alloc/collections/binary_heap/mod.rs
1//! A priority queue implemented with a binary heap.
2//!
3//! Insertion and popping the largest element have *O*(log(*n*)) time complexity.
4//! Checking the largest element is *O*(1). Converting a vector to a binary heap
5//! can be done in-place, and has *O*(*n*) complexity. A binary heap can also be
6//! converted to a sorted vector in-place, allowing it to be used for an *O*(*n* * log(*n*))
7//! in-place heapsort.
8//!
9//! # Examples
10//!
11//! This is a larger example that implements [Dijkstra's algorithm][dijkstra]
12//! to solve the [shortest path problem][sssp] on a [directed graph][dir_graph].
13//! It shows how to use [`BinaryHeap`] with custom types.
14//!
15//! [dijkstra]: https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
16//! [sssp]: https://en.wikipedia.org/wiki/Shortest_path_problem
17//! [dir_graph]: https://en.wikipedia.org/wiki/Directed_graph
18//!
19//! ```
20//! use std::cmp::Ordering;
21//! use std::collections::BinaryHeap;
22//!
23//! #[derive(Copy, Clone, Eq, PartialEq)]
24//! struct State {
25//! cost: usize,
26//! position: usize,
27//! }
28//!
29//! // The priority queue depends on `Ord`.
30//! // Explicitly implement the trait so the queue becomes a min-heap
31//! // instead of a max-heap.
32//! impl Ord for State {
33//! fn cmp(&self, other: &Self) -> Ordering {
34//! // Notice that we flip the ordering on costs.
35//! // In case of a tie we compare positions - this step is necessary
36//! // to make implementations of `PartialEq` and `Ord` consistent.
37//! other.cost.cmp(&self.cost)
38//! .then_with(|| self.position.cmp(&other.position))
39//! }
40//! }
41//!
42//! // `PartialOrd` needs to be implemented as well.
43//! impl PartialOrd for State {
44//! fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
45//! Some(self.cmp(other))
46//! }
47//! }
48//!
49//! // Each node is represented as a `usize`, for a shorter implementation.
50//! struct Edge {
51//! node: usize,
52//! cost: usize,
53//! }
54//!
55//! // Dijkstra's shortest path algorithm.
56//!
57//! // Start at `start` and use `dist` to track the current shortest distance
58//! // to each node. This implementation isn't memory-efficient as it may leave duplicate
59//! // nodes in the queue. It also uses `usize::MAX` as a sentinel value,
60//! // for a simpler implementation.
61//! fn shortest_path(adj_list: &Vec<Vec<Edge>>, start: usize, goal: usize) -> Option<usize> {
62//! // dist[node] = current shortest distance from `start` to `node`
63//! let mut dist: Vec<_> = (0..adj_list.len()).map(|_| usize::MAX).collect();
64//!
65//! let mut heap = BinaryHeap::new();
66//!
67//! // We're at `start`, with a zero cost
68//! dist[start] = 0;
69//! heap.push(State { cost: 0, position: start });
70//!
71//! // Examine the frontier with lower cost nodes first (min-heap)
72//! while let Some(State { cost, position }) = heap.pop() {
73//! // Alternatively we could have continued to find all shortest paths
74//! if position == goal { return Some(cost); }
75//!
76//! // Important as we may have already found a better way
77//! if cost > dist[position] { continue; }
78//!
79//! // For each node we can reach, see if we can find a way with
80//! // a lower cost going through this node
81//! for edge in &adj_list[position] {
82//! let next = State { cost: cost + edge.cost, position: edge.node };
83//!
84//! // If so, add it to the frontier and continue
85//! if next.cost < dist[next.position] {
86//! heap.push(next);
87//! // Relaxation, we have now found a better way
88//! dist[next.position] = next.cost;
89//! }
90//! }
91//! }
92//!
93//! // Goal not reachable
94//! None
95//! }
96//!
97//! fn main() {
98//! // This is the directed graph we're going to use.
99//! // The node numbers correspond to the different states,
100//! // and the edge weights symbolize the cost of moving
101//! // from one node to another.
102//! // Note that the edges are one-way.
103//! //
104//! // 7
105//! // +-----------------+
106//! // | |
107//! // v 1 2 | 2
108//! // 0 -----> 1 -----> 3 ---> 4
109//! // | ^ ^ ^
110//! // | | 1 | |
111//! // | | | 3 | 1
112//! // +------> 2 -------+ |
113//! // 10 | |
114//! // +---------------+
115//! //
116//! // The graph is represented as an adjacency list where each index,
117//! // corresponding to a node value, has a list of outgoing edges.
118//! // Chosen for its efficiency.
119//! let graph = vec![
120//! // Node 0
121//! vec![Edge { node: 2, cost: 10 },
122//! Edge { node: 1, cost: 1 }],
123//! // Node 1
124//! vec![Edge { node: 3, cost: 2 }],
125//! // Node 2
126//! vec![Edge { node: 1, cost: 1 },
127//! Edge { node: 3, cost: 3 },
128//! Edge { node: 4, cost: 1 }],
129//! // Node 3
130//! vec![Edge { node: 0, cost: 7 },
131//! Edge { node: 4, cost: 2 }],
132//! // Node 4
133//! vec![]];
134//!
135//! assert_eq!(shortest_path(&graph, 0, 1), Some(1));
136//! assert_eq!(shortest_path(&graph, 0, 3), Some(3));
137//! assert_eq!(shortest_path(&graph, 3, 0), Some(7));
138//! assert_eq!(shortest_path(&graph, 0, 4), Some(5));
139//! assert_eq!(shortest_path(&graph, 4, 0), None);
140//! }
141//! ```
142
143#![allow(missing_docs)]
144#![stable(feature = "rust1", since = "1.0.0")]
145
146use core::alloc::Allocator;
147use core::iter::{FusedIterator, InPlaceIterable, SourceIter, TrustedFused, TrustedLen};
148use core::mem::{self, ManuallyDrop, swap};
149use core::num::NonZero;
150use core::ops::{Deref, DerefMut};
151use core::{fmt, ptr};
152
153use crate::alloc::Global;
154use crate::collections::TryReserveError;
155use crate::slice;
156#[cfg(not(test))]
157use crate::vec::AsVecIntoIter;
158use crate::vec::{self, Vec};
159
160/// A priority queue implemented with a binary heap.
161///
162/// This will be a max-heap.
163///
164/// It is a logic error for an item to be modified in such a way that the
165/// item's ordering relative to any other item, as determined by the [`Ord`]
166/// trait, changes while it is in the heap. This is normally only possible
167/// through interior mutability, global state, I/O, or unsafe code. The
168/// behavior resulting from such a logic error is not specified, but will
169/// be encapsulated to the `BinaryHeap` that observed the logic error and not
170/// result in undefined behavior. This could include panics, incorrect results,
171/// aborts, memory leaks, and non-termination.
172///
173/// As long as no elements change their relative order while being in the heap
174/// as described above, the API of `BinaryHeap` guarantees that the heap
175/// invariant remains intact i.e. its methods all behave as documented. For
176/// example if a method is documented as iterating in sorted order, that's
177/// guaranteed to work as long as elements in the heap have not changed order,
178/// even in the presence of closures getting unwinded out of, iterators getting
179/// leaked, and similar foolishness.
180///
181/// # Examples
182///
183/// ```
184/// use std::collections::BinaryHeap;
185///
186/// // Type inference lets us omit an explicit type signature (which
187/// // would be `BinaryHeap<i32>` in this example).
188/// let mut heap = BinaryHeap::new();
189///
190/// // We can use peek to look at the next item in the heap. In this case,
191/// // there's no items in there yet so we get None.
192/// assert_eq!(heap.peek(), None);
193///
194/// // Let's add some scores...
195/// heap.push(1);
196/// heap.push(5);
197/// heap.push(2);
198///
199/// // Now peek shows the most important item in the heap.
200/// assert_eq!(heap.peek(), Some(&5));
201///
202/// // We can check the length of a heap.
203/// assert_eq!(heap.len(), 3);
204///
205/// // We can iterate over the items in the heap, although they are returned in
206/// // a random order.
207/// for x in &heap {
208/// println!("{x}");
209/// }
210///
211/// // If we instead pop these scores, they should come back in order.
212/// assert_eq!(heap.pop(), Some(5));
213/// assert_eq!(heap.pop(), Some(2));
214/// assert_eq!(heap.pop(), Some(1));
215/// assert_eq!(heap.pop(), None);
216///
217/// // We can clear the heap of any remaining items.
218/// heap.clear();
219///
220/// // The heap should now be empty.
221/// assert!(heap.is_empty())
222/// ```
223///
224/// A `BinaryHeap` with a known list of items can be initialized from an array:
225///
226/// ```
227/// use std::collections::BinaryHeap;
228///
229/// let heap = BinaryHeap::from([1, 5, 2]);
230/// ```
231///
232/// ## Min-heap
233///
234/// Either [`core::cmp::Reverse`] or a custom [`Ord`] implementation can be used to
235/// make `BinaryHeap` a min-heap. This makes `heap.pop()` return the smallest
236/// value instead of the greatest one.
237///
238/// ```
239/// use std::collections::BinaryHeap;
240/// use std::cmp::Reverse;
241///
242/// let mut heap = BinaryHeap::new();
243///
244/// // Wrap values in `Reverse`
245/// heap.push(Reverse(1));
246/// heap.push(Reverse(5));
247/// heap.push(Reverse(2));
248///
249/// // If we pop these scores now, they should come back in the reverse order.
250/// assert_eq!(heap.pop(), Some(Reverse(1)));
251/// assert_eq!(heap.pop(), Some(Reverse(2)));
252/// assert_eq!(heap.pop(), Some(Reverse(5)));
253/// assert_eq!(heap.pop(), None);
254/// ```
255///
256/// # Time complexity
257///
258/// | [push] | [pop] | [peek]/[peek\_mut] |
259/// |---------|---------------|--------------------|
260/// | *O*(1)~ | *O*(log(*n*)) | *O*(1) |
261///
262/// The value for `push` is an expected cost; the method documentation gives a
263/// more detailed analysis.
264///
265/// [`core::cmp::Reverse`]: core::cmp::Reverse
266/// [`Cell`]: core::cell::Cell
267/// [`RefCell`]: core::cell::RefCell
268/// [push]: BinaryHeap::push
269/// [pop]: BinaryHeap::pop
270/// [peek]: BinaryHeap::peek
271/// [peek\_mut]: BinaryHeap::peek_mut
272#[stable(feature = "rust1", since = "1.0.0")]
273#[cfg_attr(not(test), rustc_diagnostic_item = "BinaryHeap")]
274pub struct BinaryHeap<
275 T,
276 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
277> {
278 data: Vec<T, A>,
279}
280
281/// Structure wrapping a mutable reference to the greatest item on a
282/// `BinaryHeap`.
283///
284/// This `struct` is created by the [`peek_mut`] method on [`BinaryHeap`]. See
285/// its documentation for more.
286///
287/// [`peek_mut`]: BinaryHeap::peek_mut
288#[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
289pub struct PeekMut<
290 'a,
291 T: 'a + Ord,
292 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
293> {
294 heap: &'a mut BinaryHeap<T, A>,
295 // If a set_len + sift_down are required, this is Some. If a &mut T has not
296 // yet been exposed to peek_mut()'s caller, it's None.
297 original_len: Option<NonZero<usize>>,
298}
299
300#[stable(feature = "collection_debug", since = "1.17.0")]
301impl<T: Ord + fmt::Debug, A: Allocator> fmt::Debug for PeekMut<'_, T, A> {
302 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
303 f.debug_tuple("PeekMut").field(&self.heap.data[0]).finish()
304 }
305}
306
307#[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
308impl<T: Ord, A: Allocator> Drop for PeekMut<'_, T, A> {
309 fn drop(&mut self) {
310 if let Some(original_len) = self.original_len {
311 // SAFETY: That's how many elements were in the Vec at the time of
312 // the PeekMut::deref_mut call, and therefore also at the time of
313 // the BinaryHeap::peek_mut call. Since the PeekMut did not end up
314 // getting leaked, we are now undoing the leak amplification that
315 // the DerefMut prepared for.
316 unsafe { self.heap.data.set_len(original_len.get()) };
317
318 // SAFETY: PeekMut is only instantiated for non-empty heaps.
319 unsafe { self.heap.sift_down(0) };
320 }
321 }
322}
323
324#[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
325impl<T: Ord, A: Allocator> Deref for PeekMut<'_, T, A> {
326 type Target = T;
327 fn deref(&self) -> &T {
328 debug_assert!(!self.heap.is_empty());
329 // SAFE: PeekMut is only instantiated for non-empty heaps
330 unsafe { self.heap.data.get_unchecked(0) }
331 }
332}
333
334#[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
335impl<T: Ord, A: Allocator> DerefMut for PeekMut<'_, T, A> {
336 fn deref_mut(&mut self) -> &mut T {
337 debug_assert!(!self.heap.is_empty());
338
339 let len = self.heap.len();
340 if len > 1 {
341 // Here we preemptively leak all the rest of the underlying vector
342 // after the currently max element. If the caller mutates the &mut T
343 // we're about to give them, and then leaks the PeekMut, all these
344 // elements will remain leaked. If they don't leak the PeekMut, then
345 // either Drop or PeekMut::pop will un-leak the vector elements.
346 //
347 // This is technique is described throughout several other places in
348 // the standard library as "leak amplification".
349 unsafe {
350 // SAFETY: len > 1 so len != 0.
351 self.original_len = Some(NonZero::new_unchecked(len));
352 // SAFETY: len > 1 so all this does for now is leak elements,
353 // which is safe.
354 self.heap.data.set_len(1);
355 }
356 }
357
358 // SAFE: PeekMut is only instantiated for non-empty heaps
359 unsafe { self.heap.data.get_unchecked_mut(0) }
360 }
361}
362
363impl<'a, T: Ord, A: Allocator> PeekMut<'a, T, A> {
364 /// Sifts the current element to its new position.
365 ///
366 /// Afterwards refers to the new element. Returns if the element changed.
367 ///
368 /// ## Examples
369 ///
370 /// The condition can be used to upper bound all elements in the heap. When only few elements
371 /// are affected, the heap's sort ensures this is faster than a reconstruction from the raw
372 /// element list and requires no additional allocation.
373 ///
374 /// ```
375 /// #![feature(binary_heap_peek_mut_refresh)]
376 /// use std::collections::BinaryHeap;
377 ///
378 /// let mut heap: BinaryHeap<u32> = (0..128).collect();
379 /// let mut peek = heap.peek_mut().unwrap();
380 ///
381 /// loop {
382 /// *peek = 99;
383 ///
384 /// if !peek.refresh() {
385 /// break;
386 /// }
387 /// }
388 ///
389 /// // Post condition, this is now an upper bound.
390 /// assert!(*peek < 100);
391 /// ```
392 ///
393 /// When the element remains the maximum after modification, the peek remains unchanged:
394 ///
395 /// ```
396 /// #![feature(binary_heap_peek_mut_refresh)]
397 /// use std::collections::BinaryHeap;
398 ///
399 /// let mut heap: BinaryHeap<u32> = [1, 2, 3].into();
400 /// let mut peek = heap.peek_mut().unwrap();
401 ///
402 /// assert_eq!(*peek, 3);
403 /// *peek = 42;
404 ///
405 /// // When we refresh, the peek is updated to the new maximum.
406 /// assert!(!peek.refresh(), "42 is even larger than 3");
407 /// assert_eq!(*peek, 42);
408 /// ```
409 #[unstable(feature = "binary_heap_peek_mut_refresh", issue = "138355")]
410 #[must_use = "is equivalent to dropping and getting a new PeekMut except for return information"]
411 pub fn refresh(&mut self) -> bool {
412 // The length of the underlying heap is unchanged by sifting down. The value stored for leak
413 // amplification thus remains accurate. We erase the leak amplification firstly because the
414 // operation is then equivalent to constructing a new PeekMut and secondly this avoids any
415 // future complication where original_len being non-empty would be interpreted as the heap
416 // having been leak amplified instead of checking the heap itself.
417 if let Some(original_len) = self.original_len.take() {
418 // SAFETY: This is how many elements were in the Vec at the time of
419 // the BinaryHeap::peek_mut call.
420 unsafe { self.heap.data.set_len(original_len.get()) };
421
422 // The length of the heap did not change by sifting, upholding our own invariants.
423
424 // SAFETY: PeekMut is only instantiated for non-empty heaps.
425 (unsafe { self.heap.sift_down(0) }) != 0
426 } else {
427 // The element was not modified.
428 false
429 }
430 }
431
432 /// Removes the peeked value from the heap and returns it.
433 #[stable(feature = "binary_heap_peek_mut_pop", since = "1.18.0")]
434 pub fn pop(mut this: PeekMut<'a, T, A>) -> T {
435 if let Some(original_len) = this.original_len.take() {
436 // SAFETY: This is how many elements were in the Vec at the time of
437 // the BinaryHeap::peek_mut call.
438 unsafe { this.heap.data.set_len(original_len.get()) };
439
440 // Unlike in Drop, here we don't also need to do a sift_down even if
441 // the caller could've mutated the element. It is removed from the
442 // heap on the next line and pop() is not sensitive to its value.
443 }
444
445 // SAFETY: Have a `PeekMut` element proves that the associated binary heap being non-empty,
446 // so the `pop` operation will not fail.
447 unsafe { this.heap.pop().unwrap_unchecked() }
448 }
449}
450
451#[stable(feature = "rust1", since = "1.0.0")]
452impl<T: Clone, A: Allocator + Clone> Clone for BinaryHeap<T, A> {
453 fn clone(&self) -> Self {
454 BinaryHeap { data: self.data.clone() }
455 }
456
457 /// Overwrites the contents of `self` with a clone of the contents of `source`.
458 ///
459 /// This method is preferred over simply assigning `source.clone()` to `self`,
460 /// as it avoids reallocation if possible.
461 ///
462 /// See [`Vec::clone_from()`] for more details.
463 fn clone_from(&mut self, source: &Self) {
464 self.data.clone_from(&source.data);
465 }
466}
467
468#[stable(feature = "rust1", since = "1.0.0")]
469impl<T> Default for BinaryHeap<T> {
470 /// Creates an empty `BinaryHeap<T>`.
471 #[inline]
472 fn default() -> BinaryHeap<T> {
473 BinaryHeap::new()
474 }
475}
476
477#[stable(feature = "binaryheap_debug", since = "1.4.0")]
478impl<T: fmt::Debug, A: Allocator> fmt::Debug for BinaryHeap<T, A> {
479 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
480 f.debug_list().entries(self.iter()).finish()
481 }
482}
483
484struct RebuildOnDrop<
485 'a,
486 T: Ord,
487 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
488> {
489 heap: &'a mut BinaryHeap<T, A>,
490 rebuild_from: usize,
491}
492
493impl<T: Ord, A: Allocator> Drop for RebuildOnDrop<'_, T, A> {
494 fn drop(&mut self) {
495 self.heap.rebuild_tail(self.rebuild_from);
496 }
497}
498
499impl<T> BinaryHeap<T> {
500 /// Creates an empty `BinaryHeap` as a max-heap.
501 ///
502 /// # Examples
503 ///
504 /// Basic usage:
505 ///
506 /// ```
507 /// use std::collections::BinaryHeap;
508 /// let mut heap = BinaryHeap::new();
509 /// heap.push(4);
510 /// ```
511 #[stable(feature = "rust1", since = "1.0.0")]
512 #[rustc_const_stable(feature = "const_binary_heap_constructor", since = "1.80.0")]
513 #[must_use]
514 pub const fn new() -> BinaryHeap<T> {
515 BinaryHeap { data: vec![] }
516 }
517
518 /// Creates an empty `BinaryHeap` with at least the specified capacity.
519 ///
520 /// The binary heap will be able to hold at least `capacity` elements without
521 /// reallocating. This method is allowed to allocate for more elements than
522 /// `capacity`. If `capacity` is zero, the binary heap will not allocate.
523 ///
524 /// # Examples
525 ///
526 /// Basic usage:
527 ///
528 /// ```
529 /// use std::collections::BinaryHeap;
530 /// let mut heap = BinaryHeap::with_capacity(10);
531 /// heap.push(4);
532 /// ```
533 #[stable(feature = "rust1", since = "1.0.0")]
534 #[must_use]
535 pub fn with_capacity(capacity: usize) -> BinaryHeap<T> {
536 BinaryHeap { data: Vec::with_capacity(capacity) }
537 }
538}
539
540impl<T, A: Allocator> BinaryHeap<T, A> {
541 /// Creates an empty `BinaryHeap` as a max-heap, using `A` as allocator.
542 ///
543 /// # Examples
544 ///
545 /// Basic usage:
546 ///
547 /// ```
548 /// #![feature(allocator_api)]
549 ///
550 /// use std::alloc::System;
551 /// use std::collections::BinaryHeap;
552 /// let mut heap = BinaryHeap::new_in(System);
553 /// heap.push(4);
554 /// ```
555 #[unstable(feature = "allocator_api", issue = "32838")]
556 #[must_use]
557 pub const fn new_in(alloc: A) -> BinaryHeap<T, A> {
558 BinaryHeap { data: Vec::new_in(alloc) }
559 }
560
561 /// Creates an empty `BinaryHeap` with at least the specified capacity, using `A` as allocator.
562 ///
563 /// The binary heap will be able to hold at least `capacity` elements without
564 /// reallocating. This method is allowed to allocate for more elements than
565 /// `capacity`. If `capacity` is zero, the binary heap will not allocate.
566 ///
567 /// # Examples
568 ///
569 /// Basic usage:
570 ///
571 /// ```
572 /// #![feature(allocator_api)]
573 ///
574 /// use std::alloc::System;
575 /// use std::collections::BinaryHeap;
576 /// let mut heap = BinaryHeap::with_capacity_in(10, System);
577 /// heap.push(4);
578 /// ```
579 #[unstable(feature = "allocator_api", issue = "32838")]
580 #[must_use]
581 pub fn with_capacity_in(capacity: usize, alloc: A) -> BinaryHeap<T, A> {
582 BinaryHeap { data: Vec::with_capacity_in(capacity, alloc) }
583 }
584}
585
586impl<T: Ord, A: Allocator> BinaryHeap<T, A> {
587 /// Returns a mutable reference to the greatest item in the binary heap, or
588 /// `None` if it is empty.
589 ///
590 /// Note: If the `PeekMut` value is leaked, some heap elements might get
591 /// leaked along with it, but the remaining elements will remain a valid
592 /// heap.
593 ///
594 /// # Examples
595 ///
596 /// Basic usage:
597 ///
598 /// ```
599 /// use std::collections::BinaryHeap;
600 /// let mut heap = BinaryHeap::new();
601 /// assert!(heap.peek_mut().is_none());
602 ///
603 /// heap.push(1);
604 /// heap.push(5);
605 /// heap.push(2);
606 /// if let Some(mut val) = heap.peek_mut() {
607 /// *val = 0;
608 /// }
609 /// assert_eq!(heap.peek(), Some(&2));
610 /// ```
611 ///
612 /// # Time complexity
613 ///
614 /// If the item is modified then the worst case time complexity is *O*(log(*n*)),
615 /// otherwise it's *O*(1).
616 #[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
617 pub fn peek_mut(&mut self) -> Option<PeekMut<'_, T, A>> {
618 if self.is_empty() { None } else { Some(PeekMut { heap: self, original_len: None }) }
619 }
620
621 /// Removes the greatest item from the binary heap and returns it, or `None` if it
622 /// is empty.
623 ///
624 /// # Examples
625 ///
626 /// Basic usage:
627 ///
628 /// ```
629 /// use std::collections::BinaryHeap;
630 /// let mut heap = BinaryHeap::from([1, 3]);
631 ///
632 /// assert_eq!(heap.pop(), Some(3));
633 /// assert_eq!(heap.pop(), Some(1));
634 /// assert_eq!(heap.pop(), None);
635 /// ```
636 ///
637 /// # Time complexity
638 ///
639 /// The worst case cost of `pop` on a heap containing *n* elements is *O*(log(*n*)).
640 #[stable(feature = "rust1", since = "1.0.0")]
641 pub fn pop(&mut self) -> Option<T> {
642 self.data.pop().map(|mut item| {
643 if !self.is_empty() {
644 swap(&mut item, &mut self.data[0]);
645 // SAFETY: !self.is_empty() means that self.len() > 0
646 unsafe { self.sift_down_to_bottom(0) };
647 }
648 item
649 })
650 }
651
652 /// Pushes an item onto the binary heap.
653 ///
654 /// # Examples
655 ///
656 /// Basic usage:
657 ///
658 /// ```
659 /// use std::collections::BinaryHeap;
660 /// let mut heap = BinaryHeap::new();
661 /// heap.push(3);
662 /// heap.push(5);
663 /// heap.push(1);
664 ///
665 /// assert_eq!(heap.len(), 3);
666 /// assert_eq!(heap.peek(), Some(&5));
667 /// ```
668 ///
669 /// # Time complexity
670 ///
671 /// The expected cost of `push`, averaged over every possible ordering of
672 /// the elements being pushed, and over a sufficiently large number of
673 /// pushes, is *O*(1). This is the most meaningful cost metric when pushing
674 /// elements that are *not* already in any sorted pattern.
675 ///
676 /// The time complexity degrades if elements are pushed in predominantly
677 /// ascending order. In the worst case, elements are pushed in ascending
678 /// sorted order and the amortized cost per push is *O*(log(*n*)) against a heap
679 /// containing *n* elements.
680 ///
681 /// The worst case cost of a *single* call to `push` is *O*(*n*). The worst case
682 /// occurs when capacity is exhausted and needs a resize. The resize cost
683 /// has been amortized in the previous figures.
684 #[stable(feature = "rust1", since = "1.0.0")]
685 #[rustc_confusables("append", "put")]
686 pub fn push(&mut self, item: T) {
687 let old_len = self.len();
688 self.data.push(item);
689 // SAFETY: Since we pushed a new item it means that
690 // old_len = self.len() - 1 < self.len()
691 unsafe { self.sift_up(0, old_len) };
692 }
693
694 /// Consumes the `BinaryHeap` and returns a vector in sorted
695 /// (ascending) order.
696 ///
697 /// # Examples
698 ///
699 /// Basic usage:
700 ///
701 /// ```
702 /// use std::collections::BinaryHeap;
703 ///
704 /// let mut heap = BinaryHeap::from([1, 2, 4, 5, 7]);
705 /// heap.push(6);
706 /// heap.push(3);
707 ///
708 /// let vec = heap.into_sorted_vec();
709 /// assert_eq!(vec, [1, 2, 3, 4, 5, 6, 7]);
710 /// ```
711 #[must_use = "`self` will be dropped if the result is not used"]
712 #[stable(feature = "binary_heap_extras_15", since = "1.5.0")]
713 pub fn into_sorted_vec(mut self) -> Vec<T, A> {
714 let mut end = self.len();
715 while end > 1 {
716 end -= 1;
717 // SAFETY: `end` goes from `self.len() - 1` to 1 (both included),
718 // so it's always a valid index to access.
719 // It is safe to access index 0 (i.e. `ptr`), because
720 // 1 <= end < self.len(), which means self.len() >= 2.
721 unsafe {
722 let ptr = self.data.as_mut_ptr();
723 ptr::swap(ptr, ptr.add(end));
724 }
725 // SAFETY: `end` goes from `self.len() - 1` to 1 (both included) so:
726 // 0 < 1 <= end <= self.len() - 1 < self.len()
727 // Which means 0 < end and end < self.len().
728 unsafe { self.sift_down_range(0, end) };
729 }
730 self.into_vec()
731 }
732
733 // The implementations of sift_up and sift_down use unsafe blocks in
734 // order to move an element out of the vector (leaving behind a
735 // hole), shift along the others and move the removed element back into the
736 // vector at the final location of the hole.
737 // The `Hole` type is used to represent this, and make sure
738 // the hole is filled back at the end of its scope, even on panic.
739 // Using a hole reduces the constant factor compared to using swaps,
740 // which involves twice as many moves.
741
742 /// # Safety
743 ///
744 /// The caller must guarantee that `pos < self.len()`.
745 ///
746 /// Returns the new position of the element.
747 unsafe fn sift_up(&mut self, start: usize, pos: usize) -> usize {
748 // Take out the value at `pos` and create a hole.
749 // SAFETY: The caller guarantees that pos < self.len()
750 let mut hole = unsafe { Hole::new(&mut self.data, pos) };
751
752 while hole.pos() > start {
753 let parent = (hole.pos() - 1) / 2;
754
755 // SAFETY: hole.pos() > start >= 0, which means hole.pos() > 0
756 // and so hole.pos() - 1 can't underflow.
757 // This guarantees that parent < hole.pos() so
758 // it's a valid index and also != hole.pos().
759 if hole.element() <= unsafe { hole.get(parent) } {
760 break;
761 }
762
763 // SAFETY: Same as above
764 unsafe { hole.move_to(parent) };
765 }
766
767 hole.pos()
768 }
769
770 /// Take an element at `pos` and move it down the heap,
771 /// while its children are larger.
772 ///
773 /// Returns the new position of the element.
774 ///
775 /// # Safety
776 ///
777 /// The caller must guarantee that `pos < end <= self.len()`.
778 unsafe fn sift_down_range(&mut self, pos: usize, end: usize) -> usize {
779 // SAFETY: The caller guarantees that pos < end <= self.len().
780 let mut hole = unsafe { Hole::new(&mut self.data, pos) };
781 let mut child = 2 * hole.pos() + 1;
782
783 // Loop invariant: child == 2 * hole.pos() + 1.
784 while child <= end.saturating_sub(2) {
785 // compare with the greater of the two children
786 // SAFETY: child < end - 1 < self.len() and
787 // child + 1 < end <= self.len(), so they're valid indexes.
788 // child == 2 * hole.pos() + 1 != hole.pos() and
789 // child + 1 == 2 * hole.pos() + 2 != hole.pos().
790 // FIXME: 2 * hole.pos() + 1 or 2 * hole.pos() + 2 could overflow
791 // if T is a ZST
792 child += unsafe { hole.get(child) <= hole.get(child + 1) } as usize;
793
794 // if we are already in order, stop.
795 // SAFETY: child is now either the old child or the old child+1
796 // We already proven that both are < self.len() and != hole.pos()
797 if hole.element() >= unsafe { hole.get(child) } {
798 return hole.pos();
799 }
800
801 // SAFETY: same as above.
802 unsafe { hole.move_to(child) };
803 child = 2 * hole.pos() + 1;
804 }
805
806 // SAFETY: && short circuit, which means that in the
807 // second condition it's already true that child == end - 1 < self.len().
808 if child == end - 1 && hole.element() < unsafe { hole.get(child) } {
809 // SAFETY: child is already proven to be a valid index and
810 // child == 2 * hole.pos() + 1 != hole.pos().
811 unsafe { hole.move_to(child) };
812 }
813
814 hole.pos()
815 }
816
817 /// # Safety
818 ///
819 /// The caller must guarantee that `pos < self.len()`.
820 unsafe fn sift_down(&mut self, pos: usize) -> usize {
821 let len = self.len();
822 // SAFETY: pos < len is guaranteed by the caller and
823 // obviously len = self.len() <= self.len().
824 unsafe { self.sift_down_range(pos, len) }
825 }
826
827 /// Take an element at `pos` and move it all the way down the heap,
828 /// then sift it up to its position.
829 ///
830 /// Note: This is faster when the element is known to be large / should
831 /// be closer to the bottom.
832 ///
833 /// # Safety
834 ///
835 /// The caller must guarantee that `pos < self.len()`.
836 unsafe fn sift_down_to_bottom(&mut self, mut pos: usize) {
837 let end = self.len();
838 let start = pos;
839
840 // SAFETY: The caller guarantees that pos < self.len().
841 let mut hole = unsafe { Hole::new(&mut self.data, pos) };
842 let mut child = 2 * hole.pos() + 1;
843
844 // Loop invariant: child == 2 * hole.pos() + 1.
845 while child <= end.saturating_sub(2) {
846 // SAFETY: child < end - 1 < self.len() and
847 // child + 1 < end <= self.len(), so they're valid indexes.
848 // child == 2 * hole.pos() + 1 != hole.pos() and
849 // child + 1 == 2 * hole.pos() + 2 != hole.pos().
850 // FIXME: 2 * hole.pos() + 1 or 2 * hole.pos() + 2 could overflow
851 // if T is a ZST
852 child += unsafe { hole.get(child) <= hole.get(child + 1) } as usize;
853
854 // SAFETY: Same as above
855 unsafe { hole.move_to(child) };
856 child = 2 * hole.pos() + 1;
857 }
858
859 if child == end - 1 {
860 // SAFETY: child == end - 1 < self.len(), so it's a valid index
861 // and child == 2 * hole.pos() + 1 != hole.pos().
862 unsafe { hole.move_to(child) };
863 }
864 pos = hole.pos();
865 drop(hole);
866
867 // SAFETY: pos is the position in the hole and was already proven
868 // to be a valid index.
869 unsafe { self.sift_up(start, pos) };
870 }
871
872 /// Rebuild assuming data[0..start] is still a proper heap.
873 fn rebuild_tail(&mut self, start: usize) {
874 if start == self.len() {
875 return;
876 }
877
878 let tail_len = self.len() - start;
879
880 #[inline(always)]
881 fn log2_fast(x: usize) -> usize {
882 (usize::BITS - x.leading_zeros() - 1) as usize
883 }
884
885 // `rebuild` takes O(self.len()) operations
886 // and about 2 * self.len() comparisons in the worst case
887 // while repeating `sift_up` takes O(tail_len * log(start)) operations
888 // and about 1 * tail_len * log_2(start) comparisons in the worst case,
889 // assuming start >= tail_len. For larger heaps, the crossover point
890 // no longer follows this reasoning and was determined empirically.
891 let better_to_rebuild = if start < tail_len {
892 true
893 } else if self.len() <= 2048 {
894 2 * self.len() < tail_len * log2_fast(start)
895 } else {
896 2 * self.len() < tail_len * 11
897 };
898
899 if better_to_rebuild {
900 self.rebuild();
901 } else {
902 for i in start..self.len() {
903 // SAFETY: The index `i` is always less than self.len().
904 unsafe { self.sift_up(0, i) };
905 }
906 }
907 }
908
909 fn rebuild(&mut self) {
910 let mut n = self.len() / 2;
911 while n > 0 {
912 n -= 1;
913 // SAFETY: n starts from self.len() / 2 and goes down to 0.
914 // The only case when !(n < self.len()) is if
915 // self.len() == 0, but it's ruled out by the loop condition.
916 unsafe { self.sift_down(n) };
917 }
918 }
919
920 /// Moves all the elements of `other` into `self`, leaving `other` empty.
921 ///
922 /// # Examples
923 ///
924 /// Basic usage:
925 ///
926 /// ```
927 /// use std::collections::BinaryHeap;
928 ///
929 /// let mut a = BinaryHeap::from([-10, 1, 2, 3, 3]);
930 /// let mut b = BinaryHeap::from([-20, 5, 43]);
931 ///
932 /// a.append(&mut b);
933 ///
934 /// assert_eq!(a.into_sorted_vec(), [-20, -10, 1, 2, 3, 3, 5, 43]);
935 /// assert!(b.is_empty());
936 /// ```
937 #[stable(feature = "binary_heap_append", since = "1.11.0")]
938 pub fn append(&mut self, other: &mut Self) {
939 if self.len() < other.len() {
940 swap(self, other);
941 }
942
943 let start = self.data.len();
944
945 self.data.append(&mut other.data);
946
947 self.rebuild_tail(start);
948 }
949
950 /// Clears the binary heap, returning an iterator over the removed elements
951 /// in heap order. If the iterator is dropped before being fully consumed,
952 /// it drops the remaining elements in heap order.
953 ///
954 /// The returned iterator keeps a mutable borrow on the heap to optimize
955 /// its implementation.
956 ///
957 /// Note:
958 /// * `.drain_sorted()` is *O*(*n* \* log(*n*)); much slower than `.drain()`.
959 /// You should use the latter for most cases.
960 ///
961 /// # Examples
962 ///
963 /// Basic usage:
964 ///
965 /// ```
966 /// #![feature(binary_heap_drain_sorted)]
967 /// use std::collections::BinaryHeap;
968 ///
969 /// let mut heap = BinaryHeap::from([1, 2, 3, 4, 5]);
970 /// assert_eq!(heap.len(), 5);
971 ///
972 /// drop(heap.drain_sorted()); // removes all elements in heap order
973 /// assert_eq!(heap.len(), 0);
974 /// ```
975 #[inline]
976 #[unstable(feature = "binary_heap_drain_sorted", issue = "59278")]
977 pub fn drain_sorted(&mut self) -> DrainSorted<'_, T, A> {
978 DrainSorted { inner: self }
979 }
980
981 /// Retains only the elements specified by the predicate.
982 ///
983 /// In other words, remove all elements `e` for which `f(&e)` returns
984 /// `false`. The elements are visited in unsorted (and unspecified) order.
985 ///
986 /// # Examples
987 ///
988 /// Basic usage:
989 ///
990 /// ```
991 /// use std::collections::BinaryHeap;
992 ///
993 /// let mut heap = BinaryHeap::from([-10, -5, 1, 2, 4, 13]);
994 ///
995 /// heap.retain(|x| x % 2 == 0); // only keep even numbers
996 ///
997 /// assert_eq!(heap.into_sorted_vec(), [-10, 2, 4])
998 /// ```
999 #[stable(feature = "binary_heap_retain", since = "1.70.0")]
1000 pub fn retain<F>(&mut self, mut f: F)
1001 where
1002 F: FnMut(&T) -> bool,
1003 {
1004 // rebuild_start will be updated to the first touched element below, and the rebuild will
1005 // only be done for the tail.
1006 let mut guard = RebuildOnDrop { rebuild_from: self.len(), heap: self };
1007 let mut i = 0;
1008
1009 guard.heap.data.retain(|e| {
1010 let keep = f(e);
1011 if !keep && i < guard.rebuild_from {
1012 guard.rebuild_from = i;
1013 }
1014 i += 1;
1015 keep
1016 });
1017 }
1018}
1019
1020impl<T, A: Allocator> BinaryHeap<T, A> {
1021 /// Returns an iterator visiting all values in the underlying vector, in
1022 /// arbitrary order.
1023 ///
1024 /// # Examples
1025 ///
1026 /// Basic usage:
1027 ///
1028 /// ```
1029 /// use std::collections::BinaryHeap;
1030 /// let heap = BinaryHeap::from([1, 2, 3, 4]);
1031 ///
1032 /// // Print 1, 2, 3, 4 in arbitrary order
1033 /// for x in heap.iter() {
1034 /// println!("{x}");
1035 /// }
1036 /// ```
1037 #[stable(feature = "rust1", since = "1.0.0")]
1038 #[cfg_attr(not(test), rustc_diagnostic_item = "binaryheap_iter")]
1039 pub fn iter(&self) -> Iter<'_, T> {
1040 Iter { iter: self.data.iter() }
1041 }
1042
1043 /// Returns an iterator which retrieves elements in heap order.
1044 ///
1045 /// This method consumes the original heap.
1046 ///
1047 /// # Examples
1048 ///
1049 /// Basic usage:
1050 ///
1051 /// ```
1052 /// #![feature(binary_heap_into_iter_sorted)]
1053 /// use std::collections::BinaryHeap;
1054 /// let heap = BinaryHeap::from([1, 2, 3, 4, 5]);
1055 ///
1056 /// assert_eq!(heap.into_iter_sorted().take(2).collect::<Vec<_>>(), [5, 4]);
1057 /// ```
1058 #[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")]
1059 pub fn into_iter_sorted(self) -> IntoIterSorted<T, A> {
1060 IntoIterSorted { inner: self }
1061 }
1062
1063 /// Returns the greatest item in the binary heap, or `None` if it is empty.
1064 ///
1065 /// # Examples
1066 ///
1067 /// Basic usage:
1068 ///
1069 /// ```
1070 /// use std::collections::BinaryHeap;
1071 /// let mut heap = BinaryHeap::new();
1072 /// assert_eq!(heap.peek(), None);
1073 ///
1074 /// heap.push(1);
1075 /// heap.push(5);
1076 /// heap.push(2);
1077 /// assert_eq!(heap.peek(), Some(&5));
1078 ///
1079 /// ```
1080 ///
1081 /// # Time complexity
1082 ///
1083 /// Cost is *O*(1) in the worst case.
1084 #[must_use]
1085 #[stable(feature = "rust1", since = "1.0.0")]
1086 pub fn peek(&self) -> Option<&T> {
1087 self.data.get(0)
1088 }
1089
1090 /// Returns the number of elements the binary heap can hold without reallocating.
1091 ///
1092 /// # Examples
1093 ///
1094 /// Basic usage:
1095 ///
1096 /// ```
1097 /// use std::collections::BinaryHeap;
1098 /// let mut heap = BinaryHeap::with_capacity(100);
1099 /// assert!(heap.capacity() >= 100);
1100 /// heap.push(4);
1101 /// ```
1102 #[must_use]
1103 #[stable(feature = "rust1", since = "1.0.0")]
1104 pub fn capacity(&self) -> usize {
1105 self.data.capacity()
1106 }
1107
1108 /// Reserves the minimum capacity for at least `additional` elements more than
1109 /// the current length. Unlike [`reserve`], this will not
1110 /// deliberately over-allocate to speculatively avoid frequent allocations.
1111 /// After calling `reserve_exact`, capacity will be greater than or equal to
1112 /// `self.len() + additional`. Does nothing if the capacity is already
1113 /// sufficient.
1114 ///
1115 /// [`reserve`]: BinaryHeap::reserve
1116 ///
1117 /// # Panics
1118 ///
1119 /// Panics if the new capacity overflows [`usize`].
1120 ///
1121 /// # Examples
1122 ///
1123 /// Basic usage:
1124 ///
1125 /// ```
1126 /// use std::collections::BinaryHeap;
1127 /// let mut heap = BinaryHeap::new();
1128 /// heap.reserve_exact(100);
1129 /// assert!(heap.capacity() >= 100);
1130 /// heap.push(4);
1131 /// ```
1132 ///
1133 /// [`reserve`]: BinaryHeap::reserve
1134 #[stable(feature = "rust1", since = "1.0.0")]
1135 pub fn reserve_exact(&mut self, additional: usize) {
1136 self.data.reserve_exact(additional);
1137 }
1138
1139 /// Reserves capacity for at least `additional` elements more than the
1140 /// current length. The allocator may reserve more space to speculatively
1141 /// avoid frequent allocations. After calling `reserve`,
1142 /// capacity will be greater than or equal to `self.len() + additional`.
1143 /// Does nothing if capacity is already sufficient.
1144 ///
1145 /// # Panics
1146 ///
1147 /// Panics if the new capacity overflows [`usize`].
1148 ///
1149 /// # Examples
1150 ///
1151 /// Basic usage:
1152 ///
1153 /// ```
1154 /// use std::collections::BinaryHeap;
1155 /// let mut heap = BinaryHeap::new();
1156 /// heap.reserve(100);
1157 /// assert!(heap.capacity() >= 100);
1158 /// heap.push(4);
1159 /// ```
1160 #[stable(feature = "rust1", since = "1.0.0")]
1161 pub fn reserve(&mut self, additional: usize) {
1162 self.data.reserve(additional);
1163 }
1164
1165 /// Tries to reserve the minimum capacity for at least `additional` elements
1166 /// more than the current length. Unlike [`try_reserve`], this will not
1167 /// deliberately over-allocate to speculatively avoid frequent allocations.
1168 /// After calling `try_reserve_exact`, capacity will be greater than or
1169 /// equal to `self.len() + additional` if it returns `Ok(())`.
1170 /// Does nothing if the capacity is already sufficient.
1171 ///
1172 /// Note that the allocator may give the collection more space than it
1173 /// requests. Therefore, capacity can not be relied upon to be precisely
1174 /// minimal. Prefer [`try_reserve`] if future insertions are expected.
1175 ///
1176 /// [`try_reserve`]: BinaryHeap::try_reserve
1177 ///
1178 /// # Errors
1179 ///
1180 /// If the capacity overflows, or the allocator reports a failure, then an error
1181 /// is returned.
1182 ///
1183 /// # Examples
1184 ///
1185 /// ```
1186 /// use std::collections::BinaryHeap;
1187 /// use std::collections::TryReserveError;
1188 ///
1189 /// fn find_max_slow(data: &[u32]) -> Result<Option<u32>, TryReserveError> {
1190 /// let mut heap = BinaryHeap::new();
1191 ///
1192 /// // Pre-reserve the memory, exiting if we can't
1193 /// heap.try_reserve_exact(data.len())?;
1194 ///
1195 /// // Now we know this can't OOM in the middle of our complex work
1196 /// heap.extend(data.iter());
1197 ///
1198 /// Ok(heap.pop())
1199 /// }
1200 /// # find_max_slow(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1201 /// ```
1202 #[stable(feature = "try_reserve_2", since = "1.63.0")]
1203 pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
1204 self.data.try_reserve_exact(additional)
1205 }
1206
1207 /// Tries to reserve capacity for at least `additional` elements more than the
1208 /// current length. The allocator may reserve more space to speculatively
1209 /// avoid frequent allocations. After calling `try_reserve`, capacity will be
1210 /// greater than or equal to `self.len() + additional` if it returns
1211 /// `Ok(())`. Does nothing if capacity is already sufficient. This method
1212 /// preserves the contents even if an error occurs.
1213 ///
1214 /// # Errors
1215 ///
1216 /// If the capacity overflows, or the allocator reports a failure, then an error
1217 /// is returned.
1218 ///
1219 /// # Examples
1220 ///
1221 /// ```
1222 /// use std::collections::BinaryHeap;
1223 /// use std::collections::TryReserveError;
1224 ///
1225 /// fn find_max_slow(data: &[u32]) -> Result<Option<u32>, TryReserveError> {
1226 /// let mut heap = BinaryHeap::new();
1227 ///
1228 /// // Pre-reserve the memory, exiting if we can't
1229 /// heap.try_reserve(data.len())?;
1230 ///
1231 /// // Now we know this can't OOM in the middle of our complex work
1232 /// heap.extend(data.iter());
1233 ///
1234 /// Ok(heap.pop())
1235 /// }
1236 /// # find_max_slow(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1237 /// ```
1238 #[stable(feature = "try_reserve_2", since = "1.63.0")]
1239 pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
1240 self.data.try_reserve(additional)
1241 }
1242
1243 /// Discards as much additional capacity as possible.
1244 ///
1245 /// # Examples
1246 ///
1247 /// Basic usage:
1248 ///
1249 /// ```
1250 /// use std::collections::BinaryHeap;
1251 /// let mut heap: BinaryHeap<i32> = BinaryHeap::with_capacity(100);
1252 ///
1253 /// assert!(heap.capacity() >= 100);
1254 /// heap.shrink_to_fit();
1255 /// assert!(heap.capacity() == 0);
1256 /// ```
1257 #[stable(feature = "rust1", since = "1.0.0")]
1258 pub fn shrink_to_fit(&mut self) {
1259 self.data.shrink_to_fit();
1260 }
1261
1262 /// Discards capacity with a lower bound.
1263 ///
1264 /// The capacity will remain at least as large as both the length
1265 /// and the supplied value.
1266 ///
1267 /// If the current capacity is less than the lower limit, this is a no-op.
1268 ///
1269 /// # Examples
1270 ///
1271 /// ```
1272 /// use std::collections::BinaryHeap;
1273 /// let mut heap: BinaryHeap<i32> = BinaryHeap::with_capacity(100);
1274 ///
1275 /// assert!(heap.capacity() >= 100);
1276 /// heap.shrink_to(10);
1277 /// assert!(heap.capacity() >= 10);
1278 /// ```
1279 #[inline]
1280 #[stable(feature = "shrink_to", since = "1.56.0")]
1281 pub fn shrink_to(&mut self, min_capacity: usize) {
1282 self.data.shrink_to(min_capacity)
1283 }
1284
1285 /// Returns a slice of all values in the underlying vector, in arbitrary
1286 /// order.
1287 ///
1288 /// # Examples
1289 ///
1290 /// Basic usage:
1291 ///
1292 /// ```
1293 /// use std::collections::BinaryHeap;
1294 /// use std::io::{self, Write};
1295 ///
1296 /// let heap = BinaryHeap::from([1, 2, 3, 4, 5, 6, 7]);
1297 ///
1298 /// io::sink().write(heap.as_slice()).unwrap();
1299 /// ```
1300 #[must_use]
1301 #[stable(feature = "binary_heap_as_slice", since = "1.80.0")]
1302 pub fn as_slice(&self) -> &[T] {
1303 self.data.as_slice()
1304 }
1305
1306 /// Consumes the `BinaryHeap` and returns the underlying vector
1307 /// in arbitrary order.
1308 ///
1309 /// # Examples
1310 ///
1311 /// Basic usage:
1312 ///
1313 /// ```
1314 /// use std::collections::BinaryHeap;
1315 /// let heap = BinaryHeap::from([1, 2, 3, 4, 5, 6, 7]);
1316 /// let vec = heap.into_vec();
1317 ///
1318 /// // Will print in some order
1319 /// for x in vec {
1320 /// println!("{x}");
1321 /// }
1322 /// ```
1323 #[must_use = "`self` will be dropped if the result is not used"]
1324 #[stable(feature = "binary_heap_extras_15", since = "1.5.0")]
1325 pub fn into_vec(self) -> Vec<T, A> {
1326 self.into()
1327 }
1328
1329 /// Returns a reference to the underlying allocator.
1330 #[unstable(feature = "allocator_api", issue = "32838")]
1331 #[inline]
1332 pub fn allocator(&self) -> &A {
1333 self.data.allocator()
1334 }
1335
1336 /// Returns the length of the binary heap.
1337 ///
1338 /// # Examples
1339 ///
1340 /// Basic usage:
1341 ///
1342 /// ```
1343 /// use std::collections::BinaryHeap;
1344 /// let heap = BinaryHeap::from([1, 3]);
1345 ///
1346 /// assert_eq!(heap.len(), 2);
1347 /// ```
1348 #[must_use]
1349 #[stable(feature = "rust1", since = "1.0.0")]
1350 #[rustc_confusables("length", "size")]
1351 pub fn len(&self) -> usize {
1352 self.data.len()
1353 }
1354
1355 /// Checks if the binary heap is empty.
1356 ///
1357 /// # Examples
1358 ///
1359 /// Basic usage:
1360 ///
1361 /// ```
1362 /// use std::collections::BinaryHeap;
1363 /// let mut heap = BinaryHeap::new();
1364 ///
1365 /// assert!(heap.is_empty());
1366 ///
1367 /// heap.push(3);
1368 /// heap.push(5);
1369 /// heap.push(1);
1370 ///
1371 /// assert!(!heap.is_empty());
1372 /// ```
1373 #[must_use]
1374 #[stable(feature = "rust1", since = "1.0.0")]
1375 pub fn is_empty(&self) -> bool {
1376 self.len() == 0
1377 }
1378
1379 /// Clears the binary heap, returning an iterator over the removed elements
1380 /// in arbitrary order. If the iterator is dropped before being fully
1381 /// consumed, it drops the remaining elements in arbitrary order.
1382 ///
1383 /// The returned iterator keeps a mutable borrow on the heap to optimize
1384 /// its implementation.
1385 ///
1386 /// # Examples
1387 ///
1388 /// Basic usage:
1389 ///
1390 /// ```
1391 /// use std::collections::BinaryHeap;
1392 /// let mut heap = BinaryHeap::from([1, 3]);
1393 ///
1394 /// assert!(!heap.is_empty());
1395 ///
1396 /// for x in heap.drain() {
1397 /// println!("{x}");
1398 /// }
1399 ///
1400 /// assert!(heap.is_empty());
1401 /// ```
1402 #[inline]
1403 #[stable(feature = "drain", since = "1.6.0")]
1404 pub fn drain(&mut self) -> Drain<'_, T, A> {
1405 Drain { iter: self.data.drain(..) }
1406 }
1407
1408 /// Drops all items from the binary heap.
1409 ///
1410 /// # Examples
1411 ///
1412 /// Basic usage:
1413 ///
1414 /// ```
1415 /// use std::collections::BinaryHeap;
1416 /// let mut heap = BinaryHeap::from([1, 3]);
1417 ///
1418 /// assert!(!heap.is_empty());
1419 ///
1420 /// heap.clear();
1421 ///
1422 /// assert!(heap.is_empty());
1423 /// ```
1424 #[stable(feature = "rust1", since = "1.0.0")]
1425 pub fn clear(&mut self) {
1426 self.drain();
1427 }
1428}
1429
1430/// Hole represents a hole in a slice i.e., an index without valid value
1431/// (because it was moved from or duplicated).
1432/// In drop, `Hole` will restore the slice by filling the hole
1433/// position with the value that was originally removed.
1434struct Hole<'a, T: 'a> {
1435 data: &'a mut [T],
1436 elt: ManuallyDrop<T>,
1437 pos: usize,
1438}
1439
1440impl<'a, T> Hole<'a, T> {
1441 /// Creates a new `Hole` at index `pos`.
1442 ///
1443 /// Unsafe because pos must be within the data slice.
1444 #[inline]
1445 unsafe fn new(data: &'a mut [T], pos: usize) -> Self {
1446 debug_assert!(pos < data.len());
1447 // SAFE: pos should be inside the slice
1448 let elt = unsafe { ptr::read(data.get_unchecked(pos)) };
1449 Hole { data, elt: ManuallyDrop::new(elt), pos }
1450 }
1451
1452 #[inline]
1453 fn pos(&self) -> usize {
1454 self.pos
1455 }
1456
1457 /// Returns a reference to the element removed.
1458 #[inline]
1459 fn element(&self) -> &T {
1460 &self.elt
1461 }
1462
1463 /// Returns a reference to the element at `index`.
1464 ///
1465 /// Unsafe because index must be within the data slice and not equal to pos.
1466 #[inline]
1467 unsafe fn get(&self, index: usize) -> &T {
1468 debug_assert!(index != self.pos);
1469 debug_assert!(index < self.data.len());
1470 unsafe { self.data.get_unchecked(index) }
1471 }
1472
1473 /// Move hole to new location
1474 ///
1475 /// Unsafe because index must be within the data slice and not equal to pos.
1476 #[inline]
1477 unsafe fn move_to(&mut self, index: usize) {
1478 debug_assert!(index != self.pos);
1479 debug_assert!(index < self.data.len());
1480 unsafe {
1481 let ptr = self.data.as_mut_ptr();
1482 let index_ptr: *const _ = ptr.add(index);
1483 let hole_ptr = ptr.add(self.pos);
1484 ptr::copy_nonoverlapping(index_ptr, hole_ptr, 1);
1485 }
1486 self.pos = index;
1487 }
1488}
1489
1490impl<T> Drop for Hole<'_, T> {
1491 #[inline]
1492 fn drop(&mut self) {
1493 // fill the hole again
1494 unsafe {
1495 let pos = self.pos;
1496 ptr::copy_nonoverlapping(&*self.elt, self.data.get_unchecked_mut(pos), 1);
1497 }
1498 }
1499}
1500
1501/// An iterator over the elements of a `BinaryHeap`.
1502///
1503/// This `struct` is created by [`BinaryHeap::iter()`]. See its
1504/// documentation for more.
1505///
1506/// [`iter`]: BinaryHeap::iter
1507#[must_use = "iterators are lazy and do nothing unless consumed"]
1508#[stable(feature = "rust1", since = "1.0.0")]
1509pub struct Iter<'a, T: 'a> {
1510 iter: slice::Iter<'a, T>,
1511}
1512
1513#[stable(feature = "default_iters_sequel", since = "1.82.0")]
1514impl<T> Default for Iter<'_, T> {
1515 /// Creates an empty `binary_heap::Iter`.
1516 ///
1517 /// ```
1518 /// # use std::collections::binary_heap;
1519 /// let iter: binary_heap::Iter<'_, u8> = Default::default();
1520 /// assert_eq!(iter.len(), 0);
1521 /// ```
1522 fn default() -> Self {
1523 Iter { iter: Default::default() }
1524 }
1525}
1526
1527#[stable(feature = "collection_debug", since = "1.17.0")]
1528impl<T: fmt::Debug> fmt::Debug for Iter<'_, T> {
1529 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1530 f.debug_tuple("Iter").field(&self.iter.as_slice()).finish()
1531 }
1532}
1533
1534// FIXME(#26925) Remove in favor of `#[derive(Clone)]`
1535#[stable(feature = "rust1", since = "1.0.0")]
1536impl<T> Clone for Iter<'_, T> {
1537 fn clone(&self) -> Self {
1538 Iter { iter: self.iter.clone() }
1539 }
1540}
1541
1542#[stable(feature = "rust1", since = "1.0.0")]
1543impl<'a, T> Iterator for Iter<'a, T> {
1544 type Item = &'a T;
1545
1546 #[inline]
1547 fn next(&mut self) -> Option<&'a T> {
1548 self.iter.next()
1549 }
1550
1551 #[inline]
1552 fn size_hint(&self) -> (usize, Option<usize>) {
1553 self.iter.size_hint()
1554 }
1555
1556 #[inline]
1557 fn last(self) -> Option<&'a T> {
1558 self.iter.last()
1559 }
1560}
1561
1562#[stable(feature = "rust1", since = "1.0.0")]
1563impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
1564 #[inline]
1565 fn next_back(&mut self) -> Option<&'a T> {
1566 self.iter.next_back()
1567 }
1568}
1569
1570#[stable(feature = "rust1", since = "1.0.0")]
1571impl<T> ExactSizeIterator for Iter<'_, T> {
1572 fn is_empty(&self) -> bool {
1573 self.iter.is_empty()
1574 }
1575}
1576
1577#[stable(feature = "fused", since = "1.26.0")]
1578impl<T> FusedIterator for Iter<'_, T> {}
1579
1580/// An owning iterator over the elements of a `BinaryHeap`.
1581///
1582/// This `struct` is created by [`BinaryHeap::into_iter()`]
1583/// (provided by the [`IntoIterator`] trait). See its documentation for more.
1584///
1585/// [`into_iter`]: BinaryHeap::into_iter
1586#[stable(feature = "rust1", since = "1.0.0")]
1587#[derive(Clone)]
1588pub struct IntoIter<
1589 T,
1590 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
1591> {
1592 iter: vec::IntoIter<T, A>,
1593}
1594
1595impl<T, A: Allocator> IntoIter<T, A> {
1596 /// Returns a reference to the underlying allocator.
1597 #[unstable(feature = "allocator_api", issue = "32838")]
1598 pub fn allocator(&self) -> &A {
1599 self.iter.allocator()
1600 }
1601}
1602
1603#[stable(feature = "collection_debug", since = "1.17.0")]
1604impl<T: fmt::Debug, A: Allocator> fmt::Debug for IntoIter<T, A> {
1605 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1606 f.debug_tuple("IntoIter").field(&self.iter.as_slice()).finish()
1607 }
1608}
1609
1610#[stable(feature = "rust1", since = "1.0.0")]
1611impl<T, A: Allocator> Iterator for IntoIter<T, A> {
1612 type Item = T;
1613
1614 #[inline]
1615 fn next(&mut self) -> Option<T> {
1616 self.iter.next()
1617 }
1618
1619 #[inline]
1620 fn size_hint(&self) -> (usize, Option<usize>) {
1621 self.iter.size_hint()
1622 }
1623}
1624
1625#[stable(feature = "rust1", since = "1.0.0")]
1626impl<T, A: Allocator> DoubleEndedIterator for IntoIter<T, A> {
1627 #[inline]
1628 fn next_back(&mut self) -> Option<T> {
1629 self.iter.next_back()
1630 }
1631}
1632
1633#[stable(feature = "rust1", since = "1.0.0")]
1634impl<T, A: Allocator> ExactSizeIterator for IntoIter<T, A> {
1635 fn is_empty(&self) -> bool {
1636 self.iter.is_empty()
1637 }
1638}
1639
1640#[stable(feature = "fused", since = "1.26.0")]
1641impl<T, A: Allocator> FusedIterator for IntoIter<T, A> {}
1642
1643#[doc(hidden)]
1644#[unstable(issue = "none", feature = "trusted_fused")]
1645unsafe impl<T, A: Allocator> TrustedFused for IntoIter<T, A> {}
1646
1647#[stable(feature = "default_iters", since = "1.70.0")]
1648impl<T> Default for IntoIter<T> {
1649 /// Creates an empty `binary_heap::IntoIter`.
1650 ///
1651 /// ```
1652 /// # use std::collections::binary_heap;
1653 /// let iter: binary_heap::IntoIter<u8> = Default::default();
1654 /// assert_eq!(iter.len(), 0);
1655 /// ```
1656 fn default() -> Self {
1657 IntoIter { iter: Default::default() }
1658 }
1659}
1660
1661// In addition to the SAFETY invariants of the following three unsafe traits
1662// also refer to the vec::in_place_collect module documentation to get an overview
1663#[unstable(issue = "none", feature = "inplace_iteration")]
1664#[doc(hidden)]
1665unsafe impl<T, A: Allocator> SourceIter for IntoIter<T, A> {
1666 type Source = IntoIter<T, A>;
1667
1668 #[inline]
1669 unsafe fn as_inner(&mut self) -> &mut Self::Source {
1670 self
1671 }
1672}
1673
1674#[unstable(issue = "none", feature = "inplace_iteration")]
1675#[doc(hidden)]
1676unsafe impl<I, A: Allocator> InPlaceIterable for IntoIter<I, A> {
1677 const EXPAND_BY: Option<NonZero<usize>> = NonZero::new(1);
1678 const MERGE_BY: Option<NonZero<usize>> = NonZero::new(1);
1679}
1680
1681#[cfg(not(test))]
1682unsafe impl<I> AsVecIntoIter for IntoIter<I> {
1683 type Item = I;
1684
1685 fn as_into_iter(&mut self) -> &mut vec::IntoIter<Self::Item> {
1686 &mut self.iter
1687 }
1688}
1689
1690#[must_use = "iterators are lazy and do nothing unless consumed"]
1691#[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")]
1692#[derive(Clone, Debug)]
1693pub struct IntoIterSorted<
1694 T,
1695 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
1696> {
1697 inner: BinaryHeap<T, A>,
1698}
1699
1700impl<T, A: Allocator> IntoIterSorted<T, A> {
1701 /// Returns a reference to the underlying allocator.
1702 #[unstable(feature = "allocator_api", issue = "32838")]
1703 pub fn allocator(&self) -> &A {
1704 self.inner.allocator()
1705 }
1706}
1707
1708#[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")]
1709impl<T: Ord, A: Allocator> Iterator for IntoIterSorted<T, A> {
1710 type Item = T;
1711
1712 #[inline]
1713 fn next(&mut self) -> Option<T> {
1714 self.inner.pop()
1715 }
1716
1717 #[inline]
1718 fn size_hint(&self) -> (usize, Option<usize>) {
1719 let exact = self.inner.len();
1720 (exact, Some(exact))
1721 }
1722}
1723
1724#[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")]
1725impl<T: Ord, A: Allocator> ExactSizeIterator for IntoIterSorted<T, A> {}
1726
1727#[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")]
1728impl<T: Ord, A: Allocator> FusedIterator for IntoIterSorted<T, A> {}
1729
1730#[unstable(feature = "trusted_len", issue = "37572")]
1731unsafe impl<T: Ord, A: Allocator> TrustedLen for IntoIterSorted<T, A> {}
1732
1733/// A draining iterator over the elements of a `BinaryHeap`.
1734///
1735/// This `struct` is created by [`BinaryHeap::drain()`]. See its
1736/// documentation for more.
1737///
1738/// [`drain`]: BinaryHeap::drain
1739#[stable(feature = "drain", since = "1.6.0")]
1740#[derive(Debug)]
1741pub struct Drain<
1742 'a,
1743 T: 'a,
1744 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
1745> {
1746 iter: vec::Drain<'a, T, A>,
1747}
1748
1749impl<T, A: Allocator> Drain<'_, T, A> {
1750 /// Returns a reference to the underlying allocator.
1751 #[unstable(feature = "allocator_api", issue = "32838")]
1752 pub fn allocator(&self) -> &A {
1753 self.iter.allocator()
1754 }
1755}
1756
1757#[stable(feature = "drain", since = "1.6.0")]
1758impl<T, A: Allocator> Iterator for Drain<'_, T, A> {
1759 type Item = T;
1760
1761 #[inline]
1762 fn next(&mut self) -> Option<T> {
1763 self.iter.next()
1764 }
1765
1766 #[inline]
1767 fn size_hint(&self) -> (usize, Option<usize>) {
1768 self.iter.size_hint()
1769 }
1770}
1771
1772#[stable(feature = "drain", since = "1.6.0")]
1773impl<T, A: Allocator> DoubleEndedIterator for Drain<'_, T, A> {
1774 #[inline]
1775 fn next_back(&mut self) -> Option<T> {
1776 self.iter.next_back()
1777 }
1778}
1779
1780#[stable(feature = "drain", since = "1.6.0")]
1781impl<T, A: Allocator> ExactSizeIterator for Drain<'_, T, A> {
1782 fn is_empty(&self) -> bool {
1783 self.iter.is_empty()
1784 }
1785}
1786
1787#[stable(feature = "fused", since = "1.26.0")]
1788impl<T, A: Allocator> FusedIterator for Drain<'_, T, A> {}
1789
1790/// A draining iterator over the elements of a `BinaryHeap`.
1791///
1792/// This `struct` is created by [`BinaryHeap::drain_sorted()`]. See its
1793/// documentation for more.
1794///
1795/// [`drain_sorted`]: BinaryHeap::drain_sorted
1796#[unstable(feature = "binary_heap_drain_sorted", issue = "59278")]
1797#[derive(Debug)]
1798pub struct DrainSorted<
1799 'a,
1800 T: Ord,
1801 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
1802> {
1803 inner: &'a mut BinaryHeap<T, A>,
1804}
1805
1806impl<'a, T: Ord, A: Allocator> DrainSorted<'a, T, A> {
1807 /// Returns a reference to the underlying allocator.
1808 #[unstable(feature = "allocator_api", issue = "32838")]
1809 pub fn allocator(&self) -> &A {
1810 self.inner.allocator()
1811 }
1812}
1813
1814#[unstable(feature = "binary_heap_drain_sorted", issue = "59278")]
1815impl<'a, T: Ord, A: Allocator> Drop for DrainSorted<'a, T, A> {
1816 /// Removes heap elements in heap order.
1817 fn drop(&mut self) {
1818 struct DropGuard<'r, 'a, T: Ord, A: Allocator>(&'r mut DrainSorted<'a, T, A>);
1819
1820 impl<'r, 'a, T: Ord, A: Allocator> Drop for DropGuard<'r, 'a, T, A> {
1821 fn drop(&mut self) {
1822 while self.0.inner.pop().is_some() {}
1823 }
1824 }
1825
1826 while let Some(item) = self.inner.pop() {
1827 let guard = DropGuard(self);
1828 drop(item);
1829 mem::forget(guard);
1830 }
1831 }
1832}
1833
1834#[unstable(feature = "binary_heap_drain_sorted", issue = "59278")]
1835impl<T: Ord, A: Allocator> Iterator for DrainSorted<'_, T, A> {
1836 type Item = T;
1837
1838 #[inline]
1839 fn next(&mut self) -> Option<T> {
1840 self.inner.pop()
1841 }
1842
1843 #[inline]
1844 fn size_hint(&self) -> (usize, Option<usize>) {
1845 let exact = self.inner.len();
1846 (exact, Some(exact))
1847 }
1848}
1849
1850#[unstable(feature = "binary_heap_drain_sorted", issue = "59278")]
1851impl<T: Ord, A: Allocator> ExactSizeIterator for DrainSorted<'_, T, A> {}
1852
1853#[unstable(feature = "binary_heap_drain_sorted", issue = "59278")]
1854impl<T: Ord, A: Allocator> FusedIterator for DrainSorted<'_, T, A> {}
1855
1856#[unstable(feature = "trusted_len", issue = "37572")]
1857unsafe impl<T: Ord, A: Allocator> TrustedLen for DrainSorted<'_, T, A> {}
1858
1859#[stable(feature = "binary_heap_extras_15", since = "1.5.0")]
1860impl<T: Ord, A: Allocator> From<Vec<T, A>> for BinaryHeap<T, A> {
1861 /// Converts a `Vec<T>` into a `BinaryHeap<T>`.
1862 ///
1863 /// This conversion happens in-place, and has *O*(*n*) time complexity.
1864 fn from(vec: Vec<T, A>) -> BinaryHeap<T, A> {
1865 let mut heap = BinaryHeap { data: vec };
1866 heap.rebuild();
1867 heap
1868 }
1869}
1870
1871#[stable(feature = "std_collections_from_array", since = "1.56.0")]
1872impl<T: Ord, const N: usize> From<[T; N]> for BinaryHeap<T> {
1873 /// ```
1874 /// use std::collections::BinaryHeap;
1875 ///
1876 /// let mut h1 = BinaryHeap::from([1, 4, 2, 3]);
1877 /// let mut h2: BinaryHeap<_> = [1, 4, 2, 3].into();
1878 /// while let Some((a, b)) = h1.pop().zip(h2.pop()) {
1879 /// assert_eq!(a, b);
1880 /// }
1881 /// ```
1882 fn from(arr: [T; N]) -> Self {
1883 Self::from_iter(arr)
1884 }
1885}
1886
1887#[stable(feature = "binary_heap_extras_15", since = "1.5.0")]
1888impl<T, A: Allocator> From<BinaryHeap<T, A>> for Vec<T, A> {
1889 /// Converts a `BinaryHeap<T>` into a `Vec<T>`.
1890 ///
1891 /// This conversion requires no data movement or allocation, and has
1892 /// constant time complexity.
1893 fn from(heap: BinaryHeap<T, A>) -> Vec<T, A> {
1894 heap.data
1895 }
1896}
1897
1898#[stable(feature = "rust1", since = "1.0.0")]
1899impl<T: Ord> FromIterator<T> for BinaryHeap<T> {
1900 fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> BinaryHeap<T> {
1901 BinaryHeap::from(iter.into_iter().collect::<Vec<_>>())
1902 }
1903}
1904
1905#[stable(feature = "rust1", since = "1.0.0")]
1906impl<T, A: Allocator> IntoIterator for BinaryHeap<T, A> {
1907 type Item = T;
1908 type IntoIter = IntoIter<T, A>;
1909
1910 /// Creates a consuming iterator, that is, one that moves each value out of
1911 /// the binary heap in arbitrary order. The binary heap cannot be used
1912 /// after calling this.
1913 ///
1914 /// # Examples
1915 ///
1916 /// Basic usage:
1917 ///
1918 /// ```
1919 /// use std::collections::BinaryHeap;
1920 /// let heap = BinaryHeap::from([1, 2, 3, 4]);
1921 ///
1922 /// // Print 1, 2, 3, 4 in arbitrary order
1923 /// for x in heap.into_iter() {
1924 /// // x has type i32, not &i32
1925 /// println!("{x}");
1926 /// }
1927 /// ```
1928 fn into_iter(self) -> IntoIter<T, A> {
1929 IntoIter { iter: self.data.into_iter() }
1930 }
1931}
1932
1933#[stable(feature = "rust1", since = "1.0.0")]
1934impl<'a, T, A: Allocator> IntoIterator for &'a BinaryHeap<T, A> {
1935 type Item = &'a T;
1936 type IntoIter = Iter<'a, T>;
1937
1938 fn into_iter(self) -> Iter<'a, T> {
1939 self.iter()
1940 }
1941}
1942
1943#[stable(feature = "rust1", since = "1.0.0")]
1944impl<T: Ord, A: Allocator> Extend<T> for BinaryHeap<T, A> {
1945 #[inline]
1946 fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
1947 let guard = RebuildOnDrop { rebuild_from: self.len(), heap: self };
1948 guard.heap.data.extend(iter);
1949 }
1950
1951 #[inline]
1952 fn extend_one(&mut self, item: T) {
1953 self.push(item);
1954 }
1955
1956 #[inline]
1957 fn extend_reserve(&mut self, additional: usize) {
1958 self.reserve(additional);
1959 }
1960}
1961
1962#[stable(feature = "extend_ref", since = "1.2.0")]
1963impl<'a, T: 'a + Ord + Copy, A: Allocator> Extend<&'a T> for BinaryHeap<T, A> {
1964 fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
1965 self.extend(iter.into_iter().cloned());
1966 }
1967
1968 #[inline]
1969 fn extend_one(&mut self, &item: &'a T) {
1970 self.push(item);
1971 }
1972
1973 #[inline]
1974 fn extend_reserve(&mut self, additional: usize) {
1975 self.reserve(additional);
1976 }
1977}