core/sync/atomic.rs
1//! Atomic types
2//!
3//! Atomic types provide primitive shared-memory communication between
4//! threads, and are the building blocks of other concurrent
5//! types.
6//!
7//! This module defines atomic versions of a select number of primitive
8//! types, including [`AtomicBool`], [`AtomicIsize`], [`AtomicUsize`],
9//! [`AtomicI8`], [`AtomicU16`], etc.
10//! Atomic types present operations that, when used correctly, synchronize
11//! updates between threads.
12//!
13//! Atomic variables are safe to share between threads (they implement [`Sync`])
14//! but they do not themselves provide the mechanism for sharing and follow the
15//! [threading model](../../../std/thread/index.html#the-threading-model) of Rust.
16//! The most common way to share an atomic variable is to put it into an [`Arc`][arc] (an
17//! atomically-reference-counted shared pointer).
18//!
19//! [arc]: ../../../std/sync/struct.Arc.html
20//!
21//! Atomic types may be stored in static variables, initialized using
22//! the constant initializers like [`AtomicBool::new`]. Atomic statics
23//! are often used for lazy global initialization.
24//!
25//! ## Memory model for atomic accesses
26//!
27//! Rust atomics currently follow the same rules as [C++20 atomics][cpp], specifically the rules
28//! from the [`intro.races`][cpp-intro.races] section, without the "consume" memory ordering. Since
29//! C++ uses an object-based memory model whereas Rust is access-based, a bit of translation work
30//! has to be done to apply the C++ rules to Rust: whenever C++ talks about "the value of an
31//! object", we understand that to mean the resulting bytes obtained when doing a read. When the C++
32//! standard talks about "the value of an atomic object", this refers to the result of doing an
33//! atomic load (via the operations provided in this module). A "modification of an atomic object"
34//! refers to an atomic store.
35//!
36//! The end result is *almost* equivalent to saying that creating a *shared reference* to one of the
37//! Rust atomic types corresponds to creating an `atomic_ref` in C++, with the `atomic_ref` being
38//! destroyed when the lifetime of the shared reference ends. The main difference is that Rust
39//! permits concurrent atomic and non-atomic reads to the same memory as those cause no issue in the
40//! C++ memory model, they are just forbidden in C++ because memory is partitioned into "atomic
41//! objects" and "non-atomic objects" (with `atomic_ref` temporarily converting a non-atomic object
42//! into an atomic object).
43//!
44//! The most important aspect of this model is that *data races* are undefined behavior. A data race
45//! is defined as conflicting non-synchronized accesses where at least one of the accesses is
46//! non-atomic. Here, accesses are *conflicting* if they affect overlapping regions of memory and at
47//! least one of them is a write. (A `compare_exchange` or `compare_exchange_weak` that does not
48//! succeed is not considered a write.) They are *non-synchronized* if neither of them
49//! *happens-before* the other, according to the happens-before order of the memory model.
50//!
51//! The other possible cause of undefined behavior in the memory model are mixed-size accesses: Rust
52//! inherits the C++ limitation that non-synchronized conflicting atomic accesses may not partially
53//! overlap. In other words, every pair of non-synchronized atomic accesses must be either disjoint,
54//! access the exact same memory (including using the same access size), or both be reads.
55//!
56//! Each atomic access takes an [`Ordering`] which defines how the operation interacts with the
57//! happens-before order. These orderings behave the same as the corresponding [C++20 atomic
58//! orderings][cpp_memory_order]. For more information, see the [nomicon].
59//!
60//! [cpp]: https://en.cppreference.com/w/cpp/atomic
61//! [cpp-intro.races]: https://timsong-cpp.github.io/cppwp/n4868/intro.multithread#intro.races
62//! [cpp_memory_order]: https://en.cppreference.com/w/cpp/atomic/memory_order
63//! [nomicon]: ../../../nomicon/atomics.html
64//!
65//! ```rust,no_run undefined_behavior
66//! use std::sync::atomic::{AtomicU16, AtomicU8, Ordering};
67//! use std::mem::transmute;
68//! use std::thread;
69//!
70//! let atomic = AtomicU16::new(0);
71//!
72//! thread::scope(|s| {
73//! // This is UB: conflicting non-synchronized accesses, at least one of which is non-atomic.
74//! s.spawn(|| atomic.store(1, Ordering::Relaxed)); // atomic store
75//! s.spawn(|| unsafe { atomic.as_ptr().write(2) }); // non-atomic write
76//! });
77//!
78//! thread::scope(|s| {
79//! // This is fine: the accesses do not conflict (as none of them performs any modification).
80//! // In C++ this would be disallowed since creating an `atomic_ref` precludes
81//! // further non-atomic accesses, but Rust does not have that limitation.
82//! s.spawn(|| atomic.load(Ordering::Relaxed)); // atomic load
83//! s.spawn(|| unsafe { atomic.as_ptr().read() }); // non-atomic read
84//! });
85//!
86//! thread::scope(|s| {
87//! // This is fine: `join` synchronizes the code in a way such that the atomic
88//! // store happens-before the non-atomic write.
89//! let handle = s.spawn(|| atomic.store(1, Ordering::Relaxed)); // atomic store
90//! handle.join().expect("thread won't panic"); // synchronize
91//! s.spawn(|| unsafe { atomic.as_ptr().write(2) }); // non-atomic write
92//! });
93//!
94//! thread::scope(|s| {
95//! // This is UB: non-synchronized conflicting differently-sized atomic accesses.
96//! s.spawn(|| atomic.store(1, Ordering::Relaxed));
97//! s.spawn(|| unsafe {
98//! let differently_sized = transmute::<&AtomicU16, &AtomicU8>(&atomic);
99//! differently_sized.store(2, Ordering::Relaxed);
100//! });
101//! });
102//!
103//! thread::scope(|s| {
104//! // This is fine: `join` synchronizes the code in a way such that
105//! // the 1-byte store happens-before the 2-byte store.
106//! let handle = s.spawn(|| atomic.store(1, Ordering::Relaxed));
107//! handle.join().expect("thread won't panic");
108//! s.spawn(|| unsafe {
109//! let differently_sized = transmute::<&AtomicU16, &AtomicU8>(&atomic);
110//! differently_sized.store(2, Ordering::Relaxed);
111//! });
112//! });
113//! ```
114//!
115//! # Portability
116//!
117//! All atomic types in this module are guaranteed to be [lock-free] if they're
118//! available. This means they don't internally acquire a global mutex. Atomic
119//! types and operations are not guaranteed to be wait-free. This means that
120//! operations like `fetch_or` may be implemented with a compare-and-swap loop.
121//!
122//! Atomic operations may be implemented at the instruction layer with
123//! larger-size atomics. For example some platforms use 4-byte atomic
124//! instructions to implement `AtomicI8`. Note that this emulation should not
125//! have an impact on correctness of code, it's just something to be aware of.
126//!
127//! The atomic types in this module might not be available on all platforms. The
128//! atomic types here are all widely available, however, and can generally be
129//! relied upon existing. Some notable exceptions are:
130//!
131//! * PowerPC and MIPS platforms with 32-bit pointers do not have `AtomicU64` or
132//! `AtomicI64` types.
133//! * ARM platforms like `armv5te` that aren't for Linux only provide `load`
134//! and `store` operations, and do not support Compare and Swap (CAS)
135//! operations, such as `swap`, `fetch_add`, etc. Additionally on Linux,
136//! these CAS operations are implemented via [operating system support], which
137//! may come with a performance penalty.
138//! * ARM targets with `thumbv6m` only provide `load` and `store` operations,
139//! and do not support Compare and Swap (CAS) operations, such as `swap`,
140//! `fetch_add`, etc.
141//!
142//! [operating system support]: https://www.kernel.org/doc/Documentation/arm/kernel_user_helpers.txt
143//!
144//! Note that future platforms may be added that also do not have support for
145//! some atomic operations. Maximally portable code will want to be careful
146//! about which atomic types are used. `AtomicUsize` and `AtomicIsize` are
147//! generally the most portable, but even then they're not available everywhere.
148//! For reference, the `std` library requires `AtomicBool`s and pointer-sized atomics, although
149//! `core` does not.
150//!
151//! The `#[cfg(target_has_atomic)]` attribute can be used to conditionally
152//! compile based on the target's supported bit widths. It is a key-value
153//! option set for each supported size, with values "8", "16", "32", "64",
154//! "128", and "ptr" for pointer-sized atomics.
155//!
156//! [lock-free]: https://en.wikipedia.org/wiki/Non-blocking_algorithm
157//!
158//! # Atomic accesses to read-only memory
159//!
160//! In general, *all* atomic accesses on read-only memory are undefined behavior. For instance, attempting
161//! to do a `compare_exchange` that will definitely fail (making it conceptually a read-only
162//! operation) can still cause a segmentation fault if the underlying memory page is mapped read-only. Since
163//! atomic `load`s might be implemented using compare-exchange operations, even a `load` can fault
164//! on read-only memory.
165//!
166//! For the purpose of this section, "read-only memory" is defined as memory that is read-only in
167//! the underlying target, i.e., the pages are mapped with a read-only flag and any attempt to write
168//! will cause a page fault. In particular, an `&u128` reference that points to memory that is
169//! read-write mapped is *not* considered to point to "read-only memory". In Rust, almost all memory
170//! is read-write; the only exceptions are memory created by `const` items or `static` items without
171//! interior mutability, and memory that was specifically marked as read-only by the operating
172//! system via platform-specific APIs.
173//!
174//! As an exception from the general rule stated above, "sufficiently small" atomic loads with
175//! `Ordering::Relaxed` are implemented in a way that works on read-only memory, and are hence not
176//! undefined behavior. The exact size limit for what makes a load "sufficiently small" varies
177//! depending on the target:
178//!
179//! | `target_arch` | Size limit |
180//! |---------------|---------|
181//! | `x86`, `arm`, `mips`, `mips32r6`, `powerpc`, `riscv32`, `sparc`, `hexagon` | 4 bytes |
182//! | `x86_64`, `aarch64`, `loongarch64`, `mips64`, `mips64r6`, `powerpc64`, `riscv64`, `sparc64`, `s390x` | 8 bytes |
183//!
184//! Atomics loads that are larger than this limit as well as atomic loads with ordering other
185//! than `Relaxed`, as well as *all* atomic loads on targets not listed in the table, might still be
186//! read-only under certain conditions, but that is not a stable guarantee and should not be relied
187//! upon.
188//!
189//! If you need to do an acquire load on read-only memory, you can do a relaxed load followed by an
190//! acquire fence instead.
191//!
192//! # Examples
193//!
194//! A simple spinlock:
195//!
196//! ```
197//! use std::sync::Arc;
198//! use std::sync::atomic::{AtomicUsize, Ordering};
199//! use std::{hint, thread};
200//!
201//! fn main() {
202//! let spinlock = Arc::new(AtomicUsize::new(1));
203//!
204//! let spinlock_clone = Arc::clone(&spinlock);
205//!
206//! let thread = thread::spawn(move || {
207//! spinlock_clone.store(0, Ordering::Release);
208//! });
209//!
210//! // Wait for the other thread to release the lock
211//! while spinlock.load(Ordering::Acquire) != 0 {
212//! hint::spin_loop();
213//! }
214//!
215//! if let Err(panic) = thread.join() {
216//! println!("Thread had an error: {panic:?}");
217//! }
218//! }
219//! ```
220//!
221//! Keep a global count of live threads:
222//!
223//! ```
224//! use std::sync::atomic::{AtomicUsize, Ordering};
225//!
226//! static GLOBAL_THREAD_COUNT: AtomicUsize = AtomicUsize::new(0);
227//!
228//! // Note that Relaxed ordering doesn't synchronize anything
229//! // except the global thread counter itself.
230//! let old_thread_count = GLOBAL_THREAD_COUNT.fetch_add(1, Ordering::Relaxed);
231//! // Note that this number may not be true at the moment of printing
232//! // because some other thread may have changed static value already.
233//! println!("live threads: {}", old_thread_count + 1);
234//! ```
235
236#![stable(feature = "rust1", since = "1.0.0")]
237#![cfg_attr(not(target_has_atomic_load_store = "8"), allow(dead_code))]
238#![cfg_attr(not(target_has_atomic_load_store = "8"), allow(unused_imports))]
239#![rustc_diagnostic_item = "atomic_mod"]
240// Clippy complains about the pattern of "safe function calling unsafe function taking pointers".
241// This happens with AtomicPtr intrinsics but is fine, as the pointers clippy is concerned about
242// are just normal values that get loaded/stored, but not dereferenced.
243#![allow(clippy::not_unsafe_ptr_arg_deref)]
244
245use self::Ordering::*;
246use crate::cell::UnsafeCell;
247use crate::hint::spin_loop;
248use crate::{fmt, intrinsics};
249
250// Some architectures don't have byte-sized atomics, which results in LLVM
251// emulating them using a LL/SC loop. However for AtomicBool we can take
252// advantage of the fact that it only ever contains 0 or 1 and use atomic OR/AND
253// instead, which LLVM can emulate using a larger atomic OR/AND operation.
254//
255// This list should only contain architectures which have word-sized atomic-or/
256// atomic-and instructions but don't natively support byte-sized atomics.
257#[cfg(target_has_atomic = "8")]
258const EMULATE_ATOMIC_BOOL: bool =
259 cfg!(any(target_arch = "riscv32", target_arch = "riscv64", target_arch = "loongarch64"));
260
261/// A boolean type which can be safely shared between threads.
262///
263/// This type has the same size, alignment, and bit validity as a [`bool`].
264///
265/// **Note**: This type is only available on platforms that support atomic
266/// loads and stores of `u8`.
267#[cfg(target_has_atomic_load_store = "8")]
268#[stable(feature = "rust1", since = "1.0.0")]
269#[rustc_diagnostic_item = "AtomicBool"]
270#[repr(C, align(1))]
271pub struct AtomicBool {
272 v: UnsafeCell<u8>,
273}
274
275#[cfg(target_has_atomic_load_store = "8")]
276#[stable(feature = "rust1", since = "1.0.0")]
277impl Default for AtomicBool {
278 /// Creates an `AtomicBool` initialized to `false`.
279 #[inline]
280 fn default() -> Self {
281 Self::new(false)
282 }
283}
284
285// Send is implicitly implemented for AtomicBool.
286#[cfg(target_has_atomic_load_store = "8")]
287#[stable(feature = "rust1", since = "1.0.0")]
288unsafe impl Sync for AtomicBool {}
289
290/// A raw pointer type which can be safely shared between threads.
291///
292/// This type has the same size and bit validity as a `*mut T`.
293///
294/// **Note**: This type is only available on platforms that support atomic
295/// loads and stores of pointers. Its size depends on the target pointer's size.
296#[cfg(target_has_atomic_load_store = "ptr")]
297#[stable(feature = "rust1", since = "1.0.0")]
298#[rustc_diagnostic_item = "AtomicPtr"]
299#[cfg_attr(target_pointer_width = "16", repr(C, align(2)))]
300#[cfg_attr(target_pointer_width = "32", repr(C, align(4)))]
301#[cfg_attr(target_pointer_width = "64", repr(C, align(8)))]
302pub struct AtomicPtr<T> {
303 p: UnsafeCell<*mut T>,
304}
305
306#[cfg(target_has_atomic_load_store = "ptr")]
307#[stable(feature = "rust1", since = "1.0.0")]
308impl<T> Default for AtomicPtr<T> {
309 /// Creates a null `AtomicPtr<T>`.
310 fn default() -> AtomicPtr<T> {
311 AtomicPtr::new(crate::ptr::null_mut())
312 }
313}
314
315#[cfg(target_has_atomic_load_store = "ptr")]
316#[stable(feature = "rust1", since = "1.0.0")]
317unsafe impl<T> Send for AtomicPtr<T> {}
318#[cfg(target_has_atomic_load_store = "ptr")]
319#[stable(feature = "rust1", since = "1.0.0")]
320unsafe impl<T> Sync for AtomicPtr<T> {}
321
322/// Atomic memory orderings
323///
324/// Memory orderings specify the way atomic operations synchronize memory.
325/// In its weakest [`Ordering::Relaxed`], only the memory directly touched by the
326/// operation is synchronized. On the other hand, a store-load pair of [`Ordering::SeqCst`]
327/// operations synchronize other memory while additionally preserving a total order of such
328/// operations across all threads.
329///
330/// Rust's memory orderings are [the same as those of
331/// C++20](https://en.cppreference.com/w/cpp/atomic/memory_order).
332///
333/// For more information see the [nomicon].
334///
335/// [nomicon]: ../../../nomicon/atomics.html
336#[stable(feature = "rust1", since = "1.0.0")]
337#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
338#[non_exhaustive]
339#[rustc_diagnostic_item = "Ordering"]
340pub enum Ordering {
341 /// No ordering constraints, only atomic operations.
342 ///
343 /// Corresponds to [`memory_order_relaxed`] in C++20.
344 ///
345 /// [`memory_order_relaxed`]: https://en.cppreference.com/w/cpp/atomic/memory_order#Relaxed_ordering
346 #[stable(feature = "rust1", since = "1.0.0")]
347 Relaxed,
348 /// When coupled with a store, all previous operations become ordered
349 /// before any load of this value with [`Acquire`] (or stronger) ordering.
350 /// In particular, all previous writes become visible to all threads
351 /// that perform an [`Acquire`] (or stronger) load of this value.
352 ///
353 /// Notice that using this ordering for an operation that combines loads
354 /// and stores leads to a [`Relaxed`] load operation!
355 ///
356 /// This ordering is only applicable for operations that can perform a store.
357 ///
358 /// Corresponds to [`memory_order_release`] in C++20.
359 ///
360 /// [`memory_order_release`]: https://en.cppreference.com/w/cpp/atomic/memory_order#Release-Acquire_ordering
361 #[stable(feature = "rust1", since = "1.0.0")]
362 Release,
363 /// When coupled with a load, if the loaded value was written by a store operation with
364 /// [`Release`] (or stronger) ordering, then all subsequent operations
365 /// become ordered after that store. In particular, all subsequent loads will see data
366 /// written before the store.
367 ///
368 /// Notice that using this ordering for an operation that combines loads
369 /// and stores leads to a [`Relaxed`] store operation!
370 ///
371 /// This ordering is only applicable for operations that can perform a load.
372 ///
373 /// Corresponds to [`memory_order_acquire`] in C++20.
374 ///
375 /// [`memory_order_acquire`]: https://en.cppreference.com/w/cpp/atomic/memory_order#Release-Acquire_ordering
376 #[stable(feature = "rust1", since = "1.0.0")]
377 Acquire,
378 /// Has the effects of both [`Acquire`] and [`Release`] together:
379 /// For loads it uses [`Acquire`] ordering. For stores it uses the [`Release`] ordering.
380 ///
381 /// Notice that in the case of `compare_and_swap`, it is possible that the operation ends up
382 /// not performing any store and hence it has just [`Acquire`] ordering. However,
383 /// `AcqRel` will never perform [`Relaxed`] accesses.
384 ///
385 /// This ordering is only applicable for operations that combine both loads and stores.
386 ///
387 /// Corresponds to [`memory_order_acq_rel`] in C++20.
388 ///
389 /// [`memory_order_acq_rel`]: https://en.cppreference.com/w/cpp/atomic/memory_order#Release-Acquire_ordering
390 #[stable(feature = "rust1", since = "1.0.0")]
391 AcqRel,
392 /// Like [`Acquire`]/[`Release`]/[`AcqRel`] (for load, store, and load-with-store
393 /// operations, respectively) with the additional guarantee that all threads see all
394 /// sequentially consistent operations in the same order.
395 ///
396 /// Corresponds to [`memory_order_seq_cst`] in C++20.
397 ///
398 /// [`memory_order_seq_cst`]: https://en.cppreference.com/w/cpp/atomic/memory_order#Sequentially-consistent_ordering
399 #[stable(feature = "rust1", since = "1.0.0")]
400 SeqCst,
401}
402
403/// An [`AtomicBool`] initialized to `false`.
404#[cfg(target_has_atomic_load_store = "8")]
405#[stable(feature = "rust1", since = "1.0.0")]
406#[deprecated(
407 since = "1.34.0",
408 note = "the `new` function is now preferred",
409 suggestion = "AtomicBool::new(false)"
410)]
411pub const ATOMIC_BOOL_INIT: AtomicBool = AtomicBool::new(false);
412
413#[cfg(target_has_atomic_load_store = "8")]
414impl AtomicBool {
415 /// Creates a new `AtomicBool`.
416 ///
417 /// # Examples
418 ///
419 /// ```
420 /// use std::sync::atomic::AtomicBool;
421 ///
422 /// let atomic_true = AtomicBool::new(true);
423 /// let atomic_false = AtomicBool::new(false);
424 /// ```
425 #[inline]
426 #[stable(feature = "rust1", since = "1.0.0")]
427 #[rustc_const_stable(feature = "const_atomic_new", since = "1.24.0")]
428 #[must_use]
429 pub const fn new(v: bool) -> AtomicBool {
430 AtomicBool { v: UnsafeCell::new(v as u8) }
431 }
432
433 /// Creates a new `AtomicBool` from a pointer.
434 ///
435 /// # Examples
436 ///
437 /// ```
438 /// use std::sync::atomic::{self, AtomicBool};
439 ///
440 /// // Get a pointer to an allocated value
441 /// let ptr: *mut bool = Box::into_raw(Box::new(false));
442 ///
443 /// assert!(ptr.cast::<AtomicBool>().is_aligned());
444 ///
445 /// {
446 /// // Create an atomic view of the allocated value
447 /// let atomic = unsafe { AtomicBool::from_ptr(ptr) };
448 ///
449 /// // Use `atomic` for atomic operations, possibly share it with other threads
450 /// atomic.store(true, atomic::Ordering::Relaxed);
451 /// }
452 ///
453 /// // It's ok to non-atomically access the value behind `ptr`,
454 /// // since the reference to the atomic ended its lifetime in the block above
455 /// assert_eq!(unsafe { *ptr }, true);
456 ///
457 /// // Deallocate the value
458 /// unsafe { drop(Box::from_raw(ptr)) }
459 /// ```
460 ///
461 /// # Safety
462 ///
463 /// * `ptr` must be aligned to `align_of::<AtomicBool>()` (note that this is always true, since
464 /// `align_of::<AtomicBool>() == 1`).
465 /// * `ptr` must be [valid] for both reads and writes for the whole lifetime `'a`.
466 /// * You must adhere to the [Memory model for atomic accesses]. In particular, it is not
467 /// allowed to mix atomic and non-atomic accesses, or atomic accesses of different sizes,
468 /// without synchronization.
469 ///
470 /// [valid]: crate::ptr#safety
471 /// [Memory model for atomic accesses]: self#memory-model-for-atomic-accesses
472 #[inline]
473 #[stable(feature = "atomic_from_ptr", since = "1.75.0")]
474 #[rustc_const_stable(feature = "const_atomic_from_ptr", since = "1.84.0")]
475 pub const unsafe fn from_ptr<'a>(ptr: *mut bool) -> &'a AtomicBool {
476 // SAFETY: guaranteed by the caller
477 unsafe { &*ptr.cast() }
478 }
479
480 /// Returns a mutable reference to the underlying [`bool`].
481 ///
482 /// This is safe because the mutable reference guarantees that no other threads are
483 /// concurrently accessing the atomic data.
484 ///
485 /// # Examples
486 ///
487 /// ```
488 /// use std::sync::atomic::{AtomicBool, Ordering};
489 ///
490 /// let mut some_bool = AtomicBool::new(true);
491 /// assert_eq!(*some_bool.get_mut(), true);
492 /// *some_bool.get_mut() = false;
493 /// assert_eq!(some_bool.load(Ordering::SeqCst), false);
494 /// ```
495 #[inline]
496 #[stable(feature = "atomic_access", since = "1.15.0")]
497 pub fn get_mut(&mut self) -> &mut bool {
498 // SAFETY: the mutable reference guarantees unique ownership.
499 unsafe { &mut *(self.v.get() as *mut bool) }
500 }
501
502 /// Gets atomic access to a `&mut bool`.
503 ///
504 /// # Examples
505 ///
506 /// ```
507 /// #![feature(atomic_from_mut)]
508 /// use std::sync::atomic::{AtomicBool, Ordering};
509 ///
510 /// let mut some_bool = true;
511 /// let a = AtomicBool::from_mut(&mut some_bool);
512 /// a.store(false, Ordering::Relaxed);
513 /// assert_eq!(some_bool, false);
514 /// ```
515 #[inline]
516 #[cfg(target_has_atomic_equal_alignment = "8")]
517 #[unstable(feature = "atomic_from_mut", issue = "76314")]
518 pub fn from_mut(v: &mut bool) -> &mut Self {
519 // SAFETY: the mutable reference guarantees unique ownership, and
520 // alignment of both `bool` and `Self` is 1.
521 unsafe { &mut *(v as *mut bool as *mut Self) }
522 }
523
524 /// Gets non-atomic access to a `&mut [AtomicBool]` slice.
525 ///
526 /// This is safe because the mutable reference guarantees that no other threads are
527 /// concurrently accessing the atomic data.
528 ///
529 /// # Examples
530 ///
531 /// ```
532 /// #![feature(atomic_from_mut)]
533 /// use std::sync::atomic::{AtomicBool, Ordering};
534 ///
535 /// let mut some_bools = [const { AtomicBool::new(false) }; 10];
536 ///
537 /// let view: &mut [bool] = AtomicBool::get_mut_slice(&mut some_bools);
538 /// assert_eq!(view, [false; 10]);
539 /// view[..5].copy_from_slice(&[true; 5]);
540 ///
541 /// std::thread::scope(|s| {
542 /// for t in &some_bools[..5] {
543 /// s.spawn(move || assert_eq!(t.load(Ordering::Relaxed), true));
544 /// }
545 ///
546 /// for f in &some_bools[5..] {
547 /// s.spawn(move || assert_eq!(f.load(Ordering::Relaxed), false));
548 /// }
549 /// });
550 /// ```
551 #[inline]
552 #[unstable(feature = "atomic_from_mut", issue = "76314")]
553 pub fn get_mut_slice(this: &mut [Self]) -> &mut [bool] {
554 // SAFETY: the mutable reference guarantees unique ownership.
555 unsafe { &mut *(this as *mut [Self] as *mut [bool]) }
556 }
557
558 /// Gets atomic access to a `&mut [bool]` slice.
559 ///
560 /// # Examples
561 ///
562 /// ```
563 /// #![feature(atomic_from_mut)]
564 /// use std::sync::atomic::{AtomicBool, Ordering};
565 ///
566 /// let mut some_bools = [false; 10];
567 /// let a = &*AtomicBool::from_mut_slice(&mut some_bools);
568 /// std::thread::scope(|s| {
569 /// for i in 0..a.len() {
570 /// s.spawn(move || a[i].store(true, Ordering::Relaxed));
571 /// }
572 /// });
573 /// assert_eq!(some_bools, [true; 10]);
574 /// ```
575 #[inline]
576 #[cfg(target_has_atomic_equal_alignment = "8")]
577 #[unstable(feature = "atomic_from_mut", issue = "76314")]
578 pub fn from_mut_slice(v: &mut [bool]) -> &mut [Self] {
579 // SAFETY: the mutable reference guarantees unique ownership, and
580 // alignment of both `bool` and `Self` is 1.
581 unsafe { &mut *(v as *mut [bool] as *mut [Self]) }
582 }
583
584 /// Consumes the atomic and returns the contained value.
585 ///
586 /// This is safe because passing `self` by value guarantees that no other threads are
587 /// concurrently accessing the atomic data.
588 ///
589 /// # Examples
590 ///
591 /// ```
592 /// use std::sync::atomic::AtomicBool;
593 ///
594 /// let some_bool = AtomicBool::new(true);
595 /// assert_eq!(some_bool.into_inner(), true);
596 /// ```
597 #[inline]
598 #[stable(feature = "atomic_access", since = "1.15.0")]
599 #[rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0")]
600 pub const fn into_inner(self) -> bool {
601 self.v.into_inner() != 0
602 }
603
604 /// Loads a value from the bool.
605 ///
606 /// `load` takes an [`Ordering`] argument which describes the memory ordering
607 /// of this operation. Possible values are [`SeqCst`], [`Acquire`] and [`Relaxed`].
608 ///
609 /// # Panics
610 ///
611 /// Panics if `order` is [`Release`] or [`AcqRel`].
612 ///
613 /// # Examples
614 ///
615 /// ```
616 /// use std::sync::atomic::{AtomicBool, Ordering};
617 ///
618 /// let some_bool = AtomicBool::new(true);
619 ///
620 /// assert_eq!(some_bool.load(Ordering::Relaxed), true);
621 /// ```
622 #[inline]
623 #[stable(feature = "rust1", since = "1.0.0")]
624 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
625 pub fn load(&self, order: Ordering) -> bool {
626 // SAFETY: any data races are prevented by atomic intrinsics and the raw
627 // pointer passed in is valid because we got it from a reference.
628 unsafe { atomic_load(self.v.get(), order) != 0 }
629 }
630
631 /// Stores a value into the bool.
632 ///
633 /// `store` takes an [`Ordering`] argument which describes the memory ordering
634 /// of this operation. Possible values are [`SeqCst`], [`Release`] and [`Relaxed`].
635 ///
636 /// # Panics
637 ///
638 /// Panics if `order` is [`Acquire`] or [`AcqRel`].
639 ///
640 /// # Examples
641 ///
642 /// ```
643 /// use std::sync::atomic::{AtomicBool, Ordering};
644 ///
645 /// let some_bool = AtomicBool::new(true);
646 ///
647 /// some_bool.store(false, Ordering::Relaxed);
648 /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
649 /// ```
650 #[inline]
651 #[stable(feature = "rust1", since = "1.0.0")]
652 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
653 pub fn store(&self, val: bool, order: Ordering) {
654 // SAFETY: any data races are prevented by atomic intrinsics and the raw
655 // pointer passed in is valid because we got it from a reference.
656 unsafe {
657 atomic_store(self.v.get(), val as u8, order);
658 }
659 }
660
661 /// Stores a value into the bool, returning the previous value.
662 ///
663 /// `swap` takes an [`Ordering`] argument which describes the memory ordering
664 /// of this operation. All ordering modes are possible. Note that using
665 /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
666 /// using [`Release`] makes the load part [`Relaxed`].
667 ///
668 /// **Note:** This method is only available on platforms that support atomic
669 /// operations on `u8`.
670 ///
671 /// # Examples
672 ///
673 /// ```
674 /// use std::sync::atomic::{AtomicBool, Ordering};
675 ///
676 /// let some_bool = AtomicBool::new(true);
677 ///
678 /// assert_eq!(some_bool.swap(false, Ordering::Relaxed), true);
679 /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
680 /// ```
681 #[inline]
682 #[stable(feature = "rust1", since = "1.0.0")]
683 #[cfg(target_has_atomic = "8")]
684 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
685 pub fn swap(&self, val: bool, order: Ordering) -> bool {
686 if EMULATE_ATOMIC_BOOL {
687 if val { self.fetch_or(true, order) } else { self.fetch_and(false, order) }
688 } else {
689 // SAFETY: data races are prevented by atomic intrinsics.
690 unsafe { atomic_swap(self.v.get(), val as u8, order) != 0 }
691 }
692 }
693
694 /// Stores a value into the [`bool`] if the current value is the same as the `current` value.
695 ///
696 /// The return value is always the previous value. If it is equal to `current`, then the value
697 /// was updated.
698 ///
699 /// `compare_and_swap` also takes an [`Ordering`] argument which describes the memory
700 /// ordering of this operation. Notice that even when using [`AcqRel`], the operation
701 /// might fail and hence just perform an `Acquire` load, but not have `Release` semantics.
702 /// Using [`Acquire`] makes the store part of this operation [`Relaxed`] if it
703 /// happens, and using [`Release`] makes the load part [`Relaxed`].
704 ///
705 /// **Note:** This method is only available on platforms that support atomic
706 /// operations on `u8`.
707 ///
708 /// # Migrating to `compare_exchange` and `compare_exchange_weak`
709 ///
710 /// `compare_and_swap` is equivalent to `compare_exchange` with the following mapping for
711 /// memory orderings:
712 ///
713 /// Original | Success | Failure
714 /// -------- | ------- | -------
715 /// Relaxed | Relaxed | Relaxed
716 /// Acquire | Acquire | Acquire
717 /// Release | Release | Relaxed
718 /// AcqRel | AcqRel | Acquire
719 /// SeqCst | SeqCst | SeqCst
720 ///
721 /// `compare_and_swap` and `compare_exchange` also differ in their return type. You can use
722 /// `compare_exchange(...).unwrap_or_else(|x| x)` to recover the behavior of `compare_and_swap`,
723 /// but in most cases it is more idiomatic to check whether the return value is `Ok` or `Err`
724 /// rather than to infer success vs failure based on the value that was read.
725 ///
726 /// During migration, consider whether it makes sense to use `compare_exchange_weak` instead.
727 /// `compare_exchange_weak` is allowed to fail spuriously even when the comparison succeeds,
728 /// which allows the compiler to generate better assembly code when the compare and swap
729 /// is used in a loop.
730 ///
731 /// # Examples
732 ///
733 /// ```
734 /// use std::sync::atomic::{AtomicBool, Ordering};
735 ///
736 /// let some_bool = AtomicBool::new(true);
737 ///
738 /// assert_eq!(some_bool.compare_and_swap(true, false, Ordering::Relaxed), true);
739 /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
740 ///
741 /// assert_eq!(some_bool.compare_and_swap(true, true, Ordering::Relaxed), false);
742 /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
743 /// ```
744 #[inline]
745 #[stable(feature = "rust1", since = "1.0.0")]
746 #[deprecated(
747 since = "1.50.0",
748 note = "Use `compare_exchange` or `compare_exchange_weak` instead"
749 )]
750 #[cfg(target_has_atomic = "8")]
751 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
752 pub fn compare_and_swap(&self, current: bool, new: bool, order: Ordering) -> bool {
753 match self.compare_exchange(current, new, order, strongest_failure_ordering(order)) {
754 Ok(x) => x,
755 Err(x) => x,
756 }
757 }
758
759 /// Stores a value into the [`bool`] if the current value is the same as the `current` value.
760 ///
761 /// The return value is a result indicating whether the new value was written and containing
762 /// the previous value. On success this value is guaranteed to be equal to `current`.
763 ///
764 /// `compare_exchange` takes two [`Ordering`] arguments to describe the memory
765 /// ordering of this operation. `success` describes the required ordering for the
766 /// read-modify-write operation that takes place if the comparison with `current` succeeds.
767 /// `failure` describes the required ordering for the load operation that takes place when
768 /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
769 /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
770 /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
771 ///
772 /// **Note:** This method is only available on platforms that support atomic
773 /// operations on `u8`.
774 ///
775 /// # Examples
776 ///
777 /// ```
778 /// use std::sync::atomic::{AtomicBool, Ordering};
779 ///
780 /// let some_bool = AtomicBool::new(true);
781 ///
782 /// assert_eq!(some_bool.compare_exchange(true,
783 /// false,
784 /// Ordering::Acquire,
785 /// Ordering::Relaxed),
786 /// Ok(true));
787 /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
788 ///
789 /// assert_eq!(some_bool.compare_exchange(true, true,
790 /// Ordering::SeqCst,
791 /// Ordering::Acquire),
792 /// Err(false));
793 /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
794 /// ```
795 #[inline]
796 #[stable(feature = "extended_compare_and_swap", since = "1.10.0")]
797 #[doc(alias = "compare_and_swap")]
798 #[cfg(target_has_atomic = "8")]
799 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
800 pub fn compare_exchange(
801 &self,
802 current: bool,
803 new: bool,
804 success: Ordering,
805 failure: Ordering,
806 ) -> Result<bool, bool> {
807 if EMULATE_ATOMIC_BOOL {
808 // Pick the strongest ordering from success and failure.
809 let order = match (success, failure) {
810 (SeqCst, _) => SeqCst,
811 (_, SeqCst) => SeqCst,
812 (AcqRel, _) => AcqRel,
813 (_, AcqRel) => {
814 panic!("there is no such thing as an acquire-release failure ordering")
815 }
816 (Release, Acquire) => AcqRel,
817 (Acquire, _) => Acquire,
818 (_, Acquire) => Acquire,
819 (Release, Relaxed) => Release,
820 (_, Release) => panic!("there is no such thing as a release failure ordering"),
821 (Relaxed, Relaxed) => Relaxed,
822 };
823 let old = if current == new {
824 // This is a no-op, but we still need to perform the operation
825 // for memory ordering reasons.
826 self.fetch_or(false, order)
827 } else {
828 // This sets the value to the new one and returns the old one.
829 self.swap(new, order)
830 };
831 if old == current { Ok(old) } else { Err(old) }
832 } else {
833 // SAFETY: data races are prevented by atomic intrinsics.
834 match unsafe {
835 atomic_compare_exchange(self.v.get(), current as u8, new as u8, success, failure)
836 } {
837 Ok(x) => Ok(x != 0),
838 Err(x) => Err(x != 0),
839 }
840 }
841 }
842
843 /// Stores a value into the [`bool`] if the current value is the same as the `current` value.
844 ///
845 /// Unlike [`AtomicBool::compare_exchange`], this function is allowed to spuriously fail even when the
846 /// comparison succeeds, which can result in more efficient code on some platforms. The
847 /// return value is a result indicating whether the new value was written and containing the
848 /// previous value.
849 ///
850 /// `compare_exchange_weak` takes two [`Ordering`] arguments to describe the memory
851 /// ordering of this operation. `success` describes the required ordering for the
852 /// read-modify-write operation that takes place if the comparison with `current` succeeds.
853 /// `failure` describes the required ordering for the load operation that takes place when
854 /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
855 /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
856 /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
857 ///
858 /// **Note:** This method is only available on platforms that support atomic
859 /// operations on `u8`.
860 ///
861 /// # Examples
862 ///
863 /// ```
864 /// use std::sync::atomic::{AtomicBool, Ordering};
865 ///
866 /// let val = AtomicBool::new(false);
867 ///
868 /// let new = true;
869 /// let mut old = val.load(Ordering::Relaxed);
870 /// loop {
871 /// match val.compare_exchange_weak(old, new, Ordering::SeqCst, Ordering::Relaxed) {
872 /// Ok(_) => break,
873 /// Err(x) => old = x,
874 /// }
875 /// }
876 /// ```
877 #[inline]
878 #[stable(feature = "extended_compare_and_swap", since = "1.10.0")]
879 #[doc(alias = "compare_and_swap")]
880 #[cfg(target_has_atomic = "8")]
881 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
882 pub fn compare_exchange_weak(
883 &self,
884 current: bool,
885 new: bool,
886 success: Ordering,
887 failure: Ordering,
888 ) -> Result<bool, bool> {
889 if EMULATE_ATOMIC_BOOL {
890 return self.compare_exchange(current, new, success, failure);
891 }
892
893 // SAFETY: data races are prevented by atomic intrinsics.
894 match unsafe {
895 atomic_compare_exchange_weak(self.v.get(), current as u8, new as u8, success, failure)
896 } {
897 Ok(x) => Ok(x != 0),
898 Err(x) => Err(x != 0),
899 }
900 }
901
902 /// Logical "and" with a boolean value.
903 ///
904 /// Performs a logical "and" operation on the current value and the argument `val`, and sets
905 /// the new value to the result.
906 ///
907 /// Returns the previous value.
908 ///
909 /// `fetch_and` takes an [`Ordering`] argument which describes the memory ordering
910 /// of this operation. All ordering modes are possible. Note that using
911 /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
912 /// using [`Release`] makes the load part [`Relaxed`].
913 ///
914 /// **Note:** This method is only available on platforms that support atomic
915 /// operations on `u8`.
916 ///
917 /// # Examples
918 ///
919 /// ```
920 /// use std::sync::atomic::{AtomicBool, Ordering};
921 ///
922 /// let foo = AtomicBool::new(true);
923 /// assert_eq!(foo.fetch_and(false, Ordering::SeqCst), true);
924 /// assert_eq!(foo.load(Ordering::SeqCst), false);
925 ///
926 /// let foo = AtomicBool::new(true);
927 /// assert_eq!(foo.fetch_and(true, Ordering::SeqCst), true);
928 /// assert_eq!(foo.load(Ordering::SeqCst), true);
929 ///
930 /// let foo = AtomicBool::new(false);
931 /// assert_eq!(foo.fetch_and(false, Ordering::SeqCst), false);
932 /// assert_eq!(foo.load(Ordering::SeqCst), false);
933 /// ```
934 #[inline]
935 #[stable(feature = "rust1", since = "1.0.0")]
936 #[cfg(target_has_atomic = "8")]
937 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
938 pub fn fetch_and(&self, val: bool, order: Ordering) -> bool {
939 // SAFETY: data races are prevented by atomic intrinsics.
940 unsafe { atomic_and(self.v.get(), val as u8, order) != 0 }
941 }
942
943 /// Logical "nand" with a boolean value.
944 ///
945 /// Performs a logical "nand" operation on the current value and the argument `val`, and sets
946 /// the new value to the result.
947 ///
948 /// Returns the previous value.
949 ///
950 /// `fetch_nand` takes an [`Ordering`] argument which describes the memory ordering
951 /// of this operation. All ordering modes are possible. Note that using
952 /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
953 /// using [`Release`] makes the load part [`Relaxed`].
954 ///
955 /// **Note:** This method is only available on platforms that support atomic
956 /// operations on `u8`.
957 ///
958 /// # Examples
959 ///
960 /// ```
961 /// use std::sync::atomic::{AtomicBool, Ordering};
962 ///
963 /// let foo = AtomicBool::new(true);
964 /// assert_eq!(foo.fetch_nand(false, Ordering::SeqCst), true);
965 /// assert_eq!(foo.load(Ordering::SeqCst), true);
966 ///
967 /// let foo = AtomicBool::new(true);
968 /// assert_eq!(foo.fetch_nand(true, Ordering::SeqCst), true);
969 /// assert_eq!(foo.load(Ordering::SeqCst) as usize, 0);
970 /// assert_eq!(foo.load(Ordering::SeqCst), false);
971 ///
972 /// let foo = AtomicBool::new(false);
973 /// assert_eq!(foo.fetch_nand(false, Ordering::SeqCst), false);
974 /// assert_eq!(foo.load(Ordering::SeqCst), true);
975 /// ```
976 #[inline]
977 #[stable(feature = "rust1", since = "1.0.0")]
978 #[cfg(target_has_atomic = "8")]
979 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
980 pub fn fetch_nand(&self, val: bool, order: Ordering) -> bool {
981 // We can't use atomic_nand here because it can result in a bool with
982 // an invalid value. This happens because the atomic operation is done
983 // with an 8-bit integer internally, which would set the upper 7 bits.
984 // So we just use fetch_xor or swap instead.
985 if val {
986 // !(x & true) == !x
987 // We must invert the bool.
988 self.fetch_xor(true, order)
989 } else {
990 // !(x & false) == true
991 // We must set the bool to true.
992 self.swap(true, order)
993 }
994 }
995
996 /// Logical "or" with a boolean value.
997 ///
998 /// Performs a logical "or" operation on the current value and the argument `val`, and sets the
999 /// new value to the result.
1000 ///
1001 /// Returns the previous value.
1002 ///
1003 /// `fetch_or` takes an [`Ordering`] argument which describes the memory ordering
1004 /// of this operation. All ordering modes are possible. Note that using
1005 /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
1006 /// using [`Release`] makes the load part [`Relaxed`].
1007 ///
1008 /// **Note:** This method is only available on platforms that support atomic
1009 /// operations on `u8`.
1010 ///
1011 /// # Examples
1012 ///
1013 /// ```
1014 /// use std::sync::atomic::{AtomicBool, Ordering};
1015 ///
1016 /// let foo = AtomicBool::new(true);
1017 /// assert_eq!(foo.fetch_or(false, Ordering::SeqCst), true);
1018 /// assert_eq!(foo.load(Ordering::SeqCst), true);
1019 ///
1020 /// let foo = AtomicBool::new(true);
1021 /// assert_eq!(foo.fetch_or(true, Ordering::SeqCst), true);
1022 /// assert_eq!(foo.load(Ordering::SeqCst), true);
1023 ///
1024 /// let foo = AtomicBool::new(false);
1025 /// assert_eq!(foo.fetch_or(false, Ordering::SeqCst), false);
1026 /// assert_eq!(foo.load(Ordering::SeqCst), false);
1027 /// ```
1028 #[inline]
1029 #[stable(feature = "rust1", since = "1.0.0")]
1030 #[cfg(target_has_atomic = "8")]
1031 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1032 pub fn fetch_or(&self, val: bool, order: Ordering) -> bool {
1033 // SAFETY: data races are prevented by atomic intrinsics.
1034 unsafe { atomic_or(self.v.get(), val as u8, order) != 0 }
1035 }
1036
1037 /// Logical "xor" with a boolean value.
1038 ///
1039 /// Performs a logical "xor" operation on the current value and the argument `val`, and sets
1040 /// the new value to the result.
1041 ///
1042 /// Returns the previous value.
1043 ///
1044 /// `fetch_xor` takes an [`Ordering`] argument which describes the memory ordering
1045 /// of this operation. All ordering modes are possible. Note that using
1046 /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
1047 /// using [`Release`] makes the load part [`Relaxed`].
1048 ///
1049 /// **Note:** This method is only available on platforms that support atomic
1050 /// operations on `u8`.
1051 ///
1052 /// # Examples
1053 ///
1054 /// ```
1055 /// use std::sync::atomic::{AtomicBool, Ordering};
1056 ///
1057 /// let foo = AtomicBool::new(true);
1058 /// assert_eq!(foo.fetch_xor(false, Ordering::SeqCst), true);
1059 /// assert_eq!(foo.load(Ordering::SeqCst), true);
1060 ///
1061 /// let foo = AtomicBool::new(true);
1062 /// assert_eq!(foo.fetch_xor(true, Ordering::SeqCst), true);
1063 /// assert_eq!(foo.load(Ordering::SeqCst), false);
1064 ///
1065 /// let foo = AtomicBool::new(false);
1066 /// assert_eq!(foo.fetch_xor(false, Ordering::SeqCst), false);
1067 /// assert_eq!(foo.load(Ordering::SeqCst), false);
1068 /// ```
1069 #[inline]
1070 #[stable(feature = "rust1", since = "1.0.0")]
1071 #[cfg(target_has_atomic = "8")]
1072 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1073 pub fn fetch_xor(&self, val: bool, order: Ordering) -> bool {
1074 // SAFETY: data races are prevented by atomic intrinsics.
1075 unsafe { atomic_xor(self.v.get(), val as u8, order) != 0 }
1076 }
1077
1078 /// Logical "not" with a boolean value.
1079 ///
1080 /// Performs a logical "not" operation on the current value, and sets
1081 /// the new value to the result.
1082 ///
1083 /// Returns the previous value.
1084 ///
1085 /// `fetch_not` takes an [`Ordering`] argument which describes the memory ordering
1086 /// of this operation. All ordering modes are possible. Note that using
1087 /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
1088 /// using [`Release`] makes the load part [`Relaxed`].
1089 ///
1090 /// **Note:** This method is only available on platforms that support atomic
1091 /// operations on `u8`.
1092 ///
1093 /// # Examples
1094 ///
1095 /// ```
1096 /// use std::sync::atomic::{AtomicBool, Ordering};
1097 ///
1098 /// let foo = AtomicBool::new(true);
1099 /// assert_eq!(foo.fetch_not(Ordering::SeqCst), true);
1100 /// assert_eq!(foo.load(Ordering::SeqCst), false);
1101 ///
1102 /// let foo = AtomicBool::new(false);
1103 /// assert_eq!(foo.fetch_not(Ordering::SeqCst), false);
1104 /// assert_eq!(foo.load(Ordering::SeqCst), true);
1105 /// ```
1106 #[inline]
1107 #[stable(feature = "atomic_bool_fetch_not", since = "1.81.0")]
1108 #[cfg(target_has_atomic = "8")]
1109 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1110 pub fn fetch_not(&self, order: Ordering) -> bool {
1111 self.fetch_xor(true, order)
1112 }
1113
1114 /// Returns a mutable pointer to the underlying [`bool`].
1115 ///
1116 /// Doing non-atomic reads and writes on the resulting boolean can be a data race.
1117 /// This method is mostly useful for FFI, where the function signature may use
1118 /// `*mut bool` instead of `&AtomicBool`.
1119 ///
1120 /// Returning an `*mut` pointer from a shared reference to this atomic is safe because the
1121 /// atomic types work with interior mutability. All modifications of an atomic change the value
1122 /// through a shared reference, and can do so safely as long as they use atomic operations. Any
1123 /// use of the returned raw pointer requires an `unsafe` block and still has to uphold the same
1124 /// restriction: operations on it must be atomic.
1125 ///
1126 /// # Examples
1127 ///
1128 /// ```ignore (extern-declaration)
1129 /// # fn main() {
1130 /// use std::sync::atomic::AtomicBool;
1131 ///
1132 /// extern "C" {
1133 /// fn my_atomic_op(arg: *mut bool);
1134 /// }
1135 ///
1136 /// let mut atomic = AtomicBool::new(true);
1137 /// unsafe {
1138 /// my_atomic_op(atomic.as_ptr());
1139 /// }
1140 /// # }
1141 /// ```
1142 #[inline]
1143 #[stable(feature = "atomic_as_ptr", since = "1.70.0")]
1144 #[rustc_const_stable(feature = "atomic_as_ptr", since = "1.70.0")]
1145 #[rustc_never_returns_null_ptr]
1146 pub const fn as_ptr(&self) -> *mut bool {
1147 self.v.get().cast()
1148 }
1149
1150 /// Fetches the value, and applies a function to it that returns an optional
1151 /// new value. Returns a `Result` of `Ok(previous_value)` if the function
1152 /// returned `Some(_)`, else `Err(previous_value)`.
1153 ///
1154 /// Note: This may call the function multiple times if the value has been
1155 /// changed from other threads in the meantime, as long as the function
1156 /// returns `Some(_)`, but the function will have been applied only once to
1157 /// the stored value.
1158 ///
1159 /// `fetch_update` takes two [`Ordering`] arguments to describe the memory
1160 /// ordering of this operation. The first describes the required ordering for
1161 /// when the operation finally succeeds while the second describes the
1162 /// required ordering for loads. These correspond to the success and failure
1163 /// orderings of [`AtomicBool::compare_exchange`] respectively.
1164 ///
1165 /// Using [`Acquire`] as success ordering makes the store part of this
1166 /// operation [`Relaxed`], and using [`Release`] makes the final successful
1167 /// load [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`],
1168 /// [`Acquire`] or [`Relaxed`].
1169 ///
1170 /// **Note:** This method is only available on platforms that support atomic
1171 /// operations on `u8`.
1172 ///
1173 /// # Considerations
1174 ///
1175 /// This method is not magic; it is not provided by the hardware.
1176 /// It is implemented in terms of [`AtomicBool::compare_exchange_weak`], and suffers from the same drawbacks.
1177 /// In particular, this method will not circumvent the [ABA Problem].
1178 ///
1179 /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1180 ///
1181 /// # Examples
1182 ///
1183 /// ```rust
1184 /// use std::sync::atomic::{AtomicBool, Ordering};
1185 ///
1186 /// let x = AtomicBool::new(false);
1187 /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(false));
1188 /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(!x)), Ok(false));
1189 /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(!x)), Ok(true));
1190 /// assert_eq!(x.load(Ordering::SeqCst), false);
1191 /// ```
1192 #[inline]
1193 #[stable(feature = "atomic_fetch_update", since = "1.53.0")]
1194 #[cfg(target_has_atomic = "8")]
1195 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1196 pub fn fetch_update<F>(
1197 &self,
1198 set_order: Ordering,
1199 fetch_order: Ordering,
1200 mut f: F,
1201 ) -> Result<bool, bool>
1202 where
1203 F: FnMut(bool) -> Option<bool>,
1204 {
1205 let mut prev = self.load(fetch_order);
1206 while let Some(next) = f(prev) {
1207 match self.compare_exchange_weak(prev, next, set_order, fetch_order) {
1208 x @ Ok(_) => return x,
1209 Err(next_prev) => prev = next_prev,
1210 }
1211 }
1212 Err(prev)
1213 }
1214
1215 /// Fetches the value, and applies a function to it that returns an optional
1216 /// new value. Returns a `Result` of `Ok(previous_value)` if the function
1217 /// returned `Some(_)`, else `Err(previous_value)`.
1218 ///
1219 /// See also: [`update`](`AtomicBool::update`).
1220 ///
1221 /// Note: This may call the function multiple times if the value has been
1222 /// changed from other threads in the meantime, as long as the function
1223 /// returns `Some(_)`, but the function will have been applied only once to
1224 /// the stored value.
1225 ///
1226 /// `try_update` takes two [`Ordering`] arguments to describe the memory
1227 /// ordering of this operation. The first describes the required ordering for
1228 /// when the operation finally succeeds while the second describes the
1229 /// required ordering for loads. These correspond to the success and failure
1230 /// orderings of [`AtomicBool::compare_exchange`] respectively.
1231 ///
1232 /// Using [`Acquire`] as success ordering makes the store part of this
1233 /// operation [`Relaxed`], and using [`Release`] makes the final successful
1234 /// load [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`],
1235 /// [`Acquire`] or [`Relaxed`].
1236 ///
1237 /// **Note:** This method is only available on platforms that support atomic
1238 /// operations on `u8`.
1239 ///
1240 /// # Considerations
1241 ///
1242 /// This method is not magic; it is not provided by the hardware.
1243 /// It is implemented in terms of [`AtomicBool::compare_exchange_weak`], and suffers from the same drawbacks.
1244 /// In particular, this method will not circumvent the [ABA Problem].
1245 ///
1246 /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1247 ///
1248 /// # Examples
1249 ///
1250 /// ```rust
1251 /// #![feature(atomic_try_update)]
1252 /// use std::sync::atomic::{AtomicBool, Ordering};
1253 ///
1254 /// let x = AtomicBool::new(false);
1255 /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(false));
1256 /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(!x)), Ok(false));
1257 /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(!x)), Ok(true));
1258 /// assert_eq!(x.load(Ordering::SeqCst), false);
1259 /// ```
1260 #[inline]
1261 #[unstable(feature = "atomic_try_update", issue = "135894")]
1262 #[cfg(target_has_atomic = "8")]
1263 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1264 pub fn try_update(
1265 &self,
1266 set_order: Ordering,
1267 fetch_order: Ordering,
1268 f: impl FnMut(bool) -> Option<bool>,
1269 ) -> Result<bool, bool> {
1270 // FIXME(atomic_try_update): this is currently an unstable alias to `fetch_update`;
1271 // when stabilizing, turn `fetch_update` into a deprecated alias to `try_update`.
1272 self.fetch_update(set_order, fetch_order, f)
1273 }
1274
1275 /// Fetches the value, applies a function to it that it return a new value.
1276 /// The new value is stored and the old value is returned.
1277 ///
1278 /// See also: [`try_update`](`AtomicBool::try_update`).
1279 ///
1280 /// Note: This may call the function multiple times if the value has been changed from other threads in
1281 /// the meantime, but the function will have been applied only once to the stored value.
1282 ///
1283 /// `update` takes two [`Ordering`] arguments to describe the memory
1284 /// ordering of this operation. The first describes the required ordering for
1285 /// when the operation finally succeeds while the second describes the
1286 /// required ordering for loads. These correspond to the success and failure
1287 /// orderings of [`AtomicBool::compare_exchange`] respectively.
1288 ///
1289 /// Using [`Acquire`] as success ordering makes the store part
1290 /// of this operation [`Relaxed`], and using [`Release`] makes the final successful load
1291 /// [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
1292 ///
1293 /// **Note:** This method is only available on platforms that support atomic operations on `u8`.
1294 ///
1295 /// # Considerations
1296 ///
1297 /// This method is not magic; it is not provided by the hardware.
1298 /// It is implemented in terms of [`AtomicBool::compare_exchange_weak`], and suffers from the same drawbacks.
1299 /// In particular, this method will not circumvent the [ABA Problem].
1300 ///
1301 /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1302 ///
1303 /// # Examples
1304 ///
1305 /// ```rust
1306 /// #![feature(atomic_try_update)]
1307 ///
1308 /// use std::sync::atomic::{AtomicBool, Ordering};
1309 ///
1310 /// let x = AtomicBool::new(false);
1311 /// assert_eq!(x.update(Ordering::SeqCst, Ordering::SeqCst, |x| !x), false);
1312 /// assert_eq!(x.update(Ordering::SeqCst, Ordering::SeqCst, |x| !x), true);
1313 /// assert_eq!(x.load(Ordering::SeqCst), false);
1314 /// ```
1315 #[inline]
1316 #[unstable(feature = "atomic_try_update", issue = "135894")]
1317 #[cfg(target_has_atomic = "8")]
1318 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1319 pub fn update(
1320 &self,
1321 set_order: Ordering,
1322 fetch_order: Ordering,
1323 mut f: impl FnMut(bool) -> bool,
1324 ) -> bool {
1325 let mut prev = self.load(fetch_order);
1326 loop {
1327 match self.compare_exchange_weak(prev, f(prev), set_order, fetch_order) {
1328 Ok(x) => break x,
1329 Err(next_prev) => prev = next_prev,
1330 }
1331 }
1332 }
1333}
1334
1335#[cfg(target_has_atomic_load_store = "ptr")]
1336impl<T> AtomicPtr<T> {
1337 /// Creates a new `AtomicPtr`.
1338 ///
1339 /// # Examples
1340 ///
1341 /// ```
1342 /// use std::sync::atomic::AtomicPtr;
1343 ///
1344 /// let ptr = &mut 5;
1345 /// let atomic_ptr = AtomicPtr::new(ptr);
1346 /// ```
1347 #[inline]
1348 #[stable(feature = "rust1", since = "1.0.0")]
1349 #[rustc_const_stable(feature = "const_atomic_new", since = "1.24.0")]
1350 pub const fn new(p: *mut T) -> AtomicPtr<T> {
1351 AtomicPtr { p: UnsafeCell::new(p) }
1352 }
1353
1354 /// Creates a new `AtomicPtr` from a pointer.
1355 ///
1356 /// # Examples
1357 ///
1358 /// ```
1359 /// use std::sync::atomic::{self, AtomicPtr};
1360 ///
1361 /// // Get a pointer to an allocated value
1362 /// let ptr: *mut *mut u8 = Box::into_raw(Box::new(std::ptr::null_mut()));
1363 ///
1364 /// assert!(ptr.cast::<AtomicPtr<u8>>().is_aligned());
1365 ///
1366 /// {
1367 /// // Create an atomic view of the allocated value
1368 /// let atomic = unsafe { AtomicPtr::from_ptr(ptr) };
1369 ///
1370 /// // Use `atomic` for atomic operations, possibly share it with other threads
1371 /// atomic.store(std::ptr::NonNull::dangling().as_ptr(), atomic::Ordering::Relaxed);
1372 /// }
1373 ///
1374 /// // It's ok to non-atomically access the value behind `ptr`,
1375 /// // since the reference to the atomic ended its lifetime in the block above
1376 /// assert!(!unsafe { *ptr }.is_null());
1377 ///
1378 /// // Deallocate the value
1379 /// unsafe { drop(Box::from_raw(ptr)) }
1380 /// ```
1381 ///
1382 /// # Safety
1383 ///
1384 /// * `ptr` must be aligned to `align_of::<AtomicPtr<T>>()` (note that on some platforms this
1385 /// can be bigger than `align_of::<*mut T>()`).
1386 /// * `ptr` must be [valid] for both reads and writes for the whole lifetime `'a`.
1387 /// * You must adhere to the [Memory model for atomic accesses]. In particular, it is not
1388 /// allowed to mix atomic and non-atomic accesses, or atomic accesses of different sizes,
1389 /// without synchronization.
1390 ///
1391 /// [valid]: crate::ptr#safety
1392 /// [Memory model for atomic accesses]: self#memory-model-for-atomic-accesses
1393 #[inline]
1394 #[stable(feature = "atomic_from_ptr", since = "1.75.0")]
1395 #[rustc_const_stable(feature = "const_atomic_from_ptr", since = "1.84.0")]
1396 pub const unsafe fn from_ptr<'a>(ptr: *mut *mut T) -> &'a AtomicPtr<T> {
1397 // SAFETY: guaranteed by the caller
1398 unsafe { &*ptr.cast() }
1399 }
1400
1401 /// Returns a mutable reference to the underlying pointer.
1402 ///
1403 /// This is safe because the mutable reference guarantees that no other threads are
1404 /// concurrently accessing the atomic data.
1405 ///
1406 /// # Examples
1407 ///
1408 /// ```
1409 /// use std::sync::atomic::{AtomicPtr, Ordering};
1410 ///
1411 /// let mut data = 10;
1412 /// let mut atomic_ptr = AtomicPtr::new(&mut data);
1413 /// let mut other_data = 5;
1414 /// *atomic_ptr.get_mut() = &mut other_data;
1415 /// assert_eq!(unsafe { *atomic_ptr.load(Ordering::SeqCst) }, 5);
1416 /// ```
1417 #[inline]
1418 #[stable(feature = "atomic_access", since = "1.15.0")]
1419 pub fn get_mut(&mut self) -> &mut *mut T {
1420 self.p.get_mut()
1421 }
1422
1423 /// Gets atomic access to a pointer.
1424 ///
1425 /// # Examples
1426 ///
1427 /// ```
1428 /// #![feature(atomic_from_mut)]
1429 /// use std::sync::atomic::{AtomicPtr, Ordering};
1430 ///
1431 /// let mut data = 123;
1432 /// let mut some_ptr = &mut data as *mut i32;
1433 /// let a = AtomicPtr::from_mut(&mut some_ptr);
1434 /// let mut other_data = 456;
1435 /// a.store(&mut other_data, Ordering::Relaxed);
1436 /// assert_eq!(unsafe { *some_ptr }, 456);
1437 /// ```
1438 #[inline]
1439 #[cfg(target_has_atomic_equal_alignment = "ptr")]
1440 #[unstable(feature = "atomic_from_mut", issue = "76314")]
1441 pub fn from_mut(v: &mut *mut T) -> &mut Self {
1442 let [] = [(); align_of::<AtomicPtr<()>>() - align_of::<*mut ()>()];
1443 // SAFETY:
1444 // - the mutable reference guarantees unique ownership.
1445 // - the alignment of `*mut T` and `Self` is the same on all platforms
1446 // supported by rust, as verified above.
1447 unsafe { &mut *(v as *mut *mut T as *mut Self) }
1448 }
1449
1450 /// Gets non-atomic access to a `&mut [AtomicPtr]` slice.
1451 ///
1452 /// This is safe because the mutable reference guarantees that no other threads are
1453 /// concurrently accessing the atomic data.
1454 ///
1455 /// # Examples
1456 ///
1457 /// ```
1458 /// #![feature(atomic_from_mut)]
1459 /// use std::ptr::null_mut;
1460 /// use std::sync::atomic::{AtomicPtr, Ordering};
1461 ///
1462 /// let mut some_ptrs = [const { AtomicPtr::new(null_mut::<String>()) }; 10];
1463 ///
1464 /// let view: &mut [*mut String] = AtomicPtr::get_mut_slice(&mut some_ptrs);
1465 /// assert_eq!(view, [null_mut::<String>(); 10]);
1466 /// view
1467 /// .iter_mut()
1468 /// .enumerate()
1469 /// .for_each(|(i, ptr)| *ptr = Box::into_raw(Box::new(format!("iteration#{i}"))));
1470 ///
1471 /// std::thread::scope(|s| {
1472 /// for ptr in &some_ptrs {
1473 /// s.spawn(move || {
1474 /// let ptr = ptr.load(Ordering::Relaxed);
1475 /// assert!(!ptr.is_null());
1476 ///
1477 /// let name = unsafe { Box::from_raw(ptr) };
1478 /// println!("Hello, {name}!");
1479 /// });
1480 /// }
1481 /// });
1482 /// ```
1483 #[inline]
1484 #[unstable(feature = "atomic_from_mut", issue = "76314")]
1485 pub fn get_mut_slice(this: &mut [Self]) -> &mut [*mut T] {
1486 // SAFETY: the mutable reference guarantees unique ownership.
1487 unsafe { &mut *(this as *mut [Self] as *mut [*mut T]) }
1488 }
1489
1490 /// Gets atomic access to a slice of pointers.
1491 ///
1492 /// # Examples
1493 ///
1494 /// ```
1495 /// #![feature(atomic_from_mut)]
1496 /// use std::ptr::null_mut;
1497 /// use std::sync::atomic::{AtomicPtr, Ordering};
1498 ///
1499 /// let mut some_ptrs = [null_mut::<String>(); 10];
1500 /// let a = &*AtomicPtr::from_mut_slice(&mut some_ptrs);
1501 /// std::thread::scope(|s| {
1502 /// for i in 0..a.len() {
1503 /// s.spawn(move || {
1504 /// let name = Box::new(format!("thread{i}"));
1505 /// a[i].store(Box::into_raw(name), Ordering::Relaxed);
1506 /// });
1507 /// }
1508 /// });
1509 /// for p in some_ptrs {
1510 /// assert!(!p.is_null());
1511 /// let name = unsafe { Box::from_raw(p) };
1512 /// println!("Hello, {name}!");
1513 /// }
1514 /// ```
1515 #[inline]
1516 #[cfg(target_has_atomic_equal_alignment = "ptr")]
1517 #[unstable(feature = "atomic_from_mut", issue = "76314")]
1518 pub fn from_mut_slice(v: &mut [*mut T]) -> &mut [Self] {
1519 // SAFETY:
1520 // - the mutable reference guarantees unique ownership.
1521 // - the alignment of `*mut T` and `Self` is the same on all platforms
1522 // supported by rust, as verified above.
1523 unsafe { &mut *(v as *mut [*mut T] as *mut [Self]) }
1524 }
1525
1526 /// Consumes the atomic and returns the contained value.
1527 ///
1528 /// This is safe because passing `self` by value guarantees that no other threads are
1529 /// concurrently accessing the atomic data.
1530 ///
1531 /// # Examples
1532 ///
1533 /// ```
1534 /// use std::sync::atomic::AtomicPtr;
1535 ///
1536 /// let mut data = 5;
1537 /// let atomic_ptr = AtomicPtr::new(&mut data);
1538 /// assert_eq!(unsafe { *atomic_ptr.into_inner() }, 5);
1539 /// ```
1540 #[inline]
1541 #[stable(feature = "atomic_access", since = "1.15.0")]
1542 #[rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0")]
1543 pub const fn into_inner(self) -> *mut T {
1544 self.p.into_inner()
1545 }
1546
1547 /// Loads a value from the pointer.
1548 ///
1549 /// `load` takes an [`Ordering`] argument which describes the memory ordering
1550 /// of this operation. Possible values are [`SeqCst`], [`Acquire`] and [`Relaxed`].
1551 ///
1552 /// # Panics
1553 ///
1554 /// Panics if `order` is [`Release`] or [`AcqRel`].
1555 ///
1556 /// # Examples
1557 ///
1558 /// ```
1559 /// use std::sync::atomic::{AtomicPtr, Ordering};
1560 ///
1561 /// let ptr = &mut 5;
1562 /// let some_ptr = AtomicPtr::new(ptr);
1563 ///
1564 /// let value = some_ptr.load(Ordering::Relaxed);
1565 /// ```
1566 #[inline]
1567 #[stable(feature = "rust1", since = "1.0.0")]
1568 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1569 pub fn load(&self, order: Ordering) -> *mut T {
1570 // SAFETY: data races are prevented by atomic intrinsics.
1571 unsafe { atomic_load(self.p.get(), order) }
1572 }
1573
1574 /// Stores a value into the pointer.
1575 ///
1576 /// `store` takes an [`Ordering`] argument which describes the memory ordering
1577 /// of this operation. Possible values are [`SeqCst`], [`Release`] and [`Relaxed`].
1578 ///
1579 /// # Panics
1580 ///
1581 /// Panics if `order` is [`Acquire`] or [`AcqRel`].
1582 ///
1583 /// # Examples
1584 ///
1585 /// ```
1586 /// use std::sync::atomic::{AtomicPtr, Ordering};
1587 ///
1588 /// let ptr = &mut 5;
1589 /// let some_ptr = AtomicPtr::new(ptr);
1590 ///
1591 /// let other_ptr = &mut 10;
1592 ///
1593 /// some_ptr.store(other_ptr, Ordering::Relaxed);
1594 /// ```
1595 #[inline]
1596 #[stable(feature = "rust1", since = "1.0.0")]
1597 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1598 pub fn store(&self, ptr: *mut T, order: Ordering) {
1599 // SAFETY: data races are prevented by atomic intrinsics.
1600 unsafe {
1601 atomic_store(self.p.get(), ptr, order);
1602 }
1603 }
1604
1605 /// Stores a value into the pointer, returning the previous value.
1606 ///
1607 /// `swap` takes an [`Ordering`] argument which describes the memory ordering
1608 /// of this operation. All ordering modes are possible. Note that using
1609 /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
1610 /// using [`Release`] makes the load part [`Relaxed`].
1611 ///
1612 /// **Note:** This method is only available on platforms that support atomic
1613 /// operations on pointers.
1614 ///
1615 /// # Examples
1616 ///
1617 /// ```
1618 /// use std::sync::atomic::{AtomicPtr, Ordering};
1619 ///
1620 /// let ptr = &mut 5;
1621 /// let some_ptr = AtomicPtr::new(ptr);
1622 ///
1623 /// let other_ptr = &mut 10;
1624 ///
1625 /// let value = some_ptr.swap(other_ptr, Ordering::Relaxed);
1626 /// ```
1627 #[inline]
1628 #[stable(feature = "rust1", since = "1.0.0")]
1629 #[cfg(target_has_atomic = "ptr")]
1630 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1631 pub fn swap(&self, ptr: *mut T, order: Ordering) -> *mut T {
1632 // SAFETY: data races are prevented by atomic intrinsics.
1633 unsafe { atomic_swap(self.p.get(), ptr, order) }
1634 }
1635
1636 /// Stores a value into the pointer if the current value is the same as the `current` value.
1637 ///
1638 /// The return value is always the previous value. If it is equal to `current`, then the value
1639 /// was updated.
1640 ///
1641 /// `compare_and_swap` also takes an [`Ordering`] argument which describes the memory
1642 /// ordering of this operation. Notice that even when using [`AcqRel`], the operation
1643 /// might fail and hence just perform an `Acquire` load, but not have `Release` semantics.
1644 /// Using [`Acquire`] makes the store part of this operation [`Relaxed`] if it
1645 /// happens, and using [`Release`] makes the load part [`Relaxed`].
1646 ///
1647 /// **Note:** This method is only available on platforms that support atomic
1648 /// operations on pointers.
1649 ///
1650 /// # Migrating to `compare_exchange` and `compare_exchange_weak`
1651 ///
1652 /// `compare_and_swap` is equivalent to `compare_exchange` with the following mapping for
1653 /// memory orderings:
1654 ///
1655 /// Original | Success | Failure
1656 /// -------- | ------- | -------
1657 /// Relaxed | Relaxed | Relaxed
1658 /// Acquire | Acquire | Acquire
1659 /// Release | Release | Relaxed
1660 /// AcqRel | AcqRel | Acquire
1661 /// SeqCst | SeqCst | SeqCst
1662 ///
1663 /// `compare_and_swap` and `compare_exchange` also differ in their return type. You can use
1664 /// `compare_exchange(...).unwrap_or_else(|x| x)` to recover the behavior of `compare_and_swap`,
1665 /// but in most cases it is more idiomatic to check whether the return value is `Ok` or `Err`
1666 /// rather than to infer success vs failure based on the value that was read.
1667 ///
1668 /// During migration, consider whether it makes sense to use `compare_exchange_weak` instead.
1669 /// `compare_exchange_weak` is allowed to fail spuriously even when the comparison succeeds,
1670 /// which allows the compiler to generate better assembly code when the compare and swap
1671 /// is used in a loop.
1672 ///
1673 /// # Examples
1674 ///
1675 /// ```
1676 /// use std::sync::atomic::{AtomicPtr, Ordering};
1677 ///
1678 /// let ptr = &mut 5;
1679 /// let some_ptr = AtomicPtr::new(ptr);
1680 ///
1681 /// let other_ptr = &mut 10;
1682 ///
1683 /// let value = some_ptr.compare_and_swap(ptr, other_ptr, Ordering::Relaxed);
1684 /// ```
1685 #[inline]
1686 #[stable(feature = "rust1", since = "1.0.0")]
1687 #[deprecated(
1688 since = "1.50.0",
1689 note = "Use `compare_exchange` or `compare_exchange_weak` instead"
1690 )]
1691 #[cfg(target_has_atomic = "ptr")]
1692 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1693 pub fn compare_and_swap(&self, current: *mut T, new: *mut T, order: Ordering) -> *mut T {
1694 match self.compare_exchange(current, new, order, strongest_failure_ordering(order)) {
1695 Ok(x) => x,
1696 Err(x) => x,
1697 }
1698 }
1699
1700 /// Stores a value into the pointer if the current value is the same as the `current` value.
1701 ///
1702 /// The return value is a result indicating whether the new value was written and containing
1703 /// the previous value. On success this value is guaranteed to be equal to `current`.
1704 ///
1705 /// `compare_exchange` takes two [`Ordering`] arguments to describe the memory
1706 /// ordering of this operation. `success` describes the required ordering for the
1707 /// read-modify-write operation that takes place if the comparison with `current` succeeds.
1708 /// `failure` describes the required ordering for the load operation that takes place when
1709 /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
1710 /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
1711 /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
1712 ///
1713 /// **Note:** This method is only available on platforms that support atomic
1714 /// operations on pointers.
1715 ///
1716 /// # Examples
1717 ///
1718 /// ```
1719 /// use std::sync::atomic::{AtomicPtr, Ordering};
1720 ///
1721 /// let ptr = &mut 5;
1722 /// let some_ptr = AtomicPtr::new(ptr);
1723 ///
1724 /// let other_ptr = &mut 10;
1725 ///
1726 /// let value = some_ptr.compare_exchange(ptr, other_ptr,
1727 /// Ordering::SeqCst, Ordering::Relaxed);
1728 /// ```
1729 #[inline]
1730 #[stable(feature = "extended_compare_and_swap", since = "1.10.0")]
1731 #[cfg(target_has_atomic = "ptr")]
1732 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1733 pub fn compare_exchange(
1734 &self,
1735 current: *mut T,
1736 new: *mut T,
1737 success: Ordering,
1738 failure: Ordering,
1739 ) -> Result<*mut T, *mut T> {
1740 // SAFETY: data races are prevented by atomic intrinsics.
1741 unsafe { atomic_compare_exchange(self.p.get(), current, new, success, failure) }
1742 }
1743
1744 /// Stores a value into the pointer if the current value is the same as the `current` value.
1745 ///
1746 /// Unlike [`AtomicPtr::compare_exchange`], this function is allowed to spuriously fail even when the
1747 /// comparison succeeds, which can result in more efficient code on some platforms. The
1748 /// return value is a result indicating whether the new value was written and containing the
1749 /// previous value.
1750 ///
1751 /// `compare_exchange_weak` takes two [`Ordering`] arguments to describe the memory
1752 /// ordering of this operation. `success` describes the required ordering for the
1753 /// read-modify-write operation that takes place if the comparison with `current` succeeds.
1754 /// `failure` describes the required ordering for the load operation that takes place when
1755 /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
1756 /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
1757 /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
1758 ///
1759 /// **Note:** This method is only available on platforms that support atomic
1760 /// operations on pointers.
1761 ///
1762 /// # Examples
1763 ///
1764 /// ```
1765 /// use std::sync::atomic::{AtomicPtr, Ordering};
1766 ///
1767 /// let some_ptr = AtomicPtr::new(&mut 5);
1768 ///
1769 /// let new = &mut 10;
1770 /// let mut old = some_ptr.load(Ordering::Relaxed);
1771 /// loop {
1772 /// match some_ptr.compare_exchange_weak(old, new, Ordering::SeqCst, Ordering::Relaxed) {
1773 /// Ok(_) => break,
1774 /// Err(x) => old = x,
1775 /// }
1776 /// }
1777 /// ```
1778 #[inline]
1779 #[stable(feature = "extended_compare_and_swap", since = "1.10.0")]
1780 #[cfg(target_has_atomic = "ptr")]
1781 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1782 pub fn compare_exchange_weak(
1783 &self,
1784 current: *mut T,
1785 new: *mut T,
1786 success: Ordering,
1787 failure: Ordering,
1788 ) -> Result<*mut T, *mut T> {
1789 // SAFETY: This intrinsic is unsafe because it operates on a raw pointer
1790 // but we know for sure that the pointer is valid (we just got it from
1791 // an `UnsafeCell` that we have by reference) and the atomic operation
1792 // itself allows us to safely mutate the `UnsafeCell` contents.
1793 unsafe { atomic_compare_exchange_weak(self.p.get(), current, new, success, failure) }
1794 }
1795
1796 /// Fetches the value, and applies a function to it that returns an optional
1797 /// new value. Returns a `Result` of `Ok(previous_value)` if the function
1798 /// returned `Some(_)`, else `Err(previous_value)`.
1799 ///
1800 /// Note: This may call the function multiple times if the value has been
1801 /// changed from other threads in the meantime, as long as the function
1802 /// returns `Some(_)`, but the function will have been applied only once to
1803 /// the stored value.
1804 ///
1805 /// `fetch_update` takes two [`Ordering`] arguments to describe the memory
1806 /// ordering of this operation. The first describes the required ordering for
1807 /// when the operation finally succeeds while the second describes the
1808 /// required ordering for loads. These correspond to the success and failure
1809 /// orderings of [`AtomicPtr::compare_exchange`] respectively.
1810 ///
1811 /// Using [`Acquire`] as success ordering makes the store part of this
1812 /// operation [`Relaxed`], and using [`Release`] makes the final successful
1813 /// load [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`],
1814 /// [`Acquire`] or [`Relaxed`].
1815 ///
1816 /// **Note:** This method is only available on platforms that support atomic
1817 /// operations on pointers.
1818 ///
1819 /// # Considerations
1820 ///
1821 /// This method is not magic; it is not provided by the hardware.
1822 /// It is implemented in terms of [`AtomicPtr::compare_exchange_weak`], and suffers from the same drawbacks.
1823 /// In particular, this method will not circumvent the [ABA Problem].
1824 ///
1825 /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1826 ///
1827 /// # Examples
1828 ///
1829 /// ```rust
1830 /// use std::sync::atomic::{AtomicPtr, Ordering};
1831 ///
1832 /// let ptr: *mut _ = &mut 5;
1833 /// let some_ptr = AtomicPtr::new(ptr);
1834 ///
1835 /// let new: *mut _ = &mut 10;
1836 /// assert_eq!(some_ptr.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(ptr));
1837 /// let result = some_ptr.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| {
1838 /// if x == ptr {
1839 /// Some(new)
1840 /// } else {
1841 /// None
1842 /// }
1843 /// });
1844 /// assert_eq!(result, Ok(ptr));
1845 /// assert_eq!(some_ptr.load(Ordering::SeqCst), new);
1846 /// ```
1847 #[inline]
1848 #[stable(feature = "atomic_fetch_update", since = "1.53.0")]
1849 #[cfg(target_has_atomic = "ptr")]
1850 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1851 pub fn fetch_update<F>(
1852 &self,
1853 set_order: Ordering,
1854 fetch_order: Ordering,
1855 mut f: F,
1856 ) -> Result<*mut T, *mut T>
1857 where
1858 F: FnMut(*mut T) -> Option<*mut T>,
1859 {
1860 let mut prev = self.load(fetch_order);
1861 while let Some(next) = f(prev) {
1862 match self.compare_exchange_weak(prev, next, set_order, fetch_order) {
1863 x @ Ok(_) => return x,
1864 Err(next_prev) => prev = next_prev,
1865 }
1866 }
1867 Err(prev)
1868 }
1869 /// Fetches the value, and applies a function to it that returns an optional
1870 /// new value. Returns a `Result` of `Ok(previous_value)` if the function
1871 /// returned `Some(_)`, else `Err(previous_value)`.
1872 ///
1873 /// See also: [`update`](`AtomicPtr::update`).
1874 ///
1875 /// Note: This may call the function multiple times if the value has been
1876 /// changed from other threads in the meantime, as long as the function
1877 /// returns `Some(_)`, but the function will have been applied only once to
1878 /// the stored value.
1879 ///
1880 /// `try_update` takes two [`Ordering`] arguments to describe the memory
1881 /// ordering of this operation. The first describes the required ordering for
1882 /// when the operation finally succeeds while the second describes the
1883 /// required ordering for loads. These correspond to the success and failure
1884 /// orderings of [`AtomicPtr::compare_exchange`] respectively.
1885 ///
1886 /// Using [`Acquire`] as success ordering makes the store part of this
1887 /// operation [`Relaxed`], and using [`Release`] makes the final successful
1888 /// load [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`],
1889 /// [`Acquire`] or [`Relaxed`].
1890 ///
1891 /// **Note:** This method is only available on platforms that support atomic
1892 /// operations on pointers.
1893 ///
1894 /// # Considerations
1895 ///
1896 /// This method is not magic; it is not provided by the hardware.
1897 /// It is implemented in terms of [`AtomicPtr::compare_exchange_weak`], and suffers from the same drawbacks.
1898 /// In particular, this method will not circumvent the [ABA Problem].
1899 ///
1900 /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1901 ///
1902 /// # Examples
1903 ///
1904 /// ```rust
1905 /// #![feature(atomic_try_update)]
1906 /// use std::sync::atomic::{AtomicPtr, Ordering};
1907 ///
1908 /// let ptr: *mut _ = &mut 5;
1909 /// let some_ptr = AtomicPtr::new(ptr);
1910 ///
1911 /// let new: *mut _ = &mut 10;
1912 /// assert_eq!(some_ptr.try_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(ptr));
1913 /// let result = some_ptr.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| {
1914 /// if x == ptr {
1915 /// Some(new)
1916 /// } else {
1917 /// None
1918 /// }
1919 /// });
1920 /// assert_eq!(result, Ok(ptr));
1921 /// assert_eq!(some_ptr.load(Ordering::SeqCst), new);
1922 /// ```
1923 #[inline]
1924 #[unstable(feature = "atomic_try_update", issue = "135894")]
1925 #[cfg(target_has_atomic = "ptr")]
1926 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1927 pub fn try_update(
1928 &self,
1929 set_order: Ordering,
1930 fetch_order: Ordering,
1931 f: impl FnMut(*mut T) -> Option<*mut T>,
1932 ) -> Result<*mut T, *mut T> {
1933 // FIXME(atomic_try_update): this is currently an unstable alias to `fetch_update`;
1934 // when stabilizing, turn `fetch_update` into a deprecated alias to `try_update`.
1935 self.fetch_update(set_order, fetch_order, f)
1936 }
1937
1938 /// Fetches the value, applies a function to it that it return a new value.
1939 /// The new value is stored and the old value is returned.
1940 ///
1941 /// See also: [`try_update`](`AtomicPtr::try_update`).
1942 ///
1943 /// Note: This may call the function multiple times if the value has been changed from other threads in
1944 /// the meantime, but the function will have been applied only once to the stored value.
1945 ///
1946 /// `update` takes two [`Ordering`] arguments to describe the memory
1947 /// ordering of this operation. The first describes the required ordering for
1948 /// when the operation finally succeeds while the second describes the
1949 /// required ordering for loads. These correspond to the success and failure
1950 /// orderings of [`AtomicPtr::compare_exchange`] respectively.
1951 ///
1952 /// Using [`Acquire`] as success ordering makes the store part
1953 /// of this operation [`Relaxed`], and using [`Release`] makes the final successful load
1954 /// [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
1955 ///
1956 /// **Note:** This method is only available on platforms that support atomic
1957 /// operations on pointers.
1958 ///
1959 /// # Considerations
1960 ///
1961 /// This method is not magic; it is not provided by the hardware.
1962 /// It is implemented in terms of [`AtomicPtr::compare_exchange_weak`], and suffers from the same drawbacks.
1963 /// In particular, this method will not circumvent the [ABA Problem].
1964 ///
1965 /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1966 ///
1967 /// # Examples
1968 ///
1969 /// ```rust
1970 /// #![feature(atomic_try_update)]
1971 ///
1972 /// use std::sync::atomic::{AtomicPtr, Ordering};
1973 ///
1974 /// let ptr: *mut _ = &mut 5;
1975 /// let some_ptr = AtomicPtr::new(ptr);
1976 ///
1977 /// let new: *mut _ = &mut 10;
1978 /// let result = some_ptr.update(Ordering::SeqCst, Ordering::SeqCst, |_| new);
1979 /// assert_eq!(result, ptr);
1980 /// assert_eq!(some_ptr.load(Ordering::SeqCst), new);
1981 /// ```
1982 #[inline]
1983 #[unstable(feature = "atomic_try_update", issue = "135894")]
1984 #[cfg(target_has_atomic = "8")]
1985 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1986 pub fn update(
1987 &self,
1988 set_order: Ordering,
1989 fetch_order: Ordering,
1990 mut f: impl FnMut(*mut T) -> *mut T,
1991 ) -> *mut T {
1992 let mut prev = self.load(fetch_order);
1993 loop {
1994 match self.compare_exchange_weak(prev, f(prev), set_order, fetch_order) {
1995 Ok(x) => break x,
1996 Err(next_prev) => prev = next_prev,
1997 }
1998 }
1999 }
2000
2001 /// Offsets the pointer's address by adding `val` (in units of `T`),
2002 /// returning the previous pointer.
2003 ///
2004 /// This is equivalent to using [`wrapping_add`] to atomically perform the
2005 /// equivalent of `ptr = ptr.wrapping_add(val);`.
2006 ///
2007 /// This method operates in units of `T`, which means that it cannot be used
2008 /// to offset the pointer by an amount which is not a multiple of
2009 /// `size_of::<T>()`. This can sometimes be inconvenient, as you may want to
2010 /// work with a deliberately misaligned pointer. In such cases, you may use
2011 /// the [`fetch_byte_add`](Self::fetch_byte_add) method instead.
2012 ///
2013 /// `fetch_ptr_add` takes an [`Ordering`] argument which describes the
2014 /// memory ordering of this operation. All ordering modes are possible. Note
2015 /// that using [`Acquire`] makes the store part of this operation
2016 /// [`Relaxed`], and using [`Release`] makes the load part [`Relaxed`].
2017 ///
2018 /// **Note**: This method is only available on platforms that support atomic
2019 /// operations on [`AtomicPtr`].
2020 ///
2021 /// [`wrapping_add`]: pointer::wrapping_add
2022 ///
2023 /// # Examples
2024 ///
2025 /// ```
2026 /// #![feature(strict_provenance_atomic_ptr)]
2027 /// use core::sync::atomic::{AtomicPtr, Ordering};
2028 ///
2029 /// let atom = AtomicPtr::<i64>::new(core::ptr::null_mut());
2030 /// assert_eq!(atom.fetch_ptr_add(1, Ordering::Relaxed).addr(), 0);
2031 /// // Note: units of `size_of::<i64>()`.
2032 /// assert_eq!(atom.load(Ordering::Relaxed).addr(), 8);
2033 /// ```
2034 #[inline]
2035 #[cfg(target_has_atomic = "ptr")]
2036 #[unstable(feature = "strict_provenance_atomic_ptr", issue = "99108")]
2037 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2038 pub fn fetch_ptr_add(&self, val: usize, order: Ordering) -> *mut T {
2039 self.fetch_byte_add(val.wrapping_mul(size_of::<T>()), order)
2040 }
2041
2042 /// Offsets the pointer's address by subtracting `val` (in units of `T`),
2043 /// returning the previous pointer.
2044 ///
2045 /// This is equivalent to using [`wrapping_sub`] to atomically perform the
2046 /// equivalent of `ptr = ptr.wrapping_sub(val);`.
2047 ///
2048 /// This method operates in units of `T`, which means that it cannot be used
2049 /// to offset the pointer by an amount which is not a multiple of
2050 /// `size_of::<T>()`. This can sometimes be inconvenient, as you may want to
2051 /// work with a deliberately misaligned pointer. In such cases, you may use
2052 /// the [`fetch_byte_sub`](Self::fetch_byte_sub) method instead.
2053 ///
2054 /// `fetch_ptr_sub` takes an [`Ordering`] argument which describes the memory
2055 /// ordering of this operation. All ordering modes are possible. Note that
2056 /// using [`Acquire`] makes the store part of this operation [`Relaxed`],
2057 /// and using [`Release`] makes the load part [`Relaxed`].
2058 ///
2059 /// **Note**: This method is only available on platforms that support atomic
2060 /// operations on [`AtomicPtr`].
2061 ///
2062 /// [`wrapping_sub`]: pointer::wrapping_sub
2063 ///
2064 /// # Examples
2065 ///
2066 /// ```
2067 /// #![feature(strict_provenance_atomic_ptr)]
2068 /// use core::sync::atomic::{AtomicPtr, Ordering};
2069 ///
2070 /// let array = [1i32, 2i32];
2071 /// let atom = AtomicPtr::new(array.as_ptr().wrapping_add(1) as *mut _);
2072 ///
2073 /// assert!(core::ptr::eq(
2074 /// atom.fetch_ptr_sub(1, Ordering::Relaxed),
2075 /// &array[1],
2076 /// ));
2077 /// assert!(core::ptr::eq(atom.load(Ordering::Relaxed), &array[0]));
2078 /// ```
2079 #[inline]
2080 #[cfg(target_has_atomic = "ptr")]
2081 #[unstable(feature = "strict_provenance_atomic_ptr", issue = "99108")]
2082 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2083 pub fn fetch_ptr_sub(&self, val: usize, order: Ordering) -> *mut T {
2084 self.fetch_byte_sub(val.wrapping_mul(size_of::<T>()), order)
2085 }
2086
2087 /// Offsets the pointer's address by adding `val` *bytes*, returning the
2088 /// previous pointer.
2089 ///
2090 /// This is equivalent to using [`wrapping_byte_add`] to atomically
2091 /// perform `ptr = ptr.wrapping_byte_add(val)`.
2092 ///
2093 /// `fetch_byte_add` takes an [`Ordering`] argument which describes the
2094 /// memory ordering of this operation. All ordering modes are possible. Note
2095 /// that using [`Acquire`] makes the store part of this operation
2096 /// [`Relaxed`], and using [`Release`] makes the load part [`Relaxed`].
2097 ///
2098 /// **Note**: This method is only available on platforms that support atomic
2099 /// operations on [`AtomicPtr`].
2100 ///
2101 /// [`wrapping_byte_add`]: pointer::wrapping_byte_add
2102 ///
2103 /// # Examples
2104 ///
2105 /// ```
2106 /// #![feature(strict_provenance_atomic_ptr)]
2107 /// use core::sync::atomic::{AtomicPtr, Ordering};
2108 ///
2109 /// let atom = AtomicPtr::<i64>::new(core::ptr::null_mut());
2110 /// assert_eq!(atom.fetch_byte_add(1, Ordering::Relaxed).addr(), 0);
2111 /// // Note: in units of bytes, not `size_of::<i64>()`.
2112 /// assert_eq!(atom.load(Ordering::Relaxed).addr(), 1);
2113 /// ```
2114 #[inline]
2115 #[cfg(target_has_atomic = "ptr")]
2116 #[unstable(feature = "strict_provenance_atomic_ptr", issue = "99108")]
2117 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2118 pub fn fetch_byte_add(&self, val: usize, order: Ordering) -> *mut T {
2119 // SAFETY: data races are prevented by atomic intrinsics.
2120 unsafe { atomic_add(self.p.get(), core::ptr::without_provenance_mut(val), order).cast() }
2121 }
2122
2123 /// Offsets the pointer's address by subtracting `val` *bytes*, returning the
2124 /// previous pointer.
2125 ///
2126 /// This is equivalent to using [`wrapping_byte_sub`] to atomically
2127 /// perform `ptr = ptr.wrapping_byte_sub(val)`.
2128 ///
2129 /// `fetch_byte_sub` takes an [`Ordering`] argument which describes the
2130 /// memory ordering of this operation. All ordering modes are possible. Note
2131 /// that using [`Acquire`] makes the store part of this operation
2132 /// [`Relaxed`], and using [`Release`] makes the load part [`Relaxed`].
2133 ///
2134 /// **Note**: This method is only available on platforms that support atomic
2135 /// operations on [`AtomicPtr`].
2136 ///
2137 /// [`wrapping_byte_sub`]: pointer::wrapping_byte_sub
2138 ///
2139 /// # Examples
2140 ///
2141 /// ```
2142 /// #![feature(strict_provenance_atomic_ptr)]
2143 /// use core::sync::atomic::{AtomicPtr, Ordering};
2144 ///
2145 /// let atom = AtomicPtr::<i64>::new(core::ptr::without_provenance_mut(1));
2146 /// assert_eq!(atom.fetch_byte_sub(1, Ordering::Relaxed).addr(), 1);
2147 /// assert_eq!(atom.load(Ordering::Relaxed).addr(), 0);
2148 /// ```
2149 #[inline]
2150 #[cfg(target_has_atomic = "ptr")]
2151 #[unstable(feature = "strict_provenance_atomic_ptr", issue = "99108")]
2152 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2153 pub fn fetch_byte_sub(&self, val: usize, order: Ordering) -> *mut T {
2154 // SAFETY: data races are prevented by atomic intrinsics.
2155 unsafe { atomic_sub(self.p.get(), core::ptr::without_provenance_mut(val), order).cast() }
2156 }
2157
2158 /// Performs a bitwise "or" operation on the address of the current pointer,
2159 /// and the argument `val`, and stores a pointer with provenance of the
2160 /// current pointer and the resulting address.
2161 ///
2162 /// This is equivalent to using [`map_addr`] to atomically perform
2163 /// `ptr = ptr.map_addr(|a| a | val)`. This can be used in tagged
2164 /// pointer schemes to atomically set tag bits.
2165 ///
2166 /// **Caveat**: This operation returns the previous value. To compute the
2167 /// stored value without losing provenance, you may use [`map_addr`]. For
2168 /// example: `a.fetch_or(val).map_addr(|a| a | val)`.
2169 ///
2170 /// `fetch_or` takes an [`Ordering`] argument which describes the memory
2171 /// ordering of this operation. All ordering modes are possible. Note that
2172 /// using [`Acquire`] makes the store part of this operation [`Relaxed`],
2173 /// and using [`Release`] makes the load part [`Relaxed`].
2174 ///
2175 /// **Note**: This method is only available on platforms that support atomic
2176 /// operations on [`AtomicPtr`].
2177 ///
2178 /// This API and its claimed semantics are part of the Strict Provenance
2179 /// experiment, see the [module documentation for `ptr`][crate::ptr] for
2180 /// details.
2181 ///
2182 /// [`map_addr`]: pointer::map_addr
2183 ///
2184 /// # Examples
2185 ///
2186 /// ```
2187 /// #![feature(strict_provenance_atomic_ptr)]
2188 /// use core::sync::atomic::{AtomicPtr, Ordering};
2189 ///
2190 /// let pointer = &mut 3i64 as *mut i64;
2191 ///
2192 /// let atom = AtomicPtr::<i64>::new(pointer);
2193 /// // Tag the bottom bit of the pointer.
2194 /// assert_eq!(atom.fetch_or(1, Ordering::Relaxed).addr() & 1, 0);
2195 /// // Extract and untag.
2196 /// let tagged = atom.load(Ordering::Relaxed);
2197 /// assert_eq!(tagged.addr() & 1, 1);
2198 /// assert_eq!(tagged.map_addr(|p| p & !1), pointer);
2199 /// ```
2200 #[inline]
2201 #[cfg(target_has_atomic = "ptr")]
2202 #[unstable(feature = "strict_provenance_atomic_ptr", issue = "99108")]
2203 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2204 pub fn fetch_or(&self, val: usize, order: Ordering) -> *mut T {
2205 // SAFETY: data races are prevented by atomic intrinsics.
2206 unsafe { atomic_or(self.p.get(), core::ptr::without_provenance_mut(val), order).cast() }
2207 }
2208
2209 /// Performs a bitwise "and" operation on the address of the current
2210 /// pointer, and the argument `val`, and stores a pointer with provenance of
2211 /// the current pointer and the resulting address.
2212 ///
2213 /// This is equivalent to using [`map_addr`] to atomically perform
2214 /// `ptr = ptr.map_addr(|a| a & val)`. This can be used in tagged
2215 /// pointer schemes to atomically unset tag bits.
2216 ///
2217 /// **Caveat**: This operation returns the previous value. To compute the
2218 /// stored value without losing provenance, you may use [`map_addr`]. For
2219 /// example: `a.fetch_and(val).map_addr(|a| a & val)`.
2220 ///
2221 /// `fetch_and` takes an [`Ordering`] argument which describes the memory
2222 /// ordering of this operation. All ordering modes are possible. Note that
2223 /// using [`Acquire`] makes the store part of this operation [`Relaxed`],
2224 /// and using [`Release`] makes the load part [`Relaxed`].
2225 ///
2226 /// **Note**: This method is only available on platforms that support atomic
2227 /// operations on [`AtomicPtr`].
2228 ///
2229 /// This API and its claimed semantics are part of the Strict Provenance
2230 /// experiment, see the [module documentation for `ptr`][crate::ptr] for
2231 /// details.
2232 ///
2233 /// [`map_addr`]: pointer::map_addr
2234 ///
2235 /// # Examples
2236 ///
2237 /// ```
2238 /// #![feature(strict_provenance_atomic_ptr)]
2239 /// use core::sync::atomic::{AtomicPtr, Ordering};
2240 ///
2241 /// let pointer = &mut 3i64 as *mut i64;
2242 /// // A tagged pointer
2243 /// let atom = AtomicPtr::<i64>::new(pointer.map_addr(|a| a | 1));
2244 /// assert_eq!(atom.fetch_or(1, Ordering::Relaxed).addr() & 1, 1);
2245 /// // Untag, and extract the previously tagged pointer.
2246 /// let untagged = atom.fetch_and(!1, Ordering::Relaxed)
2247 /// .map_addr(|a| a & !1);
2248 /// assert_eq!(untagged, pointer);
2249 /// ```
2250 #[inline]
2251 #[cfg(target_has_atomic = "ptr")]
2252 #[unstable(feature = "strict_provenance_atomic_ptr", issue = "99108")]
2253 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2254 pub fn fetch_and(&self, val: usize, order: Ordering) -> *mut T {
2255 // SAFETY: data races are prevented by atomic intrinsics.
2256 unsafe { atomic_and(self.p.get(), core::ptr::without_provenance_mut(val), order).cast() }
2257 }
2258
2259 /// Performs a bitwise "xor" operation on the address of the current
2260 /// pointer, and the argument `val`, and stores a pointer with provenance of
2261 /// the current pointer and the resulting address.
2262 ///
2263 /// This is equivalent to using [`map_addr`] to atomically perform
2264 /// `ptr = ptr.map_addr(|a| a ^ val)`. This can be used in tagged
2265 /// pointer schemes to atomically toggle tag bits.
2266 ///
2267 /// **Caveat**: This operation returns the previous value. To compute the
2268 /// stored value without losing provenance, you may use [`map_addr`]. For
2269 /// example: `a.fetch_xor(val).map_addr(|a| a ^ val)`.
2270 ///
2271 /// `fetch_xor` takes an [`Ordering`] argument which describes the memory
2272 /// ordering of this operation. All ordering modes are possible. Note that
2273 /// using [`Acquire`] makes the store part of this operation [`Relaxed`],
2274 /// and using [`Release`] makes the load part [`Relaxed`].
2275 ///
2276 /// **Note**: This method is only available on platforms that support atomic
2277 /// operations on [`AtomicPtr`].
2278 ///
2279 /// This API and its claimed semantics are part of the Strict Provenance
2280 /// experiment, see the [module documentation for `ptr`][crate::ptr] for
2281 /// details.
2282 ///
2283 /// [`map_addr`]: pointer::map_addr
2284 ///
2285 /// # Examples
2286 ///
2287 /// ```
2288 /// #![feature(strict_provenance_atomic_ptr)]
2289 /// use core::sync::atomic::{AtomicPtr, Ordering};
2290 ///
2291 /// let pointer = &mut 3i64 as *mut i64;
2292 /// let atom = AtomicPtr::<i64>::new(pointer);
2293 ///
2294 /// // Toggle a tag bit on the pointer.
2295 /// atom.fetch_xor(1, Ordering::Relaxed);
2296 /// assert_eq!(atom.load(Ordering::Relaxed).addr() & 1, 1);
2297 /// ```
2298 #[inline]
2299 #[cfg(target_has_atomic = "ptr")]
2300 #[unstable(feature = "strict_provenance_atomic_ptr", issue = "99108")]
2301 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2302 pub fn fetch_xor(&self, val: usize, order: Ordering) -> *mut T {
2303 // SAFETY: data races are prevented by atomic intrinsics.
2304 unsafe { atomic_xor(self.p.get(), core::ptr::without_provenance_mut(val), order).cast() }
2305 }
2306
2307 /// Returns a mutable pointer to the underlying pointer.
2308 ///
2309 /// Doing non-atomic reads and writes on the resulting pointer can be a data race.
2310 /// This method is mostly useful for FFI, where the function signature may use
2311 /// `*mut *mut T` instead of `&AtomicPtr<T>`.
2312 ///
2313 /// Returning an `*mut` pointer from a shared reference to this atomic is safe because the
2314 /// atomic types work with interior mutability. All modifications of an atomic change the value
2315 /// through a shared reference, and can do so safely as long as they use atomic operations. Any
2316 /// use of the returned raw pointer requires an `unsafe` block and still has to uphold the same
2317 /// restriction: operations on it must be atomic.
2318 ///
2319 /// # Examples
2320 ///
2321 /// ```ignore (extern-declaration)
2322 /// use std::sync::atomic::AtomicPtr;
2323 ///
2324 /// extern "C" {
2325 /// fn my_atomic_op(arg: *mut *mut u32);
2326 /// }
2327 ///
2328 /// let mut value = 17;
2329 /// let atomic = AtomicPtr::new(&mut value);
2330 ///
2331 /// // SAFETY: Safe as long as `my_atomic_op` is atomic.
2332 /// unsafe {
2333 /// my_atomic_op(atomic.as_ptr());
2334 /// }
2335 /// ```
2336 #[inline]
2337 #[stable(feature = "atomic_as_ptr", since = "1.70.0")]
2338 #[rustc_const_stable(feature = "atomic_as_ptr", since = "1.70.0")]
2339 #[rustc_never_returns_null_ptr]
2340 pub const fn as_ptr(&self) -> *mut *mut T {
2341 self.p.get()
2342 }
2343}
2344
2345#[cfg(target_has_atomic_load_store = "8")]
2346#[stable(feature = "atomic_bool_from", since = "1.24.0")]
2347impl From<bool> for AtomicBool {
2348 /// Converts a `bool` into an `AtomicBool`.
2349 ///
2350 /// # Examples
2351 ///
2352 /// ```
2353 /// use std::sync::atomic::AtomicBool;
2354 /// let atomic_bool = AtomicBool::from(true);
2355 /// assert_eq!(format!("{atomic_bool:?}"), "true")
2356 /// ```
2357 #[inline]
2358 fn from(b: bool) -> Self {
2359 Self::new(b)
2360 }
2361}
2362
2363#[cfg(target_has_atomic_load_store = "ptr")]
2364#[stable(feature = "atomic_from", since = "1.23.0")]
2365impl<T> From<*mut T> for AtomicPtr<T> {
2366 /// Converts a `*mut T` into an `AtomicPtr<T>`.
2367 #[inline]
2368 fn from(p: *mut T) -> Self {
2369 Self::new(p)
2370 }
2371}
2372
2373#[allow(unused_macros)] // This macro ends up being unused on some architectures.
2374macro_rules! if_8_bit {
2375 (u8, $( yes = [$($yes:tt)*], )? $( no = [$($no:tt)*], )? ) => { concat!("", $($($yes)*)?) };
2376 (i8, $( yes = [$($yes:tt)*], )? $( no = [$($no:tt)*], )? ) => { concat!("", $($($yes)*)?) };
2377 ($_:ident, $( yes = [$($yes:tt)*], )? $( no = [$($no:tt)*], )? ) => { concat!("", $($($no)*)?) };
2378}
2379
2380#[cfg(target_has_atomic_load_store)]
2381macro_rules! atomic_int {
2382 ($cfg_cas:meta,
2383 $cfg_align:meta,
2384 $stable:meta,
2385 $stable_cxchg:meta,
2386 $stable_debug:meta,
2387 $stable_access:meta,
2388 $stable_from:meta,
2389 $stable_nand:meta,
2390 $const_stable_new:meta,
2391 $const_stable_into_inner:meta,
2392 $diagnostic_item:meta,
2393 $s_int_type:literal,
2394 $extra_feature:expr,
2395 $min_fn:ident, $max_fn:ident,
2396 $align:expr,
2397 $int_type:ident $atomic_type:ident) => {
2398 /// An integer type which can be safely shared between threads.
2399 ///
2400 /// This type has the same
2401 #[doc = if_8_bit!(
2402 $int_type,
2403 yes = ["size, alignment, and bit validity"],
2404 no = ["size and bit validity"],
2405 )]
2406 /// as the underlying integer type, [`
2407 #[doc = $s_int_type]
2408 /// `].
2409 #[doc = if_8_bit! {
2410 $int_type,
2411 no = [
2412 "However, the alignment of this type is always equal to its ",
2413 "size, even on targets where [`", $s_int_type, "`] has a ",
2414 "lesser alignment."
2415 ],
2416 }]
2417 ///
2418 /// For more about the differences between atomic types and
2419 /// non-atomic types as well as information about the portability of
2420 /// this type, please see the [module-level documentation].
2421 ///
2422 /// **Note:** This type is only available on platforms that support
2423 /// atomic loads and stores of [`
2424 #[doc = $s_int_type]
2425 /// `].
2426 ///
2427 /// [module-level documentation]: crate::sync::atomic
2428 #[$stable]
2429 #[$diagnostic_item]
2430 #[repr(C, align($align))]
2431 pub struct $atomic_type {
2432 v: UnsafeCell<$int_type>,
2433 }
2434
2435 #[$stable]
2436 impl Default for $atomic_type {
2437 #[inline]
2438 fn default() -> Self {
2439 Self::new(Default::default())
2440 }
2441 }
2442
2443 #[$stable_from]
2444 impl From<$int_type> for $atomic_type {
2445 #[doc = concat!("Converts an `", stringify!($int_type), "` into an `", stringify!($atomic_type), "`.")]
2446 #[inline]
2447 fn from(v: $int_type) -> Self { Self::new(v) }
2448 }
2449
2450 #[$stable_debug]
2451 impl fmt::Debug for $atomic_type {
2452 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2453 fmt::Debug::fmt(&self.load(Ordering::Relaxed), f)
2454 }
2455 }
2456
2457 // Send is implicitly implemented.
2458 #[$stable]
2459 unsafe impl Sync for $atomic_type {}
2460
2461 impl $atomic_type {
2462 /// Creates a new atomic integer.
2463 ///
2464 /// # Examples
2465 ///
2466 /// ```
2467 #[doc = concat!($extra_feature, "use std::sync::atomic::", stringify!($atomic_type), ";")]
2468 ///
2469 #[doc = concat!("let atomic_forty_two = ", stringify!($atomic_type), "::new(42);")]
2470 /// ```
2471 #[inline]
2472 #[$stable]
2473 #[$const_stable_new]
2474 #[must_use]
2475 pub const fn new(v: $int_type) -> Self {
2476 Self {v: UnsafeCell::new(v)}
2477 }
2478
2479 /// Creates a new reference to an atomic integer from a pointer.
2480 ///
2481 /// # Examples
2482 ///
2483 /// ```
2484 #[doc = concat!($extra_feature, "use std::sync::atomic::{self, ", stringify!($atomic_type), "};")]
2485 ///
2486 /// // Get a pointer to an allocated value
2487 #[doc = concat!("let ptr: *mut ", stringify!($int_type), " = Box::into_raw(Box::new(0));")]
2488 ///
2489 #[doc = concat!("assert!(ptr.cast::<", stringify!($atomic_type), ">().is_aligned());")]
2490 ///
2491 /// {
2492 /// // Create an atomic view of the allocated value
2493 // SAFETY: this is a doc comment, tidy, it can't hurt you (also guaranteed by the construction of `ptr` and the assert above)
2494 #[doc = concat!(" let atomic = unsafe {", stringify!($atomic_type), "::from_ptr(ptr) };")]
2495 ///
2496 /// // Use `atomic` for atomic operations, possibly share it with other threads
2497 /// atomic.store(1, atomic::Ordering::Relaxed);
2498 /// }
2499 ///
2500 /// // It's ok to non-atomically access the value behind `ptr`,
2501 /// // since the reference to the atomic ended its lifetime in the block above
2502 /// assert_eq!(unsafe { *ptr }, 1);
2503 ///
2504 /// // Deallocate the value
2505 /// unsafe { drop(Box::from_raw(ptr)) }
2506 /// ```
2507 ///
2508 /// # Safety
2509 ///
2510 /// * `ptr` must be aligned to
2511 #[doc = concat!(" `align_of::<", stringify!($atomic_type), ">()`")]
2512 #[doc = if_8_bit!{
2513 $int_type,
2514 yes = [
2515 " (note that this is always true, since `align_of::<",
2516 stringify!($atomic_type), ">() == 1`)."
2517 ],
2518 no = [
2519 " (note that on some platforms this can be bigger than `align_of::<",
2520 stringify!($int_type), ">()`)."
2521 ],
2522 }]
2523 /// * `ptr` must be [valid] for both reads and writes for the whole lifetime `'a`.
2524 /// * You must adhere to the [Memory model for atomic accesses]. In particular, it is not
2525 /// allowed to mix atomic and non-atomic accesses, or atomic accesses of different sizes,
2526 /// without synchronization.
2527 ///
2528 /// [valid]: crate::ptr#safety
2529 /// [Memory model for atomic accesses]: self#memory-model-for-atomic-accesses
2530 #[inline]
2531 #[stable(feature = "atomic_from_ptr", since = "1.75.0")]
2532 #[rustc_const_stable(feature = "const_atomic_from_ptr", since = "1.84.0")]
2533 pub const unsafe fn from_ptr<'a>(ptr: *mut $int_type) -> &'a $atomic_type {
2534 // SAFETY: guaranteed by the caller
2535 unsafe { &*ptr.cast() }
2536 }
2537
2538
2539 /// Returns a mutable reference to the underlying integer.
2540 ///
2541 /// This is safe because the mutable reference guarantees that no other threads are
2542 /// concurrently accessing the atomic data.
2543 ///
2544 /// # Examples
2545 ///
2546 /// ```
2547 #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2548 ///
2549 #[doc = concat!("let mut some_var = ", stringify!($atomic_type), "::new(10);")]
2550 /// assert_eq!(*some_var.get_mut(), 10);
2551 /// *some_var.get_mut() = 5;
2552 /// assert_eq!(some_var.load(Ordering::SeqCst), 5);
2553 /// ```
2554 #[inline]
2555 #[$stable_access]
2556 pub fn get_mut(&mut self) -> &mut $int_type {
2557 self.v.get_mut()
2558 }
2559
2560 #[doc = concat!("Get atomic access to a `&mut ", stringify!($int_type), "`.")]
2561 ///
2562 #[doc = if_8_bit! {
2563 $int_type,
2564 no = [
2565 "**Note:** This function is only available on targets where `",
2566 stringify!($atomic_type), "` has the same alignment as `", stringify!($int_type), "`."
2567 ],
2568 }]
2569 ///
2570 /// # Examples
2571 ///
2572 /// ```
2573 /// #![feature(atomic_from_mut)]
2574 #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2575 ///
2576 /// let mut some_int = 123;
2577 #[doc = concat!("let a = ", stringify!($atomic_type), "::from_mut(&mut some_int);")]
2578 /// a.store(100, Ordering::Relaxed);
2579 /// assert_eq!(some_int, 100);
2580 /// ```
2581 ///
2582 #[inline]
2583 #[$cfg_align]
2584 #[unstable(feature = "atomic_from_mut", issue = "76314")]
2585 pub fn from_mut(v: &mut $int_type) -> &mut Self {
2586 let [] = [(); align_of::<Self>() - align_of::<$int_type>()];
2587 // SAFETY:
2588 // - the mutable reference guarantees unique ownership.
2589 // - the alignment of `$int_type` and `Self` is the
2590 // same, as promised by $cfg_align and verified above.
2591 unsafe { &mut *(v as *mut $int_type as *mut Self) }
2592 }
2593
2594 #[doc = concat!("Get non-atomic access to a `&mut [", stringify!($atomic_type), "]` slice")]
2595 ///
2596 /// This is safe because the mutable reference guarantees that no other threads are
2597 /// concurrently accessing the atomic data.
2598 ///
2599 /// # Examples
2600 ///
2601 /// ```
2602 /// #![feature(atomic_from_mut)]
2603 #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2604 ///
2605 #[doc = concat!("let mut some_ints = [const { ", stringify!($atomic_type), "::new(0) }; 10];")]
2606 ///
2607 #[doc = concat!("let view: &mut [", stringify!($int_type), "] = ", stringify!($atomic_type), "::get_mut_slice(&mut some_ints);")]
2608 /// assert_eq!(view, [0; 10]);
2609 /// view
2610 /// .iter_mut()
2611 /// .enumerate()
2612 /// .for_each(|(idx, int)| *int = idx as _);
2613 ///
2614 /// std::thread::scope(|s| {
2615 /// some_ints
2616 /// .iter()
2617 /// .enumerate()
2618 /// .for_each(|(idx, int)| {
2619 /// s.spawn(move || assert_eq!(int.load(Ordering::Relaxed), idx as _));
2620 /// })
2621 /// });
2622 /// ```
2623 #[inline]
2624 #[unstable(feature = "atomic_from_mut", issue = "76314")]
2625 pub fn get_mut_slice(this: &mut [Self]) -> &mut [$int_type] {
2626 // SAFETY: the mutable reference guarantees unique ownership.
2627 unsafe { &mut *(this as *mut [Self] as *mut [$int_type]) }
2628 }
2629
2630 #[doc = concat!("Get atomic access to a `&mut [", stringify!($int_type), "]` slice.")]
2631 ///
2632 /// # Examples
2633 ///
2634 /// ```
2635 /// #![feature(atomic_from_mut)]
2636 #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2637 ///
2638 /// let mut some_ints = [0; 10];
2639 #[doc = concat!("let a = &*", stringify!($atomic_type), "::from_mut_slice(&mut some_ints);")]
2640 /// std::thread::scope(|s| {
2641 /// for i in 0..a.len() {
2642 /// s.spawn(move || a[i].store(i as _, Ordering::Relaxed));
2643 /// }
2644 /// });
2645 /// for (i, n) in some_ints.into_iter().enumerate() {
2646 /// assert_eq!(i, n as usize);
2647 /// }
2648 /// ```
2649 #[inline]
2650 #[$cfg_align]
2651 #[unstable(feature = "atomic_from_mut", issue = "76314")]
2652 pub fn from_mut_slice(v: &mut [$int_type]) -> &mut [Self] {
2653 let [] = [(); align_of::<Self>() - align_of::<$int_type>()];
2654 // SAFETY:
2655 // - the mutable reference guarantees unique ownership.
2656 // - the alignment of `$int_type` and `Self` is the
2657 // same, as promised by $cfg_align and verified above.
2658 unsafe { &mut *(v as *mut [$int_type] as *mut [Self]) }
2659 }
2660
2661 /// Consumes the atomic and returns the contained value.
2662 ///
2663 /// This is safe because passing `self` by value guarantees that no other threads are
2664 /// concurrently accessing the atomic data.
2665 ///
2666 /// # Examples
2667 ///
2668 /// ```
2669 #[doc = concat!($extra_feature, "use std::sync::atomic::", stringify!($atomic_type), ";")]
2670 ///
2671 #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
2672 /// assert_eq!(some_var.into_inner(), 5);
2673 /// ```
2674 #[inline]
2675 #[$stable_access]
2676 #[$const_stable_into_inner]
2677 pub const fn into_inner(self) -> $int_type {
2678 self.v.into_inner()
2679 }
2680
2681 /// Loads a value from the atomic integer.
2682 ///
2683 /// `load` takes an [`Ordering`] argument which describes the memory ordering of this operation.
2684 /// Possible values are [`SeqCst`], [`Acquire`] and [`Relaxed`].
2685 ///
2686 /// # Panics
2687 ///
2688 /// Panics if `order` is [`Release`] or [`AcqRel`].
2689 ///
2690 /// # Examples
2691 ///
2692 /// ```
2693 #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2694 ///
2695 #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
2696 ///
2697 /// assert_eq!(some_var.load(Ordering::Relaxed), 5);
2698 /// ```
2699 #[inline]
2700 #[$stable]
2701 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2702 pub fn load(&self, order: Ordering) -> $int_type {
2703 // SAFETY: data races are prevented by atomic intrinsics.
2704 unsafe { atomic_load(self.v.get(), order) }
2705 }
2706
2707 /// Stores a value into the atomic integer.
2708 ///
2709 /// `store` takes an [`Ordering`] argument which describes the memory ordering of this operation.
2710 /// Possible values are [`SeqCst`], [`Release`] and [`Relaxed`].
2711 ///
2712 /// # Panics
2713 ///
2714 /// Panics if `order` is [`Acquire`] or [`AcqRel`].
2715 ///
2716 /// # Examples
2717 ///
2718 /// ```
2719 #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2720 ///
2721 #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
2722 ///
2723 /// some_var.store(10, Ordering::Relaxed);
2724 /// assert_eq!(some_var.load(Ordering::Relaxed), 10);
2725 /// ```
2726 #[inline]
2727 #[$stable]
2728 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2729 pub fn store(&self, val: $int_type, order: Ordering) {
2730 // SAFETY: data races are prevented by atomic intrinsics.
2731 unsafe { atomic_store(self.v.get(), val, order); }
2732 }
2733
2734 /// Stores a value into the atomic integer, returning the previous value.
2735 ///
2736 /// `swap` takes an [`Ordering`] argument which describes the memory ordering
2737 /// of this operation. All ordering modes are possible. Note that using
2738 /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
2739 /// using [`Release`] makes the load part [`Relaxed`].
2740 ///
2741 /// **Note**: This method is only available on platforms that support atomic operations on
2742 #[doc = concat!("[`", $s_int_type, "`].")]
2743 ///
2744 /// # Examples
2745 ///
2746 /// ```
2747 #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2748 ///
2749 #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
2750 ///
2751 /// assert_eq!(some_var.swap(10, Ordering::Relaxed), 5);
2752 /// ```
2753 #[inline]
2754 #[$stable]
2755 #[$cfg_cas]
2756 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2757 pub fn swap(&self, val: $int_type, order: Ordering) -> $int_type {
2758 // SAFETY: data races are prevented by atomic intrinsics.
2759 unsafe { atomic_swap(self.v.get(), val, order) }
2760 }
2761
2762 /// Stores a value into the atomic integer if the current value is the same as
2763 /// the `current` value.
2764 ///
2765 /// The return value is always the previous value. If it is equal to `current`, then the
2766 /// value was updated.
2767 ///
2768 /// `compare_and_swap` also takes an [`Ordering`] argument which describes the memory
2769 /// ordering of this operation. Notice that even when using [`AcqRel`], the operation
2770 /// might fail and hence just perform an `Acquire` load, but not have `Release` semantics.
2771 /// Using [`Acquire`] makes the store part of this operation [`Relaxed`] if it
2772 /// happens, and using [`Release`] makes the load part [`Relaxed`].
2773 ///
2774 /// **Note**: This method is only available on platforms that support atomic operations on
2775 #[doc = concat!("[`", $s_int_type, "`].")]
2776 ///
2777 /// # Migrating to `compare_exchange` and `compare_exchange_weak`
2778 ///
2779 /// `compare_and_swap` is equivalent to `compare_exchange` with the following mapping for
2780 /// memory orderings:
2781 ///
2782 /// Original | Success | Failure
2783 /// -------- | ------- | -------
2784 /// Relaxed | Relaxed | Relaxed
2785 /// Acquire | Acquire | Acquire
2786 /// Release | Release | Relaxed
2787 /// AcqRel | AcqRel | Acquire
2788 /// SeqCst | SeqCst | SeqCst
2789 ///
2790 /// `compare_and_swap` and `compare_exchange` also differ in their return type. You can use
2791 /// `compare_exchange(...).unwrap_or_else(|x| x)` to recover the behavior of `compare_and_swap`,
2792 /// but in most cases it is more idiomatic to check whether the return value is `Ok` or `Err`
2793 /// rather than to infer success vs failure based on the value that was read.
2794 ///
2795 /// During migration, consider whether it makes sense to use `compare_exchange_weak` instead.
2796 /// `compare_exchange_weak` is allowed to fail spuriously even when the comparison succeeds,
2797 /// which allows the compiler to generate better assembly code when the compare and swap
2798 /// is used in a loop.
2799 ///
2800 /// # Examples
2801 ///
2802 /// ```
2803 #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2804 ///
2805 #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
2806 ///
2807 /// assert_eq!(some_var.compare_and_swap(5, 10, Ordering::Relaxed), 5);
2808 /// assert_eq!(some_var.load(Ordering::Relaxed), 10);
2809 ///
2810 /// assert_eq!(some_var.compare_and_swap(6, 12, Ordering::Relaxed), 10);
2811 /// assert_eq!(some_var.load(Ordering::Relaxed), 10);
2812 /// ```
2813 #[inline]
2814 #[$stable]
2815 #[deprecated(
2816 since = "1.50.0",
2817 note = "Use `compare_exchange` or `compare_exchange_weak` instead")
2818 ]
2819 #[$cfg_cas]
2820 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2821 pub fn compare_and_swap(&self,
2822 current: $int_type,
2823 new: $int_type,
2824 order: Ordering) -> $int_type {
2825 match self.compare_exchange(current,
2826 new,
2827 order,
2828 strongest_failure_ordering(order)) {
2829 Ok(x) => x,
2830 Err(x) => x,
2831 }
2832 }
2833
2834 /// Stores a value into the atomic integer if the current value is the same as
2835 /// the `current` value.
2836 ///
2837 /// The return value is a result indicating whether the new value was written and
2838 /// containing the previous value. On success this value is guaranteed to be equal to
2839 /// `current`.
2840 ///
2841 /// `compare_exchange` takes two [`Ordering`] arguments to describe the memory
2842 /// ordering of this operation. `success` describes the required ordering for the
2843 /// read-modify-write operation that takes place if the comparison with `current` succeeds.
2844 /// `failure` describes the required ordering for the load operation that takes place when
2845 /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
2846 /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
2847 /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
2848 ///
2849 /// **Note**: This method is only available on platforms that support atomic operations on
2850 #[doc = concat!("[`", $s_int_type, "`].")]
2851 ///
2852 /// # Examples
2853 ///
2854 /// ```
2855 #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2856 ///
2857 #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
2858 ///
2859 /// assert_eq!(some_var.compare_exchange(5, 10,
2860 /// Ordering::Acquire,
2861 /// Ordering::Relaxed),
2862 /// Ok(5));
2863 /// assert_eq!(some_var.load(Ordering::Relaxed), 10);
2864 ///
2865 /// assert_eq!(some_var.compare_exchange(6, 12,
2866 /// Ordering::SeqCst,
2867 /// Ordering::Acquire),
2868 /// Err(10));
2869 /// assert_eq!(some_var.load(Ordering::Relaxed), 10);
2870 /// ```
2871 #[inline]
2872 #[$stable_cxchg]
2873 #[$cfg_cas]
2874 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2875 pub fn compare_exchange(&self,
2876 current: $int_type,
2877 new: $int_type,
2878 success: Ordering,
2879 failure: Ordering) -> Result<$int_type, $int_type> {
2880 // SAFETY: data races are prevented by atomic intrinsics.
2881 unsafe { atomic_compare_exchange(self.v.get(), current, new, success, failure) }
2882 }
2883
2884 /// Stores a value into the atomic integer if the current value is the same as
2885 /// the `current` value.
2886 ///
2887 #[doc = concat!("Unlike [`", stringify!($atomic_type), "::compare_exchange`],")]
2888 /// this function is allowed to spuriously fail even
2889 /// when the comparison succeeds, which can result in more efficient code on some
2890 /// platforms. The return value is a result indicating whether the new value was
2891 /// written and containing the previous value.
2892 ///
2893 /// `compare_exchange_weak` takes two [`Ordering`] arguments to describe the memory
2894 /// ordering of this operation. `success` describes the required ordering for the
2895 /// read-modify-write operation that takes place if the comparison with `current` succeeds.
2896 /// `failure` describes the required ordering for the load operation that takes place when
2897 /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
2898 /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
2899 /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
2900 ///
2901 /// **Note**: This method is only available on platforms that support atomic operations on
2902 #[doc = concat!("[`", $s_int_type, "`].")]
2903 ///
2904 /// # Examples
2905 ///
2906 /// ```
2907 #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2908 ///
2909 #[doc = concat!("let val = ", stringify!($atomic_type), "::new(4);")]
2910 ///
2911 /// let mut old = val.load(Ordering::Relaxed);
2912 /// loop {
2913 /// let new = old * 2;
2914 /// match val.compare_exchange_weak(old, new, Ordering::SeqCst, Ordering::Relaxed) {
2915 /// Ok(_) => break,
2916 /// Err(x) => old = x,
2917 /// }
2918 /// }
2919 /// ```
2920 #[inline]
2921 #[$stable_cxchg]
2922 #[$cfg_cas]
2923 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2924 pub fn compare_exchange_weak(&self,
2925 current: $int_type,
2926 new: $int_type,
2927 success: Ordering,
2928 failure: Ordering) -> Result<$int_type, $int_type> {
2929 // SAFETY: data races are prevented by atomic intrinsics.
2930 unsafe {
2931 atomic_compare_exchange_weak(self.v.get(), current, new, success, failure)
2932 }
2933 }
2934
2935 /// Adds to the current value, returning the previous value.
2936 ///
2937 /// This operation wraps around on overflow.
2938 ///
2939 /// `fetch_add` takes an [`Ordering`] argument which describes the memory ordering
2940 /// of this operation. All ordering modes are possible. Note that using
2941 /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
2942 /// using [`Release`] makes the load part [`Relaxed`].
2943 ///
2944 /// **Note**: This method is only available on platforms that support atomic operations on
2945 #[doc = concat!("[`", $s_int_type, "`].")]
2946 ///
2947 /// # Examples
2948 ///
2949 /// ```
2950 #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2951 ///
2952 #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(0);")]
2953 /// assert_eq!(foo.fetch_add(10, Ordering::SeqCst), 0);
2954 /// assert_eq!(foo.load(Ordering::SeqCst), 10);
2955 /// ```
2956 #[inline]
2957 #[$stable]
2958 #[$cfg_cas]
2959 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2960 pub fn fetch_add(&self, val: $int_type, order: Ordering) -> $int_type {
2961 // SAFETY: data races are prevented by atomic intrinsics.
2962 unsafe { atomic_add(self.v.get(), val, order) }
2963 }
2964
2965 /// Subtracts from the current value, returning the previous value.
2966 ///
2967 /// This operation wraps around on overflow.
2968 ///
2969 /// `fetch_sub` takes an [`Ordering`] argument which describes the memory ordering
2970 /// of this operation. All ordering modes are possible. Note that using
2971 /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
2972 /// using [`Release`] makes the load part [`Relaxed`].
2973 ///
2974 /// **Note**: This method is only available on platforms that support atomic operations on
2975 #[doc = concat!("[`", $s_int_type, "`].")]
2976 ///
2977 /// # Examples
2978 ///
2979 /// ```
2980 #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2981 ///
2982 #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(20);")]
2983 /// assert_eq!(foo.fetch_sub(10, Ordering::SeqCst), 20);
2984 /// assert_eq!(foo.load(Ordering::SeqCst), 10);
2985 /// ```
2986 #[inline]
2987 #[$stable]
2988 #[$cfg_cas]
2989 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2990 pub fn fetch_sub(&self, val: $int_type, order: Ordering) -> $int_type {
2991 // SAFETY: data races are prevented by atomic intrinsics.
2992 unsafe { atomic_sub(self.v.get(), val, order) }
2993 }
2994
2995 /// Bitwise "and" with the current value.
2996 ///
2997 /// Performs a bitwise "and" operation on the current value and the argument `val`, and
2998 /// sets the new value to the result.
2999 ///
3000 /// Returns the previous value.
3001 ///
3002 /// `fetch_and` takes an [`Ordering`] argument which describes the memory ordering
3003 /// of this operation. All ordering modes are possible. Note that using
3004 /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3005 /// using [`Release`] makes the load part [`Relaxed`].
3006 ///
3007 /// **Note**: This method is only available on platforms that support atomic operations on
3008 #[doc = concat!("[`", $s_int_type, "`].")]
3009 ///
3010 /// # Examples
3011 ///
3012 /// ```
3013 #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3014 ///
3015 #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(0b101101);")]
3016 /// assert_eq!(foo.fetch_and(0b110011, Ordering::SeqCst), 0b101101);
3017 /// assert_eq!(foo.load(Ordering::SeqCst), 0b100001);
3018 /// ```
3019 #[inline]
3020 #[$stable]
3021 #[$cfg_cas]
3022 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3023 pub fn fetch_and(&self, val: $int_type, order: Ordering) -> $int_type {
3024 // SAFETY: data races are prevented by atomic intrinsics.
3025 unsafe { atomic_and(self.v.get(), val, order) }
3026 }
3027
3028 /// Bitwise "nand" with the current value.
3029 ///
3030 /// Performs a bitwise "nand" operation on the current value and the argument `val`, and
3031 /// sets the new value to the result.
3032 ///
3033 /// Returns the previous value.
3034 ///
3035 /// `fetch_nand` takes an [`Ordering`] argument which describes the memory ordering
3036 /// of this operation. All ordering modes are possible. Note that using
3037 /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3038 /// using [`Release`] makes the load part [`Relaxed`].
3039 ///
3040 /// **Note**: This method is only available on platforms that support atomic operations on
3041 #[doc = concat!("[`", $s_int_type, "`].")]
3042 ///
3043 /// # Examples
3044 ///
3045 /// ```
3046 #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3047 ///
3048 #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(0x13);")]
3049 /// assert_eq!(foo.fetch_nand(0x31, Ordering::SeqCst), 0x13);
3050 /// assert_eq!(foo.load(Ordering::SeqCst), !(0x13 & 0x31));
3051 /// ```
3052 #[inline]
3053 #[$stable_nand]
3054 #[$cfg_cas]
3055 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3056 pub fn fetch_nand(&self, val: $int_type, order: Ordering) -> $int_type {
3057 // SAFETY: data races are prevented by atomic intrinsics.
3058 unsafe { atomic_nand(self.v.get(), val, order) }
3059 }
3060
3061 /// Bitwise "or" with the current value.
3062 ///
3063 /// Performs a bitwise "or" operation on the current value and the argument `val`, and
3064 /// sets the new value to the result.
3065 ///
3066 /// Returns the previous value.
3067 ///
3068 /// `fetch_or` takes an [`Ordering`] argument which describes the memory ordering
3069 /// of this operation. All ordering modes are possible. Note that using
3070 /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3071 /// using [`Release`] makes the load part [`Relaxed`].
3072 ///
3073 /// **Note**: This method is only available on platforms that support atomic operations on
3074 #[doc = concat!("[`", $s_int_type, "`].")]
3075 ///
3076 /// # Examples
3077 ///
3078 /// ```
3079 #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3080 ///
3081 #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(0b101101);")]
3082 /// assert_eq!(foo.fetch_or(0b110011, Ordering::SeqCst), 0b101101);
3083 /// assert_eq!(foo.load(Ordering::SeqCst), 0b111111);
3084 /// ```
3085 #[inline]
3086 #[$stable]
3087 #[$cfg_cas]
3088 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3089 pub fn fetch_or(&self, val: $int_type, order: Ordering) -> $int_type {
3090 // SAFETY: data races are prevented by atomic intrinsics.
3091 unsafe { atomic_or(self.v.get(), val, order) }
3092 }
3093
3094 /// Bitwise "xor" with the current value.
3095 ///
3096 /// Performs a bitwise "xor" operation on the current value and the argument `val`, and
3097 /// sets the new value to the result.
3098 ///
3099 /// Returns the previous value.
3100 ///
3101 /// `fetch_xor` takes an [`Ordering`] argument which describes the memory ordering
3102 /// of this operation. All ordering modes are possible. Note that using
3103 /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3104 /// using [`Release`] makes the load part [`Relaxed`].
3105 ///
3106 /// **Note**: This method is only available on platforms that support atomic operations on
3107 #[doc = concat!("[`", $s_int_type, "`].")]
3108 ///
3109 /// # Examples
3110 ///
3111 /// ```
3112 #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3113 ///
3114 #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(0b101101);")]
3115 /// assert_eq!(foo.fetch_xor(0b110011, Ordering::SeqCst), 0b101101);
3116 /// assert_eq!(foo.load(Ordering::SeqCst), 0b011110);
3117 /// ```
3118 #[inline]
3119 #[$stable]
3120 #[$cfg_cas]
3121 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3122 pub fn fetch_xor(&self, val: $int_type, order: Ordering) -> $int_type {
3123 // SAFETY: data races are prevented by atomic intrinsics.
3124 unsafe { atomic_xor(self.v.get(), val, order) }
3125 }
3126
3127 /// Fetches the value, and applies a function to it that returns an optional
3128 /// new value. Returns a `Result` of `Ok(previous_value)` if the function returned `Some(_)`, else
3129 /// `Err(previous_value)`.
3130 ///
3131 /// Note: This may call the function multiple times if the value has been changed from other threads in
3132 /// the meantime, as long as the function returns `Some(_)`, but the function will have been applied
3133 /// only once to the stored value.
3134 ///
3135 /// `fetch_update` takes two [`Ordering`] arguments to describe the memory ordering of this operation.
3136 /// The first describes the required ordering for when the operation finally succeeds while the second
3137 /// describes the required ordering for loads. These correspond to the success and failure orderings of
3138 #[doc = concat!("[`", stringify!($atomic_type), "::compare_exchange`]")]
3139 /// respectively.
3140 ///
3141 /// Using [`Acquire`] as success ordering makes the store part
3142 /// of this operation [`Relaxed`], and using [`Release`] makes the final successful load
3143 /// [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
3144 ///
3145 /// **Note**: This method is only available on platforms that support atomic operations on
3146 #[doc = concat!("[`", $s_int_type, "`].")]
3147 ///
3148 /// # Considerations
3149 ///
3150 /// This method is not magic; it is not provided by the hardware.
3151 /// It is implemented in terms of
3152 #[doc = concat!("[`", stringify!($atomic_type), "::compare_exchange_weak`],")]
3153 /// and suffers from the same drawbacks.
3154 /// In particular, this method will not circumvent the [ABA Problem].
3155 ///
3156 /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
3157 ///
3158 /// # Examples
3159 ///
3160 /// ```rust
3161 #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3162 ///
3163 #[doc = concat!("let x = ", stringify!($atomic_type), "::new(7);")]
3164 /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(7));
3165 /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(7));
3166 /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(8));
3167 /// assert_eq!(x.load(Ordering::SeqCst), 9);
3168 /// ```
3169 #[inline]
3170 #[stable(feature = "no_more_cas", since = "1.45.0")]
3171 #[$cfg_cas]
3172 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3173 pub fn fetch_update<F>(&self,
3174 set_order: Ordering,
3175 fetch_order: Ordering,
3176 mut f: F) -> Result<$int_type, $int_type>
3177 where F: FnMut($int_type) -> Option<$int_type> {
3178 let mut prev = self.load(fetch_order);
3179 while let Some(next) = f(prev) {
3180 match self.compare_exchange_weak(prev, next, set_order, fetch_order) {
3181 x @ Ok(_) => return x,
3182 Err(next_prev) => prev = next_prev
3183 }
3184 }
3185 Err(prev)
3186 }
3187
3188 /// Fetches the value, and applies a function to it that returns an optional
3189 /// new value. Returns a `Result` of `Ok(previous_value)` if the function returned `Some(_)`, else
3190 /// `Err(previous_value)`.
3191 ///
3192 #[doc = concat!("See also: [`update`](`", stringify!($atomic_type), "::update`).")]
3193 ///
3194 /// Note: This may call the function multiple times if the value has been changed from other threads in
3195 /// the meantime, as long as the function returns `Some(_)`, but the function will have been applied
3196 /// only once to the stored value.
3197 ///
3198 /// `try_update` takes two [`Ordering`] arguments to describe the memory ordering of this operation.
3199 /// The first describes the required ordering for when the operation finally succeeds while the second
3200 /// describes the required ordering for loads. These correspond to the success and failure orderings of
3201 #[doc = concat!("[`", stringify!($atomic_type), "::compare_exchange`]")]
3202 /// respectively.
3203 ///
3204 /// Using [`Acquire`] as success ordering makes the store part
3205 /// of this operation [`Relaxed`], and using [`Release`] makes the final successful load
3206 /// [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
3207 ///
3208 /// **Note**: This method is only available on platforms that support atomic operations on
3209 #[doc = concat!("[`", $s_int_type, "`].")]
3210 ///
3211 /// # Considerations
3212 ///
3213 /// This method is not magic; it is not provided by the hardware.
3214 /// It is implemented in terms of
3215 #[doc = concat!("[`", stringify!($atomic_type), "::compare_exchange_weak`],")]
3216 /// and suffers from the same drawbacks.
3217 /// In particular, this method will not circumvent the [ABA Problem].
3218 ///
3219 /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
3220 ///
3221 /// # Examples
3222 ///
3223 /// ```rust
3224 /// #![feature(atomic_try_update)]
3225 #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3226 ///
3227 #[doc = concat!("let x = ", stringify!($atomic_type), "::new(7);")]
3228 /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(7));
3229 /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(7));
3230 /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(8));
3231 /// assert_eq!(x.load(Ordering::SeqCst), 9);
3232 /// ```
3233 #[inline]
3234 #[unstable(feature = "atomic_try_update", issue = "135894")]
3235 #[$cfg_cas]
3236 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3237 pub fn try_update(
3238 &self,
3239 set_order: Ordering,
3240 fetch_order: Ordering,
3241 f: impl FnMut($int_type) -> Option<$int_type>,
3242 ) -> Result<$int_type, $int_type> {
3243 // FIXME(atomic_try_update): this is currently an unstable alias to `fetch_update`;
3244 // when stabilizing, turn `fetch_update` into a deprecated alias to `try_update`.
3245 self.fetch_update(set_order, fetch_order, f)
3246 }
3247
3248 /// Fetches the value, applies a function to it that it return a new value.
3249 /// The new value is stored and the old value is returned.
3250 ///
3251 #[doc = concat!("See also: [`try_update`](`", stringify!($atomic_type), "::try_update`).")]
3252 ///
3253 /// Note: This may call the function multiple times if the value has been changed from other threads in
3254 /// the meantime, but the function will have been applied only once to the stored value.
3255 ///
3256 /// `update` takes two [`Ordering`] arguments to describe the memory ordering of this operation.
3257 /// The first describes the required ordering for when the operation finally succeeds while the second
3258 /// describes the required ordering for loads. These correspond to the success and failure orderings of
3259 #[doc = concat!("[`", stringify!($atomic_type), "::compare_exchange`]")]
3260 /// respectively.
3261 ///
3262 /// Using [`Acquire`] as success ordering makes the store part
3263 /// of this operation [`Relaxed`], and using [`Release`] makes the final successful load
3264 /// [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
3265 ///
3266 /// **Note**: This method is only available on platforms that support atomic operations on
3267 #[doc = concat!("[`", $s_int_type, "`].")]
3268 ///
3269 /// # Considerations
3270 ///
3271 /// This method is not magic; it is not provided by the hardware.
3272 /// It is implemented in terms of
3273 #[doc = concat!("[`", stringify!($atomic_type), "::compare_exchange_weak`],")]
3274 /// and suffers from the same drawbacks.
3275 /// In particular, this method will not circumvent the [ABA Problem].
3276 ///
3277 /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
3278 ///
3279 /// # Examples
3280 ///
3281 /// ```rust
3282 /// #![feature(atomic_try_update)]
3283 #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3284 ///
3285 #[doc = concat!("let x = ", stringify!($atomic_type), "::new(7);")]
3286 /// assert_eq!(x.update(Ordering::SeqCst, Ordering::SeqCst, |x| x + 1), 7);
3287 /// assert_eq!(x.update(Ordering::SeqCst, Ordering::SeqCst, |x| x + 1), 8);
3288 /// assert_eq!(x.load(Ordering::SeqCst), 9);
3289 /// ```
3290 #[inline]
3291 #[unstable(feature = "atomic_try_update", issue = "135894")]
3292 #[$cfg_cas]
3293 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3294 pub fn update(
3295 &self,
3296 set_order: Ordering,
3297 fetch_order: Ordering,
3298 mut f: impl FnMut($int_type) -> $int_type,
3299 ) -> $int_type {
3300 let mut prev = self.load(fetch_order);
3301 loop {
3302 match self.compare_exchange_weak(prev, f(prev), set_order, fetch_order) {
3303 Ok(x) => break x,
3304 Err(next_prev) => prev = next_prev,
3305 }
3306 }
3307 }
3308
3309 /// Maximum with the current value.
3310 ///
3311 /// Finds the maximum of the current value and the argument `val`, and
3312 /// sets the new value to the result.
3313 ///
3314 /// Returns the previous value.
3315 ///
3316 /// `fetch_max` takes an [`Ordering`] argument which describes the memory ordering
3317 /// of this operation. All ordering modes are possible. Note that using
3318 /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3319 /// using [`Release`] makes the load part [`Relaxed`].
3320 ///
3321 /// **Note**: This method is only available on platforms that support atomic operations on
3322 #[doc = concat!("[`", $s_int_type, "`].")]
3323 ///
3324 /// # Examples
3325 ///
3326 /// ```
3327 #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3328 ///
3329 #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(23);")]
3330 /// assert_eq!(foo.fetch_max(42, Ordering::SeqCst), 23);
3331 /// assert_eq!(foo.load(Ordering::SeqCst), 42);
3332 /// ```
3333 ///
3334 /// If you want to obtain the maximum value in one step, you can use the following:
3335 ///
3336 /// ```
3337 #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3338 ///
3339 #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(23);")]
3340 /// let bar = 42;
3341 /// let max_foo = foo.fetch_max(bar, Ordering::SeqCst).max(bar);
3342 /// assert!(max_foo == 42);
3343 /// ```
3344 #[inline]
3345 #[stable(feature = "atomic_min_max", since = "1.45.0")]
3346 #[$cfg_cas]
3347 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3348 pub fn fetch_max(&self, val: $int_type, order: Ordering) -> $int_type {
3349 // SAFETY: data races are prevented by atomic intrinsics.
3350 unsafe { $max_fn(self.v.get(), val, order) }
3351 }
3352
3353 /// Minimum with the current value.
3354 ///
3355 /// Finds the minimum of the current value and the argument `val`, and
3356 /// sets the new value to the result.
3357 ///
3358 /// Returns the previous value.
3359 ///
3360 /// `fetch_min` takes an [`Ordering`] argument which describes the memory ordering
3361 /// of this operation. All ordering modes are possible. Note that using
3362 /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3363 /// using [`Release`] makes the load part [`Relaxed`].
3364 ///
3365 /// **Note**: This method is only available on platforms that support atomic operations on
3366 #[doc = concat!("[`", $s_int_type, "`].")]
3367 ///
3368 /// # Examples
3369 ///
3370 /// ```
3371 #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3372 ///
3373 #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(23);")]
3374 /// assert_eq!(foo.fetch_min(42, Ordering::Relaxed), 23);
3375 /// assert_eq!(foo.load(Ordering::Relaxed), 23);
3376 /// assert_eq!(foo.fetch_min(22, Ordering::Relaxed), 23);
3377 /// assert_eq!(foo.load(Ordering::Relaxed), 22);
3378 /// ```
3379 ///
3380 /// If you want to obtain the minimum value in one step, you can use the following:
3381 ///
3382 /// ```
3383 #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3384 ///
3385 #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(23);")]
3386 /// let bar = 12;
3387 /// let min_foo = foo.fetch_min(bar, Ordering::SeqCst).min(bar);
3388 /// assert_eq!(min_foo, 12);
3389 /// ```
3390 #[inline]
3391 #[stable(feature = "atomic_min_max", since = "1.45.0")]
3392 #[$cfg_cas]
3393 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3394 pub fn fetch_min(&self, val: $int_type, order: Ordering) -> $int_type {
3395 // SAFETY: data races are prevented by atomic intrinsics.
3396 unsafe { $min_fn(self.v.get(), val, order) }
3397 }
3398
3399 /// Returns a mutable pointer to the underlying integer.
3400 ///
3401 /// Doing non-atomic reads and writes on the resulting integer can be a data race.
3402 /// This method is mostly useful for FFI, where the function signature may use
3403 #[doc = concat!("`*mut ", stringify!($int_type), "` instead of `&", stringify!($atomic_type), "`.")]
3404 ///
3405 /// Returning an `*mut` pointer from a shared reference to this atomic is safe because the
3406 /// atomic types work with interior mutability. All modifications of an atomic change the value
3407 /// through a shared reference, and can do so safely as long as they use atomic operations. Any
3408 /// use of the returned raw pointer requires an `unsafe` block and still has to uphold the same
3409 /// restriction: operations on it must be atomic.
3410 ///
3411 /// # Examples
3412 ///
3413 /// ```ignore (extern-declaration)
3414 /// # fn main() {
3415 #[doc = concat!($extra_feature, "use std::sync::atomic::", stringify!($atomic_type), ";")]
3416 ///
3417 /// extern "C" {
3418 #[doc = concat!(" fn my_atomic_op(arg: *mut ", stringify!($int_type), ");")]
3419 /// }
3420 ///
3421 #[doc = concat!("let atomic = ", stringify!($atomic_type), "::new(1);")]
3422 ///
3423 /// // SAFETY: Safe as long as `my_atomic_op` is atomic.
3424 /// unsafe {
3425 /// my_atomic_op(atomic.as_ptr());
3426 /// }
3427 /// # }
3428 /// ```
3429 #[inline]
3430 #[stable(feature = "atomic_as_ptr", since = "1.70.0")]
3431 #[rustc_const_stable(feature = "atomic_as_ptr", since = "1.70.0")]
3432 #[rustc_never_returns_null_ptr]
3433 pub const fn as_ptr(&self) -> *mut $int_type {
3434 self.v.get()
3435 }
3436 }
3437 }
3438}
3439
3440#[cfg(target_has_atomic_load_store = "8")]
3441atomic_int! {
3442 cfg(target_has_atomic = "8"),
3443 cfg(target_has_atomic_equal_alignment = "8"),
3444 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3445 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3446 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3447 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3448 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3449 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3450 rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3451 rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3452 rustc_diagnostic_item = "AtomicI8",
3453 "i8",
3454 "",
3455 atomic_min, atomic_max,
3456 1,
3457 i8 AtomicI8
3458}
3459#[cfg(target_has_atomic_load_store = "8")]
3460atomic_int! {
3461 cfg(target_has_atomic = "8"),
3462 cfg(target_has_atomic_equal_alignment = "8"),
3463 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3464 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3465 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3466 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3467 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3468 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3469 rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3470 rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3471 rustc_diagnostic_item = "AtomicU8",
3472 "u8",
3473 "",
3474 atomic_umin, atomic_umax,
3475 1,
3476 u8 AtomicU8
3477}
3478#[cfg(target_has_atomic_load_store = "16")]
3479atomic_int! {
3480 cfg(target_has_atomic = "16"),
3481 cfg(target_has_atomic_equal_alignment = "16"),
3482 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3483 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3484 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3485 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3486 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3487 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3488 rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3489 rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3490 rustc_diagnostic_item = "AtomicI16",
3491 "i16",
3492 "",
3493 atomic_min, atomic_max,
3494 2,
3495 i16 AtomicI16
3496}
3497#[cfg(target_has_atomic_load_store = "16")]
3498atomic_int! {
3499 cfg(target_has_atomic = "16"),
3500 cfg(target_has_atomic_equal_alignment = "16"),
3501 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3502 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3503 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3504 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3505 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3506 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3507 rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3508 rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3509 rustc_diagnostic_item = "AtomicU16",
3510 "u16",
3511 "",
3512 atomic_umin, atomic_umax,
3513 2,
3514 u16 AtomicU16
3515}
3516#[cfg(target_has_atomic_load_store = "32")]
3517atomic_int! {
3518 cfg(target_has_atomic = "32"),
3519 cfg(target_has_atomic_equal_alignment = "32"),
3520 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3521 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3522 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3523 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3524 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3525 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3526 rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3527 rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3528 rustc_diagnostic_item = "AtomicI32",
3529 "i32",
3530 "",
3531 atomic_min, atomic_max,
3532 4,
3533 i32 AtomicI32
3534}
3535#[cfg(target_has_atomic_load_store = "32")]
3536atomic_int! {
3537 cfg(target_has_atomic = "32"),
3538 cfg(target_has_atomic_equal_alignment = "32"),
3539 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3540 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3541 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3542 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3543 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3544 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3545 rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3546 rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3547 rustc_diagnostic_item = "AtomicU32",
3548 "u32",
3549 "",
3550 atomic_umin, atomic_umax,
3551 4,
3552 u32 AtomicU32
3553}
3554#[cfg(target_has_atomic_load_store = "64")]
3555atomic_int! {
3556 cfg(target_has_atomic = "64"),
3557 cfg(target_has_atomic_equal_alignment = "64"),
3558 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3559 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3560 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3561 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3562 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3563 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3564 rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3565 rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3566 rustc_diagnostic_item = "AtomicI64",
3567 "i64",
3568 "",
3569 atomic_min, atomic_max,
3570 8,
3571 i64 AtomicI64
3572}
3573#[cfg(target_has_atomic_load_store = "64")]
3574atomic_int! {
3575 cfg(target_has_atomic = "64"),
3576 cfg(target_has_atomic_equal_alignment = "64"),
3577 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3578 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3579 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3580 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3581 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3582 stable(feature = "integer_atomics_stable", since = "1.34.0"),
3583 rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3584 rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3585 rustc_diagnostic_item = "AtomicU64",
3586 "u64",
3587 "",
3588 atomic_umin, atomic_umax,
3589 8,
3590 u64 AtomicU64
3591}
3592#[cfg(target_has_atomic_load_store = "128")]
3593atomic_int! {
3594 cfg(target_has_atomic = "128"),
3595 cfg(target_has_atomic_equal_alignment = "128"),
3596 unstable(feature = "integer_atomics", issue = "99069"),
3597 unstable(feature = "integer_atomics", issue = "99069"),
3598 unstable(feature = "integer_atomics", issue = "99069"),
3599 unstable(feature = "integer_atomics", issue = "99069"),
3600 unstable(feature = "integer_atomics", issue = "99069"),
3601 unstable(feature = "integer_atomics", issue = "99069"),
3602 rustc_const_unstable(feature = "integer_atomics", issue = "99069"),
3603 rustc_const_unstable(feature = "integer_atomics", issue = "99069"),
3604 rustc_diagnostic_item = "AtomicI128",
3605 "i128",
3606 "#![feature(integer_atomics)]\n\n",
3607 atomic_min, atomic_max,
3608 16,
3609 i128 AtomicI128
3610}
3611#[cfg(target_has_atomic_load_store = "128")]
3612atomic_int! {
3613 cfg(target_has_atomic = "128"),
3614 cfg(target_has_atomic_equal_alignment = "128"),
3615 unstable(feature = "integer_atomics", issue = "99069"),
3616 unstable(feature = "integer_atomics", issue = "99069"),
3617 unstable(feature = "integer_atomics", issue = "99069"),
3618 unstable(feature = "integer_atomics", issue = "99069"),
3619 unstable(feature = "integer_atomics", issue = "99069"),
3620 unstable(feature = "integer_atomics", issue = "99069"),
3621 rustc_const_unstable(feature = "integer_atomics", issue = "99069"),
3622 rustc_const_unstable(feature = "integer_atomics", issue = "99069"),
3623 rustc_diagnostic_item = "AtomicU128",
3624 "u128",
3625 "#![feature(integer_atomics)]\n\n",
3626 atomic_umin, atomic_umax,
3627 16,
3628 u128 AtomicU128
3629}
3630
3631#[cfg(target_has_atomic_load_store = "ptr")]
3632macro_rules! atomic_int_ptr_sized {
3633 ( $($target_pointer_width:literal $align:literal)* ) => { $(
3634 #[cfg(target_pointer_width = $target_pointer_width)]
3635 atomic_int! {
3636 cfg(target_has_atomic = "ptr"),
3637 cfg(target_has_atomic_equal_alignment = "ptr"),
3638 stable(feature = "rust1", since = "1.0.0"),
3639 stable(feature = "extended_compare_and_swap", since = "1.10.0"),
3640 stable(feature = "atomic_debug", since = "1.3.0"),
3641 stable(feature = "atomic_access", since = "1.15.0"),
3642 stable(feature = "atomic_from", since = "1.23.0"),
3643 stable(feature = "atomic_nand", since = "1.27.0"),
3644 rustc_const_stable(feature = "const_ptr_sized_atomics", since = "1.24.0"),
3645 rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3646 rustc_diagnostic_item = "AtomicIsize",
3647 "isize",
3648 "",
3649 atomic_min, atomic_max,
3650 $align,
3651 isize AtomicIsize
3652 }
3653 #[cfg(target_pointer_width = $target_pointer_width)]
3654 atomic_int! {
3655 cfg(target_has_atomic = "ptr"),
3656 cfg(target_has_atomic_equal_alignment = "ptr"),
3657 stable(feature = "rust1", since = "1.0.0"),
3658 stable(feature = "extended_compare_and_swap", since = "1.10.0"),
3659 stable(feature = "atomic_debug", since = "1.3.0"),
3660 stable(feature = "atomic_access", since = "1.15.0"),
3661 stable(feature = "atomic_from", since = "1.23.0"),
3662 stable(feature = "atomic_nand", since = "1.27.0"),
3663 rustc_const_stable(feature = "const_ptr_sized_atomics", since = "1.24.0"),
3664 rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3665 rustc_diagnostic_item = "AtomicUsize",
3666 "usize",
3667 "",
3668 atomic_umin, atomic_umax,
3669 $align,
3670 usize AtomicUsize
3671 }
3672
3673 /// An [`AtomicIsize`] initialized to `0`.
3674 #[cfg(target_pointer_width = $target_pointer_width)]
3675 #[stable(feature = "rust1", since = "1.0.0")]
3676 #[deprecated(
3677 since = "1.34.0",
3678 note = "the `new` function is now preferred",
3679 suggestion = "AtomicIsize::new(0)",
3680 )]
3681 pub const ATOMIC_ISIZE_INIT: AtomicIsize = AtomicIsize::new(0);
3682
3683 /// An [`AtomicUsize`] initialized to `0`.
3684 #[cfg(target_pointer_width = $target_pointer_width)]
3685 #[stable(feature = "rust1", since = "1.0.0")]
3686 #[deprecated(
3687 since = "1.34.0",
3688 note = "the `new` function is now preferred",
3689 suggestion = "AtomicUsize::new(0)",
3690 )]
3691 pub const ATOMIC_USIZE_INIT: AtomicUsize = AtomicUsize::new(0);
3692 )* };
3693}
3694
3695#[cfg(target_has_atomic_load_store = "ptr")]
3696atomic_int_ptr_sized! {
3697 "16" 2
3698 "32" 4
3699 "64" 8
3700}
3701
3702#[inline]
3703#[cfg(target_has_atomic)]
3704fn strongest_failure_ordering(order: Ordering) -> Ordering {
3705 match order {
3706 Release => Relaxed,
3707 Relaxed => Relaxed,
3708 SeqCst => SeqCst,
3709 Acquire => Acquire,
3710 AcqRel => Acquire,
3711 }
3712}
3713
3714#[inline]
3715#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3716unsafe fn atomic_store<T: Copy>(dst: *mut T, val: T, order: Ordering) {
3717 // SAFETY: the caller must uphold the safety contract for `atomic_store`.
3718 unsafe {
3719 match order {
3720 Relaxed => intrinsics::atomic_store_relaxed(dst, val),
3721 Release => intrinsics::atomic_store_release(dst, val),
3722 SeqCst => intrinsics::atomic_store_seqcst(dst, val),
3723 Acquire => panic!("there is no such thing as an acquire store"),
3724 AcqRel => panic!("there is no such thing as an acquire-release store"),
3725 }
3726 }
3727}
3728
3729#[inline]
3730#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3731unsafe fn atomic_load<T: Copy>(dst: *const T, order: Ordering) -> T {
3732 // SAFETY: the caller must uphold the safety contract for `atomic_load`.
3733 unsafe {
3734 match order {
3735 Relaxed => intrinsics::atomic_load_relaxed(dst),
3736 Acquire => intrinsics::atomic_load_acquire(dst),
3737 SeqCst => intrinsics::atomic_load_seqcst(dst),
3738 Release => panic!("there is no such thing as a release load"),
3739 AcqRel => panic!("there is no such thing as an acquire-release load"),
3740 }
3741 }
3742}
3743
3744#[inline]
3745#[cfg(target_has_atomic)]
3746#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3747unsafe fn atomic_swap<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
3748 // SAFETY: the caller must uphold the safety contract for `atomic_swap`.
3749 unsafe {
3750 match order {
3751 Relaxed => intrinsics::atomic_xchg_relaxed(dst, val),
3752 Acquire => intrinsics::atomic_xchg_acquire(dst, val),
3753 Release => intrinsics::atomic_xchg_release(dst, val),
3754 AcqRel => intrinsics::atomic_xchg_acqrel(dst, val),
3755 SeqCst => intrinsics::atomic_xchg_seqcst(dst, val),
3756 }
3757 }
3758}
3759
3760/// Returns the previous value (like __sync_fetch_and_add).
3761#[inline]
3762#[cfg(target_has_atomic)]
3763#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3764unsafe fn atomic_add<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
3765 // SAFETY: the caller must uphold the safety contract for `atomic_add`.
3766 unsafe {
3767 match order {
3768 Relaxed => intrinsics::atomic_xadd_relaxed(dst, val),
3769 Acquire => intrinsics::atomic_xadd_acquire(dst, val),
3770 Release => intrinsics::atomic_xadd_release(dst, val),
3771 AcqRel => intrinsics::atomic_xadd_acqrel(dst, val),
3772 SeqCst => intrinsics::atomic_xadd_seqcst(dst, val),
3773 }
3774 }
3775}
3776
3777/// Returns the previous value (like __sync_fetch_and_sub).
3778#[inline]
3779#[cfg(target_has_atomic)]
3780#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3781unsafe fn atomic_sub<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
3782 // SAFETY: the caller must uphold the safety contract for `atomic_sub`.
3783 unsafe {
3784 match order {
3785 Relaxed => intrinsics::atomic_xsub_relaxed(dst, val),
3786 Acquire => intrinsics::atomic_xsub_acquire(dst, val),
3787 Release => intrinsics::atomic_xsub_release(dst, val),
3788 AcqRel => intrinsics::atomic_xsub_acqrel(dst, val),
3789 SeqCst => intrinsics::atomic_xsub_seqcst(dst, val),
3790 }
3791 }
3792}
3793
3794#[inline]
3795#[cfg(target_has_atomic)]
3796#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3797unsafe fn atomic_compare_exchange<T: Copy>(
3798 dst: *mut T,
3799 old: T,
3800 new: T,
3801 success: Ordering,
3802 failure: Ordering,
3803) -> Result<T, T> {
3804 // SAFETY: the caller must uphold the safety contract for `atomic_compare_exchange`.
3805 let (val, ok) = unsafe {
3806 match (success, failure) {
3807 (Relaxed, Relaxed) => intrinsics::atomic_cxchg_relaxed_relaxed(dst, old, new),
3808 (Relaxed, Acquire) => intrinsics::atomic_cxchg_relaxed_acquire(dst, old, new),
3809 (Relaxed, SeqCst) => intrinsics::atomic_cxchg_relaxed_seqcst(dst, old, new),
3810 (Acquire, Relaxed) => intrinsics::atomic_cxchg_acquire_relaxed(dst, old, new),
3811 (Acquire, Acquire) => intrinsics::atomic_cxchg_acquire_acquire(dst, old, new),
3812 (Acquire, SeqCst) => intrinsics::atomic_cxchg_acquire_seqcst(dst, old, new),
3813 (Release, Relaxed) => intrinsics::atomic_cxchg_release_relaxed(dst, old, new),
3814 (Release, Acquire) => intrinsics::atomic_cxchg_release_acquire(dst, old, new),
3815 (Release, SeqCst) => intrinsics::atomic_cxchg_release_seqcst(dst, old, new),
3816 (AcqRel, Relaxed) => intrinsics::atomic_cxchg_acqrel_relaxed(dst, old, new),
3817 (AcqRel, Acquire) => intrinsics::atomic_cxchg_acqrel_acquire(dst, old, new),
3818 (AcqRel, SeqCst) => intrinsics::atomic_cxchg_acqrel_seqcst(dst, old, new),
3819 (SeqCst, Relaxed) => intrinsics::atomic_cxchg_seqcst_relaxed(dst, old, new),
3820 (SeqCst, Acquire) => intrinsics::atomic_cxchg_seqcst_acquire(dst, old, new),
3821 (SeqCst, SeqCst) => intrinsics::atomic_cxchg_seqcst_seqcst(dst, old, new),
3822 (_, AcqRel) => panic!("there is no such thing as an acquire-release failure ordering"),
3823 (_, Release) => panic!("there is no such thing as a release failure ordering"),
3824 }
3825 };
3826 if ok { Ok(val) } else { Err(val) }
3827}
3828
3829#[inline]
3830#[cfg(target_has_atomic)]
3831#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3832unsafe fn atomic_compare_exchange_weak<T: Copy>(
3833 dst: *mut T,
3834 old: T,
3835 new: T,
3836 success: Ordering,
3837 failure: Ordering,
3838) -> Result<T, T> {
3839 // SAFETY: the caller must uphold the safety contract for `atomic_compare_exchange_weak`.
3840 let (val, ok) = unsafe {
3841 match (success, failure) {
3842 (Relaxed, Relaxed) => intrinsics::atomic_cxchgweak_relaxed_relaxed(dst, old, new),
3843 (Relaxed, Acquire) => intrinsics::atomic_cxchgweak_relaxed_acquire(dst, old, new),
3844 (Relaxed, SeqCst) => intrinsics::atomic_cxchgweak_relaxed_seqcst(dst, old, new),
3845 (Acquire, Relaxed) => intrinsics::atomic_cxchgweak_acquire_relaxed(dst, old, new),
3846 (Acquire, Acquire) => intrinsics::atomic_cxchgweak_acquire_acquire(dst, old, new),
3847 (Acquire, SeqCst) => intrinsics::atomic_cxchgweak_acquire_seqcst(dst, old, new),
3848 (Release, Relaxed) => intrinsics::atomic_cxchgweak_release_relaxed(dst, old, new),
3849 (Release, Acquire) => intrinsics::atomic_cxchgweak_release_acquire(dst, old, new),
3850 (Release, SeqCst) => intrinsics::atomic_cxchgweak_release_seqcst(dst, old, new),
3851 (AcqRel, Relaxed) => intrinsics::atomic_cxchgweak_acqrel_relaxed(dst, old, new),
3852 (AcqRel, Acquire) => intrinsics::atomic_cxchgweak_acqrel_acquire(dst, old, new),
3853 (AcqRel, SeqCst) => intrinsics::atomic_cxchgweak_acqrel_seqcst(dst, old, new),
3854 (SeqCst, Relaxed) => intrinsics::atomic_cxchgweak_seqcst_relaxed(dst, old, new),
3855 (SeqCst, Acquire) => intrinsics::atomic_cxchgweak_seqcst_acquire(dst, old, new),
3856 (SeqCst, SeqCst) => intrinsics::atomic_cxchgweak_seqcst_seqcst(dst, old, new),
3857 (_, AcqRel) => panic!("there is no such thing as an acquire-release failure ordering"),
3858 (_, Release) => panic!("there is no such thing as a release failure ordering"),
3859 }
3860 };
3861 if ok { Ok(val) } else { Err(val) }
3862}
3863
3864#[inline]
3865#[cfg(target_has_atomic)]
3866#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3867unsafe fn atomic_and<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
3868 // SAFETY: the caller must uphold the safety contract for `atomic_and`
3869 unsafe {
3870 match order {
3871 Relaxed => intrinsics::atomic_and_relaxed(dst, val),
3872 Acquire => intrinsics::atomic_and_acquire(dst, val),
3873 Release => intrinsics::atomic_and_release(dst, val),
3874 AcqRel => intrinsics::atomic_and_acqrel(dst, val),
3875 SeqCst => intrinsics::atomic_and_seqcst(dst, val),
3876 }
3877 }
3878}
3879
3880#[inline]
3881#[cfg(target_has_atomic)]
3882#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3883unsafe fn atomic_nand<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
3884 // SAFETY: the caller must uphold the safety contract for `atomic_nand`
3885 unsafe {
3886 match order {
3887 Relaxed => intrinsics::atomic_nand_relaxed(dst, val),
3888 Acquire => intrinsics::atomic_nand_acquire(dst, val),
3889 Release => intrinsics::atomic_nand_release(dst, val),
3890 AcqRel => intrinsics::atomic_nand_acqrel(dst, val),
3891 SeqCst => intrinsics::atomic_nand_seqcst(dst, val),
3892 }
3893 }
3894}
3895
3896#[inline]
3897#[cfg(target_has_atomic)]
3898#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3899unsafe fn atomic_or<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
3900 // SAFETY: the caller must uphold the safety contract for `atomic_or`
3901 unsafe {
3902 match order {
3903 SeqCst => intrinsics::atomic_or_seqcst(dst, val),
3904 Acquire => intrinsics::atomic_or_acquire(dst, val),
3905 Release => intrinsics::atomic_or_release(dst, val),
3906 AcqRel => intrinsics::atomic_or_acqrel(dst, val),
3907 Relaxed => intrinsics::atomic_or_relaxed(dst, val),
3908 }
3909 }
3910}
3911
3912#[inline]
3913#[cfg(target_has_atomic)]
3914#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3915unsafe fn atomic_xor<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
3916 // SAFETY: the caller must uphold the safety contract for `atomic_xor`
3917 unsafe {
3918 match order {
3919 SeqCst => intrinsics::atomic_xor_seqcst(dst, val),
3920 Acquire => intrinsics::atomic_xor_acquire(dst, val),
3921 Release => intrinsics::atomic_xor_release(dst, val),
3922 AcqRel => intrinsics::atomic_xor_acqrel(dst, val),
3923 Relaxed => intrinsics::atomic_xor_relaxed(dst, val),
3924 }
3925 }
3926}
3927
3928/// returns the max value (signed comparison)
3929#[inline]
3930#[cfg(target_has_atomic)]
3931#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3932unsafe fn atomic_max<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
3933 // SAFETY: the caller must uphold the safety contract for `atomic_max`
3934 unsafe {
3935 match order {
3936 Relaxed => intrinsics::atomic_max_relaxed(dst, val),
3937 Acquire => intrinsics::atomic_max_acquire(dst, val),
3938 Release => intrinsics::atomic_max_release(dst, val),
3939 AcqRel => intrinsics::atomic_max_acqrel(dst, val),
3940 SeqCst => intrinsics::atomic_max_seqcst(dst, val),
3941 }
3942 }
3943}
3944
3945/// returns the min value (signed comparison)
3946#[inline]
3947#[cfg(target_has_atomic)]
3948#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3949unsafe fn atomic_min<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
3950 // SAFETY: the caller must uphold the safety contract for `atomic_min`
3951 unsafe {
3952 match order {
3953 Relaxed => intrinsics::atomic_min_relaxed(dst, val),
3954 Acquire => intrinsics::atomic_min_acquire(dst, val),
3955 Release => intrinsics::atomic_min_release(dst, val),
3956 AcqRel => intrinsics::atomic_min_acqrel(dst, val),
3957 SeqCst => intrinsics::atomic_min_seqcst(dst, val),
3958 }
3959 }
3960}
3961
3962/// returns the max value (unsigned comparison)
3963#[inline]
3964#[cfg(target_has_atomic)]
3965#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3966unsafe fn atomic_umax<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
3967 // SAFETY: the caller must uphold the safety contract for `atomic_umax`
3968 unsafe {
3969 match order {
3970 Relaxed => intrinsics::atomic_umax_relaxed(dst, val),
3971 Acquire => intrinsics::atomic_umax_acquire(dst, val),
3972 Release => intrinsics::atomic_umax_release(dst, val),
3973 AcqRel => intrinsics::atomic_umax_acqrel(dst, val),
3974 SeqCst => intrinsics::atomic_umax_seqcst(dst, val),
3975 }
3976 }
3977}
3978
3979/// returns the min value (unsigned comparison)
3980#[inline]
3981#[cfg(target_has_atomic)]
3982#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3983unsafe fn atomic_umin<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
3984 // SAFETY: the caller must uphold the safety contract for `atomic_umin`
3985 unsafe {
3986 match order {
3987 Relaxed => intrinsics::atomic_umin_relaxed(dst, val),
3988 Acquire => intrinsics::atomic_umin_acquire(dst, val),
3989 Release => intrinsics::atomic_umin_release(dst, val),
3990 AcqRel => intrinsics::atomic_umin_acqrel(dst, val),
3991 SeqCst => intrinsics::atomic_umin_seqcst(dst, val),
3992 }
3993 }
3994}
3995
3996/// An atomic fence.
3997///
3998/// Fences create synchronization between themselves and atomic operations or fences in other
3999/// threads. To achieve this, a fence prevents the compiler and CPU from reordering certain types of
4000/// memory operations around it.
4001///
4002/// A fence 'A' which has (at least) [`Release`] ordering semantics, synchronizes
4003/// with a fence 'B' with (at least) [`Acquire`] semantics, if and only if there
4004/// exist operations X and Y, both operating on some atomic object 'm' such
4005/// that A is sequenced before X, Y is sequenced before B and Y observes
4006/// the change to m. This provides a happens-before dependence between A and B.
4007///
4008/// ```text
4009/// Thread 1 Thread 2
4010///
4011/// fence(Release); A --------------
4012/// m.store(3, Relaxed); X --------- |
4013/// | |
4014/// | |
4015/// -------------> Y if m.load(Relaxed) == 3 {
4016/// |-------> B fence(Acquire);
4017/// ...
4018/// }
4019/// ```
4020///
4021/// Note that in the example above, it is crucial that the accesses to `m` are atomic. Fences cannot
4022/// be used to establish synchronization among non-atomic accesses in different threads. However,
4023/// thanks to the happens-before relationship between A and B, any non-atomic accesses that
4024/// happen-before A are now also properly synchronized with any non-atomic accesses that
4025/// happen-after B.
4026///
4027/// Atomic operations with [`Release`] or [`Acquire`] semantics can also synchronize
4028/// with a fence.
4029///
4030/// A fence which has [`SeqCst`] ordering, in addition to having both [`Acquire`]
4031/// and [`Release`] semantics, participates in the global program order of the
4032/// other [`SeqCst`] operations and/or fences.
4033///
4034/// Accepts [`Acquire`], [`Release`], [`AcqRel`] and [`SeqCst`] orderings.
4035///
4036/// # Panics
4037///
4038/// Panics if `order` is [`Relaxed`].
4039///
4040/// # Examples
4041///
4042/// ```
4043/// use std::sync::atomic::AtomicBool;
4044/// use std::sync::atomic::fence;
4045/// use std::sync::atomic::Ordering;
4046///
4047/// // A mutual exclusion primitive based on spinlock.
4048/// pub struct Mutex {
4049/// flag: AtomicBool,
4050/// }
4051///
4052/// impl Mutex {
4053/// pub fn new() -> Mutex {
4054/// Mutex {
4055/// flag: AtomicBool::new(false),
4056/// }
4057/// }
4058///
4059/// pub fn lock(&self) {
4060/// // Wait until the old value is `false`.
4061/// while self
4062/// .flag
4063/// .compare_exchange_weak(false, true, Ordering::Relaxed, Ordering::Relaxed)
4064/// .is_err()
4065/// {}
4066/// // This fence synchronizes-with store in `unlock`.
4067/// fence(Ordering::Acquire);
4068/// }
4069///
4070/// pub fn unlock(&self) {
4071/// self.flag.store(false, Ordering::Release);
4072/// }
4073/// }
4074/// ```
4075#[inline]
4076#[stable(feature = "rust1", since = "1.0.0")]
4077#[rustc_diagnostic_item = "fence"]
4078#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4079pub fn fence(order: Ordering) {
4080 // SAFETY: using an atomic fence is safe.
4081 unsafe {
4082 match order {
4083 Acquire => intrinsics::atomic_fence_acquire(),
4084 Release => intrinsics::atomic_fence_release(),
4085 AcqRel => intrinsics::atomic_fence_acqrel(),
4086 SeqCst => intrinsics::atomic_fence_seqcst(),
4087 Relaxed => panic!("there is no such thing as a relaxed fence"),
4088 }
4089 }
4090}
4091
4092/// A "compiler-only" atomic fence.
4093///
4094/// Like [`fence`], this function establishes synchronization with other atomic operations and
4095/// fences. However, unlike [`fence`], `compiler_fence` only establishes synchronization with
4096/// operations *in the same thread*. This may at first sound rather useless, since code within a
4097/// thread is typically already totally ordered and does not need any further synchronization.
4098/// However, there are cases where code can run on the same thread without being ordered:
4099/// - The most common case is that of a *signal handler*: a signal handler runs in the same thread
4100/// as the code it interrupted, but it is not ordered with respect to that code. `compiler_fence`
4101/// can be used to establish synchronization between a thread and its signal handler, the same way
4102/// that `fence` can be used to establish synchronization across threads.
4103/// - Similar situations can arise in embedded programming with interrupt handlers, or in custom
4104/// implementations of preemptive green threads. In general, `compiler_fence` can establish
4105/// synchronization with code that is guaranteed to run on the same hardware CPU.
4106///
4107/// See [`fence`] for how a fence can be used to achieve synchronization. Note that just like
4108/// [`fence`], synchronization still requires atomic operations to be used in both threads -- it is
4109/// not possible to perform synchronization entirely with fences and non-atomic operations.
4110///
4111/// `compiler_fence` does not emit any machine code, but restricts the kinds of memory re-ordering
4112/// the compiler is allowed to do. `compiler_fence` corresponds to [`atomic_signal_fence`] in C and
4113/// C++.
4114///
4115/// [`atomic_signal_fence`]: https://en.cppreference.com/w/cpp/atomic/atomic_signal_fence
4116///
4117/// # Panics
4118///
4119/// Panics if `order` is [`Relaxed`].
4120///
4121/// # Examples
4122///
4123/// Without the two `compiler_fence` calls, the read of `IMPORTANT_VARIABLE` in `signal_handler`
4124/// is *undefined behavior* due to a data race, despite everything happening in a single thread.
4125/// This is because the signal handler is considered to run concurrently with its associated
4126/// thread, and explicit synchronization is required to pass data between a thread and its
4127/// signal handler. The code below uses two `compiler_fence` calls to establish the usual
4128/// release-acquire synchronization pattern (see [`fence`] for an image).
4129///
4130/// ```
4131/// use std::sync::atomic::AtomicBool;
4132/// use std::sync::atomic::Ordering;
4133/// use std::sync::atomic::compiler_fence;
4134///
4135/// static mut IMPORTANT_VARIABLE: usize = 0;
4136/// static IS_READY: AtomicBool = AtomicBool::new(false);
4137///
4138/// fn main() {
4139/// unsafe { IMPORTANT_VARIABLE = 42 };
4140/// // Marks earlier writes as being released with future relaxed stores.
4141/// compiler_fence(Ordering::Release);
4142/// IS_READY.store(true, Ordering::Relaxed);
4143/// }
4144///
4145/// fn signal_handler() {
4146/// if IS_READY.load(Ordering::Relaxed) {
4147/// // Acquires writes that were released with relaxed stores that we read from.
4148/// compiler_fence(Ordering::Acquire);
4149/// assert_eq!(unsafe { IMPORTANT_VARIABLE }, 42);
4150/// }
4151/// }
4152/// ```
4153#[inline]
4154#[stable(feature = "compiler_fences", since = "1.21.0")]
4155#[rustc_diagnostic_item = "compiler_fence"]
4156#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4157pub fn compiler_fence(order: Ordering) {
4158 // SAFETY: using an atomic fence is safe.
4159 unsafe {
4160 match order {
4161 Acquire => intrinsics::atomic_singlethreadfence_acquire(),
4162 Release => intrinsics::atomic_singlethreadfence_release(),
4163 AcqRel => intrinsics::atomic_singlethreadfence_acqrel(),
4164 SeqCst => intrinsics::atomic_singlethreadfence_seqcst(),
4165 Relaxed => panic!("there is no such thing as a relaxed compiler fence"),
4166 }
4167 }
4168}
4169
4170#[cfg(target_has_atomic_load_store = "8")]
4171#[stable(feature = "atomic_debug", since = "1.3.0")]
4172impl fmt::Debug for AtomicBool {
4173 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4174 fmt::Debug::fmt(&self.load(Ordering::Relaxed), f)
4175 }
4176}
4177
4178#[cfg(target_has_atomic_load_store = "ptr")]
4179#[stable(feature = "atomic_debug", since = "1.3.0")]
4180impl<T> fmt::Debug for AtomicPtr<T> {
4181 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4182 fmt::Debug::fmt(&self.load(Ordering::Relaxed), f)
4183 }
4184}
4185
4186#[cfg(target_has_atomic_load_store = "ptr")]
4187#[stable(feature = "atomic_pointer", since = "1.24.0")]
4188impl<T> fmt::Pointer for AtomicPtr<T> {
4189 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4190 fmt::Pointer::fmt(&self.load(Ordering::Relaxed), f)
4191 }
4192}
4193
4194/// Signals the processor that it is inside a busy-wait spin-loop ("spin lock").
4195///
4196/// This function is deprecated in favor of [`hint::spin_loop`].
4197///
4198/// [`hint::spin_loop`]: crate::hint::spin_loop
4199#[inline]
4200#[stable(feature = "spin_loop_hint", since = "1.24.0")]
4201#[deprecated(since = "1.51.0", note = "use hint::spin_loop instead")]
4202pub fn spin_loop_hint() {
4203 spin_loop()
4204}