1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
use crate::future::Future;

/// Conversion into a `Future`.
///
/// By implementing `IntoFuture` for a type, you define how it will be
/// converted to a future.
///
/// # `.await` desugaring
///
/// The `.await` keyword desugars into a call to `IntoFuture::into_future`
/// first before polling the future to completion. `IntoFuture` is implemented
/// for all `T: Future` which means the `into_future` method will be available
/// on all futures.
///
/// ```no_run
/// use std::future::IntoFuture;
///
/// # async fn foo() {
/// let v = async { "meow" };
/// let mut fut = v.into_future();
/// assert_eq!("meow", fut.await);
/// # }
/// ```
///
/// # Async builders
///
/// When implementing futures manually there will often be a choice between
/// implementing `Future` or `IntoFuture` for a type. Implementing `Future` is a
/// good choice in most cases. But implementing `IntoFuture` is most useful when
/// implementing "async builder" types, which allow their values to be modified
/// multiple times before being `.await`ed.
///
/// ```rust
/// use std::future::{ready, Ready, IntoFuture};
///
/// /// Eventually multiply two numbers
/// pub struct Multiply {
///     num: u16,
///     factor: u16,
/// }
///
/// impl Multiply {
///     /// Construct a new instance of `Multiply`.
///     pub fn new(num: u16, factor: u16) -> Self {
///         Self { num, factor }
///     }
///
///     /// Set the number to multiply by the factor.
///     pub fn number(mut self, num: u16) -> Self {
///         self.num = num;
///         self
///     }
///
///     /// Set the factor to multiply the number with.
///     pub fn factor(mut self, factor: u16) -> Self {
///         self.factor = factor;
///         self
///     }
/// }
///
/// impl IntoFuture for Multiply {
///     type Output = u16;
///     type IntoFuture = Ready<Self::Output>;
///
///     fn into_future(self) -> Self::IntoFuture {
///         ready(self.num * self.factor)
///     }
/// }
///
/// // NOTE: Rust does not yet have an `async fn main` function, that functionality
/// // currently only exists in the ecosystem.
/// async fn run() {
///     let num = Multiply::new(0, 0)  // initialize the builder to number: 0, factor: 0
///         .number(2)                 // change the number to 2
///         .factor(2)                 // change the factor to 2
///         .await;                    // convert to future and .await
///
///     assert_eq!(num, 4);
/// }
/// ```
///
/// # Usage in trait bounds
///
/// Using `IntoFuture` in trait bounds allows a function to be generic over both
/// `Future` and `IntoFuture`. This is convenient for users of the function, so
/// when they are using it they don't have to make an extra call to
/// `IntoFuture::into_future` to obtain an instance of `Future`:
///
/// ```rust
/// use std::future::IntoFuture;
///
/// /// Convert the output of a future to a string.
/// async fn fut_to_string<Fut>(fut: Fut) -> String
/// where
///     Fut: IntoFuture,
///     Fut::Output: std::fmt::Debug,
/// {
///     format!("{:?}", fut.await)
/// }
/// ```
#[stable(feature = "into_future", since = "1.64.0")]
#[rustc_diagnostic_item = "IntoFuture"]
#[diagnostic::on_unimplemented(
    label = "`{Self}` is not a future",
    message = "`{Self}` is not a future",
    note = "{Self} must be a future or must implement `IntoFuture` to be awaited"
)]
pub trait IntoFuture {
    /// The output that the future will produce on completion.
    #[stable(feature = "into_future", since = "1.64.0")]
    type Output;

    /// Which kind of future are we turning this into?
    #[stable(feature = "into_future", since = "1.64.0")]
    type IntoFuture: Future<Output = Self::Output>;

    /// Creates a future from a value.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```no_run
    /// use std::future::IntoFuture;
    ///
    /// # async fn foo() {
    /// let v = async { "meow" };
    /// let mut fut = v.into_future();
    /// assert_eq!("meow", fut.await);
    /// # }
    /// ```
    #[stable(feature = "into_future", since = "1.64.0")]
    #[lang = "into_future"]
    fn into_future(self) -> Self::IntoFuture;
}

#[stable(feature = "into_future", since = "1.64.0")]
impl<F: Future> IntoFuture for F {
    type Output = F::Output;
    type IntoFuture = F;

    fn into_future(self) -> Self::IntoFuture {
        self
    }
}