note that using
3318            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3319            /// using [`Release`] makes the load part [`Relaxed`].
3320            ///
3321            /// **Note**: This method is only available on platforms that support atomic operations on
3322            #[doc = concat!("[`", $s_int_type, "`].")]
3323            ///
3324            /// # Examples
3325            ///
3326            /// ```
3327            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3328            ///
3329            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(23);")]
3330            /// assert_eq!(foo.fetch_max(42, Ordering::SeqCst), 23);
3331            /// assert_eq!(foo.load(Ordering::SeqCst), 42);
3332            /// ```
3333            ///
3334            /// If you want to obtain the maximum value in one step, you can use the following:
3335            ///
3336            /// ```
3337            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3338            ///
3339            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(23);")]
3340            /// let bar = 42;
3341            /// let max_foo = foo.fetch_max(bar, Ordering::SeqCst).max(bar);
3342            /// assert!(max_foo == 42);
3343            /// ```
3344            #[inline]
3345            #[stable(feature = "atomic_min_max", since = "1.45.0")]
3346            #[$cfg_cas]
3347            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3348            pub fn fetch_max(&self, val: $int_type, order: Ordering) -> $int_type {
3349                // SAFETY: data races are prevented by atomic intrinsics.
3350                unsafe { $max_fn(self.v.get(), val, order) }
3351            }
3352
3353            /// Minimum with the current value.
3354            ///
3355            /// Finds the minimum of the current value and the argument `val`, and
3356            /// sets the new value to the result.
3357            ///
3358            /// Returns the previous value.
3359            ///
3360            /// `fetch_min` takes an [`Ordering`] argument which describes the memory ordering
3361            /// of this operation. All ordering modes are possible. Note that using
3362            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3363            /// using [`Release`] makes the load part [`Relaxed`].
3364            ///
3365            /// **Note**: This method is only available on platforms that support atomic operations on
3366            #[doc = concat!("[`", $s_int_type, "`].")]
3367            ///
3368            /// # Examples
3369            ///
3370            /// ```
3371            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3372            ///
3373            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(23);")]
3374            /// assert_eq!(foo.fetch_min(42, Ordering::Relaxed), 23);
3375            /// assert_eq!(foo.load(Ordering::Relaxed), 23);
3376            /// assert_eq!(foo.fetch_min(22, Ordering::Relaxed), 23);
3377            /// assert_eq!(foo.load(Ordering::Relaxed), 22);
3378            /// ```
3379            ///
3380            /// If you want to obtain the minimum value in one step, you can use the following:
3381            ///
3382            /// ```
3383            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3384            ///
3385            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(23);")]
3386            /// let bar = 12;
3387            /// let min_foo = foo.fetch_min(bar, Ordering::SeqCst).min(bar);
3388            /// assert_eq!(min_foo, 12);
3389            /// ```
3390            #[inline]
3391            #[stable(feature = "atomic_min_max", since = "1.45.0")]
3392            #[$cfg_cas]
3393            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3394            pub fn fetch_min(&self, val: $int_type, order: Ordering) -> $int_type {
3395                // SAFETY: data races are prevented by atomic intrinsics.
3396                unsafe { $min_fn(self.v.get(), val, order) }
3397            }
3398
3399            /// Returns a mutable pointer to the underlying integer.
3400            ///
3401            /// Doing non-atomic reads and writes on the resulting integer can be a data race.
3402            /// This method is mostly useful for FFI, where the function signature may use
3403            #[doc = concat!("`*mut ", stringify!($int_type), "` instead of `&", stringify!($atomic_type), "`.")]
3404            ///
3405            /// Returning an `*mut` pointer from a shared reference to this atomic is safe because the
3406            /// atomic types work with interior mutability. All modifications of an atomic change the value
3407            /// through a shared reference, and can do so safely as long as they use atomic operations. Any
3408            /// use of the returned raw pointer requires an `unsafe` block and still has to uphold the same
3409            /// restriction: operations on it must be atomic.
3410            ///
3411            /// # Examples
3412            ///
3413            /// ```ignore (extern-declaration)
3414            /// # fn main() {
3415            #[doc = concat!($extra_feature, "use std::sync::atomic::", stringify!($atomic_type), ";")]
3416            ///
3417            /// extern "C" {
3418            #[doc = concat!("    fn my_atomic_op(arg: *mut ", stringify!($int_type), ");")]
3419            /// }
3420            ///
3421            #[doc = concat!("let atomic = ", stringify!($atomic_type), "::new(1);")]
3422            ///
3423            /// // SAFETY: Safe as long as `my_atomic_op` is atomic.
3424            /// unsafe {
3425            ///     my_atomic_op(atomic.as_ptr());
3426            /// }
3427            /// # }
3428            /// ```
3429            #[inline]
3430            #[stable(feature = "atomic_as_ptr", since = "1.70.0")]
3431            #[rustc_const_stable(feature = "atomic_as_ptr", since = "1.70.0")]
3432            #[rustc_never_returns_null_ptr]
3433            pub const fn as_ptr(&self) -> *mut $int_type {
3434                self.v.get()
3435            }
3436        }
3437    }
3438}
3439
3440#[cfg(target_has_atomic_load_store = "8")]
3441atomic_int! {
3442    cfg(target_has_atomic = "8"),
3443    cfg(target_has_atomic_equal_alignment = "8"),
3444    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3445    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3446    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3447    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3448    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3449    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3450    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3451    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3452    rustc_diagnostic_item = "AtomicI8",
3453    "i8",
3454    "",
3455    atomic_min, atomic_max,
3456    1,
3457    i8 AtomicI8
3458}
3459#[cfg(target_has_atomic_load_store = "8")]
3460atomic_int! {
3461    cfg(target_has_atomic = "8"),
3462    cfg(target_has_atomic_equal_alignment = "8"),
3463    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3464    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3465    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3466    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3467    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3468    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3469    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3470    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3471    rustc_diagnostic_item = "AtomicU8",
3472    "u8",
3473    "",
3474    atomic_umin, atomic_umax,
3475    1,
3476    u8 AtomicU8
3477}
3478#[cfg(target_has_atomic_load_store = "16")]
3479atomic_int! {
3480    cfg(target_has_atomic = "16"),
3481    cfg(target_has_atomic_equal_alignment = "16"),
3482    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3483    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3484    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3485    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3486    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3487    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3488    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3489    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3490    rustc_diagnostic_item = "AtomicI16",
3491    "i16",
3492    "",
3493    atomic_min, atomic_max,
3494    2,
3495    i16 AtomicI16
3496}
3497#[cfg(target_has_atomic_load_store = "16")]
3498atomic_int! {
3499    cfg(target_has_atomic = "16"),
3500    cfg(target_has_atomic_equal_alignment = "16"),
3501    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3502    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3503    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3504    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3505    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3506    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3507    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3508    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3509    rustc_diagnostic_item = "AtomicU16",
3510    "u16",
3511    "",
3512    atomic_umin, atomic_umax,
3513    2,
3514    u16 AtomicU16
3515}
3516#[cfg(target_has_atomic_load_store = "32")]
3517atomic_int! {
3518    cfg(target_has_atomic = "32"),
3519    cfg(target_has_atomic_equal_alignment = "32"),
3520    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3521    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3522    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3523    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3524    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3525    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3526    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3527    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3528    rustc_diagnostic_item = "AtomicI32",
3529    "i32",
3530    "",
3531    atomic_min, atomic_max,
3532    4,
3533    i32 AtomicI32
3534}
3535#[cfg(target_has_atomic_load_store = "32")]
3536atomic_int! {
3537    cfg(target_has_atomic = "32"),
3538    cfg(target_has_atomic_equal_alignment = "32"),
3539    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3540    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3541    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3542    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3543    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3544    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3545    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3546    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3547    rustc_diagnostic_item = "AtomicU32",
3548    "u32",
3549    "",
3550    atomic_umin, atomic_umax,
3551    4,
3552    u32 AtomicU32
3553}
3554#[cfg(target_has_atomic_load_store = "64")]
3555atomic_int! {
3556    cfg(target_has_atomic = "64"),
3557    cfg(target_has_atomic_equal_alignment = "64"),
3558    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3559    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3560    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3561    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3562    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3563    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3564    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3565    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3566    rustc_diagnostic_item = "AtomicI64",
3567    "i64",
3568    "",
3569    atomic_min, atomic_max,
3570    8,
3571    i64 AtomicI64
3572}
3573#[cfg(target_has_atomic_load_store = "64")]
3574atomic_int! {
3575    cfg(target_has_atomic = "64"),
3576    cfg(target_has_atomic_equal_alignment = "64"),
3577    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3578    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3579    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3580    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3581    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3582    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3583    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3584    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3585    rustc_diagnostic_item = "AtomicU64",
3586    "u64",
3587    "",
3588    atomic_umin, atomic_umax,
3589    8,
3590    u64 AtomicU64
3591}
3592#[cfg(target_has_atomic_load_store = "128")]
3593atomic_int! {
3594    cfg(target_has_atomic = "128"),
3595    cfg(target_has_atomic_equal_alignment = "128"),
3596    unstable(feature = "integer_atomics", issue = "99069"),
3597    unstable(feature = "integer_atomics", issue = "99069"),
3598    unstable(feature = "integer_atomics", issue = "99069"),
3599    unstable(feature = "integer_atomics", issue = "99069"),
3600    unstable(feature = "integer_atomics", issue = "99069"),
3601    unstable(feature = "integer_atomics", issue = "99069"),
3602    rustc_const_unstable(feature = "integer_atomics", issue = "99069"),
3603    rustc_const_unstable(feature = "integer_atomics", issue = "99069"),
3604    rustc_diagnostic_item = "AtomicI128",
3605    "i128",
3606    "#![feature(integer_atomics)]\n\n",
3607    atomic_min, atomic_max,
3608    16,
3609    i128 AtomicI128
3610}
3611#[cfg(target_has_atomic_load_store = "128")]
3612atomic_int! {
3613    cfg(target_has_atomic = "128"),
3614    cfg(target_has_atomic_equal_alignment = "128"),
3615    unstable(feature = "integer_atomics", issue = "99069"),
3616    unstable(feature = "integer_atomics", issue = "99069"),
3617    unstable(feature = "integer_atomics", issue = "99069"),
3618    unstable(feature = "integer_atomics", issue = "99069"),
3619    unstable(feature = "integer_atomics", issue = "99069"),
3620    unstable(feature = "integer_atomics", issue = "99069"),
3621    rustc_const_unstable(feature = "integer_atomics", issue = "99069"),
3622    rustc_const_unstable(feature = "integer_atomics", issue = "99069"),
3623    rustc_diagnostic_item = "AtomicU128",
3624    "u128",
3625    "#![feature(integer_atomics)]\n\n",
3626    atomic_umin, atomic_umax,
3627    16,
3628    u128 AtomicU128
3629}
3630
3631#[cfg(target_has_atomic_load_store = "ptr")]
3632macro_rules! atomic_int_ptr_sized {
3633    ( $($target_pointer_width:literal $align:literal)* ) => { $(
3634        #[cfg(target_pointer_width = $target_pointer_width)]
3635        atomic_int! {
3636            cfg(target_has_atomic = "ptr"),
3637            cfg(target_has_atomic_equal_alignment = "ptr"),
3638            stable(feature = "rust1", since = "1.0.0"),
3639            stable(feature = "extended_compare_and_swap", since = "1.10.0"),
3640            stable(feature = "atomic_debug", since = "1.3.0"),
3641            stable(feature = "atomic_access", since = "1.15.0"),
3642            stable(feature = "atomic_from", since = "1.23.0"),
3643            stable(feature = "atomic_nand", since = "1.27.0"),
3644            rustc_const_stable(feature = "const_ptr_sized_atomics", since = "1.24.0"),
3645            rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3646            rustc_diagnostic_item = "AtomicIsize",
3647            "isize",
3648            "",
3649            atomic_min, atomic_max,
3650            $align,
3651            isize AtomicIsize
3652        }
3653        #[cfg(target_pointer_width = $target_pointer_width)]
3654        atomic_int! {
3655            cfg(target_has_atomic = "ptr"),
3656            cfg(target_has_atomic_equal_alignment = "ptr"),
3657            stable(feature = "rust1", since = "1.0.0"),
3658            stable(feature = "extended_compare_and_swap", since = "1.10.0"),
3659            stable(feature = "atomic_debug", since = "1.3.0"),
3660            stable(feature = "atomic_access", since = "1.15.0"),
3661            stable(feature = "atomic_from", since = "1.23.0"),
3662            stable(feature = "atomic_nand", since = "1.27.0"),
3663            rustc_const_stable(feature = "const_ptr_sized_atomics", since = "1.24.0"),
3664            rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3665            rustc_diagnostic_item = "AtomicUsize",
3666            "usize",
3667            "",
3668            atomic_umin, atomic_umax,
3669            $align,
3670            usize AtomicUsize
3671        }
3672
3673        /// An [`AtomicIsize`] initialized to `0`.
3674        #[cfg(target_pointer_width = $target_pointer_width)]
3675        #[stable(feature = "rust1", since = "1.0.0")]
3676        #[deprecated(
3677            since = "1.34.0",
3678            note = "the `new` function is now preferred",
3679            suggestion = "AtomicIsize::new(0)",
3680        )]
3681        pub const ATOMIC_ISIZE_INIT: AtomicIsize = AtomicIsize::new(0);
3682
3683        /// An [`AtomicUsize`] initialized to `0`.
3684        #[cfg(target_pointer_width = $target_pointer_width)]
3685        #[stable(feature = "rust1", since = "1.0.0")]
3686        #[deprecated(
3687            since = "1.34.0",
3688            note = "the `new` function is now preferred",
3689            suggestion = "AtomicUsize::new(0)",
3690        )]
3691        pub const ATOMIC_USIZE_INIT: AtomicUsize = AtomicUsize::new(0);
3692    )* };
3693}
3694
3695#[cfg(target_has_atomic_load_store = "ptr")]
3696atomic_int_ptr_sized! {
3697    "16" 2
3698    "32" 4
3699    "64" 8
3700}
3701
3702#[inline]
3703#[cfg(target_has_atomic)]
3704fn strongest_failure_ordering(order: Ordering) -> Ordering {
3705    match order {
3706        Release => Relaxed,
3707        Relaxed => Relaxed,
3708        SeqCst => SeqCst,
3709        Acquire => Acquire,
3710        AcqRel => Acquire,
3711    }
3712}
3713
3714#[inline]
3715#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3716unsafe fn atomic_store<T: Copy>(dst: *mut T, val: T, order: Ordering) {
3717    // SAFETY: the caller must uphold the safety contract for `atomic_store`.
3718    unsafe {
3719        match order {
3720            Relaxed => intrinsics::atomic_store_relaxed(dst, val),
3721            Release => intrinsics::atomic_store_release(dst, val),
3722            SeqCst => intrinsics::atomic_store_seqcst(dst, val),
3723            Acquire => panic!("there is no such thing as an acquire store"),
3724            AcqRel => panic!("there is no such thing as an acquire-release store"),
3725        }
3726    }
3727}
3728
3729#[inline]
3730#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3731unsafe fn atomic_load<T: Copy>(dst: *const T, order: Ordering) -> T {
3732    // SAFETY: the caller must uphold the safety contract for `atomic_load`.
3733    unsafe {
3734        match order {
3735            Relaxed => intrinsics::atomic_load_relaxed(dst),
3736            Acquire => intrinsics::atomic_load_acquire(dst),
3737            SeqCst => intrinsics::atomic_load_seqcst(dst),
3738            Release => panic!("there is no such thing as a release load"),
3739            AcqRel => panic!("there is no such thing as an acquire-release load"),
3740        }
3741    }
3742}
3743
3744#[inline]
3745#[cfg(target_has_atomic)]
3746#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3747unsafe fn atomic_swap<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
3748    // SAFETY: the caller must uphold the safety contract for `atomic_swap`.
3749    unsafe {
3750        match order {
3751            Relaxed => intrinsics::atomic_xchg_relaxed(dst, val),
3752            Acquire => intrinsics::atomic_xchg_acquire(dst, val),
3753            Release => intrinsics::atomic_xchg_release(dst, val),
3754            AcqRel => intrinsics::atomic_xchg_acqrel(dst, val),
3755            SeqCst => intrinsics::atomic_xchg_seqcst(dst, val),
3756        }
3757    }
3758}
3759
3760/// Returns the previous value (like __sync_fetch_and_add).
3761#[inline]
3762#[cfg(target_has_atomic)]
3763#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3764unsafe fn atomic_add<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
3765    // SAFETY: the caller must uphold the safety contract for `atomic_add`.
3766    unsafe {
3767        match order {
3768            Relaxed => intrinsics::atomic_xadd_relaxed(dst, val),
3769            Acquire => intrinsics::atomic_xadd_acquire(dst, val),
3770            Release => intrinsics::atomic_xadd_release(dst, val),
3771            AcqRel => intrinsics::atomic_xadd_acqrel(dst, val),
3772            SeqCst => intrinsics::atomic_xadd_seqcst(dst, val),
3773        }
3774    }
3775}
3776
3777/// Returns the previous value (like __sync_fetch_and_sub).
3778#[inline]
3779#[cfg(target_has_atomic)]
3780#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3781unsafe fn atomic_sub<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
3782    // SAFETY: the caller must uphold the safety contract for `atomic_sub`.
3783    unsafe {
3784        match order {
3785            Relaxed => intrinsics::atomic_xsub_relaxed(dst, val),
3786            Acquire => intrinsics::atomic_xsub_acquire(dst, val),
3787            Release => intrinsics::atomic_xsub_release(dst, val),
3788            AcqRel => intrinsics::atomic_xsub_acqrel(dst, val),
3789            SeqCst => intrinsics::atomic_xsub_seqcst(dst, val),
3790        }
3791    }
3792}
3793
3794#[inline]
3795#[cfg(target_has_atomic)]
3796#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3797unsafe fn atomic_compare_exchange<T: Copy>(
3798    dst: *mut T,
3799    old: T,
3800    new: T,
3801    success: Ordering,
3802    failure: Ordering,
3803) -> Result<T, T> {
3804    // SAFETY: the caller must uphold the safety contract for `atomic_compare_exchange`.
3805    let (val, ok) = unsafe {
3806        match (success, failure) {
3807            (Relaxed, Relaxed) => intrinsics::atomic_cxchg_relaxed_relaxed(dst, old, new),
3808            (Relaxed, Acquire) => intrinsics::atomic_cxchg_relaxed_acquire(dst, old, new),
3809            (Relaxed, SeqCst) => intrinsics::atomic_cxchg_relaxed_seqcst(dst, old, new),
3810            (Acquire, Relaxed) => intrinsics::atomic_cxchg_acquire_relaxed(dst, old, new),
3811            (Acquire, Acquire) => intrinsics::atomic_cxchg_acquire_acquire(dst, old, new),
3812            (Acquire, SeqCst) => intrinsics::atomic_cxchg_acquire_seqcst(dst, old, new),
3813            (Release, Relaxed) => intrinsics::atomic_cxchg_release_relaxed(dst, old, new),
3814            (Release, Acquire) => intrinsics::atomic_cxchg_release_acquire(dst, old, new),
3815            (Release, SeqCst) => intrinsics::atomic_cxchg_release_seqcst(dst, old, new),
3816            (AcqRel, Relaxed) => intrinsics::atomic_cxchg_acqrel_relaxed(dst, old, new),
3817            (AcqRel, Acquire) => intrinsics::atomic_cxchg_acqrel_acquire(dst, old, new),
3818            (AcqRel, SeqCst) => intrinsics::atomic_cxchg_acqrel_seqcst(dst, old, new),
3819            (SeqCst, Relaxed) => intrinsics::atomic_cxchg_seqcst_relaxed(dst, old, new),
3820            (SeqCst, Acquire) => intrinsics::atomic_cxchg_seqcst_acquire(dst, old, new),
3821            (SeqCst, SeqCst) => intrinsics::atomic_cxchg_seqcst_seqcst(dst, old, new),
3822            (_, AcqRel) => panic!("there is no such thing as an acquire-release failure ordering"),
3823            (_, Release) => panic!("there is no such thing as a release failure ordering"),
3824        }
3825    };
3826    if ok { Ok(val) } else { Err(val) }
3827}
3828
3829#[inline]
3830#[cfg(target_has_atomic)]
3831#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3832unsafe fn atomic_compare_exchange_weak<T: Copy>(
3833    dst: *mut T,
3834    old: T,
3835    new: T,
3836    success: Ordering,
3837    failure: Ordering,
3838) -> Result<T, T> {
3839    // SAFETY: the caller must uphold the safety contract for `atomic_compare_exchange_weak`.
3840    let (val, ok) = unsafe {
3841        match (success, failure) {
3842            (Relaxed, Relaxed) => intrinsics::atomic_cxchgweak_relaxed_relaxed(dst, old, new),
3843            (Relaxed, Acquire) => intrinsics::atomic_cxchgweak_relaxed_acquire(dst, old, new),
3844            (Relaxed, SeqCst) => intrinsics::atomic_cxchgweak_relaxed_seqcst(dst, old, new),
3845            (Acquire, Relaxed) => intrinsics::atomic_cxchgweak_acquire_relaxed(dst, old, new),
3846            (Acquire, Acquire) => intrinsics::atomic_cxchgweak_acquire_acquire(dst, old, new),
3847            (Acquire, SeqCst) => intrinsics::atomic_cxchgweak_acquire_seqcst(dst, old, new),
3848            (Release, Relaxed) => intrinsics::atomic_cxchgweak_release_relaxed(dst, old, new),
3849            (Release, Acquire) => intrinsics::atomic_cxchgweak_release_acquire(dst, old, new),
3850            (Release, SeqCst) => intrinsics::atomic_cxchgweak_release_seqcst(dst, old, new),
3851            (AcqRel, Relaxed) => intrinsics::atomic_cxchgweak_acqrel_relaxed(dst, old, new),
3852            (AcqRel, Acquire) => intrinsics::atomic_cxchgweak_acqrel_acquire(dst, old, new),
3853            (AcqRel, SeqCst) => intrinsics::atomic_cxchgweak_acqrel_seqcst(dst, old, new),
3854            (SeqCst, Relaxed) => intrinsics::atomic_cxchgweak_seqcst_relaxed(dst, old, new),
3855            (SeqCst, Acquire) => intrinsics::atomic_cxchgweak_seqcst_acquire(dst, old, new),
3856            (SeqCst, SeqCst) => intrinsics::atomic_cxchgweak_seqcst_seqcst(dst, old, new),
3857            (_, AcqRel) => panic!("there is no such thing as an acquire-release failure ordering"),
3858            (_, Release) => panic!("there is no such thing as a release failure ordering"),
3859        }
3860    };
3861    if ok { Ok(val) } else { Err(val) }
3862}
3863
3864#[inline]
3865#[cfg(target_has_atomic)]
3866#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3867unsafe fn atomic_and<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
3868    // SAFETY: the caller must uphold the safety contract for `atomic_and`
3869    unsafe {
3870        match order {
3871            Relaxed => intrinsics::atomic_and_relaxed(dst, val),
3872            Acquire => intrinsics::atomic_and_acquire(dst, val),
3873            Release => intrinsics::atomic_and_release(dst, val),
3874            AcqRel => intrinsics::atomic_and_acqrel(dst, val),
3875            SeqCst => intrinsics::atomic_and_seqcst(dst, val),
3876        }
3877    }
3878}
3879
3880#[inline]
3881#[cfg(target_has_atomic)]
3882#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3883unsafe fn atomic_nand<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
3884    // SAFETY: the caller must uphold the safety contract for `atomic_nand`
3885    unsafe {
3886        match order {
3887            Relaxed => intrinsics::atomic_nand_relaxed(dst, val),
3888            Acquire => intrinsics::atomic_nand_acquire(dst, val),
3889            Release => intrinsics::atomic_nand_release(dst, val),
3890            AcqRel => intrinsics::atomic_nand_acqrel(dst, val),
3891            SeqCst => intrinsics::atomic_nand_seqcst(dst, val),
3892        }
3893    }
3894}
3895
3896#[inline]
3897#[cfg(target_has_atomic)]
3898#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3899unsafe fn atomic_or<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
3900    // SAFETY: the caller must uphold the safety contract for `atomic_or`
3901    unsafe {
3902        match order {
3903            SeqCst => intrinsics::atomic_or_seqcst(dst, val),
3904            Acquire => intrinsics::atomic_or_acquire(dst, val),
3905            Release => intrinsics::atomic_or_release(dst, val),
3906            AcqRel => intrinsics::atomic_or_acqrel(dst, val),
3907            Relaxed => intrinsics::atomic_or_relaxed(dst, val),
3908        }
3909    }
3910}
3911
3912#[inline]
3913#[cfg(target_has_atomic)]
3914#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3915unsafe fn atomic_xor<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
3916    // SAFETY: the caller must uphold the safety contract for `atomic_xor`
3917    unsafe {
3918        match order {
3919            SeqCst => intrinsics::atomic_xor_seqcst(dst, val),
3920            Acquire => intrinsics::atomic_xor_acquire(dst, val),
3921            Release => intrinsics::atomic_xor_release(dst, val),
3922            AcqRel => intrinsics::atomic_xor_acqrel(dst, val),
3923            Relaxed => intrinsics::atomic_xor_relaxed(dst, val),
3924        }
3925    }
3926}
3927
3928/// returns the max value (signed comparison)
3929#[inline]
3930#[cfg(target_has_atomic)]
3931#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3932unsafe fn atomic_max<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
3933    // SAFETY: the caller must uphold the safety contract for `atomic_max`
3934    unsafe {
3935        match order {
3936            Relaxed => intrinsics::atomic_max_relaxed(dst, val),
3937            Acquire => intrinsics::atomic_max_acquire(dst, val),
3938            Release => intrinsics::atomic_max_release(dst, val),
3939            AcqRel => intrinsics::atomic_max_acqrel(dst, val),
3940            SeqCst => intrinsics::atomic_max_seqcst(dst, val),
3941        }
3942    }
3943}
3944
3945/// returns the min value (signed comparison)
3946#[inline]
3947#[cfg(target_has_atomic)]
3948#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3949unsafe fn atomic_min<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
3950    // SAFETY: the caller must uphold the safety contract for `atomic_min`
3951    unsafe {
3952        match order {
3953            Relaxed => intrinsics::atomic_min_relaxed(dst, val),
3954            Acquire => intrinsics::atomic_min_acquire(dst, val),
3955            Release => intrinsics::atomic_min_release(dst, val),
3956            AcqRel => intrinsics::atomic_min_acqrel(dst, val),
3957            SeqCst => intrinsics::atomic_min_seqcst(dst, val),
3958        }
3959    }
3960}
3961
3962/// returns the max value (unsigned comparison)
3963#[inline]
3964#[cfg(target_has_atomic)]
3965#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3966unsafe fn atomic_umax<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
3967    // SAFETY: the caller must uphold the safety contract for `atomic_umax`
3968    unsafe {
3969        match order {
3970            Relaxed => intrinsics::atomic_umax_relaxed(dst, val),
3971            Acquire => intrinsics::atomic_umax_acquire(dst, val),
3972            Release => intrinsics::atomic_umax_release(dst, val),
3973            AcqRel => intrinsics::atomic_umax_acqrel(dst, val),
3974            SeqCst => intrinsics::atomic_umax_seqcst(dst, val),
3975        }
3976    }
3977}
3978
3979/// returns the min value (unsigned comparison)
3980#[inline]
3981#[cfg(target_has_atomic)]
3982#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3983unsafe fn atomic_umin<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
3984    // SAFETY: the caller must uphold the safety contract for `atomic_umin`
3985    unsafe {
3986        match order {
3987            Relaxed => intrinsics::atomic_umin_relaxed(dst, val),
3988            Acquire => intrinsics::atomic_umin_acquire(dst, val),
3989            Release => intrinsics::atomic_umin_release(dst, val),
3990            AcqRel => intrinsics::atomic_umin_acqrel(dst, val),
3991            SeqCst => intrinsics::atomic_umin_seqcst(dst, val),
3992        }
3993    }
3994}
3995
3996/// An atomic fence.
3997///
3998/// Fences create synchronization between themselves and atomic operations or fences in other
3999/// threads. To achieve this, a fence prevents the compiler and CPU from reordering certain types of
4000/// memory operations around it.
4001///
4002/// A fence 'A' which has (at least) [`Release`] ordering semantics, synchronizes
4003/// with a fence 'B' with (at least) [`Acquire`] semantics, if and only if there
4004/// exist operations X and Y, both operating on some atomic object 'm' such
4005/// that A is sequenced before X, Y is sequenced before B and Y observes
4006/// the change to m. This provides a happens-before dependence between A and B.
4007///
4008/// ```text
4009///     Thread 1                                          Thread 2
4010///
4011/// fence(Release);      A --------------
4012/// m.store(3, Relaxed); X ---------    |
4013///                                |    |
4014///                                |    |
4015///                                -------------> Y  if m.load(Relaxed) == 3 {
4016///                                     |-------> B      fence(Acquire);
4017///                                                      ...
4018///                                                  }
4019/// ```
4020///
4021/// Note that in the example above, it is crucial that the accesses to `m` are atomic. Fences cannot
4022/// be used to establish synchronization among non-atomic accesses in different threads. However,
4023/// thanks to the happens-before relationship between A and B, any non-atomic accesses that
4024/// happen-before A are now also properly synchronized with any non-atomic accesses that
4025/// happen-after B.
4026///
4027/// Atomic operations with [`Release`] or [`Acquire`] semantics can also synchronize
4028/// with a fence.
4029///
4030/// A fence which has [`SeqCst`] ordering, in addition to having both [`Acquire`]
4031/// and [`Release`] semantics, participates in the global program order of the
4032/// other [`SeqCst`] operations and/or fences.
4033///
4034/// Accepts [`Acquire`], [`Release`], [`AcqRel`] and [`SeqCst`] orderings.
4035///
4036/// # Panics
4037///
4038/// Panics if `order` is [`Relaxed`].
4039///
4040/// # Examples
4041///
4042/// ```
4043/// use std::sync::atomic::AtomicBool;
4044/// use std::sync::atomic::fence;
4045/// use std::sync::atomic::Ordering;
4046///
4047/// // A mutual exclusion primitive based on spinlock.
4048/// pub struct Mutex {
4049///     flag: AtomicBool,
4050/// }
4051///
4052/// impl Mutex {
4053///     pub fn new() -> Mutex {
4054///         Mutex {
4055///             flag: AtomicBool::new(false),
4056///         }
4057///     }
4058///
4059///     pub fn lock(&self) {
4060///         // Wait until the old value is `false`.
4061///         while self
4062///             .flag
4063///             .compare_exchange_weak(false, true, Ordering::Relaxed, Ordering::Relaxed)
4064///             .is_err()
4065///         {}
4066///         // This fence synchronizes-with store in `unlock`.
4067///         fence(Ordering::Acquire);
4068///     }
4069///
4070///     pub fn unlock(&self) {
4071///         self.flag.store(false, Ordering::Release);
4072///     }
4073/// }
4074/// ```
4075#[inline]
4076#[stable(feature = "rust1", since = "1.0.0")]
4077#[rustc_diagnostic_item = "fence"]
4078#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4079pub fn fence(order: Ordering) {
4080    // SAFETY: using an atomic fence is safe.
4081    unsafe {
4082        match order {
4083            Acquire => intrinsics::atomic_fence_acquire(),
4084            Release => intrinsics::atomic_fence_release(),
4085            AcqRel => intrinsics::atomic_fence_acqrel(),
4086            SeqCst => intrinsics::atomic_fence_seqcst(),
4087            Relaxed => panic!("there is no such thing as a relaxed fence"),
4088        }
4089    }
4090}
4091
4092/// A "compiler-only" atomic fence.
4093///
4094/// Like [`fence`], this function establishes synchronization with other atomic operations and
4095/// fences. However, unlike [`fence`], `compiler_fence` only establishes synchronization with
4096/// operations *in the same thread*. This may at first sound rather useless, since code within a
4097/// thread is typically already totally ordered and does not need any further synchronization.
4098/// However, there are cases where code can run on the same thread without being ordered:
4099/// - The most common case is that of a *signal handler*: a signal handler runs in the same thread
4100///   as the code it interrupted, but it is not ordered with respect to that code. `compiler_fence`
4101///   can be used to establish synchronization between a thread and its signal handler, the same way
4102///   that `fence` can be used to establish synchronization across threads.
4103/// - Similar situations can arise in embedded programming with interrupt handlers, or in custom
4104///   implementations of preemptive green threads. In general, `compiler_fence` can establish
4105///   synchronization with code that is guaranteed to run on the same hardware CPU.
4106///
4107/// See [`fence`] for how a fence can be used to achieve synchronization. Note that just like
4108/// [`fence`], synchronization still requires atomic operations to be used in both threads -- it is
4109/// not possible to perform synchronization entirely with fences and non-atomic operations.
4110///
4111/// `compiler_fence` does not emit any machine code, but restricts the kinds of memory re-ordering
4112/// the compiler is allowed to do. `compiler_fence` corresponds to [`atomic_signal_fence`] in C and
4113/// C++.
4114///
4115/// [`atomic_signal_fence`]: https://en.cppreference.com/w/cpp/atomic/atomic_signal_fence
4116///
4117/// # Panics
4118///
4119/// Panics if `order` is [`Relaxed`].
4120///
4121/// # Examples
4122///
4123/// Without the two `compiler_fence` calls, the read of `IMPORTANT_VARIABLE` in `signal_handler`
4124/// is *undefined behavior* due to a data race, despite everything happening in a single thread.
4125/// This is because the signal handler is considered to run concurrently with its associated
4126/// thread, and explicit synchronization is required to pass data between a thread and its
4127/// signal handler. The code below uses two `compiler_fence` calls to establish the usual
4128/// release-acquire synchronization pattern (see [`fence`] for an image).
4129///
4130/// ```
4131/// use std::sync::atomic::AtomicBool;
4132/// use std::sync::atomic::Ordering;
4133/// use std::sync::atomic::compiler_fence;
4134///
4135/// static mut IMPORTANT_VARIABLE: usize = 0;
4136/// static IS_READY: AtomicBool = AtomicBool::new(false);
4137///
4138/// fn main() {
4139///     unsafe { IMPORTANT_VARIABLE = 42 };
4140///     // Marks earlier writes as being released with future relaxed stores.
4141///     compiler_fence(Ordering::Release);
4142///     IS_READY.store(true, Ordering::Relaxed);
4143/// }
4144///
4145/// fn signal_handler() {
4146///     if IS_READY.load(Ordering::Relaxed) {
4147///         // Acquires writes that were released with relaxed stores that we read from.
4148///         compiler_fence(Ordering::Acquire);
4149///         assert_eq!(unsafe { IMPORTANT_VARIABLE }, 42);
4150///     }
4151/// }
4152/// ```
4153#[inline]
4154#[stable(feature = "compiler_fences", since = "1.21.0")]
4155#[rustc_diagnostic_item = "compiler_fence"]
4156#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4157pub fn compiler_fence(order: Ordering) {
4158    // SAFETY: using an atomic fence is safe.
4159    unsafe {
4160        match order {
4161            Acquire => intrinsics::atomic_singlethreadfence_acquire(),
4162            Release => intrinsics::atomic_singlethreadfence_release(),
4163            AcqRel => intrinsics::atomic_singlethreadfence_acqrel(),
4164            SeqCst => intrinsics::atomic_singlethreadfence_seqcst(),
4165            Relaxed => panic!("there is no such thing as a relaxed compiler fence"),
4166        }
4167    }
4168}
4169
4170#[cfg(target_has_atomic_load_store = "8")]
4171#[stable(feature = "atomic_debug", since = "1.3.0")]
4172impl fmt::Debug for AtomicBool {
4173    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4174        fmt::Debug::fmt(&self.load(Ordering::Relaxed), f)
4175    }
4176}
4177
4178#[cfg(target_has_atomic_load_store = "ptr")]
4179#[stable(feature = "atomic_debug", since = "1.3.0")]
4180impl<T> fmt::Debug for AtomicPtr<T> {
4181    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4182        fmt::Debug::fmt(&self.load(Ordering::Relaxed), f)
4183    }
4184}
4185
4186#[cfg(target_has_atomic_load_store = "ptr")]
4187#[stable(feature = "atomic_pointer", since = "1.24.0")]
4188impl<T> fmt::Pointer for AtomicPtr<T> {
4189    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4190        fmt::Pointer::fmt(&self.load(Ordering::Relaxed), f)
4191    }
4192}
4193
4194/// Signals the processor that it is inside a busy-wait spin-loop ("spin lock").
4195///
4196/// This function is deprecated in favor of [`hint::spin_loop`].
4197///
4198/// [`hint::spin_loop`]: crate::hint::spin_loop
4199#[inline]
4200#[stable(feature = "spin_loop_hint", since = "1.24.0")]
4201#[deprecated(since = "1.51.0", note = "use hint::spin_loop instead")]
4202pub fn spin_loop_hint() {
4203    spin_loop()
4204}