alloc/
raw_vec.rs

1#![unstable(feature = "raw_vec_internals", reason = "unstable const warnings", issue = "none")]
2
3use core::marker::PhantomData;
4use core::mem::{ManuallyDrop, MaybeUninit, SizedTypeProperties};
5use core::ptr::{self, NonNull, Unique};
6use core::{cmp, hint};
7
8#[cfg(not(no_global_oom_handling))]
9use crate::alloc::handle_alloc_error;
10use crate::alloc::{Allocator, Global, Layout};
11use crate::boxed::Box;
12use crate::collections::TryReserveError;
13use crate::collections::TryReserveErrorKind::*;
14
15#[cfg(test)]
16mod tests;
17
18// One central function responsible for reporting capacity overflows. This'll
19// ensure that the code generation related to these panics is minimal as there's
20// only one location which panics rather than a bunch throughout the module.
21#[cfg(not(no_global_oom_handling))]
22#[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
23#[track_caller]
24fn capacity_overflow() -> ! {
25    panic!("capacity overflow");
26}
27
28enum AllocInit {
29    /// The contents of the new memory are uninitialized.
30    Uninitialized,
31    #[cfg(not(no_global_oom_handling))]
32    /// The new memory is guaranteed to be zeroed.
33    Zeroed,
34}
35
36type Cap = core::num::niche_types::UsizeNoHighBit;
37
38const ZERO_CAP: Cap = unsafe { Cap::new_unchecked(0) };
39
40/// `Cap(cap)`, except if `T` is a ZST then `Cap::ZERO`.
41///
42/// # Safety: cap must be <= `isize::MAX`.
43unsafe fn new_cap<T>(cap: usize) -> Cap {
44    if T::IS_ZST { ZERO_CAP } else { unsafe { Cap::new_unchecked(cap) } }
45}
46
47/// A low-level utility for more ergonomically allocating, reallocating, and deallocating
48/// a buffer of memory on the heap without having to worry about all the corner cases
49/// involved. This type is excellent for building your own data structures like Vec and VecDeque.
50/// In particular:
51///
52/// * Produces `Unique::dangling()` on zero-sized types.
53/// * Produces `Unique::dangling()` on zero-length allocations.
54/// * Avoids freeing `Unique::dangling()`.
55/// * Catches all overflows in capacity computations (promotes them to "capacity overflow" panics).
56/// * Guards against 32-bit systems allocating more than `isize::MAX` bytes.
57/// * Guards against overflowing your length.
58/// * Calls `handle_alloc_error` for fallible allocations.
59/// * Contains a `ptr::Unique` and thus endows the user with all related benefits.
60/// * Uses the excess returned from the allocator to use the largest available capacity.
61///
62/// This type does not in anyway inspect the memory that it manages. When dropped it *will*
63/// free its memory, but it *won't* try to drop its contents. It is up to the user of `RawVec`
64/// to handle the actual things *stored* inside of a `RawVec`.
65///
66/// Note that the excess of a zero-sized types is always infinite, so `capacity()` always returns
67/// `usize::MAX`. This means that you need to be careful when round-tripping this type with a
68/// `Box<[T]>`, since `capacity()` won't yield the length.
69#[allow(missing_debug_implementations)]
70pub(crate) struct RawVec<T, A: Allocator = Global> {
71    inner: RawVecInner<A>,
72    _marker: PhantomData<T>,
73}
74
75/// Like a `RawVec`, but only generic over the allocator, not the type.
76///
77/// As such, all the methods need the layout passed-in as a parameter.
78///
79/// Having this separation reduces the amount of code we need to monomorphize,
80/// as most operations don't need the actual type, just its layout.
81#[allow(missing_debug_implementations)]
82struct RawVecInner<A: Allocator = Global> {
83    ptr: Unique<u8>,
84    /// Never used for ZSTs; it's `capacity()`'s responsibility to return usize::MAX in that case.
85    ///
86    /// # Safety
87    ///
88    /// `cap` must be in the `0..=isize::MAX` range.
89    cap: Cap,
90    alloc: A,
91}
92
93impl<T> RawVec<T, Global> {
94    /// Creates the biggest possible `RawVec` (on the system heap)
95    /// without allocating. If `T` has positive size, then this makes a
96    /// `RawVec` with capacity `0`. If `T` is zero-sized, then it makes a
97    /// `RawVec` with capacity `usize::MAX`. Useful for implementing
98    /// delayed allocation.
99    #[must_use]
100    pub(crate) const fn new() -> Self {
101        Self::new_in(Global)
102    }
103
104    /// Creates a `RawVec` (on the system heap) with exactly the
105    /// capacity and alignment requirements for a `[T; capacity]`. This is
106    /// equivalent to calling `RawVec::new` when `capacity` is `0` or `T` is
107    /// zero-sized. Note that if `T` is zero-sized this means you will
108    /// *not* get a `RawVec` with the requested capacity.
109    ///
110    /// Non-fallible version of `try_with_capacity`
111    ///
112    /// # Panics
113    ///
114    /// Panics if the requested capacity exceeds `isize::MAX` bytes.
115    ///
116    /// # Aborts
117    ///
118    /// Aborts on OOM.
119    #[cfg(not(any(no_global_oom_handling, test)))]
120    #[must_use]
121    #[inline]
122    #[track_caller]
123    pub(crate) fn with_capacity(capacity: usize) -> Self {
124        Self { inner: RawVecInner::with_capacity(capacity, T::LAYOUT), _marker: PhantomData }
125    }
126
127    /// Like `with_capacity`, but guarantees the buffer is zeroed.
128    #[cfg(not(any(no_global_oom_handling, test)))]
129    #[must_use]
130    #[inline]
131    #[track_caller]
132    pub(crate) fn with_capacity_zeroed(capacity: usize) -> Self {
133        Self {
134            inner: RawVecInner::with_capacity_zeroed_in(capacity, Global, T::LAYOUT),
135            _marker: PhantomData,
136        }
137    }
138}
139
140impl RawVecInner<Global> {
141    #[cfg(not(any(no_global_oom_handling, test)))]
142    #[must_use]
143    #[inline]
144    #[track_caller]
145    fn with_capacity(capacity: usize, elem_layout: Layout) -> Self {
146        match Self::try_allocate_in(capacity, AllocInit::Uninitialized, Global, elem_layout) {
147            Ok(res) => res,
148            Err(err) => handle_error(err),
149        }
150    }
151}
152
153// Tiny Vecs are dumb. Skip to:
154// - 8 if the element size is 1, because any heap allocators is likely
155//   to round up a request of less than 8 bytes to at least 8 bytes.
156// - 4 if elements are moderate-sized (<= 1 KiB).
157// - 1 otherwise, to avoid wasting too much space for very short Vecs.
158const fn min_non_zero_cap(size: usize) -> usize {
159    if size == 1 {
160        8
161    } else if size <= 1024 {
162        4
163    } else {
164        1
165    }
166}
167
168impl<T, A: Allocator> RawVec<T, A> {
169    #[cfg(not(no_global_oom_handling))]
170    pub(crate) const MIN_NON_ZERO_CAP: usize = min_non_zero_cap(size_of::<T>());
171
172    /// Like `new`, but parameterized over the choice of allocator for
173    /// the returned `RawVec`.
174    #[inline]
175    pub(crate) const fn new_in(alloc: A) -> Self {
176        Self { inner: RawVecInner::new_in(alloc, align_of::<T>()), _marker: PhantomData }
177    }
178
179    /// Like `with_capacity`, but parameterized over the choice of
180    /// allocator for the returned `RawVec`.
181    #[cfg(not(no_global_oom_handling))]
182    #[inline]
183    #[track_caller]
184    pub(crate) fn with_capacity_in(capacity: usize, alloc: A) -> Self {
185        Self {
186            inner: RawVecInner::with_capacity_in(capacity, alloc, T::LAYOUT),
187            _marker: PhantomData,
188        }
189    }
190
191    /// Like `try_with_capacity`, but parameterized over the choice of
192    /// allocator for the returned `RawVec`.
193    #[inline]
194    pub(crate) fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> {
195        match RawVecInner::try_with_capacity_in(capacity, alloc, T::LAYOUT) {
196            Ok(inner) => Ok(Self { inner, _marker: PhantomData }),
197            Err(e) => Err(e),
198        }
199    }
200
201    /// Like `with_capacity_zeroed`, but parameterized over the choice
202    /// of allocator for the returned `RawVec`.
203    #[cfg(not(no_global_oom_handling))]
204    #[inline]
205    #[track_caller]
206    pub(crate) fn with_capacity_zeroed_in(capacity: usize, alloc: A) -> Self {
207        Self {
208            inner: RawVecInner::with_capacity_zeroed_in(capacity, alloc, T::LAYOUT),
209            _marker: PhantomData,
210        }
211    }
212
213    /// Converts the entire buffer into `Box<[MaybeUninit<T>]>` with the specified `len`.
214    ///
215    /// Note that this will correctly reconstitute any `cap` changes
216    /// that may have been performed. (See description of type for details.)
217    ///
218    /// # Safety
219    ///
220    /// * `len` must be greater than or equal to the most recently requested capacity, and
221    /// * `len` must be less than or equal to `self.capacity()`.
222    ///
223    /// Note, that the requested capacity and `self.capacity()` could differ, as
224    /// an allocator could overallocate and return a greater memory block than requested.
225    pub(crate) unsafe fn into_box(self, len: usize) -> Box<[MaybeUninit<T>], A> {
226        // Sanity-check one half of the safety requirement (we cannot check the other half).
227        debug_assert!(
228            len <= self.capacity(),
229            "`len` must be smaller than or equal to `self.capacity()`"
230        );
231
232        let me = ManuallyDrop::new(self);
233        unsafe {
234            let slice = ptr::slice_from_raw_parts_mut(me.ptr() as *mut MaybeUninit<T>, len);
235            Box::from_raw_in(slice, ptr::read(&me.inner.alloc))
236        }
237    }
238
239    /// Reconstitutes a `RawVec` from a pointer, capacity, and allocator.
240    ///
241    /// # Safety
242    ///
243    /// The `ptr` must be allocated (via the given allocator `alloc`), and with the given
244    /// `capacity`.
245    /// The `capacity` cannot exceed `isize::MAX` for sized types. (only a concern on 32-bit
246    /// systems). For ZSTs capacity is ignored.
247    /// If the `ptr` and `capacity` come from a `RawVec` created via `alloc`, then this is
248    /// guaranteed.
249    #[inline]
250    pub(crate) unsafe fn from_raw_parts_in(ptr: *mut T, capacity: usize, alloc: A) -> Self {
251        // SAFETY: Precondition passed to the caller
252        unsafe {
253            let ptr = ptr.cast();
254            let capacity = new_cap::<T>(capacity);
255            Self {
256                inner: RawVecInner::from_raw_parts_in(ptr, capacity, alloc),
257                _marker: PhantomData,
258            }
259        }
260    }
261
262    /// A convenience method for hoisting the non-null precondition out of [`RawVec::from_raw_parts_in`].
263    ///
264    /// # Safety
265    ///
266    /// See [`RawVec::from_raw_parts_in`].
267    #[inline]
268    pub(crate) unsafe fn from_nonnull_in(ptr: NonNull<T>, capacity: usize, alloc: A) -> Self {
269        // SAFETY: Precondition passed to the caller
270        unsafe {
271            let ptr = ptr.cast();
272            let capacity = new_cap::<T>(capacity);
273            Self { inner: RawVecInner::from_nonnull_in(ptr, capacity, alloc), _marker: PhantomData }
274        }
275    }
276
277    /// Gets a raw pointer to the start of the allocation. Note that this is
278    /// `Unique::dangling()` if `capacity == 0` or `T` is zero-sized. In the former case, you must
279    /// be careful.
280    #[inline]
281    pub(crate) const fn ptr(&self) -> *mut T {
282        self.inner.ptr()
283    }
284
285    #[inline]
286    pub(crate) fn non_null(&self) -> NonNull<T> {
287        self.inner.non_null()
288    }
289
290    /// Gets the capacity of the allocation.
291    ///
292    /// This will always be `usize::MAX` if `T` is zero-sized.
293    #[inline]
294    pub(crate) const fn capacity(&self) -> usize {
295        self.inner.capacity(size_of::<T>())
296    }
297
298    /// Returns a shared reference to the allocator backing this `RawVec`.
299    #[inline]
300    pub(crate) fn allocator(&self) -> &A {
301        self.inner.allocator()
302    }
303
304    /// Ensures that the buffer contains at least enough space to hold `len +
305    /// additional` elements. If it doesn't already have enough capacity, will
306    /// reallocate enough space plus comfortable slack space to get amortized
307    /// *O*(1) behavior. Will limit this behavior if it would needlessly cause
308    /// itself to panic.
309    ///
310    /// If `len` exceeds `self.capacity()`, this may fail to actually allocate
311    /// the requested space. This is not really unsafe, but the unsafe
312    /// code *you* write that relies on the behavior of this function may break.
313    ///
314    /// This is ideal for implementing a bulk-push operation like `extend`.
315    ///
316    /// # Panics
317    ///
318    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
319    ///
320    /// # Aborts
321    ///
322    /// Aborts on OOM.
323    #[cfg(not(no_global_oom_handling))]
324    #[inline]
325    #[track_caller]
326    pub(crate) fn reserve(&mut self, len: usize, additional: usize) {
327        self.inner.reserve(len, additional, T::LAYOUT)
328    }
329
330    /// A specialized version of `self.reserve(len, 1)` which requires the
331    /// caller to ensure `len == self.capacity()`.
332    #[cfg(not(no_global_oom_handling))]
333    #[inline(never)]
334    #[track_caller]
335    pub(crate) fn grow_one(&mut self) {
336        self.inner.grow_one(T::LAYOUT)
337    }
338
339    /// The same as `reserve`, but returns on errors instead of panicking or aborting.
340    pub(crate) fn try_reserve(
341        &mut self,
342        len: usize,
343        additional: usize,
344    ) -> Result<(), TryReserveError> {
345        self.inner.try_reserve(len, additional, T::LAYOUT)
346    }
347
348    /// Ensures that the buffer contains at least enough space to hold `len +
349    /// additional` elements. If it doesn't already, will reallocate the
350    /// minimum possible amount of memory necessary. Generally this will be
351    /// exactly the amount of memory necessary, but in principle the allocator
352    /// is free to give back more than we asked for.
353    ///
354    /// If `len` exceeds `self.capacity()`, this may fail to actually allocate
355    /// the requested space. This is not really unsafe, but the unsafe code
356    /// *you* write that relies on the behavior of this function may break.
357    ///
358    /// # Panics
359    ///
360    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
361    ///
362    /// # Aborts
363    ///
364    /// Aborts on OOM.
365    #[cfg(not(no_global_oom_handling))]
366    #[track_caller]
367    pub(crate) fn reserve_exact(&mut self, len: usize, additional: usize) {
368        self.inner.reserve_exact(len, additional, T::LAYOUT)
369    }
370
371    /// The same as `reserve_exact`, but returns on errors instead of panicking or aborting.
372    pub(crate) fn try_reserve_exact(
373        &mut self,
374        len: usize,
375        additional: usize,
376    ) -> Result<(), TryReserveError> {
377        self.inner.try_reserve_exact(len, additional, T::LAYOUT)
378    }
379
380    /// Shrinks the buffer down to the specified capacity. If the given amount
381    /// is 0, actually completely deallocates.
382    ///
383    /// # Panics
384    ///
385    /// Panics if the given amount is *larger* than the current capacity.
386    ///
387    /// # Aborts
388    ///
389    /// Aborts on OOM.
390    #[cfg(not(no_global_oom_handling))]
391    #[track_caller]
392    #[inline]
393    pub(crate) fn shrink_to_fit(&mut self, cap: usize) {
394        self.inner.shrink_to_fit(cap, T::LAYOUT)
395    }
396}
397
398unsafe impl<#[may_dangle] T, A: Allocator> Drop for RawVec<T, A> {
399    /// Frees the memory owned by the `RawVec` *without* trying to drop its contents.
400    fn drop(&mut self) {
401        // SAFETY: We are in a Drop impl, self.inner will not be used again.
402        unsafe { self.inner.deallocate(T::LAYOUT) }
403    }
404}
405
406impl<A: Allocator> RawVecInner<A> {
407    #[inline]
408    const fn new_in(alloc: A, align: usize) -> Self {
409        let ptr = unsafe { core::mem::transmute(align) };
410        // `cap: 0` means "unallocated". zero-sized types are ignored.
411        Self { ptr, cap: ZERO_CAP, alloc }
412    }
413
414    #[cfg(not(no_global_oom_handling))]
415    #[inline]
416    #[track_caller]
417    fn with_capacity_in(capacity: usize, alloc: A, elem_layout: Layout) -> Self {
418        match Self::try_allocate_in(capacity, AllocInit::Uninitialized, alloc, elem_layout) {
419            Ok(this) => {
420                unsafe {
421                    // Make it more obvious that a subsequent Vec::reserve(capacity) will not allocate.
422                    hint::assert_unchecked(!this.needs_to_grow(0, capacity, elem_layout));
423                }
424                this
425            }
426            Err(err) => handle_error(err),
427        }
428    }
429
430    #[inline]
431    fn try_with_capacity_in(
432        capacity: usize,
433        alloc: A,
434        elem_layout: Layout,
435    ) -> Result<Self, TryReserveError> {
436        Self::try_allocate_in(capacity, AllocInit::Uninitialized, alloc, elem_layout)
437    }
438
439    #[cfg(not(no_global_oom_handling))]
440    #[inline]
441    #[track_caller]
442    fn with_capacity_zeroed_in(capacity: usize, alloc: A, elem_layout: Layout) -> Self {
443        match Self::try_allocate_in(capacity, AllocInit::Zeroed, alloc, elem_layout) {
444            Ok(res) => res,
445            Err(err) => handle_error(err),
446        }
447    }
448
449    fn try_allocate_in(
450        capacity: usize,
451        init: AllocInit,
452        alloc: A,
453        elem_layout: Layout,
454    ) -> Result<Self, TryReserveError> {
455        // We avoid `unwrap_or_else` here because it bloats the amount of
456        // LLVM IR generated.
457        let layout = match layout_array(capacity, elem_layout) {
458            Ok(layout) => layout,
459            Err(_) => return Err(CapacityOverflow.into()),
460        };
461
462        // Don't allocate here because `Drop` will not deallocate when `capacity` is 0.
463        if layout.size() == 0 {
464            return Ok(Self::new_in(alloc, elem_layout.align()));
465        }
466
467        if let Err(err) = alloc_guard(layout.size()) {
468            return Err(err);
469        }
470
471        let result = match init {
472            AllocInit::Uninitialized => alloc.allocate(layout),
473            #[cfg(not(no_global_oom_handling))]
474            AllocInit::Zeroed => alloc.allocate_zeroed(layout),
475        };
476        let ptr = match result {
477            Ok(ptr) => ptr,
478            Err(_) => return Err(AllocError { layout, non_exhaustive: () }.into()),
479        };
480
481        // Allocators currently return a `NonNull<[u8]>` whose length
482        // matches the size requested. If that ever changes, the capacity
483        // here should change to `ptr.len() / mem::size_of::<T>()`.
484        Ok(Self {
485            ptr: Unique::from(ptr.cast()),
486            cap: unsafe { Cap::new_unchecked(capacity) },
487            alloc,
488        })
489    }
490
491    #[inline]
492    unsafe fn from_raw_parts_in(ptr: *mut u8, cap: Cap, alloc: A) -> Self {
493        Self { ptr: unsafe { Unique::new_unchecked(ptr) }, cap, alloc }
494    }
495
496    #[inline]
497    unsafe fn from_nonnull_in(ptr: NonNull<u8>, cap: Cap, alloc: A) -> Self {
498        Self { ptr: Unique::from(ptr), cap, alloc }
499    }
500
501    #[inline]
502    const fn ptr<T>(&self) -> *mut T {
503        self.non_null::<T>().as_ptr()
504    }
505
506    #[inline]
507    const fn non_null<T>(&self) -> NonNull<T> {
508        self.ptr.cast().as_non_null_ptr()
509    }
510
511    #[inline]
512    const fn capacity(&self, elem_size: usize) -> usize {
513        if elem_size == 0 { usize::MAX } else { self.cap.as_inner() }
514    }
515
516    #[inline]
517    fn allocator(&self) -> &A {
518        &self.alloc
519    }
520
521    #[inline]
522    fn current_memory(&self, elem_layout: Layout) -> Option<(NonNull<u8>, Layout)> {
523        if elem_layout.size() == 0 || self.cap.as_inner() == 0 {
524            None
525        } else {
526            // We could use Layout::array here which ensures the absence of isize and usize overflows
527            // and could hypothetically handle differences between stride and size, but this memory
528            // has already been allocated so we know it can't overflow and currently Rust does not
529            // support such types. So we can do better by skipping some checks and avoid an unwrap.
530            unsafe {
531                let alloc_size = elem_layout.size().unchecked_mul(self.cap.as_inner());
532                let layout = Layout::from_size_align_unchecked(alloc_size, elem_layout.align());
533                Some((self.ptr.into(), layout))
534            }
535        }
536    }
537
538    #[cfg(not(no_global_oom_handling))]
539    #[inline]
540    #[track_caller]
541    fn reserve(&mut self, len: usize, additional: usize, elem_layout: Layout) {
542        // Callers expect this function to be very cheap when there is already sufficient capacity.
543        // Therefore, we move all the resizing and error-handling logic from grow_amortized and
544        // handle_reserve behind a call, while making sure that this function is likely to be
545        // inlined as just a comparison and a call if the comparison fails.
546        #[cold]
547        fn do_reserve_and_handle<A: Allocator>(
548            slf: &mut RawVecInner<A>,
549            len: usize,
550            additional: usize,
551            elem_layout: Layout,
552        ) {
553            if let Err(err) = slf.grow_amortized(len, additional, elem_layout) {
554                handle_error(err);
555            }
556        }
557
558        if self.needs_to_grow(len, additional, elem_layout) {
559            do_reserve_and_handle(self, len, additional, elem_layout);
560        }
561    }
562
563    #[cfg(not(no_global_oom_handling))]
564    #[inline]
565    #[track_caller]
566    fn grow_one(&mut self, elem_layout: Layout) {
567        if let Err(err) = self.grow_amortized(self.cap.as_inner(), 1, elem_layout) {
568            handle_error(err);
569        }
570    }
571
572    fn try_reserve(
573        &mut self,
574        len: usize,
575        additional: usize,
576        elem_layout: Layout,
577    ) -> Result<(), TryReserveError> {
578        if self.needs_to_grow(len, additional, elem_layout) {
579            self.grow_amortized(len, additional, elem_layout)?;
580        }
581        unsafe {
582            // Inform the optimizer that the reservation has succeeded or wasn't needed
583            hint::assert_unchecked(!self.needs_to_grow(len, additional, elem_layout));
584        }
585        Ok(())
586    }
587
588    #[cfg(not(no_global_oom_handling))]
589    #[track_caller]
590    fn reserve_exact(&mut self, len: usize, additional: usize, elem_layout: Layout) {
591        if let Err(err) = self.try_reserve_exact(len, additional, elem_layout) {
592            handle_error(err);
593        }
594    }
595
596    fn try_reserve_exact(
597        &mut self,
598        len: usize,
599        additional: usize,
600        elem_layout: Layout,
601    ) -> Result<(), TryReserveError> {
602        if self.needs_to_grow(len, additional, elem_layout) {
603            self.grow_exact(len, additional, elem_layout)?;
604        }
605        unsafe {
606            // Inform the optimizer that the reservation has succeeded or wasn't needed
607            hint::assert_unchecked(!self.needs_to_grow(len, additional, elem_layout));
608        }
609        Ok(())
610    }
611
612    #[cfg(not(no_global_oom_handling))]
613    #[inline]
614    #[track_caller]
615    fn shrink_to_fit(&mut self, cap: usize, elem_layout: Layout) {
616        if let Err(err) = self.shrink(cap, elem_layout) {
617            handle_error(err);
618        }
619    }
620
621    #[inline]
622    fn needs_to_grow(&self, len: usize, additional: usize, elem_layout: Layout) -> bool {
623        additional > self.capacity(elem_layout.size()).wrapping_sub(len)
624    }
625
626    #[inline]
627    unsafe fn set_ptr_and_cap(&mut self, ptr: NonNull<[u8]>, cap: usize) {
628        // Allocators currently return a `NonNull<[u8]>` whose length matches
629        // the size requested. If that ever changes, the capacity here should
630        // change to `ptr.len() / mem::size_of::<T>()`.
631        self.ptr = Unique::from(ptr.cast());
632        self.cap = unsafe { Cap::new_unchecked(cap) };
633    }
634
635    fn grow_amortized(
636        &mut self,
637        len: usize,
638        additional: usize,
639        elem_layout: Layout,
640    ) -> Result<(), TryReserveError> {
641        // This is ensured by the calling contexts.
642        debug_assert!(additional > 0);
643
644        if elem_layout.size() == 0 {
645            // Since we return a capacity of `usize::MAX` when `elem_size` is
646            // 0, getting to here necessarily means the `RawVec` is overfull.
647            return Err(CapacityOverflow.into());
648        }
649
650        // Nothing we can really do about these checks, sadly.
651        let required_cap = len.checked_add(additional).ok_or(CapacityOverflow)?;
652
653        // This guarantees exponential growth. The doubling cannot overflow
654        // because `cap <= isize::MAX` and the type of `cap` is `usize`.
655        let cap = cmp::max(self.cap.as_inner() * 2, required_cap);
656        let cap = cmp::max(min_non_zero_cap(elem_layout.size()), cap);
657
658        let new_layout = layout_array(cap, elem_layout)?;
659
660        let ptr = finish_grow(new_layout, self.current_memory(elem_layout), &mut self.alloc)?;
661        // SAFETY: finish_grow would have resulted in a capacity overflow if we tried to allocate more than `isize::MAX` items
662
663        unsafe { self.set_ptr_and_cap(ptr, cap) };
664        Ok(())
665    }
666
667    fn grow_exact(
668        &mut self,
669        len: usize,
670        additional: usize,
671        elem_layout: Layout,
672    ) -> Result<(), TryReserveError> {
673        if elem_layout.size() == 0 {
674            // Since we return a capacity of `usize::MAX` when the type size is
675            // 0, getting to here necessarily means the `RawVec` is overfull.
676            return Err(CapacityOverflow.into());
677        }
678
679        let cap = len.checked_add(additional).ok_or(CapacityOverflow)?;
680        let new_layout = layout_array(cap, elem_layout)?;
681
682        let ptr = finish_grow(new_layout, self.current_memory(elem_layout), &mut self.alloc)?;
683        // SAFETY: finish_grow would have resulted in a capacity overflow if we tried to allocate more than `isize::MAX` items
684        unsafe {
685            self.set_ptr_and_cap(ptr, cap);
686        }
687        Ok(())
688    }
689
690    #[cfg(not(no_global_oom_handling))]
691    #[inline]
692    fn shrink(&mut self, cap: usize, elem_layout: Layout) -> Result<(), TryReserveError> {
693        assert!(cap <= self.capacity(elem_layout.size()), "Tried to shrink to a larger capacity");
694        // SAFETY: Just checked this isn't trying to grow
695        unsafe { self.shrink_unchecked(cap, elem_layout) }
696    }
697
698    /// `shrink`, but without the capacity check.
699    ///
700    /// This is split out so that `shrink` can inline the check, since it
701    /// optimizes out in things like `shrink_to_fit`, without needing to
702    /// also inline all this code, as doing that ends up failing the
703    /// `vec-shrink-panic` codegen test when `shrink_to_fit` ends up being too
704    /// big for LLVM to be willing to inline.
705    ///
706    /// # Safety
707    /// `cap <= self.capacity()`
708    #[cfg(not(no_global_oom_handling))]
709    unsafe fn shrink_unchecked(
710        &mut self,
711        cap: usize,
712        elem_layout: Layout,
713    ) -> Result<(), TryReserveError> {
714        let (ptr, layout) =
715            if let Some(mem) = self.current_memory(elem_layout) { mem } else { return Ok(()) };
716
717        // If shrinking to 0, deallocate the buffer. We don't reach this point
718        // for the T::IS_ZST case since current_memory() will have returned
719        // None.
720        if cap == 0 {
721            unsafe { self.alloc.deallocate(ptr, layout) };
722            self.ptr =
723                unsafe { Unique::new_unchecked(ptr::without_provenance_mut(elem_layout.align())) };
724            self.cap = ZERO_CAP;
725        } else {
726            let ptr = unsafe {
727                // Layout cannot overflow here because it would have
728                // overflowed earlier when capacity was larger.
729                let new_size = elem_layout.size().unchecked_mul(cap);
730                let new_layout = Layout::from_size_align_unchecked(new_size, layout.align());
731                self.alloc
732                    .shrink(ptr, layout, new_layout)
733                    .map_err(|_| AllocError { layout: new_layout, non_exhaustive: () })?
734            };
735            // SAFETY: if the allocation is valid, then the capacity is too
736            unsafe {
737                self.set_ptr_and_cap(ptr, cap);
738            }
739        }
740        Ok(())
741    }
742
743    /// # Safety
744    ///
745    /// This function deallocates the owned allocation, but does not update `ptr` or `cap` to
746    /// prevent double-free or use-after-free. Essentially, do not do anything with the caller
747    /// after this function returns.
748    /// Ideally this function would take `self` by move, but it cannot because it exists to be
749    /// called from a `Drop` impl.
750    unsafe fn deallocate(&mut self, elem_layout: Layout) {
751        if let Some((ptr, layout)) = self.current_memory(elem_layout) {
752            unsafe {
753                self.alloc.deallocate(ptr, layout);
754            }
755        }
756    }
757}
758
759// not marked inline(never) since we want optimizers to be able to observe the specifics of this
760// function, see tests/codegen/vec-reserve-extend.rs.
761#[cold]
762fn finish_grow<A>(
763    new_layout: Layout,
764    current_memory: Option<(NonNull<u8>, Layout)>,
765    alloc: &mut A,
766) -> Result<NonNull<[u8]>, TryReserveError>
767where
768    A: Allocator,
769{
770    alloc_guard(new_layout.size())?;
771
772    let memory = if let Some((ptr, old_layout)) = current_memory {
773        debug_assert_eq!(old_layout.align(), new_layout.align());
774        unsafe {
775            // The allocator checks for alignment equality
776            hint::assert_unchecked(old_layout.align() == new_layout.align());
777            alloc.grow(ptr, old_layout, new_layout)
778        }
779    } else {
780        alloc.allocate(new_layout)
781    };
782
783    memory.map_err(|_| AllocError { layout: new_layout, non_exhaustive: () }.into())
784}
785
786// Central function for reserve error handling.
787#[cfg(not(no_global_oom_handling))]
788#[cold]
789#[optimize(size)]
790#[track_caller]
791fn handle_error(e: TryReserveError) -> ! {
792    match e.kind() {
793        CapacityOverflow => capacity_overflow(),
794        AllocError { layout, .. } => handle_alloc_error(layout),
795    }
796}
797
798// We need to guarantee the following:
799// * We don't ever allocate `> isize::MAX` byte-size objects.
800// * We don't overflow `usize::MAX` and actually allocate too little.
801//
802// On 64-bit we just need to check for overflow since trying to allocate
803// `> isize::MAX` bytes will surely fail. On 32-bit and 16-bit we need to add
804// an extra guard for this in case we're running on a platform which can use
805// all 4GB in user-space, e.g., PAE or x32.
806#[inline]
807fn alloc_guard(alloc_size: usize) -> Result<(), TryReserveError> {
808    if usize::BITS < 64 && alloc_size > isize::MAX as usize {
809        Err(CapacityOverflow.into())
810    } else {
811        Ok(())
812    }
813}
814
815#[inline]
816fn layout_array(cap: usize, elem_layout: Layout) -> Result<Layout, TryReserveError> {
817    elem_layout.repeat(cap).map(|(layout, _pad)| layout).map_err(|_| CapacityOverflow.into())
818}