core/fmt/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
//! Utilities for formatting and printing strings.
#![stable(feature = "rust1", since = "1.0.0")]
use crate::cell::{Cell, Ref, RefCell, RefMut, SyncUnsafeCell, UnsafeCell};
use crate::char::EscapeDebugExtArgs;
use crate::marker::PhantomData;
use crate::num::fmt as numfmt;
use crate::ops::Deref;
use crate::{iter, mem, result, str};
mod builders;
#[cfg(not(no_fp_fmt_parse))]
mod float;
#[cfg(no_fp_fmt_parse)]
mod nofloat;
mod num;
mod rt;
#[stable(feature = "fmt_flags_align", since = "1.28.0")]
#[cfg_attr(not(test), rustc_diagnostic_item = "Alignment")]
/// Possible alignments returned by `Formatter::align`
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum Alignment {
#[stable(feature = "fmt_flags_align", since = "1.28.0")]
/// Indication that contents should be left-aligned.
Left,
#[stable(feature = "fmt_flags_align", since = "1.28.0")]
/// Indication that contents should be right-aligned.
Right,
#[stable(feature = "fmt_flags_align", since = "1.28.0")]
/// Indication that contents should be center-aligned.
Center,
}
#[stable(feature = "debug_builders", since = "1.2.0")]
pub use self::builders::{DebugList, DebugMap, DebugSet, DebugStruct, DebugTuple};
#[unstable(feature = "debug_closure_helpers", issue = "117729")]
pub use self::builders::{FromFn, from_fn};
/// The type returned by formatter methods.
///
/// # Examples
///
/// ```
/// use std::fmt;
///
/// #[derive(Debug)]
/// struct Triangle {
/// a: f32,
/// b: f32,
/// c: f32
/// }
///
/// impl fmt::Display for Triangle {
/// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
/// write!(f, "({}, {}, {})", self.a, self.b, self.c)
/// }
/// }
///
/// let pythagorean_triple = Triangle { a: 3.0, b: 4.0, c: 5.0 };
///
/// assert_eq!(format!("{pythagorean_triple}"), "(3, 4, 5)");
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub type Result = result::Result<(), Error>;
/// The error type which is returned from formatting a message into a stream.
///
/// This type does not support transmission of an error other than that an error
/// occurred. This is because, despite the existence of this error,
/// string formatting is considered an infallible operation.
/// `fmt()` implementors should not return this `Error` unless they received it from their
/// [`Formatter`]. The only time your code should create a new instance of this
/// error is when implementing `fmt::Write`, in order to cancel the formatting operation when
/// writing to the underlying stream fails.
///
/// Any extra information must be arranged to be transmitted through some other means,
/// such as storing it in a field to be consulted after the formatting operation has been
/// cancelled. (For example, this is how [`std::io::Write::write_fmt()`] propagates IO errors
/// during writing.)
///
/// This type, `fmt::Error`, should not be
/// confused with [`std::io::Error`] or [`std::error::Error`], which you may also
/// have in scope.
///
/// [`std::io::Error`]: ../../std/io/struct.Error.html
/// [`std::io::Write::write_fmt()`]: ../../std/io/trait.Write.html#method.write_fmt
/// [`std::error::Error`]: ../../std/error/trait.Error.html
///
/// # Examples
///
/// ```rust
/// use std::fmt::{self, write};
///
/// let mut output = String::new();
/// if let Err(fmt::Error) = write(&mut output, format_args!("Hello {}!", "world")) {
/// panic!("An error occurred");
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Copy, Clone, Debug, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub struct Error;
/// A trait for writing or formatting into Unicode-accepting buffers or streams.
///
/// This trait only accepts UTF-8–encoded data and is not [flushable]. If you only
/// want to accept Unicode and you don't need flushing, you should implement this trait;
/// otherwise you should implement [`std::io::Write`].
///
/// [`std::io::Write`]: ../../std/io/trait.Write.html
/// [flushable]: ../../std/io/trait.Write.html#tymethod.flush
#[stable(feature = "rust1", since = "1.0.0")]
pub trait Write {
/// Writes a string slice into this writer, returning whether the write
/// succeeded.
///
/// This method can only succeed if the entire string slice was successfully
/// written, and this method will not return until all data has been
/// written or an error occurs.
///
/// # Errors
///
/// This function will return an instance of [`std::fmt::Error`][Error] on error.
///
/// The purpose of that error is to abort the formatting operation when the underlying
/// destination encounters some error preventing it from accepting more text;
/// in particular, it does not communicate any information about *what* error occurred.
/// It should generally be propagated rather than handled, at least when implementing
/// formatting traits.
///
/// # Examples
///
/// ```
/// use std::fmt::{Error, Write};
///
/// fn writer<W: Write>(f: &mut W, s: &str) -> Result<(), Error> {
/// f.write_str(s)
/// }
///
/// let mut buf = String::new();
/// writer(&mut buf, "hola").unwrap();
/// assert_eq!(&buf, "hola");
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
fn write_str(&mut self, s: &str) -> Result;
/// Writes a [`char`] into this writer, returning whether the write succeeded.
///
/// A single [`char`] may be encoded as more than one byte.
/// This method can only succeed if the entire byte sequence was successfully
/// written, and this method will not return until all data has been
/// written or an error occurs.
///
/// # Errors
///
/// This function will return an instance of [`Error`] on error.
///
/// # Examples
///
/// ```
/// use std::fmt::{Error, Write};
///
/// fn writer<W: Write>(f: &mut W, c: char) -> Result<(), Error> {
/// f.write_char(c)
/// }
///
/// let mut buf = String::new();
/// writer(&mut buf, 'a').unwrap();
/// writer(&mut buf, 'b').unwrap();
/// assert_eq!(&buf, "ab");
/// ```
#[stable(feature = "fmt_write_char", since = "1.1.0")]
fn write_char(&mut self, c: char) -> Result {
self.write_str(c.encode_utf8(&mut [0; 4]))
}
/// Glue for usage of the [`write!`] macro with implementors of this trait.
///
/// This method should generally not be invoked manually, but rather through
/// the [`write!`] macro itself.
///
/// # Errors
///
/// This function will return an instance of [`Error`] on error. Please see
/// [write_str](Write::write_str) for details.
///
/// # Examples
///
/// ```
/// use std::fmt::{Error, Write};
///
/// fn writer<W: Write>(f: &mut W, s: &str) -> Result<(), Error> {
/// f.write_fmt(format_args!("{s}"))
/// }
///
/// let mut buf = String::new();
/// writer(&mut buf, "world").unwrap();
/// assert_eq!(&buf, "world");
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
fn write_fmt(&mut self, args: Arguments<'_>) -> Result {
// We use a specialization for `Sized` types to avoid an indirection
// through `&mut self`
trait SpecWriteFmt {
fn spec_write_fmt(self, args: Arguments<'_>) -> Result;
}
impl<W: Write + ?Sized> SpecWriteFmt for &mut W {
#[inline]
default fn spec_write_fmt(mut self, args: Arguments<'_>) -> Result {
if let Some(s) = args.as_statically_known_str() {
self.write_str(s)
} else {
write(&mut self, args)
}
}
}
impl<W: Write> SpecWriteFmt for &mut W {
#[inline]
fn spec_write_fmt(self, args: Arguments<'_>) -> Result {
if let Some(s) = args.as_statically_known_str() {
self.write_str(s)
} else {
write(self, args)
}
}
}
self.spec_write_fmt(args)
}
}
#[stable(feature = "fmt_write_blanket_impl", since = "1.4.0")]
impl<W: Write + ?Sized> Write for &mut W {
fn write_str(&mut self, s: &str) -> Result {
(**self).write_str(s)
}
fn write_char(&mut self, c: char) -> Result {
(**self).write_char(c)
}
fn write_fmt(&mut self, args: Arguments<'_>) -> Result {
(**self).write_fmt(args)
}
}
/// Configuration for formatting.
///
/// A `Formatter` represents various options related to formatting. Users do not
/// construct `Formatter`s directly; a mutable reference to one is passed to
/// the `fmt` method of all formatting traits, like [`Debug`] and [`Display`].
///
/// To interact with a `Formatter`, you'll call various methods to change the
/// various options related to formatting. For examples, please see the
/// documentation of the methods defined on `Formatter` below.
#[allow(missing_debug_implementations)]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_diagnostic_item = "Formatter"]
pub struct Formatter<'a> {
flags: u32,
fill: char,
align: rt::Alignment,
width: Option<usize>,
precision: Option<usize>,
buf: &'a mut (dyn Write + 'a),
}
impl<'a> Formatter<'a> {
/// Creates a new formatter with default settings.
///
/// This can be used as a micro-optimization in cases where a full `Arguments`
/// structure (as created by `format_args!`) is not necessary; `Arguments`
/// is a little more expensive to use in simple formatting scenarios.
///
/// Currently not intended for use outside of the standard library.
#[unstable(feature = "fmt_internals", reason = "internal to standard library", issue = "none")]
#[doc(hidden)]
pub fn new(buf: &'a mut (dyn Write + 'a)) -> Formatter<'a> {
Formatter {
flags: 0,
fill: ' ',
align: rt::Alignment::Unknown,
width: None,
precision: None,
buf,
}
}
}
/// This structure represents a safely precompiled version of a format string
/// and its arguments. This cannot be generated at runtime because it cannot
/// safely be done, so no constructors are given and the fields are private
/// to prevent modification.
///
/// The [`format_args!`] macro will safely create an instance of this structure.
/// The macro validates the format string at compile-time so usage of the
/// [`write()`] and [`format()`] functions can be safely performed.
///
/// You can use the `Arguments<'a>` that [`format_args!`] returns in `Debug`
/// and `Display` contexts as seen below. The example also shows that `Debug`
/// and `Display` format to the same thing: the interpolated format string
/// in `format_args!`.
///
/// ```rust
/// let debug = format!("{:?}", format_args!("{} foo {:?}", 1, 2));
/// let display = format!("{}", format_args!("{} foo {:?}", 1, 2));
/// assert_eq!("1 foo 2", display);
/// assert_eq!(display, debug);
/// ```
///
/// [`format()`]: ../../std/fmt/fn.format.html
#[lang = "format_arguments"]
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Copy, Clone)]
pub struct Arguments<'a> {
// Format string pieces to print.
pieces: &'a [&'static str],
// Placeholder specs, or `None` if all specs are default (as in "{}{}").
fmt: Option<&'a [rt::Placeholder]>,
// Dynamic arguments for interpolation, to be interleaved with string
// pieces. (Every argument is preceded by a string piece.)
args: &'a [rt::Argument<'a>],
}
/// Used by the format_args!() macro to create a fmt::Arguments object.
#[doc(hidden)]
#[unstable(feature = "fmt_internals", issue = "none")]
impl<'a> Arguments<'a> {
#[inline]
#[rustc_const_unstable(feature = "const_fmt_arguments_new", issue = "none")]
pub const fn new_const<const N: usize>(pieces: &'a [&'static str; N]) -> Self {
const { assert!(N <= 1) };
Arguments { pieces, fmt: None, args: &[] }
}
/// When using the format_args!() macro, this function is used to generate the
/// Arguments structure.
#[inline]
pub fn new_v1<const P: usize, const A: usize>(
pieces: &'a [&'static str; P],
args: &'a [rt::Argument<'a>; A],
) -> Arguments<'a> {
const { assert!(P >= A && P <= A + 1, "invalid args") }
Arguments { pieces, fmt: None, args }
}
/// Specifies nonstandard formatting parameters.
///
/// An `rt::UnsafeArg` is required because the following invariants must be held
/// in order for this function to be safe:
/// 1. The `pieces` slice must be at least as long as `fmt`.
/// 2. Every `rt::Placeholder::position` value within `fmt` must be a valid index of `args`.
/// 3. Every `rt::Count::Param` within `fmt` must contain a valid index of `args`.
#[inline]
pub fn new_v1_formatted(
pieces: &'a [&'static str],
args: &'a [rt::Argument<'a>],
fmt: &'a [rt::Placeholder],
_unsafe_arg: rt::UnsafeArg,
) -> Arguments<'a> {
Arguments { pieces, fmt: Some(fmt), args }
}
/// Estimates the length of the formatted text.
///
/// This is intended to be used for setting initial `String` capacity
/// when using `format!`. Note: this is neither the lower nor upper bound.
#[inline]
pub fn estimated_capacity(&self) -> usize {
let pieces_length: usize = self.pieces.iter().map(|x| x.len()).sum();
if self.args.is_empty() {
pieces_length
} else if !self.pieces.is_empty() && self.pieces[0].is_empty() && pieces_length < 16 {
// If the format string starts with an argument,
// don't preallocate anything, unless length
// of pieces is significant.
0
} else {
// There are some arguments, so any additional push
// will reallocate the string. To avoid that,
// we're "pre-doubling" the capacity here.
pieces_length.checked_mul(2).unwrap_or(0)
}
}
}
impl<'a> Arguments<'a> {
/// Gets the formatted string, if it has no arguments to be formatted at runtime.
///
/// This can be used to avoid allocations in some cases.
///
/// # Guarantees
///
/// For `format_args!("just a literal")`, this function is guaranteed to
/// return `Some("just a literal")`.
///
/// For most cases with placeholders, this function will return `None`.
///
/// However, the compiler may perform optimizations that can cause this
/// function to return `Some(_)` even if the format string contains
/// placeholders. For example, `format_args!("Hello, {}!", "world")` may be
/// optimized to `format_args!("Hello, world!")`, such that `as_str()`
/// returns `Some("Hello, world!")`.
///
/// The behavior for anything but the trivial case (without placeholders)
/// is not guaranteed, and should not be relied upon for anything other
/// than optimization.
///
/// # Examples
///
/// ```rust
/// use std::fmt::Arguments;
///
/// fn write_str(_: &str) { /* ... */ }
///
/// fn write_fmt(args: &Arguments<'_>) {
/// if let Some(s) = args.as_str() {
/// write_str(s)
/// } else {
/// write_str(&args.to_string());
/// }
/// }
/// ```
///
/// ```rust
/// assert_eq!(format_args!("hello").as_str(), Some("hello"));
/// assert_eq!(format_args!("").as_str(), Some(""));
/// assert_eq!(format_args!("{:?}", std::env::current_dir()).as_str(), None);
/// ```
#[stable(feature = "fmt_as_str", since = "1.52.0")]
#[rustc_const_unstable(feature = "const_arguments_as_str", issue = "103900")]
#[must_use]
#[inline]
pub const fn as_str(&self) -> Option<&'static str> {
match (self.pieces, self.args) {
([], []) => Some(""),
([s], []) => Some(s),
_ => None,
}
}
/// Same as [`Arguments::as_str`], but will only return `Some(s)` if it can be determined at compile time.
#[must_use]
#[inline]
fn as_statically_known_str(&self) -> Option<&'static str> {
let s = self.as_str();
if core::intrinsics::is_val_statically_known(s.is_some()) { s } else { None }
}
}
// Manually implementing these results in better error messages.
#[stable(feature = "rust1", since = "1.0.0")]
impl !Send for Arguments<'_> {}
#[stable(feature = "rust1", since = "1.0.0")]
impl !Sync for Arguments<'_> {}
#[stable(feature = "rust1", since = "1.0.0")]
impl Debug for Arguments<'_> {
fn fmt(&self, fmt: &mut Formatter<'_>) -> Result {
Display::fmt(self, fmt)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Display for Arguments<'_> {
fn fmt(&self, fmt: &mut Formatter<'_>) -> Result {
write(fmt.buf, *self)
}
}
/// `?` formatting.
///
/// `Debug` should format the output in a programmer-facing, debugging context.
///
/// Generally speaking, you should just `derive` a `Debug` implementation.
///
/// When used with the alternate format specifier `#?`, the output is pretty-printed.
///
/// For more information on formatters, see [the module-level documentation][module].
///
/// [module]: ../../std/fmt/index.html
///
/// This trait can be used with `#[derive]` if all fields implement `Debug`. When
/// `derive`d for structs, it will use the name of the `struct`, then `{`, then a
/// comma-separated list of each field's name and `Debug` value, then `}`. For
/// `enum`s, it will use the name of the variant and, if applicable, `(`, then the
/// `Debug` values of the fields, then `)`.
///
/// # Stability
///
/// Derived `Debug` formats are not stable, and so may change with future Rust
/// versions. Additionally, `Debug` implementations of types provided by the
/// standard library (`std`, `core`, `alloc`, etc.) are not stable, and
/// may also change with future Rust versions.
///
/// # Examples
///
/// Deriving an implementation:
///
/// ```
/// #[derive(Debug)]
/// struct Point {
/// x: i32,
/// y: i32,
/// }
///
/// let origin = Point { x: 0, y: 0 };
///
/// assert_eq!(
/// format!("The origin is: {origin:?}"),
/// "The origin is: Point { x: 0, y: 0 }",
/// );
/// ```
///
/// Manually implementing:
///
/// ```
/// use std::fmt;
///
/// struct Point {
/// x: i32,
/// y: i32,
/// }
///
/// impl fmt::Debug for Point {
/// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
/// f.debug_struct("Point")
/// .field("x", &self.x)
/// .field("y", &self.y)
/// .finish()
/// }
/// }
///
/// let origin = Point { x: 0, y: 0 };
///
/// assert_eq!(
/// format!("The origin is: {origin:?}"),
/// "The origin is: Point { x: 0, y: 0 }",
/// );
/// ```
///
/// There are a number of helper methods on the [`Formatter`] struct to help you with manual
/// implementations, such as [`debug_struct`].
///
/// [`debug_struct`]: Formatter::debug_struct
///
/// Types that do not wish to use the standard suite of debug representations
/// provided by the `Formatter` trait (`debug_struct`, `debug_tuple`,
/// `debug_list`, `debug_set`, `debug_map`) can do something totally custom by
/// manually writing an arbitrary representation to the `Formatter`.
///
/// ```
/// # use std::fmt;
/// # struct Point {
/// # x: i32,
/// # y: i32,
/// # }
/// #
/// impl fmt::Debug for Point {
/// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
/// write!(f, "Point [{} {}]", self.x, self.y)
/// }
/// }
/// ```
///
/// `Debug` implementations using either `derive` or the debug builder API
/// on [`Formatter`] support pretty-printing using the alternate flag: `{:#?}`.
///
/// Pretty-printing with `#?`:
///
/// ```
/// #[derive(Debug)]
/// struct Point {
/// x: i32,
/// y: i32,
/// }
///
/// let origin = Point { x: 0, y: 0 };
///
/// let expected = "The origin is: Point {
/// x: 0,
/// y: 0,
/// }";
/// assert_eq!(format!("The origin is: {origin:#?}"), expected);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_on_unimplemented(
on(
crate_local,
label = "`{Self}` cannot be formatted using `{{:?}}`",
note = "add `#[derive(Debug)]` to `{Self}` or manually `impl {Debug} for {Self}`"
),
message = "`{Self}` doesn't implement `{Debug}`",
label = "`{Self}` cannot be formatted using `{{:?}}` because it doesn't implement `{Debug}`"
)]
#[doc(alias = "{:?}")]
#[rustc_diagnostic_item = "Debug"]
#[rustc_trivial_field_reads]
pub trait Debug {
#[doc = include_str!("fmt_trait_method_doc.md")]
///
/// # Examples
///
/// ```
/// use std::fmt;
///
/// struct Position {
/// longitude: f32,
/// latitude: f32,
/// }
///
/// impl fmt::Debug for Position {
/// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
/// f.debug_tuple("")
/// .field(&self.longitude)
/// .field(&self.latitude)
/// .finish()
/// }
/// }
///
/// let position = Position { longitude: 1.987, latitude: 2.983 };
/// assert_eq!(format!("{position:?}"), "(1.987, 2.983)");
///
/// assert_eq!(format!("{position:#?}"), "(
/// 1.987,
/// 2.983,
/// )");
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
fn fmt(&self, f: &mut Formatter<'_>) -> Result;
}
// Separate module to reexport the macro `Debug` from prelude without the trait `Debug`.
pub(crate) mod macros {
/// Derive macro generating an impl of the trait `Debug`.
#[rustc_builtin_macro]
#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
#[allow_internal_unstable(core_intrinsics, fmt_helpers_for_derive)]
pub macro Debug($item:item) {
/* compiler built-in */
}
}
#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
#[doc(inline)]
pub use macros::Debug;
/// Format trait for an empty format, `{}`.
///
/// Implementing this trait for a type will automatically implement the
/// [`ToString`][tostring] trait for the type, allowing the usage
/// of the [`.to_string()`][tostring_function] method. Prefer implementing
/// the `Display` trait for a type, rather than [`ToString`][tostring].
///
/// `Display` is similar to [`Debug`], but `Display` is for user-facing
/// output, and so cannot be derived.
///
/// For more information on formatters, see [the module-level documentation][module].
///
/// [module]: ../../std/fmt/index.html
/// [tostring]: ../../std/string/trait.ToString.html
/// [tostring_function]: ../../std/string/trait.ToString.html#tymethod.to_string
///
/// # Internationalization
///
/// Because a type can only have one `Display` implementation, it is often preferable
/// to only implement `Display` when there is a single most "obvious" way that
/// values can be formatted as text. This could mean formatting according to the
/// "invariant" culture and "undefined" locale, or it could mean that the type
/// display is designed for a specific culture/locale, such as developer logs.
///
/// If not all values have a justifiably canonical textual format or if you want
/// to support alternative formats not covered by the standard set of possible
/// [formatting traits], the most flexible approach is display adapters: methods
/// like [`str::escape_default`] or [`Path::display`] which create a wrapper
/// implementing `Display` to output the specific display format.
///
/// [formatting traits]: ../../std/fmt/index.html#formatting-traits
/// [`Path::display`]: ../../std/path/struct.Path.html#method.display
///
/// # Examples
///
/// Implementing `Display` on a type:
///
/// ```
/// use std::fmt;
///
/// struct Point {
/// x: i32,
/// y: i32,
/// }
///
/// impl fmt::Display for Point {
/// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
/// write!(f, "({}, {})", self.x, self.y)
/// }
/// }
///
/// let origin = Point { x: 0, y: 0 };
///
/// assert_eq!(format!("The origin is: {origin}"), "The origin is: (0, 0)");
/// ```
#[rustc_on_unimplemented(
on(
any(_Self = "std::path::Path", _Self = "std::path::PathBuf"),
label = "`{Self}` cannot be formatted with the default formatter; call `.display()` on it",
note = "call `.display()` or `.to_string_lossy()` to safely print paths, \
as they may contain non-Unicode data"
),
message = "`{Self}` doesn't implement `{Display}`",
label = "`{Self}` cannot be formatted with the default formatter",
note = "in format strings you may be able to use `{{:?}}` (or {{:#?}} for pretty-print) instead"
)]
#[doc(alias = "{}")]
#[rustc_diagnostic_item = "Display"]
#[stable(feature = "rust1", since = "1.0.0")]
pub trait Display {
#[doc = include_str!("fmt_trait_method_doc.md")]
///
/// # Examples
///
/// ```
/// use std::fmt;
///
/// struct Position {
/// longitude: f32,
/// latitude: f32,
/// }
///
/// impl fmt::Display for Position {
/// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
/// write!(f, "({}, {})", self.longitude, self.latitude)
/// }
/// }
///
/// assert_eq!(
/// "(1.987, 2.983)",
/// format!("{}", Position { longitude: 1.987, latitude: 2.983, }),
/// );
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
fn fmt(&self, f: &mut Formatter<'_>) -> Result;
}
/// `o` formatting.
///
/// The `Octal` trait should format its output as a number in base-8.
///
/// For primitive signed integers (`i8` to `i128`, and `isize`),
/// negative values are formatted as the two’s complement representation.
///
/// The alternate flag, `#`, adds a `0o` in front of the output.
///
/// For more information on formatters, see [the module-level documentation][module].
///
/// [module]: ../../std/fmt/index.html
///
/// # Examples
///
/// Basic usage with `i32`:
///
/// ```
/// let x = 42; // 42 is '52' in octal
///
/// assert_eq!(format!("{x:o}"), "52");
/// assert_eq!(format!("{x:#o}"), "0o52");
///
/// assert_eq!(format!("{:o}", -16), "37777777760");
/// ```
///
/// Implementing `Octal` on a type:
///
/// ```
/// use std::fmt;
///
/// struct Length(i32);
///
/// impl fmt::Octal for Length {
/// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
/// let val = self.0;
///
/// fmt::Octal::fmt(&val, f) // delegate to i32's implementation
/// }
/// }
///
/// let l = Length(9);
///
/// assert_eq!(format!("l as octal is: {l:o}"), "l as octal is: 11");
///
/// assert_eq!(format!("l as octal is: {l:#06o}"), "l as octal is: 0o0011");
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub trait Octal {
#[doc = include_str!("fmt_trait_method_doc.md")]
#[stable(feature = "rust1", since = "1.0.0")]
fn fmt(&self, f: &mut Formatter<'_>) -> Result;
}
/// `b` formatting.
///
/// The `Binary` trait should format its output as a number in binary.
///
/// For primitive signed integers ([`i8`] to [`i128`], and [`isize`]),
/// negative values are formatted as the two’s complement representation.
///
/// The alternate flag, `#`, adds a `0b` in front of the output.
///
/// For more information on formatters, see [the module-level documentation][module].
///
/// [module]: ../../std/fmt/index.html
///
/// # Examples
///
/// Basic usage with [`i32`]:
///
/// ```
/// let x = 42; // 42 is '101010' in binary
///
/// assert_eq!(format!("{x:b}"), "101010");
/// assert_eq!(format!("{x:#b}"), "0b101010");
///
/// assert_eq!(format!("{:b}", -16), "11111111111111111111111111110000");
/// ```
///
/// Implementing `Binary` on a type:
///
/// ```
/// use std::fmt;
///
/// struct Length(i32);
///
/// impl fmt::Binary for Length {
/// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
/// let val = self.0;
///
/// fmt::Binary::fmt(&val, f) // delegate to i32's implementation
/// }
/// }
///
/// let l = Length(107);
///
/// assert_eq!(format!("l as binary is: {l:b}"), "l as binary is: 1101011");
///
/// assert_eq!(
/// // Note that the `0b` prefix added by `#` is included in the total width, so we
/// // need to add two to correctly display all 32 bits.
/// format!("l as binary is: {l:#034b}"),
/// "l as binary is: 0b00000000000000000000000001101011"
/// );
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub trait Binary {
#[doc = include_str!("fmt_trait_method_doc.md")]
#[stable(feature = "rust1", since = "1.0.0")]
fn fmt(&self, f: &mut Formatter<'_>) -> Result;
}
/// `x` formatting.
///
/// The `LowerHex` trait should format its output as a number in hexadecimal, with `a` through `f`
/// in lower case.
///
/// For primitive signed integers (`i8` to `i128`, and `isize`),
/// negative values are formatted as the two’s complement representation.
///
/// The alternate flag, `#`, adds a `0x` in front of the output.
///
/// For more information on formatters, see [the module-level documentation][module].
///
/// [module]: ../../std/fmt/index.html
///
/// # Examples
///
/// Basic usage with `i32`:
///
/// ```
/// let y = 42; // 42 is '2a' in hex
///
/// assert_eq!(format!("{y:x}"), "2a");
/// assert_eq!(format!("{y:#x}"), "0x2a");
///
/// assert_eq!(format!("{:x}", -16), "fffffff0");
/// ```
///
/// Implementing `LowerHex` on a type:
///
/// ```
/// use std::fmt;
///
/// struct Length(i32);
///
/// impl fmt::LowerHex for Length {
/// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
/// let val = self.0;
///
/// fmt::LowerHex::fmt(&val, f) // delegate to i32's implementation
/// }
/// }
///
/// let l = Length(9);
///
/// assert_eq!(format!("l as hex is: {l:x}"), "l as hex is: 9");
///
/// assert_eq!(format!("l as hex is: {l:#010x}"), "l as hex is: 0x00000009");
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub trait LowerHex {
#[doc = include_str!("fmt_trait_method_doc.md")]
#[stable(feature = "rust1", since = "1.0.0")]
fn fmt(&self, f: &mut Formatter<'_>) -> Result;
}
/// `X` formatting.
///
/// The `UpperHex` trait should format its output as a number in hexadecimal, with `A` through `F`
/// in upper case.
///
/// For primitive signed integers (`i8` to `i128`, and `isize`),
/// negative values are formatted as the two’s complement representation.
///
/// The alternate flag, `#`, adds a `0x` in front of the output.
///
/// For more information on formatters, see [the module-level documentation][module].
///
/// [module]: ../../std/fmt/index.html
///
/// # Examples
///
/// Basic usage with `i32`:
///
/// ```
/// let y = 42; // 42 is '2A' in hex
///
/// assert_eq!(format!("{y:X}"), "2A");
/// assert_eq!(format!("{y:#X}"), "0x2A");
///
/// assert_eq!(format!("{:X}", -16), "FFFFFFF0");
/// ```
///
/// Implementing `UpperHex` on a type:
///
/// ```
/// use std::fmt;
///
/// struct Length(i32);
///
/// impl fmt::UpperHex for Length {
/// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
/// let val = self.0;
///
/// fmt::UpperHex::fmt(&val, f) // delegate to i32's implementation
/// }
/// }
///
/// let l = Length(i32::MAX);
///
/// assert_eq!(format!("l as hex is: {l:X}"), "l as hex is: 7FFFFFFF");
///
/// assert_eq!(format!("l as hex is: {l:#010X}"), "l as hex is: 0x7FFFFFFF");
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub trait UpperHex {
#[doc = include_str!("fmt_trait_method_doc.md")]
#[stable(feature = "rust1", since = "1.0.0")]
fn fmt(&self, f: &mut Formatter<'_>) -> Result;
}
/// `p` formatting.
///
/// The `Pointer` trait should format its output as a memory location. This is commonly presented
/// as hexadecimal. For more information on formatters, see [the module-level documentation][module].
///
/// Printing of pointers is not a reliable way to discover how Rust programs are implemented.
/// The act of reading an address changes the program itself, and may change how the data is represented
/// in memory, and may affect which optimizations are applied to the code.
///
/// The printed pointer values are not guaranteed to be stable nor unique identifiers of objects.
/// Rust allows moving values to different memory locations, and may reuse the same memory locations
/// for different purposes.
///
/// There is no guarantee that the printed value can be converted back to a pointer.
///
/// [module]: ../../std/fmt/index.html
///
/// # Examples
///
/// Basic usage with `&i32`:
///
/// ```
/// let x = &42;
///
/// let address = format!("{x:p}"); // this produces something like '0x7f06092ac6d0'
/// ```
///
/// Implementing `Pointer` on a type:
///
/// ```
/// use std::fmt;
///
/// struct Length(i32);
///
/// impl fmt::Pointer for Length {
/// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
/// // use `as` to convert to a `*const T`, which implements Pointer, which we can use
///
/// let ptr = self as *const Self;
/// fmt::Pointer::fmt(&ptr, f)
/// }
/// }
///
/// let l = Length(42);
///
/// println!("l is in memory here: {l:p}");
///
/// let l_ptr = format!("{l:018p}");
/// assert_eq!(l_ptr.len(), 18);
/// assert_eq!(&l_ptr[..2], "0x");
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_diagnostic_item = "Pointer"]
pub trait Pointer {
#[doc = include_str!("fmt_trait_method_doc.md")]
#[stable(feature = "rust1", since = "1.0.0")]
fn fmt(&self, f: &mut Formatter<'_>) -> Result;
}
/// `e` formatting.
///
/// The `LowerExp` trait should format its output in scientific notation with a lower-case `e`.
///
/// For more information on formatters, see [the module-level documentation][module].
///
/// [module]: ../../std/fmt/index.html
///
/// # Examples
///
/// Basic usage with `f64`:
///
/// ```
/// let x = 42.0; // 42.0 is '4.2e1' in scientific notation
///
/// assert_eq!(format!("{x:e}"), "4.2e1");
/// ```
///
/// Implementing `LowerExp` on a type:
///
/// ```
/// use std::fmt;
///
/// struct Length(i32);
///
/// impl fmt::LowerExp for Length {
/// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
/// let val = f64::from(self.0);
/// fmt::LowerExp::fmt(&val, f) // delegate to f64's implementation
/// }
/// }
///
/// let l = Length(100);
///
/// assert_eq!(
/// format!("l in scientific notation is: {l:e}"),
/// "l in scientific notation is: 1e2"
/// );
///
/// assert_eq!(
/// format!("l in scientific notation is: {l:05e}"),
/// "l in scientific notation is: 001e2"
/// );
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub trait LowerExp {
#[doc = include_str!("fmt_trait_method_doc.md")]
#[stable(feature = "rust1", since = "1.0.0")]
fn fmt(&self, f: &mut Formatter<'_>) -> Result;
}
/// `E` formatting.
///
/// The `UpperExp` trait should format its output in scientific notation with an upper-case `E`.
///
/// For more information on formatters, see [the module-level documentation][module].
///
/// [module]: ../../std/fmt/index.html
///
/// # Examples
///
/// Basic usage with `f64`:
///
/// ```
/// let x = 42.0; // 42.0 is '4.2E1' in scientific notation
///
/// assert_eq!(format!("{x:E}"), "4.2E1");
/// ```
///
/// Implementing `UpperExp` on a type:
///
/// ```
/// use std::fmt;
///
/// struct Length(i32);
///
/// impl fmt::UpperExp for Length {
/// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
/// let val = f64::from(self.0);
/// fmt::UpperExp::fmt(&val, f) // delegate to f64's implementation
/// }
/// }
///
/// let l = Length(100);
///
/// assert_eq!(
/// format!("l in scientific notation is: {l:E}"),
/// "l in scientific notation is: 1E2"
/// );
///
/// assert_eq!(
/// format!("l in scientific notation is: {l:05E}"),
/// "l in scientific notation is: 001E2"
/// );
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub trait UpperExp {
#[doc = include_str!("fmt_trait_method_doc.md")]
#[stable(feature = "rust1", since = "1.0.0")]
fn fmt(&self, f: &mut Formatter<'_>) -> Result;
}
/// Takes an output stream and an `Arguments` struct that can be precompiled with
/// the `format_args!` macro.
///
/// The arguments will be formatted according to the specified format string
/// into the output stream provided.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use std::fmt;
///
/// let mut output = String::new();
/// fmt::write(&mut output, format_args!("Hello {}!", "world"))
/// .expect("Error occurred while trying to write in String");
/// assert_eq!(output, "Hello world!");
/// ```
///
/// Please note that using [`write!`] might be preferable. Example:
///
/// ```
/// use std::fmt::Write;
///
/// let mut output = String::new();
/// write!(&mut output, "Hello {}!", "world")
/// .expect("Error occurred while trying to write in String");
/// assert_eq!(output, "Hello world!");
/// ```
///
/// [`write!`]: crate::write!
#[stable(feature = "rust1", since = "1.0.0")]
pub fn write(output: &mut dyn Write, args: Arguments<'_>) -> Result {
let mut formatter = Formatter::new(output);
let mut idx = 0;
match args.fmt {
None => {
// We can use default formatting parameters for all arguments.
for (i, arg) in args.args.iter().enumerate() {
// SAFETY: args.args and args.pieces come from the same Arguments,
// which guarantees the indexes are always within bounds.
let piece = unsafe { args.pieces.get_unchecked(i) };
if !piece.is_empty() {
formatter.buf.write_str(*piece)?;
}
// SAFETY: There are no formatting parameters and hence no
// count arguments.
unsafe {
arg.fmt(&mut formatter)?;
}
idx += 1;
}
}
Some(fmt) => {
// Every spec has a corresponding argument that is preceded by
// a string piece.
for (i, arg) in fmt.iter().enumerate() {
// SAFETY: fmt and args.pieces come from the same Arguments,
// which guarantees the indexes are always within bounds.
let piece = unsafe { args.pieces.get_unchecked(i) };
if !piece.is_empty() {
formatter.buf.write_str(*piece)?;
}
// SAFETY: arg and args.args come from the same Arguments,
// which guarantees the indexes are always within bounds.
unsafe { run(&mut formatter, arg, args.args) }?;
idx += 1;
}
}
}
// There can be only one trailing string piece left.
if let Some(piece) = args.pieces.get(idx) {
formatter.buf.write_str(*piece)?;
}
Ok(())
}
unsafe fn run(fmt: &mut Formatter<'_>, arg: &rt::Placeholder, args: &[rt::Argument<'_>]) -> Result {
fmt.fill = arg.fill;
fmt.align = arg.align;
fmt.flags = arg.flags;
// SAFETY: arg and args come from the same Arguments,
// which guarantees the indexes are always within bounds.
unsafe {
fmt.width = getcount(args, &arg.width);
fmt.precision = getcount(args, &arg.precision);
}
// Extract the correct argument
debug_assert!(arg.position < args.len());
// SAFETY: arg and args come from the same Arguments,
// which guarantees its index is always within bounds.
let value = unsafe { args.get_unchecked(arg.position) };
// Then actually do some printing
// SAFETY: this is a placeholder argument.
unsafe { value.fmt(fmt) }
}
unsafe fn getcount(args: &[rt::Argument<'_>], cnt: &rt::Count) -> Option<usize> {
match *cnt {
rt::Count::Is(n) => Some(n),
rt::Count::Implied => None,
rt::Count::Param(i) => {
debug_assert!(i < args.len());
// SAFETY: cnt and args come from the same Arguments,
// which guarantees this index is always within bounds.
unsafe { args.get_unchecked(i).as_usize() }
}
}
}
/// Padding after the end of something. Returned by `Formatter::padding`.
#[must_use = "don't forget to write the post padding"]
pub(crate) struct PostPadding {
fill: char,
padding: usize,
}
impl PostPadding {
fn new(fill: char, padding: usize) -> PostPadding {
PostPadding { fill, padding }
}
/// Writes this post padding.
pub(crate) fn write(self, f: &mut Formatter<'_>) -> Result {
for _ in 0..self.padding {
f.buf.write_char(self.fill)?;
}
Ok(())
}
}
impl<'a> Formatter<'a> {
fn wrap_buf<'b, 'c, F>(&'b mut self, wrap: F) -> Formatter<'c>
where
'b: 'c,
F: FnOnce(&'b mut (dyn Write + 'b)) -> &'c mut (dyn Write + 'c),
{
Formatter {
// We want to change this
buf: wrap(self.buf),
// And preserve these
flags: self.flags,
fill: self.fill,
align: self.align,
width: self.width,
precision: self.precision,
}
}
// Helper methods used for padding and processing formatting arguments that
// all formatting traits can use.
/// Performs the correct padding for an integer which has already been
/// emitted into a str. The str should *not* contain the sign for the
/// integer, that will be added by this method.
///
/// # Arguments
///
/// * is_nonnegative - whether the original integer was either positive or zero.
/// * prefix - if the '#' character (Alternate) is provided, this
/// is the prefix to put in front of the number.
/// * buf - the byte array that the number has been formatted into
///
/// This function will correctly account for the flags provided as well as
/// the minimum width. It will not take precision into account.
///
/// # Examples
///
/// ```
/// use std::fmt;
///
/// struct Foo { nb: i32 }
///
/// impl Foo {
/// fn new(nb: i32) -> Foo {
/// Foo {
/// nb,
/// }
/// }
/// }
///
/// impl fmt::Display for Foo {
/// fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
/// // We need to remove "-" from the number output.
/// let tmp = self.nb.abs().to_string();
///
/// formatter.pad_integral(self.nb >= 0, "Foo ", &tmp)
/// }
/// }
///
/// assert_eq!(format!("{}", Foo::new(2)), "2");
/// assert_eq!(format!("{}", Foo::new(-1)), "-1");
/// assert_eq!(format!("{}", Foo::new(0)), "0");
/// assert_eq!(format!("{:#}", Foo::new(-1)), "-Foo 1");
/// assert_eq!(format!("{:0>#8}", Foo::new(-1)), "00-Foo 1");
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn pad_integral(&mut self, is_nonnegative: bool, prefix: &str, buf: &str) -> Result {
let mut width = buf.len();
let mut sign = None;
if !is_nonnegative {
sign = Some('-');
width += 1;
} else if self.sign_plus() {
sign = Some('+');
width += 1;
}
let prefix = if self.alternate() {
width += prefix.chars().count();
Some(prefix)
} else {
None
};
// Writes the sign if it exists, and then the prefix if it was requested
#[inline(never)]
fn write_prefix(f: &mut Formatter<'_>, sign: Option<char>, prefix: Option<&str>) -> Result {
if let Some(c) = sign {
f.buf.write_char(c)?;
}
if let Some(prefix) = prefix { f.buf.write_str(prefix) } else { Ok(()) }
}
// The `width` field is more of a `min-width` parameter at this point.
match self.width {
// If there's no minimum length requirements then we can just
// write the bytes.
None => {
write_prefix(self, sign, prefix)?;
self.buf.write_str(buf)
}
// Check if we're over the minimum width, if so then we can also
// just write the bytes.
Some(min) if width >= min => {
write_prefix(self, sign, prefix)?;
self.buf.write_str(buf)
}
// The sign and prefix goes before the padding if the fill character
// is zero
Some(min) if self.sign_aware_zero_pad() => {
let old_fill = crate::mem::replace(&mut self.fill, '0');
let old_align = crate::mem::replace(&mut self.align, rt::Alignment::Right);
write_prefix(self, sign, prefix)?;
let post_padding = self.padding(min - width, Alignment::Right)?;
self.buf.write_str(buf)?;
post_padding.write(self)?;
self.fill = old_fill;
self.align = old_align;
Ok(())
}
// Otherwise, the sign and prefix goes after the padding
Some(min) => {
let post_padding = self.padding(min - width, Alignment::Right)?;
write_prefix(self, sign, prefix)?;
self.buf.write_str(buf)?;
post_padding.write(self)
}
}
}
/// Takes a string slice and emits it to the internal buffer after applying
/// the relevant formatting flags specified.
///
/// The flags recognized for generic strings are:
///
/// * width - the minimum width of what to emit
/// * fill/align - what to emit and where to emit it if the string
/// provided needs to be padded
/// * precision - the maximum length to emit, the string is truncated if it
/// is longer than this length
///
/// Notably this function ignores the `flag` parameters.
///
/// # Examples
///
/// ```
/// use std::fmt;
///
/// struct Foo;
///
/// impl fmt::Display for Foo {
/// fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
/// formatter.pad("Foo")
/// }
/// }
///
/// assert_eq!(format!("{Foo:<4}"), "Foo ");
/// assert_eq!(format!("{Foo:0>4}"), "0Foo");
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn pad(&mut self, s: &str) -> Result {
// Make sure there's a fast path up front
if self.width.is_none() && self.precision.is_none() {
return self.buf.write_str(s);
}
// The `precision` field can be interpreted as a `max-width` for the
// string being formatted.
let s = if let Some(max) = self.precision {
// If our string is longer that the precision, then we must have
// truncation. However other flags like `fill`, `width` and `align`
// must act as always.
if let Some((i, _)) = s.char_indices().nth(max) {
// LLVM here can't prove that `..i` won't panic `&s[..i]`, but
// we know that it can't panic. Use `get` + `unwrap_or` to avoid
// `unsafe` and otherwise don't emit any panic-related code
// here.
s.get(..i).unwrap_or(s)
} else {
&s
}
} else {
&s
};
// The `width` field is more of a `min-width` parameter at this point.
match self.width {
// If we're under the maximum length, and there's no minimum length
// requirements, then we can just emit the string
None => self.buf.write_str(s),
Some(width) => {
let chars_count = s.chars().count();
// If we're under the maximum width, check if we're over the minimum
// width, if so it's as easy as just emitting the string.
if chars_count >= width {
self.buf.write_str(s)
}
// If we're under both the maximum and the minimum width, then fill
// up the minimum width with the specified string + some alignment.
else {
let align = Alignment::Left;
let post_padding = self.padding(width - chars_count, align)?;
self.buf.write_str(s)?;
post_padding.write(self)
}
}
}
}
/// Writes the pre-padding and returns the unwritten post-padding.
///
/// Callers are responsible for ensuring post-padding is written after the
/// thing that is being padded.
pub(crate) fn padding(
&mut self,
padding: usize,
default: Alignment,
) -> result::Result<PostPadding, Error> {
let align = match self.align {
rt::Alignment::Unknown => default,
rt::Alignment::Left => Alignment::Left,
rt::Alignment::Right => Alignment::Right,
rt::Alignment::Center => Alignment::Center,
};
let (pre_pad, post_pad) = match align {
Alignment::Left => (0, padding),
Alignment::Right => (padding, 0),
Alignment::Center => (padding / 2, (padding + 1) / 2),
};
for _ in 0..pre_pad {
self.buf.write_char(self.fill)?;
}
Ok(PostPadding::new(self.fill, post_pad))
}
/// Takes the formatted parts and applies the padding.
///
/// Assumes that the caller already has rendered the parts with required precision,
/// so that `self.precision` can be ignored.
///
/// # Safety
///
/// Any `numfmt::Part::Copy` parts in `formatted` must contain valid UTF-8.
unsafe fn pad_formatted_parts(&mut self, formatted: &numfmt::Formatted<'_>) -> Result {
if let Some(mut width) = self.width {
// for the sign-aware zero padding, we render the sign first and
// behave as if we had no sign from the beginning.
let mut formatted = formatted.clone();
let old_fill = self.fill;
let old_align = self.align;
if self.sign_aware_zero_pad() {
// a sign always goes first
let sign = formatted.sign;
self.buf.write_str(sign)?;
// remove the sign from the formatted parts
formatted.sign = "";
width = width.saturating_sub(sign.len());
self.fill = '0';
self.align = rt::Alignment::Right;
}
// remaining parts go through the ordinary padding process.
let len = formatted.len();
let ret = if width <= len {
// no padding
// SAFETY: Per the precondition.
unsafe { self.write_formatted_parts(&formatted) }
} else {
let post_padding = self.padding(width - len, Alignment::Right)?;
// SAFETY: Per the precondition.
unsafe {
self.write_formatted_parts(&formatted)?;
}
post_padding.write(self)
};
self.fill = old_fill;
self.align = old_align;
ret
} else {
// this is the common case and we take a shortcut
// SAFETY: Per the precondition.
unsafe { self.write_formatted_parts(formatted) }
}
}
/// # Safety
///
/// Any `numfmt::Part::Copy` parts in `formatted` must contain valid UTF-8.
unsafe fn write_formatted_parts(&mut self, formatted: &numfmt::Formatted<'_>) -> Result {
unsafe fn write_bytes(buf: &mut dyn Write, s: &[u8]) -> Result {
// SAFETY: This is used for `numfmt::Part::Num` and `numfmt::Part::Copy`.
// It's safe to use for `numfmt::Part::Num` since every char `c` is between
// `b'0'` and `b'9'`, which means `s` is valid UTF-8. It's safe to use for
// `numfmt::Part::Copy` due to this function's precondition.
buf.write_str(unsafe { str::from_utf8_unchecked(s) })
}
if !formatted.sign.is_empty() {
self.buf.write_str(formatted.sign)?;
}
for part in formatted.parts {
match *part {
numfmt::Part::Zero(mut nzeroes) => {
const ZEROES: &str = // 64 zeroes
"0000000000000000000000000000000000000000000000000000000000000000";
while nzeroes > ZEROES.len() {
self.buf.write_str(ZEROES)?;
nzeroes -= ZEROES.len();
}
if nzeroes > 0 {
self.buf.write_str(&ZEROES[..nzeroes])?;
}
}
numfmt::Part::Num(mut v) => {
let mut s = [0; 5];
let len = part.len();
for c in s[..len].iter_mut().rev() {
*c = b'0' + (v % 10) as u8;
v /= 10;
}
// SAFETY: Per the precondition.
unsafe {
write_bytes(self.buf, &s[..len])?;
}
}
// SAFETY: Per the precondition.
numfmt::Part::Copy(buf) => unsafe {
write_bytes(self.buf, buf)?;
},
}
}
Ok(())
}
/// Writes some data to the underlying buffer contained within this
/// formatter.
///
/// # Examples
///
/// ```
/// use std::fmt;
///
/// struct Foo;
///
/// impl fmt::Display for Foo {
/// fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
/// formatter.write_str("Foo")
/// // This is equivalent to:
/// // write!(formatter, "Foo")
/// }
/// }
///
/// assert_eq!(format!("{Foo}"), "Foo");
/// assert_eq!(format!("{Foo:0>8}"), "Foo");
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn write_str(&mut self, data: &str) -> Result {
self.buf.write_str(data)
}
/// Glue for usage of the [`write!`] macro with implementors of this trait.
///
/// This method should generally not be invoked manually, but rather through
/// the [`write!`] macro itself.
///
/// Writes some formatted information into this instance.
///
/// # Examples
///
/// ```
/// use std::fmt;
///
/// struct Foo(i32);
///
/// impl fmt::Display for Foo {
/// fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
/// formatter.write_fmt(format_args!("Foo {}", self.0))
/// }
/// }
///
/// assert_eq!(format!("{}", Foo(-1)), "Foo -1");
/// assert_eq!(format!("{:0>8}", Foo(2)), "Foo 2");
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn write_fmt(&mut self, fmt: Arguments<'_>) -> Result {
if let Some(s) = fmt.as_statically_known_str() {
self.buf.write_str(s)
} else {
write(self.buf, fmt)
}
}
/// Returns flags for formatting.
#[must_use]
#[stable(feature = "rust1", since = "1.0.0")]
#[deprecated(
since = "1.24.0",
note = "use the `sign_plus`, `sign_minus`, `alternate`, \
or `sign_aware_zero_pad` methods instead"
)]
pub fn flags(&self) -> u32 {
self.flags
}
/// Returns the character used as 'fill' whenever there is alignment.
///
/// # Examples
///
/// ```
/// use std::fmt;
///
/// struct Foo;
///
/// impl fmt::Display for Foo {
/// fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
/// let c = formatter.fill();
/// if let Some(width) = formatter.width() {
/// for _ in 0..width {
/// write!(formatter, "{c}")?;
/// }
/// Ok(())
/// } else {
/// write!(formatter, "{c}")
/// }
/// }
/// }
///
/// // We set alignment to the right with ">".
/// assert_eq!(format!("{Foo:G>3}"), "GGG");
/// assert_eq!(format!("{Foo:t>6}"), "tttttt");
/// ```
#[must_use]
#[stable(feature = "fmt_flags", since = "1.5.0")]
pub fn fill(&self) -> char {
self.fill
}
/// Returns a flag indicating what form of alignment was requested.
///
/// # Examples
///
/// ```
/// use std::fmt::{self, Alignment};
///
/// struct Foo;
///
/// impl fmt::Display for Foo {
/// fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
/// let s = if let Some(s) = formatter.align() {
/// match s {
/// Alignment::Left => "left",
/// Alignment::Right => "right",
/// Alignment::Center => "center",
/// }
/// } else {
/// "into the void"
/// };
/// write!(formatter, "{s}")
/// }
/// }
///
/// assert_eq!(format!("{Foo:<}"), "left");
/// assert_eq!(format!("{Foo:>}"), "right");
/// assert_eq!(format!("{Foo:^}"), "center");
/// assert_eq!(format!("{Foo}"), "into the void");
/// ```
#[must_use]
#[stable(feature = "fmt_flags_align", since = "1.28.0")]
pub fn align(&self) -> Option<Alignment> {
match self.align {
rt::Alignment::Left => Some(Alignment::Left),
rt::Alignment::Right => Some(Alignment::Right),
rt::Alignment::Center => Some(Alignment::Center),
rt::Alignment::Unknown => None,
}
}
/// Returns the optionally specified integer width that the output should be.
///
/// # Examples
///
/// ```
/// use std::fmt;
///
/// struct Foo(i32);
///
/// impl fmt::Display for Foo {
/// fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
/// if let Some(width) = formatter.width() {
/// // If we received a width, we use it
/// write!(formatter, "{:width$}", format!("Foo({})", self.0), width = width)
/// } else {
/// // Otherwise we do nothing special
/// write!(formatter, "Foo({})", self.0)
/// }
/// }
/// }
///
/// assert_eq!(format!("{:10}", Foo(23)), "Foo(23) ");
/// assert_eq!(format!("{}", Foo(23)), "Foo(23)");
/// ```
#[must_use]
#[stable(feature = "fmt_flags", since = "1.5.0")]
pub fn width(&self) -> Option<usize> {
self.width
}
/// Returns the optionally specified precision for numeric types.
/// Alternatively, the maximum width for string types.
///
/// # Examples
///
/// ```
/// use std::fmt;
///
/// struct Foo(f32);
///
/// impl fmt::Display for Foo {
/// fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
/// if let Some(precision) = formatter.precision() {
/// // If we received a precision, we use it.
/// write!(formatter, "Foo({1:.*})", precision, self.0)
/// } else {
/// // Otherwise we default to 2.
/// write!(formatter, "Foo({:.2})", self.0)
/// }
/// }
/// }
///
/// assert_eq!(format!("{:.4}", Foo(23.2)), "Foo(23.2000)");
/// assert_eq!(format!("{}", Foo(23.2)), "Foo(23.20)");
/// ```
#[must_use]
#[stable(feature = "fmt_flags", since = "1.5.0")]
pub fn precision(&self) -> Option<usize> {
self.precision
}
/// Determines if the `+` flag was specified.
///
/// # Examples
///
/// ```
/// use std::fmt;
///
/// struct Foo(i32);
///
/// impl fmt::Display for Foo {
/// fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
/// if formatter.sign_plus() {
/// write!(formatter,
/// "Foo({}{})",
/// if self.0 < 0 { '-' } else { '+' },
/// self.0.abs())
/// } else {
/// write!(formatter, "Foo({})", self.0)
/// }
/// }
/// }
///
/// assert_eq!(format!("{:+}", Foo(23)), "Foo(+23)");
/// assert_eq!(format!("{:+}", Foo(-23)), "Foo(-23)");
/// assert_eq!(format!("{}", Foo(23)), "Foo(23)");
/// ```
#[must_use]
#[stable(feature = "fmt_flags", since = "1.5.0")]
pub fn sign_plus(&self) -> bool {
self.flags & (1 << rt::Flag::SignPlus as u32) != 0
}
/// Determines if the `-` flag was specified.
///
/// # Examples
///
/// ```
/// use std::fmt;
///
/// struct Foo(i32);
///
/// impl fmt::Display for Foo {
/// fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
/// if formatter.sign_minus() {
/// // You want a minus sign? Have one!
/// write!(formatter, "-Foo({})", self.0)
/// } else {
/// write!(formatter, "Foo({})", self.0)
/// }
/// }
/// }
///
/// assert_eq!(format!("{:-}", Foo(23)), "-Foo(23)");
/// assert_eq!(format!("{}", Foo(23)), "Foo(23)");
/// ```
#[must_use]
#[stable(feature = "fmt_flags", since = "1.5.0")]
pub fn sign_minus(&self) -> bool {
self.flags & (1 << rt::Flag::SignMinus as u32) != 0
}
/// Determines if the `#` flag was specified.
///
/// # Examples
///
/// ```
/// use std::fmt;
///
/// struct Foo(i32);
///
/// impl fmt::Display for Foo {
/// fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
/// if formatter.alternate() {
/// write!(formatter, "Foo({})", self.0)
/// } else {
/// write!(formatter, "{}", self.0)
/// }
/// }
/// }
///
/// assert_eq!(format!("{:#}", Foo(23)), "Foo(23)");
/// assert_eq!(format!("{}", Foo(23)), "23");
/// ```
#[must_use]
#[stable(feature = "fmt_flags", since = "1.5.0")]
pub fn alternate(&self) -> bool {
self.flags & (1 << rt::Flag::Alternate as u32) != 0
}
/// Determines if the `0` flag was specified.
///
/// # Examples
///
/// ```
/// use std::fmt;
///
/// struct Foo(i32);
///
/// impl fmt::Display for Foo {
/// fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
/// assert!(formatter.sign_aware_zero_pad());
/// assert_eq!(formatter.width(), Some(4));
/// // We ignore the formatter's options.
/// write!(formatter, "{}", self.0)
/// }
/// }
///
/// assert_eq!(format!("{:04}", Foo(23)), "23");
/// ```
#[must_use]
#[stable(feature = "fmt_flags", since = "1.5.0")]
pub fn sign_aware_zero_pad(&self) -> bool {
self.flags & (1 << rt::Flag::SignAwareZeroPad as u32) != 0
}
// FIXME: Decide what public API we want for these two flags.
// https://github.com/rust-lang/rust/issues/48584
fn debug_lower_hex(&self) -> bool {
self.flags & (1 << rt::Flag::DebugLowerHex as u32) != 0
}
fn debug_upper_hex(&self) -> bool {
self.flags & (1 << rt::Flag::DebugUpperHex as u32) != 0
}
/// Creates a [`DebugStruct`] builder designed to assist with creation of
/// [`fmt::Debug`] implementations for structs.
///
/// [`fmt::Debug`]: self::Debug
///
/// # Examples
///
/// ```rust
/// use std::fmt;
/// use std::net::Ipv4Addr;
///
/// struct Foo {
/// bar: i32,
/// baz: String,
/// addr: Ipv4Addr,
/// }
///
/// impl fmt::Debug for Foo {
/// fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
/// fmt.debug_struct("Foo")
/// .field("bar", &self.bar)
/// .field("baz", &self.baz)
/// .field("addr", &format_args!("{}", self.addr))
/// .finish()
/// }
/// }
///
/// assert_eq!(
/// "Foo { bar: 10, baz: \"Hello World\", addr: 127.0.0.1 }",
/// format!("{:?}", Foo {
/// bar: 10,
/// baz: "Hello World".to_string(),
/// addr: Ipv4Addr::new(127, 0, 0, 1),
/// })
/// );
/// ```
#[stable(feature = "debug_builders", since = "1.2.0")]
pub fn debug_struct<'b>(&'b mut self, name: &str) -> DebugStruct<'b, 'a> {
builders::debug_struct_new(self, name)
}
/// Shrinks `derive(Debug)` code, for faster compilation and smaller
/// binaries. `debug_struct_fields_finish` is more general, but this is
/// faster for 1 field.
#[doc(hidden)]
#[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
pub fn debug_struct_field1_finish<'b>(
&'b mut self,
name: &str,
name1: &str,
value1: &dyn Debug,
) -> Result {
let mut builder = builders::debug_struct_new(self, name);
builder.field(name1, value1);
builder.finish()
}
/// Shrinks `derive(Debug)` code, for faster compilation and smaller
/// binaries. `debug_struct_fields_finish` is more general, but this is
/// faster for 2 fields.
#[doc(hidden)]
#[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
pub fn debug_struct_field2_finish<'b>(
&'b mut self,
name: &str,
name1: &str,
value1: &dyn Debug,
name2: &str,
value2: &dyn Debug,
) -> Result {
let mut builder = builders::debug_struct_new(self, name);
builder.field(name1, value1);
builder.field(name2, value2);
builder.finish()
}
/// Shrinks `derive(Debug)` code, for faster compilation and smaller
/// binaries. `debug_struct_fields_finish` is more general, but this is
/// faster for 3 fields.
#[doc(hidden)]
#[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
pub fn debug_struct_field3_finish<'b>(
&'b mut self,
name: &str,
name1: &str,
value1: &dyn Debug,
name2: &str,
value2: &dyn Debug,
name3: &str,
value3: &dyn Debug,
) -> Result {
let mut builder = builders::debug_struct_new(self, name);
builder.field(name1, value1);
builder.field(name2, value2);
builder.field(name3, value3);
builder.finish()
}
/// Shrinks `derive(Debug)` code, for faster compilation and smaller
/// binaries. `debug_struct_fields_finish` is more general, but this is
/// faster for 4 fields.
#[doc(hidden)]
#[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
pub fn debug_struct_field4_finish<'b>(
&'b mut self,
name: &str,
name1: &str,
value1: &dyn Debug,
name2: &str,
value2: &dyn Debug,
name3: &str,
value3: &dyn Debug,
name4: &str,
value4: &dyn Debug,
) -> Result {
let mut builder = builders::debug_struct_new(self, name);
builder.field(name1, value1);
builder.field(name2, value2);
builder.field(name3, value3);
builder.field(name4, value4);
builder.finish()
}
/// Shrinks `derive(Debug)` code, for faster compilation and smaller
/// binaries. `debug_struct_fields_finish` is more general, but this is
/// faster for 5 fields.
#[doc(hidden)]
#[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
pub fn debug_struct_field5_finish<'b>(
&'b mut self,
name: &str,
name1: &str,
value1: &dyn Debug,
name2: &str,
value2: &dyn Debug,
name3: &str,
value3: &dyn Debug,
name4: &str,
value4: &dyn Debug,
name5: &str,
value5: &dyn Debug,
) -> Result {
let mut builder = builders::debug_struct_new(self, name);
builder.field(name1, value1);
builder.field(name2, value2);
builder.field(name3, value3);
builder.field(name4, value4);
builder.field(name5, value5);
builder.finish()
}
/// Shrinks `derive(Debug)` code, for faster compilation and smaller binaries.
/// For the cases not covered by `debug_struct_field[12345]_finish`.
#[doc(hidden)]
#[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
pub fn debug_struct_fields_finish<'b>(
&'b mut self,
name: &str,
names: &[&str],
values: &[&dyn Debug],
) -> Result {
assert_eq!(names.len(), values.len());
let mut builder = builders::debug_struct_new(self, name);
for (name, value) in iter::zip(names, values) {
builder.field(name, value);
}
builder.finish()
}
/// Creates a `DebugTuple` builder designed to assist with creation of
/// `fmt::Debug` implementations for tuple structs.
///
/// # Examples
///
/// ```rust
/// use std::fmt;
/// use std::marker::PhantomData;
///
/// struct Foo<T>(i32, String, PhantomData<T>);
///
/// impl<T> fmt::Debug for Foo<T> {
/// fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
/// fmt.debug_tuple("Foo")
/// .field(&self.0)
/// .field(&self.1)
/// .field(&format_args!("_"))
/// .finish()
/// }
/// }
///
/// assert_eq!(
/// "Foo(10, \"Hello\", _)",
/// format!("{:?}", Foo(10, "Hello".to_string(), PhantomData::<u8>))
/// );
/// ```
#[stable(feature = "debug_builders", since = "1.2.0")]
pub fn debug_tuple<'b>(&'b mut self, name: &str) -> DebugTuple<'b, 'a> {
builders::debug_tuple_new(self, name)
}
/// Shrinks `derive(Debug)` code, for faster compilation and smaller
/// binaries. `debug_tuple_fields_finish` is more general, but this is faster
/// for 1 field.
#[doc(hidden)]
#[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
pub fn debug_tuple_field1_finish<'b>(&'b mut self, name: &str, value1: &dyn Debug) -> Result {
let mut builder = builders::debug_tuple_new(self, name);
builder.field(value1);
builder.finish()
}
/// Shrinks `derive(Debug)` code, for faster compilation and smaller
/// binaries. `debug_tuple_fields_finish` is more general, but this is faster
/// for 2 fields.
#[doc(hidden)]
#[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
pub fn debug_tuple_field2_finish<'b>(
&'b mut self,
name: &str,
value1: &dyn Debug,
value2: &dyn Debug,
) -> Result {
let mut builder = builders::debug_tuple_new(self, name);
builder.field(value1);
builder.field(value2);
builder.finish()
}
/// Shrinks `derive(Debug)` code, for faster compilation and smaller
/// binaries. `debug_tuple_fields_finish` is more general, but this is faster
/// for 3 fields.
#[doc(hidden)]
#[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
pub fn debug_tuple_field3_finish<'b>(
&'b mut self,
name: &str,
value1: &dyn Debug,
value2: &dyn Debug,
value3: &dyn Debug,
) -> Result {
let mut builder = builders::debug_tuple_new(self, name);
builder.field(value1);
builder.field(value2);
builder.field(value3);
builder.finish()
}
/// Shrinks `derive(Debug)` code, for faster compilation and smaller
/// binaries. `debug_tuple_fields_finish` is more general, but this is faster
/// for 4 fields.
#[doc(hidden)]
#[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
pub fn debug_tuple_field4_finish<'b>(
&'b mut self,
name: &str,
value1: &dyn Debug,
value2: &dyn Debug,
value3: &dyn Debug,
value4: &dyn Debug,
) -> Result {
let mut builder = builders::debug_tuple_new(self, name);
builder.field(value1);
builder.field(value2);
builder.field(value3);
builder.field(value4);
builder.finish()
}
/// Shrinks `derive(Debug)` code, for faster compilation and smaller
/// binaries. `debug_tuple_fields_finish` is more general, but this is faster
/// for 5 fields.
#[doc(hidden)]
#[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
pub fn debug_tuple_field5_finish<'b>(
&'b mut self,
name: &str,
value1: &dyn Debug,
value2: &dyn Debug,
value3: &dyn Debug,
value4: &dyn Debug,
value5: &dyn Debug,
) -> Result {
let mut builder = builders::debug_tuple_new(self, name);
builder.field(value1);
builder.field(value2);
builder.field(value3);
builder.field(value4);
builder.field(value5);
builder.finish()
}
/// Shrinks `derive(Debug)` code, for faster compilation and smaller
/// binaries. For the cases not covered by `debug_tuple_field[12345]_finish`.
#[doc(hidden)]
#[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
pub fn debug_tuple_fields_finish<'b>(
&'b mut self,
name: &str,
values: &[&dyn Debug],
) -> Result {
let mut builder = builders::debug_tuple_new(self, name);
for value in values {
builder.field(value);
}
builder.finish()
}
/// Creates a `DebugList` builder designed to assist with creation of
/// `fmt::Debug` implementations for list-like structures.
///
/// # Examples
///
/// ```rust
/// use std::fmt;
///
/// struct Foo(Vec<i32>);
///
/// impl fmt::Debug for Foo {
/// fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
/// fmt.debug_list().entries(self.0.iter()).finish()
/// }
/// }
///
/// assert_eq!(format!("{:?}", Foo(vec![10, 11])), "[10, 11]");
/// ```
#[stable(feature = "debug_builders", since = "1.2.0")]
pub fn debug_list<'b>(&'b mut self) -> DebugList<'b, 'a> {
builders::debug_list_new(self)
}
/// Creates a `DebugSet` builder designed to assist with creation of
/// `fmt::Debug` implementations for set-like structures.
///
/// # Examples
///
/// ```rust
/// use std::fmt;
///
/// struct Foo(Vec<i32>);
///
/// impl fmt::Debug for Foo {
/// fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
/// fmt.debug_set().entries(self.0.iter()).finish()
/// }
/// }
///
/// assert_eq!(format!("{:?}", Foo(vec![10, 11])), "{10, 11}");
/// ```
///
/// [`format_args!`]: crate::format_args
///
/// In this more complex example, we use [`format_args!`] and `.debug_set()`
/// to build a list of match arms:
///
/// ```rust
/// use std::fmt;
///
/// struct Arm<'a, L, R>(&'a (L, R));
/// struct Table<'a, K, V>(&'a [(K, V)], V);
///
/// impl<'a, L, R> fmt::Debug for Arm<'a, L, R>
/// where
/// L: 'a + fmt::Debug, R: 'a + fmt::Debug
/// {
/// fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
/// L::fmt(&(self.0).0, fmt)?;
/// fmt.write_str(" => ")?;
/// R::fmt(&(self.0).1, fmt)
/// }
/// }
///
/// impl<'a, K, V> fmt::Debug for Table<'a, K, V>
/// where
/// K: 'a + fmt::Debug, V: 'a + fmt::Debug
/// {
/// fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
/// fmt.debug_set()
/// .entries(self.0.iter().map(Arm))
/// .entry(&Arm(&(format_args!("_"), &self.1)))
/// .finish()
/// }
/// }
/// ```
#[stable(feature = "debug_builders", since = "1.2.0")]
pub fn debug_set<'b>(&'b mut self) -> DebugSet<'b, 'a> {
builders::debug_set_new(self)
}
/// Creates a `DebugMap` builder designed to assist with creation of
/// `fmt::Debug` implementations for map-like structures.
///
/// # Examples
///
/// ```rust
/// use std::fmt;
///
/// struct Foo(Vec<(String, i32)>);
///
/// impl fmt::Debug for Foo {
/// fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
/// fmt.debug_map().entries(self.0.iter().map(|&(ref k, ref v)| (k, v))).finish()
/// }
/// }
///
/// assert_eq!(
/// format!("{:?}", Foo(vec![("A".to_string(), 10), ("B".to_string(), 11)])),
/// r#"{"A": 10, "B": 11}"#
/// );
/// ```
#[stable(feature = "debug_builders", since = "1.2.0")]
pub fn debug_map<'b>(&'b mut self) -> DebugMap<'b, 'a> {
builders::debug_map_new(self)
}
}
#[stable(since = "1.2.0", feature = "formatter_write")]
impl Write for Formatter<'_> {
fn write_str(&mut self, s: &str) -> Result {
self.buf.write_str(s)
}
fn write_char(&mut self, c: char) -> Result {
self.buf.write_char(c)
}
#[inline]
fn write_fmt(&mut self, args: Arguments<'_>) -> Result {
if let Some(s) = args.as_statically_known_str() {
self.buf.write_str(s)
} else {
write(self.buf, args)
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Display for Error {
fn fmt(&self, f: &mut Formatter<'_>) -> Result {
Display::fmt("an error occurred when formatting an argument", f)
}
}
// Implementations of the core formatting traits
macro_rules! fmt_refs {
($($tr:ident),*) => {
$(
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + $tr> $tr for &T {
fn fmt(&self, f: &mut Formatter<'_>) -> Result { $tr::fmt(&**self, f) }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + $tr> $tr for &mut T {
fn fmt(&self, f: &mut Formatter<'_>) -> Result { $tr::fmt(&**self, f) }
}
)*
}
}
fmt_refs! { Debug, Display, Octal, Binary, LowerHex, UpperHex, LowerExp, UpperExp }
#[unstable(feature = "never_type", issue = "35121")]
impl Debug for ! {
#[inline]
fn fmt(&self, _: &mut Formatter<'_>) -> Result {
*self
}
}
#[unstable(feature = "never_type", issue = "35121")]
impl Display for ! {
#[inline]
fn fmt(&self, _: &mut Formatter<'_>) -> Result {
*self
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Debug for bool {
#[inline]
fn fmt(&self, f: &mut Formatter<'_>) -> Result {
Display::fmt(self, f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Display for bool {
fn fmt(&self, f: &mut Formatter<'_>) -> Result {
Display::fmt(if *self { "true" } else { "false" }, f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Debug for str {
fn fmt(&self, f: &mut Formatter<'_>) -> Result {
f.write_char('"')?;
// substring we know is printable
let mut printable_range = 0..0;
fn needs_escape(b: u8) -> bool {
b > 0x7E || b < 0x20 || b == b'\\' || b == b'"'
}
// the loop here first skips over runs of printable ASCII as a fast path.
// other chars (unicode, or ASCII that needs escaping) are then handled per-`char`.
let mut rest = self;
while rest.len() > 0 {
let Some(non_printable_start) = rest.as_bytes().iter().position(|&b| needs_escape(b))
else {
printable_range.end += rest.len();
break;
};
printable_range.end += non_printable_start;
// SAFETY: the position was derived from an iterator, so is known to be within bounds, and at a char boundary
rest = unsafe { rest.get_unchecked(non_printable_start..) };
let mut chars = rest.chars();
if let Some(c) = chars.next() {
let esc = c.escape_debug_ext(EscapeDebugExtArgs {
escape_grapheme_extended: true,
escape_single_quote: false,
escape_double_quote: true,
});
if esc.len() != 1 {
f.write_str(&self[printable_range.clone()])?;
Display::fmt(&esc, f)?;
printable_range.start = printable_range.end + c.len_utf8();
}
printable_range.end += c.len_utf8();
}
rest = chars.as_str();
}
f.write_str(&self[printable_range])?;
f.write_char('"')
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Display for str {
fn fmt(&self, f: &mut Formatter<'_>) -> Result {
f.pad(self)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Debug for char {
fn fmt(&self, f: &mut Formatter<'_>) -> Result {
f.write_char('\'')?;
let esc = self.escape_debug_ext(EscapeDebugExtArgs {
escape_grapheme_extended: true,
escape_single_quote: true,
escape_double_quote: false,
});
Display::fmt(&esc, f)?;
f.write_char('\'')
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Display for char {
fn fmt(&self, f: &mut Formatter<'_>) -> Result {
if f.width.is_none() && f.precision.is_none() {
f.write_char(*self)
} else {
f.pad(self.encode_utf8(&mut [0; 4]))
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Pointer for *const T {
fn fmt(&self, f: &mut Formatter<'_>) -> Result {
pointer_fmt_inner(self.expose_provenance(), f)
}
}
/// Since the formatting will be identical for all pointer types, uses a
/// non-monomorphized implementation for the actual formatting to reduce the
/// amount of codegen work needed.
///
/// This uses `ptr_addr: usize` and not `ptr: *const ()` to be able to use this for
/// `fn(...) -> ...` without using [problematic] "Oxford Casts".
///
/// [problematic]: https://github.com/rust-lang/rust/issues/95489
pub(crate) fn pointer_fmt_inner(ptr_addr: usize, f: &mut Formatter<'_>) -> Result {
let old_width = f.width;
let old_flags = f.flags;
// The alternate flag is already treated by LowerHex as being special-
// it denotes whether to prefix with 0x. We use it to work out whether
// or not to zero extend, and then unconditionally set it to get the
// prefix.
if f.alternate() {
f.flags |= 1 << (rt::Flag::SignAwareZeroPad as u32);
if f.width.is_none() {
f.width = Some((usize::BITS / 4) as usize + 2);
}
}
f.flags |= 1 << (rt::Flag::Alternate as u32);
let ret = LowerHex::fmt(&ptr_addr, f);
f.width = old_width;
f.flags = old_flags;
ret
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Pointer for *mut T {
fn fmt(&self, f: &mut Formatter<'_>) -> Result {
Pointer::fmt(&(*self as *const T), f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Pointer for &T {
fn fmt(&self, f: &mut Formatter<'_>) -> Result {
Pointer::fmt(&(*self as *const T), f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Pointer for &mut T {
fn fmt(&self, f: &mut Formatter<'_>) -> Result {
Pointer::fmt(&(&**self as *const T), f)
}
}
// Implementation of Display/Debug for various core types
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Debug for *const T {
fn fmt(&self, f: &mut Formatter<'_>) -> Result {
Pointer::fmt(self, f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Debug for *mut T {
fn fmt(&self, f: &mut Formatter<'_>) -> Result {
Pointer::fmt(self, f)
}
}
macro_rules! peel {
($name:ident, $($other:ident,)*) => (tuple! { $($other,)* })
}
macro_rules! tuple {
() => ();
( $($name:ident,)+ ) => (
maybe_tuple_doc! {
$($name)+ @
#[stable(feature = "rust1", since = "1.0.0")]
impl<$($name:Debug),+> Debug for ($($name,)+) where last_type!($($name,)+): ?Sized {
#[allow(non_snake_case, unused_assignments)]
fn fmt(&self, f: &mut Formatter<'_>) -> Result {
let mut builder = f.debug_tuple("");
let ($(ref $name,)+) = *self;
$(
builder.field(&$name);
)+
builder.finish()
}
}
}
peel! { $($name,)+ }
)
}
macro_rules! maybe_tuple_doc {
($a:ident @ #[$meta:meta] $item:item) => {
#[doc(fake_variadic)]
#[doc = "This trait is implemented for tuples up to twelve items long."]
#[$meta]
$item
};
($a:ident $($rest_a:ident)+ @ #[$meta:meta] $item:item) => {
#[doc(hidden)]
#[$meta]
$item
};
}
macro_rules! last_type {
($a:ident,) => { $a };
($a:ident, $($rest_a:ident,)+) => { last_type!($($rest_a,)+) };
}
tuple! { E, D, C, B, A, Z, Y, X, W, V, U, T, }
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Debug> Debug for [T] {
fn fmt(&self, f: &mut Formatter<'_>) -> Result {
f.debug_list().entries(self.iter()).finish()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Debug for () {
#[inline]
fn fmt(&self, f: &mut Formatter<'_>) -> Result {
f.pad("()")
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Debug for PhantomData<T> {
fn fmt(&self, f: &mut Formatter<'_>) -> Result {
write!(f, "PhantomData<{}>", crate::any::type_name::<T>())
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Copy + Debug> Debug for Cell<T> {
fn fmt(&self, f: &mut Formatter<'_>) -> Result {
f.debug_struct("Cell").field("value", &self.get()).finish()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Debug> Debug for RefCell<T> {
fn fmt(&self, f: &mut Formatter<'_>) -> Result {
let mut d = f.debug_struct("RefCell");
match self.try_borrow() {
Ok(borrow) => d.field("value", &borrow),
Err(_) => d.field("value", &format_args!("<borrowed>")),
};
d.finish()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Debug> Debug for Ref<'_, T> {
fn fmt(&self, f: &mut Formatter<'_>) -> Result {
Debug::fmt(&**self, f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Debug> Debug for RefMut<'_, T> {
fn fmt(&self, f: &mut Formatter<'_>) -> Result {
Debug::fmt(&*(self.deref()), f)
}
}
#[stable(feature = "core_impl_debug", since = "1.9.0")]
impl<T: ?Sized> Debug for UnsafeCell<T> {
fn fmt(&self, f: &mut Formatter<'_>) -> Result {
f.debug_struct("UnsafeCell").finish_non_exhaustive()
}
}
#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
impl<T: ?Sized> Debug for SyncUnsafeCell<T> {
fn fmt(&self, f: &mut Formatter<'_>) -> Result {
f.debug_struct("SyncUnsafeCell").finish_non_exhaustive()
}
}
// If you expected tests to be here, look instead at the core/tests/fmt.rs file,
// it's a lot easier than creating all of the rt::Piece structures here.
// There are also tests in the alloc crate, for those that need allocations.