core/sync/
atomic.rs

1//! Atomic types
2//!
3//! Atomic types provide primitive shared-memory communication between
4//! threads, and are the building blocks of other concurrent
5//! types.
6//!
7//! This module defines atomic versions of a select number of primitive
8//! types, including [`AtomicBool`], [`AtomicIsize`], [`AtomicUsize`],
9//! [`AtomicI8`], [`AtomicU16`], etc.
10//! Atomic types present operations that, when used correctly, synchronize
11//! updates between threads.
12//!
13//! Atomic variables are safe to share between threads (they implement [`Sync`])
14//! but they do not themselves provide the mechanism for sharing and follow the
15//! [threading model](../../../std/thread/index.html#the-threading-model) of Rust.
16//! The most common way to share an atomic variable is to put it into an [`Arc`][arc] (an
17//! atomically-reference-counted shared pointer).
18//!
19//! [arc]: ../../../std/sync/struct.Arc.html
20//!
21//! Atomic types may be stored in static variables, initialized using
22//! the constant initializers like [`AtomicBool::new`]. Atomic statics
23//! are often used for lazy global initialization.
24//!
25//! ## Memory model for atomic accesses
26//!
27//! Rust atomics currently follow the same rules as [C++20 atomics][cpp], specifically the rules
28//! from the [`intro.races`][cpp-intro.races] section, without the "consume" memory ordering. Since
29//! C++ uses an object-based memory model whereas Rust is access-based, a bit of translation work
30//! has to be done to apply the C++ rules to Rust: whenever C++ talks about "the value of an
31//! object", we understand that to mean the resulting bytes obtained when doing a read. When the C++
32//! standard talks about "the value of an atomic object", this refers to the result of doing an
33//! atomic load (via the operations provided in this module). A "modification of an atomic object"
34//! refers to an atomic store.
35//!
36//! The end result is *almost* equivalent to saying that creating a *shared reference* to one of the
37//! Rust atomic types corresponds to creating an `atomic_ref` in C++, with the `atomic_ref` being
38//! destroyed when the lifetime of the shared reference ends. The main difference is that Rust
39//! permits concurrent atomic and non-atomic reads to the same memory as those cause no issue in the
40//! C++ memory model, they are just forbidden in C++ because memory is partitioned into "atomic
41//! objects" and "non-atomic objects" (with `atomic_ref` temporarily converting a non-atomic object
42//! into an atomic object).
43//!
44//! The most important aspect of this model is that *data races* are undefined behavior. A data race
45//! is defined as conflicting non-synchronized accesses where at least one of the accesses is
46//! non-atomic. Here, accesses are *conflicting* if they affect overlapping regions of memory and at
47//! least one of them is a write. (A `compare_exchange` or `compare_exchange_weak` that does not
48//! succeed is not considered a write.) They are *non-synchronized* if neither of them
49//! *happens-before* the other, according to the happens-before order of the memory model.
50//!
51//! The other possible cause of undefined behavior in the memory model are mixed-size accesses: Rust
52//! inherits the C++ limitation that non-synchronized conflicting atomic accesses may not partially
53//! overlap. In other words, every pair of non-synchronized atomic accesses must be either disjoint,
54//! access the exact same memory (including using the same access size), or both be reads.
55//!
56//! Each atomic access takes an [`Ordering`] which defines how the operation interacts with the
57//! happens-before order. These orderings behave the same as the corresponding [C++20 atomic
58//! orderings][cpp_memory_order]. For more information, see the [nomicon].
59//!
60//! [cpp]: https://en.cppreference.com/w/cpp/atomic
61//! [cpp-intro.races]: https://timsong-cpp.github.io/cppwp/n4868/intro.multithread#intro.races
62//! [cpp_memory_order]: https://en.cppreference.com/w/cpp/atomic/memory_order
63//! [nomicon]: ../../../nomicon/atomics.html
64//!
65//! ```rust,no_run undefined_behavior
66//! use std::sync::atomic::{AtomicU16, AtomicU8, Ordering};
67//! use std::mem::transmute;
68//! use std::thread;
69//!
70//! let atomic = AtomicU16::new(0);
71//!
72//! thread::scope(|s| {
73//!     // This is UB: conflicting non-synchronized accesses, at least one of which is non-atomic.
74//!     s.spawn(|| atomic.store(1, Ordering::Relaxed)); // atomic store
75//!     s.spawn(|| unsafe { atomic.as_ptr().write(2) }); // non-atomic write
76//! });
77//!
78//! thread::scope(|s| {
79//!     // This is fine: the accesses do not conflict (as none of them performs any modification).
80//!     // In C++ this would be disallowed since creating an `atomic_ref` precludes
81//!     // further non-atomic accesses, but Rust does not have that limitation.
82//!     s.spawn(|| atomic.load(Ordering::Relaxed)); // atomic load
83//!     s.spawn(|| unsafe { atomic.as_ptr().read() }); // non-atomic read
84//! });
85//!
86//! thread::scope(|s| {
87//!     // This is fine: `join` synchronizes the code in a way such that the atomic
88//!     // store happens-before the non-atomic write.
89//!     let handle = s.spawn(|| atomic.store(1, Ordering::Relaxed)); // atomic store
90//!     handle.join().expect("thread won't panic"); // synchronize
91//!     s.spawn(|| unsafe { atomic.as_ptr().write(2) }); // non-atomic write
92//! });
93//!
94//! thread::scope(|s| {
95//!     // This is UB: non-synchronized conflicting differently-sized atomic accesses.
96//!     s.spawn(|| atomic.store(1, Ordering::Relaxed));
97//!     s.spawn(|| unsafe {
98//!         let differently_sized = transmute::<&AtomicU16, &AtomicU8>(&atomic);
99//!         differently_sized.store(2, Ordering::Relaxed);
100//!     });
101//! });
102//!
103//! thread::scope(|s| {
104//!     // This is fine: `join` synchronizes the code in a way such that
105//!     // the 1-byte store happens-before the 2-byte store.
106//!     let handle = s.spawn(|| atomic.store(1, Ordering::Relaxed));
107//!     handle.join().expect("thread won't panic");
108//!     s.spawn(|| unsafe {
109//!         let differently_sized = transmute::<&AtomicU16, &AtomicU8>(&atomic);
110//!         differently_sized.store(2, Ordering::Relaxed);
111//!     });
112//! });
113//! ```
114//!
115//! # Portability
116//!
117//! All atomic types in this module are guaranteed to be [lock-free] if they're
118//! available. This means they don't internally acquire a global mutex. Atomic
119//! types and operations are not guaranteed to be wait-free. This means that
120//! operations like `fetch_or` may be implemented with a compare-and-swap loop.
121//!
122//! Atomic operations may be implemented at the instruction layer with
123//! larger-size atomics. For example some platforms use 4-byte atomic
124//! instructions to implement `AtomicI8`. Note that this emulation should not
125//! have an impact on correctness of code, it's just something to be aware of.
126//!
127//! The atomic types in this module might not be available on all platforms. The
128//! atomic types here are all widely available, however, and can generally be
129//! relied upon existing. Some notable exceptions are:
130//!
131//! * PowerPC and MIPS platforms with 32-bit pointers do not have `AtomicU64` or
132//!   `AtomicI64` types.
133//! * Legacy ARM platforms like ARMv4T and ARMv5TE have very limited hardware
134//!   support for atomics. The bare-metal targets disable this module
135//!   entirely, but the Linux targets [use the kernel] to assist (which comes
136//!   with a performance penalty). It's not until ARMv6K onwards that ARM CPUs
137//!   have support for load/store and Compare and Swap (CAS) atomics in hardware.
138//! * ARMv6-M and ARMv8-M baseline targets (`thumbv6m-*` and
139//!   `thumbv8m.base-*`) only provide `load` and `store` operations, and do
140//!   not support Compare and Swap (CAS) operations, such as `swap`,
141//!   `fetch_add`, etc. Full CAS support is available on ARMv7-M and ARMv8-M
142//!   Mainline (`thumbv7m-*`, `thumbv7em*` and `thumbv8m.main-*`).
143//!
144//! [use the kernel]: https://www.kernel.org/doc/Documentation/arm/kernel_user_helpers.txt
145//!
146//! Note that future platforms may be added that also do not have support for
147//! some atomic operations. Maximally portable code will want to be careful
148//! about which atomic types are used. `AtomicUsize` and `AtomicIsize` are
149//! generally the most portable, but even then they're not available everywhere.
150//! For reference, the `std` library requires `AtomicBool`s and pointer-sized atomics, although
151//! `core` does not.
152//!
153//! The `#[cfg(target_has_atomic)]` attribute can be used to conditionally
154//! compile based on the target's supported bit widths. It is a key-value
155//! option set for each supported size, with values "8", "16", "32", "64",
156//! "128", and "ptr" for pointer-sized atomics.
157//!
158//! [lock-free]: https://en.wikipedia.org/wiki/Non-blocking_algorithm
159//!
160//! # Atomic accesses to read-only memory
161//!
162//! In general, *all* atomic accesses on read-only memory are undefined behavior. For instance, attempting
163//! to do a `compare_exchange` that will definitely fail (making it conceptually a read-only
164//! operation) can still cause a segmentation fault if the underlying memory page is mapped read-only. Since
165//! atomic `load`s might be implemented using compare-exchange operations, even a `load` can fault
166//! on read-only memory.
167//!
168//! For the purpose of this section, "read-only memory" is defined as memory that is read-only in
169//! the underlying target, i.e., the pages are mapped with a read-only flag and any attempt to write
170//! will cause a page fault. In particular, an `&u128` reference that points to memory that is
171//! read-write mapped is *not* considered to point to "read-only memory". In Rust, almost all memory
172//! is read-write; the only exceptions are memory created by `const` items or `static` items without
173//! interior mutability, and memory that was specifically marked as read-only by the operating
174//! system via platform-specific APIs.
175//!
176//! As an exception from the general rule stated above, "sufficiently small" atomic loads with
177//! `Ordering::Relaxed` are implemented in a way that works on read-only memory, and are hence not
178//! undefined behavior. The exact size limit for what makes a load "sufficiently small" varies
179//! depending on the target:
180//!
181//! | `target_arch` | Size limit |
182//! |---------------|---------|
183//! | `x86`, `arm`, `loongarch32`, `mips`, `mips32r6`, `powerpc`, `riscv32`, `sparc`, `hexagon` | 4 bytes |
184//! | `x86_64`, `aarch64`, `loongarch64`, `mips64`, `mips64r6`, `powerpc64`, `riscv64`, `sparc64`, `s390x` | 8 bytes |
185//!
186//! Atomics loads that are larger than this limit as well as atomic loads with ordering other
187//! than `Relaxed`, as well as *all* atomic loads on targets not listed in the table, might still be
188//! read-only under certain conditions, but that is not a stable guarantee and should not be relied
189//! upon.
190//!
191//! If you need to do an acquire load on read-only memory, you can do a relaxed load followed by an
192//! acquire fence instead.
193//!
194//! # Examples
195//!
196//! A simple spinlock:
197//!
198//! ```ignore-wasm
199//! use std::sync::Arc;
200//! use std::sync::atomic::{AtomicUsize, Ordering};
201//! use std::{hint, thread};
202//!
203//! fn main() {
204//!     let spinlock = Arc::new(AtomicUsize::new(1));
205//!
206//!     let spinlock_clone = Arc::clone(&spinlock);
207//!
208//!     let thread = thread::spawn(move || {
209//!         spinlock_clone.store(0, Ordering::Release);
210//!     });
211//!
212//!     // Wait for the other thread to release the lock
213//!     while spinlock.load(Ordering::Acquire) != 0 {
214//!         hint::spin_loop();
215//!     }
216//!
217//!     if let Err(panic) = thread.join() {
218//!         println!("Thread had an error: {panic:?}");
219//!     }
220//! }
221//! ```
222//!
223//! Keep a global count of live threads:
224//!
225//! ```
226//! use std::sync::atomic::{AtomicUsize, Ordering};
227//!
228//! static GLOBAL_THREAD_COUNT: AtomicUsize = AtomicUsize::new(0);
229//!
230//! // Note that Relaxed ordering doesn't synchronize anything
231//! // except the global thread counter itself.
232//! let old_thread_count = GLOBAL_THREAD_COUNT.fetch_add(1, Ordering::Relaxed);
233//! // Note that this number may not be true at the moment of printing
234//! // because some other thread may have changed static value already.
235//! println!("live threads: {}", old_thread_count + 1);
236//! ```
237
238#![stable(feature = "rust1", since = "1.0.0")]
239#![cfg_attr(not(target_has_atomic_load_store = "8"), allow(dead_code))]
240#![cfg_attr(not(target_has_atomic_load_store = "8"), allow(unused_imports))]
241#![rustc_diagnostic_item = "atomic_mod"]
242// Clippy complains about the pattern of "safe function calling unsafe function taking pointers".
243// This happens with AtomicPtr intrinsics but is fine, as the pointers clippy is concerned about
244// are just normal values that get loaded/stored, but not dereferenced.
245#![allow(clippy::not_unsafe_ptr_arg_deref)]
246
247use self::Ordering::*;
248use crate::cell::UnsafeCell;
249use crate::hint::spin_loop;
250use crate::intrinsics::AtomicOrdering as AO;
251use crate::{fmt, intrinsics};
252
253trait Sealed {}
254
255/// A marker trait for primitive types which can be modified atomically.
256///
257/// This is an implementation detail for <code>[Atomic]\<T></code> which may disappear or be replaced at any time.
258///
259/// # Safety
260///
261/// Types implementing this trait must be primitives that can be modified atomically.
262///
263/// The associated `Self::AtomicInner` type must have the same size and bit validity as `Self`,
264/// but may have a higher alignment requirement, so the following `transmute`s are sound:
265///
266/// - `&mut Self::AtomicInner` as `&mut Self`
267/// - `Self` as `Self::AtomicInner` or the reverse
268#[unstable(
269    feature = "atomic_internals",
270    reason = "implementation detail which may disappear or be replaced at any time",
271    issue = "none"
272)]
273#[expect(private_bounds)]
274pub unsafe trait AtomicPrimitive: Sized + Copy + Sealed {
275    /// Temporary implementation detail.
276    type AtomicInner: Sized;
277}
278
279macro impl_atomic_primitive(
280    $Atom:ident $(<$T:ident>)? ($Primitive:ty),
281    size($size:literal),
282    align($align:literal) $(,)?
283) {
284    impl $(<$T>)? Sealed for $Primitive {}
285
286    #[unstable(
287        feature = "atomic_internals",
288        reason = "implementation detail which may disappear or be replaced at any time",
289        issue = "none"
290    )]
291    #[cfg(target_has_atomic_load_store = $size)]
292    unsafe impl $(<$T>)? AtomicPrimitive for $Primitive {
293        type AtomicInner = $Atom $(<$T>)?;
294    }
295}
296
297impl_atomic_primitive!(AtomicBool(bool), size("8"), align(1));
298impl_atomic_primitive!(AtomicI8(i8), size("8"), align(1));
299impl_atomic_primitive!(AtomicU8(u8), size("8"), align(1));
300impl_atomic_primitive!(AtomicI16(i16), size("16"), align(2));
301impl_atomic_primitive!(AtomicU16(u16), size("16"), align(2));
302impl_atomic_primitive!(AtomicI32(i32), size("32"), align(4));
303impl_atomic_primitive!(AtomicU32(u32), size("32"), align(4));
304impl_atomic_primitive!(AtomicI64(i64), size("64"), align(8));
305impl_atomic_primitive!(AtomicU64(u64), size("64"), align(8));
306impl_atomic_primitive!(AtomicI128(i128), size("128"), align(16));
307impl_atomic_primitive!(AtomicU128(u128), size("128"), align(16));
308
309#[cfg(target_pointer_width = "16")]
310impl_atomic_primitive!(AtomicIsize(isize), size("ptr"), align(2));
311#[cfg(target_pointer_width = "32")]
312impl_atomic_primitive!(AtomicIsize(isize), size("ptr"), align(4));
313#[cfg(target_pointer_width = "64")]
314impl_atomic_primitive!(AtomicIsize(isize), size("ptr"), align(8));
315
316#[cfg(target_pointer_width = "16")]
317impl_atomic_primitive!(AtomicUsize(usize), size("ptr"), align(2));
318#[cfg(target_pointer_width = "32")]
319impl_atomic_primitive!(AtomicUsize(usize), size("ptr"), align(4));
320#[cfg(target_pointer_width = "64")]
321impl_atomic_primitive!(AtomicUsize(usize), size("ptr"), align(8));
322
323#[cfg(target_pointer_width = "16")]
324impl_atomic_primitive!(AtomicPtr<T>(*mut T), size("ptr"), align(2));
325#[cfg(target_pointer_width = "32")]
326impl_atomic_primitive!(AtomicPtr<T>(*mut T), size("ptr"), align(4));
327#[cfg(target_pointer_width = "64")]
328impl_atomic_primitive!(AtomicPtr<T>(*mut T), size("ptr"), align(8));
329
330/// A memory location which can be safely modified from multiple threads.
331///
332/// This has the same size and bit validity as the underlying type `T`. However,
333/// the alignment of this type is always equal to its size, even on targets where
334/// `T` has alignment less than its size.
335///
336/// For more about the differences between atomic types and non-atomic types as
337/// well as information about the portability of this type, please see the
338/// [module-level documentation].
339///
340/// **Note:** This type is only available on platforms that support atomic loads
341/// and stores of `T`.
342///
343/// [module-level documentation]: crate::sync::atomic
344#[unstable(feature = "generic_atomic", issue = "130539")]
345pub type Atomic<T> = <T as AtomicPrimitive>::AtomicInner;
346
347// Some architectures don't have byte-sized atomics, which results in LLVM
348// emulating them using a LL/SC loop. However for AtomicBool we can take
349// advantage of the fact that it only ever contains 0 or 1 and use atomic OR/AND
350// instead, which LLVM can emulate using a larger atomic OR/AND operation.
351//
352// This list should only contain architectures which have word-sized atomic-or/
353// atomic-and instructions but don't natively support byte-sized atomics.
354#[cfg(target_has_atomic = "8")]
355const EMULATE_ATOMIC_BOOL: bool = cfg!(any(
356    target_arch = "riscv32",
357    target_arch = "riscv64",
358    target_arch = "loongarch32",
359    target_arch = "loongarch64"
360));
361
362/// A boolean type which can be safely shared between threads.
363///
364/// This type has the same size, alignment, and bit validity as a [`bool`].
365///
366/// **Note**: This type is only available on platforms that support atomic
367/// loads and stores of `u8`.
368#[cfg(target_has_atomic_load_store = "8")]
369#[stable(feature = "rust1", since = "1.0.0")]
370#[rustc_diagnostic_item = "AtomicBool"]
371#[repr(C, align(1))]
372pub struct AtomicBool {
373    v: UnsafeCell<u8>,
374}
375
376#[cfg(target_has_atomic_load_store = "8")]
377#[stable(feature = "rust1", since = "1.0.0")]
378impl Default for AtomicBool {
379    /// Creates an `AtomicBool` initialized to `false`.
380    #[inline]
381    fn default() -> Self {
382        Self::new(false)
383    }
384}
385
386// Send is implicitly implemented for AtomicBool.
387#[cfg(target_has_atomic_load_store = "8")]
388#[stable(feature = "rust1", since = "1.0.0")]
389unsafe impl Sync for AtomicBool {}
390
391/// A raw pointer type which can be safely shared between threads.
392///
393/// This type has the same size and bit validity as a `*mut T`.
394///
395/// **Note**: This type is only available on platforms that support atomic
396/// loads and stores of pointers. Its size depends on the target pointer's size.
397#[cfg(target_has_atomic_load_store = "ptr")]
398#[stable(feature = "rust1", since = "1.0.0")]
399#[rustc_diagnostic_item = "AtomicPtr"]
400#[cfg_attr(target_pointer_width = "16", repr(C, align(2)))]
401#[cfg_attr(target_pointer_width = "32", repr(C, align(4)))]
402#[cfg_attr(target_pointer_width = "64", repr(C, align(8)))]
403pub struct AtomicPtr<T> {
404    p: UnsafeCell<*mut T>,
405}
406
407#[cfg(target_has_atomic_load_store = "ptr")]
408#[stable(feature = "rust1", since = "1.0.0")]
409impl<T> Default for AtomicPtr<T> {
410    /// Creates a null `AtomicPtr<T>`.
411    fn default() -> AtomicPtr<T> {
412        AtomicPtr::new(crate::ptr::null_mut())
413    }
414}
415
416#[cfg(target_has_atomic_load_store = "ptr")]
417#[stable(feature = "rust1", since = "1.0.0")]
418unsafe impl<T> Send for AtomicPtr<T> {}
419#[cfg(target_has_atomic_load_store = "ptr")]
420#[stable(feature = "rust1", since = "1.0.0")]
421unsafe impl<T> Sync for AtomicPtr<T> {}
422
423/// Atomic memory orderings
424///
425/// Memory orderings specify the way atomic operations synchronize memory.
426/// In its weakest [`Ordering::Relaxed`], only the memory directly touched by the
427/// operation is synchronized. On the other hand, a store-load pair of [`Ordering::SeqCst`]
428/// operations synchronize other memory while additionally preserving a total order of such
429/// operations across all threads.
430///
431/// Rust's memory orderings are [the same as those of
432/// C++20](https://en.cppreference.com/w/cpp/atomic/memory_order).
433///
434/// For more information see the [nomicon].
435///
436/// [nomicon]: ../../../nomicon/atomics.html
437#[stable(feature = "rust1", since = "1.0.0")]
438#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
439#[non_exhaustive]
440#[rustc_diagnostic_item = "Ordering"]
441pub enum Ordering {
442    /// No ordering constraints, only atomic operations.
443    ///
444    /// Corresponds to [`memory_order_relaxed`] in C++20.
445    ///
446    /// [`memory_order_relaxed`]: https://en.cppreference.com/w/cpp/atomic/memory_order#Relaxed_ordering
447    #[stable(feature = "rust1", since = "1.0.0")]
448    Relaxed,
449    /// When coupled with a store, all previous operations become ordered
450    /// before any load of this value with [`Acquire`] (or stronger) ordering.
451    /// In particular, all previous writes become visible to all threads
452    /// that perform an [`Acquire`] (or stronger) load of this value.
453    ///
454    /// Notice that using this ordering for an operation that combines loads
455    /// and stores leads to a [`Relaxed`] load operation!
456    ///
457    /// This ordering is only applicable for operations that can perform a store.
458    ///
459    /// Corresponds to [`memory_order_release`] in C++20.
460    ///
461    /// [`memory_order_release`]: https://en.cppreference.com/w/cpp/atomic/memory_order#Release-Acquire_ordering
462    #[stable(feature = "rust1", since = "1.0.0")]
463    Release,
464    /// When coupled with a load, if the loaded value was written by a store operation with
465    /// [`Release`] (or stronger) ordering, then all subsequent operations
466    /// become ordered after that store. In particular, all subsequent loads will see data
467    /// written before the store.
468    ///
469    /// Notice that using this ordering for an operation that combines loads
470    /// and stores leads to a [`Relaxed`] store operation!
471    ///
472    /// This ordering is only applicable for operations that can perform a load.
473    ///
474    /// Corresponds to [`memory_order_acquire`] in C++20.
475    ///
476    /// [`memory_order_acquire`]: https://en.cppreference.com/w/cpp/atomic/memory_order#Release-Acquire_ordering
477    #[stable(feature = "rust1", since = "1.0.0")]
478    Acquire,
479    /// Has the effects of both [`Acquire`] and [`Release`] together:
480    /// For loads it uses [`Acquire`] ordering. For stores it uses the [`Release`] ordering.
481    ///
482    /// Notice that in the case of `compare_and_swap`, it is possible that the operation ends up
483    /// not performing any store and hence it has just [`Acquire`] ordering. However,
484    /// `AcqRel` will never perform [`Relaxed`] accesses.
485    ///
486    /// This ordering is only applicable for operations that combine both loads and stores.
487    ///
488    /// Corresponds to [`memory_order_acq_rel`] in C++20.
489    ///
490    /// [`memory_order_acq_rel`]: https://en.cppreference.com/w/cpp/atomic/memory_order#Release-Acquire_ordering
491    #[stable(feature = "rust1", since = "1.0.0")]
492    AcqRel,
493    /// Like [`Acquire`]/[`Release`]/[`AcqRel`] (for load, store, and load-with-store
494    /// operations, respectively) with the additional guarantee that all threads see all
495    /// sequentially consistent operations in the same order.
496    ///
497    /// Corresponds to [`memory_order_seq_cst`] in C++20.
498    ///
499    /// [`memory_order_seq_cst`]: https://en.cppreference.com/w/cpp/atomic/memory_order#Sequentially-consistent_ordering
500    #[stable(feature = "rust1", since = "1.0.0")]
501    SeqCst,
502}
503
504/// An [`AtomicBool`] initialized to `false`.
505#[cfg(target_has_atomic_load_store = "8")]
506#[stable(feature = "rust1", since = "1.0.0")]
507#[deprecated(
508    since = "1.34.0",
509    note = "the `new` function is now preferred",
510    suggestion = "AtomicBool::new(false)"
511)]
512pub const ATOMIC_BOOL_INIT: AtomicBool = AtomicBool::new(false);
513
514#[cfg(target_has_atomic_load_store = "8")]
515impl AtomicBool {
516    /// Creates a new `AtomicBool`.
517    ///
518    /// # Examples
519    ///
520    /// ```
521    /// use std::sync::atomic::AtomicBool;
522    ///
523    /// let atomic_true = AtomicBool::new(true);
524    /// let atomic_false = AtomicBool::new(false);
525    /// ```
526    #[inline]
527    #[stable(feature = "rust1", since = "1.0.0")]
528    #[rustc_const_stable(feature = "const_atomic_new", since = "1.24.0")]
529    #[must_use]
530    pub const fn new(v: bool) -> AtomicBool {
531        AtomicBool { v: UnsafeCell::new(v as u8) }
532    }
533
534    /// Creates a new `AtomicBool` from a pointer.
535    ///
536    /// # Examples
537    ///
538    /// ```
539    /// use std::sync::atomic::{self, AtomicBool};
540    ///
541    /// // Get a pointer to an allocated value
542    /// let ptr: *mut bool = Box::into_raw(Box::new(false));
543    ///
544    /// assert!(ptr.cast::<AtomicBool>().is_aligned());
545    ///
546    /// {
547    ///     // Create an atomic view of the allocated value
548    ///     let atomic = unsafe { AtomicBool::from_ptr(ptr) };
549    ///
550    ///     // Use `atomic` for atomic operations, possibly share it with other threads
551    ///     atomic.store(true, atomic::Ordering::Relaxed);
552    /// }
553    ///
554    /// // It's ok to non-atomically access the value behind `ptr`,
555    /// // since the reference to the atomic ended its lifetime in the block above
556    /// assert_eq!(unsafe { *ptr }, true);
557    ///
558    /// // Deallocate the value
559    /// unsafe { drop(Box::from_raw(ptr)) }
560    /// ```
561    ///
562    /// # Safety
563    ///
564    /// * `ptr` must be aligned to `align_of::<AtomicBool>()` (note that this is always true, since
565    ///   `align_of::<AtomicBool>() == 1`).
566    /// * `ptr` must be [valid] for both reads and writes for the whole lifetime `'a`.
567    /// * You must adhere to the [Memory model for atomic accesses]. In particular, it is not
568    ///   allowed to mix conflicting atomic and non-atomic accesses, or atomic accesses of different
569    ///   sizes, without synchronization.
570    ///
571    /// [valid]: crate::ptr#safety
572    /// [Memory model for atomic accesses]: self#memory-model-for-atomic-accesses
573    #[inline]
574    #[stable(feature = "atomic_from_ptr", since = "1.75.0")]
575    #[rustc_const_stable(feature = "const_atomic_from_ptr", since = "1.84.0")]
576    pub const unsafe fn from_ptr<'a>(ptr: *mut bool) -> &'a AtomicBool {
577        // SAFETY: guaranteed by the caller
578        unsafe { &*ptr.cast() }
579    }
580
581    /// Returns a mutable reference to the underlying [`bool`].
582    ///
583    /// This is safe because the mutable reference guarantees that no other threads are
584    /// concurrently accessing the atomic data.
585    ///
586    /// # Examples
587    ///
588    /// ```
589    /// use std::sync::atomic::{AtomicBool, Ordering};
590    ///
591    /// let mut some_bool = AtomicBool::new(true);
592    /// assert_eq!(*some_bool.get_mut(), true);
593    /// *some_bool.get_mut() = false;
594    /// assert_eq!(some_bool.load(Ordering::SeqCst), false);
595    /// ```
596    #[inline]
597    #[stable(feature = "atomic_access", since = "1.15.0")]
598    pub fn get_mut(&mut self) -> &mut bool {
599        // SAFETY: the mutable reference guarantees unique ownership.
600        unsafe { &mut *(self.v.get() as *mut bool) }
601    }
602
603    /// Gets atomic access to a `&mut bool`.
604    ///
605    /// # Examples
606    ///
607    /// ```
608    /// #![feature(atomic_from_mut)]
609    /// use std::sync::atomic::{AtomicBool, Ordering};
610    ///
611    /// let mut some_bool = true;
612    /// let a = AtomicBool::from_mut(&mut some_bool);
613    /// a.store(false, Ordering::Relaxed);
614    /// assert_eq!(some_bool, false);
615    /// ```
616    #[inline]
617    #[cfg(target_has_atomic_equal_alignment = "8")]
618    #[unstable(feature = "atomic_from_mut", issue = "76314")]
619    pub fn from_mut(v: &mut bool) -> &mut Self {
620        // SAFETY: the mutable reference guarantees unique ownership, and
621        // alignment of both `bool` and `Self` is 1.
622        unsafe { &mut *(v as *mut bool as *mut Self) }
623    }
624
625    /// Gets non-atomic access to a `&mut [AtomicBool]` slice.
626    ///
627    /// This is safe because the mutable reference guarantees that no other threads are
628    /// concurrently accessing the atomic data.
629    ///
630    /// # Examples
631    ///
632    /// ```ignore-wasm
633    /// #![feature(atomic_from_mut)]
634    /// use std::sync::atomic::{AtomicBool, Ordering};
635    ///
636    /// let mut some_bools = [const { AtomicBool::new(false) }; 10];
637    ///
638    /// let view: &mut [bool] = AtomicBool::get_mut_slice(&mut some_bools);
639    /// assert_eq!(view, [false; 10]);
640    /// view[..5].copy_from_slice(&[true; 5]);
641    ///
642    /// std::thread::scope(|s| {
643    ///     for t in &some_bools[..5] {
644    ///         s.spawn(move || assert_eq!(t.load(Ordering::Relaxed), true));
645    ///     }
646    ///
647    ///     for f in &some_bools[5..] {
648    ///         s.spawn(move || assert_eq!(f.load(Ordering::Relaxed), false));
649    ///     }
650    /// });
651    /// ```
652    #[inline]
653    #[unstable(feature = "atomic_from_mut", issue = "76314")]
654    pub fn get_mut_slice(this: &mut [Self]) -> &mut [bool] {
655        // SAFETY: the mutable reference guarantees unique ownership.
656        unsafe { &mut *(this as *mut [Self] as *mut [bool]) }
657    }
658
659    /// Gets atomic access to a `&mut [bool]` slice.
660    ///
661    /// # Examples
662    ///
663    /// ```rust,ignore-wasm
664    /// #![feature(atomic_from_mut)]
665    /// use std::sync::atomic::{AtomicBool, Ordering};
666    ///
667    /// let mut some_bools = [false; 10];
668    /// let a = &*AtomicBool::from_mut_slice(&mut some_bools);
669    /// std::thread::scope(|s| {
670    ///     for i in 0..a.len() {
671    ///         s.spawn(move || a[i].store(true, Ordering::Relaxed));
672    ///     }
673    /// });
674    /// assert_eq!(some_bools, [true; 10]);
675    /// ```
676    #[inline]
677    #[cfg(target_has_atomic_equal_alignment = "8")]
678    #[unstable(feature = "atomic_from_mut", issue = "76314")]
679    pub fn from_mut_slice(v: &mut [bool]) -> &mut [Self] {
680        // SAFETY: the mutable reference guarantees unique ownership, and
681        // alignment of both `bool` and `Self` is 1.
682        unsafe { &mut *(v as *mut [bool] as *mut [Self]) }
683    }
684
685    /// Consumes the atomic and returns the contained value.
686    ///
687    /// This is safe because passing `self` by value guarantees that no other threads are
688    /// concurrently accessing the atomic data.
689    ///
690    /// # Examples
691    ///
692    /// ```
693    /// use std::sync::atomic::AtomicBool;
694    ///
695    /// let some_bool = AtomicBool::new(true);
696    /// assert_eq!(some_bool.into_inner(), true);
697    /// ```
698    #[inline]
699    #[stable(feature = "atomic_access", since = "1.15.0")]
700    #[rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0")]
701    pub const fn into_inner(self) -> bool {
702        self.v.into_inner() != 0
703    }
704
705    /// Loads a value from the bool.
706    ///
707    /// `load` takes an [`Ordering`] argument which describes the memory ordering
708    /// of this operation. Possible values are [`SeqCst`], [`Acquire`] and [`Relaxed`].
709    ///
710    /// # Panics
711    ///
712    /// Panics if `order` is [`Release`] or [`AcqRel`].
713    ///
714    /// # Examples
715    ///
716    /// ```
717    /// use std::sync::atomic::{AtomicBool, Ordering};
718    ///
719    /// let some_bool = AtomicBool::new(true);
720    ///
721    /// assert_eq!(some_bool.load(Ordering::Relaxed), true);
722    /// ```
723    #[inline]
724    #[stable(feature = "rust1", since = "1.0.0")]
725    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
726    pub fn load(&self, order: Ordering) -> bool {
727        // SAFETY: any data races are prevented by atomic intrinsics and the raw
728        // pointer passed in is valid because we got it from a reference.
729        unsafe { atomic_load(self.v.get(), order) != 0 }
730    }
731
732    /// Stores a value into the bool.
733    ///
734    /// `store` takes an [`Ordering`] argument which describes the memory ordering
735    /// of this operation. Possible values are [`SeqCst`], [`Release`] and [`Relaxed`].
736    ///
737    /// # Panics
738    ///
739    /// Panics if `order` is [`Acquire`] or [`AcqRel`].
740    ///
741    /// # Examples
742    ///
743    /// ```
744    /// use std::sync::atomic::{AtomicBool, Ordering};
745    ///
746    /// let some_bool = AtomicBool::new(true);
747    ///
748    /// some_bool.store(false, Ordering::Relaxed);
749    /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
750    /// ```
751    #[inline]
752    #[stable(feature = "rust1", since = "1.0.0")]
753    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
754    #[rustc_should_not_be_called_on_const_items]
755    pub fn store(&self, val: bool, order: Ordering) {
756        // SAFETY: any data races are prevented by atomic intrinsics and the raw
757        // pointer passed in is valid because we got it from a reference.
758        unsafe {
759            atomic_store(self.v.get(), val as u8, order);
760        }
761    }
762
763    /// Stores a value into the bool, returning the previous value.
764    ///
765    /// `swap` takes an [`Ordering`] argument which describes the memory ordering
766    /// of this operation. All ordering modes are possible. Note that using
767    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
768    /// using [`Release`] makes the load part [`Relaxed`].
769    ///
770    /// **Note:** This method is only available on platforms that support atomic
771    /// operations on `u8`.
772    ///
773    /// # Examples
774    ///
775    /// ```
776    /// use std::sync::atomic::{AtomicBool, Ordering};
777    ///
778    /// let some_bool = AtomicBool::new(true);
779    ///
780    /// assert_eq!(some_bool.swap(false, Ordering::Relaxed), true);
781    /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
782    /// ```
783    #[inline]
784    #[stable(feature = "rust1", since = "1.0.0")]
785    #[cfg(target_has_atomic = "8")]
786    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
787    #[rustc_should_not_be_called_on_const_items]
788    pub fn swap(&self, val: bool, order: Ordering) -> bool {
789        if EMULATE_ATOMIC_BOOL {
790            if val { self.fetch_or(true, order) } else { self.fetch_and(false, order) }
791        } else {
792            // SAFETY: data races are prevented by atomic intrinsics.
793            unsafe { atomic_swap(self.v.get(), val as u8, order) != 0 }
794        }
795    }
796
797    /// Stores a value into the [`bool`] if the current value is the same as the `current` value.
798    ///
799    /// The return value is always the previous value. If it is equal to `current`, then the value
800    /// was updated.
801    ///
802    /// `compare_and_swap` also takes an [`Ordering`] argument which describes the memory
803    /// ordering of this operation. Notice that even when using [`AcqRel`], the operation
804    /// might fail and hence just perform an `Acquire` load, but not have `Release` semantics.
805    /// Using [`Acquire`] makes the store part of this operation [`Relaxed`] if it
806    /// happens, and using [`Release`] makes the load part [`Relaxed`].
807    ///
808    /// **Note:** This method is only available on platforms that support atomic
809    /// operations on `u8`.
810    ///
811    /// # Migrating to `compare_exchange` and `compare_exchange_weak`
812    ///
813    /// `compare_and_swap` is equivalent to `compare_exchange` with the following mapping for
814    /// memory orderings:
815    ///
816    /// Original | Success | Failure
817    /// -------- | ------- | -------
818    /// Relaxed  | Relaxed | Relaxed
819    /// Acquire  | Acquire | Acquire
820    /// Release  | Release | Relaxed
821    /// AcqRel   | AcqRel  | Acquire
822    /// SeqCst   | SeqCst  | SeqCst
823    ///
824    /// `compare_and_swap` and `compare_exchange` also differ in their return type. You can use
825    /// `compare_exchange(...).unwrap_or_else(|x| x)` to recover the behavior of `compare_and_swap`,
826    /// but in most cases it is more idiomatic to check whether the return value is `Ok` or `Err`
827    /// rather than to infer success vs failure based on the value that was read.
828    ///
829    /// During migration, consider whether it makes sense to use `compare_exchange_weak` instead.
830    /// `compare_exchange_weak` is allowed to fail spuriously even when the comparison succeeds,
831    /// which allows the compiler to generate better assembly code when the compare and swap
832    /// is used in a loop.
833    ///
834    /// # Examples
835    ///
836    /// ```
837    /// use std::sync::atomic::{AtomicBool, Ordering};
838    ///
839    /// let some_bool = AtomicBool::new(true);
840    ///
841    /// assert_eq!(some_bool.compare_and_swap(true, false, Ordering::Relaxed), true);
842    /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
843    ///
844    /// assert_eq!(some_bool.compare_and_swap(true, true, Ordering::Relaxed), false);
845    /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
846    /// ```
847    #[inline]
848    #[stable(feature = "rust1", since = "1.0.0")]
849    #[deprecated(
850        since = "1.50.0",
851        note = "Use `compare_exchange` or `compare_exchange_weak` instead"
852    )]
853    #[cfg(target_has_atomic = "8")]
854    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
855    #[rustc_should_not_be_called_on_const_items]
856    pub fn compare_and_swap(&self, current: bool, new: bool, order: Ordering) -> bool {
857        match self.compare_exchange(current, new, order, strongest_failure_ordering(order)) {
858            Ok(x) => x,
859            Err(x) => x,
860        }
861    }
862
863    /// Stores a value into the [`bool`] if the current value is the same as the `current` value.
864    ///
865    /// The return value is a result indicating whether the new value was written and containing
866    /// the previous value. On success this value is guaranteed to be equal to `current`.
867    ///
868    /// `compare_exchange` takes two [`Ordering`] arguments to describe the memory
869    /// ordering of this operation. `success` describes the required ordering for the
870    /// read-modify-write operation that takes place if the comparison with `current` succeeds.
871    /// `failure` describes the required ordering for the load operation that takes place when
872    /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
873    /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
874    /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
875    ///
876    /// **Note:** This method is only available on platforms that support atomic
877    /// operations on `u8`.
878    ///
879    /// # Examples
880    ///
881    /// ```
882    /// use std::sync::atomic::{AtomicBool, Ordering};
883    ///
884    /// let some_bool = AtomicBool::new(true);
885    ///
886    /// assert_eq!(some_bool.compare_exchange(true,
887    ///                                       false,
888    ///                                       Ordering::Acquire,
889    ///                                       Ordering::Relaxed),
890    ///            Ok(true));
891    /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
892    ///
893    /// assert_eq!(some_bool.compare_exchange(true, true,
894    ///                                       Ordering::SeqCst,
895    ///                                       Ordering::Acquire),
896    ///            Err(false));
897    /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
898    /// ```
899    ///
900    /// # Considerations
901    ///
902    /// `compare_exchange` is a [compare-and-swap operation] and thus exhibits the usual downsides
903    /// of CAS operations. In particular, a load of the value followed by a successful
904    /// `compare_exchange` with the previous load *does not ensure* that other threads have not
905    /// changed the value in the interim. This is usually important when the *equality* check in
906    /// the `compare_exchange` is being used to check the *identity* of a value, but equality
907    /// does not necessarily imply identity. In this case, `compare_exchange` can lead to the
908    /// [ABA problem].
909    ///
910    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
911    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
912    #[inline]
913    #[stable(feature = "extended_compare_and_swap", since = "1.10.0")]
914    #[doc(alias = "compare_and_swap")]
915    #[cfg(target_has_atomic = "8")]
916    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
917    #[rustc_should_not_be_called_on_const_items]
918    pub fn compare_exchange(
919        &self,
920        current: bool,
921        new: bool,
922        success: Ordering,
923        failure: Ordering,
924    ) -> Result<bool, bool> {
925        if EMULATE_ATOMIC_BOOL {
926            // Pick the strongest ordering from success and failure.
927            let order = match (success, failure) {
928                (SeqCst, _) => SeqCst,
929                (_, SeqCst) => SeqCst,
930                (AcqRel, _) => AcqRel,
931                (_, AcqRel) => {
932                    panic!("there is no such thing as an acquire-release failure ordering")
933                }
934                (Release, Acquire) => AcqRel,
935                (Acquire, _) => Acquire,
936                (_, Acquire) => Acquire,
937                (Release, Relaxed) => Release,
938                (_, Release) => panic!("there is no such thing as a release failure ordering"),
939                (Relaxed, Relaxed) => Relaxed,
940            };
941            let old = if current == new {
942                // This is a no-op, but we still need to perform the operation
943                // for memory ordering reasons.
944                self.fetch_or(false, order)
945            } else {
946                // This sets the value to the new one and returns the old one.
947                self.swap(new, order)
948            };
949            if old == current { Ok(old) } else { Err(old) }
950        } else {
951            // SAFETY: data races are prevented by atomic intrinsics.
952            match unsafe {
953                atomic_compare_exchange(self.v.get(), current as u8, new as u8, success, failure)
954            } {
955                Ok(x) => Ok(x != 0),
956                Err(x) => Err(x != 0),
957            }
958        }
959    }
960
961    /// Stores a value into the [`bool`] if the current value is the same as the `current` value.
962    ///
963    /// Unlike [`AtomicBool::compare_exchange`], this function is allowed to spuriously fail even when the
964    /// comparison succeeds, which can result in more efficient code on some platforms. The
965    /// return value is a result indicating whether the new value was written and containing the
966    /// previous value.
967    ///
968    /// `compare_exchange_weak` takes two [`Ordering`] arguments to describe the memory
969    /// ordering of this operation. `success` describes the required ordering for the
970    /// read-modify-write operation that takes place if the comparison with `current` succeeds.
971    /// `failure` describes the required ordering for the load operation that takes place when
972    /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
973    /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
974    /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
975    ///
976    /// **Note:** This method is only available on platforms that support atomic
977    /// operations on `u8`.
978    ///
979    /// # Examples
980    ///
981    /// ```
982    /// use std::sync::atomic::{AtomicBool, Ordering};
983    ///
984    /// let val = AtomicBool::new(false);
985    ///
986    /// let new = true;
987    /// let mut old = val.load(Ordering::Relaxed);
988    /// loop {
989    ///     match val.compare_exchange_weak(old, new, Ordering::SeqCst, Ordering::Relaxed) {
990    ///         Ok(_) => break,
991    ///         Err(x) => old = x,
992    ///     }
993    /// }
994    /// ```
995    ///
996    /// # Considerations
997    ///
998    /// `compare_exchange` is a [compare-and-swap operation] and thus exhibits the usual downsides
999    /// of CAS operations. In particular, a load of the value followed by a successful
1000    /// `compare_exchange` with the previous load *does not ensure* that other threads have not
1001    /// changed the value in the interim. This is usually important when the *equality* check in
1002    /// the `compare_exchange` is being used to check the *identity* of a value, but equality
1003    /// does not necessarily imply identity. In this case, `compare_exchange` can lead to the
1004    /// [ABA problem].
1005    ///
1006    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1007    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
1008    #[inline]
1009    #[stable(feature = "extended_compare_and_swap", since = "1.10.0")]
1010    #[doc(alias = "compare_and_swap")]
1011    #[cfg(target_has_atomic = "8")]
1012    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1013    #[rustc_should_not_be_called_on_const_items]
1014    pub fn compare_exchange_weak(
1015        &self,
1016        current: bool,
1017        new: bool,
1018        success: Ordering,
1019        failure: Ordering,
1020    ) -> Result<bool, bool> {
1021        if EMULATE_ATOMIC_BOOL {
1022            return self.compare_exchange(current, new, success, failure);
1023        }
1024
1025        // SAFETY: data races are prevented by atomic intrinsics.
1026        match unsafe {
1027            atomic_compare_exchange_weak(self.v.get(), current as u8, new as u8, success, failure)
1028        } {
1029            Ok(x) => Ok(x != 0),
1030            Err(x) => Err(x != 0),
1031        }
1032    }
1033
1034    /// Logical "and" with a boolean value.
1035    ///
1036    /// Performs a logical "and" operation on the current value and the argument `val`, and sets
1037    /// the new value to the result.
1038    ///
1039    /// Returns the previous value.
1040    ///
1041    /// `fetch_and` takes an [`Ordering`] argument which describes the memory ordering
1042    /// of this operation. All ordering modes are possible. Note that using
1043    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
1044    /// using [`Release`] makes the load part [`Relaxed`].
1045    ///
1046    /// **Note:** This method is only available on platforms that support atomic
1047    /// operations on `u8`.
1048    ///
1049    /// # Examples
1050    ///
1051    /// ```
1052    /// use std::sync::atomic::{AtomicBool, Ordering};
1053    ///
1054    /// let foo = AtomicBool::new(true);
1055    /// assert_eq!(foo.fetch_and(false, Ordering::SeqCst), true);
1056    /// assert_eq!(foo.load(Ordering::SeqCst), false);
1057    ///
1058    /// let foo = AtomicBool::new(true);
1059    /// assert_eq!(foo.fetch_and(true, Ordering::SeqCst), true);
1060    /// assert_eq!(foo.load(Ordering::SeqCst), true);
1061    ///
1062    /// let foo = AtomicBool::new(false);
1063    /// assert_eq!(foo.fetch_and(false, Ordering::SeqCst), false);
1064    /// assert_eq!(foo.load(Ordering::SeqCst), false);
1065    /// ```
1066    #[inline]
1067    #[stable(feature = "rust1", since = "1.0.0")]
1068    #[cfg(target_has_atomic = "8")]
1069    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1070    #[rustc_should_not_be_called_on_const_items]
1071    pub fn fetch_and(&self, val: bool, order: Ordering) -> bool {
1072        // SAFETY: data races are prevented by atomic intrinsics.
1073        unsafe { atomic_and(self.v.get(), val as u8, order) != 0 }
1074    }
1075
1076    /// Logical "nand" with a boolean value.
1077    ///
1078    /// Performs a logical "nand" operation on the current value and the argument `val`, and sets
1079    /// the new value to the result.
1080    ///
1081    /// Returns the previous value.
1082    ///
1083    /// `fetch_nand` takes an [`Ordering`] argument which describes the memory ordering
1084    /// of this operation. All ordering modes are possible. Note that using
1085    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
1086    /// using [`Release`] makes the load part [`Relaxed`].
1087    ///
1088    /// **Note:** This method is only available on platforms that support atomic
1089    /// operations on `u8`.
1090    ///
1091    /// # Examples
1092    ///
1093    /// ```
1094    /// use std::sync::atomic::{AtomicBool, Ordering};
1095    ///
1096    /// let foo = AtomicBool::new(true);
1097    /// assert_eq!(foo.fetch_nand(false, Ordering::SeqCst), true);
1098    /// assert_eq!(foo.load(Ordering::SeqCst), true);
1099    ///
1100    /// let foo = AtomicBool::new(true);
1101    /// assert_eq!(foo.fetch_nand(true, Ordering::SeqCst), true);
1102    /// assert_eq!(foo.load(Ordering::SeqCst) as usize, 0);
1103    /// assert_eq!(foo.load(Ordering::SeqCst), false);
1104    ///
1105    /// let foo = AtomicBool::new(false);
1106    /// assert_eq!(foo.fetch_nand(false, Ordering::SeqCst), false);
1107    /// assert_eq!(foo.load(Ordering::SeqCst), true);
1108    /// ```
1109    #[inline]
1110    #[stable(feature = "rust1", since = "1.0.0")]
1111    #[cfg(target_has_atomic = "8")]
1112    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1113    #[rustc_should_not_be_called_on_const_items]
1114    pub fn fetch_nand(&self, val: bool, order: Ordering) -> bool {
1115        // We can't use atomic_nand here because it can result in a bool with
1116        // an invalid value. This happens because the atomic operation is done
1117        // with an 8-bit integer internally, which would set the upper 7 bits.
1118        // So we just use fetch_xor or swap instead.
1119        if val {
1120            // !(x & true) == !x
1121            // We must invert the bool.
1122            self.fetch_xor(true, order)
1123        } else {
1124            // !(x & false) == true
1125            // We must set the bool to true.
1126            self.swap(true, order)
1127        }
1128    }
1129
1130    /// Logical "or" with a boolean value.
1131    ///
1132    /// Performs a logical "or" operation on the current value and the argument `val`, and sets the
1133    /// new value to the result.
1134    ///
1135    /// Returns the previous value.
1136    ///
1137    /// `fetch_or` takes an [`Ordering`] argument which describes the memory ordering
1138    /// of this operation. All ordering modes are possible. Note that using
1139    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
1140    /// using [`Release`] makes the load part [`Relaxed`].
1141    ///
1142    /// **Note:** This method is only available on platforms that support atomic
1143    /// operations on `u8`.
1144    ///
1145    /// # Examples
1146    ///
1147    /// ```
1148    /// use std::sync::atomic::{AtomicBool, Ordering};
1149    ///
1150    /// let foo = AtomicBool::new(true);
1151    /// assert_eq!(foo.fetch_or(false, Ordering::SeqCst), true);
1152    /// assert_eq!(foo.load(Ordering::SeqCst), true);
1153    ///
1154    /// let foo = AtomicBool::new(true);
1155    /// assert_eq!(foo.fetch_or(true, Ordering::SeqCst), true);
1156    /// assert_eq!(foo.load(Ordering::SeqCst), true);
1157    ///
1158    /// let foo = AtomicBool::new(false);
1159    /// assert_eq!(foo.fetch_or(false, Ordering::SeqCst), false);
1160    /// assert_eq!(foo.load(Ordering::SeqCst), false);
1161    /// ```
1162    #[inline]
1163    #[stable(feature = "rust1", since = "1.0.0")]
1164    #[cfg(target_has_atomic = "8")]
1165    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1166    #[rustc_should_not_be_called_on_const_items]
1167    pub fn fetch_or(&self, val: bool, order: Ordering) -> bool {
1168        // SAFETY: data races are prevented by atomic intrinsics.
1169        unsafe { atomic_or(self.v.get(), val as u8, order) != 0 }
1170    }
1171
1172    /// Logical "xor" with a boolean value.
1173    ///
1174    /// Performs a logical "xor" operation on the current value and the argument `val`, and sets
1175    /// the new value to the result.
1176    ///
1177    /// Returns the previous value.
1178    ///
1179    /// `fetch_xor` takes an [`Ordering`] argument which describes the memory ordering
1180    /// of this operation. All ordering modes are possible. Note that using
1181    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
1182    /// using [`Release`] makes the load part [`Relaxed`].
1183    ///
1184    /// **Note:** This method is only available on platforms that support atomic
1185    /// operations on `u8`.
1186    ///
1187    /// # Examples
1188    ///
1189    /// ```
1190    /// use std::sync::atomic::{AtomicBool, Ordering};
1191    ///
1192    /// let foo = AtomicBool::new(true);
1193    /// assert_eq!(foo.fetch_xor(false, Ordering::SeqCst), true);
1194    /// assert_eq!(foo.load(Ordering::SeqCst), true);
1195    ///
1196    /// let foo = AtomicBool::new(true);
1197    /// assert_eq!(foo.fetch_xor(true, Ordering::SeqCst), true);
1198    /// assert_eq!(foo.load(Ordering::SeqCst), false);
1199    ///
1200    /// let foo = AtomicBool::new(false);
1201    /// assert_eq!(foo.fetch_xor(false, Ordering::SeqCst), false);
1202    /// assert_eq!(foo.load(Ordering::SeqCst), false);
1203    /// ```
1204    #[inline]
1205    #[stable(feature = "rust1", since = "1.0.0")]
1206    #[cfg(target_has_atomic = "8")]
1207    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1208    #[rustc_should_not_be_called_on_const_items]
1209    pub fn fetch_xor(&self, val: bool, order: Ordering) -> bool {
1210        // SAFETY: data races are prevented by atomic intrinsics.
1211        unsafe { atomic_xor(self.v.get(), val as u8, order) != 0 }
1212    }
1213
1214    /// Logical "not" with a boolean value.
1215    ///
1216    /// Performs a logical "not" operation on the current value, and sets
1217    /// the new value to the result.
1218    ///
1219    /// Returns the previous value.
1220    ///
1221    /// `fetch_not` takes an [`Ordering`] argument which describes the memory ordering
1222    /// of this operation. All ordering modes are possible. Note that using
1223    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
1224    /// using [`Release`] makes the load part [`Relaxed`].
1225    ///
1226    /// **Note:** This method is only available on platforms that support atomic
1227    /// operations on `u8`.
1228    ///
1229    /// # Examples
1230    ///
1231    /// ```
1232    /// use std::sync::atomic::{AtomicBool, Ordering};
1233    ///
1234    /// let foo = AtomicBool::new(true);
1235    /// assert_eq!(foo.fetch_not(Ordering::SeqCst), true);
1236    /// assert_eq!(foo.load(Ordering::SeqCst), false);
1237    ///
1238    /// let foo = AtomicBool::new(false);
1239    /// assert_eq!(foo.fetch_not(Ordering::SeqCst), false);
1240    /// assert_eq!(foo.load(Ordering::SeqCst), true);
1241    /// ```
1242    #[inline]
1243    #[stable(feature = "atomic_bool_fetch_not", since = "1.81.0")]
1244    #[cfg(target_has_atomic = "8")]
1245    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1246    #[rustc_should_not_be_called_on_const_items]
1247    pub fn fetch_not(&self, order: Ordering) -> bool {
1248        self.fetch_xor(true, order)
1249    }
1250
1251    /// Returns a mutable pointer to the underlying [`bool`].
1252    ///
1253    /// Doing non-atomic reads and writes on the resulting boolean can be a data race.
1254    /// This method is mostly useful for FFI, where the function signature may use
1255    /// `*mut bool` instead of `&AtomicBool`.
1256    ///
1257    /// Returning an `*mut` pointer from a shared reference to this atomic is safe because the
1258    /// atomic types work with interior mutability. All modifications of an atomic change the value
1259    /// through a shared reference, and can do so safely as long as they use atomic operations. Any
1260    /// use of the returned raw pointer requires an `unsafe` block and still has to uphold the
1261    /// requirements of the [memory model].
1262    ///
1263    /// # Examples
1264    ///
1265    /// ```ignore (extern-declaration)
1266    /// # fn main() {
1267    /// use std::sync::atomic::AtomicBool;
1268    ///
1269    /// extern "C" {
1270    ///     fn my_atomic_op(arg: *mut bool);
1271    /// }
1272    ///
1273    /// let mut atomic = AtomicBool::new(true);
1274    /// unsafe {
1275    ///     my_atomic_op(atomic.as_ptr());
1276    /// }
1277    /// # }
1278    /// ```
1279    ///
1280    /// [memory model]: self#memory-model-for-atomic-accesses
1281    #[inline]
1282    #[stable(feature = "atomic_as_ptr", since = "1.70.0")]
1283    #[rustc_const_stable(feature = "atomic_as_ptr", since = "1.70.0")]
1284    #[rustc_never_returns_null_ptr]
1285    #[rustc_should_not_be_called_on_const_items]
1286    pub const fn as_ptr(&self) -> *mut bool {
1287        self.v.get().cast()
1288    }
1289
1290    /// Fetches the value, and applies a function to it that returns an optional
1291    /// new value. Returns a `Result` of `Ok(previous_value)` if the function
1292    /// returned `Some(_)`, else `Err(previous_value)`.
1293    ///
1294    /// Note: This may call the function multiple times if the value has been
1295    /// changed from other threads in the meantime, as long as the function
1296    /// returns `Some(_)`, but the function will have been applied only once to
1297    /// the stored value.
1298    ///
1299    /// `fetch_update` takes two [`Ordering`] arguments to describe the memory
1300    /// ordering of this operation. The first describes the required ordering for
1301    /// when the operation finally succeeds while the second describes the
1302    /// required ordering for loads. These correspond to the success and failure
1303    /// orderings of [`AtomicBool::compare_exchange`] respectively.
1304    ///
1305    /// Using [`Acquire`] as success ordering makes the store part of this
1306    /// operation [`Relaxed`], and using [`Release`] makes the final successful
1307    /// load [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`],
1308    /// [`Acquire`] or [`Relaxed`].
1309    ///
1310    /// **Note:** This method is only available on platforms that support atomic
1311    /// operations on `u8`.
1312    ///
1313    /// # Considerations
1314    ///
1315    /// This method is not magic; it is not provided by the hardware, and does not act like a
1316    /// critical section or mutex.
1317    ///
1318    /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
1319    /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem].
1320    ///
1321    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1322    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
1323    ///
1324    /// # Examples
1325    ///
1326    /// ```rust
1327    /// use std::sync::atomic::{AtomicBool, Ordering};
1328    ///
1329    /// let x = AtomicBool::new(false);
1330    /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(false));
1331    /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(!x)), Ok(false));
1332    /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(!x)), Ok(true));
1333    /// assert_eq!(x.load(Ordering::SeqCst), false);
1334    /// ```
1335    #[inline]
1336    #[stable(feature = "atomic_fetch_update", since = "1.53.0")]
1337    #[cfg(target_has_atomic = "8")]
1338    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1339    #[rustc_should_not_be_called_on_const_items]
1340    pub fn fetch_update<F>(
1341        &self,
1342        set_order: Ordering,
1343        fetch_order: Ordering,
1344        mut f: F,
1345    ) -> Result<bool, bool>
1346    where
1347        F: FnMut(bool) -> Option<bool>,
1348    {
1349        let mut prev = self.load(fetch_order);
1350        while let Some(next) = f(prev) {
1351            match self.compare_exchange_weak(prev, next, set_order, fetch_order) {
1352                x @ Ok(_) => return x,
1353                Err(next_prev) => prev = next_prev,
1354            }
1355        }
1356        Err(prev)
1357    }
1358
1359    /// Fetches the value, and applies a function to it that returns an optional
1360    /// new value. Returns a `Result` of `Ok(previous_value)` if the function
1361    /// returned `Some(_)`, else `Err(previous_value)`.
1362    ///
1363    /// See also: [`update`](`AtomicBool::update`).
1364    ///
1365    /// Note: This may call the function multiple times if the value has been
1366    /// changed from other threads in the meantime, as long as the function
1367    /// returns `Some(_)`, but the function will have been applied only once to
1368    /// the stored value.
1369    ///
1370    /// `try_update` takes two [`Ordering`] arguments to describe the memory
1371    /// ordering of this operation. The first describes the required ordering for
1372    /// when the operation finally succeeds while the second describes the
1373    /// required ordering for loads. These correspond to the success and failure
1374    /// orderings of [`AtomicBool::compare_exchange`] respectively.
1375    ///
1376    /// Using [`Acquire`] as success ordering makes the store part of this
1377    /// operation [`Relaxed`], and using [`Release`] makes the final successful
1378    /// load [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`],
1379    /// [`Acquire`] or [`Relaxed`].
1380    ///
1381    /// **Note:** This method is only available on platforms that support atomic
1382    /// operations on `u8`.
1383    ///
1384    /// # Considerations
1385    ///
1386    /// This method is not magic; it is not provided by the hardware, and does not act like a
1387    /// critical section or mutex.
1388    ///
1389    /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
1390    /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem].
1391    ///
1392    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1393    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
1394    ///
1395    /// # Examples
1396    ///
1397    /// ```rust
1398    /// #![feature(atomic_try_update)]
1399    /// use std::sync::atomic::{AtomicBool, Ordering};
1400    ///
1401    /// let x = AtomicBool::new(false);
1402    /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(false));
1403    /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(!x)), Ok(false));
1404    /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(!x)), Ok(true));
1405    /// assert_eq!(x.load(Ordering::SeqCst), false);
1406    /// ```
1407    #[inline]
1408    #[unstable(feature = "atomic_try_update", issue = "135894")]
1409    #[cfg(target_has_atomic = "8")]
1410    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1411    #[rustc_should_not_be_called_on_const_items]
1412    pub fn try_update(
1413        &self,
1414        set_order: Ordering,
1415        fetch_order: Ordering,
1416        f: impl FnMut(bool) -> Option<bool>,
1417    ) -> Result<bool, bool> {
1418        // FIXME(atomic_try_update): this is currently an unstable alias to `fetch_update`;
1419        //      when stabilizing, turn `fetch_update` into a deprecated alias to `try_update`.
1420        self.fetch_update(set_order, fetch_order, f)
1421    }
1422
1423    /// Fetches the value, applies a function to it that it return a new value.
1424    /// The new value is stored and the old value is returned.
1425    ///
1426    /// See also: [`try_update`](`AtomicBool::try_update`).
1427    ///
1428    /// Note: This may call the function multiple times if the value has been changed from other threads in
1429    /// the meantime, but the function will have been applied only once to the stored value.
1430    ///
1431    /// `update` takes two [`Ordering`] arguments to describe the memory
1432    /// ordering of this operation. The first describes the required ordering for
1433    /// when the operation finally succeeds while the second describes the
1434    /// required ordering for loads. These correspond to the success and failure
1435    /// orderings of [`AtomicBool::compare_exchange`] respectively.
1436    ///
1437    /// Using [`Acquire`] as success ordering makes the store part
1438    /// of this operation [`Relaxed`], and using [`Release`] makes the final successful load
1439    /// [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
1440    ///
1441    /// **Note:** This method is only available on platforms that support atomic operations on `u8`.
1442    ///
1443    /// # Considerations
1444    ///
1445    /// This method is not magic; it is not provided by the hardware, and does not act like a
1446    /// critical section or mutex.
1447    ///
1448    /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
1449    /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem].
1450    ///
1451    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1452    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
1453    ///
1454    /// # Examples
1455    ///
1456    /// ```rust
1457    /// #![feature(atomic_try_update)]
1458    ///
1459    /// use std::sync::atomic::{AtomicBool, Ordering};
1460    ///
1461    /// let x = AtomicBool::new(false);
1462    /// assert_eq!(x.update(Ordering::SeqCst, Ordering::SeqCst, |x| !x), false);
1463    /// assert_eq!(x.update(Ordering::SeqCst, Ordering::SeqCst, |x| !x), true);
1464    /// assert_eq!(x.load(Ordering::SeqCst), false);
1465    /// ```
1466    #[inline]
1467    #[unstable(feature = "atomic_try_update", issue = "135894")]
1468    #[cfg(target_has_atomic = "8")]
1469    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1470    #[rustc_should_not_be_called_on_const_items]
1471    pub fn update(
1472        &self,
1473        set_order: Ordering,
1474        fetch_order: Ordering,
1475        mut f: impl FnMut(bool) -> bool,
1476    ) -> bool {
1477        let mut prev = self.load(fetch_order);
1478        loop {
1479            match self.compare_exchange_weak(prev, f(prev), set_order, fetch_order) {
1480                Ok(x) => break x,
1481                Err(next_prev) => prev = next_prev,
1482            }
1483        }
1484    }
1485}
1486
1487#[cfg(target_has_atomic_load_store = "ptr")]
1488impl<T> AtomicPtr<T> {
1489    /// Creates a new `AtomicPtr`.
1490    ///
1491    /// # Examples
1492    ///
1493    /// ```
1494    /// use std::sync::atomic::AtomicPtr;
1495    ///
1496    /// let ptr = &mut 5;
1497    /// let atomic_ptr = AtomicPtr::new(ptr);
1498    /// ```
1499    #[inline]
1500    #[stable(feature = "rust1", since = "1.0.0")]
1501    #[rustc_const_stable(feature = "const_atomic_new", since = "1.24.0")]
1502    pub const fn new(p: *mut T) -> AtomicPtr<T> {
1503        AtomicPtr { p: UnsafeCell::new(p) }
1504    }
1505
1506    /// Creates a new `AtomicPtr` from a pointer.
1507    ///
1508    /// # Examples
1509    ///
1510    /// ```
1511    /// use std::sync::atomic::{self, AtomicPtr};
1512    ///
1513    /// // Get a pointer to an allocated value
1514    /// let ptr: *mut *mut u8 = Box::into_raw(Box::new(std::ptr::null_mut()));
1515    ///
1516    /// assert!(ptr.cast::<AtomicPtr<u8>>().is_aligned());
1517    ///
1518    /// {
1519    ///     // Create an atomic view of the allocated value
1520    ///     let atomic = unsafe { AtomicPtr::from_ptr(ptr) };
1521    ///
1522    ///     // Use `atomic` for atomic operations, possibly share it with other threads
1523    ///     atomic.store(std::ptr::NonNull::dangling().as_ptr(), atomic::Ordering::Relaxed);
1524    /// }
1525    ///
1526    /// // It's ok to non-atomically access the value behind `ptr`,
1527    /// // since the reference to the atomic ended its lifetime in the block above
1528    /// assert!(!unsafe { *ptr }.is_null());
1529    ///
1530    /// // Deallocate the value
1531    /// unsafe { drop(Box::from_raw(ptr)) }
1532    /// ```
1533    ///
1534    /// # Safety
1535    ///
1536    /// * `ptr` must be aligned to `align_of::<AtomicPtr<T>>()` (note that on some platforms this
1537    ///   can be bigger than `align_of::<*mut T>()`).
1538    /// * `ptr` must be [valid] for both reads and writes for the whole lifetime `'a`.
1539    /// * You must adhere to the [Memory model for atomic accesses]. In particular, it is not
1540    ///   allowed to mix conflicting atomic and non-atomic accesses, or atomic accesses of different
1541    ///   sizes, without synchronization.
1542    ///
1543    /// [valid]: crate::ptr#safety
1544    /// [Memory model for atomic accesses]: self#memory-model-for-atomic-accesses
1545    #[inline]
1546    #[stable(feature = "atomic_from_ptr", since = "1.75.0")]
1547    #[rustc_const_stable(feature = "const_atomic_from_ptr", since = "1.84.0")]
1548    pub const unsafe fn from_ptr<'a>(ptr: *mut *mut T) -> &'a AtomicPtr<T> {
1549        // SAFETY: guaranteed by the caller
1550        unsafe { &*ptr.cast() }
1551    }
1552
1553    /// Returns a mutable reference to the underlying pointer.
1554    ///
1555    /// This is safe because the mutable reference guarantees that no other threads are
1556    /// concurrently accessing the atomic data.
1557    ///
1558    /// # Examples
1559    ///
1560    /// ```
1561    /// use std::sync::atomic::{AtomicPtr, Ordering};
1562    ///
1563    /// let mut data = 10;
1564    /// let mut atomic_ptr = AtomicPtr::new(&mut data);
1565    /// let mut other_data = 5;
1566    /// *atomic_ptr.get_mut() = &mut other_data;
1567    /// assert_eq!(unsafe { *atomic_ptr.load(Ordering::SeqCst) }, 5);
1568    /// ```
1569    #[inline]
1570    #[stable(feature = "atomic_access", since = "1.15.0")]
1571    pub fn get_mut(&mut self) -> &mut *mut T {
1572        self.p.get_mut()
1573    }
1574
1575    /// Gets atomic access to a pointer.
1576    ///
1577    /// **Note:** This function is only available on targets where `AtomicPtr<T>` has the same alignment as `*const T`
1578    ///
1579    /// # Examples
1580    ///
1581    /// ```
1582    /// #![feature(atomic_from_mut)]
1583    /// use std::sync::atomic::{AtomicPtr, Ordering};
1584    ///
1585    /// let mut data = 123;
1586    /// let mut some_ptr = &mut data as *mut i32;
1587    /// let a = AtomicPtr::from_mut(&mut some_ptr);
1588    /// let mut other_data = 456;
1589    /// a.store(&mut other_data, Ordering::Relaxed);
1590    /// assert_eq!(unsafe { *some_ptr }, 456);
1591    /// ```
1592    #[inline]
1593    #[cfg(target_has_atomic_equal_alignment = "ptr")]
1594    #[unstable(feature = "atomic_from_mut", issue = "76314")]
1595    pub fn from_mut(v: &mut *mut T) -> &mut Self {
1596        let [] = [(); align_of::<AtomicPtr<()>>() - align_of::<*mut ()>()];
1597        // SAFETY:
1598        //  - the mutable reference guarantees unique ownership.
1599        //  - the alignment of `*mut T` and `Self` is the same on all platforms
1600        //    supported by rust, as verified above.
1601        unsafe { &mut *(v as *mut *mut T as *mut Self) }
1602    }
1603
1604    /// Gets non-atomic access to a `&mut [AtomicPtr]` slice.
1605    ///
1606    /// This is safe because the mutable reference guarantees that no other threads are
1607    /// concurrently accessing the atomic data.
1608    ///
1609    /// # Examples
1610    ///
1611    /// ```ignore-wasm
1612    /// #![feature(atomic_from_mut)]
1613    /// use std::ptr::null_mut;
1614    /// use std::sync::atomic::{AtomicPtr, Ordering};
1615    ///
1616    /// let mut some_ptrs = [const { AtomicPtr::new(null_mut::<String>()) }; 10];
1617    ///
1618    /// let view: &mut [*mut String] = AtomicPtr::get_mut_slice(&mut some_ptrs);
1619    /// assert_eq!(view, [null_mut::<String>(); 10]);
1620    /// view
1621    ///     .iter_mut()
1622    ///     .enumerate()
1623    ///     .for_each(|(i, ptr)| *ptr = Box::into_raw(Box::new(format!("iteration#{i}"))));
1624    ///
1625    /// std::thread::scope(|s| {
1626    ///     for ptr in &some_ptrs {
1627    ///         s.spawn(move || {
1628    ///             let ptr = ptr.load(Ordering::Relaxed);
1629    ///             assert!(!ptr.is_null());
1630    ///
1631    ///             let name = unsafe { Box::from_raw(ptr) };
1632    ///             println!("Hello, {name}!");
1633    ///         });
1634    ///     }
1635    /// });
1636    /// ```
1637    #[inline]
1638    #[unstable(feature = "atomic_from_mut", issue = "76314")]
1639    pub fn get_mut_slice(this: &mut [Self]) -> &mut [*mut T] {
1640        // SAFETY: the mutable reference guarantees unique ownership.
1641        unsafe { &mut *(this as *mut [Self] as *mut [*mut T]) }
1642    }
1643
1644    /// Gets atomic access to a slice of pointers.
1645    ///
1646    /// **Note:** This function is only available on targets where `AtomicPtr<T>` has the same alignment as `*const T`
1647    ///
1648    /// # Examples
1649    ///
1650    /// ```ignore-wasm
1651    /// #![feature(atomic_from_mut)]
1652    /// use std::ptr::null_mut;
1653    /// use std::sync::atomic::{AtomicPtr, Ordering};
1654    ///
1655    /// let mut some_ptrs = [null_mut::<String>(); 10];
1656    /// let a = &*AtomicPtr::from_mut_slice(&mut some_ptrs);
1657    /// std::thread::scope(|s| {
1658    ///     for i in 0..a.len() {
1659    ///         s.spawn(move || {
1660    ///             let name = Box::new(format!("thread{i}"));
1661    ///             a[i].store(Box::into_raw(name), Ordering::Relaxed);
1662    ///         });
1663    ///     }
1664    /// });
1665    /// for p in some_ptrs {
1666    ///     assert!(!p.is_null());
1667    ///     let name = unsafe { Box::from_raw(p) };
1668    ///     println!("Hello, {name}!");
1669    /// }
1670    /// ```
1671    #[inline]
1672    #[cfg(target_has_atomic_equal_alignment = "ptr")]
1673    #[unstable(feature = "atomic_from_mut", issue = "76314")]
1674    pub fn from_mut_slice(v: &mut [*mut T]) -> &mut [Self] {
1675        // SAFETY:
1676        //  - the mutable reference guarantees unique ownership.
1677        //  - the alignment of `*mut T` and `Self` is the same on all platforms
1678        //    supported by rust, as verified above.
1679        unsafe { &mut *(v as *mut [*mut T] as *mut [Self]) }
1680    }
1681
1682    /// Consumes the atomic and returns the contained value.
1683    ///
1684    /// This is safe because passing `self` by value guarantees that no other threads are
1685    /// concurrently accessing the atomic data.
1686    ///
1687    /// # Examples
1688    ///
1689    /// ```
1690    /// use std::sync::atomic::AtomicPtr;
1691    ///
1692    /// let mut data = 5;
1693    /// let atomic_ptr = AtomicPtr::new(&mut data);
1694    /// assert_eq!(unsafe { *atomic_ptr.into_inner() }, 5);
1695    /// ```
1696    #[inline]
1697    #[stable(feature = "atomic_access", since = "1.15.0")]
1698    #[rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0")]
1699    pub const fn into_inner(self) -> *mut T {
1700        self.p.into_inner()
1701    }
1702
1703    /// Loads a value from the pointer.
1704    ///
1705    /// `load` takes an [`Ordering`] argument which describes the memory ordering
1706    /// of this operation. Possible values are [`SeqCst`], [`Acquire`] and [`Relaxed`].
1707    ///
1708    /// # Panics
1709    ///
1710    /// Panics if `order` is [`Release`] or [`AcqRel`].
1711    ///
1712    /// # Examples
1713    ///
1714    /// ```
1715    /// use std::sync::atomic::{AtomicPtr, Ordering};
1716    ///
1717    /// let ptr = &mut 5;
1718    /// let some_ptr = AtomicPtr::new(ptr);
1719    ///
1720    /// let value = some_ptr.load(Ordering::Relaxed);
1721    /// ```
1722    #[inline]
1723    #[stable(feature = "rust1", since = "1.0.0")]
1724    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1725    pub fn load(&self, order: Ordering) -> *mut T {
1726        // SAFETY: data races are prevented by atomic intrinsics.
1727        unsafe { atomic_load(self.p.get(), order) }
1728    }
1729
1730    /// Stores a value into the pointer.
1731    ///
1732    /// `store` takes an [`Ordering`] argument which describes the memory ordering
1733    /// of this operation. Possible values are [`SeqCst`], [`Release`] and [`Relaxed`].
1734    ///
1735    /// # Panics
1736    ///
1737    /// Panics if `order` is [`Acquire`] or [`AcqRel`].
1738    ///
1739    /// # Examples
1740    ///
1741    /// ```
1742    /// use std::sync::atomic::{AtomicPtr, Ordering};
1743    ///
1744    /// let ptr = &mut 5;
1745    /// let some_ptr = AtomicPtr::new(ptr);
1746    ///
1747    /// let other_ptr = &mut 10;
1748    ///
1749    /// some_ptr.store(other_ptr, Ordering::Relaxed);
1750    /// ```
1751    #[inline]
1752    #[stable(feature = "rust1", since = "1.0.0")]
1753    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1754    #[rustc_should_not_be_called_on_const_items]
1755    pub fn store(&self, ptr: *mut T, order: Ordering) {
1756        // SAFETY: data races are prevented by atomic intrinsics.
1757        unsafe {
1758            atomic_store(self.p.get(), ptr, order);
1759        }
1760    }
1761
1762    /// Stores a value into the pointer, returning the previous value.
1763    ///
1764    /// `swap` takes an [`Ordering`] argument which describes the memory ordering
1765    /// of this operation. All ordering modes are possible. Note that using
1766    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
1767    /// using [`Release`] makes the load part [`Relaxed`].
1768    ///
1769    /// **Note:** This method is only available on platforms that support atomic
1770    /// operations on pointers.
1771    ///
1772    /// # Examples
1773    ///
1774    /// ```
1775    /// use std::sync::atomic::{AtomicPtr, Ordering};
1776    ///
1777    /// let ptr = &mut 5;
1778    /// let some_ptr = AtomicPtr::new(ptr);
1779    ///
1780    /// let other_ptr = &mut 10;
1781    ///
1782    /// let value = some_ptr.swap(other_ptr, Ordering::Relaxed);
1783    /// ```
1784    #[inline]
1785    #[stable(feature = "rust1", since = "1.0.0")]
1786    #[cfg(target_has_atomic = "ptr")]
1787    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1788    #[rustc_should_not_be_called_on_const_items]
1789    pub fn swap(&self, ptr: *mut T, order: Ordering) -> *mut T {
1790        // SAFETY: data races are prevented by atomic intrinsics.
1791        unsafe { atomic_swap(self.p.get(), ptr, order) }
1792    }
1793
1794    /// Stores a value into the pointer if the current value is the same as the `current` value.
1795    ///
1796    /// The return value is always the previous value. If it is equal to `current`, then the value
1797    /// was updated.
1798    ///
1799    /// `compare_and_swap` also takes an [`Ordering`] argument which describes the memory
1800    /// ordering of this operation. Notice that even when using [`AcqRel`], the operation
1801    /// might fail and hence just perform an `Acquire` load, but not have `Release` semantics.
1802    /// Using [`Acquire`] makes the store part of this operation [`Relaxed`] if it
1803    /// happens, and using [`Release`] makes the load part [`Relaxed`].
1804    ///
1805    /// **Note:** This method is only available on platforms that support atomic
1806    /// operations on pointers.
1807    ///
1808    /// # Migrating to `compare_exchange` and `compare_exchange_weak`
1809    ///
1810    /// `compare_and_swap` is equivalent to `compare_exchange` with the following mapping for
1811    /// memory orderings:
1812    ///
1813    /// Original | Success | Failure
1814    /// -------- | ------- | -------
1815    /// Relaxed  | Relaxed | Relaxed
1816    /// Acquire  | Acquire | Acquire
1817    /// Release  | Release | Relaxed
1818    /// AcqRel   | AcqRel  | Acquire
1819    /// SeqCst   | SeqCst  | SeqCst
1820    ///
1821    /// `compare_and_swap` and `compare_exchange` also differ in their return type. You can use
1822    /// `compare_exchange(...).unwrap_or_else(|x| x)` to recover the behavior of `compare_and_swap`,
1823    /// but in most cases it is more idiomatic to check whether the return value is `Ok` or `Err`
1824    /// rather than to infer success vs failure based on the value that was read.
1825    ///
1826    /// During migration, consider whether it makes sense to use `compare_exchange_weak` instead.
1827    /// `compare_exchange_weak` is allowed to fail spuriously even when the comparison succeeds,
1828    /// which allows the compiler to generate better assembly code when the compare and swap
1829    /// is used in a loop.
1830    ///
1831    /// # Examples
1832    ///
1833    /// ```
1834    /// use std::sync::atomic::{AtomicPtr, Ordering};
1835    ///
1836    /// let ptr = &mut 5;
1837    /// let some_ptr = AtomicPtr::new(ptr);
1838    ///
1839    /// let other_ptr = &mut 10;
1840    ///
1841    /// let value = some_ptr.compare_and_swap(ptr, other_ptr, Ordering::Relaxed);
1842    /// ```
1843    #[inline]
1844    #[stable(feature = "rust1", since = "1.0.0")]
1845    #[deprecated(
1846        since = "1.50.0",
1847        note = "Use `compare_exchange` or `compare_exchange_weak` instead"
1848    )]
1849    #[cfg(target_has_atomic = "ptr")]
1850    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1851    #[rustc_should_not_be_called_on_const_items]
1852    pub fn compare_and_swap(&self, current: *mut T, new: *mut T, order: Ordering) -> *mut T {
1853        match self.compare_exchange(current, new, order, strongest_failure_ordering(order)) {
1854            Ok(x) => x,
1855            Err(x) => x,
1856        }
1857    }
1858
1859    /// Stores a value into the pointer if the current value is the same as the `current` value.
1860    ///
1861    /// The return value is a result indicating whether the new value was written and containing
1862    /// the previous value. On success this value is guaranteed to be equal to `current`.
1863    ///
1864    /// `compare_exchange` takes two [`Ordering`] arguments to describe the memory
1865    /// ordering of this operation. `success` describes the required ordering for the
1866    /// read-modify-write operation that takes place if the comparison with `current` succeeds.
1867    /// `failure` describes the required ordering for the load operation that takes place when
1868    /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
1869    /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
1870    /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
1871    ///
1872    /// **Note:** This method is only available on platforms that support atomic
1873    /// operations on pointers.
1874    ///
1875    /// # Examples
1876    ///
1877    /// ```
1878    /// use std::sync::atomic::{AtomicPtr, Ordering};
1879    ///
1880    /// let ptr = &mut 5;
1881    /// let some_ptr = AtomicPtr::new(ptr);
1882    ///
1883    /// let other_ptr = &mut 10;
1884    ///
1885    /// let value = some_ptr.compare_exchange(ptr, other_ptr,
1886    ///                                       Ordering::SeqCst, Ordering::Relaxed);
1887    /// ```
1888    ///
1889    /// # Considerations
1890    ///
1891    /// `compare_exchange` is a [compare-and-swap operation] and thus exhibits the usual downsides
1892    /// of CAS operations. In particular, a load of the value followed by a successful
1893    /// `compare_exchange` with the previous load *does not ensure* that other threads have not
1894    /// changed the value in the interim. This is usually important when the *equality* check in
1895    /// the `compare_exchange` is being used to check the *identity* of a value, but equality
1896    /// does not necessarily imply identity. This is a particularly common case for pointers, as
1897    /// a pointer holding the same address does not imply that the same object exists at that
1898    /// address! In this case, `compare_exchange` can lead to the [ABA problem].
1899    ///
1900    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1901    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
1902    #[inline]
1903    #[stable(feature = "extended_compare_and_swap", since = "1.10.0")]
1904    #[cfg(target_has_atomic = "ptr")]
1905    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1906    #[rustc_should_not_be_called_on_const_items]
1907    pub fn compare_exchange(
1908        &self,
1909        current: *mut T,
1910        new: *mut T,
1911        success: Ordering,
1912        failure: Ordering,
1913    ) -> Result<*mut T, *mut T> {
1914        // SAFETY: data races are prevented by atomic intrinsics.
1915        unsafe { atomic_compare_exchange(self.p.get(), current, new, success, failure) }
1916    }
1917
1918    /// Stores a value into the pointer if the current value is the same as the `current` value.
1919    ///
1920    /// Unlike [`AtomicPtr::compare_exchange`], this function is allowed to spuriously fail even when the
1921    /// comparison succeeds, which can result in more efficient code on some platforms. The
1922    /// return value is a result indicating whether the new value was written and containing the
1923    /// previous value.
1924    ///
1925    /// `compare_exchange_weak` takes two [`Ordering`] arguments to describe the memory
1926    /// ordering of this operation. `success` describes the required ordering for the
1927    /// read-modify-write operation that takes place if the comparison with `current` succeeds.
1928    /// `failure` describes the required ordering for the load operation that takes place when
1929    /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
1930    /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
1931    /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
1932    ///
1933    /// **Note:** This method is only available on platforms that support atomic
1934    /// operations on pointers.
1935    ///
1936    /// # Examples
1937    ///
1938    /// ```
1939    /// use std::sync::atomic::{AtomicPtr, Ordering};
1940    ///
1941    /// let some_ptr = AtomicPtr::new(&mut 5);
1942    ///
1943    /// let new = &mut 10;
1944    /// let mut old = some_ptr.load(Ordering::Relaxed);
1945    /// loop {
1946    ///     match some_ptr.compare_exchange_weak(old, new, Ordering::SeqCst, Ordering::Relaxed) {
1947    ///         Ok(_) => break,
1948    ///         Err(x) => old = x,
1949    ///     }
1950    /// }
1951    /// ```
1952    ///
1953    /// # Considerations
1954    ///
1955    /// `compare_exchange` is a [compare-and-swap operation] and thus exhibits the usual downsides
1956    /// of CAS operations. In particular, a load of the value followed by a successful
1957    /// `compare_exchange` with the previous load *does not ensure* that other threads have not
1958    /// changed the value in the interim. This is usually important when the *equality* check in
1959    /// the `compare_exchange` is being used to check the *identity* of a value, but equality
1960    /// does not necessarily imply identity. This is a particularly common case for pointers, as
1961    /// a pointer holding the same address does not imply that the same object exists at that
1962    /// address! In this case, `compare_exchange` can lead to the [ABA problem].
1963    ///
1964    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1965    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
1966    #[inline]
1967    #[stable(feature = "extended_compare_and_swap", since = "1.10.0")]
1968    #[cfg(target_has_atomic = "ptr")]
1969    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1970    #[rustc_should_not_be_called_on_const_items]
1971    pub fn compare_exchange_weak(
1972        &self,
1973        current: *mut T,
1974        new: *mut T,
1975        success: Ordering,
1976        failure: Ordering,
1977    ) -> Result<*mut T, *mut T> {
1978        // SAFETY: This intrinsic is unsafe because it operates on a raw pointer
1979        // but we know for sure that the pointer is valid (we just got it from
1980        // an `UnsafeCell` that we have by reference) and the atomic operation
1981        // itself allows us to safely mutate the `UnsafeCell` contents.
1982        unsafe { atomic_compare_exchange_weak(self.p.get(), current, new, success, failure) }
1983    }
1984
1985    /// Fetches the value, and applies a function to it that returns an optional
1986    /// new value. Returns a `Result` of `Ok(previous_value)` if the function
1987    /// returned `Some(_)`, else `Err(previous_value)`.
1988    ///
1989    /// Note: This may call the function multiple times if the value has been
1990    /// changed from other threads in the meantime, as long as the function
1991    /// returns `Some(_)`, but the function will have been applied only once to
1992    /// the stored value.
1993    ///
1994    /// `fetch_update` takes two [`Ordering`] arguments to describe the memory
1995    /// ordering of this operation. The first describes the required ordering for
1996    /// when the operation finally succeeds while the second describes the
1997    /// required ordering for loads. These correspond to the success and failure
1998    /// orderings of [`AtomicPtr::compare_exchange`] respectively.
1999    ///
2000    /// Using [`Acquire`] as success ordering makes the store part of this
2001    /// operation [`Relaxed`], and using [`Release`] makes the final successful
2002    /// load [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`],
2003    /// [`Acquire`] or [`Relaxed`].
2004    ///
2005    /// **Note:** This method is only available on platforms that support atomic
2006    /// operations on pointers.
2007    ///
2008    /// # Considerations
2009    ///
2010    /// This method is not magic; it is not provided by the hardware, and does not act like a
2011    /// critical section or mutex.
2012    ///
2013    /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
2014    /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem],
2015    /// which is a particularly common pitfall for pointers!
2016    ///
2017    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
2018    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
2019    ///
2020    /// # Examples
2021    ///
2022    /// ```rust
2023    /// use std::sync::atomic::{AtomicPtr, Ordering};
2024    ///
2025    /// let ptr: *mut _ = &mut 5;
2026    /// let some_ptr = AtomicPtr::new(ptr);
2027    ///
2028    /// let new: *mut _ = &mut 10;
2029    /// assert_eq!(some_ptr.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(ptr));
2030    /// let result = some_ptr.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| {
2031    ///     if x == ptr {
2032    ///         Some(new)
2033    ///     } else {
2034    ///         None
2035    ///     }
2036    /// });
2037    /// assert_eq!(result, Ok(ptr));
2038    /// assert_eq!(some_ptr.load(Ordering::SeqCst), new);
2039    /// ```
2040    #[inline]
2041    #[stable(feature = "atomic_fetch_update", since = "1.53.0")]
2042    #[cfg(target_has_atomic = "ptr")]
2043    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2044    #[rustc_should_not_be_called_on_const_items]
2045    pub fn fetch_update<F>(
2046        &self,
2047        set_order: Ordering,
2048        fetch_order: Ordering,
2049        mut f: F,
2050    ) -> Result<*mut T, *mut T>
2051    where
2052        F: FnMut(*mut T) -> Option<*mut T>,
2053    {
2054        let mut prev = self.load(fetch_order);
2055        while let Some(next) = f(prev) {
2056            match self.compare_exchange_weak(prev, next, set_order, fetch_order) {
2057                x @ Ok(_) => return x,
2058                Err(next_prev) => prev = next_prev,
2059            }
2060        }
2061        Err(prev)
2062    }
2063    /// Fetches the value, and applies a function to it that returns an optional
2064    /// new value. Returns a `Result` of `Ok(previous_value)` if the function
2065    /// returned `Some(_)`, else `Err(previous_value)`.
2066    ///
2067    /// See also: [`update`](`AtomicPtr::update`).
2068    ///
2069    /// Note: This may call the function multiple times if the value has been
2070    /// changed from other threads in the meantime, as long as the function
2071    /// returns `Some(_)`, but the function will have been applied only once to
2072    /// the stored value.
2073    ///
2074    /// `try_update` takes two [`Ordering`] arguments to describe the memory
2075    /// ordering of this operation. The first describes the required ordering for
2076    /// when the operation finally succeeds while the second describes the
2077    /// required ordering for loads. These correspond to the success and failure
2078    /// orderings of [`AtomicPtr::compare_exchange`] respectively.
2079    ///
2080    /// Using [`Acquire`] as success ordering makes the store part of this
2081    /// operation [`Relaxed`], and using [`Release`] makes the final successful
2082    /// load [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`],
2083    /// [`Acquire`] or [`Relaxed`].
2084    ///
2085    /// **Note:** This method is only available on platforms that support atomic
2086    /// operations on pointers.
2087    ///
2088    /// # Considerations
2089    ///
2090    /// This method is not magic; it is not provided by the hardware, and does not act like a
2091    /// critical section or mutex.
2092    ///
2093    /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
2094    /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem],
2095    /// which is a particularly common pitfall for pointers!
2096    ///
2097    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
2098    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
2099    ///
2100    /// # Examples
2101    ///
2102    /// ```rust
2103    /// #![feature(atomic_try_update)]
2104    /// use std::sync::atomic::{AtomicPtr, Ordering};
2105    ///
2106    /// let ptr: *mut _ = &mut 5;
2107    /// let some_ptr = AtomicPtr::new(ptr);
2108    ///
2109    /// let new: *mut _ = &mut 10;
2110    /// assert_eq!(some_ptr.try_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(ptr));
2111    /// let result = some_ptr.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| {
2112    ///     if x == ptr {
2113    ///         Some(new)
2114    ///     } else {
2115    ///         None
2116    ///     }
2117    /// });
2118    /// assert_eq!(result, Ok(ptr));
2119    /// assert_eq!(some_ptr.load(Ordering::SeqCst), new);
2120    /// ```
2121    #[inline]
2122    #[unstable(feature = "atomic_try_update", issue = "135894")]
2123    #[cfg(target_has_atomic = "ptr")]
2124    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2125    #[rustc_should_not_be_called_on_const_items]
2126    pub fn try_update(
2127        &self,
2128        set_order: Ordering,
2129        fetch_order: Ordering,
2130        f: impl FnMut(*mut T) -> Option<*mut T>,
2131    ) -> Result<*mut T, *mut T> {
2132        // FIXME(atomic_try_update): this is currently an unstable alias to `fetch_update`;
2133        //      when stabilizing, turn `fetch_update` into a deprecated alias to `try_update`.
2134        self.fetch_update(set_order, fetch_order, f)
2135    }
2136
2137    /// Fetches the value, applies a function to it that it return a new value.
2138    /// The new value is stored and the old value is returned.
2139    ///
2140    /// See also: [`try_update`](`AtomicPtr::try_update`).
2141    ///
2142    /// Note: This may call the function multiple times if the value has been changed from other threads in
2143    /// the meantime, but the function will have been applied only once to the stored value.
2144    ///
2145    /// `update` takes two [`Ordering`] arguments to describe the memory
2146    /// ordering of this operation. The first describes the required ordering for
2147    /// when the operation finally succeeds while the second describes the
2148    /// required ordering for loads. These correspond to the success and failure
2149    /// orderings of [`AtomicPtr::compare_exchange`] respectively.
2150    ///
2151    /// Using [`Acquire`] as success ordering makes the store part
2152    /// of this operation [`Relaxed`], and using [`Release`] makes the final successful load
2153    /// [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
2154    ///
2155    /// **Note:** This method is only available on platforms that support atomic
2156    /// operations on pointers.
2157    ///
2158    /// # Considerations
2159    ///
2160    /// This method is not magic; it is not provided by the hardware, and does not act like a
2161    /// critical section or mutex.
2162    ///
2163    /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
2164    /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem],
2165    /// which is a particularly common pitfall for pointers!
2166    ///
2167    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
2168    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
2169    ///
2170    /// # Examples
2171    ///
2172    /// ```rust
2173    /// #![feature(atomic_try_update)]
2174    ///
2175    /// use std::sync::atomic::{AtomicPtr, Ordering};
2176    ///
2177    /// let ptr: *mut _ = &mut 5;
2178    /// let some_ptr = AtomicPtr::new(ptr);
2179    ///
2180    /// let new: *mut _ = &mut 10;
2181    /// let result = some_ptr.update(Ordering::SeqCst, Ordering::SeqCst, |_| new);
2182    /// assert_eq!(result, ptr);
2183    /// assert_eq!(some_ptr.load(Ordering::SeqCst), new);
2184    /// ```
2185    #[inline]
2186    #[unstable(feature = "atomic_try_update", issue = "135894")]
2187    #[cfg(target_has_atomic = "8")]
2188    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2189    #[rustc_should_not_be_called_on_const_items]
2190    pub fn update(
2191        &self,
2192        set_order: Ordering,
2193        fetch_order: Ordering,
2194        mut f: impl FnMut(*mut T) -> *mut T,
2195    ) -> *mut T {
2196        let mut prev = self.load(fetch_order);
2197        loop {
2198            match self.compare_exchange_weak(prev, f(prev), set_order, fetch_order) {
2199                Ok(x) => break x,
2200                Err(next_prev) => prev = next_prev,
2201            }
2202        }
2203    }
2204
2205    /// Offsets the pointer's address by adding `val` (in units of `T`),
2206    /// returning the previous pointer.
2207    ///
2208    /// This is equivalent to using [`wrapping_add`] to atomically perform the
2209    /// equivalent of `ptr = ptr.wrapping_add(val);`.
2210    ///
2211    /// This method operates in units of `T`, which means that it cannot be used
2212    /// to offset the pointer by an amount which is not a multiple of
2213    /// `size_of::<T>()`. This can sometimes be inconvenient, as you may want to
2214    /// work with a deliberately misaligned pointer. In such cases, you may use
2215    /// the [`fetch_byte_add`](Self::fetch_byte_add) method instead.
2216    ///
2217    /// `fetch_ptr_add` takes an [`Ordering`] argument which describes the
2218    /// memory ordering of this operation. All ordering modes are possible. Note
2219    /// that using [`Acquire`] makes the store part of this operation
2220    /// [`Relaxed`], and using [`Release`] makes the load part [`Relaxed`].
2221    ///
2222    /// **Note**: This method is only available on platforms that support atomic
2223    /// operations on [`AtomicPtr`].
2224    ///
2225    /// [`wrapping_add`]: pointer::wrapping_add
2226    ///
2227    /// # Examples
2228    ///
2229    /// ```
2230    /// use core::sync::atomic::{AtomicPtr, Ordering};
2231    ///
2232    /// let atom = AtomicPtr::<i64>::new(core::ptr::null_mut());
2233    /// assert_eq!(atom.fetch_ptr_add(1, Ordering::Relaxed).addr(), 0);
2234    /// // Note: units of `size_of::<i64>()`.
2235    /// assert_eq!(atom.load(Ordering::Relaxed).addr(), 8);
2236    /// ```
2237    #[inline]
2238    #[cfg(target_has_atomic = "ptr")]
2239    #[stable(feature = "strict_provenance_atomic_ptr", since = "1.91.0")]
2240    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2241    #[rustc_should_not_be_called_on_const_items]
2242    pub fn fetch_ptr_add(&self, val: usize, order: Ordering) -> *mut T {
2243        self.fetch_byte_add(val.wrapping_mul(size_of::<T>()), order)
2244    }
2245
2246    /// Offsets the pointer's address by subtracting `val` (in units of `T`),
2247    /// returning the previous pointer.
2248    ///
2249    /// This is equivalent to using [`wrapping_sub`] to atomically perform the
2250    /// equivalent of `ptr = ptr.wrapping_sub(val);`.
2251    ///
2252    /// This method operates in units of `T`, which means that it cannot be used
2253    /// to offset the pointer by an amount which is not a multiple of
2254    /// `size_of::<T>()`. This can sometimes be inconvenient, as you may want to
2255    /// work with a deliberately misaligned pointer. In such cases, you may use
2256    /// the [`fetch_byte_sub`](Self::fetch_byte_sub) method instead.
2257    ///
2258    /// `fetch_ptr_sub` takes an [`Ordering`] argument which describes the memory
2259    /// ordering of this operation. All ordering modes are possible. Note that
2260    /// using [`Acquire`] makes the store part of this operation [`Relaxed`],
2261    /// and using [`Release`] makes the load part [`Relaxed`].
2262    ///
2263    /// **Note**: This method is only available on platforms that support atomic
2264    /// operations on [`AtomicPtr`].
2265    ///
2266    /// [`wrapping_sub`]: pointer::wrapping_sub
2267    ///
2268    /// # Examples
2269    ///
2270    /// ```
2271    /// use core::sync::atomic::{AtomicPtr, Ordering};
2272    ///
2273    /// let array = [1i32, 2i32];
2274    /// let atom = AtomicPtr::new(array.as_ptr().wrapping_add(1) as *mut _);
2275    ///
2276    /// assert!(core::ptr::eq(
2277    ///     atom.fetch_ptr_sub(1, Ordering::Relaxed),
2278    ///     &array[1],
2279    /// ));
2280    /// assert!(core::ptr::eq(atom.load(Ordering::Relaxed), &array[0]));
2281    /// ```
2282    #[inline]
2283    #[cfg(target_has_atomic = "ptr")]
2284    #[stable(feature = "strict_provenance_atomic_ptr", since = "1.91.0")]
2285    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2286    #[rustc_should_not_be_called_on_const_items]
2287    pub fn fetch_ptr_sub(&self, val: usize, order: Ordering) -> *mut T {
2288        self.fetch_byte_sub(val.wrapping_mul(size_of::<T>()), order)
2289    }
2290
2291    /// Offsets the pointer's address by adding `val` *bytes*, returning the
2292    /// previous pointer.
2293    ///
2294    /// This is equivalent to using [`wrapping_byte_add`] to atomically
2295    /// perform `ptr = ptr.wrapping_byte_add(val)`.
2296    ///
2297    /// `fetch_byte_add` takes an [`Ordering`] argument which describes the
2298    /// memory ordering of this operation. All ordering modes are possible. Note
2299    /// that using [`Acquire`] makes the store part of this operation
2300    /// [`Relaxed`], and using [`Release`] makes the load part [`Relaxed`].
2301    ///
2302    /// **Note**: This method is only available on platforms that support atomic
2303    /// operations on [`AtomicPtr`].
2304    ///
2305    /// [`wrapping_byte_add`]: pointer::wrapping_byte_add
2306    ///
2307    /// # Examples
2308    ///
2309    /// ```
2310    /// use core::sync::atomic::{AtomicPtr, Ordering};
2311    ///
2312    /// let atom = AtomicPtr::<i64>::new(core::ptr::null_mut());
2313    /// assert_eq!(atom.fetch_byte_add(1, Ordering::Relaxed).addr(), 0);
2314    /// // Note: in units of bytes, not `size_of::<i64>()`.
2315    /// assert_eq!(atom.load(Ordering::Relaxed).addr(), 1);
2316    /// ```
2317    #[inline]
2318    #[cfg(target_has_atomic = "ptr")]
2319    #[stable(feature = "strict_provenance_atomic_ptr", since = "1.91.0")]
2320    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2321    #[rustc_should_not_be_called_on_const_items]
2322    pub fn fetch_byte_add(&self, val: usize, order: Ordering) -> *mut T {
2323        // SAFETY: data races are prevented by atomic intrinsics.
2324        unsafe { atomic_add(self.p.get(), val, order).cast() }
2325    }
2326
2327    /// Offsets the pointer's address by subtracting `val` *bytes*, returning the
2328    /// previous pointer.
2329    ///
2330    /// This is equivalent to using [`wrapping_byte_sub`] to atomically
2331    /// perform `ptr = ptr.wrapping_byte_sub(val)`.
2332    ///
2333    /// `fetch_byte_sub` takes an [`Ordering`] argument which describes the
2334    /// memory ordering of this operation. All ordering modes are possible. Note
2335    /// that using [`Acquire`] makes the store part of this operation
2336    /// [`Relaxed`], and using [`Release`] makes the load part [`Relaxed`].
2337    ///
2338    /// **Note**: This method is only available on platforms that support atomic
2339    /// operations on [`AtomicPtr`].
2340    ///
2341    /// [`wrapping_byte_sub`]: pointer::wrapping_byte_sub
2342    ///
2343    /// # Examples
2344    ///
2345    /// ```
2346    /// use core::sync::atomic::{AtomicPtr, Ordering};
2347    ///
2348    /// let mut arr = [0i64, 1];
2349    /// let atom = AtomicPtr::<i64>::new(&raw mut arr[1]);
2350    /// assert_eq!(atom.fetch_byte_sub(8, Ordering::Relaxed).addr(), (&raw const arr[1]).addr());
2351    /// assert_eq!(atom.load(Ordering::Relaxed).addr(), (&raw const arr[0]).addr());
2352    /// ```
2353    #[inline]
2354    #[cfg(target_has_atomic = "ptr")]
2355    #[stable(feature = "strict_provenance_atomic_ptr", since = "1.91.0")]
2356    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2357    #[rustc_should_not_be_called_on_const_items]
2358    pub fn fetch_byte_sub(&self, val: usize, order: Ordering) -> *mut T {
2359        // SAFETY: data races are prevented by atomic intrinsics.
2360        unsafe { atomic_sub(self.p.get(), val, order).cast() }
2361    }
2362
2363    /// Performs a bitwise "or" operation on the address of the current pointer,
2364    /// and the argument `val`, and stores a pointer with provenance of the
2365    /// current pointer and the resulting address.
2366    ///
2367    /// This is equivalent to using [`map_addr`] to atomically perform
2368    /// `ptr = ptr.map_addr(|a| a | val)`. This can be used in tagged
2369    /// pointer schemes to atomically set tag bits.
2370    ///
2371    /// **Caveat**: This operation returns the previous value. To compute the
2372    /// stored value without losing provenance, you may use [`map_addr`]. For
2373    /// example: `a.fetch_or(val).map_addr(|a| a | val)`.
2374    ///
2375    /// `fetch_or` takes an [`Ordering`] argument which describes the memory
2376    /// ordering of this operation. All ordering modes are possible. Note that
2377    /// using [`Acquire`] makes the store part of this operation [`Relaxed`],
2378    /// and using [`Release`] makes the load part [`Relaxed`].
2379    ///
2380    /// **Note**: This method is only available on platforms that support atomic
2381    /// operations on [`AtomicPtr`].
2382    ///
2383    /// This API and its claimed semantics are part of the Strict Provenance
2384    /// experiment, see the [module documentation for `ptr`][crate::ptr] for
2385    /// details.
2386    ///
2387    /// [`map_addr`]: pointer::map_addr
2388    ///
2389    /// # Examples
2390    ///
2391    /// ```
2392    /// use core::sync::atomic::{AtomicPtr, Ordering};
2393    ///
2394    /// let pointer = &mut 3i64 as *mut i64;
2395    ///
2396    /// let atom = AtomicPtr::<i64>::new(pointer);
2397    /// // Tag the bottom bit of the pointer.
2398    /// assert_eq!(atom.fetch_or(1, Ordering::Relaxed).addr() & 1, 0);
2399    /// // Extract and untag.
2400    /// let tagged = atom.load(Ordering::Relaxed);
2401    /// assert_eq!(tagged.addr() & 1, 1);
2402    /// assert_eq!(tagged.map_addr(|p| p & !1), pointer);
2403    /// ```
2404    #[inline]
2405    #[cfg(target_has_atomic = "ptr")]
2406    #[stable(feature = "strict_provenance_atomic_ptr", since = "1.91.0")]
2407    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2408    #[rustc_should_not_be_called_on_const_items]
2409    pub fn fetch_or(&self, val: usize, order: Ordering) -> *mut T {
2410        // SAFETY: data races are prevented by atomic intrinsics.
2411        unsafe { atomic_or(self.p.get(), val, order).cast() }
2412    }
2413
2414    /// Performs a bitwise "and" operation on the address of the current
2415    /// pointer, and the argument `val`, and stores a pointer with provenance of
2416    /// the current pointer and the resulting address.
2417    ///
2418    /// This is equivalent to using [`map_addr`] to atomically perform
2419    /// `ptr = ptr.map_addr(|a| a & val)`. This can be used in tagged
2420    /// pointer schemes to atomically unset tag bits.
2421    ///
2422    /// **Caveat**: This operation returns the previous value. To compute the
2423    /// stored value without losing provenance, you may use [`map_addr`]. For
2424    /// example: `a.fetch_and(val).map_addr(|a| a & val)`.
2425    ///
2426    /// `fetch_and` takes an [`Ordering`] argument which describes the memory
2427    /// ordering of this operation. All ordering modes are possible. Note that
2428    /// using [`Acquire`] makes the store part of this operation [`Relaxed`],
2429    /// and using [`Release`] makes the load part [`Relaxed`].
2430    ///
2431    /// **Note**: This method is only available on platforms that support atomic
2432    /// operations on [`AtomicPtr`].
2433    ///
2434    /// This API and its claimed semantics are part of the Strict Provenance
2435    /// experiment, see the [module documentation for `ptr`][crate::ptr] for
2436    /// details.
2437    ///
2438    /// [`map_addr`]: pointer::map_addr
2439    ///
2440    /// # Examples
2441    ///
2442    /// ```
2443    /// use core::sync::atomic::{AtomicPtr, Ordering};
2444    ///
2445    /// let pointer = &mut 3i64 as *mut i64;
2446    /// // A tagged pointer
2447    /// let atom = AtomicPtr::<i64>::new(pointer.map_addr(|a| a | 1));
2448    /// assert_eq!(atom.fetch_or(1, Ordering::Relaxed).addr() & 1, 1);
2449    /// // Untag, and extract the previously tagged pointer.
2450    /// let untagged = atom.fetch_and(!1, Ordering::Relaxed)
2451    ///     .map_addr(|a| a & !1);
2452    /// assert_eq!(untagged, pointer);
2453    /// ```
2454    #[inline]
2455    #[cfg(target_has_atomic = "ptr")]
2456    #[stable(feature = "strict_provenance_atomic_ptr", since = "1.91.0")]
2457    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2458    #[rustc_should_not_be_called_on_const_items]
2459    pub fn fetch_and(&self, val: usize, order: Ordering) -> *mut T {
2460        // SAFETY: data races are prevented by atomic intrinsics.
2461        unsafe { atomic_and(self.p.get(), val, order).cast() }
2462    }
2463
2464    /// Performs a bitwise "xor" operation on the address of the current
2465    /// pointer, and the argument `val`, and stores a pointer with provenance of
2466    /// the current pointer and the resulting address.
2467    ///
2468    /// This is equivalent to using [`map_addr`] to atomically perform
2469    /// `ptr = ptr.map_addr(|a| a ^ val)`. This can be used in tagged
2470    /// pointer schemes to atomically toggle tag bits.
2471    ///
2472    /// **Caveat**: This operation returns the previous value. To compute the
2473    /// stored value without losing provenance, you may use [`map_addr`]. For
2474    /// example: `a.fetch_xor(val).map_addr(|a| a ^ val)`.
2475    ///
2476    /// `fetch_xor` takes an [`Ordering`] argument which describes the memory
2477    /// ordering of this operation. All ordering modes are possible. Note that
2478    /// using [`Acquire`] makes the store part of this operation [`Relaxed`],
2479    /// and using [`Release`] makes the load part [`Relaxed`].
2480    ///
2481    /// **Note**: This method is only available on platforms that support atomic
2482    /// operations on [`AtomicPtr`].
2483    ///
2484    /// This API and its claimed semantics are part of the Strict Provenance
2485    /// experiment, see the [module documentation for `ptr`][crate::ptr] for
2486    /// details.
2487    ///
2488    /// [`map_addr`]: pointer::map_addr
2489    ///
2490    /// # Examples
2491    ///
2492    /// ```
2493    /// use core::sync::atomic::{AtomicPtr, Ordering};
2494    ///
2495    /// let pointer = &mut 3i64 as *mut i64;
2496    /// let atom = AtomicPtr::<i64>::new(pointer);
2497    ///
2498    /// // Toggle a tag bit on the pointer.
2499    /// atom.fetch_xor(1, Ordering::Relaxed);
2500    /// assert_eq!(atom.load(Ordering::Relaxed).addr() & 1, 1);
2501    /// ```
2502    #[inline]
2503    #[cfg(target_has_atomic = "ptr")]
2504    #[stable(feature = "strict_provenance_atomic_ptr", since = "1.91.0")]
2505    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2506    #[rustc_should_not_be_called_on_const_items]
2507    pub fn fetch_xor(&self, val: usize, order: Ordering) -> *mut T {
2508        // SAFETY: data races are prevented by atomic intrinsics.
2509        unsafe { atomic_xor(self.p.get(), val, order).cast() }
2510    }
2511
2512    /// Returns a mutable pointer to the underlying pointer.
2513    ///
2514    /// Doing non-atomic reads and writes on the resulting pointer can be a data race.
2515    /// This method is mostly useful for FFI, where the function signature may use
2516    /// `*mut *mut T` instead of `&AtomicPtr<T>`.
2517    ///
2518    /// Returning an `*mut` pointer from a shared reference to this atomic is safe because the
2519    /// atomic types work with interior mutability. All modifications of an atomic change the value
2520    /// through a shared reference, and can do so safely as long as they use atomic operations. Any
2521    /// use of the returned raw pointer requires an `unsafe` block and still has to uphold the
2522    /// requirements of the [memory model].
2523    ///
2524    /// # Examples
2525    ///
2526    /// ```ignore (extern-declaration)
2527    /// use std::sync::atomic::AtomicPtr;
2528    ///
2529    /// extern "C" {
2530    ///     fn my_atomic_op(arg: *mut *mut u32);
2531    /// }
2532    ///
2533    /// let mut value = 17;
2534    /// let atomic = AtomicPtr::new(&mut value);
2535    ///
2536    /// // SAFETY: Safe as long as `my_atomic_op` is atomic.
2537    /// unsafe {
2538    ///     my_atomic_op(atomic.as_ptr());
2539    /// }
2540    /// ```
2541    ///
2542    /// [memory model]: self#memory-model-for-atomic-accesses
2543    #[inline]
2544    #[stable(feature = "atomic_as_ptr", since = "1.70.0")]
2545    #[rustc_const_stable(feature = "atomic_as_ptr", since = "1.70.0")]
2546    #[rustc_never_returns_null_ptr]
2547    pub const fn as_ptr(&self) -> *mut *mut T {
2548        self.p.get()
2549    }
2550}
2551
2552#[cfg(target_has_atomic_load_store = "8")]
2553#[stable(feature = "atomic_bool_from", since = "1.24.0")]
2554#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2555impl const From<bool> for AtomicBool {
2556    /// Converts a `bool` into an `AtomicBool`.
2557    ///
2558    /// # Examples
2559    ///
2560    /// ```
2561    /// use std::sync::atomic::AtomicBool;
2562    /// let atomic_bool = AtomicBool::from(true);
2563    /// assert_eq!(format!("{atomic_bool:?}"), "true")
2564    /// ```
2565    #[inline]
2566    fn from(b: bool) -> Self {
2567        Self::new(b)
2568    }
2569}
2570
2571#[cfg(target_has_atomic_load_store = "ptr")]
2572#[stable(feature = "atomic_from", since = "1.23.0")]
2573#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2574impl<T> const From<*mut T> for AtomicPtr<T> {
2575    /// Converts a `*mut T` into an `AtomicPtr<T>`.
2576    #[inline]
2577    fn from(p: *mut T) -> Self {
2578        Self::new(p)
2579    }
2580}
2581
2582#[allow(unused_macros)] // This macro ends up being unused on some architectures.
2583macro_rules! if_8_bit {
2584    (u8, $( yes = [$($yes:tt)*], )? $( no = [$($no:tt)*], )? ) => { concat!("", $($($yes)*)?) };
2585    (i8, $( yes = [$($yes:tt)*], )? $( no = [$($no:tt)*], )? ) => { concat!("", $($($yes)*)?) };
2586    ($_:ident, $( yes = [$($yes:tt)*], )? $( no = [$($no:tt)*], )? ) => { concat!("", $($($no)*)?) };
2587}
2588
2589#[cfg(target_has_atomic_load_store)]
2590macro_rules! atomic_int {
2591    ($cfg_cas:meta,
2592     $cfg_align:meta,
2593     $stable:meta,
2594     $stable_cxchg:meta,
2595     $stable_debug:meta,
2596     $stable_access:meta,
2597     $stable_from:meta,
2598     $stable_nand:meta,
2599     $const_stable_new:meta,
2600     $const_stable_into_inner:meta,
2601     $diagnostic_item:meta,
2602     $s_int_type:literal,
2603     $extra_feature:expr,
2604     $min_fn:ident, $max_fn:ident,
2605     $align:expr,
2606     $int_type:ident $atomic_type:ident) => {
2607        /// An integer type which can be safely shared between threads.
2608        ///
2609        /// This type has the same
2610        #[doc = if_8_bit!(
2611            $int_type,
2612            yes = ["size, alignment, and bit validity"],
2613            no = ["size and bit validity"],
2614        )]
2615        /// as the underlying integer type, [`
2616        #[doc = $s_int_type]
2617        /// `].
2618        #[doc = if_8_bit! {
2619            $int_type,
2620            no = [
2621                "However, the alignment of this type is always equal to its ",
2622                "size, even on targets where [`", $s_int_type, "`] has a ",
2623                "lesser alignment."
2624            ],
2625        }]
2626        ///
2627        /// For more about the differences between atomic types and
2628        /// non-atomic types as well as information about the portability of
2629        /// this type, please see the [module-level documentation].
2630        ///
2631        /// **Note:** This type is only available on platforms that support
2632        /// atomic loads and stores of [`
2633        #[doc = $s_int_type]
2634        /// `].
2635        ///
2636        /// [module-level documentation]: crate::sync::atomic
2637        #[$stable]
2638        #[$diagnostic_item]
2639        #[repr(C, align($align))]
2640        pub struct $atomic_type {
2641            v: UnsafeCell<$int_type>,
2642        }
2643
2644        #[$stable]
2645        impl Default for $atomic_type {
2646            #[inline]
2647            fn default() -> Self {
2648                Self::new(Default::default())
2649            }
2650        }
2651
2652        #[$stable_from]
2653        #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2654        impl const From<$int_type> for $atomic_type {
2655            #[doc = concat!("Converts an `", stringify!($int_type), "` into an `", stringify!($atomic_type), "`.")]
2656            #[inline]
2657            fn from(v: $int_type) -> Self { Self::new(v) }
2658        }
2659
2660        #[$stable_debug]
2661        impl fmt::Debug for $atomic_type {
2662            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2663                fmt::Debug::fmt(&self.load(Ordering::Relaxed), f)
2664            }
2665        }
2666
2667        // Send is implicitly implemented.
2668        #[$stable]
2669        unsafe impl Sync for $atomic_type {}
2670
2671        impl $atomic_type {
2672            /// Creates a new atomic integer.
2673            ///
2674            /// # Examples
2675            ///
2676            /// ```
2677            #[doc = concat!($extra_feature, "use std::sync::atomic::", stringify!($atomic_type), ";")]
2678            ///
2679            #[doc = concat!("let atomic_forty_two = ", stringify!($atomic_type), "::new(42);")]
2680            /// ```
2681            #[inline]
2682            #[$stable]
2683            #[$const_stable_new]
2684            #[must_use]
2685            pub const fn new(v: $int_type) -> Self {
2686                Self {v: UnsafeCell::new(v)}
2687            }
2688
2689            /// Creates a new reference to an atomic integer from a pointer.
2690            ///
2691            /// # Examples
2692            ///
2693            /// ```
2694            #[doc = concat!($extra_feature, "use std::sync::atomic::{self, ", stringify!($atomic_type), "};")]
2695            ///
2696            /// // Get a pointer to an allocated value
2697            #[doc = concat!("let ptr: *mut ", stringify!($int_type), " = Box::into_raw(Box::new(0));")]
2698            ///
2699            #[doc = concat!("assert!(ptr.cast::<", stringify!($atomic_type), ">().is_aligned());")]
2700            ///
2701            /// {
2702            ///     // Create an atomic view of the allocated value
2703            // SAFETY: this is a doc comment, tidy, it can't hurt you (also guaranteed by the construction of `ptr` and the assert above)
2704            #[doc = concat!("    let atomic = unsafe {", stringify!($atomic_type), "::from_ptr(ptr) };")]
2705            ///
2706            ///     // Use `atomic` for atomic operations, possibly share it with other threads
2707            ///     atomic.store(1, atomic::Ordering::Relaxed);
2708            /// }
2709            ///
2710            /// // It's ok to non-atomically access the value behind `ptr`,
2711            /// // since the reference to the atomic ended its lifetime in the block above
2712            /// assert_eq!(unsafe { *ptr }, 1);
2713            ///
2714            /// // Deallocate the value
2715            /// unsafe { drop(Box::from_raw(ptr)) }
2716            /// ```
2717            ///
2718            /// # Safety
2719            ///
2720            /// * `ptr` must be aligned to
2721            #[doc = concat!("  `align_of::<", stringify!($atomic_type), ">()`")]
2722            #[doc = if_8_bit!{
2723                $int_type,
2724                yes = [
2725                    "  (note that this is always true, since `align_of::<",
2726                    stringify!($atomic_type), ">() == 1`)."
2727                ],
2728                no = [
2729                    "  (note that on some platforms this can be bigger than `align_of::<",
2730                    stringify!($int_type), ">()`)."
2731                ],
2732            }]
2733            /// * `ptr` must be [valid] for both reads and writes for the whole lifetime `'a`.
2734            /// * You must adhere to the [Memory model for atomic accesses]. In particular, it is not
2735            ///   allowed to mix conflicting atomic and non-atomic accesses, or atomic accesses of different
2736            ///   sizes, without synchronization.
2737            ///
2738            /// [valid]: crate::ptr#safety
2739            /// [Memory model for atomic accesses]: self#memory-model-for-atomic-accesses
2740            #[inline]
2741            #[stable(feature = "atomic_from_ptr", since = "1.75.0")]
2742            #[rustc_const_stable(feature = "const_atomic_from_ptr", since = "1.84.0")]
2743            pub const unsafe fn from_ptr<'a>(ptr: *mut $int_type) -> &'a $atomic_type {
2744                // SAFETY: guaranteed by the caller
2745                unsafe { &*ptr.cast() }
2746            }
2747
2748
2749            /// Returns a mutable reference to the underlying integer.
2750            ///
2751            /// This is safe because the mutable reference guarantees that no other threads are
2752            /// concurrently accessing the atomic data.
2753            ///
2754            /// # Examples
2755            ///
2756            /// ```
2757            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2758            ///
2759            #[doc = concat!("let mut some_var = ", stringify!($atomic_type), "::new(10);")]
2760            /// assert_eq!(*some_var.get_mut(), 10);
2761            /// *some_var.get_mut() = 5;
2762            /// assert_eq!(some_var.load(Ordering::SeqCst), 5);
2763            /// ```
2764            #[inline]
2765            #[$stable_access]
2766            pub fn get_mut(&mut self) -> &mut $int_type {
2767                self.v.get_mut()
2768            }
2769
2770            #[doc = concat!("Get atomic access to a `&mut ", stringify!($int_type), "`.")]
2771            ///
2772            #[doc = if_8_bit! {
2773                $int_type,
2774                no = [
2775                    "**Note:** This function is only available on targets where `",
2776                    stringify!($atomic_type), "` has the same alignment as `", stringify!($int_type), "`."
2777                ],
2778            }]
2779            ///
2780            /// # Examples
2781            ///
2782            /// ```
2783            /// #![feature(atomic_from_mut)]
2784            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2785            ///
2786            /// let mut some_int = 123;
2787            #[doc = concat!("let a = ", stringify!($atomic_type), "::from_mut(&mut some_int);")]
2788            /// a.store(100, Ordering::Relaxed);
2789            /// assert_eq!(some_int, 100);
2790            /// ```
2791            ///
2792            #[inline]
2793            #[$cfg_align]
2794            #[unstable(feature = "atomic_from_mut", issue = "76314")]
2795            pub fn from_mut(v: &mut $int_type) -> &mut Self {
2796                let [] = [(); align_of::<Self>() - align_of::<$int_type>()];
2797                // SAFETY:
2798                //  - the mutable reference guarantees unique ownership.
2799                //  - the alignment of `$int_type` and `Self` is the
2800                //    same, as promised by $cfg_align and verified above.
2801                unsafe { &mut *(v as *mut $int_type as *mut Self) }
2802            }
2803
2804            #[doc = concat!("Get non-atomic access to a `&mut [", stringify!($atomic_type), "]` slice")]
2805            ///
2806            /// This is safe because the mutable reference guarantees that no other threads are
2807            /// concurrently accessing the atomic data.
2808            ///
2809            /// # Examples
2810            ///
2811            /// ```ignore-wasm
2812            /// #![feature(atomic_from_mut)]
2813            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2814            ///
2815            #[doc = concat!("let mut some_ints = [const { ", stringify!($atomic_type), "::new(0) }; 10];")]
2816            ///
2817            #[doc = concat!("let view: &mut [", stringify!($int_type), "] = ", stringify!($atomic_type), "::get_mut_slice(&mut some_ints);")]
2818            /// assert_eq!(view, [0; 10]);
2819            /// view
2820            ///     .iter_mut()
2821            ///     .enumerate()
2822            ///     .for_each(|(idx, int)| *int = idx as _);
2823            ///
2824            /// std::thread::scope(|s| {
2825            ///     some_ints
2826            ///         .iter()
2827            ///         .enumerate()
2828            ///         .for_each(|(idx, int)| {
2829            ///             s.spawn(move || assert_eq!(int.load(Ordering::Relaxed), idx as _));
2830            ///         })
2831            /// });
2832            /// ```
2833            #[inline]
2834            #[unstable(feature = "atomic_from_mut", issue = "76314")]
2835            pub fn get_mut_slice(this: &mut [Self]) -> &mut [$int_type] {
2836                // SAFETY: the mutable reference guarantees unique ownership.
2837                unsafe { &mut *(this as *mut [Self] as *mut [$int_type]) }
2838            }
2839
2840            #[doc = concat!("Get atomic access to a `&mut [", stringify!($int_type), "]` slice.")]
2841            ///
2842            #[doc = if_8_bit! {
2843                $int_type,
2844                no = [
2845                    "**Note:** This function is only available on targets where `",
2846                    stringify!($atomic_type), "` has the same alignment as `", stringify!($int_type), "`."
2847                ],
2848            }]
2849            ///
2850            /// # Examples
2851            ///
2852            /// ```ignore-wasm
2853            /// #![feature(atomic_from_mut)]
2854            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2855            ///
2856            /// let mut some_ints = [0; 10];
2857            #[doc = concat!("let a = &*", stringify!($atomic_type), "::from_mut_slice(&mut some_ints);")]
2858            /// std::thread::scope(|s| {
2859            ///     for i in 0..a.len() {
2860            ///         s.spawn(move || a[i].store(i as _, Ordering::Relaxed));
2861            ///     }
2862            /// });
2863            /// for (i, n) in some_ints.into_iter().enumerate() {
2864            ///     assert_eq!(i, n as usize);
2865            /// }
2866            /// ```
2867            #[inline]
2868            #[$cfg_align]
2869            #[unstable(feature = "atomic_from_mut", issue = "76314")]
2870            pub fn from_mut_slice(v: &mut [$int_type]) -> &mut [Self] {
2871                let [] = [(); align_of::<Self>() - align_of::<$int_type>()];
2872                // SAFETY:
2873                //  - the mutable reference guarantees unique ownership.
2874                //  - the alignment of `$int_type` and `Self` is the
2875                //    same, as promised by $cfg_align and verified above.
2876                unsafe { &mut *(v as *mut [$int_type] as *mut [Self]) }
2877            }
2878
2879            /// Consumes the atomic and returns the contained value.
2880            ///
2881            /// This is safe because passing `self` by value guarantees that no other threads are
2882            /// concurrently accessing the atomic data.
2883            ///
2884            /// # Examples
2885            ///
2886            /// ```
2887            #[doc = concat!($extra_feature, "use std::sync::atomic::", stringify!($atomic_type), ";")]
2888            ///
2889            #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
2890            /// assert_eq!(some_var.into_inner(), 5);
2891            /// ```
2892            #[inline]
2893            #[$stable_access]
2894            #[$const_stable_into_inner]
2895            pub const fn into_inner(self) -> $int_type {
2896                self.v.into_inner()
2897            }
2898
2899            /// Loads a value from the atomic integer.
2900            ///
2901            /// `load` takes an [`Ordering`] argument which describes the memory ordering of this operation.
2902            /// Possible values are [`SeqCst`], [`Acquire`] and [`Relaxed`].
2903            ///
2904            /// # Panics
2905            ///
2906            /// Panics if `order` is [`Release`] or [`AcqRel`].
2907            ///
2908            /// # Examples
2909            ///
2910            /// ```
2911            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2912            ///
2913            #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
2914            ///
2915            /// assert_eq!(some_var.load(Ordering::Relaxed), 5);
2916            /// ```
2917            #[inline]
2918            #[$stable]
2919            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2920            pub fn load(&self, order: Ordering) -> $int_type {
2921                // SAFETY: data races are prevented by atomic intrinsics.
2922                unsafe { atomic_load(self.v.get(), order) }
2923            }
2924
2925            /// Stores a value into the atomic integer.
2926            ///
2927            /// `store` takes an [`Ordering`] argument which describes the memory ordering of this operation.
2928            ///  Possible values are [`SeqCst`], [`Release`] and [`Relaxed`].
2929            ///
2930            /// # Panics
2931            ///
2932            /// Panics if `order` is [`Acquire`] or [`AcqRel`].
2933            ///
2934            /// # Examples
2935            ///
2936            /// ```
2937            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2938            ///
2939            #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
2940            ///
2941            /// some_var.store(10, Ordering::Relaxed);
2942            /// assert_eq!(some_var.load(Ordering::Relaxed), 10);
2943            /// ```
2944            #[inline]
2945            #[$stable]
2946            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2947            #[rustc_should_not_be_called_on_const_items]
2948            pub fn store(&self, val: $int_type, order: Ordering) {
2949                // SAFETY: data races are prevented by atomic intrinsics.
2950                unsafe { atomic_store(self.v.get(), val, order); }
2951            }
2952
2953            /// Stores a value into the atomic integer, returning the previous value.
2954            ///
2955            /// `swap` takes an [`Ordering`] argument which describes the memory ordering
2956            /// of this operation. All ordering modes are possible. Note that using
2957            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
2958            /// using [`Release`] makes the load part [`Relaxed`].
2959            ///
2960            /// **Note**: This method is only available on platforms that support atomic operations on
2961            #[doc = concat!("[`", $s_int_type, "`].")]
2962            ///
2963            /// # Examples
2964            ///
2965            /// ```
2966            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2967            ///
2968            #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
2969            ///
2970            /// assert_eq!(some_var.swap(10, Ordering::Relaxed), 5);
2971            /// ```
2972            #[inline]
2973            #[$stable]
2974            #[$cfg_cas]
2975            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2976            #[rustc_should_not_be_called_on_const_items]
2977            pub fn swap(&self, val: $int_type, order: Ordering) -> $int_type {
2978                // SAFETY: data races are prevented by atomic intrinsics.
2979                unsafe { atomic_swap(self.v.get(), val, order) }
2980            }
2981
2982            /// Stores a value into the atomic integer if the current value is the same as
2983            /// the `current` value.
2984            ///
2985            /// The return value is always the previous value. If it is equal to `current`, then the
2986            /// value was updated.
2987            ///
2988            /// `compare_and_swap` also takes an [`Ordering`] argument which describes the memory
2989            /// ordering of this operation. Notice that even when using [`AcqRel`], the operation
2990            /// might fail and hence just perform an `Acquire` load, but not have `Release` semantics.
2991            /// Using [`Acquire`] makes the store part of this operation [`Relaxed`] if it
2992            /// happens, and using [`Release`] makes the load part [`Relaxed`].
2993            ///
2994            /// **Note**: This method is only available on platforms that support atomic operations on
2995            #[doc = concat!("[`", $s_int_type, "`].")]
2996            ///
2997            /// # Migrating to `compare_exchange` and `compare_exchange_weak`
2998            ///
2999            /// `compare_and_swap` is equivalent to `compare_exchange` with the following mapping for
3000            /// memory orderings:
3001            ///
3002            /// Original | Success | Failure
3003            /// -------- | ------- | -------
3004            /// Relaxed  | Relaxed | Relaxed
3005            /// Acquire  | Acquire | Acquire
3006            /// Release  | Release | Relaxed
3007            /// AcqRel   | AcqRel  | Acquire
3008            /// SeqCst   | SeqCst  | SeqCst
3009            ///
3010            /// `compare_and_swap` and `compare_exchange` also differ in their return type. You can use
3011            /// `compare_exchange(...).unwrap_or_else(|x| x)` to recover the behavior of `compare_and_swap`,
3012            /// but in most cases it is more idiomatic to check whether the return value is `Ok` or `Err`
3013            /// rather than to infer success vs failure based on the value that was read.
3014            ///
3015            /// During migration, consider whether it makes sense to use `compare_exchange_weak` instead.
3016            /// `compare_exchange_weak` is allowed to fail spuriously even when the comparison succeeds,
3017            /// which allows the compiler to generate better assembly code when the compare and swap
3018            /// is used in a loop.
3019            ///
3020            /// # Examples
3021            ///
3022            /// ```
3023            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3024            ///
3025            #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
3026            ///
3027            /// assert_eq!(some_var.compare_and_swap(5, 10, Ordering::Relaxed), 5);
3028            /// assert_eq!(some_var.load(Ordering::Relaxed), 10);
3029            ///
3030            /// assert_eq!(some_var.compare_and_swap(6, 12, Ordering::Relaxed), 10);
3031            /// assert_eq!(some_var.load(Ordering::Relaxed), 10);
3032            /// ```
3033            #[inline]
3034            #[$stable]
3035            #[deprecated(
3036                since = "1.50.0",
3037                note = "Use `compare_exchange` or `compare_exchange_weak` instead")
3038            ]
3039            #[$cfg_cas]
3040            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3041            #[rustc_should_not_be_called_on_const_items]
3042            pub fn compare_and_swap(&self,
3043                                    current: $int_type,
3044                                    new: $int_type,
3045                                    order: Ordering) -> $int_type {
3046                match self.compare_exchange(current,
3047                                            new,
3048                                            order,
3049                                            strongest_failure_ordering(order)) {
3050                    Ok(x) => x,
3051                    Err(x) => x,
3052                }
3053            }
3054
3055            /// Stores a value into the atomic integer if the current value is the same as
3056            /// the `current` value.
3057            ///
3058            /// The return value is a result indicating whether the new value was written and
3059            /// containing the previous value. On success this value is guaranteed to be equal to
3060            /// `current`.
3061            ///
3062            /// `compare_exchange` takes two [`Ordering`] arguments to describe the memory
3063            /// ordering of this operation. `success` describes the required ordering for the
3064            /// read-modify-write operation that takes place if the comparison with `current` succeeds.
3065            /// `failure` describes the required ordering for the load operation that takes place when
3066            /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
3067            /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
3068            /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
3069            ///
3070            /// **Note**: This method is only available on platforms that support atomic operations on
3071            #[doc = concat!("[`", $s_int_type, "`].")]
3072            ///
3073            /// # Examples
3074            ///
3075            /// ```
3076            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3077            ///
3078            #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
3079            ///
3080            /// assert_eq!(some_var.compare_exchange(5, 10,
3081            ///                                      Ordering::Acquire,
3082            ///                                      Ordering::Relaxed),
3083            ///            Ok(5));
3084            /// assert_eq!(some_var.load(Ordering::Relaxed), 10);
3085            ///
3086            /// assert_eq!(some_var.compare_exchange(6, 12,
3087            ///                                      Ordering::SeqCst,
3088            ///                                      Ordering::Acquire),
3089            ///            Err(10));
3090            /// assert_eq!(some_var.load(Ordering::Relaxed), 10);
3091            /// ```
3092            ///
3093            /// # Considerations
3094            ///
3095            /// `compare_exchange` is a [compare-and-swap operation] and thus exhibits the usual downsides
3096            /// of CAS operations. In particular, a load of the value followed by a successful
3097            /// `compare_exchange` with the previous load *does not ensure* that other threads have not
3098            /// changed the value in the interim! This is usually important when the *equality* check in
3099            /// the `compare_exchange` is being used to check the *identity* of a value, but equality
3100            /// does not necessarily imply identity. This is a particularly common case for pointers, as
3101            /// a pointer holding the same address does not imply that the same object exists at that
3102            /// address! In this case, `compare_exchange` can lead to the [ABA problem].
3103            ///
3104            /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
3105            /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
3106            #[inline]
3107            #[$stable_cxchg]
3108            #[$cfg_cas]
3109            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3110            #[rustc_should_not_be_called_on_const_items]
3111            pub fn compare_exchange(&self,
3112                                    current: $int_type,
3113                                    new: $int_type,
3114                                    success: Ordering,
3115                                    failure: Ordering) -> Result<$int_type, $int_type> {
3116                // SAFETY: data races are prevented by atomic intrinsics.
3117                unsafe { atomic_compare_exchange(self.v.get(), current, new, success, failure) }
3118            }
3119
3120            /// Stores a value into the atomic integer if the current value is the same as
3121            /// the `current` value.
3122            ///
3123            #[doc = concat!("Unlike [`", stringify!($atomic_type), "::compare_exchange`],")]
3124            /// this function is allowed to spuriously fail even
3125            /// when the comparison succeeds, which can result in more efficient code on some
3126            /// platforms. The return value is a result indicating whether the new value was
3127            /// written and containing the previous value.
3128            ///
3129            /// `compare_exchange_weak` takes two [`Ordering`] arguments to describe the memory
3130            /// ordering of this operation. `success` describes the required ordering for the
3131            /// read-modify-write operation that takes place if the comparison with `current` succeeds.
3132            /// `failure` describes the required ordering for the load operation that takes place when
3133            /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
3134            /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
3135            /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
3136            ///
3137            /// **Note**: This method is only available on platforms that support atomic operations on
3138            #[doc = concat!("[`", $s_int_type, "`].")]
3139            ///
3140            /// # Examples
3141            ///
3142            /// ```
3143            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3144            ///
3145            #[doc = concat!("let val = ", stringify!($atomic_type), "::new(4);")]
3146            ///
3147            /// let mut old = val.load(Ordering::Relaxed);
3148            /// loop {
3149            ///     let new = old * 2;
3150            ///     match val.compare_exchange_weak(old, new, Ordering::SeqCst, Ordering::Relaxed) {
3151            ///         Ok(_) => break,
3152            ///         Err(x) => old = x,
3153            ///     }
3154            /// }
3155            /// ```
3156            ///
3157            /// # Considerations
3158            ///
3159            /// `compare_exchange` is a [compare-and-swap operation] and thus exhibits the usual downsides
3160            /// of CAS operations. In particular, a load of the value followed by a successful
3161            /// `compare_exchange` with the previous load *does not ensure* that other threads have not
3162            /// changed the value in the interim. This is usually important when the *equality* check in
3163            /// the `compare_exchange` is being used to check the *identity* of a value, but equality
3164            /// does not necessarily imply identity. This is a particularly common case for pointers, as
3165            /// a pointer holding the same address does not imply that the same object exists at that
3166            /// address! In this case, `compare_exchange` can lead to the [ABA problem].
3167            ///
3168            /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
3169            /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
3170            #[inline]
3171            #[$stable_cxchg]
3172            #[$cfg_cas]
3173            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3174            #[rustc_should_not_be_called_on_const_items]
3175            pub fn compare_exchange_weak(&self,
3176                                         current: $int_type,
3177                                         new: $int_type,
3178                                         success: Ordering,
3179                                         failure: Ordering) -> Result<$int_type, $int_type> {
3180                // SAFETY: data races are prevented by atomic intrinsics.
3181                unsafe {
3182                    atomic_compare_exchange_weak(self.v.get(), current, new, success, failure)
3183                }
3184            }
3185
3186            /// Adds to the current value, returning the previous value.
3187            ///
3188            /// This operation wraps around on overflow.
3189            ///
3190            /// `fetch_add` takes an [`Ordering`] argument which describes the memory ordering
3191            /// of this operation. All ordering modes are possible. Note that using
3192            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3193            /// using [`Release`] makes the load part [`Relaxed`].
3194            ///
3195            /// **Note**: This method is only available on platforms that support atomic operations on
3196            #[doc = concat!("[`", $s_int_type, "`].")]
3197            ///
3198            /// # Examples
3199            ///
3200            /// ```
3201            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3202            ///
3203            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(0);")]
3204            /// assert_eq!(foo.fetch_add(10, Ordering::SeqCst), 0);
3205            /// assert_eq!(foo.load(Ordering::SeqCst), 10);
3206            /// ```
3207            #[inline]
3208            #[$stable]
3209            #[$cfg_cas]
3210            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3211            #[rustc_should_not_be_called_on_const_items]
3212            pub fn fetch_add(&self, val: $int_type, order: Ordering) -> $int_type {
3213                // SAFETY: data races are prevented by atomic intrinsics.
3214                unsafe { atomic_add(self.v.get(), val, order) }
3215            }
3216
3217            /// Subtracts from the current value, returning the previous value.
3218            ///
3219            /// This operation wraps around on overflow.
3220            ///
3221            /// `fetch_sub` takes an [`Ordering`] argument which describes the memory ordering
3222            /// of this operation. All ordering modes are possible. Note that using
3223            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3224            /// using [`Release`] makes the load part [`Relaxed`].
3225            ///
3226            /// **Note**: This method is only available on platforms that support atomic operations on
3227            #[doc = concat!("[`", $s_int_type, "`].")]
3228            ///
3229            /// # Examples
3230            ///
3231            /// ```
3232            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3233            ///
3234            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(20);")]
3235            /// assert_eq!(foo.fetch_sub(10, Ordering::SeqCst), 20);
3236            /// assert_eq!(foo.load(Ordering::SeqCst), 10);
3237            /// ```
3238            #[inline]
3239            #[$stable]
3240            #[$cfg_cas]
3241            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3242            #[rustc_should_not_be_called_on_const_items]
3243            pub fn fetch_sub(&self, val: $int_type, order: Ordering) -> $int_type {
3244                // SAFETY: data races are prevented by atomic intrinsics.
3245                unsafe { atomic_sub(self.v.get(), val, order) }
3246            }
3247
3248            /// Bitwise "and" with the current value.
3249            ///
3250            /// Performs a bitwise "and" operation on the current value and the argument `val`, and
3251            /// sets the new value to the result.
3252            ///
3253            /// Returns the previous value.
3254            ///
3255            /// `fetch_and` takes an [`Ordering`] argument which describes the memory ordering
3256            /// of this operation. All ordering modes are possible. Note that using
3257            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3258            /// using [`Release`] makes the load part [`Relaxed`].
3259            ///
3260            /// **Note**: This method is only available on platforms that support atomic operations on
3261            #[doc = concat!("[`", $s_int_type, "`].")]
3262            ///
3263            /// # Examples
3264            ///
3265            /// ```
3266            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3267            ///
3268            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(0b101101);")]
3269            /// assert_eq!(foo.fetch_and(0b110011, Ordering::SeqCst), 0b101101);
3270            /// assert_eq!(foo.load(Ordering::SeqCst), 0b100001);
3271            /// ```
3272            #[inline]
3273            #[$stable]
3274            #[$cfg_cas]
3275            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3276            #[rustc_should_not_be_called_on_const_items]
3277            pub fn fetch_and(&self, val: $int_type, order: Ordering) -> $int_type {
3278                // SAFETY: data races are prevented by atomic intrinsics.
3279                unsafe { atomic_and(self.v.get(), val, order) }
3280            }
3281
3282            /// Bitwise "nand" with the current value.
3283            ///
3284            /// Performs a bitwise "nand" operation on the current value and the argument `val`, and
3285            /// sets the new value to the result.
3286            ///
3287            /// Returns the previous value.
3288            ///
3289            /// `fetch_nand` takes an [`Ordering`] argument which describes the memory ordering
3290            /// of this operation. All ordering modes are possible. Note that using
3291            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3292            /// using [`Release`] makes the load part [`Relaxed`].
3293            ///
3294            /// **Note**: This method is only available on platforms that support atomic operations on
3295            #[doc = concat!("[`", $s_int_type, "`].")]
3296            ///
3297            /// # Examples
3298            ///
3299            /// ```
3300            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3301            ///
3302            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(0x13);")]
3303            /// assert_eq!(foo.fetch_nand(0x31, Ordering::SeqCst), 0x13);
3304            /// assert_eq!(foo.load(Ordering::SeqCst), !(0x13 & 0x31));
3305            /// ```
3306            #[inline]
3307            #[$stable_nand]
3308            #[$cfg_cas]
3309            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3310            #[rustc_should_not_be_called_on_const_items]
3311            pub fn fetch_nand(&self, val: $int_type, order: Ordering) -> $int_type {
3312                // SAFETY: data races are prevented by atomic intrinsics.
3313                unsafe { atomic_nand(self.v.get(), val, order) }
3314            }
3315
3316            /// Bitwise "or" with the current value.
3317            ///
3318            /// Performs a bitwise "or" operation on the current value and the argument `val`, and
3319            /// sets the new value to the result.
3320            ///
3321            /// Returns the previous value.
3322            ///
3323            /// `fetch_or` takes an [`Ordering`] argument which describes the memory ordering
3324            /// of this operation. All ordering modes are possible. Note that using
3325            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3326            /// using [`Release`] makes the load part [`Relaxed`].
3327            ///
3328            /// **Note**: This method is only available on platforms that support atomic operations on
3329            #[doc = concat!("[`", $s_int_type, "`].")]
3330            ///
3331            /// # Examples
3332            ///
3333            /// ```
3334            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3335            ///
3336            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(0b101101);")]
3337            /// assert_eq!(foo.fetch_or(0b110011, Ordering::SeqCst), 0b101101);
3338            /// assert_eq!(foo.load(Ordering::SeqCst), 0b111111);
3339            /// ```
3340            #[inline]
3341            #[$stable]
3342            #[$cfg_cas]
3343            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3344            #[rustc_should_not_be_called_on_const_items]
3345            pub fn fetch_or(&self, val: $int_type, order: Ordering) -> $int_type {
3346                // SAFETY: data races are prevented by atomic intrinsics.
3347                unsafe { atomic_or(self.v.get(), val, order) }
3348            }
3349
3350            /// Bitwise "xor" with the current value.
3351            ///
3352            /// Performs a bitwise "xor" operation on the current value and the argument `val`, and
3353            /// sets the new value to the result.
3354            ///
3355            /// Returns the previous value.
3356            ///
3357            /// `fetch_xor` takes an [`Ordering`] argument which describes the memory ordering
3358            /// of this operation. All ordering modes are possible. Note that using
3359            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3360            /// using [`Release`] makes the load part [`Relaxed`].
3361            ///
3362            /// **Note**: This method is only available on platforms that support atomic operations on
3363            #[doc = concat!("[`", $s_int_type, "`].")]
3364            ///
3365            /// # Examples
3366            ///
3367            /// ```
3368            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3369            ///
3370            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(0b101101);")]
3371            /// assert_eq!(foo.fetch_xor(0b110011, Ordering::SeqCst), 0b101101);
3372            /// assert_eq!(foo.load(Ordering::SeqCst), 0b011110);
3373            /// ```
3374            #[inline]
3375            #[$stable]
3376            #[$cfg_cas]
3377            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3378            #[rustc_should_not_be_called_on_const_items]
3379            pub fn fetch_xor(&self, val: $int_type, order: Ordering) -> $int_type {
3380                // SAFETY: data races are prevented by atomic intrinsics.
3381                unsafe { atomic_xor(self.v.get(), val, order) }
3382            }
3383
3384            /// Fetches the value, and applies a function to it that returns an optional
3385            /// new value. Returns a `Result` of `Ok(previous_value)` if the function returned `Some(_)`, else
3386            /// `Err(previous_value)`.
3387            ///
3388            /// Note: This may call the function multiple times if the value has been changed from other threads in
3389            /// the meantime, as long as the function returns `Some(_)`, but the function will have been applied
3390            /// only once to the stored value.
3391            ///
3392            /// `fetch_update` takes two [`Ordering`] arguments to describe the memory ordering of this operation.
3393            /// The first describes the required ordering for when the operation finally succeeds while the second
3394            /// describes the required ordering for loads. These correspond to the success and failure orderings of
3395            #[doc = concat!("[`", stringify!($atomic_type), "::compare_exchange`]")]
3396            /// respectively.
3397            ///
3398            /// Using [`Acquire`] as success ordering makes the store part
3399            /// of this operation [`Relaxed`], and using [`Release`] makes the final successful load
3400            /// [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
3401            ///
3402            /// **Note**: This method is only available on platforms that support atomic operations on
3403            #[doc = concat!("[`", $s_int_type, "`].")]
3404            ///
3405            /// # Considerations
3406            ///
3407            /// This method is not magic; it is not provided by the hardware, and does not act like a
3408            /// critical section or mutex.
3409            ///
3410            /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
3411            /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem]
3412            /// if this atomic integer is an index or more generally if knowledge of only the *bitwise value*
3413            /// of the atomic is not in and of itself sufficient to ensure any required preconditions.
3414            ///
3415            /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
3416            /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
3417            ///
3418            /// # Examples
3419            ///
3420            /// ```rust
3421            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3422            ///
3423            #[doc = concat!("let x = ", stringify!($atomic_type), "::new(7);")]
3424            /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(7));
3425            /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(7));
3426            /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(8));
3427            /// assert_eq!(x.load(Ordering::SeqCst), 9);
3428            /// ```
3429            #[inline]
3430            #[stable(feature = "no_more_cas", since = "1.45.0")]
3431            #[$cfg_cas]
3432            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3433            #[rustc_should_not_be_called_on_const_items]
3434            pub fn fetch_update<F>(&self,
3435                                   set_order: Ordering,
3436                                   fetch_order: Ordering,
3437                                   mut f: F) -> Result<$int_type, $int_type>
3438            where F: FnMut($int_type) -> Option<$int_type> {
3439                let mut prev = self.load(fetch_order);
3440                while let Some(next) = f(prev) {
3441                    match self.compare_exchange_weak(prev, next, set_order, fetch_order) {
3442                        x @ Ok(_) => return x,
3443                        Err(next_prev) => prev = next_prev
3444                    }
3445                }
3446                Err(prev)
3447            }
3448
3449            /// Fetches the value, and applies a function to it that returns an optional
3450            /// new value. Returns a `Result` of `Ok(previous_value)` if the function returned `Some(_)`, else
3451            /// `Err(previous_value)`.
3452            ///
3453            #[doc = concat!("See also: [`update`](`", stringify!($atomic_type), "::update`).")]
3454            ///
3455            /// Note: This may call the function multiple times if the value has been changed from other threads in
3456            /// the meantime, as long as the function returns `Some(_)`, but the function will have been applied
3457            /// only once to the stored value.
3458            ///
3459            /// `try_update` takes two [`Ordering`] arguments to describe the memory ordering of this operation.
3460            /// The first describes the required ordering for when the operation finally succeeds while the second
3461            /// describes the required ordering for loads. These correspond to the success and failure orderings of
3462            #[doc = concat!("[`", stringify!($atomic_type), "::compare_exchange`]")]
3463            /// respectively.
3464            ///
3465            /// Using [`Acquire`] as success ordering makes the store part
3466            /// of this operation [`Relaxed`], and using [`Release`] makes the final successful load
3467            /// [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
3468            ///
3469            /// **Note**: This method is only available on platforms that support atomic operations on
3470            #[doc = concat!("[`", $s_int_type, "`].")]
3471            ///
3472            /// # Considerations
3473            ///
3474            /// This method is not magic; it is not provided by the hardware, and does not act like a
3475            /// critical section or mutex.
3476            ///
3477            /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
3478            /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem]
3479            /// if this atomic integer is an index or more generally if knowledge of only the *bitwise value*
3480            /// of the atomic is not in and of itself sufficient to ensure any required preconditions.
3481            ///
3482            /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
3483            /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
3484            ///
3485            /// # Examples
3486            ///
3487            /// ```rust
3488            /// #![feature(atomic_try_update)]
3489            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3490            ///
3491            #[doc = concat!("let x = ", stringify!($atomic_type), "::new(7);")]
3492            /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(7));
3493            /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(7));
3494            /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(8));
3495            /// assert_eq!(x.load(Ordering::SeqCst), 9);
3496            /// ```
3497            #[inline]
3498            #[unstable(feature = "atomic_try_update", issue = "135894")]
3499            #[$cfg_cas]
3500            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3501            #[rustc_should_not_be_called_on_const_items]
3502            pub fn try_update(
3503                &self,
3504                set_order: Ordering,
3505                fetch_order: Ordering,
3506                f: impl FnMut($int_type) -> Option<$int_type>,
3507            ) -> Result<$int_type, $int_type> {
3508                // FIXME(atomic_try_update): this is currently an unstable alias to `fetch_update`;
3509                //      when stabilizing, turn `fetch_update` into a deprecated alias to `try_update`.
3510                self.fetch_update(set_order, fetch_order, f)
3511            }
3512
3513            /// Fetches the value, applies a function to it that it return a new value.
3514            /// The new value is stored and the old value is returned.
3515            ///
3516            #[doc = concat!("See also: [`try_update`](`", stringify!($atomic_type), "::try_update`).")]
3517            ///
3518            /// Note: This may call the function multiple times if the value has been changed from other threads in
3519            /// the meantime, but the function will have been applied only once to the stored value.
3520            ///
3521            /// `update` takes two [`Ordering`] arguments to describe the memory ordering of this operation.
3522            /// The first describes the required ordering for when the operation finally succeeds while the second
3523            /// describes the required ordering for loads. These correspond to the success and failure orderings of
3524            #[doc = concat!("[`", stringify!($atomic_type), "::compare_exchange`]")]
3525            /// respectively.
3526            ///
3527            /// Using [`Acquire`] as success ordering makes the store part
3528            /// of this operation [`Relaxed`], and using [`Release`] makes the final successful load
3529            /// [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
3530            ///
3531            /// **Note**: This method is only available on platforms that support atomic operations on
3532            #[doc = concat!("[`", $s_int_type, "`].")]
3533            ///
3534            /// # Considerations
3535            ///
3536            /// [CAS operation]: https://en.wikipedia.org/wiki/Compare-and-swap
3537            /// This method is not magic; it is not provided by the hardware, and does not act like a
3538            /// critical section or mutex.
3539            ///
3540            /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
3541            /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem]
3542            /// if this atomic integer is an index or more generally if knowledge of only the *bitwise value*
3543            /// of the atomic is not in and of itself sufficient to ensure any required preconditions.
3544            ///
3545            /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
3546            /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
3547            ///
3548            /// # Examples
3549            ///
3550            /// ```rust
3551            /// #![feature(atomic_try_update)]
3552            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3553            ///
3554            #[doc = concat!("let x = ", stringify!($atomic_type), "::new(7);")]
3555            /// assert_eq!(x.update(Ordering::SeqCst, Ordering::SeqCst, |x| x + 1), 7);
3556            /// assert_eq!(x.update(Ordering::SeqCst, Ordering::SeqCst, |x| x + 1), 8);
3557            /// assert_eq!(x.load(Ordering::SeqCst), 9);
3558            /// ```
3559            #[inline]
3560            #[unstable(feature = "atomic_try_update", issue = "135894")]
3561            #[$cfg_cas]
3562            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3563            #[rustc_should_not_be_called_on_const_items]
3564            pub fn update(
3565                &self,
3566                set_order: Ordering,
3567                fetch_order: Ordering,
3568                mut f: impl FnMut($int_type) -> $int_type,
3569            ) -> $int_type {
3570                let mut prev = self.load(fetch_order);
3571                loop {
3572                    match self.compare_exchange_weak(prev, f(prev), set_order, fetch_order) {
3573                        Ok(x) => break x,
3574                        Err(next_prev) => prev = next_prev,
3575                    }
3576                }
3577            }
3578
3579            /// Maximum with the current value.
3580            ///
3581            /// Finds the maximum of the current value and the argument `val`, and
3582            /// sets the new value to the result.
3583            ///
3584            /// Returns the previous value.
3585            ///
3586            /// `fetch_max` takes an [`Ordering`] argument which describes the memory ordering
3587            /// of this operation. All ordering modes are possible. Note that using
3588            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3589            /// using [`Release`] makes the load part [`Relaxed`].
3590            ///
3591            /// **Note**: This method is only available on platforms that support atomic operations on
3592            #[doc = concat!("[`", $s_int_type, "`].")]
3593            ///
3594            /// # Examples
3595            ///
3596            /// ```
3597            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3598            ///
3599            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(23);")]
3600            /// assert_eq!(foo.fetch_max(42, Ordering::SeqCst), 23);
3601            /// assert_eq!(foo.load(Ordering::SeqCst), 42);
3602            /// ```
3603            ///
3604            /// If you want to obtain the maximum value in one step, you can use the following:
3605            ///
3606            /// ```
3607            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3608            ///
3609            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(23);")]
3610            /// let bar = 42;
3611            /// let max_foo = foo.fetch_max(bar, Ordering::SeqCst).max(bar);
3612            /// assert!(max_foo == 42);
3613            /// ```
3614            #[inline]
3615            #[stable(feature = "atomic_min_max", since = "1.45.0")]
3616            #[$cfg_cas]
3617            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3618            #[rustc_should_not_be_called_on_const_items]
3619            pub fn fetch_max(&self, val: $int_type, order: Ordering) -> $int_type {
3620                // SAFETY: data races are prevented by atomic intrinsics.
3621                unsafe { $max_fn(self.v.get(), val, order) }
3622            }
3623
3624            /// Minimum with the current value.
3625            ///
3626            /// Finds the minimum of the current value and the argument `val`, and
3627            /// sets the new value to the result.
3628            ///
3629            /// Returns the previous value.
3630            ///
3631            /// `fetch_min` takes an [`Ordering`] argument which describes the memory ordering
3632            /// of this operation. All ordering modes are possible. Note that using
3633            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3634            /// using [`Release`] makes the load part [`Relaxed`].
3635            ///
3636            /// **Note**: This method is only available on platforms that support atomic operations on
3637            #[doc = concat!("[`", $s_int_type, "`].")]
3638            ///
3639            /// # Examples
3640            ///
3641            /// ```
3642            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3643            ///
3644            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(23);")]
3645            /// assert_eq!(foo.fetch_min(42, Ordering::Relaxed), 23);
3646            /// assert_eq!(foo.load(Ordering::Relaxed), 23);
3647            /// assert_eq!(foo.fetch_min(22, Ordering::Relaxed), 23);
3648            /// assert_eq!(foo.load(Ordering::Relaxed), 22);
3649            /// ```
3650            ///
3651            /// If you want to obtain the minimum value in one step, you can use the following:
3652            ///
3653            /// ```
3654            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3655            ///
3656            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(23);")]
3657            /// let bar = 12;
3658            /// let min_foo = foo.fetch_min(bar, Ordering::SeqCst).min(bar);
3659            /// assert_eq!(min_foo, 12);
3660            /// ```
3661            #[inline]
3662            #[stable(feature = "atomic_min_max", since = "1.45.0")]
3663            #[$cfg_cas]
3664            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3665            #[rustc_should_not_be_called_on_const_items]
3666            pub fn fetch_min(&self, val: $int_type, order: Ordering) -> $int_type {
3667                // SAFETY: data races are prevented by atomic intrinsics.
3668                unsafe { $min_fn(self.v.get(), val, order) }
3669            }
3670
3671            /// Returns a mutable pointer to the underlying integer.
3672            ///
3673            /// Doing non-atomic reads and writes on the resulting integer can be a data race.
3674            /// This method is mostly useful for FFI, where the function signature may use
3675            #[doc = concat!("`*mut ", stringify!($int_type), "` instead of `&", stringify!($atomic_type), "`.")]
3676            ///
3677            /// Returning an `*mut` pointer from a shared reference to this atomic is safe because the
3678            /// atomic types work with interior mutability. All modifications of an atomic change the value
3679            /// through a shared reference, and can do so safely as long as they use atomic operations. Any
3680            /// use of the returned raw pointer requires an `unsafe` block and still has to uphold the
3681            /// requirements of the [memory model].
3682            ///
3683            /// # Examples
3684            ///
3685            /// ```ignore (extern-declaration)
3686            /// # fn main() {
3687            #[doc = concat!($extra_feature, "use std::sync::atomic::", stringify!($atomic_type), ";")]
3688            ///
3689            /// extern "C" {
3690            #[doc = concat!("    fn my_atomic_op(arg: *mut ", stringify!($int_type), ");")]
3691            /// }
3692            ///
3693            #[doc = concat!("let atomic = ", stringify!($atomic_type), "::new(1);")]
3694            ///
3695            /// // SAFETY: Safe as long as `my_atomic_op` is atomic.
3696            /// unsafe {
3697            ///     my_atomic_op(atomic.as_ptr());
3698            /// }
3699            /// # }
3700            /// ```
3701            ///
3702            /// [memory model]: self#memory-model-for-atomic-accesses
3703            #[inline]
3704            #[stable(feature = "atomic_as_ptr", since = "1.70.0")]
3705            #[rustc_const_stable(feature = "atomic_as_ptr", since = "1.70.0")]
3706            #[rustc_never_returns_null_ptr]
3707            pub const fn as_ptr(&self) -> *mut $int_type {
3708                self.v.get()
3709            }
3710        }
3711    }
3712}
3713
3714#[cfg(target_has_atomic_load_store = "8")]
3715atomic_int! {
3716    cfg(target_has_atomic = "8"),
3717    cfg(target_has_atomic_equal_alignment = "8"),
3718    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3719    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3720    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3721    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3722    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3723    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3724    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3725    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3726    rustc_diagnostic_item = "AtomicI8",
3727    "i8",
3728    "",
3729    atomic_min, atomic_max,
3730    1,
3731    i8 AtomicI8
3732}
3733#[cfg(target_has_atomic_load_store = "8")]
3734atomic_int! {
3735    cfg(target_has_atomic = "8"),
3736    cfg(target_has_atomic_equal_alignment = "8"),
3737    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3738    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3739    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3740    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3741    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3742    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3743    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3744    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3745    rustc_diagnostic_item = "AtomicU8",
3746    "u8",
3747    "",
3748    atomic_umin, atomic_umax,
3749    1,
3750    u8 AtomicU8
3751}
3752#[cfg(target_has_atomic_load_store = "16")]
3753atomic_int! {
3754    cfg(target_has_atomic = "16"),
3755    cfg(target_has_atomic_equal_alignment = "16"),
3756    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3757    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3758    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3759    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3760    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3761    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3762    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3763    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3764    rustc_diagnostic_item = "AtomicI16",
3765    "i16",
3766    "",
3767    atomic_min, atomic_max,
3768    2,
3769    i16 AtomicI16
3770}
3771#[cfg(target_has_atomic_load_store = "16")]
3772atomic_int! {
3773    cfg(target_has_atomic = "16"),
3774    cfg(target_has_atomic_equal_alignment = "16"),
3775    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3776    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3777    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3778    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3779    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3780    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3781    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3782    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3783    rustc_diagnostic_item = "AtomicU16",
3784    "u16",
3785    "",
3786    atomic_umin, atomic_umax,
3787    2,
3788    u16 AtomicU16
3789}
3790#[cfg(target_has_atomic_load_store = "32")]
3791atomic_int! {
3792    cfg(target_has_atomic = "32"),
3793    cfg(target_has_atomic_equal_alignment = "32"),
3794    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3795    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3796    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3797    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3798    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3799    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3800    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3801    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3802    rustc_diagnostic_item = "AtomicI32",
3803    "i32",
3804    "",
3805    atomic_min, atomic_max,
3806    4,
3807    i32 AtomicI32
3808}
3809#[cfg(target_has_atomic_load_store = "32")]
3810atomic_int! {
3811    cfg(target_has_atomic = "32"),
3812    cfg(target_has_atomic_equal_alignment = "32"),
3813    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3814    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3815    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3816    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3817    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3818    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3819    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3820    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3821    rustc_diagnostic_item = "AtomicU32",
3822    "u32",
3823    "",
3824    atomic_umin, atomic_umax,
3825    4,
3826    u32 AtomicU32
3827}
3828#[cfg(target_has_atomic_load_store = "64")]
3829atomic_int! {
3830    cfg(target_has_atomic = "64"),
3831    cfg(target_has_atomic_equal_alignment = "64"),
3832    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3833    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3834    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3835    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3836    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3837    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3838    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3839    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3840    rustc_diagnostic_item = "AtomicI64",
3841    "i64",
3842    "",
3843    atomic_min, atomic_max,
3844    8,
3845    i64 AtomicI64
3846}
3847#[cfg(target_has_atomic_load_store = "64")]
3848atomic_int! {
3849    cfg(target_has_atomic = "64"),
3850    cfg(target_has_atomic_equal_alignment = "64"),
3851    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3852    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3853    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3854    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3855    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3856    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3857    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3858    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3859    rustc_diagnostic_item = "AtomicU64",
3860    "u64",
3861    "",
3862    atomic_umin, atomic_umax,
3863    8,
3864    u64 AtomicU64
3865}
3866#[cfg(target_has_atomic_load_store = "128")]
3867atomic_int! {
3868    cfg(target_has_atomic = "128"),
3869    cfg(target_has_atomic_equal_alignment = "128"),
3870    unstable(feature = "integer_atomics", issue = "99069"),
3871    unstable(feature = "integer_atomics", issue = "99069"),
3872    unstable(feature = "integer_atomics", issue = "99069"),
3873    unstable(feature = "integer_atomics", issue = "99069"),
3874    unstable(feature = "integer_atomics", issue = "99069"),
3875    unstable(feature = "integer_atomics", issue = "99069"),
3876    rustc_const_unstable(feature = "integer_atomics", issue = "99069"),
3877    rustc_const_unstable(feature = "integer_atomics", issue = "99069"),
3878    rustc_diagnostic_item = "AtomicI128",
3879    "i128",
3880    "#![feature(integer_atomics)]\n\n",
3881    atomic_min, atomic_max,
3882    16,
3883    i128 AtomicI128
3884}
3885#[cfg(target_has_atomic_load_store = "128")]
3886atomic_int! {
3887    cfg(target_has_atomic = "128"),
3888    cfg(target_has_atomic_equal_alignment = "128"),
3889    unstable(feature = "integer_atomics", issue = "99069"),
3890    unstable(feature = "integer_atomics", issue = "99069"),
3891    unstable(feature = "integer_atomics", issue = "99069"),
3892    unstable(feature = "integer_atomics", issue = "99069"),
3893    unstable(feature = "integer_atomics", issue = "99069"),
3894    unstable(feature = "integer_atomics", issue = "99069"),
3895    rustc_const_unstable(feature = "integer_atomics", issue = "99069"),
3896    rustc_const_unstable(feature = "integer_atomics", issue = "99069"),
3897    rustc_diagnostic_item = "AtomicU128",
3898    "u128",
3899    "#![feature(integer_atomics)]\n\n",
3900    atomic_umin, atomic_umax,
3901    16,
3902    u128 AtomicU128
3903}
3904
3905#[cfg(target_has_atomic_load_store = "ptr")]
3906macro_rules! atomic_int_ptr_sized {
3907    ( $($target_pointer_width:literal $align:literal)* ) => { $(
3908        #[cfg(target_pointer_width = $target_pointer_width)]
3909        atomic_int! {
3910            cfg(target_has_atomic = "ptr"),
3911            cfg(target_has_atomic_equal_alignment = "ptr"),
3912            stable(feature = "rust1", since = "1.0.0"),
3913            stable(feature = "extended_compare_and_swap", since = "1.10.0"),
3914            stable(feature = "atomic_debug", since = "1.3.0"),
3915            stable(feature = "atomic_access", since = "1.15.0"),
3916            stable(feature = "atomic_from", since = "1.23.0"),
3917            stable(feature = "atomic_nand", since = "1.27.0"),
3918            rustc_const_stable(feature = "const_ptr_sized_atomics", since = "1.24.0"),
3919            rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3920            rustc_diagnostic_item = "AtomicIsize",
3921            "isize",
3922            "",
3923            atomic_min, atomic_max,
3924            $align,
3925            isize AtomicIsize
3926        }
3927        #[cfg(target_pointer_width = $target_pointer_width)]
3928        atomic_int! {
3929            cfg(target_has_atomic = "ptr"),
3930            cfg(target_has_atomic_equal_alignment = "ptr"),
3931            stable(feature = "rust1", since = "1.0.0"),
3932            stable(feature = "extended_compare_and_swap", since = "1.10.0"),
3933            stable(feature = "atomic_debug", since = "1.3.0"),
3934            stable(feature = "atomic_access", since = "1.15.0"),
3935            stable(feature = "atomic_from", since = "1.23.0"),
3936            stable(feature = "atomic_nand", since = "1.27.0"),
3937            rustc_const_stable(feature = "const_ptr_sized_atomics", since = "1.24.0"),
3938            rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3939            rustc_diagnostic_item = "AtomicUsize",
3940            "usize",
3941            "",
3942            atomic_umin, atomic_umax,
3943            $align,
3944            usize AtomicUsize
3945        }
3946
3947        /// An [`AtomicIsize`] initialized to `0`.
3948        #[cfg(target_pointer_width = $target_pointer_width)]
3949        #[stable(feature = "rust1", since = "1.0.0")]
3950        #[deprecated(
3951            since = "1.34.0",
3952            note = "the `new` function is now preferred",
3953            suggestion = "AtomicIsize::new(0)",
3954        )]
3955        pub const ATOMIC_ISIZE_INIT: AtomicIsize = AtomicIsize::new(0);
3956
3957        /// An [`AtomicUsize`] initialized to `0`.
3958        #[cfg(target_pointer_width = $target_pointer_width)]
3959        #[stable(feature = "rust1", since = "1.0.0")]
3960        #[deprecated(
3961            since = "1.34.0",
3962            note = "the `new` function is now preferred",
3963            suggestion = "AtomicUsize::new(0)",
3964        )]
3965        pub const ATOMIC_USIZE_INIT: AtomicUsize = AtomicUsize::new(0);
3966    )* };
3967}
3968
3969#[cfg(target_has_atomic_load_store = "ptr")]
3970atomic_int_ptr_sized! {
3971    "16" 2
3972    "32" 4
3973    "64" 8
3974}
3975
3976#[inline]
3977#[cfg(target_has_atomic)]
3978fn strongest_failure_ordering(order: Ordering) -> Ordering {
3979    match order {
3980        Release => Relaxed,
3981        Relaxed => Relaxed,
3982        SeqCst => SeqCst,
3983        Acquire => Acquire,
3984        AcqRel => Acquire,
3985    }
3986}
3987
3988#[inline]
3989#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3990unsafe fn atomic_store<T: Copy>(dst: *mut T, val: T, order: Ordering) {
3991    // SAFETY: the caller must uphold the safety contract for `atomic_store`.
3992    unsafe {
3993        match order {
3994            Relaxed => intrinsics::atomic_store::<T, { AO::Relaxed }>(dst, val),
3995            Release => intrinsics::atomic_store::<T, { AO::Release }>(dst, val),
3996            SeqCst => intrinsics::atomic_store::<T, { AO::SeqCst }>(dst, val),
3997            Acquire => panic!("there is no such thing as an acquire store"),
3998            AcqRel => panic!("there is no such thing as an acquire-release store"),
3999        }
4000    }
4001}
4002
4003#[inline]
4004#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4005unsafe fn atomic_load<T: Copy>(dst: *const T, order: Ordering) -> T {
4006    // SAFETY: the caller must uphold the safety contract for `atomic_load`.
4007    unsafe {
4008        match order {
4009            Relaxed => intrinsics::atomic_load::<T, { AO::Relaxed }>(dst),
4010            Acquire => intrinsics::atomic_load::<T, { AO::Acquire }>(dst),
4011            SeqCst => intrinsics::atomic_load::<T, { AO::SeqCst }>(dst),
4012            Release => panic!("there is no such thing as a release load"),
4013            AcqRel => panic!("there is no such thing as an acquire-release load"),
4014        }
4015    }
4016}
4017
4018#[inline]
4019#[cfg(target_has_atomic)]
4020#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4021unsafe fn atomic_swap<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
4022    // SAFETY: the caller must uphold the safety contract for `atomic_swap`.
4023    unsafe {
4024        match order {
4025            Relaxed => intrinsics::atomic_xchg::<T, { AO::Relaxed }>(dst, val),
4026            Acquire => intrinsics::atomic_xchg::<T, { AO::Acquire }>(dst, val),
4027            Release => intrinsics::atomic_xchg::<T, { AO::Release }>(dst, val),
4028            AcqRel => intrinsics::atomic_xchg::<T, { AO::AcqRel }>(dst, val),
4029            SeqCst => intrinsics::atomic_xchg::<T, { AO::SeqCst }>(dst, val),
4030        }
4031    }
4032}
4033
4034/// Returns the previous value (like __sync_fetch_and_add).
4035#[inline]
4036#[cfg(target_has_atomic)]
4037#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4038unsafe fn atomic_add<T: Copy, U: Copy>(dst: *mut T, val: U, order: Ordering) -> T {
4039    // SAFETY: the caller must uphold the safety contract for `atomic_add`.
4040    unsafe {
4041        match order {
4042            Relaxed => intrinsics::atomic_xadd::<T, U, { AO::Relaxed }>(dst, val),
4043            Acquire => intrinsics::atomic_xadd::<T, U, { AO::Acquire }>(dst, val),
4044            Release => intrinsics::atomic_xadd::<T, U, { AO::Release }>(dst, val),
4045            AcqRel => intrinsics::atomic_xadd::<T, U, { AO::AcqRel }>(dst, val),
4046            SeqCst => intrinsics::atomic_xadd::<T, U, { AO::SeqCst }>(dst, val),
4047        }
4048    }
4049}
4050
4051/// Returns the previous value (like __sync_fetch_and_sub).
4052#[inline]
4053#[cfg(target_has_atomic)]
4054#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4055unsafe fn atomic_sub<T: Copy, U: Copy>(dst: *mut T, val: U, order: Ordering) -> T {
4056    // SAFETY: the caller must uphold the safety contract for `atomic_sub`.
4057    unsafe {
4058        match order {
4059            Relaxed => intrinsics::atomic_xsub::<T, U, { AO::Relaxed }>(dst, val),
4060            Acquire => intrinsics::atomic_xsub::<T, U, { AO::Acquire }>(dst, val),
4061            Release => intrinsics::atomic_xsub::<T, U, { AO::Release }>(dst, val),
4062            AcqRel => intrinsics::atomic_xsub::<T, U, { AO::AcqRel }>(dst, val),
4063            SeqCst => intrinsics::atomic_xsub::<T, U, { AO::SeqCst }>(dst, val),
4064        }
4065    }
4066}
4067
4068/// Publicly exposed for stdarch; nobody else should use this.
4069#[inline]
4070#[cfg(target_has_atomic)]
4071#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4072#[unstable(feature = "core_intrinsics", issue = "none")]
4073#[doc(hidden)]
4074pub unsafe fn atomic_compare_exchange<T: Copy>(
4075    dst: *mut T,
4076    old: T,
4077    new: T,
4078    success: Ordering,
4079    failure: Ordering,
4080) -> Result<T, T> {
4081    // SAFETY: the caller must uphold the safety contract for `atomic_compare_exchange`.
4082    let (val, ok) = unsafe {
4083        match (success, failure) {
4084            (Relaxed, Relaxed) => {
4085                intrinsics::atomic_cxchg::<T, { AO::Relaxed }, { AO::Relaxed }>(dst, old, new)
4086            }
4087            (Relaxed, Acquire) => {
4088                intrinsics::atomic_cxchg::<T, { AO::Relaxed }, { AO::Acquire }>(dst, old, new)
4089            }
4090            (Relaxed, SeqCst) => {
4091                intrinsics::atomic_cxchg::<T, { AO::Relaxed }, { AO::SeqCst }>(dst, old, new)
4092            }
4093            (Acquire, Relaxed) => {
4094                intrinsics::atomic_cxchg::<T, { AO::Acquire }, { AO::Relaxed }>(dst, old, new)
4095            }
4096            (Acquire, Acquire) => {
4097                intrinsics::atomic_cxchg::<T, { AO::Acquire }, { AO::Acquire }>(dst, old, new)
4098            }
4099            (Acquire, SeqCst) => {
4100                intrinsics::atomic_cxchg::<T, { AO::Acquire }, { AO::SeqCst }>(dst, old, new)
4101            }
4102            (Release, Relaxed) => {
4103                intrinsics::atomic_cxchg::<T, { AO::Release }, { AO::Relaxed }>(dst, old, new)
4104            }
4105            (Release, Acquire) => {
4106                intrinsics::atomic_cxchg::<T, { AO::Release }, { AO::Acquire }>(dst, old, new)
4107            }
4108            (Release, SeqCst) => {
4109                intrinsics::atomic_cxchg::<T, { AO::Release }, { AO::SeqCst }>(dst, old, new)
4110            }
4111            (AcqRel, Relaxed) => {
4112                intrinsics::atomic_cxchg::<T, { AO::AcqRel }, { AO::Relaxed }>(dst, old, new)
4113            }
4114            (AcqRel, Acquire) => {
4115                intrinsics::atomic_cxchg::<T, { AO::AcqRel }, { AO::Acquire }>(dst, old, new)
4116            }
4117            (AcqRel, SeqCst) => {
4118                intrinsics::atomic_cxchg::<T, { AO::AcqRel }, { AO::SeqCst }>(dst, old, new)
4119            }
4120            (SeqCst, Relaxed) => {
4121                intrinsics::atomic_cxchg::<T, { AO::SeqCst }, { AO::Relaxed }>(dst, old, new)
4122            }
4123            (SeqCst, Acquire) => {
4124                intrinsics::atomic_cxchg::<T, { AO::SeqCst }, { AO::Acquire }>(dst, old, new)
4125            }
4126            (SeqCst, SeqCst) => {
4127                intrinsics::atomic_cxchg::<T, { AO::SeqCst }, { AO::SeqCst }>(dst, old, new)
4128            }
4129            (_, AcqRel) => panic!("there is no such thing as an acquire-release failure ordering"),
4130            (_, Release) => panic!("there is no such thing as a release failure ordering"),
4131        }
4132    };
4133    if ok { Ok(val) } else { Err(val) }
4134}
4135
4136#[inline]
4137#[cfg(target_has_atomic)]
4138#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4139unsafe fn atomic_compare_exchange_weak<T: Copy>(
4140    dst: *mut T,
4141    old: T,
4142    new: T,
4143    success: Ordering,
4144    failure: Ordering,
4145) -> Result<T, T> {
4146    // SAFETY: the caller must uphold the safety contract for `atomic_compare_exchange_weak`.
4147    let (val, ok) = unsafe {
4148        match (success, failure) {
4149            (Relaxed, Relaxed) => {
4150                intrinsics::atomic_cxchgweak::<T, { AO::Relaxed }, { AO::Relaxed }>(dst, old, new)
4151            }
4152            (Relaxed, Acquire) => {
4153                intrinsics::atomic_cxchgweak::<T, { AO::Relaxed }, { AO::Acquire }>(dst, old, new)
4154            }
4155            (Relaxed, SeqCst) => {
4156                intrinsics::atomic_cxchgweak::<T, { AO::Relaxed }, { AO::SeqCst }>(dst, old, new)
4157            }
4158            (Acquire, Relaxed) => {
4159                intrinsics::atomic_cxchgweak::<T, { AO::Acquire }, { AO::Relaxed }>(dst, old, new)
4160            }
4161            (Acquire, Acquire) => {
4162                intrinsics::atomic_cxchgweak::<T, { AO::Acquire }, { AO::Acquire }>(dst, old, new)
4163            }
4164            (Acquire, SeqCst) => {
4165                intrinsics::atomic_cxchgweak::<T, { AO::Acquire }, { AO::SeqCst }>(dst, old, new)
4166            }
4167            (Release, Relaxed) => {
4168                intrinsics::atomic_cxchgweak::<T, { AO::Release }, { AO::Relaxed }>(dst, old, new)
4169            }
4170            (Release, Acquire) => {
4171                intrinsics::atomic_cxchgweak::<T, { AO::Release }, { AO::Acquire }>(dst, old, new)
4172            }
4173            (Release, SeqCst) => {
4174                intrinsics::atomic_cxchgweak::<T, { AO::Release }, { AO::SeqCst }>(dst, old, new)
4175            }
4176            (AcqRel, Relaxed) => {
4177                intrinsics::atomic_cxchgweak::<T, { AO::AcqRel }, { AO::Relaxed }>(dst, old, new)
4178            }
4179            (AcqRel, Acquire) => {
4180                intrinsics::atomic_cxchgweak::<T, { AO::AcqRel }, { AO::Acquire }>(dst, old, new)
4181            }
4182            (AcqRel, SeqCst) => {
4183                intrinsics::atomic_cxchgweak::<T, { AO::AcqRel }, { AO::SeqCst }>(dst, old, new)
4184            }
4185            (SeqCst, Relaxed) => {
4186                intrinsics::atomic_cxchgweak::<T, { AO::SeqCst }, { AO::Relaxed }>(dst, old, new)
4187            }
4188            (SeqCst, Acquire) => {
4189                intrinsics::atomic_cxchgweak::<T, { AO::SeqCst }, { AO::Acquire }>(dst, old, new)
4190            }
4191            (SeqCst, SeqCst) => {
4192                intrinsics::atomic_cxchgweak::<T, { AO::SeqCst }, { AO::SeqCst }>(dst, old, new)
4193            }
4194            (_, AcqRel) => panic!("there is no such thing as an acquire-release failure ordering"),
4195            (_, Release) => panic!("there is no such thing as a release failure ordering"),
4196        }
4197    };
4198    if ok { Ok(val) } else { Err(val) }
4199}
4200
4201#[inline]
4202#[cfg(target_has_atomic)]
4203#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4204unsafe fn atomic_and<T: Copy, U: Copy>(dst: *mut T, val: U, order: Ordering) -> T {
4205    // SAFETY: the caller must uphold the safety contract for `atomic_and`
4206    unsafe {
4207        match order {
4208            Relaxed => intrinsics::atomic_and::<T, U, { AO::Relaxed }>(dst, val),
4209            Acquire => intrinsics::atomic_and::<T, U, { AO::Acquire }>(dst, val),
4210            Release => intrinsics::atomic_and::<T, U, { AO::Release }>(dst, val),
4211            AcqRel => intrinsics::atomic_and::<T, U, { AO::AcqRel }>(dst, val),
4212            SeqCst => intrinsics::atomic_and::<T, U, { AO::SeqCst }>(dst, val),
4213        }
4214    }
4215}
4216
4217#[inline]
4218#[cfg(target_has_atomic)]
4219#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4220unsafe fn atomic_nand<T: Copy, U: Copy>(dst: *mut T, val: U, order: Ordering) -> T {
4221    // SAFETY: the caller must uphold the safety contract for `atomic_nand`
4222    unsafe {
4223        match order {
4224            Relaxed => intrinsics::atomic_nand::<T, U, { AO::Relaxed }>(dst, val),
4225            Acquire => intrinsics::atomic_nand::<T, U, { AO::Acquire }>(dst, val),
4226            Release => intrinsics::atomic_nand::<T, U, { AO::Release }>(dst, val),
4227            AcqRel => intrinsics::atomic_nand::<T, U, { AO::AcqRel }>(dst, val),
4228            SeqCst => intrinsics::atomic_nand::<T, U, { AO::SeqCst }>(dst, val),
4229        }
4230    }
4231}
4232
4233#[inline]
4234#[cfg(target_has_atomic)]
4235#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4236unsafe fn atomic_or<T: Copy, U: Copy>(dst: *mut T, val: U, order: Ordering) -> T {
4237    // SAFETY: the caller must uphold the safety contract for `atomic_or`
4238    unsafe {
4239        match order {
4240            SeqCst => intrinsics::atomic_or::<T, U, { AO::SeqCst }>(dst, val),
4241            Acquire => intrinsics::atomic_or::<T, U, { AO::Acquire }>(dst, val),
4242            Release => intrinsics::atomic_or::<T, U, { AO::Release }>(dst, val),
4243            AcqRel => intrinsics::atomic_or::<T, U, { AO::AcqRel }>(dst, val),
4244            Relaxed => intrinsics::atomic_or::<T, U, { AO::Relaxed }>(dst, val),
4245        }
4246    }
4247}
4248
4249#[inline]
4250#[cfg(target_has_atomic)]
4251#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4252unsafe fn atomic_xor<T: Copy, U: Copy>(dst: *mut T, val: U, order: Ordering) -> T {
4253    // SAFETY: the caller must uphold the safety contract for `atomic_xor`
4254    unsafe {
4255        match order {
4256            SeqCst => intrinsics::atomic_xor::<T, U, { AO::SeqCst }>(dst, val),
4257            Acquire => intrinsics::atomic_xor::<T, U, { AO::Acquire }>(dst, val),
4258            Release => intrinsics::atomic_xor::<T, U, { AO::Release }>(dst, val),
4259            AcqRel => intrinsics::atomic_xor::<T, U, { AO::AcqRel }>(dst, val),
4260            Relaxed => intrinsics::atomic_xor::<T, U, { AO::Relaxed }>(dst, val),
4261        }
4262    }
4263}
4264
4265/// Updates `*dst` to the max value of `val` and the old value (signed comparison)
4266#[inline]
4267#[cfg(target_has_atomic)]
4268#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4269unsafe fn atomic_max<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
4270    // SAFETY: the caller must uphold the safety contract for `atomic_max`
4271    unsafe {
4272        match order {
4273            Relaxed => intrinsics::atomic_max::<T, { AO::Relaxed }>(dst, val),
4274            Acquire => intrinsics::atomic_max::<T, { AO::Acquire }>(dst, val),
4275            Release => intrinsics::atomic_max::<T, { AO::Release }>(dst, val),
4276            AcqRel => intrinsics::atomic_max::<T, { AO::AcqRel }>(dst, val),
4277            SeqCst => intrinsics::atomic_max::<T, { AO::SeqCst }>(dst, val),
4278        }
4279    }
4280}
4281
4282/// Updates `*dst` to the min value of `val` and the old value (signed comparison)
4283#[inline]
4284#[cfg(target_has_atomic)]
4285#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4286unsafe fn atomic_min<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
4287    // SAFETY: the caller must uphold the safety contract for `atomic_min`
4288    unsafe {
4289        match order {
4290            Relaxed => intrinsics::atomic_min::<T, { AO::Relaxed }>(dst, val),
4291            Acquire => intrinsics::atomic_min::<T, { AO::Acquire }>(dst, val),
4292            Release => intrinsics::atomic_min::<T, { AO::Release }>(dst, val),
4293            AcqRel => intrinsics::atomic_min::<T, { AO::AcqRel }>(dst, val),
4294            SeqCst => intrinsics::atomic_min::<T, { AO::SeqCst }>(dst, val),
4295        }
4296    }
4297}
4298
4299/// Updates `*dst` to the max value of `val` and the old value (unsigned comparison)
4300#[inline]
4301#[cfg(target_has_atomic)]
4302#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4303unsafe fn atomic_umax<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
4304    // SAFETY: the caller must uphold the safety contract for `atomic_umax`
4305    unsafe {
4306        match order {
4307            Relaxed => intrinsics::atomic_umax::<T, { AO::Relaxed }>(dst, val),
4308            Acquire => intrinsics::atomic_umax::<T, { AO::Acquire }>(dst, val),
4309            Release => intrinsics::atomic_umax::<T, { AO::Release }>(dst, val),
4310            AcqRel => intrinsics::atomic_umax::<T, { AO::AcqRel }>(dst, val),
4311            SeqCst => intrinsics::atomic_umax::<T, { AO::SeqCst }>(dst, val),
4312        }
4313    }
4314}
4315
4316/// Updates `*dst` to the min value of `val` and the old value (unsigned comparison)
4317#[inline]
4318#[cfg(target_has_atomic)]
4319#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4320unsafe fn atomic_umin<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
4321    // SAFETY: the caller must uphold the safety contract for `atomic_umin`
4322    unsafe {
4323        match order {
4324            Relaxed => intrinsics::atomic_umin::<T, { AO::Relaxed }>(dst, val),
4325            Acquire => intrinsics::atomic_umin::<T, { AO::Acquire }>(dst, val),
4326            Release => intrinsics::atomic_umin::<T, { AO::Release }>(dst, val),
4327            AcqRel => intrinsics::atomic_umin::<T, { AO::AcqRel }>(dst, val),
4328            SeqCst => intrinsics::atomic_umin::<T, { AO::SeqCst }>(dst, val),
4329        }
4330    }
4331}
4332
4333/// An atomic fence.
4334///
4335/// Fences create synchronization between themselves and atomic operations or fences in other
4336/// threads. To achieve this, a fence prevents the compiler and CPU from reordering certain types of
4337/// memory operations around it.
4338///
4339/// There are 3 different ways to use an atomic fence:
4340///
4341/// - atomic - fence synchronization: an atomic operation with (at least) [`Release`] ordering
4342///   semantics synchronizes with a fence with (at least) [`Acquire`] ordering semantics.
4343/// - fence - atomic synchronization: a fence with (at least) [`Release`] ordering semantics
4344///   synchronizes with an atomic operation with (at least) [`Acquire`] ordering semantics.
4345/// - fence - fence synchronization: a fence with (at least) [`Release`] ordering semantics
4346///   synchronizes with a fence with (at least) [`Acquire`] ordering semantics.
4347///
4348/// These 3 ways complement the regular, fence-less, atomic - atomic synchronization.
4349///
4350/// ## Atomic - Fence
4351///
4352/// An atomic operation on one thread will synchronize with a fence on another thread when:
4353///
4354/// -   on thread 1:
4355///     -   an atomic operation 'X' with (at least) [`Release`] ordering semantics on some atomic
4356///         object 'm',
4357///
4358/// -   is paired on thread 2 with:
4359///     -   an atomic read 'Y' with any order on 'm',
4360///     -   followed by a fence 'B' with (at least) [`Acquire`] ordering semantics.
4361///
4362/// This provides a happens-before dependence between X and B.
4363///
4364/// ```text
4365///     Thread 1                                          Thread 2
4366///
4367/// m.store(3, Release); X ---------
4368///                                |
4369///                                |
4370///                                -------------> Y  if m.load(Relaxed) == 3 {
4371///                                               B      fence(Acquire);
4372///                                                      ...
4373///                                                  }
4374/// ```
4375///
4376/// ## Fence - Atomic
4377///
4378/// A fence on one thread will synchronize with an atomic operation on another thread when:
4379///
4380/// -   on thread:
4381///     -   a fence 'A' with (at least) [`Release`] ordering semantics,
4382///     -   followed by an atomic write 'X' with any ordering on some atomic object 'm',
4383///
4384/// -   is paired on thread 2 with:
4385///     -   an atomic operation 'Y' with (at least) [`Acquire`] ordering semantics.
4386///
4387/// This provides a happens-before dependence between A and Y.
4388///
4389/// ```text
4390///     Thread 1                                          Thread 2
4391///
4392/// fence(Release);      A
4393/// m.store(3, Relaxed); X ---------
4394///                                |
4395///                                |
4396///                                -------------> Y  if m.load(Acquire) == 3 {
4397///                                                      ...
4398///                                                  }
4399/// ```
4400///
4401/// ## Fence - Fence
4402///
4403/// A fence on one thread will synchronize with a fence on another thread when:
4404///
4405/// -   on thread 1:
4406///     -   a fence 'A' which has (at least) [`Release`] ordering semantics,
4407///     -   followed by an atomic write 'X' with any ordering on some atomic object 'm',
4408///
4409/// -   is paired on thread 2 with:
4410///     -   an atomic read 'Y' with any ordering on 'm',
4411///     -   followed by a fence 'B' with (at least) [`Acquire`] ordering semantics.
4412///
4413/// This provides a happens-before dependence between A and B.
4414///
4415/// ```text
4416///     Thread 1                                          Thread 2
4417///
4418/// fence(Release);      A --------------
4419/// m.store(3, Relaxed); X ---------    |
4420///                                |    |
4421///                                |    |
4422///                                -------------> Y  if m.load(Relaxed) == 3 {
4423///                                     |-------> B      fence(Acquire);
4424///                                                      ...
4425///                                                  }
4426/// ```
4427///
4428/// ## Mandatory Atomic
4429///
4430/// Note that in the examples above, it is crucial that the access to `m` are atomic. Fences cannot
4431/// be used to establish synchronization between non-atomic accesses in different threads. However,
4432/// thanks to the happens-before relationship, any non-atomic access that happen-before the atomic
4433/// operation or fence with (at least) [`Release`] ordering semantics are now also properly
4434/// synchronized with any non-atomic accesses that happen-after the atomic operation or fence with
4435/// (at least) [`Acquire`] ordering semantics.
4436///
4437/// ## Memory Ordering
4438///
4439/// A fence which has [`SeqCst`] ordering, in addition to having both [`Acquire`] and [`Release`]
4440/// semantics, participates in the global program order of the other [`SeqCst`] operations and/or
4441/// fences.
4442///
4443/// Accepts [`Acquire`], [`Release`], [`AcqRel`] and [`SeqCst`] orderings.
4444///
4445/// # Panics
4446///
4447/// Panics if `order` is [`Relaxed`].
4448///
4449/// # Examples
4450///
4451/// ```
4452/// use std::sync::atomic::AtomicBool;
4453/// use std::sync::atomic::fence;
4454/// use std::sync::atomic::Ordering;
4455///
4456/// // A mutual exclusion primitive based on spinlock.
4457/// pub struct Mutex {
4458///     flag: AtomicBool,
4459/// }
4460///
4461/// impl Mutex {
4462///     pub fn new() -> Mutex {
4463///         Mutex {
4464///             flag: AtomicBool::new(false),
4465///         }
4466///     }
4467///
4468///     pub fn lock(&self) {
4469///         // Wait until the old value is `false`.
4470///         while self
4471///             .flag
4472///             .compare_exchange_weak(false, true, Ordering::Relaxed, Ordering::Relaxed)
4473///             .is_err()
4474///         {}
4475///         // This fence synchronizes-with store in `unlock`.
4476///         fence(Ordering::Acquire);
4477///     }
4478///
4479///     pub fn unlock(&self) {
4480///         self.flag.store(false, Ordering::Release);
4481///     }
4482/// }
4483/// ```
4484#[inline]
4485#[stable(feature = "rust1", since = "1.0.0")]
4486#[rustc_diagnostic_item = "fence"]
4487#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4488pub fn fence(order: Ordering) {
4489    // SAFETY: using an atomic fence is safe.
4490    unsafe {
4491        match order {
4492            Acquire => intrinsics::atomic_fence::<{ AO::Acquire }>(),
4493            Release => intrinsics::atomic_fence::<{ AO::Release }>(),
4494            AcqRel => intrinsics::atomic_fence::<{ AO::AcqRel }>(),
4495            SeqCst => intrinsics::atomic_fence::<{ AO::SeqCst }>(),
4496            Relaxed => panic!("there is no such thing as a relaxed fence"),
4497        }
4498    }
4499}
4500
4501/// A "compiler-only" atomic fence.
4502///
4503/// Like [`fence`], this function establishes synchronization with other atomic operations and
4504/// fences. However, unlike [`fence`], `compiler_fence` only establishes synchronization with
4505/// operations *in the same thread*. This may at first sound rather useless, since code within a
4506/// thread is typically already totally ordered and does not need any further synchronization.
4507/// However, there are cases where code can run on the same thread without being ordered:
4508/// - The most common case is that of a *signal handler*: a signal handler runs in the same thread
4509///   as the code it interrupted, but it is not ordered with respect to that code. `compiler_fence`
4510///   can be used to establish synchronization between a thread and its signal handler, the same way
4511///   that `fence` can be used to establish synchronization across threads.
4512/// - Similar situations can arise in embedded programming with interrupt handlers, or in custom
4513///   implementations of preemptive green threads. In general, `compiler_fence` can establish
4514///   synchronization with code that is guaranteed to run on the same hardware CPU.
4515///
4516/// See [`fence`] for how a fence can be used to achieve synchronization. Note that just like
4517/// [`fence`], synchronization still requires atomic operations to be used in both threads -- it is
4518/// not possible to perform synchronization entirely with fences and non-atomic operations.
4519///
4520/// `compiler_fence` does not emit any machine code, but restricts the kinds of memory re-ordering
4521/// the compiler is allowed to do. `compiler_fence` corresponds to [`atomic_signal_fence`] in C and
4522/// C++.
4523///
4524/// [`atomic_signal_fence`]: https://en.cppreference.com/w/cpp/atomic/atomic_signal_fence
4525///
4526/// # Panics
4527///
4528/// Panics if `order` is [`Relaxed`].
4529///
4530/// # Examples
4531///
4532/// Without the two `compiler_fence` calls, the read of `IMPORTANT_VARIABLE` in `signal_handler`
4533/// is *undefined behavior* due to a data race, despite everything happening in a single thread.
4534/// This is because the signal handler is considered to run concurrently with its associated
4535/// thread, and explicit synchronization is required to pass data between a thread and its
4536/// signal handler. The code below uses two `compiler_fence` calls to establish the usual
4537/// release-acquire synchronization pattern (see [`fence`] for an image).
4538///
4539/// ```
4540/// use std::sync::atomic::AtomicBool;
4541/// use std::sync::atomic::Ordering;
4542/// use std::sync::atomic::compiler_fence;
4543///
4544/// static mut IMPORTANT_VARIABLE: usize = 0;
4545/// static IS_READY: AtomicBool = AtomicBool::new(false);
4546///
4547/// fn main() {
4548///     unsafe { IMPORTANT_VARIABLE = 42 };
4549///     // Marks earlier writes as being released with future relaxed stores.
4550///     compiler_fence(Ordering::Release);
4551///     IS_READY.store(true, Ordering::Relaxed);
4552/// }
4553///
4554/// fn signal_handler() {
4555///     if IS_READY.load(Ordering::Relaxed) {
4556///         // Acquires writes that were released with relaxed stores that we read from.
4557///         compiler_fence(Ordering::Acquire);
4558///         assert_eq!(unsafe { IMPORTANT_VARIABLE }, 42);
4559///     }
4560/// }
4561/// ```
4562#[inline]
4563#[stable(feature = "compiler_fences", since = "1.21.0")]
4564#[rustc_diagnostic_item = "compiler_fence"]
4565#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4566pub fn compiler_fence(order: Ordering) {
4567    // SAFETY: using an atomic fence is safe.
4568    unsafe {
4569        match order {
4570            Acquire => intrinsics::atomic_singlethreadfence::<{ AO::Acquire }>(),
4571            Release => intrinsics::atomic_singlethreadfence::<{ AO::Release }>(),
4572            AcqRel => intrinsics::atomic_singlethreadfence::<{ AO::AcqRel }>(),
4573            SeqCst => intrinsics::atomic_singlethreadfence::<{ AO::SeqCst }>(),
4574            Relaxed => panic!("there is no such thing as a relaxed fence"),
4575        }
4576    }
4577}
4578
4579#[cfg(target_has_atomic_load_store = "8")]
4580#[stable(feature = "atomic_debug", since = "1.3.0")]
4581impl fmt::Debug for AtomicBool {
4582    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4583        fmt::Debug::fmt(&self.load(Ordering::Relaxed), f)
4584    }
4585}
4586
4587#[cfg(target_has_atomic_load_store = "ptr")]
4588#[stable(feature = "atomic_debug", since = "1.3.0")]
4589impl<T> fmt::Debug for AtomicPtr<T> {
4590    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4591        fmt::Debug::fmt(&self.load(Ordering::Relaxed), f)
4592    }
4593}
4594
4595#[cfg(target_has_atomic_load_store = "ptr")]
4596#[stable(feature = "atomic_pointer", since = "1.24.0")]
4597impl<T> fmt::Pointer for AtomicPtr<T> {
4598    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4599        fmt::Pointer::fmt(&self.load(Ordering::Relaxed), f)
4600    }
4601}
4602
4603/// Signals the processor that it is inside a busy-wait spin-loop ("spin lock").
4604///
4605/// This function is deprecated in favor of [`hint::spin_loop`].
4606///
4607/// [`hint::spin_loop`]: crate::hint::spin_loop
4608#[inline]
4609#[stable(feature = "spin_loop_hint", since = "1.24.0")]
4610#[deprecated(since = "1.51.0", note = "use hint::spin_loop instead")]
4611pub fn spin_loop_hint() {
4612    spin_loop()
4613}