proc_macro/
lib.rs

1//! A support library for macro authors when defining new macros.
2//!
3//! This library, provided by the standard distribution, provides the types
4//! consumed in the interfaces of procedurally defined macro definitions such as
5//! function-like macros `#[proc_macro]`, macro attributes `#[proc_macro_attribute]` and
6//! custom derive attributes`#[proc_macro_derive]`.
7//!
8//! See [the book] for more.
9//!
10//! [the book]: ../book/ch19-06-macros.html#procedural-macros-for-generating-code-from-attributes
11
12#![stable(feature = "proc_macro_lib", since = "1.15.0")]
13#![deny(missing_docs)]
14#![doc(
15    html_playground_url = "https://play.rust-lang.org/",
16    issue_tracker_base_url = "https://github.com/rust-lang/rust/issues/",
17    test(no_crate_inject, attr(deny(warnings))),
18    test(attr(allow(dead_code, deprecated, unused_variables, unused_mut)))
19)]
20#![doc(rust_logo)]
21#![feature(rustdoc_internals)]
22#![feature(staged_api)]
23#![feature(allow_internal_unstable)]
24#![feature(decl_macro)]
25#![feature(maybe_uninit_write_slice)]
26#![feature(negative_impls)]
27#![feature(panic_can_unwind)]
28#![feature(restricted_std)]
29#![feature(rustc_attrs)]
30#![feature(extend_one)]
31#![recursion_limit = "256"]
32#![allow(internal_features)]
33#![deny(ffi_unwind_calls)]
34#![warn(rustdoc::unescaped_backticks)]
35#![warn(unreachable_pub)]
36#![deny(unsafe_op_in_unsafe_fn)]
37
38#[unstable(feature = "proc_macro_internals", issue = "27812")]
39#[doc(hidden)]
40pub mod bridge;
41
42mod diagnostic;
43mod escape;
44mod to_tokens;
45
46use std::ffi::CStr;
47use std::ops::{Range, RangeBounds};
48use std::path::PathBuf;
49use std::str::FromStr;
50use std::{error, fmt};
51
52#[unstable(feature = "proc_macro_diagnostic", issue = "54140")]
53pub use diagnostic::{Diagnostic, Level, MultiSpan};
54#[unstable(feature = "proc_macro_totokens", issue = "130977")]
55pub use to_tokens::ToTokens;
56
57use crate::escape::{EscapeOptions, escape_bytes};
58
59/// Determines whether proc_macro has been made accessible to the currently
60/// running program.
61///
62/// The proc_macro crate is only intended for use inside the implementation of
63/// procedural macros. All the functions in this crate panic if invoked from
64/// outside of a procedural macro, such as from a build script or unit test or
65/// ordinary Rust binary.
66///
67/// With consideration for Rust libraries that are designed to support both
68/// macro and non-macro use cases, `proc_macro::is_available()` provides a
69/// non-panicking way to detect whether the infrastructure required to use the
70/// API of proc_macro is presently available. Returns true if invoked from
71/// inside of a procedural macro, false if invoked from any other binary.
72#[stable(feature = "proc_macro_is_available", since = "1.57.0")]
73pub fn is_available() -> bool {
74    bridge::client::is_available()
75}
76
77/// The main type provided by this crate, representing an abstract stream of
78/// tokens, or, more specifically, a sequence of token trees.
79/// The type provides interfaces for iterating over those token trees and, conversely,
80/// collecting a number of token trees into one stream.
81///
82/// This is both the input and output of `#[proc_macro]`, `#[proc_macro_attribute]`
83/// and `#[proc_macro_derive]` definitions.
84#[rustc_diagnostic_item = "TokenStream"]
85#[stable(feature = "proc_macro_lib", since = "1.15.0")]
86#[derive(Clone)]
87pub struct TokenStream(Option<bridge::client::TokenStream>);
88
89#[stable(feature = "proc_macro_lib", since = "1.15.0")]
90impl !Send for TokenStream {}
91#[stable(feature = "proc_macro_lib", since = "1.15.0")]
92impl !Sync for TokenStream {}
93
94/// Error returned from `TokenStream::from_str`.
95#[stable(feature = "proc_macro_lib", since = "1.15.0")]
96#[non_exhaustive]
97#[derive(Debug)]
98pub struct LexError;
99
100#[stable(feature = "proc_macro_lexerror_impls", since = "1.44.0")]
101impl fmt::Display for LexError {
102    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
103        f.write_str("cannot parse string into token stream")
104    }
105}
106
107#[stable(feature = "proc_macro_lexerror_impls", since = "1.44.0")]
108impl error::Error for LexError {}
109
110#[stable(feature = "proc_macro_lib", since = "1.15.0")]
111impl !Send for LexError {}
112#[stable(feature = "proc_macro_lib", since = "1.15.0")]
113impl !Sync for LexError {}
114
115/// Error returned from `TokenStream::expand_expr`.
116#[unstable(feature = "proc_macro_expand", issue = "90765")]
117#[non_exhaustive]
118#[derive(Debug)]
119pub struct ExpandError;
120
121#[unstable(feature = "proc_macro_expand", issue = "90765")]
122impl fmt::Display for ExpandError {
123    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
124        f.write_str("macro expansion failed")
125    }
126}
127
128#[unstable(feature = "proc_macro_expand", issue = "90765")]
129impl error::Error for ExpandError {}
130
131#[unstable(feature = "proc_macro_expand", issue = "90765")]
132impl !Send for ExpandError {}
133
134#[unstable(feature = "proc_macro_expand", issue = "90765")]
135impl !Sync for ExpandError {}
136
137impl TokenStream {
138    /// Returns an empty `TokenStream` containing no token trees.
139    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
140    pub fn new() -> TokenStream {
141        TokenStream(None)
142    }
143
144    /// Checks if this `TokenStream` is empty.
145    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
146    pub fn is_empty(&self) -> bool {
147        self.0.as_ref().map(|h| h.is_empty()).unwrap_or(true)
148    }
149
150    /// Parses this `TokenStream` as an expression and attempts to expand any
151    /// macros within it. Returns the expanded `TokenStream`.
152    ///
153    /// Currently only expressions expanding to literals will succeed, although
154    /// this may be relaxed in the future.
155    ///
156    /// NOTE: In error conditions, `expand_expr` may leave macros unexpanded,
157    /// report an error, failing compilation, and/or return an `Err(..)`. The
158    /// specific behavior for any error condition, and what conditions are
159    /// considered errors, is unspecified and may change in the future.
160    #[unstable(feature = "proc_macro_expand", issue = "90765")]
161    pub fn expand_expr(&self) -> Result<TokenStream, ExpandError> {
162        let stream = self.0.as_ref().ok_or(ExpandError)?;
163        match bridge::client::TokenStream::expand_expr(stream) {
164            Ok(stream) => Ok(TokenStream(Some(stream))),
165            Err(_) => Err(ExpandError),
166        }
167    }
168}
169
170/// Attempts to break the string into tokens and parse those tokens into a token stream.
171/// May fail for a number of reasons, for example, if the string contains unbalanced delimiters
172/// or characters not existing in the language.
173/// All tokens in the parsed stream get `Span::call_site()` spans.
174///
175/// NOTE: some errors may cause panics instead of returning `LexError`. We reserve the right to
176/// change these errors into `LexError`s later.
177#[stable(feature = "proc_macro_lib", since = "1.15.0")]
178impl FromStr for TokenStream {
179    type Err = LexError;
180
181    fn from_str(src: &str) -> Result<TokenStream, LexError> {
182        Ok(TokenStream(Some(bridge::client::TokenStream::from_str(src))))
183    }
184}
185
186/// Prints the token stream as a string that is supposed to be losslessly convertible back
187/// into the same token stream (modulo spans), except for possibly `TokenTree::Group`s
188/// with `Delimiter::None` delimiters and negative numeric literals.
189///
190/// Note: the exact form of the output is subject to change, e.g. there might
191/// be changes in the whitespace used between tokens. Therefore, you should
192/// *not* do any kind of simple substring matching on the output string (as
193/// produced by `to_string`) to implement a proc macro, because that matching
194/// might stop working if such changes happen. Instead, you should work at the
195/// `TokenTree` level, e.g. matching against `TokenTree::Ident`,
196/// `TokenTree::Punct`, or `TokenTree::Literal`.
197#[stable(feature = "proc_macro_lib", since = "1.15.0")]
198impl fmt::Display for TokenStream {
199    #[allow(clippy::recursive_format_impl)] // clippy doesn't see the specialization
200    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
201        match &self.0 {
202            Some(ts) => write!(f, "{}", ts.to_string()),
203            None => Ok(()),
204        }
205    }
206}
207
208/// Prints token in a form convenient for debugging.
209#[stable(feature = "proc_macro_lib", since = "1.15.0")]
210impl fmt::Debug for TokenStream {
211    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
212        f.write_str("TokenStream ")?;
213        f.debug_list().entries(self.clone()).finish()
214    }
215}
216
217#[stable(feature = "proc_macro_token_stream_default", since = "1.45.0")]
218impl Default for TokenStream {
219    fn default() -> Self {
220        TokenStream::new()
221    }
222}
223
224#[unstable(feature = "proc_macro_quote", issue = "54722")]
225pub use quote::{quote, quote_span};
226
227fn tree_to_bridge_tree(
228    tree: TokenTree,
229) -> bridge::TokenTree<bridge::client::TokenStream, bridge::client::Span, bridge::client::Symbol> {
230    match tree {
231        TokenTree::Group(tt) => bridge::TokenTree::Group(tt.0),
232        TokenTree::Punct(tt) => bridge::TokenTree::Punct(tt.0),
233        TokenTree::Ident(tt) => bridge::TokenTree::Ident(tt.0),
234        TokenTree::Literal(tt) => bridge::TokenTree::Literal(tt.0),
235    }
236}
237
238/// Creates a token stream containing a single token tree.
239#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
240impl From<TokenTree> for TokenStream {
241    fn from(tree: TokenTree) -> TokenStream {
242        TokenStream(Some(bridge::client::TokenStream::from_token_tree(tree_to_bridge_tree(tree))))
243    }
244}
245
246/// Non-generic helper for implementing `FromIterator<TokenTree>` and
247/// `Extend<TokenTree>` with less monomorphization in calling crates.
248struct ConcatTreesHelper {
249    trees: Vec<
250        bridge::TokenTree<
251            bridge::client::TokenStream,
252            bridge::client::Span,
253            bridge::client::Symbol,
254        >,
255    >,
256}
257
258impl ConcatTreesHelper {
259    fn new(capacity: usize) -> Self {
260        ConcatTreesHelper { trees: Vec::with_capacity(capacity) }
261    }
262
263    fn push(&mut self, tree: TokenTree) {
264        self.trees.push(tree_to_bridge_tree(tree));
265    }
266
267    fn build(self) -> TokenStream {
268        if self.trees.is_empty() {
269            TokenStream(None)
270        } else {
271            TokenStream(Some(bridge::client::TokenStream::concat_trees(None, self.trees)))
272        }
273    }
274
275    fn append_to(self, stream: &mut TokenStream) {
276        if self.trees.is_empty() {
277            return;
278        }
279        stream.0 = Some(bridge::client::TokenStream::concat_trees(stream.0.take(), self.trees))
280    }
281}
282
283/// Non-generic helper for implementing `FromIterator<TokenStream>` and
284/// `Extend<TokenStream>` with less monomorphization in calling crates.
285struct ConcatStreamsHelper {
286    streams: Vec<bridge::client::TokenStream>,
287}
288
289impl ConcatStreamsHelper {
290    fn new(capacity: usize) -> Self {
291        ConcatStreamsHelper { streams: Vec::with_capacity(capacity) }
292    }
293
294    fn push(&mut self, stream: TokenStream) {
295        if let Some(stream) = stream.0 {
296            self.streams.push(stream);
297        }
298    }
299
300    fn build(mut self) -> TokenStream {
301        if self.streams.len() <= 1 {
302            TokenStream(self.streams.pop())
303        } else {
304            TokenStream(Some(bridge::client::TokenStream::concat_streams(None, self.streams)))
305        }
306    }
307
308    fn append_to(mut self, stream: &mut TokenStream) {
309        if self.streams.is_empty() {
310            return;
311        }
312        let base = stream.0.take();
313        if base.is_none() && self.streams.len() == 1 {
314            stream.0 = self.streams.pop();
315        } else {
316            stream.0 = Some(bridge::client::TokenStream::concat_streams(base, self.streams));
317        }
318    }
319}
320
321/// Collects a number of token trees into a single stream.
322#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
323impl FromIterator<TokenTree> for TokenStream {
324    fn from_iter<I: IntoIterator<Item = TokenTree>>(trees: I) -> Self {
325        let iter = trees.into_iter();
326        let mut builder = ConcatTreesHelper::new(iter.size_hint().0);
327        iter.for_each(|tree| builder.push(tree));
328        builder.build()
329    }
330}
331
332/// A "flattening" operation on token streams, collects token trees
333/// from multiple token streams into a single stream.
334#[stable(feature = "proc_macro_lib", since = "1.15.0")]
335impl FromIterator<TokenStream> for TokenStream {
336    fn from_iter<I: IntoIterator<Item = TokenStream>>(streams: I) -> Self {
337        let iter = streams.into_iter();
338        let mut builder = ConcatStreamsHelper::new(iter.size_hint().0);
339        iter.for_each(|stream| builder.push(stream));
340        builder.build()
341    }
342}
343
344#[stable(feature = "token_stream_extend", since = "1.30.0")]
345impl Extend<TokenTree> for TokenStream {
346    fn extend<I: IntoIterator<Item = TokenTree>>(&mut self, trees: I) {
347        let iter = trees.into_iter();
348        let mut builder = ConcatTreesHelper::new(iter.size_hint().0);
349        iter.for_each(|tree| builder.push(tree));
350        builder.append_to(self);
351    }
352}
353
354#[stable(feature = "token_stream_extend", since = "1.30.0")]
355impl Extend<TokenStream> for TokenStream {
356    fn extend<I: IntoIterator<Item = TokenStream>>(&mut self, streams: I) {
357        let iter = streams.into_iter();
358        let mut builder = ConcatStreamsHelper::new(iter.size_hint().0);
359        iter.for_each(|stream| builder.push(stream));
360        builder.append_to(self);
361    }
362}
363
364/// Public implementation details for the `TokenStream` type, such as iterators.
365#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
366pub mod token_stream {
367    use crate::{Group, Ident, Literal, Punct, TokenStream, TokenTree, bridge};
368
369    /// An iterator over `TokenStream`'s `TokenTree`s.
370    /// The iteration is "shallow", e.g., the iterator doesn't recurse into delimited groups,
371    /// and returns whole groups as token trees.
372    #[derive(Clone)]
373    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
374    pub struct IntoIter(
375        std::vec::IntoIter<
376            bridge::TokenTree<
377                bridge::client::TokenStream,
378                bridge::client::Span,
379                bridge::client::Symbol,
380            >,
381        >,
382    );
383
384    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
385    impl Iterator for IntoIter {
386        type Item = TokenTree;
387
388        fn next(&mut self) -> Option<TokenTree> {
389            self.0.next().map(|tree| match tree {
390                bridge::TokenTree::Group(tt) => TokenTree::Group(Group(tt)),
391                bridge::TokenTree::Punct(tt) => TokenTree::Punct(Punct(tt)),
392                bridge::TokenTree::Ident(tt) => TokenTree::Ident(Ident(tt)),
393                bridge::TokenTree::Literal(tt) => TokenTree::Literal(Literal(tt)),
394            })
395        }
396
397        fn size_hint(&self) -> (usize, Option<usize>) {
398            self.0.size_hint()
399        }
400
401        fn count(self) -> usize {
402            self.0.count()
403        }
404    }
405
406    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
407    impl IntoIterator for TokenStream {
408        type Item = TokenTree;
409        type IntoIter = IntoIter;
410
411        fn into_iter(self) -> IntoIter {
412            IntoIter(self.0.map(|v| v.into_trees()).unwrap_or_default().into_iter())
413        }
414    }
415}
416
417/// `quote!(..)` accepts arbitrary tokens and expands into a `TokenStream` describing the input.
418/// For example, `quote!(a + b)` will produce an expression, that, when evaluated, constructs
419/// the `TokenStream` `[Ident("a"), Punct('+', Alone), Ident("b")]`.
420///
421/// Unquoting is done with `$`, and works by taking the single next ident as the unquoted term.
422/// To quote `$` itself, use `$$`.
423#[unstable(feature = "proc_macro_quote", issue = "54722")]
424#[allow_internal_unstable(proc_macro_def_site, proc_macro_internals, proc_macro_totokens)]
425#[rustc_builtin_macro]
426pub macro quote($($t:tt)*) {
427    /* compiler built-in */
428}
429
430#[unstable(feature = "proc_macro_internals", issue = "27812")]
431#[doc(hidden)]
432mod quote;
433
434/// A region of source code, along with macro expansion information.
435#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
436#[derive(Copy, Clone)]
437pub struct Span(bridge::client::Span);
438
439#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
440impl !Send for Span {}
441#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
442impl !Sync for Span {}
443
444macro_rules! diagnostic_method {
445    ($name:ident, $level:expr) => {
446        /// Creates a new `Diagnostic` with the given `message` at the span
447        /// `self`.
448        #[unstable(feature = "proc_macro_diagnostic", issue = "54140")]
449        pub fn $name<T: Into<String>>(self, message: T) -> Diagnostic {
450            Diagnostic::spanned(self, $level, message)
451        }
452    };
453}
454
455impl Span {
456    /// A span that resolves at the macro definition site.
457    #[unstable(feature = "proc_macro_def_site", issue = "54724")]
458    pub fn def_site() -> Span {
459        Span(bridge::client::Span::def_site())
460    }
461
462    /// The span of the invocation of the current procedural macro.
463    /// Identifiers created with this span will be resolved as if they were written
464    /// directly at the macro call location (call-site hygiene) and other code
465    /// at the macro call site will be able to refer to them as well.
466    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
467    pub fn call_site() -> Span {
468        Span(bridge::client::Span::call_site())
469    }
470
471    /// A span that represents `macro_rules` hygiene, and sometimes resolves at the macro
472    /// definition site (local variables, labels, `$crate`) and sometimes at the macro
473    /// call site (everything else).
474    /// The span location is taken from the call-site.
475    #[stable(feature = "proc_macro_mixed_site", since = "1.45.0")]
476    pub fn mixed_site() -> Span {
477        Span(bridge::client::Span::mixed_site())
478    }
479
480    /// The original source file into which this span points.
481    #[unstable(feature = "proc_macro_span", issue = "54725")]
482    pub fn source_file(&self) -> SourceFile {
483        SourceFile(self.0.source_file())
484    }
485
486    /// The `Span` for the tokens in the previous macro expansion from which
487    /// `self` was generated from, if any.
488    #[unstable(feature = "proc_macro_span", issue = "54725")]
489    pub fn parent(&self) -> Option<Span> {
490        self.0.parent().map(Span)
491    }
492
493    /// The span for the origin source code that `self` was generated from. If
494    /// this `Span` wasn't generated from other macro expansions then the return
495    /// value is the same as `*self`.
496    #[unstable(feature = "proc_macro_span", issue = "54725")]
497    pub fn source(&self) -> Span {
498        Span(self.0.source())
499    }
500
501    /// Returns the span's byte position range in the source file.
502    #[unstable(feature = "proc_macro_span", issue = "54725")]
503    pub fn byte_range(&self) -> Range<usize> {
504        self.0.byte_range()
505    }
506
507    /// Creates an empty span pointing to directly before this span.
508    #[unstable(feature = "proc_macro_span", issue = "54725")]
509    pub fn start(&self) -> Span {
510        Span(self.0.start())
511    }
512
513    /// Creates an empty span pointing to directly after this span.
514    #[unstable(feature = "proc_macro_span", issue = "54725")]
515    pub fn end(&self) -> Span {
516        Span(self.0.end())
517    }
518
519    /// The one-indexed line of the source file where the span starts.
520    ///
521    /// To obtain the line of the span's end, use `span.end().line()`.
522    #[unstable(feature = "proc_macro_span", issue = "54725")]
523    pub fn line(&self) -> usize {
524        self.0.line()
525    }
526
527    /// The one-indexed column of the source file where the span starts.
528    ///
529    /// To obtain the column of the span's end, use `span.end().column()`.
530    #[unstable(feature = "proc_macro_span", issue = "54725")]
531    pub fn column(&self) -> usize {
532        self.0.column()
533    }
534
535    /// Creates a new span encompassing `self` and `other`.
536    ///
537    /// Returns `None` if `self` and `other` are from different files.
538    #[unstable(feature = "proc_macro_span", issue = "54725")]
539    pub fn join(&self, other: Span) -> Option<Span> {
540        self.0.join(other.0).map(Span)
541    }
542
543    /// Creates a new span with the same line/column information as `self` but
544    /// that resolves symbols as though it were at `other`.
545    #[stable(feature = "proc_macro_span_resolved_at", since = "1.45.0")]
546    pub fn resolved_at(&self, other: Span) -> Span {
547        Span(self.0.resolved_at(other.0))
548    }
549
550    /// Creates a new span with the same name resolution behavior as `self` but
551    /// with the line/column information of `other`.
552    #[stable(feature = "proc_macro_span_located_at", since = "1.45.0")]
553    pub fn located_at(&self, other: Span) -> Span {
554        other.resolved_at(*self)
555    }
556
557    /// Compares two spans to see if they're equal.
558    #[unstable(feature = "proc_macro_span", issue = "54725")]
559    pub fn eq(&self, other: &Span) -> bool {
560        self.0 == other.0
561    }
562
563    /// Returns the source text behind a span. This preserves the original source
564    /// code, including spaces and comments. It only returns a result if the span
565    /// corresponds to real source code.
566    ///
567    /// Note: The observable result of a macro should only rely on the tokens and
568    /// not on this source text. The result of this function is a best effort to
569    /// be used for diagnostics only.
570    #[stable(feature = "proc_macro_source_text", since = "1.66.0")]
571    pub fn source_text(&self) -> Option<String> {
572        self.0.source_text()
573    }
574
575    // Used by the implementation of `Span::quote`
576    #[doc(hidden)]
577    #[unstable(feature = "proc_macro_internals", issue = "27812")]
578    pub fn save_span(&self) -> usize {
579        self.0.save_span()
580    }
581
582    // Used by the implementation of `Span::quote`
583    #[doc(hidden)]
584    #[unstable(feature = "proc_macro_internals", issue = "27812")]
585    pub fn recover_proc_macro_span(id: usize) -> Span {
586        Span(bridge::client::Span::recover_proc_macro_span(id))
587    }
588
589    diagnostic_method!(error, Level::Error);
590    diagnostic_method!(warning, Level::Warning);
591    diagnostic_method!(note, Level::Note);
592    diagnostic_method!(help, Level::Help);
593}
594
595/// Prints a span in a form convenient for debugging.
596#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
597impl fmt::Debug for Span {
598    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
599        self.0.fmt(f)
600    }
601}
602
603/// The source file of a given `Span`.
604#[unstable(feature = "proc_macro_span", issue = "54725")]
605#[derive(Clone)]
606pub struct SourceFile(bridge::client::SourceFile);
607
608impl SourceFile {
609    /// Gets the path to this source file.
610    ///
611    /// ### Note
612    /// If the code span associated with this `SourceFile` was generated by an external macro, this
613    /// macro, this might not be an actual path on the filesystem. Use [`is_real`] to check.
614    ///
615    /// Also note that even if `is_real` returns `true`, if `--remap-path-prefix` was passed on
616    /// the command line, the path as given might not actually be valid.
617    ///
618    /// [`is_real`]: Self::is_real
619    #[unstable(feature = "proc_macro_span", issue = "54725")]
620    pub fn path(&self) -> PathBuf {
621        PathBuf::from(self.0.path())
622    }
623
624    /// Returns `true` if this source file is a real source file, and not generated by an external
625    /// macro's expansion.
626    #[unstable(feature = "proc_macro_span", issue = "54725")]
627    pub fn is_real(&self) -> bool {
628        // This is a hack until intercrate spans are implemented and we can have real source files
629        // for spans generated in external macros.
630        // https://github.com/rust-lang/rust/pull/43604#issuecomment-333334368
631        self.0.is_real()
632    }
633}
634
635#[unstable(feature = "proc_macro_span", issue = "54725")]
636impl fmt::Debug for SourceFile {
637    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
638        f.debug_struct("SourceFile")
639            .field("path", &self.path())
640            .field("is_real", &self.is_real())
641            .finish()
642    }
643}
644
645#[unstable(feature = "proc_macro_span", issue = "54725")]
646impl PartialEq for SourceFile {
647    fn eq(&self, other: &Self) -> bool {
648        self.0.eq(&other.0)
649    }
650}
651
652#[unstable(feature = "proc_macro_span", issue = "54725")]
653impl Eq for SourceFile {}
654
655/// A single token or a delimited sequence of token trees (e.g., `[1, (), ..]`).
656#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
657#[derive(Clone)]
658pub enum TokenTree {
659    /// A token stream surrounded by bracket delimiters.
660    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
661    Group(#[stable(feature = "proc_macro_lib2", since = "1.29.0")] Group),
662    /// An identifier.
663    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
664    Ident(#[stable(feature = "proc_macro_lib2", since = "1.29.0")] Ident),
665    /// A single punctuation character (`+`, `,`, `$`, etc.).
666    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
667    Punct(#[stable(feature = "proc_macro_lib2", since = "1.29.0")] Punct),
668    /// A literal character (`'a'`), string (`"hello"`), number (`2.3`), etc.
669    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
670    Literal(#[stable(feature = "proc_macro_lib2", since = "1.29.0")] Literal),
671}
672
673#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
674impl !Send for TokenTree {}
675#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
676impl !Sync for TokenTree {}
677
678impl TokenTree {
679    /// Returns the span of this tree, delegating to the `span` method of
680    /// the contained token or a delimited stream.
681    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
682    pub fn span(&self) -> Span {
683        match *self {
684            TokenTree::Group(ref t) => t.span(),
685            TokenTree::Ident(ref t) => t.span(),
686            TokenTree::Punct(ref t) => t.span(),
687            TokenTree::Literal(ref t) => t.span(),
688        }
689    }
690
691    /// Configures the span for *only this token*.
692    ///
693    /// Note that if this token is a `Group` then this method will not configure
694    /// the span of each of the internal tokens, this will simply delegate to
695    /// the `set_span` method of each variant.
696    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
697    pub fn set_span(&mut self, span: Span) {
698        match *self {
699            TokenTree::Group(ref mut t) => t.set_span(span),
700            TokenTree::Ident(ref mut t) => t.set_span(span),
701            TokenTree::Punct(ref mut t) => t.set_span(span),
702            TokenTree::Literal(ref mut t) => t.set_span(span),
703        }
704    }
705}
706
707/// Prints token tree in a form convenient for debugging.
708#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
709impl fmt::Debug for TokenTree {
710    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
711        // Each of these has the name in the struct type in the derived debug,
712        // so don't bother with an extra layer of indirection
713        match *self {
714            TokenTree::Group(ref tt) => tt.fmt(f),
715            TokenTree::Ident(ref tt) => tt.fmt(f),
716            TokenTree::Punct(ref tt) => tt.fmt(f),
717            TokenTree::Literal(ref tt) => tt.fmt(f),
718        }
719    }
720}
721
722#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
723impl From<Group> for TokenTree {
724    fn from(g: Group) -> TokenTree {
725        TokenTree::Group(g)
726    }
727}
728
729#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
730impl From<Ident> for TokenTree {
731    fn from(g: Ident) -> TokenTree {
732        TokenTree::Ident(g)
733    }
734}
735
736#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
737impl From<Punct> for TokenTree {
738    fn from(g: Punct) -> TokenTree {
739        TokenTree::Punct(g)
740    }
741}
742
743#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
744impl From<Literal> for TokenTree {
745    fn from(g: Literal) -> TokenTree {
746        TokenTree::Literal(g)
747    }
748}
749
750/// Prints the token tree as a string that is supposed to be losslessly convertible back
751/// into the same token tree (modulo spans), except for possibly `TokenTree::Group`s
752/// with `Delimiter::None` delimiters and negative numeric literals.
753///
754/// Note: the exact form of the output is subject to change, e.g. there might
755/// be changes in the whitespace used between tokens. Therefore, you should
756/// *not* do any kind of simple substring matching on the output string (as
757/// produced by `to_string`) to implement a proc macro, because that matching
758/// might stop working if such changes happen. Instead, you should work at the
759/// `TokenTree` level, e.g. matching against `TokenTree::Ident`,
760/// `TokenTree::Punct`, or `TokenTree::Literal`.
761#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
762impl fmt::Display for TokenTree {
763    #[allow(clippy::recursive_format_impl)] // clippy doesn't see the specialization
764    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
765        match self {
766            TokenTree::Group(t) => write!(f, "{t}"),
767            TokenTree::Ident(t) => write!(f, "{t}"),
768            TokenTree::Punct(t) => write!(f, "{t}"),
769            TokenTree::Literal(t) => write!(f, "{t}"),
770        }
771    }
772}
773
774/// A delimited token stream.
775///
776/// A `Group` internally contains a `TokenStream` which is surrounded by `Delimiter`s.
777#[derive(Clone)]
778#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
779pub struct Group(bridge::Group<bridge::client::TokenStream, bridge::client::Span>);
780
781#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
782impl !Send for Group {}
783#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
784impl !Sync for Group {}
785
786/// Describes how a sequence of token trees is delimited.
787#[derive(Copy, Clone, Debug, PartialEq, Eq)]
788#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
789pub enum Delimiter {
790    /// `( ... )`
791    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
792    Parenthesis,
793    /// `{ ... }`
794    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
795    Brace,
796    /// `[ ... ]`
797    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
798    Bracket,
799    /// `∅ ... ∅`
800    /// An invisible delimiter, that may, for example, appear around tokens coming from a
801    /// "macro variable" `$var`. It is important to preserve operator priorities in cases like
802    /// `$var * 3` where `$var` is `1 + 2`.
803    /// Invisible delimiters might not survive roundtrip of a token stream through a string.
804    ///
805    /// <div class="warning">
806    ///
807    /// Note: rustc currently can ignore the grouping of tokens delimited by `None` in the output
808    /// of a proc_macro. Only `None`-delimited groups created by a macro_rules macro in the input
809    /// of a proc_macro macro are preserved, and only in very specific circumstances.
810    /// Any `None`-delimited groups (re)created by a proc_macro will therefore not preserve
811    /// operator priorities as indicated above. The other `Delimiter` variants should be used
812    /// instead in this context. This is a rustc bug. For details, see
813    /// [rust-lang/rust#67062](https://github.com/rust-lang/rust/issues/67062).
814    ///
815    /// </div>
816    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
817    None,
818}
819
820impl Group {
821    /// Creates a new `Group` with the given delimiter and token stream.
822    ///
823    /// This constructor will set the span for this group to
824    /// `Span::call_site()`. To change the span you can use the `set_span`
825    /// method below.
826    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
827    pub fn new(delimiter: Delimiter, stream: TokenStream) -> Group {
828        Group(bridge::Group {
829            delimiter,
830            stream: stream.0,
831            span: bridge::DelimSpan::from_single(Span::call_site().0),
832        })
833    }
834
835    /// Returns the delimiter of this `Group`
836    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
837    pub fn delimiter(&self) -> Delimiter {
838        self.0.delimiter
839    }
840
841    /// Returns the `TokenStream` of tokens that are delimited in this `Group`.
842    ///
843    /// Note that the returned token stream does not include the delimiter
844    /// returned above.
845    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
846    pub fn stream(&self) -> TokenStream {
847        TokenStream(self.0.stream.clone())
848    }
849
850    /// Returns the span for the delimiters of this token stream, spanning the
851    /// entire `Group`.
852    ///
853    /// ```text
854    /// pub fn span(&self) -> Span {
855    ///            ^^^^^^^
856    /// ```
857    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
858    pub fn span(&self) -> Span {
859        Span(self.0.span.entire)
860    }
861
862    /// Returns the span pointing to the opening delimiter of this group.
863    ///
864    /// ```text
865    /// pub fn span_open(&self) -> Span {
866    ///                 ^
867    /// ```
868    #[stable(feature = "proc_macro_group_span", since = "1.55.0")]
869    pub fn span_open(&self) -> Span {
870        Span(self.0.span.open)
871    }
872
873    /// Returns the span pointing to the closing delimiter of this group.
874    ///
875    /// ```text
876    /// pub fn span_close(&self) -> Span {
877    ///                        ^
878    /// ```
879    #[stable(feature = "proc_macro_group_span", since = "1.55.0")]
880    pub fn span_close(&self) -> Span {
881        Span(self.0.span.close)
882    }
883
884    /// Configures the span for this `Group`'s delimiters, but not its internal
885    /// tokens.
886    ///
887    /// This method will **not** set the span of all the internal tokens spanned
888    /// by this group, but rather it will only set the span of the delimiter
889    /// tokens at the level of the `Group`.
890    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
891    pub fn set_span(&mut self, span: Span) {
892        self.0.span = bridge::DelimSpan::from_single(span.0);
893    }
894}
895
896/// Prints the group as a string that should be losslessly convertible back
897/// into the same group (modulo spans), except for possibly `TokenTree::Group`s
898/// with `Delimiter::None` delimiters.
899#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
900impl fmt::Display for Group {
901    #[allow(clippy::recursive_format_impl)] // clippy doesn't see the specialization
902    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
903        write!(f, "{}", TokenStream::from(TokenTree::from(self.clone())))
904    }
905}
906
907#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
908impl fmt::Debug for Group {
909    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
910        f.debug_struct("Group")
911            .field("delimiter", &self.delimiter())
912            .field("stream", &self.stream())
913            .field("span", &self.span())
914            .finish()
915    }
916}
917
918/// A `Punct` is a single punctuation character such as `+`, `-` or `#`.
919///
920/// Multi-character operators like `+=` are represented as two instances of `Punct` with different
921/// forms of `Spacing` returned.
922#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
923#[derive(Clone)]
924pub struct Punct(bridge::Punct<bridge::client::Span>);
925
926#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
927impl !Send for Punct {}
928#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
929impl !Sync for Punct {}
930
931/// Indicates whether a `Punct` token can join with the following token
932/// to form a multi-character operator.
933#[derive(Copy, Clone, Debug, PartialEq, Eq)]
934#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
935pub enum Spacing {
936    /// A `Punct` token can join with the following token to form a multi-character operator.
937    ///
938    /// In token streams constructed using proc macro interfaces, `Joint` punctuation tokens can be
939    /// followed by any other tokens. However, in token streams parsed from source code, the
940    /// compiler will only set spacing to `Joint` in the following cases.
941    /// - When a `Punct` is immediately followed by another `Punct` without a whitespace. E.g. `+`
942    ///   is `Joint` in `+=` and `++`.
943    /// - When a single quote `'` is immediately followed by an identifier without a whitespace.
944    ///   E.g. `'` is `Joint` in `'lifetime`.
945    ///
946    /// This list may be extended in the future to enable more token combinations.
947    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
948    Joint,
949    /// A `Punct` token cannot join with the following token to form a multi-character operator.
950    ///
951    /// `Alone` punctuation tokens can be followed by any other tokens. In token streams parsed
952    /// from source code, the compiler will set spacing to `Alone` in all cases not covered by the
953    /// conditions for `Joint` above. E.g. `+` is `Alone` in `+ =`, `+ident` and `+()`. In
954    /// particular, tokens not followed by anything will be marked as `Alone`.
955    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
956    Alone,
957}
958
959impl Punct {
960    /// Creates a new `Punct` from the given character and spacing.
961    /// The `ch` argument must be a valid punctuation character permitted by the language,
962    /// otherwise the function will panic.
963    ///
964    /// The returned `Punct` will have the default span of `Span::call_site()`
965    /// which can be further configured with the `set_span` method below.
966    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
967    pub fn new(ch: char, spacing: Spacing) -> Punct {
968        const LEGAL_CHARS: &[char] = &[
969            '=', '<', '>', '!', '~', '+', '-', '*', '/', '%', '^', '&', '|', '@', '.', ',', ';',
970            ':', '#', '$', '?', '\'',
971        ];
972        if !LEGAL_CHARS.contains(&ch) {
973            panic!("unsupported character `{:?}`", ch);
974        }
975        Punct(bridge::Punct {
976            ch: ch as u8,
977            joint: spacing == Spacing::Joint,
978            span: Span::call_site().0,
979        })
980    }
981
982    /// Returns the value of this punctuation character as `char`.
983    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
984    pub fn as_char(&self) -> char {
985        self.0.ch as char
986    }
987
988    /// Returns the spacing of this punctuation character, indicating whether it can be potentially
989    /// combined into a multi-character operator with the following token (`Joint`), or whether the
990    /// operator has definitely ended (`Alone`).
991    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
992    pub fn spacing(&self) -> Spacing {
993        if self.0.joint { Spacing::Joint } else { Spacing::Alone }
994    }
995
996    /// Returns the span for this punctuation character.
997    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
998    pub fn span(&self) -> Span {
999        Span(self.0.span)
1000    }
1001
1002    /// Configure the span for this punctuation character.
1003    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1004    pub fn set_span(&mut self, span: Span) {
1005        self.0.span = span.0;
1006    }
1007}
1008
1009/// Prints the punctuation character as a string that should be losslessly convertible
1010/// back into the same character.
1011#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1012impl fmt::Display for Punct {
1013    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1014        write!(f, "{}", self.as_char())
1015    }
1016}
1017
1018#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1019impl fmt::Debug for Punct {
1020    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1021        f.debug_struct("Punct")
1022            .field("ch", &self.as_char())
1023            .field("spacing", &self.spacing())
1024            .field("span", &self.span())
1025            .finish()
1026    }
1027}
1028
1029#[stable(feature = "proc_macro_punct_eq", since = "1.50.0")]
1030impl PartialEq<char> for Punct {
1031    fn eq(&self, rhs: &char) -> bool {
1032        self.as_char() == *rhs
1033    }
1034}
1035
1036#[stable(feature = "proc_macro_punct_eq_flipped", since = "1.52.0")]
1037impl PartialEq<Punct> for char {
1038    fn eq(&self, rhs: &Punct) -> bool {
1039        *self == rhs.as_char()
1040    }
1041}
1042
1043/// An identifier (`ident`).
1044#[derive(Clone)]
1045#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1046pub struct Ident(bridge::Ident<bridge::client::Span, bridge::client::Symbol>);
1047
1048impl Ident {
1049    /// Creates a new `Ident` with the given `string` as well as the specified
1050    /// `span`.
1051    /// The `string` argument must be a valid identifier permitted by the
1052    /// language (including keywords, e.g. `self` or `fn`). Otherwise, the function will panic.
1053    ///
1054    /// Note that `span`, currently in rustc, configures the hygiene information
1055    /// for this identifier.
1056    ///
1057    /// As of this time `Span::call_site()` explicitly opts-in to "call-site" hygiene
1058    /// meaning that identifiers created with this span will be resolved as if they were written
1059    /// directly at the location of the macro call, and other code at the macro call site will be
1060    /// able to refer to them as well.
1061    ///
1062    /// Later spans like `Span::def_site()` will allow to opt-in to "definition-site" hygiene
1063    /// meaning that identifiers created with this span will be resolved at the location of the
1064    /// macro definition and other code at the macro call site will not be able to refer to them.
1065    ///
1066    /// Due to the current importance of hygiene this constructor, unlike other
1067    /// tokens, requires a `Span` to be specified at construction.
1068    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1069    pub fn new(string: &str, span: Span) -> Ident {
1070        Ident(bridge::Ident {
1071            sym: bridge::client::Symbol::new_ident(string, false),
1072            is_raw: false,
1073            span: span.0,
1074        })
1075    }
1076
1077    /// Same as `Ident::new`, but creates a raw identifier (`r#ident`).
1078    /// The `string` argument be a valid identifier permitted by the language
1079    /// (including keywords, e.g. `fn`). Keywords which are usable in path segments
1080    /// (e.g. `self`, `super`) are not supported, and will cause a panic.
1081    #[stable(feature = "proc_macro_raw_ident", since = "1.47.0")]
1082    pub fn new_raw(string: &str, span: Span) -> Ident {
1083        Ident(bridge::Ident {
1084            sym: bridge::client::Symbol::new_ident(string, true),
1085            is_raw: true,
1086            span: span.0,
1087        })
1088    }
1089
1090    /// Returns the span of this `Ident`, encompassing the entire string returned
1091    /// by [`to_string`](ToString::to_string).
1092    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1093    pub fn span(&self) -> Span {
1094        Span(self.0.span)
1095    }
1096
1097    /// Configures the span of this `Ident`, possibly changing its hygiene context.
1098    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1099    pub fn set_span(&mut self, span: Span) {
1100        self.0.span = span.0;
1101    }
1102}
1103
1104/// Prints the identifier as a string that should be losslessly convertible back
1105/// into the same identifier.
1106#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1107impl fmt::Display for Ident {
1108    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1109        if self.0.is_raw {
1110            f.write_str("r#")?;
1111        }
1112        fmt::Display::fmt(&self.0.sym, f)
1113    }
1114}
1115
1116#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1117impl fmt::Debug for Ident {
1118    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1119        f.debug_struct("Ident")
1120            .field("ident", &self.to_string())
1121            .field("span", &self.span())
1122            .finish()
1123    }
1124}
1125
1126/// A literal string (`"hello"`), byte string (`b"hello"`), C string (`c"hello"`),
1127/// character (`'a'`), byte character (`b'a'`), an integer or floating point number
1128/// with or without a suffix (`1`, `1u8`, `2.3`, `2.3f32`).
1129/// Boolean literals like `true` and `false` do not belong here, they are `Ident`s.
1130#[derive(Clone)]
1131#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1132pub struct Literal(bridge::Literal<bridge::client::Span, bridge::client::Symbol>);
1133
1134macro_rules! suffixed_int_literals {
1135    ($($name:ident => $kind:ident,)*) => ($(
1136        /// Creates a new suffixed integer literal with the specified value.
1137        ///
1138        /// This function will create an integer like `1u32` where the integer
1139        /// value specified is the first part of the token and the integral is
1140        /// also suffixed at the end.
1141        /// Literals created from negative numbers might not survive round-trips through
1142        /// `TokenStream` or strings and may be broken into two tokens (`-` and positive literal).
1143        ///
1144        /// Literals created through this method have the `Span::call_site()`
1145        /// span by default, which can be configured with the `set_span` method
1146        /// below.
1147        #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1148        pub fn $name(n: $kind) -> Literal {
1149            Literal(bridge::Literal {
1150                kind: bridge::LitKind::Integer,
1151                symbol: bridge::client::Symbol::new(&n.to_string()),
1152                suffix: Some(bridge::client::Symbol::new(stringify!($kind))),
1153                span: Span::call_site().0,
1154            })
1155        }
1156    )*)
1157}
1158
1159macro_rules! unsuffixed_int_literals {
1160    ($($name:ident => $kind:ident,)*) => ($(
1161        /// Creates a new unsuffixed integer literal with the specified value.
1162        ///
1163        /// This function will create an integer like `1` where the integer
1164        /// value specified is the first part of the token. No suffix is
1165        /// specified on this token, meaning that invocations like
1166        /// `Literal::i8_unsuffixed(1)` are equivalent to
1167        /// `Literal::u32_unsuffixed(1)`.
1168        /// Literals created from negative numbers might not survive rountrips through
1169        /// `TokenStream` or strings and may be broken into two tokens (`-` and positive literal).
1170        ///
1171        /// Literals created through this method have the `Span::call_site()`
1172        /// span by default, which can be configured with the `set_span` method
1173        /// below.
1174        #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1175        pub fn $name(n: $kind) -> Literal {
1176            Literal(bridge::Literal {
1177                kind: bridge::LitKind::Integer,
1178                symbol: bridge::client::Symbol::new(&n.to_string()),
1179                suffix: None,
1180                span: Span::call_site().0,
1181            })
1182        }
1183    )*)
1184}
1185
1186impl Literal {
1187    fn new(kind: bridge::LitKind, value: &str, suffix: Option<&str>) -> Self {
1188        Literal(bridge::Literal {
1189            kind,
1190            symbol: bridge::client::Symbol::new(value),
1191            suffix: suffix.map(bridge::client::Symbol::new),
1192            span: Span::call_site().0,
1193        })
1194    }
1195
1196    suffixed_int_literals! {
1197        u8_suffixed => u8,
1198        u16_suffixed => u16,
1199        u32_suffixed => u32,
1200        u64_suffixed => u64,
1201        u128_suffixed => u128,
1202        usize_suffixed => usize,
1203        i8_suffixed => i8,
1204        i16_suffixed => i16,
1205        i32_suffixed => i32,
1206        i64_suffixed => i64,
1207        i128_suffixed => i128,
1208        isize_suffixed => isize,
1209    }
1210
1211    unsuffixed_int_literals! {
1212        u8_unsuffixed => u8,
1213        u16_unsuffixed => u16,
1214        u32_unsuffixed => u32,
1215        u64_unsuffixed => u64,
1216        u128_unsuffixed => u128,
1217        usize_unsuffixed => usize,
1218        i8_unsuffixed => i8,
1219        i16_unsuffixed => i16,
1220        i32_unsuffixed => i32,
1221        i64_unsuffixed => i64,
1222        i128_unsuffixed => i128,
1223        isize_unsuffixed => isize,
1224    }
1225
1226    /// Creates a new unsuffixed floating-point literal.
1227    ///
1228    /// This constructor is similar to those like `Literal::i8_unsuffixed` where
1229    /// the float's value is emitted directly into the token but no suffix is
1230    /// used, so it may be inferred to be a `f64` later in the compiler.
1231    /// Literals created from negative numbers might not survive rountrips through
1232    /// `TokenStream` or strings and may be broken into two tokens (`-` and positive literal).
1233    ///
1234    /// # Panics
1235    ///
1236    /// This function requires that the specified float is finite, for
1237    /// example if it is infinity or NaN this function will panic.
1238    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1239    pub fn f32_unsuffixed(n: f32) -> Literal {
1240        if !n.is_finite() {
1241            panic!("Invalid float literal {n}");
1242        }
1243        let mut repr = n.to_string();
1244        if !repr.contains('.') {
1245            repr.push_str(".0");
1246        }
1247        Literal::new(bridge::LitKind::Float, &repr, None)
1248    }
1249
1250    /// Creates a new suffixed floating-point literal.
1251    ///
1252    /// This constructor will create a literal like `1.0f32` where the value
1253    /// specified is the preceding part of the token and `f32` is the suffix of
1254    /// the token. This token will always be inferred to be an `f32` in the
1255    /// compiler.
1256    /// Literals created from negative numbers might not survive rountrips through
1257    /// `TokenStream` or strings and may be broken into two tokens (`-` and positive literal).
1258    ///
1259    /// # Panics
1260    ///
1261    /// This function requires that the specified float is finite, for
1262    /// example if it is infinity or NaN this function will panic.
1263    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1264    pub fn f32_suffixed(n: f32) -> Literal {
1265        if !n.is_finite() {
1266            panic!("Invalid float literal {n}");
1267        }
1268        Literal::new(bridge::LitKind::Float, &n.to_string(), Some("f32"))
1269    }
1270
1271    /// Creates a new unsuffixed floating-point literal.
1272    ///
1273    /// This constructor is similar to those like `Literal::i8_unsuffixed` where
1274    /// the float's value is emitted directly into the token but no suffix is
1275    /// used, so it may be inferred to be a `f64` later in the compiler.
1276    /// Literals created from negative numbers might not survive rountrips through
1277    /// `TokenStream` or strings and may be broken into two tokens (`-` and positive literal).
1278    ///
1279    /// # Panics
1280    ///
1281    /// This function requires that the specified float is finite, for
1282    /// example if it is infinity or NaN this function will panic.
1283    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1284    pub fn f64_unsuffixed(n: f64) -> Literal {
1285        if !n.is_finite() {
1286            panic!("Invalid float literal {n}");
1287        }
1288        let mut repr = n.to_string();
1289        if !repr.contains('.') {
1290            repr.push_str(".0");
1291        }
1292        Literal::new(bridge::LitKind::Float, &repr, None)
1293    }
1294
1295    /// Creates a new suffixed floating-point literal.
1296    ///
1297    /// This constructor will create a literal like `1.0f64` where the value
1298    /// specified is the preceding part of the token and `f64` is the suffix of
1299    /// the token. This token will always be inferred to be an `f64` in the
1300    /// compiler.
1301    /// Literals created from negative numbers might not survive rountrips through
1302    /// `TokenStream` or strings and may be broken into two tokens (`-` and positive literal).
1303    ///
1304    /// # Panics
1305    ///
1306    /// This function requires that the specified float is finite, for
1307    /// example if it is infinity or NaN this function will panic.
1308    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1309    pub fn f64_suffixed(n: f64) -> Literal {
1310        if !n.is_finite() {
1311            panic!("Invalid float literal {n}");
1312        }
1313        Literal::new(bridge::LitKind::Float, &n.to_string(), Some("f64"))
1314    }
1315
1316    /// String literal.
1317    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1318    pub fn string(string: &str) -> Literal {
1319        let escape = EscapeOptions {
1320            escape_single_quote: false,
1321            escape_double_quote: true,
1322            escape_nonascii: false,
1323        };
1324        let repr = escape_bytes(string.as_bytes(), escape);
1325        Literal::new(bridge::LitKind::Str, &repr, None)
1326    }
1327
1328    /// Character literal.
1329    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1330    pub fn character(ch: char) -> Literal {
1331        let escape = EscapeOptions {
1332            escape_single_quote: true,
1333            escape_double_quote: false,
1334            escape_nonascii: false,
1335        };
1336        let repr = escape_bytes(ch.encode_utf8(&mut [0u8; 4]).as_bytes(), escape);
1337        Literal::new(bridge::LitKind::Char, &repr, None)
1338    }
1339
1340    /// Byte character literal.
1341    #[stable(feature = "proc_macro_byte_character", since = "1.79.0")]
1342    pub fn byte_character(byte: u8) -> Literal {
1343        let escape = EscapeOptions {
1344            escape_single_quote: true,
1345            escape_double_quote: false,
1346            escape_nonascii: true,
1347        };
1348        let repr = escape_bytes(&[byte], escape);
1349        Literal::new(bridge::LitKind::Byte, &repr, None)
1350    }
1351
1352    /// Byte string literal.
1353    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1354    pub fn byte_string(bytes: &[u8]) -> Literal {
1355        let escape = EscapeOptions {
1356            escape_single_quote: false,
1357            escape_double_quote: true,
1358            escape_nonascii: true,
1359        };
1360        let repr = escape_bytes(bytes, escape);
1361        Literal::new(bridge::LitKind::ByteStr, &repr, None)
1362    }
1363
1364    /// C string literal.
1365    #[stable(feature = "proc_macro_c_str_literals", since = "1.79.0")]
1366    pub fn c_string(string: &CStr) -> Literal {
1367        let escape = EscapeOptions {
1368            escape_single_quote: false,
1369            escape_double_quote: true,
1370            escape_nonascii: false,
1371        };
1372        let repr = escape_bytes(string.to_bytes(), escape);
1373        Literal::new(bridge::LitKind::CStr, &repr, None)
1374    }
1375
1376    /// Returns the span encompassing this literal.
1377    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1378    pub fn span(&self) -> Span {
1379        Span(self.0.span)
1380    }
1381
1382    /// Configures the span associated for this literal.
1383    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1384    pub fn set_span(&mut self, span: Span) {
1385        self.0.span = span.0;
1386    }
1387
1388    /// Returns a `Span` that is a subset of `self.span()` containing only the
1389    /// source bytes in range `range`. Returns `None` if the would-be trimmed
1390    /// span is outside the bounds of `self`.
1391    // FIXME(SergioBenitez): check that the byte range starts and ends at a
1392    // UTF-8 boundary of the source. otherwise, it's likely that a panic will
1393    // occur elsewhere when the source text is printed.
1394    // FIXME(SergioBenitez): there is no way for the user to know what
1395    // `self.span()` actually maps to, so this method can currently only be
1396    // called blindly. For example, `to_string()` for the character 'c' returns
1397    // "'\u{63}'"; there is no way for the user to know whether the source text
1398    // was 'c' or whether it was '\u{63}'.
1399    #[unstable(feature = "proc_macro_span", issue = "54725")]
1400    pub fn subspan<R: RangeBounds<usize>>(&self, range: R) -> Option<Span> {
1401        self.0.span.subspan(range.start_bound().cloned(), range.end_bound().cloned()).map(Span)
1402    }
1403
1404    fn with_symbol_and_suffix<R>(&self, f: impl FnOnce(&str, &str) -> R) -> R {
1405        self.0.symbol.with(|symbol| match self.0.suffix {
1406            Some(suffix) => suffix.with(|suffix| f(symbol, suffix)),
1407            None => f(symbol, ""),
1408        })
1409    }
1410
1411    /// Invokes the callback with a `&[&str]` consisting of each part of the
1412    /// literal's representation. This is done to allow the `ToString` and
1413    /// `Display` implementations to borrow references to symbol values, and
1414    /// both be optimized to reduce overhead.
1415    fn with_stringify_parts<R>(&self, f: impl FnOnce(&[&str]) -> R) -> R {
1416        /// Returns a string containing exactly `num` '#' characters.
1417        /// Uses a 256-character source string literal which is always safe to
1418        /// index with a `u8` index.
1419        fn get_hashes_str(num: u8) -> &'static str {
1420            const HASHES: &str = "\
1421            ################################################################\
1422            ################################################################\
1423            ################################################################\
1424            ################################################################\
1425            ";
1426            const _: () = assert!(HASHES.len() == 256);
1427            &HASHES[..num as usize]
1428        }
1429
1430        self.with_symbol_and_suffix(|symbol, suffix| match self.0.kind {
1431            bridge::LitKind::Byte => f(&["b'", symbol, "'", suffix]),
1432            bridge::LitKind::Char => f(&["'", symbol, "'", suffix]),
1433            bridge::LitKind::Str => f(&["\"", symbol, "\"", suffix]),
1434            bridge::LitKind::StrRaw(n) => {
1435                let hashes = get_hashes_str(n);
1436                f(&["r", hashes, "\"", symbol, "\"", hashes, suffix])
1437            }
1438            bridge::LitKind::ByteStr => f(&["b\"", symbol, "\"", suffix]),
1439            bridge::LitKind::ByteStrRaw(n) => {
1440                let hashes = get_hashes_str(n);
1441                f(&["br", hashes, "\"", symbol, "\"", hashes, suffix])
1442            }
1443            bridge::LitKind::CStr => f(&["c\"", symbol, "\"", suffix]),
1444            bridge::LitKind::CStrRaw(n) => {
1445                let hashes = get_hashes_str(n);
1446                f(&["cr", hashes, "\"", symbol, "\"", hashes, suffix])
1447            }
1448
1449            bridge::LitKind::Integer | bridge::LitKind::Float | bridge::LitKind::ErrWithGuar => {
1450                f(&[symbol, suffix])
1451            }
1452        })
1453    }
1454}
1455
1456/// Parse a single literal from its stringified representation.
1457///
1458/// In order to parse successfully, the input string must not contain anything
1459/// but the literal token. Specifically, it must not contain whitespace or
1460/// comments in addition to the literal.
1461///
1462/// The resulting literal token will have a `Span::call_site()` span.
1463///
1464/// NOTE: some errors may cause panics instead of returning `LexError`. We
1465/// reserve the right to change these errors into `LexError`s later.
1466#[stable(feature = "proc_macro_literal_parse", since = "1.54.0")]
1467impl FromStr for Literal {
1468    type Err = LexError;
1469
1470    fn from_str(src: &str) -> Result<Self, LexError> {
1471        match bridge::client::FreeFunctions::literal_from_str(src) {
1472            Ok(literal) => Ok(Literal(literal)),
1473            Err(()) => Err(LexError),
1474        }
1475    }
1476}
1477
1478/// Prints the literal as a string that should be losslessly convertible
1479/// back into the same literal (except for possible rounding for floating point literals).
1480#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1481impl fmt::Display for Literal {
1482    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1483        self.with_stringify_parts(|parts| {
1484            for part in parts {
1485                fmt::Display::fmt(part, f)?;
1486            }
1487            Ok(())
1488        })
1489    }
1490}
1491
1492#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1493impl fmt::Debug for Literal {
1494    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1495        f.debug_struct("Literal")
1496            // format the kind on one line even in {:#?} mode
1497            .field("kind", &format_args!("{:?}", self.0.kind))
1498            .field("symbol", &self.0.symbol)
1499            // format `Some("...")` on one line even in {:#?} mode
1500            .field("suffix", &format_args!("{:?}", self.0.suffix))
1501            .field("span", &self.0.span)
1502            .finish()
1503    }
1504}
1505
1506/// Tracked access to environment variables.
1507#[unstable(feature = "proc_macro_tracked_env", issue = "99515")]
1508pub mod tracked_env {
1509    use std::env::{self, VarError};
1510    use std::ffi::OsStr;
1511
1512    /// Retrieve an environment variable and add it to build dependency info.
1513    /// The build system executing the compiler will know that the variable was accessed during
1514    /// compilation, and will be able to rerun the build when the value of that variable changes.
1515    /// Besides the dependency tracking this function should be equivalent to `env::var` from the
1516    /// standard library, except that the argument must be UTF-8.
1517    #[unstable(feature = "proc_macro_tracked_env", issue = "99515")]
1518    pub fn var<K: AsRef<OsStr> + AsRef<str>>(key: K) -> Result<String, VarError> {
1519        let key: &str = key.as_ref();
1520        let value = crate::bridge::client::FreeFunctions::injected_env_var(key)
1521            .map_or_else(|| env::var(key), Ok);
1522        crate::bridge::client::FreeFunctions::track_env_var(key, value.as_deref().ok());
1523        value
1524    }
1525}
1526
1527/// Tracked access to additional files.
1528#[unstable(feature = "track_path", issue = "99515")]
1529pub mod tracked_path {
1530
1531    /// Track a file explicitly.
1532    ///
1533    /// Commonly used for tracking asset preprocessing.
1534    #[unstable(feature = "track_path", issue = "99515")]
1535    pub fn path<P: AsRef<str>>(path: P) {
1536        let path: &str = path.as_ref();
1537        crate::bridge::client::FreeFunctions::track_path(path);
1538    }
1539}