core/fmt/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
//! Utilities for formatting and printing strings.

#![stable(feature = "rust1", since = "1.0.0")]

use crate::cell::{Cell, Ref, RefCell, RefMut, SyncUnsafeCell, UnsafeCell};
use crate::char::EscapeDebugExtArgs;
use crate::marker::PhantomData;
use crate::num::fmt as numfmt;
use crate::ops::Deref;
use crate::{iter, mem, result, str};

mod builders;
#[cfg(not(no_fp_fmt_parse))]
mod float;
#[cfg(no_fp_fmt_parse)]
mod nofloat;
mod num;
mod rt;

#[stable(feature = "fmt_flags_align", since = "1.28.0")]
#[cfg_attr(not(test), rustc_diagnostic_item = "Alignment")]
/// Possible alignments returned by `Formatter::align`
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum Alignment {
    #[stable(feature = "fmt_flags_align", since = "1.28.0")]
    /// Indication that contents should be left-aligned.
    Left,
    #[stable(feature = "fmt_flags_align", since = "1.28.0")]
    /// Indication that contents should be right-aligned.
    Right,
    #[stable(feature = "fmt_flags_align", since = "1.28.0")]
    /// Indication that contents should be center-aligned.
    Center,
}

#[stable(feature = "debug_builders", since = "1.2.0")]
pub use self::builders::{DebugList, DebugMap, DebugSet, DebugStruct, DebugTuple};
#[unstable(feature = "debug_closure_helpers", issue = "117729")]
pub use self::builders::{FromFn, from_fn};

/// The type returned by formatter methods.
///
/// # Examples
///
/// ```
/// use std::fmt;
///
/// #[derive(Debug)]
/// struct Triangle {
///     a: f32,
///     b: f32,
///     c: f32
/// }
///
/// impl fmt::Display for Triangle {
///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
///         write!(f, "({}, {}, {})", self.a, self.b, self.c)
///     }
/// }
///
/// let pythagorean_triple = Triangle { a: 3.0, b: 4.0, c: 5.0 };
///
/// assert_eq!(format!("{pythagorean_triple}"), "(3, 4, 5)");
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub type Result = result::Result<(), Error>;

/// The error type which is returned from formatting a message into a stream.
///
/// This type does not support transmission of an error other than that an error
/// occurred. This is because, despite the existence of this error,
/// string formatting is considered an infallible operation.
/// `fmt()` implementors should not return this `Error` unless they received it from their
/// [`Formatter`]. The only time your code should create a new instance of this
/// error is when implementing `fmt::Write`, in order to cancel the formatting operation when
/// writing to the underlying stream fails.
///
/// Any extra information must be arranged to be transmitted through some other means,
/// such as storing it in a field to be consulted after the formatting operation has been
/// cancelled. (For example, this is how [`std::io::Write::write_fmt()`] propagates IO errors
/// during writing.)
///
/// This type, `fmt::Error`, should not be
/// confused with [`std::io::Error`] or [`std::error::Error`], which you may also
/// have in scope.
///
/// [`std::io::Error`]: ../../std/io/struct.Error.html
/// [`std::io::Write::write_fmt()`]: ../../std/io/trait.Write.html#method.write_fmt
/// [`std::error::Error`]: ../../std/error/trait.Error.html
///
/// # Examples
///
/// ```rust
/// use std::fmt::{self, write};
///
/// let mut output = String::new();
/// if let Err(fmt::Error) = write(&mut output, format_args!("Hello {}!", "world")) {
///     panic!("An error occurred");
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Copy, Clone, Debug, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub struct Error;

/// A trait for writing or formatting into Unicode-accepting buffers or streams.
///
/// This trait only accepts UTF-8–encoded data and is not [flushable]. If you only
/// want to accept Unicode and you don't need flushing, you should implement this trait;
/// otherwise you should implement [`std::io::Write`].
///
/// [`std::io::Write`]: ../../std/io/trait.Write.html
/// [flushable]: ../../std/io/trait.Write.html#tymethod.flush
#[stable(feature = "rust1", since = "1.0.0")]
pub trait Write {
    /// Writes a string slice into this writer, returning whether the write
    /// succeeded.
    ///
    /// This method can only succeed if the entire string slice was successfully
    /// written, and this method will not return until all data has been
    /// written or an error occurs.
    ///
    /// # Errors
    ///
    /// This function will return an instance of [`std::fmt::Error`][Error] on error.
    ///
    /// The purpose of that error is to abort the formatting operation when the underlying
    /// destination encounters some error preventing it from accepting more text;
    /// in particular, it does not communicate any information about *what* error occurred.
    /// It should generally be propagated rather than handled, at least when implementing
    /// formatting traits.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::fmt::{Error, Write};
    ///
    /// fn writer<W: Write>(f: &mut W, s: &str) -> Result<(), Error> {
    ///     f.write_str(s)
    /// }
    ///
    /// let mut buf = String::new();
    /// writer(&mut buf, "hola").unwrap();
    /// assert_eq!(&buf, "hola");
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    fn write_str(&mut self, s: &str) -> Result;

    /// Writes a [`char`] into this writer, returning whether the write succeeded.
    ///
    /// A single [`char`] may be encoded as more than one byte.
    /// This method can only succeed if the entire byte sequence was successfully
    /// written, and this method will not return until all data has been
    /// written or an error occurs.
    ///
    /// # Errors
    ///
    /// This function will return an instance of [`Error`] on error.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::fmt::{Error, Write};
    ///
    /// fn writer<W: Write>(f: &mut W, c: char) -> Result<(), Error> {
    ///     f.write_char(c)
    /// }
    ///
    /// let mut buf = String::new();
    /// writer(&mut buf, 'a').unwrap();
    /// writer(&mut buf, 'b').unwrap();
    /// assert_eq!(&buf, "ab");
    /// ```
    #[stable(feature = "fmt_write_char", since = "1.1.0")]
    fn write_char(&mut self, c: char) -> Result {
        self.write_str(c.encode_utf8(&mut [0; 4]))
    }

    /// Glue for usage of the [`write!`] macro with implementors of this trait.
    ///
    /// This method should generally not be invoked manually, but rather through
    /// the [`write!`] macro itself.
    ///
    /// # Errors
    ///
    /// This function will return an instance of [`Error`] on error. Please see
    /// [write_str](Write::write_str) for details.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::fmt::{Error, Write};
    ///
    /// fn writer<W: Write>(f: &mut W, s: &str) -> Result<(), Error> {
    ///     f.write_fmt(format_args!("{s}"))
    /// }
    ///
    /// let mut buf = String::new();
    /// writer(&mut buf, "world").unwrap();
    /// assert_eq!(&buf, "world");
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    fn write_fmt(&mut self, args: Arguments<'_>) -> Result {
        // We use a specialization for `Sized` types to avoid an indirection
        // through `&mut self`
        trait SpecWriteFmt {
            fn spec_write_fmt(self, args: Arguments<'_>) -> Result;
        }

        impl<W: Write + ?Sized> SpecWriteFmt for &mut W {
            #[inline]
            default fn spec_write_fmt(mut self, args: Arguments<'_>) -> Result {
                if let Some(s) = args.as_statically_known_str() {
                    self.write_str(s)
                } else {
                    write(&mut self, args)
                }
            }
        }

        impl<W: Write> SpecWriteFmt for &mut W {
            #[inline]
            fn spec_write_fmt(self, args: Arguments<'_>) -> Result {
                if let Some(s) = args.as_statically_known_str() {
                    self.write_str(s)
                } else {
                    write(self, args)
                }
            }
        }

        self.spec_write_fmt(args)
    }
}

#[stable(feature = "fmt_write_blanket_impl", since = "1.4.0")]
impl<W: Write + ?Sized> Write for &mut W {
    fn write_str(&mut self, s: &str) -> Result {
        (**self).write_str(s)
    }

    fn write_char(&mut self, c: char) -> Result {
        (**self).write_char(c)
    }

    fn write_fmt(&mut self, args: Arguments<'_>) -> Result {
        (**self).write_fmt(args)
    }
}

/// Configuration for formatting.
///
/// A `Formatter` represents various options related to formatting. Users do not
/// construct `Formatter`s directly; a mutable reference to one is passed to
/// the `fmt` method of all formatting traits, like [`Debug`] and [`Display`].
///
/// To interact with a `Formatter`, you'll call various methods to change the
/// various options related to formatting. For examples, please see the
/// documentation of the methods defined on `Formatter` below.
#[allow(missing_debug_implementations)]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_diagnostic_item = "Formatter"]
pub struct Formatter<'a> {
    flags: u32,
    fill: char,
    align: rt::Alignment,
    width: Option<usize>,
    precision: Option<usize>,

    buf: &'a mut (dyn Write + 'a),
}

impl<'a> Formatter<'a> {
    /// Creates a new formatter with default settings.
    ///
    /// This can be used as a micro-optimization in cases where a full `Arguments`
    /// structure (as created by `format_args!`) is not necessary; `Arguments`
    /// is a little more expensive to use in simple formatting scenarios.
    ///
    /// Currently not intended for use outside of the standard library.
    #[unstable(feature = "fmt_internals", reason = "internal to standard library", issue = "none")]
    #[doc(hidden)]
    pub fn new(buf: &'a mut (dyn Write + 'a)) -> Formatter<'a> {
        Formatter {
            flags: 0,
            fill: ' ',
            align: rt::Alignment::Unknown,
            width: None,
            precision: None,
            buf,
        }
    }
}

/// This structure represents a safely precompiled version of a format string
/// and its arguments. This cannot be generated at runtime because it cannot
/// safely be done, so no constructors are given and the fields are private
/// to prevent modification.
///
/// The [`format_args!`] macro will safely create an instance of this structure.
/// The macro validates the format string at compile-time so usage of the
/// [`write()`] and [`format()`] functions can be safely performed.
///
/// You can use the `Arguments<'a>` that [`format_args!`] returns in `Debug`
/// and `Display` contexts as seen below. The example also shows that `Debug`
/// and `Display` format to the same thing: the interpolated format string
/// in `format_args!`.
///
/// ```rust
/// let debug = format!("{:?}", format_args!("{} foo {:?}", 1, 2));
/// let display = format!("{}", format_args!("{} foo {:?}", 1, 2));
/// assert_eq!("1 foo 2", display);
/// assert_eq!(display, debug);
/// ```
///
/// [`format()`]: ../../std/fmt/fn.format.html
#[lang = "format_arguments"]
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Copy, Clone)]
pub struct Arguments<'a> {
    // Format string pieces to print.
    pieces: &'a [&'static str],

    // Placeholder specs, or `None` if all specs are default (as in "{}{}").
    fmt: Option<&'a [rt::Placeholder]>,

    // Dynamic arguments for interpolation, to be interleaved with string
    // pieces. (Every argument is preceded by a string piece.)
    args: &'a [rt::Argument<'a>],
}

/// Used by the format_args!() macro to create a fmt::Arguments object.
#[doc(hidden)]
#[unstable(feature = "fmt_internals", issue = "none")]
impl<'a> Arguments<'a> {
    #[inline]
    #[rustc_const_unstable(feature = "const_fmt_arguments_new", issue = "none")]
    pub const fn new_const<const N: usize>(pieces: &'a [&'static str; N]) -> Self {
        const { assert!(N <= 1) };
        Arguments { pieces, fmt: None, args: &[] }
    }

    /// When using the format_args!() macro, this function is used to generate the
    /// Arguments structure.
    #[inline]
    pub fn new_v1<const P: usize, const A: usize>(
        pieces: &'a [&'static str; P],
        args: &'a [rt::Argument<'a>; A],
    ) -> Arguments<'a> {
        const { assert!(P >= A && P <= A + 1, "invalid args") }
        Arguments { pieces, fmt: None, args }
    }

    /// Specifies nonstandard formatting parameters.
    ///
    /// An `rt::UnsafeArg` is required because the following invariants must be held
    /// in order for this function to be safe:
    /// 1. The `pieces` slice must be at least as long as `fmt`.
    /// 2. Every `rt::Placeholder::position` value within `fmt` must be a valid index of `args`.
    /// 3. Every `rt::Count::Param` within `fmt` must contain a valid index of `args`.
    #[inline]
    pub fn new_v1_formatted(
        pieces: &'a [&'static str],
        args: &'a [rt::Argument<'a>],
        fmt: &'a [rt::Placeholder],
        _unsafe_arg: rt::UnsafeArg,
    ) -> Arguments<'a> {
        Arguments { pieces, fmt: Some(fmt), args }
    }

    /// Estimates the length of the formatted text.
    ///
    /// This is intended to be used for setting initial `String` capacity
    /// when using `format!`. Note: this is neither the lower nor upper bound.
    #[inline]
    pub fn estimated_capacity(&self) -> usize {
        let pieces_length: usize = self.pieces.iter().map(|x| x.len()).sum();

        if self.args.is_empty() {
            pieces_length
        } else if !self.pieces.is_empty() && self.pieces[0].is_empty() && pieces_length < 16 {
            // If the format string starts with an argument,
            // don't preallocate anything, unless length
            // of pieces is significant.
            0
        } else {
            // There are some arguments, so any additional push
            // will reallocate the string. To avoid that,
            // we're "pre-doubling" the capacity here.
            pieces_length.checked_mul(2).unwrap_or(0)
        }
    }
}

impl<'a> Arguments<'a> {
    /// Gets the formatted string, if it has no arguments to be formatted at runtime.
    ///
    /// This can be used to avoid allocations in some cases.
    ///
    /// # Guarantees
    ///
    /// For `format_args!("just a literal")`, this function is guaranteed to
    /// return `Some("just a literal")`.
    ///
    /// For most cases with placeholders, this function will return `None`.
    ///
    /// However, the compiler may perform optimizations that can cause this
    /// function to return `Some(_)` even if the format string contains
    /// placeholders. For example, `format_args!("Hello, {}!", "world")` may be
    /// optimized to `format_args!("Hello, world!")`, such that `as_str()`
    /// returns `Some("Hello, world!")`.
    ///
    /// The behavior for anything but the trivial case (without placeholders)
    /// is not guaranteed, and should not be relied upon for anything other
    /// than optimization.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use std::fmt::Arguments;
    ///
    /// fn write_str(_: &str) { /* ... */ }
    ///
    /// fn write_fmt(args: &Arguments<'_>) {
    ///     if let Some(s) = args.as_str() {
    ///         write_str(s)
    ///     } else {
    ///         write_str(&args.to_string());
    ///     }
    /// }
    /// ```
    ///
    /// ```rust
    /// assert_eq!(format_args!("hello").as_str(), Some("hello"));
    /// assert_eq!(format_args!("").as_str(), Some(""));
    /// assert_eq!(format_args!("{:?}", std::env::current_dir()).as_str(), None);
    /// ```
    #[stable(feature = "fmt_as_str", since = "1.52.0")]
    #[rustc_const_unstable(feature = "const_arguments_as_str", issue = "103900")]
    #[must_use]
    #[inline]
    pub const fn as_str(&self) -> Option<&'static str> {
        match (self.pieces, self.args) {
            ([], []) => Some(""),
            ([s], []) => Some(s),
            _ => None,
        }
    }

    /// Same as [`Arguments::as_str`], but will only return `Some(s)` if it can be determined at compile time.
    #[must_use]
    #[inline]
    fn as_statically_known_str(&self) -> Option<&'static str> {
        let s = self.as_str();
        if core::intrinsics::is_val_statically_known(s.is_some()) { s } else { None }
    }
}

// Manually implementing these results in better error messages.
#[stable(feature = "rust1", since = "1.0.0")]
impl !Send for Arguments<'_> {}
#[stable(feature = "rust1", since = "1.0.0")]
impl !Sync for Arguments<'_> {}

#[stable(feature = "rust1", since = "1.0.0")]
impl Debug for Arguments<'_> {
    fn fmt(&self, fmt: &mut Formatter<'_>) -> Result {
        Display::fmt(self, fmt)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl Display for Arguments<'_> {
    fn fmt(&self, fmt: &mut Formatter<'_>) -> Result {
        write(fmt.buf, *self)
    }
}

/// `?` formatting.
///
/// `Debug` should format the output in a programmer-facing, debugging context.
///
/// Generally speaking, you should just `derive` a `Debug` implementation.
///
/// When used with the alternate format specifier `#?`, the output is pretty-printed.
///
/// For more information on formatters, see [the module-level documentation][module].
///
/// [module]: ../../std/fmt/index.html
///
/// This trait can be used with `#[derive]` if all fields implement `Debug`. When
/// `derive`d for structs, it will use the name of the `struct`, then `{`, then a
/// comma-separated list of each field's name and `Debug` value, then `}`. For
/// `enum`s, it will use the name of the variant and, if applicable, `(`, then the
/// `Debug` values of the fields, then `)`.
///
/// # Stability
///
/// Derived `Debug` formats are not stable, and so may change with future Rust
/// versions. Additionally, `Debug` implementations of types provided by the
/// standard library (`std`, `core`, `alloc`, etc.) are not stable, and
/// may also change with future Rust versions.
///
/// # Examples
///
/// Deriving an implementation:
///
/// ```
/// #[derive(Debug)]
/// struct Point {
///     x: i32,
///     y: i32,
/// }
///
/// let origin = Point { x: 0, y: 0 };
///
/// assert_eq!(
///     format!("The origin is: {origin:?}"),
///     "The origin is: Point { x: 0, y: 0 }",
/// );
/// ```
///
/// Manually implementing:
///
/// ```
/// use std::fmt;
///
/// struct Point {
///     x: i32,
///     y: i32,
/// }
///
/// impl fmt::Debug for Point {
///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
///         f.debug_struct("Point")
///          .field("x", &self.x)
///          .field("y", &self.y)
///          .finish()
///     }
/// }
///
/// let origin = Point { x: 0, y: 0 };
///
/// assert_eq!(
///     format!("The origin is: {origin:?}"),
///     "The origin is: Point { x: 0, y: 0 }",
/// );
/// ```
///
/// There are a number of helper methods on the [`Formatter`] struct to help you with manual
/// implementations, such as [`debug_struct`].
///
/// [`debug_struct`]: Formatter::debug_struct
///
/// Types that do not wish to use the standard suite of debug representations
/// provided by the `Formatter` trait (`debug_struct`, `debug_tuple`,
/// `debug_list`, `debug_set`, `debug_map`) can do something totally custom by
/// manually writing an arbitrary representation to the `Formatter`.
///
/// ```
/// # use std::fmt;
/// # struct Point {
/// #     x: i32,
/// #     y: i32,
/// # }
/// #
/// impl fmt::Debug for Point {
///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
///         write!(f, "Point [{} {}]", self.x, self.y)
///     }
/// }
/// ```
///
/// `Debug` implementations using either `derive` or the debug builder API
/// on [`Formatter`] support pretty-printing using the alternate flag: `{:#?}`.
///
/// Pretty-printing with `#?`:
///
/// ```
/// #[derive(Debug)]
/// struct Point {
///     x: i32,
///     y: i32,
/// }
///
/// let origin = Point { x: 0, y: 0 };
///
/// let expected = "The origin is: Point {
///     x: 0,
///     y: 0,
/// }";
/// assert_eq!(format!("The origin is: {origin:#?}"), expected);
/// ```

#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_on_unimplemented(
    on(
        crate_local,
        label = "`{Self}` cannot be formatted using `{{:?}}`",
        note = "add `#[derive(Debug)]` to `{Self}` or manually `impl {Debug} for {Self}`"
    ),
    message = "`{Self}` doesn't implement `{Debug}`",
    label = "`{Self}` cannot be formatted using `{{:?}}` because it doesn't implement `{Debug}`"
)]
#[doc(alias = "{:?}")]
#[rustc_diagnostic_item = "Debug"]
#[rustc_trivial_field_reads]
pub trait Debug {
    #[doc = include_str!("fmt_trait_method_doc.md")]
    ///
    /// # Examples
    ///
    /// ```
    /// use std::fmt;
    ///
    /// struct Position {
    ///     longitude: f32,
    ///     latitude: f32,
    /// }
    ///
    /// impl fmt::Debug for Position {
    ///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
    ///         f.debug_tuple("")
    ///          .field(&self.longitude)
    ///          .field(&self.latitude)
    ///          .finish()
    ///     }
    /// }
    ///
    /// let position = Position { longitude: 1.987, latitude: 2.983 };
    /// assert_eq!(format!("{position:?}"), "(1.987, 2.983)");
    ///
    /// assert_eq!(format!("{position:#?}"), "(
    ///     1.987,
    ///     2.983,
    /// )");
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    fn fmt(&self, f: &mut Formatter<'_>) -> Result;
}

// Separate module to reexport the macro `Debug` from prelude without the trait `Debug`.
pub(crate) mod macros {
    /// Derive macro generating an impl of the trait `Debug`.
    #[rustc_builtin_macro]
    #[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
    #[allow_internal_unstable(core_intrinsics, fmt_helpers_for_derive)]
    pub macro Debug($item:item) {
        /* compiler built-in */
    }
}
#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
#[doc(inline)]
pub use macros::Debug;

/// Format trait for an empty format, `{}`.
///
/// Implementing this trait for a type will automatically implement the
/// [`ToString`][tostring] trait for the type, allowing the usage
/// of the [`.to_string()`][tostring_function] method. Prefer implementing
/// the `Display` trait for a type, rather than [`ToString`][tostring].
///
/// `Display` is similar to [`Debug`], but `Display` is for user-facing
/// output, and so cannot be derived.
///
/// For more information on formatters, see [the module-level documentation][module].
///
/// [module]: ../../std/fmt/index.html
/// [tostring]: ../../std/string/trait.ToString.html
/// [tostring_function]: ../../std/string/trait.ToString.html#tymethod.to_string
///
/// # Internationalization
///
/// Because a type can only have one `Display` implementation, it is often preferable
/// to only implement `Display` when there is a single most "obvious" way that
/// values can be formatted as text. This could mean formatting according to the
/// "invariant" culture and "undefined" locale, or it could mean that the type
/// display is designed for a specific culture/locale, such as developer logs.
///
/// If not all values have a justifiably canonical textual format or if you want
/// to support alternative formats not covered by the standard set of possible
/// [formatting traits], the most flexible approach is display adapters: methods
/// like [`str::escape_default`] or [`Path::display`] which create a wrapper
/// implementing `Display` to output the specific display format.
///
/// [formatting traits]: ../../std/fmt/index.html#formatting-traits
/// [`Path::display`]: ../../std/path/struct.Path.html#method.display
///
/// # Examples
///
/// Implementing `Display` on a type:
///
/// ```
/// use std::fmt;
///
/// struct Point {
///     x: i32,
///     y: i32,
/// }
///
/// impl fmt::Display for Point {
///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
///         write!(f, "({}, {})", self.x, self.y)
///     }
/// }
///
/// let origin = Point { x: 0, y: 0 };
///
/// assert_eq!(format!("The origin is: {origin}"), "The origin is: (0, 0)");
/// ```
#[rustc_on_unimplemented(
    on(
        any(_Self = "std::path::Path", _Self = "std::path::PathBuf"),
        label = "`{Self}` cannot be formatted with the default formatter; call `.display()` on it",
        note = "call `.display()` or `.to_string_lossy()` to safely print paths, \
                as they may contain non-Unicode data"
    ),
    message = "`{Self}` doesn't implement `{Display}`",
    label = "`{Self}` cannot be formatted with the default formatter",
    note = "in format strings you may be able to use `{{:?}}` (or {{:#?}} for pretty-print) instead"
)]
#[doc(alias = "{}")]
#[rustc_diagnostic_item = "Display"]
#[stable(feature = "rust1", since = "1.0.0")]
pub trait Display {
    #[doc = include_str!("fmt_trait_method_doc.md")]
    ///
    /// # Examples
    ///
    /// ```
    /// use std::fmt;
    ///
    /// struct Position {
    ///     longitude: f32,
    ///     latitude: f32,
    /// }
    ///
    /// impl fmt::Display for Position {
    ///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
    ///         write!(f, "({}, {})", self.longitude, self.latitude)
    ///     }
    /// }
    ///
    /// assert_eq!(
    ///     "(1.987, 2.983)",
    ///     format!("{}", Position { longitude: 1.987, latitude: 2.983, }),
    /// );
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    fn fmt(&self, f: &mut Formatter<'_>) -> Result;
}

/// `o` formatting.
///
/// The `Octal` trait should format its output as a number in base-8.
///
/// For primitive signed integers (`i8` to `i128`, and `isize`),
/// negative values are formatted as the two’s complement representation.
///
/// The alternate flag, `#`, adds a `0o` in front of the output.
///
/// For more information on formatters, see [the module-level documentation][module].
///
/// [module]: ../../std/fmt/index.html
///
/// # Examples
///
/// Basic usage with `i32`:
///
/// ```
/// let x = 42; // 42 is '52' in octal
///
/// assert_eq!(format!("{x:o}"), "52");
/// assert_eq!(format!("{x:#o}"), "0o52");
///
/// assert_eq!(format!("{:o}", -16), "37777777760");
/// ```
///
/// Implementing `Octal` on a type:
///
/// ```
/// use std::fmt;
///
/// struct Length(i32);
///
/// impl fmt::Octal for Length {
///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
///         let val = self.0;
///
///         fmt::Octal::fmt(&val, f) // delegate to i32's implementation
///     }
/// }
///
/// let l = Length(9);
///
/// assert_eq!(format!("l as octal is: {l:o}"), "l as octal is: 11");
///
/// assert_eq!(format!("l as octal is: {l:#06o}"), "l as octal is: 0o0011");
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub trait Octal {
    #[doc = include_str!("fmt_trait_method_doc.md")]
    #[stable(feature = "rust1", since = "1.0.0")]
    fn fmt(&self, f: &mut Formatter<'_>) -> Result;
}

/// `b` formatting.
///
/// The `Binary` trait should format its output as a number in binary.
///
/// For primitive signed integers ([`i8`] to [`i128`], and [`isize`]),
/// negative values are formatted as the two’s complement representation.
///
/// The alternate flag, `#`, adds a `0b` in front of the output.
///
/// For more information on formatters, see [the module-level documentation][module].
///
/// [module]: ../../std/fmt/index.html
///
/// # Examples
///
/// Basic usage with [`i32`]:
///
/// ```
/// let x = 42; // 42 is '101010' in binary
///
/// assert_eq!(format!("{x:b}"), "101010");
/// assert_eq!(format!("{x:#b}"), "0b101010");
///
/// assert_eq!(format!("{:b}", -16), "11111111111111111111111111110000");
/// ```
///
/// Implementing `Binary` on a type:
///
/// ```
/// use std::fmt;
///
/// struct Length(i32);
///
/// impl fmt::Binary for Length {
///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
///         let val = self.0;
///
///         fmt::Binary::fmt(&val, f) // delegate to i32's implementation
///     }
/// }
///
/// let l = Length(107);
///
/// assert_eq!(format!("l as binary is: {l:b}"), "l as binary is: 1101011");
///
/// assert_eq!(
///     // Note that the `0b` prefix added by `#` is included in the total width, so we
///     // need to add two to correctly display all 32 bits.
///     format!("l as binary is: {l:#034b}"),
///     "l as binary is: 0b00000000000000000000000001101011"
/// );
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub trait Binary {
    #[doc = include_str!("fmt_trait_method_doc.md")]
    #[stable(feature = "rust1", since = "1.0.0")]
    fn fmt(&self, f: &mut Formatter<'_>) -> Result;
}

/// `x` formatting.
///
/// The `LowerHex` trait should format its output as a number in hexadecimal, with `a` through `f`
/// in lower case.
///
/// For primitive signed integers (`i8` to `i128`, and `isize`),
/// negative values are formatted as the two’s complement representation.
///
/// The alternate flag, `#`, adds a `0x` in front of the output.
///
/// For more information on formatters, see [the module-level documentation][module].
///
/// [module]: ../../std/fmt/index.html
///
/// # Examples
///
/// Basic usage with `i32`:
///
/// ```
/// let y = 42; // 42 is '2a' in hex
///
/// assert_eq!(format!("{y:x}"), "2a");
/// assert_eq!(format!("{y:#x}"), "0x2a");
///
/// assert_eq!(format!("{:x}", -16), "fffffff0");
/// ```
///
/// Implementing `LowerHex` on a type:
///
/// ```
/// use std::fmt;
///
/// struct Length(i32);
///
/// impl fmt::LowerHex for Length {
///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
///         let val = self.0;
///
///         fmt::LowerHex::fmt(&val, f) // delegate to i32's implementation
///     }
/// }
///
/// let l = Length(9);
///
/// assert_eq!(format!("l as hex is: {l:x}"), "l as hex is: 9");
///
/// assert_eq!(format!("l as hex is: {l:#010x}"), "l as hex is: 0x00000009");
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub trait LowerHex {
    #[doc = include_str!("fmt_trait_method_doc.md")]
    #[stable(feature = "rust1", since = "1.0.0")]
    fn fmt(&self, f: &mut Formatter<'_>) -> Result;
}

/// `X` formatting.
///
/// The `UpperHex` trait should format its output as a number in hexadecimal, with `A` through `F`
/// in upper case.
///
/// For primitive signed integers (`i8` to `i128`, and `isize`),
/// negative values are formatted as the two’s complement representation.
///
/// The alternate flag, `#`, adds a `0x` in front of the output.
///
/// For more information on formatters, see [the module-level documentation][module].
///
/// [module]: ../../std/fmt/index.html
///
/// # Examples
///
/// Basic usage with `i32`:
///
/// ```
/// let y = 42; // 42 is '2A' in hex
///
/// assert_eq!(format!("{y:X}"), "2A");
/// assert_eq!(format!("{y:#X}"), "0x2A");
///
/// assert_eq!(format!("{:X}", -16), "FFFFFFF0");
/// ```
///
/// Implementing `UpperHex` on a type:
///
/// ```
/// use std::fmt;
///
/// struct Length(i32);
///
/// impl fmt::UpperHex for Length {
///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
///         let val = self.0;
///
///         fmt::UpperHex::fmt(&val, f) // delegate to i32's implementation
///     }
/// }
///
/// let l = Length(i32::MAX);
///
/// assert_eq!(format!("l as hex is: {l:X}"), "l as hex is: 7FFFFFFF");
///
/// assert_eq!(format!("l as hex is: {l:#010X}"), "l as hex is: 0x7FFFFFFF");
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub trait UpperHex {
    #[doc = include_str!("fmt_trait_method_doc.md")]
    #[stable(feature = "rust1", since = "1.0.0")]
    fn fmt(&self, f: &mut Formatter<'_>) -> Result;
}

/// `p` formatting.
///
/// The `Pointer` trait should format its output as a memory location. This is commonly presented
/// as hexadecimal. For more information on formatters, see [the module-level documentation][module].
///
/// Printing of pointers is not a reliable way to discover how Rust programs are implemented.
/// The act of reading an address changes the program itself, and may change how the data is represented
/// in memory, and may affect which optimizations are applied to the code.
///
/// The printed pointer values are not guaranteed to be stable nor unique identifiers of objects.
/// Rust allows moving values to different memory locations, and may reuse the same memory locations
/// for different purposes.
///
/// There is no guarantee that the printed value can be converted back to a pointer.
///
/// [module]: ../../std/fmt/index.html
///
/// # Examples
///
/// Basic usage with `&i32`:
///
/// ```
/// let x = &42;
///
/// let address = format!("{x:p}"); // this produces something like '0x7f06092ac6d0'
/// ```
///
/// Implementing `Pointer` on a type:
///
/// ```
/// use std::fmt;
///
/// struct Length(i32);
///
/// impl fmt::Pointer for Length {
///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
///         // use `as` to convert to a `*const T`, which implements Pointer, which we can use
///
///         let ptr = self as *const Self;
///         fmt::Pointer::fmt(&ptr, f)
///     }
/// }
///
/// let l = Length(42);
///
/// println!("l is in memory here: {l:p}");
///
/// let l_ptr = format!("{l:018p}");
/// assert_eq!(l_ptr.len(), 18);
/// assert_eq!(&l_ptr[..2], "0x");
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_diagnostic_item = "Pointer"]
pub trait Pointer {
    #[doc = include_str!("fmt_trait_method_doc.md")]
    #[stable(feature = "rust1", since = "1.0.0")]
    fn fmt(&self, f: &mut Formatter<'_>) -> Result;
}

/// `e` formatting.
///
/// The `LowerExp` trait should format its output in scientific notation with a lower-case `e`.
///
/// For more information on formatters, see [the module-level documentation][module].
///
/// [module]: ../../std/fmt/index.html
///
/// # Examples
///
/// Basic usage with `f64`:
///
/// ```
/// let x = 42.0; // 42.0 is '4.2e1' in scientific notation
///
/// assert_eq!(format!("{x:e}"), "4.2e1");
/// ```
///
/// Implementing `LowerExp` on a type:
///
/// ```
/// use std::fmt;
///
/// struct Length(i32);
///
/// impl fmt::LowerExp for Length {
///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
///         let val = f64::from(self.0);
///         fmt::LowerExp::fmt(&val, f) // delegate to f64's implementation
///     }
/// }
///
/// let l = Length(100);
///
/// assert_eq!(
///     format!("l in scientific notation is: {l:e}"),
///     "l in scientific notation is: 1e2"
/// );
///
/// assert_eq!(
///     format!("l in scientific notation is: {l:05e}"),
///     "l in scientific notation is: 001e2"
/// );
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub trait LowerExp {
    #[doc = include_str!("fmt_trait_method_doc.md")]
    #[stable(feature = "rust1", since = "1.0.0")]
    fn fmt(&self, f: &mut Formatter<'_>) -> Result;
}

/// `E` formatting.
///
/// The `UpperExp` trait should format its output in scientific notation with an upper-case `E`.
///
/// For more information on formatters, see [the module-level documentation][module].
///
/// [module]: ../../std/fmt/index.html
///
/// # Examples
///
/// Basic usage with `f64`:
///
/// ```
/// let x = 42.0; // 42.0 is '4.2E1' in scientific notation
///
/// assert_eq!(format!("{x:E}"), "4.2E1");
/// ```
///
/// Implementing `UpperExp` on a type:
///
/// ```
/// use std::fmt;
///
/// struct Length(i32);
///
/// impl fmt::UpperExp for Length {
///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
///         let val = f64::from(self.0);
///         fmt::UpperExp::fmt(&val, f) // delegate to f64's implementation
///     }
/// }
///
/// let l = Length(100);
///
/// assert_eq!(
///     format!("l in scientific notation is: {l:E}"),
///     "l in scientific notation is: 1E2"
/// );
///
/// assert_eq!(
///     format!("l in scientific notation is: {l:05E}"),
///     "l in scientific notation is: 001E2"
/// );
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub trait UpperExp {
    #[doc = include_str!("fmt_trait_method_doc.md")]
    #[stable(feature = "rust1", since = "1.0.0")]
    fn fmt(&self, f: &mut Formatter<'_>) -> Result;
}

/// Takes an output stream and an `Arguments` struct that can be precompiled with
/// the `format_args!` macro.
///
/// The arguments will be formatted according to the specified format string
/// into the output stream provided.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use std::fmt;
///
/// let mut output = String::new();
/// fmt::write(&mut output, format_args!("Hello {}!", "world"))
///     .expect("Error occurred while trying to write in String");
/// assert_eq!(output, "Hello world!");
/// ```
///
/// Please note that using [`write!`] might be preferable. Example:
///
/// ```
/// use std::fmt::Write;
///
/// let mut output = String::new();
/// write!(&mut output, "Hello {}!", "world")
///     .expect("Error occurred while trying to write in String");
/// assert_eq!(output, "Hello world!");
/// ```
///
/// [`write!`]: crate::write!
#[stable(feature = "rust1", since = "1.0.0")]
pub fn write(output: &mut dyn Write, args: Arguments<'_>) -> Result {
    let mut formatter = Formatter::new(output);
    let mut idx = 0;

    match args.fmt {
        None => {
            // We can use default formatting parameters for all arguments.
            for (i, arg) in args.args.iter().enumerate() {
                // SAFETY: args.args and args.pieces come from the same Arguments,
                // which guarantees the indexes are always within bounds.
                let piece = unsafe { args.pieces.get_unchecked(i) };
                if !piece.is_empty() {
                    formatter.buf.write_str(*piece)?;
                }

                // SAFETY: There are no formatting parameters and hence no
                // count arguments.
                unsafe {
                    arg.fmt(&mut formatter)?;
                }
                idx += 1;
            }
        }
        Some(fmt) => {
            // Every spec has a corresponding argument that is preceded by
            // a string piece.
            for (i, arg) in fmt.iter().enumerate() {
                // SAFETY: fmt and args.pieces come from the same Arguments,
                // which guarantees the indexes are always within bounds.
                let piece = unsafe { args.pieces.get_unchecked(i) };
                if !piece.is_empty() {
                    formatter.buf.write_str(*piece)?;
                }
                // SAFETY: arg and args.args come from the same Arguments,
                // which guarantees the indexes are always within bounds.
                unsafe { run(&mut formatter, arg, args.args) }?;
                idx += 1;
            }
        }
    }

    // There can be only one trailing string piece left.
    if let Some(piece) = args.pieces.get(idx) {
        formatter.buf.write_str(*piece)?;
    }

    Ok(())
}

unsafe fn run(fmt: &mut Formatter<'_>, arg: &rt::Placeholder, args: &[rt::Argument<'_>]) -> Result {
    fmt.fill = arg.fill;
    fmt.align = arg.align;
    fmt.flags = arg.flags;
    // SAFETY: arg and args come from the same Arguments,
    // which guarantees the indexes are always within bounds.
    unsafe {
        fmt.width = getcount(args, &arg.width);
        fmt.precision = getcount(args, &arg.precision);
    }

    // Extract the correct argument
    debug_assert!(arg.position < args.len());
    // SAFETY: arg and args come from the same Arguments,
    // which guarantees its index is always within bounds.
    let value = unsafe { args.get_unchecked(arg.position) };

    // Then actually do some printing
    // SAFETY: this is a placeholder argument.
    unsafe { value.fmt(fmt) }
}

unsafe fn getcount(args: &[rt::Argument<'_>], cnt: &rt::Count) -> Option<usize> {
    match *cnt {
        rt::Count::Is(n) => Some(n),
        rt::Count::Implied => None,
        rt::Count::Param(i) => {
            debug_assert!(i < args.len());
            // SAFETY: cnt and args come from the same Arguments,
            // which guarantees this index is always within bounds.
            unsafe { args.get_unchecked(i).as_usize() }
        }
    }
}

/// Padding after the end of something. Returned by `Formatter::padding`.
#[must_use = "don't forget to write the post padding"]
pub(crate) struct PostPadding {
    fill: char,
    padding: usize,
}

impl PostPadding {
    fn new(fill: char, padding: usize) -> PostPadding {
        PostPadding { fill, padding }
    }

    /// Writes this post padding.
    pub(crate) fn write(self, f: &mut Formatter<'_>) -> Result {
        for _ in 0..self.padding {
            f.buf.write_char(self.fill)?;
        }
        Ok(())
    }
}

impl<'a> Formatter<'a> {
    fn wrap_buf<'b, 'c, F>(&'b mut self, wrap: F) -> Formatter<'c>
    where
        'b: 'c,
        F: FnOnce(&'b mut (dyn Write + 'b)) -> &'c mut (dyn Write + 'c),
    {
        Formatter {
            // We want to change this
            buf: wrap(self.buf),

            // And preserve these
            flags: self.flags,
            fill: self.fill,
            align: self.align,
            width: self.width,
            precision: self.precision,
        }
    }

    // Helper methods used for padding and processing formatting arguments that
    // all formatting traits can use.

    /// Performs the correct padding for an integer which has already been
    /// emitted into a str. The str should *not* contain the sign for the
    /// integer, that will be added by this method.
    ///
    /// # Arguments
    ///
    /// * is_nonnegative - whether the original integer was either positive or zero.
    /// * prefix - if the '#' character (Alternate) is provided, this
    ///   is the prefix to put in front of the number.
    /// * buf - the byte array that the number has been formatted into
    ///
    /// This function will correctly account for the flags provided as well as
    /// the minimum width. It will not take precision into account.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::fmt;
    ///
    /// struct Foo { nb: i32 }
    ///
    /// impl Foo {
    ///     fn new(nb: i32) -> Foo {
    ///         Foo {
    ///             nb,
    ///         }
    ///     }
    /// }
    ///
    /// impl fmt::Display for Foo {
    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
    ///         // We need to remove "-" from the number output.
    ///         let tmp = self.nb.abs().to_string();
    ///
    ///         formatter.pad_integral(self.nb >= 0, "Foo ", &tmp)
    ///     }
    /// }
    ///
    /// assert_eq!(format!("{}", Foo::new(2)), "2");
    /// assert_eq!(format!("{}", Foo::new(-1)), "-1");
    /// assert_eq!(format!("{}", Foo::new(0)), "0");
    /// assert_eq!(format!("{:#}", Foo::new(-1)), "-Foo 1");
    /// assert_eq!(format!("{:0>#8}", Foo::new(-1)), "00-Foo 1");
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn pad_integral(&mut self, is_nonnegative: bool, prefix: &str, buf: &str) -> Result {
        let mut width = buf.len();

        let mut sign = None;
        if !is_nonnegative {
            sign = Some('-');
            width += 1;
        } else if self.sign_plus() {
            sign = Some('+');
            width += 1;
        }

        let prefix = if self.alternate() {
            width += prefix.chars().count();
            Some(prefix)
        } else {
            None
        };

        // Writes the sign if it exists, and then the prefix if it was requested
        #[inline(never)]
        fn write_prefix(f: &mut Formatter<'_>, sign: Option<char>, prefix: Option<&str>) -> Result {
            if let Some(c) = sign {
                f.buf.write_char(c)?;
            }
            if let Some(prefix) = prefix { f.buf.write_str(prefix) } else { Ok(()) }
        }

        // The `width` field is more of a `min-width` parameter at this point.
        match self.width {
            // If there's no minimum length requirements then we can just
            // write the bytes.
            None => {
                write_prefix(self, sign, prefix)?;
                self.buf.write_str(buf)
            }
            // Check if we're over the minimum width, if so then we can also
            // just write the bytes.
            Some(min) if width >= min => {
                write_prefix(self, sign, prefix)?;
                self.buf.write_str(buf)
            }
            // The sign and prefix goes before the padding if the fill character
            // is zero
            Some(min) if self.sign_aware_zero_pad() => {
                let old_fill = crate::mem::replace(&mut self.fill, '0');
                let old_align = crate::mem::replace(&mut self.align, rt::Alignment::Right);
                write_prefix(self, sign, prefix)?;
                let post_padding = self.padding(min - width, Alignment::Right)?;
                self.buf.write_str(buf)?;
                post_padding.write(self)?;
                self.fill = old_fill;
                self.align = old_align;
                Ok(())
            }
            // Otherwise, the sign and prefix goes after the padding
            Some(min) => {
                let post_padding = self.padding(min - width, Alignment::Right)?;
                write_prefix(self, sign, prefix)?;
                self.buf.write_str(buf)?;
                post_padding.write(self)
            }
        }
    }

    /// Takes a string slice and emits it to the internal buffer after applying
    /// the relevant formatting flags specified.
    ///
    /// The flags recognized for generic strings are:
    ///
    /// * width - the minimum width of what to emit
    /// * fill/align - what to emit and where to emit it if the string
    ///                provided needs to be padded
    /// * precision - the maximum length to emit, the string is truncated if it
    ///               is longer than this length
    ///
    /// Notably this function ignores the `flag` parameters.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::fmt;
    ///
    /// struct Foo;
    ///
    /// impl fmt::Display for Foo {
    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
    ///         formatter.pad("Foo")
    ///     }
    /// }
    ///
    /// assert_eq!(format!("{Foo:<4}"), "Foo ");
    /// assert_eq!(format!("{Foo:0>4}"), "0Foo");
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn pad(&mut self, s: &str) -> Result {
        // Make sure there's a fast path up front
        if self.width.is_none() && self.precision.is_none() {
            return self.buf.write_str(s);
        }
        // The `precision` field can be interpreted as a `max-width` for the
        // string being formatted.
        let s = if let Some(max) = self.precision {
            // If our string is longer that the precision, then we must have
            // truncation. However other flags like `fill`, `width` and `align`
            // must act as always.
            if let Some((i, _)) = s.char_indices().nth(max) {
                // LLVM here can't prove that `..i` won't panic `&s[..i]`, but
                // we know that it can't panic. Use `get` + `unwrap_or` to avoid
                // `unsafe` and otherwise don't emit any panic-related code
                // here.
                s.get(..i).unwrap_or(s)
            } else {
                &s
            }
        } else {
            &s
        };
        // The `width` field is more of a `min-width` parameter at this point.
        match self.width {
            // If we're under the maximum length, and there's no minimum length
            // requirements, then we can just emit the string
            None => self.buf.write_str(s),
            Some(width) => {
                let chars_count = s.chars().count();
                // If we're under the maximum width, check if we're over the minimum
                // width, if so it's as easy as just emitting the string.
                if chars_count >= width {
                    self.buf.write_str(s)
                }
                // If we're under both the maximum and the minimum width, then fill
                // up the minimum width with the specified string + some alignment.
                else {
                    let align = Alignment::Left;
                    let post_padding = self.padding(width - chars_count, align)?;
                    self.buf.write_str(s)?;
                    post_padding.write(self)
                }
            }
        }
    }

    /// Writes the pre-padding and returns the unwritten post-padding.
    ///
    /// Callers are responsible for ensuring post-padding is written after the
    /// thing that is being padded.
    pub(crate) fn padding(
        &mut self,
        padding: usize,
        default: Alignment,
    ) -> result::Result<PostPadding, Error> {
        let align = match self.align {
            rt::Alignment::Unknown => default,
            rt::Alignment::Left => Alignment::Left,
            rt::Alignment::Right => Alignment::Right,
            rt::Alignment::Center => Alignment::Center,
        };

        let (pre_pad, post_pad) = match align {
            Alignment::Left => (0, padding),
            Alignment::Right => (padding, 0),
            Alignment::Center => (padding / 2, (padding + 1) / 2),
        };

        for _ in 0..pre_pad {
            self.buf.write_char(self.fill)?;
        }

        Ok(PostPadding::new(self.fill, post_pad))
    }

    /// Takes the formatted parts and applies the padding.
    ///
    /// Assumes that the caller already has rendered the parts with required precision,
    /// so that `self.precision` can be ignored.
    ///
    /// # Safety
    ///
    /// Any `numfmt::Part::Copy` parts in `formatted` must contain valid UTF-8.
    unsafe fn pad_formatted_parts(&mut self, formatted: &numfmt::Formatted<'_>) -> Result {
        if let Some(mut width) = self.width {
            // for the sign-aware zero padding, we render the sign first and
            // behave as if we had no sign from the beginning.
            let mut formatted = formatted.clone();
            let old_fill = self.fill;
            let old_align = self.align;
            if self.sign_aware_zero_pad() {
                // a sign always goes first
                let sign = formatted.sign;
                self.buf.write_str(sign)?;

                // remove the sign from the formatted parts
                formatted.sign = "";
                width = width.saturating_sub(sign.len());
                self.fill = '0';
                self.align = rt::Alignment::Right;
            }

            // remaining parts go through the ordinary padding process.
            let len = formatted.len();
            let ret = if width <= len {
                // no padding
                // SAFETY: Per the precondition.
                unsafe { self.write_formatted_parts(&formatted) }
            } else {
                let post_padding = self.padding(width - len, Alignment::Right)?;
                // SAFETY: Per the precondition.
                unsafe {
                    self.write_formatted_parts(&formatted)?;
                }
                post_padding.write(self)
            };
            self.fill = old_fill;
            self.align = old_align;
            ret
        } else {
            // this is the common case and we take a shortcut
            // SAFETY: Per the precondition.
            unsafe { self.write_formatted_parts(formatted) }
        }
    }

    /// # Safety
    ///
    /// Any `numfmt::Part::Copy` parts in `formatted` must contain valid UTF-8.
    unsafe fn write_formatted_parts(&mut self, formatted: &numfmt::Formatted<'_>) -> Result {
        unsafe fn write_bytes(buf: &mut dyn Write, s: &[u8]) -> Result {
            // SAFETY: This is used for `numfmt::Part::Num` and `numfmt::Part::Copy`.
            // It's safe to use for `numfmt::Part::Num` since every char `c` is between
            // `b'0'` and `b'9'`, which means `s` is valid UTF-8. It's safe to use for
            // `numfmt::Part::Copy` due to this function's precondition.
            buf.write_str(unsafe { str::from_utf8_unchecked(s) })
        }

        if !formatted.sign.is_empty() {
            self.buf.write_str(formatted.sign)?;
        }
        for part in formatted.parts {
            match *part {
                numfmt::Part::Zero(mut nzeroes) => {
                    const ZEROES: &str = // 64 zeroes
                        "0000000000000000000000000000000000000000000000000000000000000000";
                    while nzeroes > ZEROES.len() {
                        self.buf.write_str(ZEROES)?;
                        nzeroes -= ZEROES.len();
                    }
                    if nzeroes > 0 {
                        self.buf.write_str(&ZEROES[..nzeroes])?;
                    }
                }
                numfmt::Part::Num(mut v) => {
                    let mut s = [0; 5];
                    let len = part.len();
                    for c in s[..len].iter_mut().rev() {
                        *c = b'0' + (v % 10) as u8;
                        v /= 10;
                    }
                    // SAFETY: Per the precondition.
                    unsafe {
                        write_bytes(self.buf, &s[..len])?;
                    }
                }
                // SAFETY: Per the precondition.
                numfmt::Part::Copy(buf) => unsafe {
                    write_bytes(self.buf, buf)?;
                },
            }
        }
        Ok(())
    }

    /// Writes some data to the underlying buffer contained within this
    /// formatter.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::fmt;
    ///
    /// struct Foo;
    ///
    /// impl fmt::Display for Foo {
    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
    ///         formatter.write_str("Foo")
    ///         // This is equivalent to:
    ///         // write!(formatter, "Foo")
    ///     }
    /// }
    ///
    /// assert_eq!(format!("{Foo}"), "Foo");
    /// assert_eq!(format!("{Foo:0>8}"), "Foo");
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn write_str(&mut self, data: &str) -> Result {
        self.buf.write_str(data)
    }

    /// Glue for usage of the [`write!`] macro with implementors of this trait.
    ///
    /// This method should generally not be invoked manually, but rather through
    /// the [`write!`] macro itself.
    ///
    /// Writes some formatted information into this instance.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::fmt;
    ///
    /// struct Foo(i32);
    ///
    /// impl fmt::Display for Foo {
    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
    ///         formatter.write_fmt(format_args!("Foo {}", self.0))
    ///     }
    /// }
    ///
    /// assert_eq!(format!("{}", Foo(-1)), "Foo -1");
    /// assert_eq!(format!("{:0>8}", Foo(2)), "Foo 2");
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn write_fmt(&mut self, fmt: Arguments<'_>) -> Result {
        if let Some(s) = fmt.as_statically_known_str() {
            self.buf.write_str(s)
        } else {
            write(self.buf, fmt)
        }
    }

    /// Returns flags for formatting.
    #[must_use]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[deprecated(
        since = "1.24.0",
        note = "use the `sign_plus`, `sign_minus`, `alternate`, \
                or `sign_aware_zero_pad` methods instead"
    )]
    pub fn flags(&self) -> u32 {
        self.flags
    }

    /// Returns the character used as 'fill' whenever there is alignment.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::fmt;
    ///
    /// struct Foo;
    ///
    /// impl fmt::Display for Foo {
    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
    ///         let c = formatter.fill();
    ///         if let Some(width) = formatter.width() {
    ///             for _ in 0..width {
    ///                 write!(formatter, "{c}")?;
    ///             }
    ///             Ok(())
    ///         } else {
    ///             write!(formatter, "{c}")
    ///         }
    ///     }
    /// }
    ///
    /// // We set alignment to the right with ">".
    /// assert_eq!(format!("{Foo:G>3}"), "GGG");
    /// assert_eq!(format!("{Foo:t>6}"), "tttttt");
    /// ```
    #[must_use]
    #[stable(feature = "fmt_flags", since = "1.5.0")]
    pub fn fill(&self) -> char {
        self.fill
    }

    /// Returns a flag indicating what form of alignment was requested.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::fmt::{self, Alignment};
    ///
    /// struct Foo;
    ///
    /// impl fmt::Display for Foo {
    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
    ///         let s = if let Some(s) = formatter.align() {
    ///             match s {
    ///                 Alignment::Left    => "left",
    ///                 Alignment::Right   => "right",
    ///                 Alignment::Center  => "center",
    ///             }
    ///         } else {
    ///             "into the void"
    ///         };
    ///         write!(formatter, "{s}")
    ///     }
    /// }
    ///
    /// assert_eq!(format!("{Foo:<}"), "left");
    /// assert_eq!(format!("{Foo:>}"), "right");
    /// assert_eq!(format!("{Foo:^}"), "center");
    /// assert_eq!(format!("{Foo}"), "into the void");
    /// ```
    #[must_use]
    #[stable(feature = "fmt_flags_align", since = "1.28.0")]
    pub fn align(&self) -> Option<Alignment> {
        match self.align {
            rt::Alignment::Left => Some(Alignment::Left),
            rt::Alignment::Right => Some(Alignment::Right),
            rt::Alignment::Center => Some(Alignment::Center),
            rt::Alignment::Unknown => None,
        }
    }

    /// Returns the optionally specified integer width that the output should be.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::fmt;
    ///
    /// struct Foo(i32);
    ///
    /// impl fmt::Display for Foo {
    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
    ///         if let Some(width) = formatter.width() {
    ///             // If we received a width, we use it
    ///             write!(formatter, "{:width$}", format!("Foo({})", self.0), width = width)
    ///         } else {
    ///             // Otherwise we do nothing special
    ///             write!(formatter, "Foo({})", self.0)
    ///         }
    ///     }
    /// }
    ///
    /// assert_eq!(format!("{:10}", Foo(23)), "Foo(23)   ");
    /// assert_eq!(format!("{}", Foo(23)), "Foo(23)");
    /// ```
    #[must_use]
    #[stable(feature = "fmt_flags", since = "1.5.0")]
    pub fn width(&self) -> Option<usize> {
        self.width
    }

    /// Returns the optionally specified precision for numeric types.
    /// Alternatively, the maximum width for string types.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::fmt;
    ///
    /// struct Foo(f32);
    ///
    /// impl fmt::Display for Foo {
    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
    ///         if let Some(precision) = formatter.precision() {
    ///             // If we received a precision, we use it.
    ///             write!(formatter, "Foo({1:.*})", precision, self.0)
    ///         } else {
    ///             // Otherwise we default to 2.
    ///             write!(formatter, "Foo({:.2})", self.0)
    ///         }
    ///     }
    /// }
    ///
    /// assert_eq!(format!("{:.4}", Foo(23.2)), "Foo(23.2000)");
    /// assert_eq!(format!("{}", Foo(23.2)), "Foo(23.20)");
    /// ```
    #[must_use]
    #[stable(feature = "fmt_flags", since = "1.5.0")]
    pub fn precision(&self) -> Option<usize> {
        self.precision
    }

    /// Determines if the `+` flag was specified.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::fmt;
    ///
    /// struct Foo(i32);
    ///
    /// impl fmt::Display for Foo {
    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
    ///         if formatter.sign_plus() {
    ///             write!(formatter,
    ///                    "Foo({}{})",
    ///                    if self.0 < 0 { '-' } else { '+' },
    ///                    self.0.abs())
    ///         } else {
    ///             write!(formatter, "Foo({})", self.0)
    ///         }
    ///     }
    /// }
    ///
    /// assert_eq!(format!("{:+}", Foo(23)), "Foo(+23)");
    /// assert_eq!(format!("{:+}", Foo(-23)), "Foo(-23)");
    /// assert_eq!(format!("{}", Foo(23)), "Foo(23)");
    /// ```
    #[must_use]
    #[stable(feature = "fmt_flags", since = "1.5.0")]
    pub fn sign_plus(&self) -> bool {
        self.flags & (1 << rt::Flag::SignPlus as u32) != 0
    }

    /// Determines if the `-` flag was specified.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::fmt;
    ///
    /// struct Foo(i32);
    ///
    /// impl fmt::Display for Foo {
    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
    ///         if formatter.sign_minus() {
    ///             // You want a minus sign? Have one!
    ///             write!(formatter, "-Foo({})", self.0)
    ///         } else {
    ///             write!(formatter, "Foo({})", self.0)
    ///         }
    ///     }
    /// }
    ///
    /// assert_eq!(format!("{:-}", Foo(23)), "-Foo(23)");
    /// assert_eq!(format!("{}", Foo(23)), "Foo(23)");
    /// ```
    #[must_use]
    #[stable(feature = "fmt_flags", since = "1.5.0")]
    pub fn sign_minus(&self) -> bool {
        self.flags & (1 << rt::Flag::SignMinus as u32) != 0
    }

    /// Determines if the `#` flag was specified.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::fmt;
    ///
    /// struct Foo(i32);
    ///
    /// impl fmt::Display for Foo {
    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
    ///         if formatter.alternate() {
    ///             write!(formatter, "Foo({})", self.0)
    ///         } else {
    ///             write!(formatter, "{}", self.0)
    ///         }
    ///     }
    /// }
    ///
    /// assert_eq!(format!("{:#}", Foo(23)), "Foo(23)");
    /// assert_eq!(format!("{}", Foo(23)), "23");
    /// ```
    #[must_use]
    #[stable(feature = "fmt_flags", since = "1.5.0")]
    pub fn alternate(&self) -> bool {
        self.flags & (1 << rt::Flag::Alternate as u32) != 0
    }

    /// Determines if the `0` flag was specified.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::fmt;
    ///
    /// struct Foo(i32);
    ///
    /// impl fmt::Display for Foo {
    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
    ///         assert!(formatter.sign_aware_zero_pad());
    ///         assert_eq!(formatter.width(), Some(4));
    ///         // We ignore the formatter's options.
    ///         write!(formatter, "{}", self.0)
    ///     }
    /// }
    ///
    /// assert_eq!(format!("{:04}", Foo(23)), "23");
    /// ```
    #[must_use]
    #[stable(feature = "fmt_flags", since = "1.5.0")]
    pub fn sign_aware_zero_pad(&self) -> bool {
        self.flags & (1 << rt::Flag::SignAwareZeroPad as u32) != 0
    }

    // FIXME: Decide what public API we want for these two flags.
    // https://github.com/rust-lang/rust/issues/48584
    fn debug_lower_hex(&self) -> bool {
        self.flags & (1 << rt::Flag::DebugLowerHex as u32) != 0
    }

    fn debug_upper_hex(&self) -> bool {
        self.flags & (1 << rt::Flag::DebugUpperHex as u32) != 0
    }

    /// Creates a [`DebugStruct`] builder designed to assist with creation of
    /// [`fmt::Debug`] implementations for structs.
    ///
    /// [`fmt::Debug`]: self::Debug
    ///
    /// # Examples
    ///
    /// ```rust
    /// use std::fmt;
    /// use std::net::Ipv4Addr;
    ///
    /// struct Foo {
    ///     bar: i32,
    ///     baz: String,
    ///     addr: Ipv4Addr,
    /// }
    ///
    /// impl fmt::Debug for Foo {
    ///     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
    ///         fmt.debug_struct("Foo")
    ///             .field("bar", &self.bar)
    ///             .field("baz", &self.baz)
    ///             .field("addr", &format_args!("{}", self.addr))
    ///             .finish()
    ///     }
    /// }
    ///
    /// assert_eq!(
    ///     "Foo { bar: 10, baz: \"Hello World\", addr: 127.0.0.1 }",
    ///     format!("{:?}", Foo {
    ///         bar: 10,
    ///         baz: "Hello World".to_string(),
    ///         addr: Ipv4Addr::new(127, 0, 0, 1),
    ///     })
    /// );
    /// ```
    #[stable(feature = "debug_builders", since = "1.2.0")]
    pub fn debug_struct<'b>(&'b mut self, name: &str) -> DebugStruct<'b, 'a> {
        builders::debug_struct_new(self, name)
    }

    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
    /// binaries. `debug_struct_fields_finish` is more general, but this is
    /// faster for 1 field.
    #[doc(hidden)]
    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
    pub fn debug_struct_field1_finish<'b>(
        &'b mut self,
        name: &str,
        name1: &str,
        value1: &dyn Debug,
    ) -> Result {
        let mut builder = builders::debug_struct_new(self, name);
        builder.field(name1, value1);
        builder.finish()
    }

    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
    /// binaries. `debug_struct_fields_finish` is more general, but this is
    /// faster for 2 fields.
    #[doc(hidden)]
    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
    pub fn debug_struct_field2_finish<'b>(
        &'b mut self,
        name: &str,
        name1: &str,
        value1: &dyn Debug,
        name2: &str,
        value2: &dyn Debug,
    ) -> Result {
        let mut builder = builders::debug_struct_new(self, name);
        builder.field(name1, value1);
        builder.field(name2, value2);
        builder.finish()
    }

    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
    /// binaries. `debug_struct_fields_finish` is more general, but this is
    /// faster for 3 fields.
    #[doc(hidden)]
    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
    pub fn debug_struct_field3_finish<'b>(
        &'b mut self,
        name: &str,
        name1: &str,
        value1: &dyn Debug,
        name2: &str,
        value2: &dyn Debug,
        name3: &str,
        value3: &dyn Debug,
    ) -> Result {
        let mut builder = builders::debug_struct_new(self, name);
        builder.field(name1, value1);
        builder.field(name2, value2);
        builder.field(name3, value3);
        builder.finish()
    }

    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
    /// binaries. `debug_struct_fields_finish` is more general, but this is
    /// faster for 4 fields.
    #[doc(hidden)]
    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
    pub fn debug_struct_field4_finish<'b>(
        &'b mut self,
        name: &str,
        name1: &str,
        value1: &dyn Debug,
        name2: &str,
        value2: &dyn Debug,
        name3: &str,
        value3: &dyn Debug,
        name4: &str,
        value4: &dyn Debug,
    ) -> Result {
        let mut builder = builders::debug_struct_new(self, name);
        builder.field(name1, value1);
        builder.field(name2, value2);
        builder.field(name3, value3);
        builder.field(name4, value4);
        builder.finish()
    }

    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
    /// binaries. `debug_struct_fields_finish` is more general, but this is
    /// faster for 5 fields.
    #[doc(hidden)]
    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
    pub fn debug_struct_field5_finish<'b>(
        &'b mut self,
        name: &str,
        name1: &str,
        value1: &dyn Debug,
        name2: &str,
        value2: &dyn Debug,
        name3: &str,
        value3: &dyn Debug,
        name4: &str,
        value4: &dyn Debug,
        name5: &str,
        value5: &dyn Debug,
    ) -> Result {
        let mut builder = builders::debug_struct_new(self, name);
        builder.field(name1, value1);
        builder.field(name2, value2);
        builder.field(name3, value3);
        builder.field(name4, value4);
        builder.field(name5, value5);
        builder.finish()
    }

    /// Shrinks `derive(Debug)` code, for faster compilation and smaller binaries.
    /// For the cases not covered by `debug_struct_field[12345]_finish`.
    #[doc(hidden)]
    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
    pub fn debug_struct_fields_finish<'b>(
        &'b mut self,
        name: &str,
        names: &[&str],
        values: &[&dyn Debug],
    ) -> Result {
        assert_eq!(names.len(), values.len());
        let mut builder = builders::debug_struct_new(self, name);
        for (name, value) in iter::zip(names, values) {
            builder.field(name, value);
        }
        builder.finish()
    }

    /// Creates a `DebugTuple` builder designed to assist with creation of
    /// `fmt::Debug` implementations for tuple structs.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use std::fmt;
    /// use std::marker::PhantomData;
    ///
    /// struct Foo<T>(i32, String, PhantomData<T>);
    ///
    /// impl<T> fmt::Debug for Foo<T> {
    ///     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
    ///         fmt.debug_tuple("Foo")
    ///             .field(&self.0)
    ///             .field(&self.1)
    ///             .field(&format_args!("_"))
    ///             .finish()
    ///     }
    /// }
    ///
    /// assert_eq!(
    ///     "Foo(10, \"Hello\", _)",
    ///     format!("{:?}", Foo(10, "Hello".to_string(), PhantomData::<u8>))
    /// );
    /// ```
    #[stable(feature = "debug_builders", since = "1.2.0")]
    pub fn debug_tuple<'b>(&'b mut self, name: &str) -> DebugTuple<'b, 'a> {
        builders::debug_tuple_new(self, name)
    }

    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
    /// binaries. `debug_tuple_fields_finish` is more general, but this is faster
    /// for 1 field.
    #[doc(hidden)]
    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
    pub fn debug_tuple_field1_finish<'b>(&'b mut self, name: &str, value1: &dyn Debug) -> Result {
        let mut builder = builders::debug_tuple_new(self, name);
        builder.field(value1);
        builder.finish()
    }

    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
    /// binaries. `debug_tuple_fields_finish` is more general, but this is faster
    /// for 2 fields.
    #[doc(hidden)]
    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
    pub fn debug_tuple_field2_finish<'b>(
        &'b mut self,
        name: &str,
        value1: &dyn Debug,
        value2: &dyn Debug,
    ) -> Result {
        let mut builder = builders::debug_tuple_new(self, name);
        builder.field(value1);
        builder.field(value2);
        builder.finish()
    }

    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
    /// binaries. `debug_tuple_fields_finish` is more general, but this is faster
    /// for 3 fields.
    #[doc(hidden)]
    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
    pub fn debug_tuple_field3_finish<'b>(
        &'b mut self,
        name: &str,
        value1: &dyn Debug,
        value2: &dyn Debug,
        value3: &dyn Debug,
    ) -> Result {
        let mut builder = builders::debug_tuple_new(self, name);
        builder.field(value1);
        builder.field(value2);
        builder.field(value3);
        builder.finish()
    }

    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
    /// binaries. `debug_tuple_fields_finish` is more general, but this is faster
    /// for 4 fields.
    #[doc(hidden)]
    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
    pub fn debug_tuple_field4_finish<'b>(
        &'b mut self,
        name: &str,
        value1: &dyn Debug,
        value2: &dyn Debug,
        value3: &dyn Debug,
        value4: &dyn Debug,
    ) -> Result {
        let mut builder = builders::debug_tuple_new(self, name);
        builder.field(value1);
        builder.field(value2);
        builder.field(value3);
        builder.field(value4);
        builder.finish()
    }

    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
    /// binaries. `debug_tuple_fields_finish` is more general, but this is faster
    /// for 5 fields.
    #[doc(hidden)]
    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
    pub fn debug_tuple_field5_finish<'b>(
        &'b mut self,
        name: &str,
        value1: &dyn Debug,
        value2: &dyn Debug,
        value3: &dyn Debug,
        value4: &dyn Debug,
        value5: &dyn Debug,
    ) -> Result {
        let mut builder = builders::debug_tuple_new(self, name);
        builder.field(value1);
        builder.field(value2);
        builder.field(value3);
        builder.field(value4);
        builder.field(value5);
        builder.finish()
    }

    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
    /// binaries. For the cases not covered by `debug_tuple_field[12345]_finish`.
    #[doc(hidden)]
    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
    pub fn debug_tuple_fields_finish<'b>(
        &'b mut self,
        name: &str,
        values: &[&dyn Debug],
    ) -> Result {
        let mut builder = builders::debug_tuple_new(self, name);
        for value in values {
            builder.field(value);
        }
        builder.finish()
    }

    /// Creates a `DebugList` builder designed to assist with creation of
    /// `fmt::Debug` implementations for list-like structures.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use std::fmt;
    ///
    /// struct Foo(Vec<i32>);
    ///
    /// impl fmt::Debug for Foo {
    ///     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
    ///         fmt.debug_list().entries(self.0.iter()).finish()
    ///     }
    /// }
    ///
    /// assert_eq!(format!("{:?}", Foo(vec![10, 11])), "[10, 11]");
    /// ```
    #[stable(feature = "debug_builders", since = "1.2.0")]
    pub fn debug_list<'b>(&'b mut self) -> DebugList<'b, 'a> {
        builders::debug_list_new(self)
    }

    /// Creates a `DebugSet` builder designed to assist with creation of
    /// `fmt::Debug` implementations for set-like structures.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use std::fmt;
    ///
    /// struct Foo(Vec<i32>);
    ///
    /// impl fmt::Debug for Foo {
    ///     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
    ///         fmt.debug_set().entries(self.0.iter()).finish()
    ///     }
    /// }
    ///
    /// assert_eq!(format!("{:?}", Foo(vec![10, 11])), "{10, 11}");
    /// ```
    ///
    /// [`format_args!`]: crate::format_args
    ///
    /// In this more complex example, we use [`format_args!`] and `.debug_set()`
    /// to build a list of match arms:
    ///
    /// ```rust
    /// use std::fmt;
    ///
    /// struct Arm<'a, L, R>(&'a (L, R));
    /// struct Table<'a, K, V>(&'a [(K, V)], V);
    ///
    /// impl<'a, L, R> fmt::Debug for Arm<'a, L, R>
    /// where
    ///     L: 'a + fmt::Debug, R: 'a + fmt::Debug
    /// {
    ///     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
    ///         L::fmt(&(self.0).0, fmt)?;
    ///         fmt.write_str(" => ")?;
    ///         R::fmt(&(self.0).1, fmt)
    ///     }
    /// }
    ///
    /// impl<'a, K, V> fmt::Debug for Table<'a, K, V>
    /// where
    ///     K: 'a + fmt::Debug, V: 'a + fmt::Debug
    /// {
    ///     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
    ///         fmt.debug_set()
    ///         .entries(self.0.iter().map(Arm))
    ///         .entry(&Arm(&(format_args!("_"), &self.1)))
    ///         .finish()
    ///     }
    /// }
    /// ```
    #[stable(feature = "debug_builders", since = "1.2.0")]
    pub fn debug_set<'b>(&'b mut self) -> DebugSet<'b, 'a> {
        builders::debug_set_new(self)
    }

    /// Creates a `DebugMap` builder designed to assist with creation of
    /// `fmt::Debug` implementations for map-like structures.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use std::fmt;
    ///
    /// struct Foo(Vec<(String, i32)>);
    ///
    /// impl fmt::Debug for Foo {
    ///     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
    ///         fmt.debug_map().entries(self.0.iter().map(|&(ref k, ref v)| (k, v))).finish()
    ///     }
    /// }
    ///
    /// assert_eq!(
    ///     format!("{:?}",  Foo(vec![("A".to_string(), 10), ("B".to_string(), 11)])),
    ///     r#"{"A": 10, "B": 11}"#
    ///  );
    /// ```
    #[stable(feature = "debug_builders", since = "1.2.0")]
    pub fn debug_map<'b>(&'b mut self) -> DebugMap<'b, 'a> {
        builders::debug_map_new(self)
    }
}

#[stable(since = "1.2.0", feature = "formatter_write")]
impl Write for Formatter<'_> {
    fn write_str(&mut self, s: &str) -> Result {
        self.buf.write_str(s)
    }

    fn write_char(&mut self, c: char) -> Result {
        self.buf.write_char(c)
    }

    #[inline]
    fn write_fmt(&mut self, args: Arguments<'_>) -> Result {
        if let Some(s) = args.as_statically_known_str() {
            self.buf.write_str(s)
        } else {
            write(self.buf, args)
        }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl Display for Error {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
        Display::fmt("an error occurred when formatting an argument", f)
    }
}

// Implementations of the core formatting traits

macro_rules! fmt_refs {
    ($($tr:ident),*) => {
        $(
        #[stable(feature = "rust1", since = "1.0.0")]
        impl<T: ?Sized + $tr> $tr for &T {
            fn fmt(&self, f: &mut Formatter<'_>) -> Result { $tr::fmt(&**self, f) }
        }
        #[stable(feature = "rust1", since = "1.0.0")]
        impl<T: ?Sized + $tr> $tr for &mut T {
            fn fmt(&self, f: &mut Formatter<'_>) -> Result { $tr::fmt(&**self, f) }
        }
        )*
    }
}

fmt_refs! { Debug, Display, Octal, Binary, LowerHex, UpperHex, LowerExp, UpperExp }

#[unstable(feature = "never_type", issue = "35121")]
impl Debug for ! {
    #[inline]
    fn fmt(&self, _: &mut Formatter<'_>) -> Result {
        *self
    }
}

#[unstable(feature = "never_type", issue = "35121")]
impl Display for ! {
    #[inline]
    fn fmt(&self, _: &mut Formatter<'_>) -> Result {
        *self
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl Debug for bool {
    #[inline]
    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
        Display::fmt(self, f)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl Display for bool {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
        Display::fmt(if *self { "true" } else { "false" }, f)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl Debug for str {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
        f.write_char('"')?;

        // substring we know is printable
        let mut printable_range = 0..0;

        fn needs_escape(b: u8) -> bool {
            b > 0x7E || b < 0x20 || b == b'\\' || b == b'"'
        }

        // the loop here first skips over runs of printable ASCII as a fast path.
        // other chars (unicode, or ASCII that needs escaping) are then handled per-`char`.
        let mut rest = self;
        while rest.len() > 0 {
            let Some(non_printable_start) = rest.as_bytes().iter().position(|&b| needs_escape(b))
            else {
                printable_range.end += rest.len();
                break;
            };

            printable_range.end += non_printable_start;
            // SAFETY: the position was derived from an iterator, so is known to be within bounds, and at a char boundary
            rest = unsafe { rest.get_unchecked(non_printable_start..) };

            let mut chars = rest.chars();
            if let Some(c) = chars.next() {
                let esc = c.escape_debug_ext(EscapeDebugExtArgs {
                    escape_grapheme_extended: true,
                    escape_single_quote: false,
                    escape_double_quote: true,
                });
                if esc.len() != 1 {
                    f.write_str(&self[printable_range.clone()])?;
                    Display::fmt(&esc, f)?;
                    printable_range.start = printable_range.end + c.len_utf8();
                }
                printable_range.end += c.len_utf8();
            }
            rest = chars.as_str();
        }

        f.write_str(&self[printable_range])?;

        f.write_char('"')
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl Display for str {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
        f.pad(self)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl Debug for char {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
        f.write_char('\'')?;
        let esc = self.escape_debug_ext(EscapeDebugExtArgs {
            escape_grapheme_extended: true,
            escape_single_quote: true,
            escape_double_quote: false,
        });
        Display::fmt(&esc, f)?;
        f.write_char('\'')
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl Display for char {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
        if f.width.is_none() && f.precision.is_none() {
            f.write_char(*self)
        } else {
            f.pad(self.encode_utf8(&mut [0; 4]))
        }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Pointer for *const T {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
        pointer_fmt_inner(self.expose_provenance(), f)
    }
}

/// Since the formatting will be identical for all pointer types, uses a
/// non-monomorphized implementation for the actual formatting to reduce the
/// amount of codegen work needed.
///
/// This uses `ptr_addr: usize` and not `ptr: *const ()` to be able to use this for
/// `fn(...) -> ...` without using [problematic] "Oxford Casts".
///
/// [problematic]: https://github.com/rust-lang/rust/issues/95489
pub(crate) fn pointer_fmt_inner(ptr_addr: usize, f: &mut Formatter<'_>) -> Result {
    let old_width = f.width;
    let old_flags = f.flags;

    // The alternate flag is already treated by LowerHex as being special-
    // it denotes whether to prefix with 0x. We use it to work out whether
    // or not to zero extend, and then unconditionally set it to get the
    // prefix.
    if f.alternate() {
        f.flags |= 1 << (rt::Flag::SignAwareZeroPad as u32);

        if f.width.is_none() {
            f.width = Some((usize::BITS / 4) as usize + 2);
        }
    }
    f.flags |= 1 << (rt::Flag::Alternate as u32);

    let ret = LowerHex::fmt(&ptr_addr, f);

    f.width = old_width;
    f.flags = old_flags;

    ret
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Pointer for *mut T {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
        Pointer::fmt(&(*self as *const T), f)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Pointer for &T {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
        Pointer::fmt(&(*self as *const T), f)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Pointer for &mut T {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
        Pointer::fmt(&(&**self as *const T), f)
    }
}

// Implementation of Display/Debug for various core types

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Debug for *const T {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
        Pointer::fmt(self, f)
    }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Debug for *mut T {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
        Pointer::fmt(self, f)
    }
}

macro_rules! peel {
    ($name:ident, $($other:ident,)*) => (tuple! { $($other,)* })
}

macro_rules! tuple {
    () => ();
    ( $($name:ident,)+ ) => (
        maybe_tuple_doc! {
            $($name)+ @
            #[stable(feature = "rust1", since = "1.0.0")]
            impl<$($name:Debug),+> Debug for ($($name,)+) where last_type!($($name,)+): ?Sized {
                #[allow(non_snake_case, unused_assignments)]
                fn fmt(&self, f: &mut Formatter<'_>) -> Result {
                    let mut builder = f.debug_tuple("");
                    let ($(ref $name,)+) = *self;
                    $(
                        builder.field(&$name);
                    )+

                    builder.finish()
                }
            }
        }
        peel! { $($name,)+ }
    )
}

macro_rules! maybe_tuple_doc {
    ($a:ident @ #[$meta:meta] $item:item) => {
        #[doc(fake_variadic)]
        #[doc = "This trait is implemented for tuples up to twelve items long."]
        #[$meta]
        $item
    };
    ($a:ident $($rest_a:ident)+ @ #[$meta:meta] $item:item) => {
        #[doc(hidden)]
        #[$meta]
        $item
    };
}

macro_rules! last_type {
    ($a:ident,) => { $a };
    ($a:ident, $($rest_a:ident,)+) => { last_type!($($rest_a,)+) };
}

tuple! { E, D, C, B, A, Z, Y, X, W, V, U, T, }

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Debug> Debug for [T] {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
        f.debug_list().entries(self.iter()).finish()
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl Debug for () {
    #[inline]
    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
        f.pad("()")
    }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Debug for PhantomData<T> {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
        write!(f, "PhantomData<{}>", crate::any::type_name::<T>())
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Copy + Debug> Debug for Cell<T> {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
        f.debug_struct("Cell").field("value", &self.get()).finish()
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Debug> Debug for RefCell<T> {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
        let mut d = f.debug_struct("RefCell");
        match self.try_borrow() {
            Ok(borrow) => d.field("value", &borrow),
            Err(_) => d.field("value", &format_args!("<borrowed>")),
        };
        d.finish()
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Debug> Debug for Ref<'_, T> {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
        Debug::fmt(&**self, f)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Debug> Debug for RefMut<'_, T> {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
        Debug::fmt(&*(self.deref()), f)
    }
}

#[stable(feature = "core_impl_debug", since = "1.9.0")]
impl<T: ?Sized> Debug for UnsafeCell<T> {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
        f.debug_struct("UnsafeCell").finish_non_exhaustive()
    }
}

#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
impl<T: ?Sized> Debug for SyncUnsafeCell<T> {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
        f.debug_struct("SyncUnsafeCell").finish_non_exhaustive()
    }
}

// If you expected tests to be here, look instead at the core/tests/fmt.rs file,
// it's a lot easier than creating all of the rt::Piece structures here.
// There are also tests in the alloc crate, for those that need allocations.