core/num/
f64.rs

1//! Constants for the `f64` double-precision floating point type.
2//!
3//! *[See also the `f64` primitive type][f64].*
4//!
5//! Mathematically significant numbers are provided in the `consts` sub-module.
6//!
7//! For the constants defined directly in this module
8//! (as distinct from those defined in the `consts` sub-module),
9//! new code should instead use the associated constants
10//! defined directly on the `f64` type.
11
12#![stable(feature = "rust1", since = "1.0.0")]
13
14use crate::convert::FloatToInt;
15use crate::num::FpCategory;
16use crate::panic::const_assert;
17use crate::{intrinsics, mem};
18
19/// The radix or base of the internal representation of `f64`.
20/// Use [`f64::RADIX`] instead.
21///
22/// # Examples
23///
24/// ```rust
25/// // deprecated way
26/// # #[allow(deprecated, deprecated_in_future)]
27/// let r = std::f64::RADIX;
28///
29/// // intended way
30/// let r = f64::RADIX;
31/// ```
32#[stable(feature = "rust1", since = "1.0.0")]
33#[deprecated(since = "TBD", note = "replaced by the `RADIX` associated constant on `f64`")]
34#[rustc_diagnostic_item = "f64_legacy_const_radix"]
35pub const RADIX: u32 = f64::RADIX;
36
37/// Number of significant digits in base 2.
38/// Use [`f64::MANTISSA_DIGITS`] instead.
39///
40/// # Examples
41///
42/// ```rust
43/// // deprecated way
44/// # #[allow(deprecated, deprecated_in_future)]
45/// let d = std::f64::MANTISSA_DIGITS;
46///
47/// // intended way
48/// let d = f64::MANTISSA_DIGITS;
49/// ```
50#[stable(feature = "rust1", since = "1.0.0")]
51#[deprecated(
52    since = "TBD",
53    note = "replaced by the `MANTISSA_DIGITS` associated constant on `f64`"
54)]
55#[rustc_diagnostic_item = "f64_legacy_const_mantissa_dig"]
56pub const MANTISSA_DIGITS: u32 = f64::MANTISSA_DIGITS;
57
58/// Approximate number of significant digits in base 10.
59/// Use [`f64::DIGITS`] instead.
60///
61/// # Examples
62///
63/// ```rust
64/// // deprecated way
65/// # #[allow(deprecated, deprecated_in_future)]
66/// let d = std::f64::DIGITS;
67///
68/// // intended way
69/// let d = f64::DIGITS;
70/// ```
71#[stable(feature = "rust1", since = "1.0.0")]
72#[deprecated(since = "TBD", note = "replaced by the `DIGITS` associated constant on `f64`")]
73#[rustc_diagnostic_item = "f64_legacy_const_digits"]
74pub const DIGITS: u32 = f64::DIGITS;
75
76/// [Machine epsilon] value for `f64`.
77/// Use [`f64::EPSILON`] instead.
78///
79/// This is the difference between `1.0` and the next larger representable number.
80///
81/// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
82///
83/// # Examples
84///
85/// ```rust
86/// // deprecated way
87/// # #[allow(deprecated, deprecated_in_future)]
88/// let e = std::f64::EPSILON;
89///
90/// // intended way
91/// let e = f64::EPSILON;
92/// ```
93#[stable(feature = "rust1", since = "1.0.0")]
94#[deprecated(since = "TBD", note = "replaced by the `EPSILON` associated constant on `f64`")]
95#[rustc_diagnostic_item = "f64_legacy_const_epsilon"]
96pub const EPSILON: f64 = f64::EPSILON;
97
98/// Smallest finite `f64` value.
99/// Use [`f64::MIN`] instead.
100///
101/// # Examples
102///
103/// ```rust
104/// // deprecated way
105/// # #[allow(deprecated, deprecated_in_future)]
106/// let min = std::f64::MIN;
107///
108/// // intended way
109/// let min = f64::MIN;
110/// ```
111#[stable(feature = "rust1", since = "1.0.0")]
112#[deprecated(since = "TBD", note = "replaced by the `MIN` associated constant on `f64`")]
113#[rustc_diagnostic_item = "f64_legacy_const_min"]
114pub const MIN: f64 = f64::MIN;
115
116/// Smallest positive normal `f64` value.
117/// Use [`f64::MIN_POSITIVE`] instead.
118///
119/// # Examples
120///
121/// ```rust
122/// // deprecated way
123/// # #[allow(deprecated, deprecated_in_future)]
124/// let min = std::f64::MIN_POSITIVE;
125///
126/// // intended way
127/// let min = f64::MIN_POSITIVE;
128/// ```
129#[stable(feature = "rust1", since = "1.0.0")]
130#[deprecated(since = "TBD", note = "replaced by the `MIN_POSITIVE` associated constant on `f64`")]
131#[rustc_diagnostic_item = "f64_legacy_const_min_positive"]
132pub const MIN_POSITIVE: f64 = f64::MIN_POSITIVE;
133
134/// Largest finite `f64` value.
135/// Use [`f64::MAX`] instead.
136///
137/// # Examples
138///
139/// ```rust
140/// // deprecated way
141/// # #[allow(deprecated, deprecated_in_future)]
142/// let max = std::f64::MAX;
143///
144/// // intended way
145/// let max = f64::MAX;
146/// ```
147#[stable(feature = "rust1", since = "1.0.0")]
148#[deprecated(since = "TBD", note = "replaced by the `MAX` associated constant on `f64`")]
149#[rustc_diagnostic_item = "f64_legacy_const_max"]
150pub const MAX: f64 = f64::MAX;
151
152/// One greater than the minimum possible normal power of 2 exponent.
153/// Use [`f64::MIN_EXP`] instead.
154///
155/// # Examples
156///
157/// ```rust
158/// // deprecated way
159/// # #[allow(deprecated, deprecated_in_future)]
160/// let min = std::f64::MIN_EXP;
161///
162/// // intended way
163/// let min = f64::MIN_EXP;
164/// ```
165#[stable(feature = "rust1", since = "1.0.0")]
166#[deprecated(since = "TBD", note = "replaced by the `MIN_EXP` associated constant on `f64`")]
167#[rustc_diagnostic_item = "f64_legacy_const_min_exp"]
168pub const MIN_EXP: i32 = f64::MIN_EXP;
169
170/// Maximum possible power of 2 exponent.
171/// Use [`f64::MAX_EXP`] instead.
172///
173/// # Examples
174///
175/// ```rust
176/// // deprecated way
177/// # #[allow(deprecated, deprecated_in_future)]
178/// let max = std::f64::MAX_EXP;
179///
180/// // intended way
181/// let max = f64::MAX_EXP;
182/// ```
183#[stable(feature = "rust1", since = "1.0.0")]
184#[deprecated(since = "TBD", note = "replaced by the `MAX_EXP` associated constant on `f64`")]
185#[rustc_diagnostic_item = "f64_legacy_const_max_exp"]
186pub const MAX_EXP: i32 = f64::MAX_EXP;
187
188/// Minimum possible normal power of 10 exponent.
189/// Use [`f64::MIN_10_EXP`] instead.
190///
191/// # Examples
192///
193/// ```rust
194/// // deprecated way
195/// # #[allow(deprecated, deprecated_in_future)]
196/// let min = std::f64::MIN_10_EXP;
197///
198/// // intended way
199/// let min = f64::MIN_10_EXP;
200/// ```
201#[stable(feature = "rust1", since = "1.0.0")]
202#[deprecated(since = "TBD", note = "replaced by the `MIN_10_EXP` associated constant on `f64`")]
203#[rustc_diagnostic_item = "f64_legacy_const_min_10_exp"]
204pub const MIN_10_EXP: i32 = f64::MIN_10_EXP;
205
206/// Maximum possible power of 10 exponent.
207/// Use [`f64::MAX_10_EXP`] instead.
208///
209/// # Examples
210///
211/// ```rust
212/// // deprecated way
213/// # #[allow(deprecated, deprecated_in_future)]
214/// let max = std::f64::MAX_10_EXP;
215///
216/// // intended way
217/// let max = f64::MAX_10_EXP;
218/// ```
219#[stable(feature = "rust1", since = "1.0.0")]
220#[deprecated(since = "TBD", note = "replaced by the `MAX_10_EXP` associated constant on `f64`")]
221#[rustc_diagnostic_item = "f64_legacy_const_max_10_exp"]
222pub const MAX_10_EXP: i32 = f64::MAX_10_EXP;
223
224/// Not a Number (NaN).
225/// Use [`f64::NAN`] instead.
226///
227/// # Examples
228///
229/// ```rust
230/// // deprecated way
231/// # #[allow(deprecated, deprecated_in_future)]
232/// let nan = std::f64::NAN;
233///
234/// // intended way
235/// let nan = f64::NAN;
236/// ```
237#[stable(feature = "rust1", since = "1.0.0")]
238#[deprecated(since = "TBD", note = "replaced by the `NAN` associated constant on `f64`")]
239#[rustc_diagnostic_item = "f64_legacy_const_nan"]
240pub const NAN: f64 = f64::NAN;
241
242/// Infinity (∞).
243/// Use [`f64::INFINITY`] instead.
244///
245/// # Examples
246///
247/// ```rust
248/// // deprecated way
249/// # #[allow(deprecated, deprecated_in_future)]
250/// let inf = std::f64::INFINITY;
251///
252/// // intended way
253/// let inf = f64::INFINITY;
254/// ```
255#[stable(feature = "rust1", since = "1.0.0")]
256#[deprecated(since = "TBD", note = "replaced by the `INFINITY` associated constant on `f64`")]
257#[rustc_diagnostic_item = "f64_legacy_const_infinity"]
258pub const INFINITY: f64 = f64::INFINITY;
259
260/// Negative infinity (−∞).
261/// Use [`f64::NEG_INFINITY`] instead.
262///
263/// # Examples
264///
265/// ```rust
266/// // deprecated way
267/// # #[allow(deprecated, deprecated_in_future)]
268/// let ninf = std::f64::NEG_INFINITY;
269///
270/// // intended way
271/// let ninf = f64::NEG_INFINITY;
272/// ```
273#[stable(feature = "rust1", since = "1.0.0")]
274#[deprecated(since = "TBD", note = "replaced by the `NEG_INFINITY` associated constant on `f64`")]
275#[rustc_diagnostic_item = "f64_legacy_const_neg_infinity"]
276pub const NEG_INFINITY: f64 = f64::NEG_INFINITY;
277
278/// Basic mathematical constants.
279#[stable(feature = "rust1", since = "1.0.0")]
280#[rustc_diagnostic_item = "f64_consts_mod"]
281pub mod consts {
282    // FIXME: replace with mathematical constants from cmath.
283
284    /// Archimedes' constant (π)
285    #[stable(feature = "rust1", since = "1.0.0")]
286    pub const PI: f64 = 3.14159265358979323846264338327950288_f64;
287
288    /// The full circle constant (τ)
289    ///
290    /// Equal to 2π.
291    #[stable(feature = "tau_constant", since = "1.47.0")]
292    pub const TAU: f64 = 6.28318530717958647692528676655900577_f64;
293
294    /// The golden ratio (φ)
295    #[unstable(feature = "more_float_constants", issue = "146939")]
296    pub const PHI: f64 = 1.618033988749894848204586834365638118_f64;
297
298    /// The Euler-Mascheroni constant (γ)
299    #[unstable(feature = "more_float_constants", issue = "146939")]
300    pub const EGAMMA: f64 = 0.577215664901532860606512090082402431_f64;
301
302    /// π/2
303    #[stable(feature = "rust1", since = "1.0.0")]
304    pub const FRAC_PI_2: f64 = 1.57079632679489661923132169163975144_f64;
305
306    /// π/3
307    #[stable(feature = "rust1", since = "1.0.0")]
308    pub const FRAC_PI_3: f64 = 1.04719755119659774615421446109316763_f64;
309
310    /// π/4
311    #[stable(feature = "rust1", since = "1.0.0")]
312    pub const FRAC_PI_4: f64 = 0.785398163397448309615660845819875721_f64;
313
314    /// π/6
315    #[stable(feature = "rust1", since = "1.0.0")]
316    pub const FRAC_PI_6: f64 = 0.52359877559829887307710723054658381_f64;
317
318    /// π/8
319    #[stable(feature = "rust1", since = "1.0.0")]
320    pub const FRAC_PI_8: f64 = 0.39269908169872415480783042290993786_f64;
321
322    /// 1/π
323    #[stable(feature = "rust1", since = "1.0.0")]
324    pub const FRAC_1_PI: f64 = 0.318309886183790671537767526745028724_f64;
325
326    /// 1/sqrt(π)
327    #[unstable(feature = "more_float_constants", issue = "146939")]
328    pub const FRAC_1_SQRT_PI: f64 = 0.564189583547756286948079451560772586_f64;
329
330    /// 1/sqrt(2π)
331    #[doc(alias = "FRAC_1_SQRT_TAU")]
332    #[unstable(feature = "more_float_constants", issue = "146939")]
333    pub const FRAC_1_SQRT_2PI: f64 = 0.398942280401432677939946059934381868_f64;
334
335    /// 2/π
336    #[stable(feature = "rust1", since = "1.0.0")]
337    pub const FRAC_2_PI: f64 = 0.636619772367581343075535053490057448_f64;
338
339    /// 2/sqrt(π)
340    #[stable(feature = "rust1", since = "1.0.0")]
341    pub const FRAC_2_SQRT_PI: f64 = 1.12837916709551257389615890312154517_f64;
342
343    /// sqrt(2)
344    #[stable(feature = "rust1", since = "1.0.0")]
345    pub const SQRT_2: f64 = 1.41421356237309504880168872420969808_f64;
346
347    /// 1/sqrt(2)
348    #[stable(feature = "rust1", since = "1.0.0")]
349    pub const FRAC_1_SQRT_2: f64 = 0.707106781186547524400844362104849039_f64;
350
351    /// sqrt(3)
352    #[unstable(feature = "more_float_constants", issue = "146939")]
353    pub const SQRT_3: f64 = 1.732050807568877293527446341505872367_f64;
354
355    /// 1/sqrt(3)
356    #[unstable(feature = "more_float_constants", issue = "146939")]
357    pub const FRAC_1_SQRT_3: f64 = 0.577350269189625764509148780501957456_f64;
358
359    /// Euler's number (e)
360    #[stable(feature = "rust1", since = "1.0.0")]
361    pub const E: f64 = 2.71828182845904523536028747135266250_f64;
362
363    /// log<sub>2</sub>(10)
364    #[stable(feature = "extra_log_consts", since = "1.43.0")]
365    pub const LOG2_10: f64 = 3.32192809488736234787031942948939018_f64;
366
367    /// log<sub>2</sub>(e)
368    #[stable(feature = "rust1", since = "1.0.0")]
369    pub const LOG2_E: f64 = 1.44269504088896340735992468100189214_f64;
370
371    /// log<sub>10</sub>(2)
372    #[stable(feature = "extra_log_consts", since = "1.43.0")]
373    pub const LOG10_2: f64 = 0.301029995663981195213738894724493027_f64;
374
375    /// log<sub>10</sub>(e)
376    #[stable(feature = "rust1", since = "1.0.0")]
377    pub const LOG10_E: f64 = 0.434294481903251827651128918916605082_f64;
378
379    /// ln(2)
380    #[stable(feature = "rust1", since = "1.0.0")]
381    pub const LN_2: f64 = 0.693147180559945309417232121458176568_f64;
382
383    /// ln(10)
384    #[stable(feature = "rust1", since = "1.0.0")]
385    pub const LN_10: f64 = 2.30258509299404568401799145468436421_f64;
386}
387
388impl f64 {
389    /// The radix or base of the internal representation of `f64`.
390    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
391    pub const RADIX: u32 = 2;
392
393    /// Number of significant digits in base 2.
394    ///
395    /// Note that the size of the mantissa in the bitwise representation is one
396    /// smaller than this since the leading 1 is not stored explicitly.
397    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
398    pub const MANTISSA_DIGITS: u32 = 53;
399    /// Approximate number of significant digits in base 10.
400    ///
401    /// This is the maximum <i>x</i> such that any decimal number with <i>x</i>
402    /// significant digits can be converted to `f64` and back without loss.
403    ///
404    /// Equal to floor(log<sub>10</sub>&nbsp;2<sup>[`MANTISSA_DIGITS`]&nbsp;&minus;&nbsp;1</sup>).
405    ///
406    /// [`MANTISSA_DIGITS`]: f64::MANTISSA_DIGITS
407    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
408    pub const DIGITS: u32 = 15;
409
410    /// [Machine epsilon] value for `f64`.
411    ///
412    /// This is the difference between `1.0` and the next larger representable number.
413    ///
414    /// Equal to 2<sup>1&nbsp;&minus;&nbsp;[`MANTISSA_DIGITS`]</sup>.
415    ///
416    /// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
417    /// [`MANTISSA_DIGITS`]: f64::MANTISSA_DIGITS
418    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
419    #[rustc_diagnostic_item = "f64_epsilon"]
420    pub const EPSILON: f64 = 2.2204460492503131e-16_f64;
421
422    /// Smallest finite `f64` value.
423    ///
424    /// Equal to &minus;[`MAX`].
425    ///
426    /// [`MAX`]: f64::MAX
427    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
428    pub const MIN: f64 = -1.7976931348623157e+308_f64;
429    /// Smallest positive normal `f64` value.
430    ///
431    /// Equal to 2<sup>[`MIN_EXP`]&nbsp;&minus;&nbsp;1</sup>.
432    ///
433    /// [`MIN_EXP`]: f64::MIN_EXP
434    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
435    pub const MIN_POSITIVE: f64 = 2.2250738585072014e-308_f64;
436    /// Largest finite `f64` value.
437    ///
438    /// Equal to
439    /// (1&nbsp;&minus;&nbsp;2<sup>&minus;[`MANTISSA_DIGITS`]</sup>)&nbsp;2<sup>[`MAX_EXP`]</sup>.
440    ///
441    /// [`MANTISSA_DIGITS`]: f64::MANTISSA_DIGITS
442    /// [`MAX_EXP`]: f64::MAX_EXP
443    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
444    pub const MAX: f64 = 1.7976931348623157e+308_f64;
445
446    /// One greater than the minimum possible *normal* power of 2 exponent
447    /// for a significand bounded by 1 ≤ x < 2 (i.e. the IEEE definition).
448    ///
449    /// This corresponds to the exact minimum possible *normal* power of 2 exponent
450    /// for a significand bounded by 0.5 ≤ x < 1 (i.e. the C definition).
451    /// In other words, all normal numbers representable by this type are
452    /// greater than or equal to 0.5&nbsp;×&nbsp;2<sup><i>MIN_EXP</i></sup>.
453    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
454    pub const MIN_EXP: i32 = -1021;
455    /// One greater than the maximum possible power of 2 exponent
456    /// for a significand bounded by 1 ≤ x < 2 (i.e. the IEEE definition).
457    ///
458    /// This corresponds to the exact maximum possible power of 2 exponent
459    /// for a significand bounded by 0.5 ≤ x < 1 (i.e. the C definition).
460    /// In other words, all numbers representable by this type are
461    /// strictly less than 2<sup><i>MAX_EXP</i></sup>.
462    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
463    pub const MAX_EXP: i32 = 1024;
464
465    /// Minimum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
466    ///
467    /// Equal to ceil(log<sub>10</sub>&nbsp;[`MIN_POSITIVE`]).
468    ///
469    /// [`MIN_POSITIVE`]: f64::MIN_POSITIVE
470    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
471    pub const MIN_10_EXP: i32 = -307;
472    /// Maximum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
473    ///
474    /// Equal to floor(log<sub>10</sub>&nbsp;[`MAX`]).
475    ///
476    /// [`MAX`]: f64::MAX
477    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
478    pub const MAX_10_EXP: i32 = 308;
479
480    /// Not a Number (NaN).
481    ///
482    /// Note that IEEE 754 doesn't define just a single NaN value; a plethora of bit patterns are
483    /// considered to be NaN. Furthermore, the standard makes a difference between a "signaling" and
484    /// a "quiet" NaN, and allows inspecting its "payload" (the unspecified bits in the bit pattern)
485    /// and its sign. See the [specification of NaN bit patterns](f32#nan-bit-patterns) for more
486    /// info.
487    ///
488    /// This constant is guaranteed to be a quiet NaN (on targets that follow the Rust assumptions
489    /// that the quiet/signaling bit being set to 1 indicates a quiet NaN). Beyond that, nothing is
490    /// guaranteed about the specific bit pattern chosen here: both payload and sign are arbitrary.
491    /// The concrete bit pattern may change across Rust versions and target platforms.
492    #[rustc_diagnostic_item = "f64_nan"]
493    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
494    #[allow(clippy::eq_op)]
495    pub const NAN: f64 = 0.0_f64 / 0.0_f64;
496    /// Infinity (∞).
497    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
498    pub const INFINITY: f64 = 1.0_f64 / 0.0_f64;
499    /// Negative infinity (−∞).
500    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
501    pub const NEG_INFINITY: f64 = -1.0_f64 / 0.0_f64;
502
503    /// Sign bit
504    pub(crate) const SIGN_MASK: u64 = 0x8000_0000_0000_0000;
505
506    /// Exponent mask
507    pub(crate) const EXP_MASK: u64 = 0x7ff0_0000_0000_0000;
508
509    /// Mantissa mask
510    pub(crate) const MAN_MASK: u64 = 0x000f_ffff_ffff_ffff;
511
512    /// Minimum representable positive value (min subnormal)
513    const TINY_BITS: u64 = 0x1;
514
515    /// Minimum representable negative value (min negative subnormal)
516    const NEG_TINY_BITS: u64 = Self::TINY_BITS | Self::SIGN_MASK;
517
518    /// Returns `true` if this value is NaN.
519    ///
520    /// ```
521    /// let nan = f64::NAN;
522    /// let f = 7.0_f64;
523    ///
524    /// assert!(nan.is_nan());
525    /// assert!(!f.is_nan());
526    /// ```
527    #[must_use]
528    #[stable(feature = "rust1", since = "1.0.0")]
529    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
530    #[inline]
531    #[allow(clippy::eq_op)] // > if you intended to check if the operand is NaN, use `.is_nan()` instead :)
532    pub const fn is_nan(self) -> bool {
533        self != self
534    }
535
536    /// Returns `true` if this value is positive infinity or negative infinity, and
537    /// `false` otherwise.
538    ///
539    /// ```
540    /// let f = 7.0f64;
541    /// let inf = f64::INFINITY;
542    /// let neg_inf = f64::NEG_INFINITY;
543    /// let nan = f64::NAN;
544    ///
545    /// assert!(!f.is_infinite());
546    /// assert!(!nan.is_infinite());
547    ///
548    /// assert!(inf.is_infinite());
549    /// assert!(neg_inf.is_infinite());
550    /// ```
551    #[must_use]
552    #[stable(feature = "rust1", since = "1.0.0")]
553    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
554    #[inline]
555    pub const fn is_infinite(self) -> bool {
556        // Getting clever with transmutation can result in incorrect answers on some FPUs
557        // FIXME: alter the Rust <-> Rust calling convention to prevent this problem.
558        // See https://github.com/rust-lang/rust/issues/72327
559        (self == f64::INFINITY) | (self == f64::NEG_INFINITY)
560    }
561
562    /// Returns `true` if this number is neither infinite nor NaN.
563    ///
564    /// ```
565    /// let f = 7.0f64;
566    /// let inf: f64 = f64::INFINITY;
567    /// let neg_inf: f64 = f64::NEG_INFINITY;
568    /// let nan: f64 = f64::NAN;
569    ///
570    /// assert!(f.is_finite());
571    ///
572    /// assert!(!nan.is_finite());
573    /// assert!(!inf.is_finite());
574    /// assert!(!neg_inf.is_finite());
575    /// ```
576    #[must_use]
577    #[stable(feature = "rust1", since = "1.0.0")]
578    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
579    #[inline]
580    pub const fn is_finite(self) -> bool {
581        // There's no need to handle NaN separately: if self is NaN,
582        // the comparison is not true, exactly as desired.
583        self.abs() < Self::INFINITY
584    }
585
586    /// Returns `true` if the number is [subnormal].
587    ///
588    /// ```
589    /// let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308_f64
590    /// let max = f64::MAX;
591    /// let lower_than_min = 1.0e-308_f64;
592    /// let zero = 0.0_f64;
593    ///
594    /// assert!(!min.is_subnormal());
595    /// assert!(!max.is_subnormal());
596    ///
597    /// assert!(!zero.is_subnormal());
598    /// assert!(!f64::NAN.is_subnormal());
599    /// assert!(!f64::INFINITY.is_subnormal());
600    /// // Values between `0` and `min` are Subnormal.
601    /// assert!(lower_than_min.is_subnormal());
602    /// ```
603    /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
604    #[must_use]
605    #[stable(feature = "is_subnormal", since = "1.53.0")]
606    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
607    #[inline]
608    pub const fn is_subnormal(self) -> bool {
609        matches!(self.classify(), FpCategory::Subnormal)
610    }
611
612    /// Returns `true` if the number is neither zero, infinite,
613    /// [subnormal], or NaN.
614    ///
615    /// ```
616    /// let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308f64
617    /// let max = f64::MAX;
618    /// let lower_than_min = 1.0e-308_f64;
619    /// let zero = 0.0f64;
620    ///
621    /// assert!(min.is_normal());
622    /// assert!(max.is_normal());
623    ///
624    /// assert!(!zero.is_normal());
625    /// assert!(!f64::NAN.is_normal());
626    /// assert!(!f64::INFINITY.is_normal());
627    /// // Values between `0` and `min` are Subnormal.
628    /// assert!(!lower_than_min.is_normal());
629    /// ```
630    /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
631    #[must_use]
632    #[stable(feature = "rust1", since = "1.0.0")]
633    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
634    #[inline]
635    pub const fn is_normal(self) -> bool {
636        matches!(self.classify(), FpCategory::Normal)
637    }
638
639    /// Returns the floating point category of the number. If only one property
640    /// is going to be tested, it is generally faster to use the specific
641    /// predicate instead.
642    ///
643    /// ```
644    /// use std::num::FpCategory;
645    ///
646    /// let num = 12.4_f64;
647    /// let inf = f64::INFINITY;
648    ///
649    /// assert_eq!(num.classify(), FpCategory::Normal);
650    /// assert_eq!(inf.classify(), FpCategory::Infinite);
651    /// ```
652    #[stable(feature = "rust1", since = "1.0.0")]
653    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
654    pub const fn classify(self) -> FpCategory {
655        // We used to have complicated logic here that avoids the simple bit-based tests to work
656        // around buggy codegen for x87 targets (see
657        // https://github.com/rust-lang/rust/issues/114479). However, some LLVM versions later, none
658        // of our tests is able to find any difference between the complicated and the naive
659        // version, so now we are back to the naive version.
660        let b = self.to_bits();
661        match (b & Self::MAN_MASK, b & Self::EXP_MASK) {
662            (0, Self::EXP_MASK) => FpCategory::Infinite,
663            (_, Self::EXP_MASK) => FpCategory::Nan,
664            (0, 0) => FpCategory::Zero,
665            (_, 0) => FpCategory::Subnormal,
666            _ => FpCategory::Normal,
667        }
668    }
669
670    /// Returns `true` if `self` has a positive sign, including `+0.0`, NaNs with
671    /// positive sign bit and positive infinity.
672    ///
673    /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of
674    /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are
675    /// conserved over arithmetic operations, the result of `is_sign_positive` on
676    /// a NaN might produce an unexpected or non-portable result. See the [specification
677    /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == 1.0`
678    /// if you need fully portable behavior (will return `false` for all NaNs).
679    ///
680    /// ```
681    /// let f = 7.0_f64;
682    /// let g = -7.0_f64;
683    ///
684    /// assert!(f.is_sign_positive());
685    /// assert!(!g.is_sign_positive());
686    /// ```
687    #[must_use]
688    #[stable(feature = "rust1", since = "1.0.0")]
689    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
690    #[inline]
691    pub const fn is_sign_positive(self) -> bool {
692        !self.is_sign_negative()
693    }
694
695    #[must_use]
696    #[stable(feature = "rust1", since = "1.0.0")]
697    #[deprecated(since = "1.0.0", note = "renamed to is_sign_positive")]
698    #[inline]
699    #[doc(hidden)]
700    pub fn is_positive(self) -> bool {
701        self.is_sign_positive()
702    }
703
704    /// Returns `true` if `self` has a negative sign, including `-0.0`, NaNs with
705    /// negative sign bit and negative infinity.
706    ///
707    /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of
708    /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are
709    /// conserved over arithmetic operations, the result of `is_sign_negative` on
710    /// a NaN might produce an unexpected or non-portable result. See the [specification
711    /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == -1.0`
712    /// if you need fully portable behavior (will return `false` for all NaNs).
713    ///
714    /// ```
715    /// let f = 7.0_f64;
716    /// let g = -7.0_f64;
717    ///
718    /// assert!(!f.is_sign_negative());
719    /// assert!(g.is_sign_negative());
720    /// ```
721    #[must_use]
722    #[stable(feature = "rust1", since = "1.0.0")]
723    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
724    #[inline]
725    pub const fn is_sign_negative(self) -> bool {
726        // IEEE754 says: isSignMinus(x) is true if and only if x has negative sign. isSignMinus
727        // applies to zeros and NaNs as well.
728        self.to_bits() & Self::SIGN_MASK != 0
729    }
730
731    #[must_use]
732    #[stable(feature = "rust1", since = "1.0.0")]
733    #[deprecated(since = "1.0.0", note = "renamed to is_sign_negative")]
734    #[inline]
735    #[doc(hidden)]
736    pub fn is_negative(self) -> bool {
737        self.is_sign_negative()
738    }
739
740    /// Returns the least number greater than `self`.
741    ///
742    /// Let `TINY` be the smallest representable positive `f64`. Then,
743    ///  - if `self.is_nan()`, this returns `self`;
744    ///  - if `self` is [`NEG_INFINITY`], this returns [`MIN`];
745    ///  - if `self` is `-TINY`, this returns -0.0;
746    ///  - if `self` is -0.0 or +0.0, this returns `TINY`;
747    ///  - if `self` is [`MAX`] or [`INFINITY`], this returns [`INFINITY`];
748    ///  - otherwise the unique least value greater than `self` is returned.
749    ///
750    /// The identity `x.next_up() == -(-x).next_down()` holds for all non-NaN `x`. When `x`
751    /// is finite `x == x.next_up().next_down()` also holds.
752    ///
753    /// ```rust
754    /// // f64::EPSILON is the difference between 1.0 and the next number up.
755    /// assert_eq!(1.0f64.next_up(), 1.0 + f64::EPSILON);
756    /// // But not for most numbers.
757    /// assert!(0.1f64.next_up() < 0.1 + f64::EPSILON);
758    /// assert_eq!(9007199254740992f64.next_up(), 9007199254740994.0);
759    /// ```
760    ///
761    /// This operation corresponds to IEEE-754 `nextUp`.
762    ///
763    /// [`NEG_INFINITY`]: Self::NEG_INFINITY
764    /// [`INFINITY`]: Self::INFINITY
765    /// [`MIN`]: Self::MIN
766    /// [`MAX`]: Self::MAX
767    #[inline]
768    #[doc(alias = "nextUp")]
769    #[stable(feature = "float_next_up_down", since = "1.86.0")]
770    #[rustc_const_stable(feature = "float_next_up_down", since = "1.86.0")]
771    pub const fn next_up(self) -> Self {
772        // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing
773        // denormals to zero. This is in general unsound and unsupported, but here
774        // we do our best to still produce the correct result on such targets.
775        let bits = self.to_bits();
776        if self.is_nan() || bits == Self::INFINITY.to_bits() {
777            return self;
778        }
779
780        let abs = bits & !Self::SIGN_MASK;
781        let next_bits = if abs == 0 {
782            Self::TINY_BITS
783        } else if bits == abs {
784            bits + 1
785        } else {
786            bits - 1
787        };
788        Self::from_bits(next_bits)
789    }
790
791    /// Returns the greatest number less than `self`.
792    ///
793    /// Let `TINY` be the smallest representable positive `f64`. Then,
794    ///  - if `self.is_nan()`, this returns `self`;
795    ///  - if `self` is [`INFINITY`], this returns [`MAX`];
796    ///  - if `self` is `TINY`, this returns 0.0;
797    ///  - if `self` is -0.0 or +0.0, this returns `-TINY`;
798    ///  - if `self` is [`MIN`] or [`NEG_INFINITY`], this returns [`NEG_INFINITY`];
799    ///  - otherwise the unique greatest value less than `self` is returned.
800    ///
801    /// The identity `x.next_down() == -(-x).next_up()` holds for all non-NaN `x`. When `x`
802    /// is finite `x == x.next_down().next_up()` also holds.
803    ///
804    /// ```rust
805    /// let x = 1.0f64;
806    /// // Clamp value into range [0, 1).
807    /// let clamped = x.clamp(0.0, 1.0f64.next_down());
808    /// assert!(clamped < 1.0);
809    /// assert_eq!(clamped.next_up(), 1.0);
810    /// ```
811    ///
812    /// This operation corresponds to IEEE-754 `nextDown`.
813    ///
814    /// [`NEG_INFINITY`]: Self::NEG_INFINITY
815    /// [`INFINITY`]: Self::INFINITY
816    /// [`MIN`]: Self::MIN
817    /// [`MAX`]: Self::MAX
818    #[inline]
819    #[doc(alias = "nextDown")]
820    #[stable(feature = "float_next_up_down", since = "1.86.0")]
821    #[rustc_const_stable(feature = "float_next_up_down", since = "1.86.0")]
822    pub const fn next_down(self) -> Self {
823        // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing
824        // denormals to zero. This is in general unsound and unsupported, but here
825        // we do our best to still produce the correct result on such targets.
826        let bits = self.to_bits();
827        if self.is_nan() || bits == Self::NEG_INFINITY.to_bits() {
828            return self;
829        }
830
831        let abs = bits & !Self::SIGN_MASK;
832        let next_bits = if abs == 0 {
833            Self::NEG_TINY_BITS
834        } else if bits == abs {
835            bits - 1
836        } else {
837            bits + 1
838        };
839        Self::from_bits(next_bits)
840    }
841
842    /// Takes the reciprocal (inverse) of a number, `1/x`.
843    ///
844    /// ```
845    /// let x = 2.0_f64;
846    /// let abs_difference = (x.recip() - (1.0 / x)).abs();
847    ///
848    /// assert!(abs_difference < 1e-10);
849    /// ```
850    #[must_use = "this returns the result of the operation, without modifying the original"]
851    #[stable(feature = "rust1", since = "1.0.0")]
852    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
853    #[inline]
854    pub const fn recip(self) -> f64 {
855        1.0 / self
856    }
857
858    /// Converts radians to degrees.
859    ///
860    /// # Unspecified precision
861    ///
862    /// The precision of this function is non-deterministic. This means it varies by platform,
863    /// Rust version, and can even differ within the same execution from one invocation to the next.
864    ///
865    /// # Examples
866    ///
867    /// ```
868    /// let angle = std::f64::consts::PI;
869    ///
870    /// let abs_difference = (angle.to_degrees() - 180.0).abs();
871    ///
872    /// assert!(abs_difference < 1e-10);
873    /// ```
874    #[must_use = "this returns the result of the operation, \
875                  without modifying the original"]
876    #[stable(feature = "rust1", since = "1.0.0")]
877    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
878    #[inline]
879    pub const fn to_degrees(self) -> f64 {
880        // The division here is correctly rounded with respect to the true value of 180/π.
881        // Although π is irrational and already rounded, the double rounding happens
882        // to produce correct result for f64.
883        const PIS_IN_180: f64 = 180.0 / consts::PI;
884        self * PIS_IN_180
885    }
886
887    /// Converts degrees to radians.
888    ///
889    /// # Unspecified precision
890    ///
891    /// The precision of this function is non-deterministic. This means it varies by platform,
892    /// Rust version, and can even differ within the same execution from one invocation to the next.
893    ///
894    /// # Examples
895    ///
896    /// ```
897    /// let angle = 180.0_f64;
898    ///
899    /// let abs_difference = (angle.to_radians() - std::f64::consts::PI).abs();
900    ///
901    /// assert!(abs_difference < 1e-10);
902    /// ```
903    #[must_use = "this returns the result of the operation, \
904                  without modifying the original"]
905    #[stable(feature = "rust1", since = "1.0.0")]
906    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
907    #[inline]
908    pub const fn to_radians(self) -> f64 {
909        // The division here is correctly rounded with respect to the true value of π/180.
910        // Although π is irrational and already rounded, the double rounding happens
911        // to produce correct result for f64.
912        const RADS_PER_DEG: f64 = consts::PI / 180.0;
913        self * RADS_PER_DEG
914    }
915
916    /// Returns the maximum of the two numbers, ignoring NaN.
917    ///
918    /// If exactly one of the arguments is NaN, then the other argument is returned. If both
919    /// arguments are NaN, the return value is NaN, with the bit pattern picked using the usual
920    /// [rules for arithmetic operations](f32#nan-bit-patterns). If the inputs compare equal (such
921    /// as for the case of `+0.0` and `-0.0`), either input may be returned non-deterministically.
922    ///
923    /// This follows the IEEE 754-2008 semantics for `maxNum`, except for handling of signaling NaNs;
924    /// this function handles all NaNs the same way and avoids `maxNum`'s problems with associativity.
925    /// This also matches the behavior of libm’s `fmax`.
926    ///
927    /// ```
928    /// let x = 1.0_f64;
929    /// let y = 2.0_f64;
930    ///
931    /// assert_eq!(x.max(y), y);
932    /// assert_eq!(x.max(f64::NAN), x);
933    /// ```
934    #[must_use = "this returns the result of the comparison, without modifying either input"]
935    #[stable(feature = "rust1", since = "1.0.0")]
936    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
937    #[inline]
938    pub const fn max(self, other: f64) -> f64 {
939        intrinsics::maxnumf64(self, other)
940    }
941
942    /// Returns the minimum of the two numbers, ignoring NaN.
943    ///
944    /// If exactly one of the arguments is NaN, then the other argument is returned. If both
945    /// arguments are NaN, the return value is NaN, with the bit pattern picked using the usual
946    /// [rules for arithmetic operations](f32#nan-bit-patterns). If the inputs compare equal (such
947    /// as for the case of `+0.0` and `-0.0`), either input may be returned non-deterministically.
948    ///
949    /// This follows the IEEE 754-2008 semantics for `minNum`, except for handling of signaling NaNs;
950    /// this function handles all NaNs the same way and avoids `minNum`'s problems with associativity.
951    /// This also matches the behavior of libm’s `fmin`.
952    ///
953    /// ```
954    /// let x = 1.0_f64;
955    /// let y = 2.0_f64;
956    ///
957    /// assert_eq!(x.min(y), x);
958    /// assert_eq!(x.min(f64::NAN), x);
959    /// ```
960    #[must_use = "this returns the result of the comparison, without modifying either input"]
961    #[stable(feature = "rust1", since = "1.0.0")]
962    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
963    #[inline]
964    pub const fn min(self, other: f64) -> f64 {
965        intrinsics::minnumf64(self, other)
966    }
967
968    /// Returns the maximum of the two numbers, propagating NaN.
969    ///
970    /// If at least one of the arguments is NaN, the return value is NaN, with the bit pattern
971    /// picked using the usual [rules for arithmetic operations](f32#nan-bit-patterns). Furthermore,
972    /// `-0.0` is considered to be less than `+0.0`, making this function fully deterministic for
973    /// non-NaN inputs.
974    ///
975    /// This is in contrast to [`f64::max`] which only returns NaN when *both* arguments are NaN,
976    /// and which does not reliably order `-0.0` and `+0.0`.
977    ///
978    /// This follows the IEEE 754-2019 semantics for `maximum`.
979    ///
980    /// ```
981    /// #![feature(float_minimum_maximum)]
982    /// let x = 1.0_f64;
983    /// let y = 2.0_f64;
984    ///
985    /// assert_eq!(x.maximum(y), y);
986    /// assert!(x.maximum(f64::NAN).is_nan());
987    /// ```
988    #[must_use = "this returns the result of the comparison, without modifying either input"]
989    #[unstable(feature = "float_minimum_maximum", issue = "91079")]
990    #[inline]
991    pub const fn maximum(self, other: f64) -> f64 {
992        intrinsics::maximumf64(self, other)
993    }
994
995    /// Returns the minimum of the two numbers, propagating NaN.
996    ///
997    /// If at least one of the arguments is NaN, the return value is NaN, with the bit pattern
998    /// picked using the usual [rules for arithmetic operations](f32#nan-bit-patterns). Furthermore,
999    /// `-0.0` is considered to be less than `+0.0`, making this function fully deterministic for
1000    /// non-NaN inputs.
1001    ///
1002    /// This is in contrast to [`f64::min`] which only returns NaN when *both* arguments are NaN,
1003    /// and which does not reliably order `-0.0` and `+0.0`.
1004    ///
1005    /// This follows the IEEE 754-2019 semantics for `minimum`.
1006    ///
1007    /// ```
1008    /// #![feature(float_minimum_maximum)]
1009    /// let x = 1.0_f64;
1010    /// let y = 2.0_f64;
1011    ///
1012    /// assert_eq!(x.minimum(y), x);
1013    /// assert!(x.minimum(f64::NAN).is_nan());
1014    /// ```
1015    #[must_use = "this returns the result of the comparison, without modifying either input"]
1016    #[unstable(feature = "float_minimum_maximum", issue = "91079")]
1017    #[inline]
1018    pub const fn minimum(self, other: f64) -> f64 {
1019        intrinsics::minimumf64(self, other)
1020    }
1021
1022    /// Calculates the midpoint (average) between `self` and `rhs`.
1023    ///
1024    /// This returns NaN when *either* argument is NaN or if a combination of
1025    /// +inf and -inf is provided as arguments.
1026    ///
1027    /// # Examples
1028    ///
1029    /// ```
1030    /// assert_eq!(1f64.midpoint(4.0), 2.5);
1031    /// assert_eq!((-5.5f64).midpoint(8.0), 1.25);
1032    /// ```
1033    #[inline]
1034    #[doc(alias = "average")]
1035    #[stable(feature = "num_midpoint", since = "1.85.0")]
1036    #[rustc_const_stable(feature = "num_midpoint", since = "1.85.0")]
1037    pub const fn midpoint(self, other: f64) -> f64 {
1038        const HI: f64 = f64::MAX / 2.;
1039
1040        let (a, b) = (self, other);
1041        let abs_a = a.abs();
1042        let abs_b = b.abs();
1043
1044        if abs_a <= HI && abs_b <= HI {
1045            // Overflow is impossible
1046            (a + b) / 2.
1047        } else {
1048            (a / 2.) + (b / 2.)
1049        }
1050    }
1051
1052    /// Rounds toward zero and converts to any primitive integer type,
1053    /// assuming that the value is finite and fits in that type.
1054    ///
1055    /// ```
1056    /// let value = 4.6_f64;
1057    /// let rounded = unsafe { value.to_int_unchecked::<u16>() };
1058    /// assert_eq!(rounded, 4);
1059    ///
1060    /// let value = -128.9_f64;
1061    /// let rounded = unsafe { value.to_int_unchecked::<i8>() };
1062    /// assert_eq!(rounded, i8::MIN);
1063    /// ```
1064    ///
1065    /// # Safety
1066    ///
1067    /// The value must:
1068    ///
1069    /// * Not be `NaN`
1070    /// * Not be infinite
1071    /// * Be representable in the return type `Int`, after truncating off its fractional part
1072    #[must_use = "this returns the result of the operation, \
1073                  without modifying the original"]
1074    #[stable(feature = "float_approx_unchecked_to", since = "1.44.0")]
1075    #[inline]
1076    pub unsafe fn to_int_unchecked<Int>(self) -> Int
1077    where
1078        Self: FloatToInt<Int>,
1079    {
1080        // SAFETY: the caller must uphold the safety contract for
1081        // `FloatToInt::to_int_unchecked`.
1082        unsafe { FloatToInt::<Int>::to_int_unchecked(self) }
1083    }
1084
1085    /// Raw transmutation to `u64`.
1086    ///
1087    /// This is currently identical to `transmute::<f64, u64>(self)` on all platforms.
1088    ///
1089    /// See [`from_bits`](Self::from_bits) for some discussion of the
1090    /// portability of this operation (there are almost no issues).
1091    ///
1092    /// Note that this function is distinct from `as` casting, which attempts to
1093    /// preserve the *numeric* value, and not the bitwise value.
1094    ///
1095    /// # Examples
1096    ///
1097    /// ```
1098    /// assert!((1f64).to_bits() != 1f64 as u64); // to_bits() is not casting!
1099    /// assert_eq!((12.5f64).to_bits(), 0x4029000000000000);
1100    /// ```
1101    #[must_use = "this returns the result of the operation, \
1102                  without modifying the original"]
1103    #[stable(feature = "float_bits_conv", since = "1.20.0")]
1104    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1105    #[allow(unnecessary_transmutes)]
1106    #[inline]
1107    pub const fn to_bits(self) -> u64 {
1108        // SAFETY: `u64` is a plain old datatype so we can always transmute to it.
1109        unsafe { mem::transmute(self) }
1110    }
1111
1112    /// Raw transmutation from `u64`.
1113    ///
1114    /// This is currently identical to `transmute::<u64, f64>(v)` on all platforms.
1115    /// It turns out this is incredibly portable, for two reasons:
1116    ///
1117    /// * Floats and Ints have the same endianness on all supported platforms.
1118    /// * IEEE 754 very precisely specifies the bit layout of floats.
1119    ///
1120    /// However there is one caveat: prior to the 2008 version of IEEE 754, how
1121    /// to interpret the NaN signaling bit wasn't actually specified. Most platforms
1122    /// (notably x86 and ARM) picked the interpretation that was ultimately
1123    /// standardized in 2008, but some didn't (notably MIPS). As a result, all
1124    /// signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa.
1125    ///
1126    /// Rather than trying to preserve signaling-ness cross-platform, this
1127    /// implementation favors preserving the exact bits. This means that
1128    /// any payloads encoded in NaNs will be preserved even if the result of
1129    /// this method is sent over the network from an x86 machine to a MIPS one.
1130    ///
1131    /// If the results of this method are only manipulated by the same
1132    /// architecture that produced them, then there is no portability concern.
1133    ///
1134    /// If the input isn't NaN, then there is no portability concern.
1135    ///
1136    /// If you don't care about signaling-ness (very likely), then there is no
1137    /// portability concern.
1138    ///
1139    /// Note that this function is distinct from `as` casting, which attempts to
1140    /// preserve the *numeric* value, and not the bitwise value.
1141    ///
1142    /// # Examples
1143    ///
1144    /// ```
1145    /// let v = f64::from_bits(0x4029000000000000);
1146    /// assert_eq!(v, 12.5);
1147    /// ```
1148    #[stable(feature = "float_bits_conv", since = "1.20.0")]
1149    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1150    #[must_use]
1151    #[inline]
1152    #[allow(unnecessary_transmutes)]
1153    pub const fn from_bits(v: u64) -> Self {
1154        // It turns out the safety issues with sNaN were overblown! Hooray!
1155        // SAFETY: `u64` is a plain old datatype so we can always transmute from it.
1156        unsafe { mem::transmute(v) }
1157    }
1158
1159    /// Returns the memory representation of this floating point number as a byte array in
1160    /// big-endian (network) byte order.
1161    ///
1162    /// See [`from_bits`](Self::from_bits) for some discussion of the
1163    /// portability of this operation (there are almost no issues).
1164    ///
1165    /// # Examples
1166    ///
1167    /// ```
1168    /// let bytes = 12.5f64.to_be_bytes();
1169    /// assert_eq!(bytes, [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
1170    /// ```
1171    #[must_use = "this returns the result of the operation, \
1172                  without modifying the original"]
1173    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1174    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1175    #[inline]
1176    pub const fn to_be_bytes(self) -> [u8; 8] {
1177        self.to_bits().to_be_bytes()
1178    }
1179
1180    /// Returns the memory representation of this floating point number as a byte array in
1181    /// little-endian byte order.
1182    ///
1183    /// See [`from_bits`](Self::from_bits) for some discussion of the
1184    /// portability of this operation (there are almost no issues).
1185    ///
1186    /// # Examples
1187    ///
1188    /// ```
1189    /// let bytes = 12.5f64.to_le_bytes();
1190    /// assert_eq!(bytes, [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]);
1191    /// ```
1192    #[must_use = "this returns the result of the operation, \
1193                  without modifying the original"]
1194    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1195    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1196    #[inline]
1197    pub const fn to_le_bytes(self) -> [u8; 8] {
1198        self.to_bits().to_le_bytes()
1199    }
1200
1201    /// Returns the memory representation of this floating point number as a byte array in
1202    /// native byte order.
1203    ///
1204    /// As the target platform's native endianness is used, portable code
1205    /// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate, instead.
1206    ///
1207    /// [`to_be_bytes`]: f64::to_be_bytes
1208    /// [`to_le_bytes`]: f64::to_le_bytes
1209    ///
1210    /// See [`from_bits`](Self::from_bits) for some discussion of the
1211    /// portability of this operation (there are almost no issues).
1212    ///
1213    /// # Examples
1214    ///
1215    /// ```
1216    /// let bytes = 12.5f64.to_ne_bytes();
1217    /// assert_eq!(
1218    ///     bytes,
1219    ///     if cfg!(target_endian = "big") {
1220    ///         [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
1221    ///     } else {
1222    ///         [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]
1223    ///     }
1224    /// );
1225    /// ```
1226    #[must_use = "this returns the result of the operation, \
1227                  without modifying the original"]
1228    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1229    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1230    #[inline]
1231    pub const fn to_ne_bytes(self) -> [u8; 8] {
1232        self.to_bits().to_ne_bytes()
1233    }
1234
1235    /// Creates a floating point value from its representation as a byte array in big endian.
1236    ///
1237    /// See [`from_bits`](Self::from_bits) for some discussion of the
1238    /// portability of this operation (there are almost no issues).
1239    ///
1240    /// # Examples
1241    ///
1242    /// ```
1243    /// let value = f64::from_be_bytes([0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
1244    /// assert_eq!(value, 12.5);
1245    /// ```
1246    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1247    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1248    #[must_use]
1249    #[inline]
1250    pub const fn from_be_bytes(bytes: [u8; 8]) -> Self {
1251        Self::from_bits(u64::from_be_bytes(bytes))
1252    }
1253
1254    /// Creates a floating point value from its representation as a byte array in little endian.
1255    ///
1256    /// See [`from_bits`](Self::from_bits) for some discussion of the
1257    /// portability of this operation (there are almost no issues).
1258    ///
1259    /// # Examples
1260    ///
1261    /// ```
1262    /// let value = f64::from_le_bytes([0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]);
1263    /// assert_eq!(value, 12.5);
1264    /// ```
1265    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1266    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1267    #[must_use]
1268    #[inline]
1269    pub const fn from_le_bytes(bytes: [u8; 8]) -> Self {
1270        Self::from_bits(u64::from_le_bytes(bytes))
1271    }
1272
1273    /// Creates a floating point value from its representation as a byte array in native endian.
1274    ///
1275    /// As the target platform's native endianness is used, portable code
1276    /// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as
1277    /// appropriate instead.
1278    ///
1279    /// [`from_be_bytes`]: f64::from_be_bytes
1280    /// [`from_le_bytes`]: f64::from_le_bytes
1281    ///
1282    /// See [`from_bits`](Self::from_bits) for some discussion of the
1283    /// portability of this operation (there are almost no issues).
1284    ///
1285    /// # Examples
1286    ///
1287    /// ```
1288    /// let value = f64::from_ne_bytes(if cfg!(target_endian = "big") {
1289    ///     [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
1290    /// } else {
1291    ///     [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]
1292    /// });
1293    /// assert_eq!(value, 12.5);
1294    /// ```
1295    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1296    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1297    #[must_use]
1298    #[inline]
1299    pub const fn from_ne_bytes(bytes: [u8; 8]) -> Self {
1300        Self::from_bits(u64::from_ne_bytes(bytes))
1301    }
1302
1303    /// Returns the ordering between `self` and `other`.
1304    ///
1305    /// Unlike the standard partial comparison between floating point numbers,
1306    /// this comparison always produces an ordering in accordance to
1307    /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision)
1308    /// floating point standard. The values are ordered in the following sequence:
1309    ///
1310    /// - negative quiet NaN
1311    /// - negative signaling NaN
1312    /// - negative infinity
1313    /// - negative numbers
1314    /// - negative subnormal numbers
1315    /// - negative zero
1316    /// - positive zero
1317    /// - positive subnormal numbers
1318    /// - positive numbers
1319    /// - positive infinity
1320    /// - positive signaling NaN
1321    /// - positive quiet NaN.
1322    ///
1323    /// The ordering established by this function does not always agree with the
1324    /// [`PartialOrd`] and [`PartialEq`] implementations of `f64`. For example,
1325    /// they consider negative and positive zero equal, while `total_cmp`
1326    /// doesn't.
1327    ///
1328    /// The interpretation of the signaling NaN bit follows the definition in
1329    /// the IEEE 754 standard, which may not match the interpretation by some of
1330    /// the older, non-conformant (e.g. MIPS) hardware implementations.
1331    ///
1332    /// # Example
1333    ///
1334    /// ```
1335    /// struct GoodBoy {
1336    ///     name: String,
1337    ///     weight: f64,
1338    /// }
1339    ///
1340    /// let mut bois = vec![
1341    ///     GoodBoy { name: "Pucci".to_owned(), weight: 0.1 },
1342    ///     GoodBoy { name: "Woofer".to_owned(), weight: 99.0 },
1343    ///     GoodBoy { name: "Yapper".to_owned(), weight: 10.0 },
1344    ///     GoodBoy { name: "Chonk".to_owned(), weight: f64::INFINITY },
1345    ///     GoodBoy { name: "Abs. Unit".to_owned(), weight: f64::NAN },
1346    ///     GoodBoy { name: "Floaty".to_owned(), weight: -5.0 },
1347    /// ];
1348    ///
1349    /// bois.sort_by(|a, b| a.weight.total_cmp(&b.weight));
1350    ///
1351    /// // `f64::NAN` could be positive or negative, which will affect the sort order.
1352    /// if f64::NAN.is_sign_negative() {
1353    ///     assert!(bois.into_iter().map(|b| b.weight)
1354    ///         .zip([f64::NAN, -5.0, 0.1, 10.0, 99.0, f64::INFINITY].iter())
1355    ///         .all(|(a, b)| a.to_bits() == b.to_bits()))
1356    /// } else {
1357    ///     assert!(bois.into_iter().map(|b| b.weight)
1358    ///         .zip([-5.0, 0.1, 10.0, 99.0, f64::INFINITY, f64::NAN].iter())
1359    ///         .all(|(a, b)| a.to_bits() == b.to_bits()))
1360    /// }
1361    /// ```
1362    #[stable(feature = "total_cmp", since = "1.62.0")]
1363    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1364    #[must_use]
1365    #[inline]
1366    pub const fn total_cmp(&self, other: &Self) -> crate::cmp::Ordering {
1367        let mut left = self.to_bits() as i64;
1368        let mut right = other.to_bits() as i64;
1369
1370        // In case of negatives, flip all the bits except the sign
1371        // to achieve a similar layout as two's complement integers
1372        //
1373        // Why does this work? IEEE 754 floats consist of three fields:
1374        // Sign bit, exponent and mantissa. The set of exponent and mantissa
1375        // fields as a whole have the property that their bitwise order is
1376        // equal to the numeric magnitude where the magnitude is defined.
1377        // The magnitude is not normally defined on NaN values, but
1378        // IEEE 754 totalOrder defines the NaN values also to follow the
1379        // bitwise order. This leads to order explained in the doc comment.
1380        // However, the representation of magnitude is the same for negative
1381        // and positive numbers – only the sign bit is different.
1382        // To easily compare the floats as signed integers, we need to
1383        // flip the exponent and mantissa bits in case of negative numbers.
1384        // We effectively convert the numbers to "two's complement" form.
1385        //
1386        // To do the flipping, we construct a mask and XOR against it.
1387        // We branchlessly calculate an "all-ones except for the sign bit"
1388        // mask from negative-signed values: right shifting sign-extends
1389        // the integer, so we "fill" the mask with sign bits, and then
1390        // convert to unsigned to push one more zero bit.
1391        // On positive values, the mask is all zeros, so it's a no-op.
1392        left ^= (((left >> 63) as u64) >> 1) as i64;
1393        right ^= (((right >> 63) as u64) >> 1) as i64;
1394
1395        left.cmp(&right)
1396    }
1397
1398    /// Restrict a value to a certain interval unless it is NaN.
1399    ///
1400    /// Returns `max` if `self` is greater than `max`, and `min` if `self` is
1401    /// less than `min`. Otherwise this returns `self`.
1402    ///
1403    /// Note that this function returns NaN if the initial value was NaN as
1404    /// well. If the result is zero and among the three inputs `self`, `min`, and `max` there are
1405    /// zeros with different sign, either `0.0` or `-0.0` is returned non-deterministically.
1406    ///
1407    /// # Panics
1408    ///
1409    /// Panics if `min > max`, `min` is NaN, or `max` is NaN.
1410    ///
1411    /// # Examples
1412    ///
1413    /// ```
1414    /// assert!((-3.0f64).clamp(-2.0, 1.0) == -2.0);
1415    /// assert!((0.0f64).clamp(-2.0, 1.0) == 0.0);
1416    /// assert!((2.0f64).clamp(-2.0, 1.0) == 1.0);
1417    /// assert!((f64::NAN).clamp(-2.0, 1.0).is_nan());
1418    ///
1419    /// // These always returns zero, but the sign (which is ignored by `==`) is non-deterministic.
1420    /// assert!((0.0f64).clamp(-0.0, -0.0) == 0.0);
1421    /// assert!((1.0f64).clamp(-0.0, 0.0) == 0.0);
1422    /// // This is definitely a negative zero.
1423    /// assert!((-1.0f64).clamp(-0.0, 1.0).is_sign_negative());
1424    /// ```
1425    #[must_use = "method returns a new number and does not mutate the original value"]
1426    #[stable(feature = "clamp", since = "1.50.0")]
1427    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
1428    #[inline]
1429    pub const fn clamp(mut self, min: f64, max: f64) -> f64 {
1430        const_assert!(
1431            min <= max,
1432            "min > max, or either was NaN",
1433            "min > max, or either was NaN. min = {min:?}, max = {max:?}",
1434            min: f64,
1435            max: f64,
1436        );
1437
1438        if self < min {
1439            self = min;
1440        }
1441        if self > max {
1442            self = max;
1443        }
1444        self
1445    }
1446
1447    /// Clamps this number to a symmetric range centered around zero.
1448    ///
1449    /// The method clamps the number's magnitude (absolute value) to be at most `limit`.
1450    ///
1451    /// This is functionally equivalent to `self.clamp(-limit, limit)`, but is more
1452    /// explicit about the intent.
1453    ///
1454    /// # Panics
1455    ///
1456    /// Panics if `limit` is negative or NaN, as this indicates a logic error.
1457    ///
1458    /// # Examples
1459    ///
1460    /// ```
1461    /// #![feature(clamp_magnitude)]
1462    /// assert_eq!(5.0f64.clamp_magnitude(3.0), 3.0);
1463    /// assert_eq!((-5.0f64).clamp_magnitude(3.0), -3.0);
1464    /// assert_eq!(2.0f64.clamp_magnitude(3.0), 2.0);
1465    /// assert_eq!((-2.0f64).clamp_magnitude(3.0), -2.0);
1466    /// ```
1467    #[must_use = "this returns the clamped value and does not modify the original"]
1468    #[unstable(feature = "clamp_magnitude", issue = "148519")]
1469    #[inline]
1470    pub fn clamp_magnitude(self, limit: f64) -> f64 {
1471        assert!(limit >= 0.0, "limit must be non-negative");
1472        let limit = limit.abs(); // Canonicalises -0.0 to 0.0
1473        self.clamp(-limit, limit)
1474    }
1475
1476    /// Computes the absolute value of `self`.
1477    ///
1478    /// This function always returns the precise result.
1479    ///
1480    /// # Examples
1481    ///
1482    /// ```
1483    /// let x = 3.5_f64;
1484    /// let y = -3.5_f64;
1485    ///
1486    /// assert_eq!(x.abs(), x);
1487    /// assert_eq!(y.abs(), -y);
1488    ///
1489    /// assert!(f64::NAN.abs().is_nan());
1490    /// ```
1491    #[must_use = "method returns a new number and does not mutate the original value"]
1492    #[stable(feature = "rust1", since = "1.0.0")]
1493    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
1494    #[inline]
1495    pub const fn abs(self) -> f64 {
1496        intrinsics::fabsf64(self)
1497    }
1498
1499    /// Returns a number that represents the sign of `self`.
1500    ///
1501    /// - `1.0` if the number is positive, `+0.0` or `INFINITY`
1502    /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
1503    /// - NaN if the number is NaN
1504    ///
1505    /// # Examples
1506    ///
1507    /// ```
1508    /// let f = 3.5_f64;
1509    ///
1510    /// assert_eq!(f.signum(), 1.0);
1511    /// assert_eq!(f64::NEG_INFINITY.signum(), -1.0);
1512    ///
1513    /// assert!(f64::NAN.signum().is_nan());
1514    /// ```
1515    #[must_use = "method returns a new number and does not mutate the original value"]
1516    #[stable(feature = "rust1", since = "1.0.0")]
1517    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
1518    #[inline]
1519    pub const fn signum(self) -> f64 {
1520        if self.is_nan() { Self::NAN } else { 1.0_f64.copysign(self) }
1521    }
1522
1523    /// Returns a number composed of the magnitude of `self` and the sign of
1524    /// `sign`.
1525    ///
1526    /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`.
1527    /// If `self` is a NaN, then a NaN with the same payload as `self` and the sign bit of `sign` is
1528    /// returned.
1529    ///
1530    /// If `sign` is a NaN, then this operation will still carry over its sign into the result. Note
1531    /// that IEEE 754 doesn't assign any meaning to the sign bit in case of a NaN, and as Rust
1532    /// doesn't guarantee that the bit pattern of NaNs are conserved over arithmetic operations, the
1533    /// result of `copysign` with `sign` being a NaN might produce an unexpected or non-portable
1534    /// result. See the [specification of NaN bit patterns](primitive@f32#nan-bit-patterns) for more
1535    /// info.
1536    ///
1537    /// # Examples
1538    ///
1539    /// ```
1540    /// let f = 3.5_f64;
1541    ///
1542    /// assert_eq!(f.copysign(0.42), 3.5_f64);
1543    /// assert_eq!(f.copysign(-0.42), -3.5_f64);
1544    /// assert_eq!((-f).copysign(0.42), 3.5_f64);
1545    /// assert_eq!((-f).copysign(-0.42), -3.5_f64);
1546    ///
1547    /// assert!(f64::NAN.copysign(1.0).is_nan());
1548    /// ```
1549    #[must_use = "method returns a new number and does not mutate the original value"]
1550    #[stable(feature = "copysign", since = "1.35.0")]
1551    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
1552    #[inline]
1553    pub const fn copysign(self, sign: f64) -> f64 {
1554        intrinsics::copysignf64(self, sign)
1555    }
1556
1557    /// Float addition that allows optimizations based on algebraic rules.
1558    ///
1559    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1560    #[must_use = "method returns a new number and does not mutate the original value"]
1561    #[unstable(feature = "float_algebraic", issue = "136469")]
1562    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1563    #[inline]
1564    pub const fn algebraic_add(self, rhs: f64) -> f64 {
1565        intrinsics::fadd_algebraic(self, rhs)
1566    }
1567
1568    /// Float subtraction that allows optimizations based on algebraic rules.
1569    ///
1570    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1571    #[must_use = "method returns a new number and does not mutate the original value"]
1572    #[unstable(feature = "float_algebraic", issue = "136469")]
1573    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1574    #[inline]
1575    pub const fn algebraic_sub(self, rhs: f64) -> f64 {
1576        intrinsics::fsub_algebraic(self, rhs)
1577    }
1578
1579    /// Float multiplication that allows optimizations based on algebraic rules.
1580    ///
1581    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1582    #[must_use = "method returns a new number and does not mutate the original value"]
1583    #[unstable(feature = "float_algebraic", issue = "136469")]
1584    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1585    #[inline]
1586    pub const fn algebraic_mul(self, rhs: f64) -> f64 {
1587        intrinsics::fmul_algebraic(self, rhs)
1588    }
1589
1590    /// Float division that allows optimizations based on algebraic rules.
1591    ///
1592    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1593    #[must_use = "method returns a new number and does not mutate the original value"]
1594    #[unstable(feature = "float_algebraic", issue = "136469")]
1595    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1596    #[inline]
1597    pub const fn algebraic_div(self, rhs: f64) -> f64 {
1598        intrinsics::fdiv_algebraic(self, rhs)
1599    }
1600
1601    /// Float remainder that allows optimizations based on algebraic rules.
1602    ///
1603    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1604    #[must_use = "method returns a new number and does not mutate the original value"]
1605    #[unstable(feature = "float_algebraic", issue = "136469")]
1606    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1607    #[inline]
1608    pub const fn algebraic_rem(self, rhs: f64) -> f64 {
1609        intrinsics::frem_algebraic(self, rhs)
1610    }
1611}
1612
1613#[unstable(feature = "core_float_math", issue = "137578")]
1614/// Experimental implementations of floating point functions in `core`.
1615///
1616/// _The standalone functions in this module are for testing only.
1617/// They will be stabilized as inherent methods._
1618pub mod math {
1619    use crate::intrinsics;
1620    use crate::num::libm;
1621
1622    /// Experimental version of `floor` in `core`. See [`f64::floor`] for details.
1623    ///
1624    /// # Examples
1625    ///
1626    /// ```
1627    /// #![feature(core_float_math)]
1628    ///
1629    /// use core::f64;
1630    ///
1631    /// let f = 3.7_f64;
1632    /// let g = 3.0_f64;
1633    /// let h = -3.7_f64;
1634    ///
1635    /// assert_eq!(f64::math::floor(f), 3.0);
1636    /// assert_eq!(f64::math::floor(g), 3.0);
1637    /// assert_eq!(f64::math::floor(h), -4.0);
1638    /// ```
1639    ///
1640    /// _This standalone function is for testing only.
1641    /// It will be stabilized as an inherent method._
1642    ///
1643    /// [`f64::floor`]: ../../../std/primitive.f64.html#method.floor
1644    #[inline]
1645    #[unstable(feature = "core_float_math", issue = "137578")]
1646    #[must_use = "method returns a new number and does not mutate the original value"]
1647    pub const fn floor(x: f64) -> f64 {
1648        intrinsics::floorf64(x)
1649    }
1650
1651    /// Experimental version of `ceil` in `core`. See [`f64::ceil`] for details.
1652    ///
1653    /// # Examples
1654    ///
1655    /// ```
1656    /// #![feature(core_float_math)]
1657    ///
1658    /// use core::f64;
1659    ///
1660    /// let f = 3.01_f64;
1661    /// let g = 4.0_f64;
1662    ///
1663    /// assert_eq!(f64::math::ceil(f), 4.0);
1664    /// assert_eq!(f64::math::ceil(g), 4.0);
1665    /// ```
1666    ///
1667    /// _This standalone function is for testing only.
1668    /// It will be stabilized as an inherent method._
1669    ///
1670    /// [`f64::ceil`]: ../../../std/primitive.f64.html#method.ceil
1671    #[inline]
1672    #[doc(alias = "ceiling")]
1673    #[unstable(feature = "core_float_math", issue = "137578")]
1674    #[must_use = "method returns a new number and does not mutate the original value"]
1675    pub const fn ceil(x: f64) -> f64 {
1676        intrinsics::ceilf64(x)
1677    }
1678
1679    /// Experimental version of `round` in `core`. See [`f64::round`] for details.
1680    ///
1681    /// # Examples
1682    ///
1683    /// ```
1684    /// #![feature(core_float_math)]
1685    ///
1686    /// use core::f64;
1687    ///
1688    /// let f = 3.3_f64;
1689    /// let g = -3.3_f64;
1690    /// let h = -3.7_f64;
1691    /// let i = 3.5_f64;
1692    /// let j = 4.5_f64;
1693    ///
1694    /// assert_eq!(f64::math::round(f), 3.0);
1695    /// assert_eq!(f64::math::round(g), -3.0);
1696    /// assert_eq!(f64::math::round(h), -4.0);
1697    /// assert_eq!(f64::math::round(i), 4.0);
1698    /// assert_eq!(f64::math::round(j), 5.0);
1699    /// ```
1700    ///
1701    /// _This standalone function is for testing only.
1702    /// It will be stabilized as an inherent method._
1703    ///
1704    /// [`f64::round`]: ../../../std/primitive.f64.html#method.round
1705    #[inline]
1706    #[unstable(feature = "core_float_math", issue = "137578")]
1707    #[must_use = "method returns a new number and does not mutate the original value"]
1708    pub const fn round(x: f64) -> f64 {
1709        intrinsics::roundf64(x)
1710    }
1711
1712    /// Experimental version of `round_ties_even` in `core`. See [`f64::round_ties_even`] for
1713    /// details.
1714    ///
1715    /// # Examples
1716    ///
1717    /// ```
1718    /// #![feature(core_float_math)]
1719    ///
1720    /// use core::f64;
1721    ///
1722    /// let f = 3.3_f64;
1723    /// let g = -3.3_f64;
1724    /// let h = 3.5_f64;
1725    /// let i = 4.5_f64;
1726    ///
1727    /// assert_eq!(f64::math::round_ties_even(f), 3.0);
1728    /// assert_eq!(f64::math::round_ties_even(g), -3.0);
1729    /// assert_eq!(f64::math::round_ties_even(h), 4.0);
1730    /// assert_eq!(f64::math::round_ties_even(i), 4.0);
1731    /// ```
1732    ///
1733    /// _This standalone function is for testing only.
1734    /// It will be stabilized as an inherent method._
1735    ///
1736    /// [`f64::round_ties_even`]: ../../../std/primitive.f64.html#method.round_ties_even
1737    #[inline]
1738    #[unstable(feature = "core_float_math", issue = "137578")]
1739    #[must_use = "method returns a new number and does not mutate the original value"]
1740    pub const fn round_ties_even(x: f64) -> f64 {
1741        intrinsics::round_ties_even_f64(x)
1742    }
1743
1744    /// Experimental version of `trunc` in `core`. See [`f64::trunc`] for details.
1745    ///
1746    /// # Examples
1747    ///
1748    /// ```
1749    /// #![feature(core_float_math)]
1750    ///
1751    /// use core::f64;
1752    ///
1753    /// let f = 3.7_f64;
1754    /// let g = 3.0_f64;
1755    /// let h = -3.7_f64;
1756    ///
1757    /// assert_eq!(f64::math::trunc(f), 3.0);
1758    /// assert_eq!(f64::math::trunc(g), 3.0);
1759    /// assert_eq!(f64::math::trunc(h), -3.0);
1760    /// ```
1761    ///
1762    /// _This standalone function is for testing only.
1763    /// It will be stabilized as an inherent method._
1764    ///
1765    /// [`f64::trunc`]: ../../../std/primitive.f64.html#method.trunc
1766    #[inline]
1767    #[doc(alias = "truncate")]
1768    #[unstable(feature = "core_float_math", issue = "137578")]
1769    #[must_use = "method returns a new number and does not mutate the original value"]
1770    pub const fn trunc(x: f64) -> f64 {
1771        intrinsics::truncf64(x)
1772    }
1773
1774    /// Experimental version of `fract` in `core`. See [`f64::fract`] for details.
1775    ///
1776    /// # Examples
1777    ///
1778    /// ```
1779    /// #![feature(core_float_math)]
1780    ///
1781    /// use core::f64;
1782    ///
1783    /// let x = 3.6_f64;
1784    /// let y = -3.6_f64;
1785    /// let abs_difference_x = (f64::math::fract(x) - 0.6).abs();
1786    /// let abs_difference_y = (f64::math::fract(y) - (-0.6)).abs();
1787    ///
1788    /// assert!(abs_difference_x < 1e-10);
1789    /// assert!(abs_difference_y < 1e-10);
1790    /// ```
1791    ///
1792    /// _This standalone function is for testing only.
1793    /// It will be stabilized as an inherent method._
1794    ///
1795    /// [`f64::fract`]: ../../../std/primitive.f64.html#method.fract
1796    #[inline]
1797    #[unstable(feature = "core_float_math", issue = "137578")]
1798    #[must_use = "method returns a new number and does not mutate the original value"]
1799    pub const fn fract(x: f64) -> f64 {
1800        x - trunc(x)
1801    }
1802
1803    /// Experimental version of `mul_add` in `core`. See [`f64::mul_add`] for details.
1804    ///
1805    /// # Examples
1806    ///
1807    /// ```
1808    /// #![feature(core_float_math)]
1809    ///
1810    /// # // FIXME(#140515): mingw has an incorrect fma
1811    /// # // https://sourceforge.net/p/mingw-w64/bugs/848/
1812    /// # #[cfg(all(target_os = "windows", target_env = "gnu", not(target_abi = "llvm")))] {
1813    /// use core::f64;
1814    ///
1815    /// let m = 10.0_f64;
1816    /// let x = 4.0_f64;
1817    /// let b = 60.0_f64;
1818    ///
1819    /// assert_eq!(f64::math::mul_add(m, x, b), 100.0);
1820    /// assert_eq!(m * x + b, 100.0);
1821    ///
1822    /// let one_plus_eps = 1.0_f64 + f64::EPSILON;
1823    /// let one_minus_eps = 1.0_f64 - f64::EPSILON;
1824    /// let minus_one = -1.0_f64;
1825    ///
1826    /// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps.
1827    /// assert_eq!(
1828    ///     f64::math::mul_add(one_plus_eps, one_minus_eps, minus_one),
1829    ///     -f64::EPSILON * f64::EPSILON
1830    /// );
1831    /// // Different rounding with the non-fused multiply and add.
1832    /// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0);
1833    /// # }
1834    /// ```
1835    ///
1836    /// _This standalone function is for testing only.
1837    /// It will be stabilized as an inherent method._
1838    ///
1839    /// [`f64::mul_add`]: ../../../std/primitive.f64.html#method.mul_add
1840    #[inline]
1841    #[doc(alias = "fma", alias = "fusedMultiplyAdd")]
1842    #[unstable(feature = "core_float_math", issue = "137578")]
1843    #[must_use = "method returns a new number and does not mutate the original value"]
1844    #[rustc_const_unstable(feature = "const_mul_add", issue = "146724")]
1845    pub const fn mul_add(x: f64, a: f64, b: f64) -> f64 {
1846        intrinsics::fmaf64(x, a, b)
1847    }
1848
1849    /// Experimental version of `div_euclid` in `core`. See [`f64::div_euclid`] for details.
1850    ///
1851    /// # Examples
1852    ///
1853    /// ```
1854    /// #![feature(core_float_math)]
1855    ///
1856    /// use core::f64;
1857    ///
1858    /// let a: f64 = 7.0;
1859    /// let b = 4.0;
1860    /// assert_eq!(f64::math::div_euclid(a, b), 1.0); // 7.0 > 4.0 * 1.0
1861    /// assert_eq!(f64::math::div_euclid(-a, b), -2.0); // -7.0 >= 4.0 * -2.0
1862    /// assert_eq!(f64::math::div_euclid(a, -b), -1.0); // 7.0 >= -4.0 * -1.0
1863    /// assert_eq!(f64::math::div_euclid(-a, -b), 2.0); // -7.0 >= -4.0 * 2.0
1864    /// ```
1865    ///
1866    /// _This standalone function is for testing only.
1867    /// It will be stabilized as an inherent method._
1868    ///
1869    /// [`f64::div_euclid`]: ../../../std/primitive.f64.html#method.div_euclid
1870    #[inline]
1871    #[unstable(feature = "core_float_math", issue = "137578")]
1872    #[must_use = "method returns a new number and does not mutate the original value"]
1873    pub fn div_euclid(x: f64, rhs: f64) -> f64 {
1874        let q = trunc(x / rhs);
1875        if x % rhs < 0.0 {
1876            return if rhs > 0.0 { q - 1.0 } else { q + 1.0 };
1877        }
1878        q
1879    }
1880
1881    /// Experimental version of `rem_euclid` in `core`. See [`f64::rem_euclid`] for details.
1882    ///
1883    /// # Examples
1884    ///
1885    /// ```
1886    /// #![feature(core_float_math)]
1887    ///
1888    /// use core::f64;
1889    ///
1890    /// let a: f64 = 7.0;
1891    /// let b = 4.0;
1892    /// assert_eq!(f64::math::rem_euclid(a, b), 3.0);
1893    /// assert_eq!(f64::math::rem_euclid(-a, b), 1.0);
1894    /// assert_eq!(f64::math::rem_euclid(a, -b), 3.0);
1895    /// assert_eq!(f64::math::rem_euclid(-a, -b), 1.0);
1896    /// // limitation due to round-off error
1897    /// assert!(f64::math::rem_euclid(-f64::EPSILON, 3.0) != 0.0);
1898    /// ```
1899    ///
1900    /// _This standalone function is for testing only.
1901    /// It will be stabilized as an inherent method._
1902    ///
1903    /// [`f64::rem_euclid`]: ../../../std/primitive.f64.html#method.rem_euclid
1904    #[inline]
1905    #[doc(alias = "modulo", alias = "mod")]
1906    #[unstable(feature = "core_float_math", issue = "137578")]
1907    #[must_use = "method returns a new number and does not mutate the original value"]
1908    pub fn rem_euclid(x: f64, rhs: f64) -> f64 {
1909        let r = x % rhs;
1910        if r < 0.0 { r + rhs.abs() } else { r }
1911    }
1912
1913    /// Experimental version of `powi` in `core`. See [`f64::powi`] for details.
1914    ///
1915    /// # Examples
1916    ///
1917    /// ```
1918    /// #![feature(core_float_math)]
1919    ///
1920    /// use core::f64;
1921    ///
1922    /// let x = 2.0_f64;
1923    /// let abs_difference = (f64::math::powi(x, 2) - (x * x)).abs();
1924    /// assert!(abs_difference <= 1e-6);
1925    ///
1926    /// assert_eq!(f64::math::powi(f64::NAN, 0), 1.0);
1927    /// ```
1928    ///
1929    /// _This standalone function is for testing only.
1930    /// It will be stabilized as an inherent method._
1931    ///
1932    /// [`f64::powi`]: ../../../std/primitive.f64.html#method.powi
1933    #[inline]
1934    #[unstable(feature = "core_float_math", issue = "137578")]
1935    #[must_use = "method returns a new number and does not mutate the original value"]
1936    pub fn powi(x: f64, n: i32) -> f64 {
1937        intrinsics::powif64(x, n)
1938    }
1939
1940    /// Experimental version of `sqrt` in `core`. See [`f64::sqrt`] for details.
1941    ///
1942    /// # Examples
1943    ///
1944    /// ```
1945    /// #![feature(core_float_math)]
1946    ///
1947    /// use core::f64;
1948    ///
1949    /// let positive = 4.0_f64;
1950    /// let negative = -4.0_f64;
1951    /// let negative_zero = -0.0_f64;
1952    ///
1953    /// assert_eq!(f64::math::sqrt(positive), 2.0);
1954    /// assert!(f64::math::sqrt(negative).is_nan());
1955    /// assert_eq!(f64::math::sqrt(negative_zero), negative_zero);
1956    /// ```
1957    ///
1958    /// _This standalone function is for testing only.
1959    /// It will be stabilized as an inherent method._
1960    ///
1961    /// [`f64::sqrt`]: ../../../std/primitive.f64.html#method.sqrt
1962    #[inline]
1963    #[doc(alias = "squareRoot")]
1964    #[unstable(feature = "core_float_math", issue = "137578")]
1965    #[must_use = "method returns a new number and does not mutate the original value"]
1966    pub fn sqrt(x: f64) -> f64 {
1967        intrinsics::sqrtf64(x)
1968    }
1969
1970    /// Experimental version of `abs_sub` in `core`. See [`f64::abs_sub`] for details.
1971    ///
1972    /// # Examples
1973    ///
1974    /// ```
1975    /// #![feature(core_float_math)]
1976    ///
1977    /// use core::f64;
1978    ///
1979    /// let x = 3.0_f64;
1980    /// let y = -3.0_f64;
1981    ///
1982    /// let abs_difference_x = (f64::math::abs_sub(x, 1.0) - 2.0).abs();
1983    /// let abs_difference_y = (f64::math::abs_sub(y, 1.0) - 0.0).abs();
1984    ///
1985    /// assert!(abs_difference_x < 1e-10);
1986    /// assert!(abs_difference_y < 1e-10);
1987    /// ```
1988    ///
1989    /// _This standalone function is for testing only.
1990    /// It will be stabilized as an inherent method._
1991    ///
1992    /// [`f64::abs_sub`]: ../../../std/primitive.f64.html#method.abs_sub
1993    #[inline]
1994    #[unstable(feature = "core_float_math", issue = "137578")]
1995    #[deprecated(
1996        since = "1.10.0",
1997        note = "you probably meant `(self - other).abs()`: \
1998                this operation is `(self - other).max(0.0)` \
1999                except that `abs_sub` also propagates NaNs (also \
2000                known as `fdim` in C). If you truly need the positive \
2001                difference, consider using that expression or the C function \
2002                `fdim`, depending on how you wish to handle NaN (please consider \
2003                filing an issue describing your use-case too)."
2004    )]
2005    #[must_use = "method returns a new number and does not mutate the original value"]
2006    pub fn abs_sub(x: f64, other: f64) -> f64 {
2007        libm::fdim(x, other)
2008    }
2009
2010    /// Experimental version of `cbrt` in `core`. See [`f64::cbrt`] for details.
2011    ///
2012    /// # Examples
2013    ///
2014    /// ```
2015    /// #![feature(core_float_math)]
2016    ///
2017    /// use core::f64;
2018    ///
2019    /// let x = 8.0_f64;
2020    ///
2021    /// // x^(1/3) - 2 == 0
2022    /// let abs_difference = (f64::math::cbrt(x) - 2.0).abs();
2023    ///
2024    /// assert!(abs_difference < 1e-10);
2025    /// ```
2026    ///
2027    /// _This standalone function is for testing only.
2028    /// It will be stabilized as an inherent method._
2029    ///
2030    /// [`f64::cbrt`]: ../../../std/primitive.f64.html#method.cbrt
2031    #[inline]
2032    #[unstable(feature = "core_float_math", issue = "137578")]
2033    #[must_use = "method returns a new number and does not mutate the original value"]
2034    pub fn cbrt(x: f64) -> f64 {
2035        libm::cbrt(x)
2036    }
2037}