core/portable-simd/crates/core_simd/src/
vector.rs

1use crate::simd::{
2    cmp::SimdPartialOrd,
3    num::SimdUint,
4    ptr::{SimdConstPtr, SimdMutPtr},
5    LaneCount, Mask, MaskElement, SupportedLaneCount, Swizzle,
6};
7
8/// A SIMD vector with the shape of `[T; N]` but the operations of `T`.
9///
10/// `Simd<T, N>` supports the operators (+, *, etc.) that `T` does in "elementwise" fashion.
11/// These take the element at each index from the left-hand side and right-hand side,
12/// perform the operation, then return the result in the same index in a vector of equal size.
13/// However, `Simd` differs from normal iteration and normal arrays:
14/// - `Simd<T, N>` executes `N` operations in a single step with no `break`s
15/// - `Simd<T, N>` can have an alignment greater than `T`, for better mechanical sympathy
16///
17/// By always imposing these constraints on `Simd`, it is easier to compile elementwise operations
18/// into machine instructions that can themselves be executed in parallel.
19///
20/// ```rust
21/// # #![feature(portable_simd)]
22/// # use core::simd::{Simd};
23/// # use core::array;
24/// let a: [i32; 4] = [-2, 0, 2, 4];
25/// let b = [10, 9, 8, 7];
26/// let sum = array::from_fn(|i| a[i] + b[i]);
27/// let prod = array::from_fn(|i| a[i] * b[i]);
28///
29/// // `Simd<T, N>` implements `From<[T; N]>`
30/// let (v, w) = (Simd::from(a), Simd::from(b));
31/// // Which means arrays implement `Into<Simd<T, N>>`.
32/// assert_eq!(v + w, sum.into());
33/// assert_eq!(v * w, prod.into());
34/// ```
35///
36///
37/// `Simd` with integer elements treats operators as wrapping, as if `T` was [`Wrapping<T>`].
38/// Thus, `Simd` does not implement `wrapping_add`, because that is the default behavior.
39/// This means there is no warning on overflows, even in "debug" builds.
40/// For most applications where `Simd` is appropriate, it is "not a bug" to wrap,
41/// and even "debug builds" are unlikely to tolerate the loss of performance.
42/// You may want to consider using explicitly checked arithmetic if such is required.
43/// Division by zero on integers still causes a panic, so
44/// you may want to consider using `f32` or `f64` if that is unacceptable.
45///
46/// [`Wrapping<T>`]: core::num::Wrapping
47///
48/// # Layout
49/// `Simd<T, N>` has a layout similar to `[T; N]` (identical "shapes"), with a greater alignment.
50/// `[T; N]` is aligned to `T`, but `Simd<T, N>` will have an alignment based on both `T` and `N`.
51/// Thus it is sound to [`transmute`] `Simd<T, N>` to `[T; N]` and should optimize to "zero cost",
52/// but the reverse transmutation may require a copy the compiler cannot simply elide.
53///
54/// # ABI "Features"
55/// Due to Rust's safety guarantees, `Simd<T, N>` is currently passed and returned via memory,
56/// not SIMD registers, except as an optimization. Using `#[inline]` on functions that accept
57/// `Simd<T, N>` or return it is recommended, at the cost of code generation time, as
58/// inlining SIMD-using functions can omit a large function prolog or epilog and thus
59/// improve both speed and code size. The need for this may be corrected in the future.
60///
61/// Using `#[inline(always)]` still requires additional care.
62///
63/// # Safe SIMD with Unsafe Rust
64///
65/// Operations with `Simd` are typically safe, but there are many reasons to want to combine SIMD with `unsafe` code.
66/// Care must be taken to respect differences between `Simd` and other types it may be transformed into or derived from.
67/// In particular, the layout of `Simd<T, N>` may be similar to `[T; N]`, and may allow some transmutations,
68/// but references to `[T; N]` are not interchangeable with those to `Simd<T, N>`.
69/// Thus, when using `unsafe` Rust to read and write `Simd<T, N>` through [raw pointers], it is a good idea to first try with
70/// [`read_unaligned`] and [`write_unaligned`]. This is because:
71/// - [`read`] and [`write`] require full alignment (in this case, `Simd<T, N>`'s alignment)
72/// - `Simd<T, N>` is often read from or written to [`[T]`](slice) and other types aligned to `T`
73/// - combining these actions violates the `unsafe` contract and explodes the program into
74///   a puff of **undefined behavior**
75/// - the compiler can implicitly adjust layouts to make unaligned reads or writes fully aligned
76///   if it sees the optimization
77/// - most contemporary processors with "aligned" and "unaligned" read and write instructions
78///   exhibit no performance difference if the "unaligned" variant is aligned at runtime
79///
80/// Less obligations mean unaligned reads and writes are less likely to make the program unsound,
81/// and may be just as fast as stricter alternatives.
82/// When trying to guarantee alignment, [`[T]::as_simd`][as_simd] is an option for
83/// converting `[T]` to `[Simd<T, N>]`, and allows soundly operating on an aligned SIMD body,
84/// but it may cost more time when handling the scalar head and tail.
85/// If these are not enough, it is most ideal to design data structures to be already aligned
86/// to `mem::align_of::<Simd<T, N>>()` before using `unsafe` Rust to read or write.
87/// Other ways to compensate for these facts, like materializing `Simd` to or from an array first,
88/// are handled by safe methods like [`Simd::from_array`] and [`Simd::from_slice`].
89///
90/// [`transmute`]: core::mem::transmute
91/// [raw pointers]: pointer
92/// [`read_unaligned`]: pointer::read_unaligned
93/// [`write_unaligned`]: pointer::write_unaligned
94/// [`read`]: pointer::read
95/// [`write`]: pointer::write
96/// [as_simd]: slice::as_simd
97//
98// NOTE: Accessing the inner array directly in any way (e.g. by using the `.0` field syntax) or
99// directly constructing an instance of the type (i.e. `let vector = Simd(array)`) should be
100// avoided, as it will likely become illegal on `#[repr(simd)]` structs in the future. It also
101// causes rustc to emit illegal LLVM IR in some cases.
102#[repr(simd, packed)]
103pub struct Simd<T, const N: usize>([T; N])
104where
105    LaneCount<N>: SupportedLaneCount,
106    T: SimdElement;
107
108impl<T, const N: usize> Simd<T, N>
109where
110    LaneCount<N>: SupportedLaneCount,
111    T: SimdElement,
112{
113    /// Number of elements in this vector.
114    pub const LEN: usize = N;
115
116    /// Returns the number of elements in this SIMD vector.
117    ///
118    /// # Examples
119    ///
120    /// ```
121    /// # #![feature(portable_simd)]
122    /// # #[cfg(feature = "as_crate")] use core_simd::simd;
123    /// # #[cfg(not(feature = "as_crate"))] use core::simd;
124    /// # use simd::u32x4;
125    /// let v = u32x4::splat(0);
126    /// assert_eq!(v.len(), 4);
127    /// ```
128    #[inline]
129    #[allow(clippy::len_without_is_empty)]
130    pub const fn len(&self) -> usize {
131        Self::LEN
132    }
133
134    /// Constructs a new SIMD vector with all elements set to the given value.
135    ///
136    /// # Examples
137    ///
138    /// ```
139    /// # #![feature(portable_simd)]
140    /// # #[cfg(feature = "as_crate")] use core_simd::simd;
141    /// # #[cfg(not(feature = "as_crate"))] use core::simd;
142    /// # use simd::u32x4;
143    /// let v = u32x4::splat(8);
144    /// assert_eq!(v.as_array(), &[8, 8, 8, 8]);
145    /// ```
146    #[inline]
147    #[rustc_const_unstable(feature = "portable_simd", issue = "86656")]
148    pub const fn splat(value: T) -> Self {
149        const fn splat_const<T, const N: usize>(value: T) -> Simd<T, N>
150        where
151            T: SimdElement,
152            LaneCount<N>: SupportedLaneCount,
153        {
154            Simd::from_array([value; N])
155        }
156
157        fn splat_rt<T, const N: usize>(value: T) -> Simd<T, N>
158        where
159            T: SimdElement,
160            LaneCount<N>: SupportedLaneCount,
161        {
162            // This is preferred over `[value; N]`, since it's explicitly a splat:
163            // https://github.com/rust-lang/rust/issues/97804
164            struct Splat;
165            impl<const N: usize> Swizzle<N> for Splat {
166                const INDEX: [usize; N] = [0; N];
167            }
168
169            Splat::swizzle::<T, 1>(Simd::<T, 1>::from([value]))
170        }
171
172        core::intrinsics::const_eval_select((value,), splat_const, splat_rt)
173    }
174
175    /// Returns an array reference containing the entire SIMD vector.
176    ///
177    /// # Examples
178    ///
179    /// ```
180    /// # #![feature(portable_simd)]
181    /// # use core::simd::{Simd, u64x4};
182    /// let v: u64x4 = Simd::from_array([0, 1, 2, 3]);
183    /// assert_eq!(v.as_array(), &[0, 1, 2, 3]);
184    /// ```
185    #[inline]
186    pub const fn as_array(&self) -> &[T; N] {
187        // SAFETY: `Simd<T, N>` is just an overaligned `[T; N]` with
188        // potential padding at the end, so pointer casting to a
189        // `&[T; N]` is safe.
190        //
191        // NOTE: This deliberately doesn't just use `&self.0`, see the comment
192        // on the struct definition for details.
193        unsafe { &*(self as *const Self as *const [T; N]) }
194    }
195
196    /// Returns a mutable array reference containing the entire SIMD vector.
197    #[inline]
198    pub fn as_mut_array(&mut self) -> &mut [T; N] {
199        // SAFETY: `Simd<T, N>` is just an overaligned `[T; N]` with
200        // potential padding at the end, so pointer casting to a
201        // `&mut [T; N]` is safe.
202        //
203        // NOTE: This deliberately doesn't just use `&mut self.0`, see the comment
204        // on the struct definition for details.
205        unsafe { &mut *(self as *mut Self as *mut [T; N]) }
206    }
207
208    /// Loads a vector from an array of `T`.
209    ///
210    /// This function is necessary since `repr(simd)` has padding for non-power-of-2 vectors (at the time of writing).
211    /// With padding, `read_unaligned` will read past the end of an array of N elements.
212    ///
213    /// # Safety
214    /// Reading `ptr` must be safe, as if by `<*const [T; N]>::read`.
215    #[inline]
216    const unsafe fn load(ptr: *const [T; N]) -> Self {
217        // There are potentially simpler ways to write this function, but this should result in
218        // LLVM `load <N x T>`
219
220        let mut tmp = core::mem::MaybeUninit::<Self>::uninit();
221        // SAFETY: `Simd<T, N>` always contains `N` elements of type `T`.  It may have padding
222        // which does not need to be initialized.  The safety of reading `ptr` is ensured by the
223        // caller.
224        unsafe {
225            core::ptr::copy_nonoverlapping(ptr, tmp.as_mut_ptr().cast(), 1);
226            tmp.assume_init()
227        }
228    }
229
230    /// Store a vector to an array of `T`.
231    ///
232    /// See `load` as to why this function is necessary.
233    ///
234    /// # Safety
235    /// Writing to `ptr` must be safe, as if by `<*mut [T; N]>::write`.
236    #[inline]
237    const unsafe fn store(self, ptr: *mut [T; N]) {
238        // There are potentially simpler ways to write this function, but this should result in
239        // LLVM `store <N x T>`
240
241        // Creating a temporary helps LLVM turn the memcpy into a store.
242        let tmp = self;
243        // SAFETY: `Simd<T, N>` always contains `N` elements of type `T`.  The safety of writing
244        // `ptr` is ensured by the caller.
245        unsafe { core::ptr::copy_nonoverlapping(tmp.as_array(), ptr, 1) }
246    }
247
248    /// Converts an array to a SIMD vector.
249    #[inline]
250    pub const fn from_array(array: [T; N]) -> Self {
251        // SAFETY: `&array` is safe to read.
252        //
253        // FIXME: We currently use a pointer load instead of `transmute_copy` because `repr(simd)`
254        // results in padding for non-power-of-2 vectors (so vectors are larger than arrays).
255        //
256        // NOTE: This deliberately doesn't just use `Self(array)`, see the comment
257        // on the struct definition for details.
258        unsafe { Self::load(&array) }
259    }
260
261    /// Converts a SIMD vector to an array.
262    #[inline]
263    pub const fn to_array(self) -> [T; N] {
264        let mut tmp = core::mem::MaybeUninit::uninit();
265        // SAFETY: writing to `tmp` is safe and initializes it.
266        //
267        // FIXME: We currently use a pointer store instead of `transmute_copy` because `repr(simd)`
268        // results in padding for non-power-of-2 vectors (so vectors are larger than arrays).
269        //
270        // NOTE: This deliberately doesn't just use `self.0`, see the comment
271        // on the struct definition for details.
272        unsafe {
273            self.store(tmp.as_mut_ptr());
274            tmp.assume_init()
275        }
276    }
277
278    /// Converts a slice to a SIMD vector containing `slice[..N]`.
279    ///
280    /// # Panics
281    ///
282    /// Panics if the slice's length is less than the vector's `Simd::N`.
283    /// Use `load_or_default` for an alternative that does not panic.
284    ///
285    /// # Example
286    ///
287    /// ```
288    /// # #![feature(portable_simd)]
289    /// # use core::simd::u32x4;
290    /// let source = vec![1, 2, 3, 4, 5, 6];
291    /// let v = u32x4::from_slice(&source);
292    /// assert_eq!(v.as_array(), &[1, 2, 3, 4]);
293    /// ```
294    #[must_use]
295    #[inline]
296    #[track_caller]
297    pub const fn from_slice(slice: &[T]) -> Self {
298        assert!(
299            slice.len() >= Self::LEN,
300            "slice length must be at least the number of elements"
301        );
302        // SAFETY: We just checked that the slice contains
303        // at least `N` elements.
304        unsafe { Self::load(slice.as_ptr().cast()) }
305    }
306
307    /// Writes a SIMD vector to the first `N` elements of a slice.
308    ///
309    /// # Panics
310    ///
311    /// Panics if the slice's length is less than the vector's `Simd::N`.
312    ///
313    /// # Example
314    ///
315    /// ```
316    /// # #![feature(portable_simd)]
317    /// # #[cfg(feature = "as_crate")] use core_simd::simd;
318    /// # #[cfg(not(feature = "as_crate"))] use core::simd;
319    /// # use simd::u32x4;
320    /// let mut dest = vec![0; 6];
321    /// let v = u32x4::from_array([1, 2, 3, 4]);
322    /// v.copy_to_slice(&mut dest);
323    /// assert_eq!(&dest, &[1, 2, 3, 4, 0, 0]);
324    /// ```
325    #[inline]
326    #[track_caller]
327    pub fn copy_to_slice(self, slice: &mut [T]) {
328        assert!(
329            slice.len() >= Self::LEN,
330            "slice length must be at least the number of elements"
331        );
332        // SAFETY: We just checked that the slice contains
333        // at least `N` elements.
334        unsafe { self.store(slice.as_mut_ptr().cast()) }
335    }
336
337    /// Reads contiguous elements from `slice`. Elements are read so long as they're in-bounds for
338    /// the `slice`. Otherwise, the default value for the element type is returned.
339    ///
340    /// # Examples
341    /// ```
342    /// # #![feature(portable_simd)]
343    /// # #[cfg(feature = "as_crate")] use core_simd::simd;
344    /// # #[cfg(not(feature = "as_crate"))] use core::simd;
345    /// # use simd::Simd;
346    /// let vec: Vec<i32> = vec![10, 11];
347    ///
348    /// let result = Simd::<i32, 4>::load_or_default(&vec);
349    /// assert_eq!(result, Simd::from_array([10, 11, 0, 0]));
350    /// ```
351    #[must_use]
352    #[inline]
353    pub fn load_or_default(slice: &[T]) -> Self
354    where
355        T: Default,
356    {
357        Self::load_or(slice, Default::default())
358    }
359
360    /// Reads contiguous elements from `slice`. Elements are read so long as they're in-bounds for
361    /// the `slice`. Otherwise, the corresponding value from `or` is passed through.
362    ///
363    /// # Examples
364    /// ```
365    /// # #![feature(portable_simd)]
366    /// # #[cfg(feature = "as_crate")] use core_simd::simd;
367    /// # #[cfg(not(feature = "as_crate"))] use core::simd;
368    /// # use simd::Simd;
369    /// let vec: Vec<i32> = vec![10, 11];
370    /// let or = Simd::from_array([-5, -4, -3, -2]);
371    ///
372    /// let result = Simd::load_or(&vec, or);
373    /// assert_eq!(result, Simd::from_array([10, 11, -3, -2]));
374    /// ```
375    #[must_use]
376    #[inline]
377    pub fn load_or(slice: &[T], or: Self) -> Self {
378        Self::load_select(slice, Mask::splat(true), or)
379    }
380
381    /// Reads contiguous elements from `slice`. Each element is read from memory if its
382    /// corresponding element in `enable` is `true`.
383    ///
384    /// When the element is disabled or out of bounds for the slice, that memory location
385    /// is not accessed and the corresponding value from `or` is passed through.
386    ///
387    /// # Examples
388    /// ```
389    /// # #![feature(portable_simd)]
390    /// # #[cfg(feature = "as_crate")] use core_simd::simd;
391    /// # #[cfg(not(feature = "as_crate"))] use core::simd;
392    /// # use simd::{Simd, Mask};
393    /// let vec: Vec<i32> = vec![10, 11, 12, 13, 14, 15, 16, 17, 18];
394    /// let enable = Mask::from_array([true, true, false, true]);
395    /// let or = Simd::from_array([-5, -4, -3, -2]);
396    ///
397    /// let result = Simd::load_select(&vec, enable, or);
398    /// assert_eq!(result, Simd::from_array([10, 11, -3, 13]));
399    /// ```
400    #[must_use]
401    #[inline]
402    pub fn load_select_or_default(slice: &[T], enable: Mask<<T as SimdElement>::Mask, N>) -> Self
403    where
404        T: Default,
405    {
406        Self::load_select(slice, enable, Default::default())
407    }
408
409    /// Reads contiguous elements from `slice`. Each element is read from memory if its
410    /// corresponding element in `enable` is `true`.
411    ///
412    /// When the element is disabled or out of bounds for the slice, that memory location
413    /// is not accessed and the corresponding value from `or` is passed through.
414    ///
415    /// # Examples
416    /// ```
417    /// # #![feature(portable_simd)]
418    /// # #[cfg(feature = "as_crate")] use core_simd::simd;
419    /// # #[cfg(not(feature = "as_crate"))] use core::simd;
420    /// # use simd::{Simd, Mask};
421    /// let vec: Vec<i32> = vec![10, 11, 12, 13, 14, 15, 16, 17, 18];
422    /// let enable = Mask::from_array([true, true, false, true]);
423    /// let or = Simd::from_array([-5, -4, -3, -2]);
424    ///
425    /// let result = Simd::load_select(&vec, enable, or);
426    /// assert_eq!(result, Simd::from_array([10, 11, -3, 13]));
427    /// ```
428    #[must_use]
429    #[inline]
430    pub fn load_select(
431        slice: &[T],
432        mut enable: Mask<<T as SimdElement>::Mask, N>,
433        or: Self,
434    ) -> Self {
435        enable &= mask_up_to(slice.len());
436        // SAFETY: We performed the bounds check by updating the mask. &[T] is properly aligned to
437        // the element.
438        unsafe { Self::load_select_ptr(slice.as_ptr(), enable, or) }
439    }
440
441    /// Reads contiguous elements from `slice`. Each element is read from memory if its
442    /// corresponding element in `enable` is `true`.
443    ///
444    /// When the element is disabled, that memory location is not accessed and the corresponding
445    /// value from `or` is passed through.
446    ///
447    /// # Safety
448    /// Enabled loads must not exceed the length of `slice`.
449    #[must_use]
450    #[inline]
451    pub unsafe fn load_select_unchecked(
452        slice: &[T],
453        enable: Mask<<T as SimdElement>::Mask, N>,
454        or: Self,
455    ) -> Self {
456        let ptr = slice.as_ptr();
457        // SAFETY: The safety of reading elements from `slice` is ensured by the caller.
458        unsafe { Self::load_select_ptr(ptr, enable, or) }
459    }
460
461    /// Reads contiguous elements starting at `ptr`. Each element is read from memory if its
462    /// corresponding element in `enable` is `true`.
463    ///
464    /// When the element is disabled, that memory location is not accessed and the corresponding
465    /// value from `or` is passed through.
466    ///
467    /// # Safety
468    /// Enabled `ptr` elements must be safe to read as if by `std::ptr::read`.
469    #[must_use]
470    #[inline]
471    pub unsafe fn load_select_ptr(
472        ptr: *const T,
473        enable: Mask<<T as SimdElement>::Mask, N>,
474        or: Self,
475    ) -> Self {
476        // SAFETY: The safety of reading elements through `ptr` is ensured by the caller.
477        unsafe { core::intrinsics::simd::simd_masked_load(enable.to_int(), ptr, or) }
478    }
479
480    /// Reads from potentially discontiguous indices in `slice` to construct a SIMD vector.
481    /// If an index is out-of-bounds, the element is instead selected from the `or` vector.
482    ///
483    /// # Examples
484    /// ```
485    /// # #![feature(portable_simd)]
486    /// # use core::simd::Simd;
487    /// let vec: Vec<i32> = vec![10, 11, 12, 13, 14, 15, 16, 17, 18];
488    /// let idxs = Simd::from_array([9, 3, 0, 5]);  // Note the index that is out-of-bounds
489    /// let alt = Simd::from_array([-5, -4, -3, -2]);
490    ///
491    /// let result = Simd::gather_or(&vec, idxs, alt);
492    /// assert_eq!(result, Simd::from_array([-5, 13, 10, 15]));
493    /// ```
494    #[must_use]
495    #[inline]
496    pub fn gather_or(slice: &[T], idxs: Simd<usize, N>, or: Self) -> Self {
497        Self::gather_select(slice, Mask::splat(true), idxs, or)
498    }
499
500    /// Reads from indices in `slice` to construct a SIMD vector.
501    /// If an index is out-of-bounds, the element is set to the default given by `T: Default`.
502    ///
503    /// # Examples
504    /// ```
505    /// # #![feature(portable_simd)]
506    /// # use core::simd::Simd;
507    /// let vec: Vec<i32> = vec![10, 11, 12, 13, 14, 15, 16, 17, 18];
508    /// let idxs = Simd::from_array([9, 3, 0, 5]);  // Note the index that is out-of-bounds
509    ///
510    /// let result = Simd::gather_or_default(&vec, idxs);
511    /// assert_eq!(result, Simd::from_array([0, 13, 10, 15]));
512    /// ```
513    #[must_use]
514    #[inline]
515    pub fn gather_or_default(slice: &[T], idxs: Simd<usize, N>) -> Self
516    where
517        T: Default,
518    {
519        Self::gather_or(slice, idxs, Self::splat(T::default()))
520    }
521
522    /// Reads from indices in `slice` to construct a SIMD vector.
523    /// The mask `enable`s all `true` indices and disables all `false` indices.
524    /// If an index is disabled or is out-of-bounds, the element is selected from the `or` vector.
525    ///
526    /// # Examples
527    /// ```
528    /// # #![feature(portable_simd)]
529    /// # use core::simd::{Simd, Mask};
530    /// let vec: Vec<i32> = vec![10, 11, 12, 13, 14, 15, 16, 17, 18];
531    /// let idxs = Simd::from_array([9, 3, 0, 5]); // Includes an out-of-bounds index
532    /// let alt = Simd::from_array([-5, -4, -3, -2]);
533    /// let enable = Mask::from_array([true, true, true, false]); // Includes a masked element
534    ///
535    /// let result = Simd::gather_select(&vec, enable, idxs, alt);
536    /// assert_eq!(result, Simd::from_array([-5, 13, 10, -2]));
537    /// ```
538    #[must_use]
539    #[inline]
540    pub fn gather_select(
541        slice: &[T],
542        enable: Mask<isize, N>,
543        idxs: Simd<usize, N>,
544        or: Self,
545    ) -> Self {
546        let enable: Mask<isize, N> = enable & idxs.simd_lt(Simd::splat(slice.len()));
547        // Safety: We have masked-off out-of-bounds indices.
548        unsafe { Self::gather_select_unchecked(slice, enable, idxs, or) }
549    }
550
551    /// Reads from indices in `slice` to construct a SIMD vector.
552    /// The mask `enable`s all `true` indices and disables all `false` indices.
553    /// If an index is disabled, the element is selected from the `or` vector.
554    ///
555    /// # Safety
556    ///
557    /// Calling this function with an `enable`d out-of-bounds index is *[undefined behavior]*
558    /// even if the resulting value is not used.
559    ///
560    /// # Examples
561    /// ```
562    /// # #![feature(portable_simd)]
563    /// # #[cfg(feature = "as_crate")] use core_simd::simd;
564    /// # #[cfg(not(feature = "as_crate"))] use core::simd;
565    /// # use simd::{Simd, cmp::SimdPartialOrd, Mask};
566    /// let vec: Vec<i32> = vec![10, 11, 12, 13, 14, 15, 16, 17, 18];
567    /// let idxs = Simd::from_array([9, 3, 0, 5]); // Includes an out-of-bounds index
568    /// let alt = Simd::from_array([-5, -4, -3, -2]);
569    /// let enable = Mask::from_array([true, true, true, false]); // Includes a masked element
570    /// // If this mask was used to gather, it would be unsound. Let's fix that.
571    /// let enable = enable & idxs.simd_lt(Simd::splat(vec.len()));
572    ///
573    /// // The out-of-bounds index has been masked, so it's safe to gather now.
574    /// let result = unsafe { Simd::gather_select_unchecked(&vec, enable, idxs, alt) };
575    /// assert_eq!(result, Simd::from_array([-5, 13, 10, -2]));
576    /// ```
577    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
578    #[must_use]
579    #[inline]
580    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
581    pub unsafe fn gather_select_unchecked(
582        slice: &[T],
583        enable: Mask<isize, N>,
584        idxs: Simd<usize, N>,
585        or: Self,
586    ) -> Self {
587        let base_ptr = Simd::<*const T, N>::splat(slice.as_ptr());
588        // Ferris forgive me, I have done pointer arithmetic here.
589        let ptrs = base_ptr.wrapping_add(idxs);
590        // Safety: The caller is responsible for determining the indices are okay to read
591        unsafe { Self::gather_select_ptr(ptrs, enable, or) }
592    }
593
594    /// Reads elementwise from pointers into a SIMD vector.
595    ///
596    /// # Safety
597    ///
598    /// Each read must satisfy the same conditions as [`core::ptr::read`].
599    ///
600    /// # Example
601    /// ```
602    /// # #![feature(portable_simd)]
603    /// # #[cfg(feature = "as_crate")] use core_simd::simd;
604    /// # #[cfg(not(feature = "as_crate"))] use core::simd;
605    /// # use simd::prelude::*;
606    /// let values = [6, 2, 4, 9];
607    /// let offsets = Simd::from_array([1, 0, 0, 3]);
608    /// let source = Simd::splat(values.as_ptr()).wrapping_add(offsets);
609    /// let gathered = unsafe { Simd::gather_ptr(source) };
610    /// assert_eq!(gathered, Simd::from_array([2, 6, 6, 9]));
611    /// ```
612    #[must_use]
613    #[inline]
614    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
615    pub unsafe fn gather_ptr(source: Simd<*const T, N>) -> Self
616    where
617        T: Default,
618    {
619        // TODO: add an intrinsic that doesn't use a passthru vector, and remove the T: Default bound
620        // Safety: The caller is responsible for upholding all invariants
621        unsafe { Self::gather_select_ptr(source, Mask::splat(true), Self::default()) }
622    }
623
624    /// Conditionally read elementwise from pointers into a SIMD vector.
625    /// The mask `enable`s all `true` pointers and disables all `false` pointers.
626    /// If a pointer is disabled, the element is selected from the `or` vector,
627    /// and no read is performed.
628    ///
629    /// # Safety
630    ///
631    /// Enabled elements must satisfy the same conditions as [`core::ptr::read`].
632    ///
633    /// # Example
634    /// ```
635    /// # #![feature(portable_simd)]
636    /// # #[cfg(feature = "as_crate")] use core_simd::simd;
637    /// # #[cfg(not(feature = "as_crate"))] use core::simd;
638    /// # use simd::prelude::*;
639    /// let values = [6, 2, 4, 9];
640    /// let enable = Mask::from_array([true, true, false, true]);
641    /// let offsets = Simd::from_array([1, 0, 0, 3]);
642    /// let source = Simd::splat(values.as_ptr()).wrapping_add(offsets);
643    /// let gathered = unsafe { Simd::gather_select_ptr(source, enable, Simd::splat(0)) };
644    /// assert_eq!(gathered, Simd::from_array([2, 6, 0, 9]));
645    /// ```
646    #[must_use]
647    #[inline]
648    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
649    pub unsafe fn gather_select_ptr(
650        source: Simd<*const T, N>,
651        enable: Mask<isize, N>,
652        or: Self,
653    ) -> Self {
654        // Safety: The caller is responsible for upholding all invariants
655        unsafe { core::intrinsics::simd::simd_gather(or, source, enable.to_int()) }
656    }
657
658    /// Conditionally write contiguous elements to `slice`. The `enable` mask controls
659    /// which elements are written, as long as they're in-bounds of the `slice`.
660    /// If the element is disabled or out of bounds, no memory access to that location
661    /// is made.
662    ///
663    /// # Examples
664    /// ```
665    /// # #![feature(portable_simd)]
666    /// # #[cfg(feature = "as_crate")] use core_simd::simd;
667    /// # #[cfg(not(feature = "as_crate"))] use core::simd;
668    /// # use simd::{Simd, Mask};
669    /// let mut arr = [0i32; 4];
670    /// let write = Simd::from_array([-5, -4, -3, -2]);
671    /// let enable = Mask::from_array([false, true, true, true]);
672    ///
673    /// write.store_select(&mut arr[..3], enable);
674    /// assert_eq!(arr, [0, -4, -3, 0]);
675    /// ```
676    #[inline]
677    pub fn store_select(self, slice: &mut [T], mut enable: Mask<<T as SimdElement>::Mask, N>) {
678        enable &= mask_up_to(slice.len());
679        // SAFETY: We performed the bounds check by updating the mask. &[T] is properly aligned to
680        // the element.
681        unsafe { self.store_select_ptr(slice.as_mut_ptr(), enable) }
682    }
683
684    /// Conditionally write contiguous elements to `slice`. The `enable` mask controls
685    /// which elements are written.
686    ///
687    /// # Safety
688    ///
689    /// Every enabled element must be in bounds for the `slice`.
690    ///
691    /// # Examples
692    /// ```
693    /// # #![feature(portable_simd)]
694    /// # #[cfg(feature = "as_crate")] use core_simd::simd;
695    /// # #[cfg(not(feature = "as_crate"))] use core::simd;
696    /// # use simd::{Simd, Mask};
697    /// let mut arr = [0i32; 4];
698    /// let write = Simd::from_array([-5, -4, -3, -2]);
699    /// let enable = Mask::from_array([false, true, true, true]);
700    ///
701    /// unsafe { write.store_select_unchecked(&mut arr, enable) };
702    /// assert_eq!(arr, [0, -4, -3, -2]);
703    /// ```
704    #[inline]
705    pub unsafe fn store_select_unchecked(
706        self,
707        slice: &mut [T],
708        enable: Mask<<T as SimdElement>::Mask, N>,
709    ) {
710        let ptr = slice.as_mut_ptr();
711        // SAFETY: The safety of writing elements in `slice` is ensured by the caller.
712        unsafe { self.store_select_ptr(ptr, enable) }
713    }
714
715    /// Conditionally write contiguous elements starting from `ptr`.
716    /// The `enable` mask controls which elements are written.
717    /// When disabled, the memory location corresponding to that element is not accessed.
718    ///
719    /// # Safety
720    ///
721    /// Memory addresses for element are calculated [`pointer::wrapping_offset`] and
722    /// each enabled element must satisfy the same conditions as [`core::ptr::write`].
723    #[inline]
724    pub unsafe fn store_select_ptr(self, ptr: *mut T, enable: Mask<<T as SimdElement>::Mask, N>) {
725        // SAFETY: The safety of writing elements through `ptr` is ensured by the caller.
726        unsafe { core::intrinsics::simd::simd_masked_store(enable.to_int(), ptr, self) }
727    }
728
729    /// Writes the values in a SIMD vector to potentially discontiguous indices in `slice`.
730    /// If an index is out-of-bounds, the write is suppressed without panicking.
731    /// If two elements in the scattered vector would write to the same index
732    /// only the last element is guaranteed to actually be written.
733    ///
734    /// # Examples
735    /// ```
736    /// # #![feature(portable_simd)]
737    /// # use core::simd::Simd;
738    /// let mut vec: Vec<i32> = vec![10, 11, 12, 13, 14, 15, 16, 17, 18];
739    /// let idxs = Simd::from_array([9, 3, 0, 0]); // Note the duplicate index.
740    /// let vals = Simd::from_array([-27, 82, -41, 124]);
741    ///
742    /// vals.scatter(&mut vec, idxs); // two logical writes means the last wins.
743    /// assert_eq!(vec, vec![124, 11, 12, 82, 14, 15, 16, 17, 18]);
744    /// ```
745    #[inline]
746    pub fn scatter(self, slice: &mut [T], idxs: Simd<usize, N>) {
747        self.scatter_select(slice, Mask::splat(true), idxs)
748    }
749
750    /// Writes values from a SIMD vector to multiple potentially discontiguous indices in `slice`.
751    /// The mask `enable`s all `true` indices and disables all `false` indices.
752    /// If an enabled index is out-of-bounds, the write is suppressed without panicking.
753    /// If two enabled elements in the scattered vector would write to the same index,
754    /// only the last element is guaranteed to actually be written.
755    ///
756    /// # Examples
757    /// ```
758    /// # #![feature(portable_simd)]
759    /// # #[cfg(feature = "as_crate")] use core_simd::simd;
760    /// # #[cfg(not(feature = "as_crate"))] use core::simd;
761    /// # use simd::{Simd, Mask};
762    /// let mut vec: Vec<i32> = vec![10, 11, 12, 13, 14, 15, 16, 17, 18];
763    /// let idxs = Simd::from_array([9, 3, 0, 0]); // Includes an out-of-bounds index
764    /// let vals = Simd::from_array([-27, 82, -41, 124]);
765    /// let enable = Mask::from_array([true, true, true, false]); // Includes a masked element
766    ///
767    /// vals.scatter_select(&mut vec, enable, idxs); // The last write is masked, thus omitted.
768    /// assert_eq!(vec, vec![-41, 11, 12, 82, 14, 15, 16, 17, 18]);
769    /// ```
770    #[inline]
771    pub fn scatter_select(self, slice: &mut [T], enable: Mask<isize, N>, idxs: Simd<usize, N>) {
772        let enable: Mask<isize, N> = enable & idxs.simd_lt(Simd::splat(slice.len()));
773        // Safety: We have masked-off out-of-bounds indices.
774        unsafe { self.scatter_select_unchecked(slice, enable, idxs) }
775    }
776
777    /// Writes values from a SIMD vector to multiple potentially discontiguous indices in `slice`.
778    /// The mask `enable`s all `true` indices and disables all `false` indices.
779    /// If two enabled elements in the scattered vector would write to the same index,
780    /// only the last element is guaranteed to actually be written.
781    ///
782    /// # Safety
783    ///
784    /// Calling this function with an enabled out-of-bounds index is *[undefined behavior]*,
785    /// and may lead to memory corruption.
786    ///
787    /// # Examples
788    /// ```
789    /// # #![feature(portable_simd)]
790    /// # #[cfg(feature = "as_crate")] use core_simd::simd;
791    /// # #[cfg(not(feature = "as_crate"))] use core::simd;
792    /// # use simd::{Simd, cmp::SimdPartialOrd, Mask};
793    /// let mut vec: Vec<i32> = vec![10, 11, 12, 13, 14, 15, 16, 17, 18];
794    /// let idxs = Simd::from_array([9, 3, 0, 0]);
795    /// let vals = Simd::from_array([-27, 82, -41, 124]);
796    /// let enable = Mask::from_array([true, true, true, false]); // Masks the final index
797    /// // If this mask was used to scatter, it would be unsound. Let's fix that.
798    /// let enable = enable & idxs.simd_lt(Simd::splat(vec.len()));
799    ///
800    /// // We have masked the OOB index, so it's safe to scatter now.
801    /// unsafe { vals.scatter_select_unchecked(&mut vec, enable, idxs); }
802    /// // The second write to index 0 was masked, thus omitted.
803    /// assert_eq!(vec, vec![-41, 11, 12, 82, 14, 15, 16, 17, 18]);
804    /// ```
805    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
806    #[inline]
807    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
808    pub unsafe fn scatter_select_unchecked(
809        self,
810        slice: &mut [T],
811        enable: Mask<isize, N>,
812        idxs: Simd<usize, N>,
813    ) {
814        // Safety: This block works with *mut T derived from &mut 'a [T],
815        // which means it is delicate in Rust's borrowing model, circa 2021:
816        // &mut 'a [T] asserts uniqueness, so deriving &'a [T] invalidates live *mut Ts!
817        // Even though this block is largely safe methods, it must be exactly this way
818        // to prevent invalidating the raw ptrs while they're live.
819        // Thus, entering this block requires all values to use being already ready:
820        // 0. idxs we want to write to, which are used to construct the mask.
821        // 1. enable, which depends on an initial &'a [T] and the idxs.
822        // 2. actual values to scatter (self).
823        // 3. &mut [T] which will become our base ptr.
824        unsafe {
825            // Now Entering ☢️ *mut T Zone
826            let base_ptr = Simd::<*mut T, N>::splat(slice.as_mut_ptr());
827            // Ferris forgive me, I have done pointer arithmetic here.
828            let ptrs = base_ptr.wrapping_add(idxs);
829            // The ptrs have been bounds-masked to prevent memory-unsafe writes insha'allah
830            self.scatter_select_ptr(ptrs, enable);
831            // Cleared ☢️ *mut T Zone
832        }
833    }
834
835    /// Writes pointers elementwise into a SIMD vector.
836    ///
837    /// # Safety
838    ///
839    /// Each write must satisfy the same conditions as [`core::ptr::write`].
840    ///
841    /// # Example
842    /// ```
843    /// # #![feature(portable_simd)]
844    /// # #[cfg(feature = "as_crate")] use core_simd::simd;
845    /// # #[cfg(not(feature = "as_crate"))] use core::simd;
846    /// # use simd::{Simd, ptr::SimdMutPtr};
847    /// let mut values = [0; 4];
848    /// let offset = Simd::from_array([3, 2, 1, 0]);
849    /// let ptrs = Simd::splat(values.as_mut_ptr()).wrapping_add(offset);
850    /// unsafe { Simd::from_array([6, 3, 5, 7]).scatter_ptr(ptrs); }
851    /// assert_eq!(values, [7, 5, 3, 6]);
852    /// ```
853    #[inline]
854    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
855    pub unsafe fn scatter_ptr(self, dest: Simd<*mut T, N>) {
856        // Safety: The caller is responsible for upholding all invariants
857        unsafe { self.scatter_select_ptr(dest, Mask::splat(true)) }
858    }
859
860    /// Conditionally write pointers elementwise into a SIMD vector.
861    /// The mask `enable`s all `true` pointers and disables all `false` pointers.
862    /// If a pointer is disabled, the write to its pointee is skipped.
863    ///
864    /// # Safety
865    ///
866    /// Enabled pointers must satisfy the same conditions as [`core::ptr::write`].
867    ///
868    /// # Example
869    /// ```
870    /// # #![feature(portable_simd)]
871    /// # #[cfg(feature = "as_crate")] use core_simd::simd;
872    /// # #[cfg(not(feature = "as_crate"))] use core::simd;
873    /// # use simd::{Mask, Simd, ptr::SimdMutPtr};
874    /// let mut values = [0; 4];
875    /// let offset = Simd::from_array([3, 2, 1, 0]);
876    /// let ptrs = Simd::splat(values.as_mut_ptr()).wrapping_add(offset);
877    /// let enable = Mask::from_array([true, true, false, false]);
878    /// unsafe { Simd::from_array([6, 3, 5, 7]).scatter_select_ptr(ptrs, enable); }
879    /// assert_eq!(values, [0, 0, 3, 6]);
880    /// ```
881    #[inline]
882    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
883    pub unsafe fn scatter_select_ptr(self, dest: Simd<*mut T, N>, enable: Mask<isize, N>) {
884        // Safety: The caller is responsible for upholding all invariants
885        unsafe { core::intrinsics::simd::simd_scatter(self, dest, enable.to_int()) }
886    }
887}
888
889impl<T, const N: usize> Copy for Simd<T, N>
890where
891    LaneCount<N>: SupportedLaneCount,
892    T: SimdElement,
893{
894}
895
896impl<T, const N: usize> Clone for Simd<T, N>
897where
898    LaneCount<N>: SupportedLaneCount,
899    T: SimdElement,
900{
901    #[inline]
902    fn clone(&self) -> Self {
903        *self
904    }
905}
906
907impl<T, const N: usize> Default for Simd<T, N>
908where
909    LaneCount<N>: SupportedLaneCount,
910    T: SimdElement + Default,
911{
912    #[inline]
913    fn default() -> Self {
914        Self::splat(T::default())
915    }
916}
917
918impl<T, const N: usize> PartialEq for Simd<T, N>
919where
920    LaneCount<N>: SupportedLaneCount,
921    T: SimdElement + PartialEq,
922{
923    #[inline]
924    fn eq(&self, other: &Self) -> bool {
925        // Safety: All SIMD vectors are SimdPartialEq, and the comparison produces a valid mask.
926        let mask = unsafe {
927            let tfvec: Simd<<T as SimdElement>::Mask, N> =
928                core::intrinsics::simd::simd_eq(*self, *other);
929            Mask::from_int_unchecked(tfvec)
930        };
931
932        // Two vectors are equal if all elements are equal when compared elementwise
933        mask.all()
934    }
935
936    #[allow(clippy::partialeq_ne_impl)]
937    #[inline]
938    fn ne(&self, other: &Self) -> bool {
939        // Safety: All SIMD vectors are SimdPartialEq, and the comparison produces a valid mask.
940        let mask = unsafe {
941            let tfvec: Simd<<T as SimdElement>::Mask, N> =
942                core::intrinsics::simd::simd_ne(*self, *other);
943            Mask::from_int_unchecked(tfvec)
944        };
945
946        // Two vectors are non-equal if any elements are non-equal when compared elementwise
947        mask.any()
948    }
949}
950
951/// Lexicographic order. For the SIMD elementwise minimum and maximum, use simd_min and simd_max instead.
952impl<T, const N: usize> PartialOrd for Simd<T, N>
953where
954    LaneCount<N>: SupportedLaneCount,
955    T: SimdElement + PartialOrd,
956{
957    #[inline]
958    fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
959        // TODO use SIMD equality
960        self.to_array().partial_cmp(other.as_ref())
961    }
962}
963
964impl<T, const N: usize> Eq for Simd<T, N>
965where
966    LaneCount<N>: SupportedLaneCount,
967    T: SimdElement + Eq,
968{
969}
970
971/// Lexicographic order. For the SIMD elementwise minimum and maximum, use simd_min and simd_max instead.
972impl<T, const N: usize> Ord for Simd<T, N>
973where
974    LaneCount<N>: SupportedLaneCount,
975    T: SimdElement + Ord,
976{
977    #[inline]
978    fn cmp(&self, other: &Self) -> core::cmp::Ordering {
979        // TODO use SIMD equality
980        self.to_array().cmp(other.as_ref())
981    }
982}
983
984impl<T, const N: usize> core::hash::Hash for Simd<T, N>
985where
986    LaneCount<N>: SupportedLaneCount,
987    T: SimdElement + core::hash::Hash,
988{
989    #[inline]
990    fn hash<H>(&self, state: &mut H)
991    where
992        H: core::hash::Hasher,
993    {
994        self.as_array().hash(state)
995    }
996}
997
998// array references
999impl<T, const N: usize> AsRef<[T; N]> for Simd<T, N>
1000where
1001    LaneCount<N>: SupportedLaneCount,
1002    T: SimdElement,
1003{
1004    #[inline]
1005    fn as_ref(&self) -> &[T; N] {
1006        self.as_array()
1007    }
1008}
1009
1010impl<T, const N: usize> AsMut<[T; N]> for Simd<T, N>
1011where
1012    LaneCount<N>: SupportedLaneCount,
1013    T: SimdElement,
1014{
1015    #[inline]
1016    fn as_mut(&mut self) -> &mut [T; N] {
1017        self.as_mut_array()
1018    }
1019}
1020
1021// slice references
1022impl<T, const N: usize> AsRef<[T]> for Simd<T, N>
1023where
1024    LaneCount<N>: SupportedLaneCount,
1025    T: SimdElement,
1026{
1027    #[inline]
1028    fn as_ref(&self) -> &[T] {
1029        self.as_array()
1030    }
1031}
1032
1033impl<T, const N: usize> AsMut<[T]> for Simd<T, N>
1034where
1035    LaneCount<N>: SupportedLaneCount,
1036    T: SimdElement,
1037{
1038    #[inline]
1039    fn as_mut(&mut self) -> &mut [T] {
1040        self.as_mut_array()
1041    }
1042}
1043
1044// vector/array conversion
1045impl<T, const N: usize> From<[T; N]> for Simd<T, N>
1046where
1047    LaneCount<N>: SupportedLaneCount,
1048    T: SimdElement,
1049{
1050    #[inline]
1051    fn from(array: [T; N]) -> Self {
1052        Self::from_array(array)
1053    }
1054}
1055
1056impl<T, const N: usize> From<Simd<T, N>> for [T; N]
1057where
1058    LaneCount<N>: SupportedLaneCount,
1059    T: SimdElement,
1060{
1061    #[inline]
1062    fn from(vector: Simd<T, N>) -> Self {
1063        vector.to_array()
1064    }
1065}
1066
1067impl<T, const N: usize> TryFrom<&[T]> for Simd<T, N>
1068where
1069    LaneCount<N>: SupportedLaneCount,
1070    T: SimdElement,
1071{
1072    type Error = core::array::TryFromSliceError;
1073
1074    #[inline]
1075    fn try_from(slice: &[T]) -> Result<Self, core::array::TryFromSliceError> {
1076        Ok(Self::from_array(slice.try_into()?))
1077    }
1078}
1079
1080impl<T, const N: usize> TryFrom<&mut [T]> for Simd<T, N>
1081where
1082    LaneCount<N>: SupportedLaneCount,
1083    T: SimdElement,
1084{
1085    type Error = core::array::TryFromSliceError;
1086
1087    #[inline]
1088    fn try_from(slice: &mut [T]) -> Result<Self, core::array::TryFromSliceError> {
1089        Ok(Self::from_array(slice.try_into()?))
1090    }
1091}
1092
1093mod sealed {
1094    pub trait Sealed {}
1095}
1096use sealed::Sealed;
1097
1098/// Marker trait for types that may be used as SIMD vector elements.
1099///
1100/// # Safety
1101/// This trait, when implemented, asserts the compiler can monomorphize
1102/// `#[repr(simd)]` structs with the marked type as an element.
1103/// Strictly, it is valid to impl if the vector will not be miscompiled.
1104/// Practically, it is user-unfriendly to impl it if the vector won't compile,
1105/// even when no soundness guarantees are broken by allowing the user to try.
1106pub unsafe trait SimdElement: Sealed + Copy {
1107    /// The mask element type corresponding to this element type.
1108    type Mask: MaskElement;
1109}
1110
1111impl Sealed for u8 {}
1112
1113// Safety: u8 is a valid SIMD element type, and is supported by this API
1114unsafe impl SimdElement for u8 {
1115    type Mask = i8;
1116}
1117
1118impl Sealed for u16 {}
1119
1120// Safety: u16 is a valid SIMD element type, and is supported by this API
1121unsafe impl SimdElement for u16 {
1122    type Mask = i16;
1123}
1124
1125impl Sealed for u32 {}
1126
1127// Safety: u32 is a valid SIMD element type, and is supported by this API
1128unsafe impl SimdElement for u32 {
1129    type Mask = i32;
1130}
1131
1132impl Sealed for u64 {}
1133
1134// Safety: u64 is a valid SIMD element type, and is supported by this API
1135unsafe impl SimdElement for u64 {
1136    type Mask = i64;
1137}
1138
1139impl Sealed for usize {}
1140
1141// Safety: usize is a valid SIMD element type, and is supported by this API
1142unsafe impl SimdElement for usize {
1143    type Mask = isize;
1144}
1145
1146impl Sealed for i8 {}
1147
1148// Safety: i8 is a valid SIMD element type, and is supported by this API
1149unsafe impl SimdElement for i8 {
1150    type Mask = i8;
1151}
1152
1153impl Sealed for i16 {}
1154
1155// Safety: i16 is a valid SIMD element type, and is supported by this API
1156unsafe impl SimdElement for i16 {
1157    type Mask = i16;
1158}
1159
1160impl Sealed for i32 {}
1161
1162// Safety: i32 is a valid SIMD element type, and is supported by this API
1163unsafe impl SimdElement for i32 {
1164    type Mask = i32;
1165}
1166
1167impl Sealed for i64 {}
1168
1169// Safety: i64 is a valid SIMD element type, and is supported by this API
1170unsafe impl SimdElement for i64 {
1171    type Mask = i64;
1172}
1173
1174impl Sealed for isize {}
1175
1176// Safety: isize is a valid SIMD element type, and is supported by this API
1177unsafe impl SimdElement for isize {
1178    type Mask = isize;
1179}
1180
1181impl Sealed for f32 {}
1182
1183// Safety: f32 is a valid SIMD element type, and is supported by this API
1184unsafe impl SimdElement for f32 {
1185    type Mask = i32;
1186}
1187
1188impl Sealed for f64 {}
1189
1190// Safety: f64 is a valid SIMD element type, and is supported by this API
1191unsafe impl SimdElement for f64 {
1192    type Mask = i64;
1193}
1194
1195impl<T> Sealed for *const T {}
1196
1197// Safety: (thin) const pointers are valid SIMD element types, and are supported by this API
1198//
1199// Fat pointers may be supported in the future.
1200unsafe impl<T> SimdElement for *const T
1201where
1202    T: core::ptr::Pointee<Metadata = ()>,
1203{
1204    type Mask = isize;
1205}
1206
1207impl<T> Sealed for *mut T {}
1208
1209// Safety: (thin) mut pointers are valid SIMD element types, and are supported by this API
1210//
1211// Fat pointers may be supported in the future.
1212unsafe impl<T> SimdElement for *mut T
1213where
1214    T: core::ptr::Pointee<Metadata = ()>,
1215{
1216    type Mask = isize;
1217}
1218
1219#[inline]
1220fn lane_indices<const N: usize>() -> Simd<usize, N>
1221where
1222    LaneCount<N>: SupportedLaneCount,
1223{
1224    #![allow(clippy::needless_range_loop)]
1225    let mut index = [0; N];
1226    for i in 0..N {
1227        index[i] = i;
1228    }
1229    Simd::from_array(index)
1230}
1231
1232#[inline]
1233fn mask_up_to<M, const N: usize>(len: usize) -> Mask<M, N>
1234where
1235    LaneCount<N>: SupportedLaneCount,
1236    M: MaskElement,
1237{
1238    let index = lane_indices::<N>();
1239    let max_value: u64 = M::max_unsigned();
1240    macro_rules! case {
1241        ($ty:ty) => {
1242            if N < <$ty>::MAX as usize && max_value as $ty as u64 == max_value {
1243                return index.cast().simd_lt(Simd::splat(len.min(N) as $ty)).cast();
1244            }
1245        };
1246    }
1247    case!(u8);
1248    case!(u16);
1249    case!(u32);
1250    case!(u64);
1251    index.simd_lt(Simd::splat(len)).cast()
1252}