core/cell.rs
1//! Shareable mutable containers.
2//!
3//! Rust memory safety is based on this rule: Given an object `T`, it is only possible to
4//! have one of the following:
5//!
6//! - Several immutable references (`&T`) to the object (also known as **aliasing**).
7//! - One mutable reference (`&mut T`) to the object (also known as **mutability**).
8//!
9//! This is enforced by the Rust compiler. However, there are situations where this rule is not
10//! flexible enough. Sometimes it is required to have multiple references to an object and yet
11//! mutate it.
12//!
13//! Shareable mutable containers exist to permit mutability in a controlled manner, even in the
14//! presence of aliasing. [`Cell<T>`], [`RefCell<T>`], and [`OnceCell<T>`] allow doing this in
15//! a single-threaded way—they do not implement [`Sync`]. (If you need to do aliasing and
16//! mutation among multiple threads, [`Mutex<T>`], [`RwLock<T>`], [`OnceLock<T>`] or [`atomic`]
17//! types are the correct data structures to do so).
18//!
19//! Values of the `Cell<T>`, `RefCell<T>`, and `OnceCell<T>` types may be mutated through shared
20//! references (i.e. the common `&T` type), whereas most Rust types can only be mutated through
21//! unique (`&mut T`) references. We say these cell types provide 'interior mutability'
22//! (mutable via `&T`), in contrast with typical Rust types that exhibit 'inherited mutability'
23//! (mutable only via `&mut T`).
24//!
25//! Cell types come in four flavors: `Cell<T>`, `RefCell<T>`, `OnceCell<T>`, and `LazyCell<T>`.
26//! Each provides a different way of providing safe interior mutability.
27//!
28//! ## `Cell<T>`
29//!
30//! [`Cell<T>`] implements interior mutability by moving values in and out of the cell. That is, an
31//! `&mut T` to the inner value can never be obtained, and the value itself cannot be directly
32//! obtained without replacing it with something else. Both of these rules ensure that there is
33//! never more than one reference pointing to the inner value. This type provides the following
34//! methods:
35//!
36//! - For types that implement [`Copy`], the [`get`](Cell::get) method retrieves the current
37//! interior value by duplicating it.
38//! - For types that implement [`Default`], the [`take`](Cell::take) method replaces the current
39//! interior value with [`Default::default()`] and returns the replaced value.
40//! - All types have:
41//! - [`replace`](Cell::replace): replaces the current interior value and returns the replaced
42//! value.
43//! - [`into_inner`](Cell::into_inner): this method consumes the `Cell<T>` and returns the
44//! interior value.
45//! - [`set`](Cell::set): this method replaces the interior value, dropping the replaced value.
46//!
47//! `Cell<T>` is typically used for more simple types where copying or moving values isn't too
48//! resource intensive (e.g. numbers), and should usually be preferred over other cell types when
49//! possible. For larger and non-copy types, `RefCell` provides some advantages.
50//!
51//! ## `RefCell<T>`
52//!
53//! [`RefCell<T>`] uses Rust's lifetimes to implement "dynamic borrowing", a process whereby one can
54//! claim temporary, exclusive, mutable access to the inner value. Borrows for `RefCell<T>`s are
55//! tracked at _runtime_, unlike Rust's native reference types which are entirely tracked
56//! statically, at compile time.
57//!
58//! An immutable reference to a `RefCell`'s inner value (`&T`) can be obtained with
59//! [`borrow`](`RefCell::borrow`), and a mutable borrow (`&mut T`) can be obtained with
60//! [`borrow_mut`](`RefCell::borrow_mut`). When these functions are called, they first verify that
61//! Rust's borrow rules will be satisfied: any number of immutable borrows are allowed or a
62//! single mutable borrow is allowed, but never both. If a borrow is attempted that would violate
63//! these rules, the thread will panic.
64//!
65//! The corresponding [`Sync`] version of `RefCell<T>` is [`RwLock<T>`].
66//!
67//! ## `OnceCell<T>`
68//!
69//! [`OnceCell<T>`] is somewhat of a hybrid of `Cell` and `RefCell` that works for values that
70//! typically only need to be set once. This means that a reference `&T` can be obtained without
71//! moving or copying the inner value (unlike `Cell`) but also without runtime checks (unlike
72//! `RefCell`). However, its value can also not be updated once set unless you have a mutable
73//! reference to the `OnceCell`.
74//!
75//! `OnceCell` provides the following methods:
76//!
77//! - [`get`](OnceCell::get): obtain a reference to the inner value
78//! - [`set`](OnceCell::set): set the inner value if it is unset (returns a `Result`)
79//! - [`get_or_init`](OnceCell::get_or_init): return the inner value, initializing it if needed
80//! - [`get_mut`](OnceCell::get_mut): provide a mutable reference to the inner value, only available
81//! if you have a mutable reference to the cell itself.
82//!
83//! The corresponding [`Sync`] version of `OnceCell<T>` is [`OnceLock<T>`].
84//!
85//! ## `LazyCell<T, F>`
86//!
87//! A common pattern with OnceCell is, for a given OnceCell, to use the same function on every
88//! call to [`OnceCell::get_or_init`] with that cell. This is what is offered by [`LazyCell`],
89//! which pairs cells of `T` with functions of `F`, and always calls `F` before it yields `&T`.
90//! This happens implicitly by simply attempting to dereference the LazyCell to get its contents,
91//! so its use is much more transparent with a place which has been initialized by a constant.
92//!
93//! More complicated patterns that don't fit this description can be built on `OnceCell<T>` instead.
94//!
95//! `LazyCell` works by providing an implementation of `impl Deref` that calls the function,
96//! so you can just use it by dereference (e.g. `*lazy_cell` or `lazy_cell.deref()`).
97//!
98//! The corresponding [`Sync`] version of `LazyCell<T, F>` is [`LazyLock<T, F>`].
99//!
100//! # When to choose interior mutability
101//!
102//! The more common inherited mutability, where one must have unique access to mutate a value, is
103//! one of the key language elements that enables Rust to reason strongly about pointer aliasing,
104//! statically preventing crash bugs. Because of that, inherited mutability is preferred, and
105//! interior mutability is something of a last resort. Since cell types enable mutation where it
106//! would otherwise be disallowed though, there are occasions when interior mutability might be
107//! appropriate, or even *must* be used, e.g.
108//!
109//! * Introducing mutability 'inside' of something immutable
110//! * Implementation details of logically-immutable methods.
111//! * Mutating implementations of [`Clone`].
112//!
113//! ## Introducing mutability 'inside' of something immutable
114//!
115//! Many shared smart pointer types, including [`Rc<T>`] and [`Arc<T>`], provide containers that can
116//! be cloned and shared between multiple parties. Because the contained values may be
117//! multiply-aliased, they can only be borrowed with `&`, not `&mut`. Without cells it would be
118//! impossible to mutate data inside of these smart pointers at all.
119//!
120//! It's very common then to put a `RefCell<T>` inside shared pointer types to reintroduce
121//! mutability:
122//!
123//! ```
124//! use std::cell::{RefCell, RefMut};
125//! use std::collections::HashMap;
126//! use std::rc::Rc;
127//!
128//! fn main() {
129//! let shared_map: Rc<RefCell<_>> = Rc::new(RefCell::new(HashMap::new()));
130//! // Create a new block to limit the scope of the dynamic borrow
131//! {
132//! let mut map: RefMut<'_, _> = shared_map.borrow_mut();
133//! map.insert("africa", 92388);
134//! map.insert("kyoto", 11837);
135//! map.insert("piccadilly", 11826);
136//! map.insert("marbles", 38);
137//! }
138//!
139//! // Note that if we had not let the previous borrow of the cache fall out
140//! // of scope then the subsequent borrow would cause a dynamic thread panic.
141//! // This is the major hazard of using `RefCell`.
142//! let total: i32 = shared_map.borrow().values().sum();
143//! println!("{total}");
144//! }
145//! ```
146//!
147//! Note that this example uses `Rc<T>` and not `Arc<T>`. `RefCell<T>`s are for single-threaded
148//! scenarios. Consider using [`RwLock<T>`] or [`Mutex<T>`] if you need shared mutability in a
149//! multi-threaded situation.
150//!
151//! ## Implementation details of logically-immutable methods
152//!
153//! Occasionally it may be desirable not to expose in an API that there is mutation happening
154//! "under the hood". This may be because logically the operation is immutable, but e.g., caching
155//! forces the implementation to perform mutation; or because you must employ mutation to implement
156//! a trait method that was originally defined to take `&self`.
157//!
158//! ```
159//! # #![allow(dead_code)]
160//! use std::cell::OnceCell;
161//!
162//! struct Graph {
163//! edges: Vec<(i32, i32)>,
164//! span_tree_cache: OnceCell<Vec<(i32, i32)>>
165//! }
166//!
167//! impl Graph {
168//! fn minimum_spanning_tree(&self) -> Vec<(i32, i32)> {
169//! self.span_tree_cache
170//! .get_or_init(|| self.calc_span_tree())
171//! .clone()
172//! }
173//!
174//! fn calc_span_tree(&self) -> Vec<(i32, i32)> {
175//! // Expensive computation goes here
176//! vec![]
177//! }
178//! }
179//! ```
180//!
181//! ## Mutating implementations of `Clone`
182//!
183//! This is simply a special - but common - case of the previous: hiding mutability for operations
184//! that appear to be immutable. The [`clone`](Clone::clone) method is expected to not change the
185//! source value, and is declared to take `&self`, not `&mut self`. Therefore, any mutation that
186//! happens in the `clone` method must use cell types. For example, [`Rc<T>`] maintains its
187//! reference counts within a `Cell<T>`.
188//!
189//! ```
190//! use std::cell::Cell;
191//! use std::ptr::NonNull;
192//! use std::process::abort;
193//! use std::marker::PhantomData;
194//!
195//! struct Rc<T: ?Sized> {
196//! ptr: NonNull<RcInner<T>>,
197//! phantom: PhantomData<RcInner<T>>,
198//! }
199//!
200//! struct RcInner<T: ?Sized> {
201//! strong: Cell<usize>,
202//! refcount: Cell<usize>,
203//! value: T,
204//! }
205//!
206//! impl<T: ?Sized> Clone for Rc<T> {
207//! fn clone(&self) -> Rc<T> {
208//! self.inc_strong();
209//! Rc {
210//! ptr: self.ptr,
211//! phantom: PhantomData,
212//! }
213//! }
214//! }
215//!
216//! trait RcInnerPtr<T: ?Sized> {
217//!
218//! fn inner(&self) -> &RcInner<T>;
219//!
220//! fn strong(&self) -> usize {
221//! self.inner().strong.get()
222//! }
223//!
224//! fn inc_strong(&self) {
225//! self.inner()
226//! .strong
227//! .set(self.strong()
228//! .checked_add(1)
229//! .unwrap_or_else(|| abort() ));
230//! }
231//! }
232//!
233//! impl<T: ?Sized> RcInnerPtr<T> for Rc<T> {
234//! fn inner(&self) -> &RcInner<T> {
235//! unsafe {
236//! self.ptr.as_ref()
237//! }
238//! }
239//! }
240//! ```
241//!
242//! [`Arc<T>`]: ../../std/sync/struct.Arc.html
243//! [`Rc<T>`]: ../../std/rc/struct.Rc.html
244//! [`RwLock<T>`]: ../../std/sync/struct.RwLock.html
245//! [`Mutex<T>`]: ../../std/sync/struct.Mutex.html
246//! [`OnceLock<T>`]: ../../std/sync/struct.OnceLock.html
247//! [`LazyLock<T, F>`]: ../../std/sync/struct.LazyLock.html
248//! [`Sync`]: ../../std/marker/trait.Sync.html
249//! [`atomic`]: crate::sync::atomic
250
251#![stable(feature = "rust1", since = "1.0.0")]
252
253use crate::cmp::Ordering;
254use crate::fmt::{self, Debug, Display};
255use crate::marker::{PhantomData, PointerLike, Unsize};
256use crate::mem;
257use crate::ops::{CoerceUnsized, Deref, DerefMut, DerefPure, DispatchFromDyn};
258use crate::pin::PinCoerceUnsized;
259use crate::ptr::{self, NonNull};
260
261mod lazy;
262mod once;
263
264#[stable(feature = "lazy_cell", since = "1.80.0")]
265pub use lazy::LazyCell;
266#[stable(feature = "once_cell", since = "1.70.0")]
267pub use once::OnceCell;
268
269/// A mutable memory location.
270///
271/// # Memory layout
272///
273/// `Cell<T>` has the same [memory layout and caveats as
274/// `UnsafeCell<T>`](UnsafeCell#memory-layout). In particular, this means that
275/// `Cell<T>` has the same in-memory representation as its inner type `T`.
276///
277/// # Examples
278///
279/// In this example, you can see that `Cell<T>` enables mutation inside an
280/// immutable struct. In other words, it enables "interior mutability".
281///
282/// ```
283/// use std::cell::Cell;
284///
285/// struct SomeStruct {
286/// regular_field: u8,
287/// special_field: Cell<u8>,
288/// }
289///
290/// let my_struct = SomeStruct {
291/// regular_field: 0,
292/// special_field: Cell::new(1),
293/// };
294///
295/// let new_value = 100;
296///
297/// // ERROR: `my_struct` is immutable
298/// // my_struct.regular_field = new_value;
299///
300/// // WORKS: although `my_struct` is immutable, `special_field` is a `Cell`,
301/// // which can always be mutated
302/// my_struct.special_field.set(new_value);
303/// assert_eq!(my_struct.special_field.get(), new_value);
304/// ```
305///
306/// See the [module-level documentation](self) for more.
307#[cfg_attr(not(test), rustc_diagnostic_item = "Cell")]
308#[stable(feature = "rust1", since = "1.0.0")]
309#[repr(transparent)]
310#[rustc_pub_transparent]
311pub struct Cell<T: ?Sized> {
312 value: UnsafeCell<T>,
313}
314
315#[stable(feature = "rust1", since = "1.0.0")]
316unsafe impl<T: ?Sized> Send for Cell<T> where T: Send {}
317
318// Note that this negative impl isn't strictly necessary for correctness,
319// as `Cell` wraps `UnsafeCell`, which is itself `!Sync`.
320// However, given how important `Cell`'s `!Sync`-ness is,
321// having an explicit negative impl is nice for documentation purposes
322// and results in nicer error messages.
323#[stable(feature = "rust1", since = "1.0.0")]
324impl<T: ?Sized> !Sync for Cell<T> {}
325
326#[stable(feature = "rust1", since = "1.0.0")]
327impl<T: Copy> Clone for Cell<T> {
328 #[inline]
329 fn clone(&self) -> Cell<T> {
330 Cell::new(self.get())
331 }
332}
333
334#[stable(feature = "rust1", since = "1.0.0")]
335impl<T: Default> Default for Cell<T> {
336 /// Creates a `Cell<T>`, with the `Default` value for T.
337 #[inline]
338 fn default() -> Cell<T> {
339 Cell::new(Default::default())
340 }
341}
342
343#[stable(feature = "rust1", since = "1.0.0")]
344impl<T: PartialEq + Copy> PartialEq for Cell<T> {
345 #[inline]
346 fn eq(&self, other: &Cell<T>) -> bool {
347 self.get() == other.get()
348 }
349}
350
351#[stable(feature = "cell_eq", since = "1.2.0")]
352impl<T: Eq + Copy> Eq for Cell<T> {}
353
354#[stable(feature = "cell_ord", since = "1.10.0")]
355impl<T: PartialOrd + Copy> PartialOrd for Cell<T> {
356 #[inline]
357 fn partial_cmp(&self, other: &Cell<T>) -> Option<Ordering> {
358 self.get().partial_cmp(&other.get())
359 }
360
361 #[inline]
362 fn lt(&self, other: &Cell<T>) -> bool {
363 self.get() < other.get()
364 }
365
366 #[inline]
367 fn le(&self, other: &Cell<T>) -> bool {
368 self.get() <= other.get()
369 }
370
371 #[inline]
372 fn gt(&self, other: &Cell<T>) -> bool {
373 self.get() > other.get()
374 }
375
376 #[inline]
377 fn ge(&self, other: &Cell<T>) -> bool {
378 self.get() >= other.get()
379 }
380}
381
382#[stable(feature = "cell_ord", since = "1.10.0")]
383impl<T: Ord + Copy> Ord for Cell<T> {
384 #[inline]
385 fn cmp(&self, other: &Cell<T>) -> Ordering {
386 self.get().cmp(&other.get())
387 }
388}
389
390#[stable(feature = "cell_from", since = "1.12.0")]
391impl<T> From<T> for Cell<T> {
392 /// Creates a new `Cell<T>` containing the given value.
393 fn from(t: T) -> Cell<T> {
394 Cell::new(t)
395 }
396}
397
398impl<T> Cell<T> {
399 /// Creates a new `Cell` containing the given value.
400 ///
401 /// # Examples
402 ///
403 /// ```
404 /// use std::cell::Cell;
405 ///
406 /// let c = Cell::new(5);
407 /// ```
408 #[stable(feature = "rust1", since = "1.0.0")]
409 #[rustc_const_stable(feature = "const_cell_new", since = "1.24.0")]
410 #[inline]
411 pub const fn new(value: T) -> Cell<T> {
412 Cell { value: UnsafeCell::new(value) }
413 }
414
415 /// Sets the contained value.
416 ///
417 /// # Examples
418 ///
419 /// ```
420 /// use std::cell::Cell;
421 ///
422 /// let c = Cell::new(5);
423 ///
424 /// c.set(10);
425 /// ```
426 #[inline]
427 #[stable(feature = "rust1", since = "1.0.0")]
428 pub fn set(&self, val: T) {
429 self.replace(val);
430 }
431
432 /// Swaps the values of two `Cell`s.
433 ///
434 /// The difference with `std::mem::swap` is that this function doesn't
435 /// require a `&mut` reference.
436 ///
437 /// # Panics
438 ///
439 /// This function will panic if `self` and `other` are different `Cell`s that partially overlap.
440 /// (Using just standard library methods, it is impossible to create such partially overlapping `Cell`s.
441 /// However, unsafe code is allowed to e.g. create two `&Cell<[i32; 2]>` that partially overlap.)
442 ///
443 /// # Examples
444 ///
445 /// ```
446 /// use std::cell::Cell;
447 ///
448 /// let c1 = Cell::new(5i32);
449 /// let c2 = Cell::new(10i32);
450 /// c1.swap(&c2);
451 /// assert_eq!(10, c1.get());
452 /// assert_eq!(5, c2.get());
453 /// ```
454 #[inline]
455 #[stable(feature = "move_cell", since = "1.17.0")]
456 pub fn swap(&self, other: &Self) {
457 // This function documents that it *will* panic, and intrinsics::is_nonoverlapping doesn't
458 // do the check in const, so trying to use it here would be inviting unnecessary fragility.
459 fn is_nonoverlapping<T>(src: *const T, dst: *const T) -> bool {
460 let src_usize = src.addr();
461 let dst_usize = dst.addr();
462 let diff = src_usize.abs_diff(dst_usize);
463 diff >= size_of::<T>()
464 }
465
466 if ptr::eq(self, other) {
467 // Swapping wouldn't change anything.
468 return;
469 }
470 if !is_nonoverlapping(self, other) {
471 // See <https://github.com/rust-lang/rust/issues/80778> for why we need to stop here.
472 panic!("`Cell::swap` on overlapping non-identical `Cell`s");
473 }
474 // SAFETY: This can be risky if called from separate threads, but `Cell`
475 // is `!Sync` so this won't happen. This also won't invalidate any
476 // pointers since `Cell` makes sure nothing else will be pointing into
477 // either of these `Cell`s. We also excluded shenanigans like partially overlapping `Cell`s,
478 // so `swap` will just properly copy two full values of type `T` back and forth.
479 unsafe {
480 mem::swap(&mut *self.value.get(), &mut *other.value.get());
481 }
482 }
483
484 /// Replaces the contained value with `val`, and returns the old contained value.
485 ///
486 /// # Examples
487 ///
488 /// ```
489 /// use std::cell::Cell;
490 ///
491 /// let cell = Cell::new(5);
492 /// assert_eq!(cell.get(), 5);
493 /// assert_eq!(cell.replace(10), 5);
494 /// assert_eq!(cell.get(), 10);
495 /// ```
496 #[inline]
497 #[stable(feature = "move_cell", since = "1.17.0")]
498 #[rustc_const_unstable(feature = "const_cell", issue = "131283")]
499 #[rustc_confusables("swap")]
500 pub const fn replace(&self, val: T) -> T {
501 // SAFETY: This can cause data races if called from a separate thread,
502 // but `Cell` is `!Sync` so this won't happen.
503 mem::replace(unsafe { &mut *self.value.get() }, val)
504 }
505
506 /// Unwraps the value, consuming the cell.
507 ///
508 /// # Examples
509 ///
510 /// ```
511 /// use std::cell::Cell;
512 ///
513 /// let c = Cell::new(5);
514 /// let five = c.into_inner();
515 ///
516 /// assert_eq!(five, 5);
517 /// ```
518 #[stable(feature = "move_cell", since = "1.17.0")]
519 #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
520 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
521 pub const fn into_inner(self) -> T {
522 self.value.into_inner()
523 }
524}
525
526impl<T: Copy> Cell<T> {
527 /// Returns a copy of the contained value.
528 ///
529 /// # Examples
530 ///
531 /// ```
532 /// use std::cell::Cell;
533 ///
534 /// let c = Cell::new(5);
535 ///
536 /// let five = c.get();
537 /// ```
538 #[inline]
539 #[stable(feature = "rust1", since = "1.0.0")]
540 #[rustc_const_unstable(feature = "const_cell", issue = "131283")]
541 pub const fn get(&self) -> T {
542 // SAFETY: This can cause data races if called from a separate thread,
543 // but `Cell` is `!Sync` so this won't happen.
544 unsafe { *self.value.get() }
545 }
546
547 /// Updates the contained value using a function and returns the new value.
548 ///
549 /// # Examples
550 ///
551 /// ```
552 /// #![feature(cell_update)]
553 ///
554 /// use std::cell::Cell;
555 ///
556 /// let c = Cell::new(5);
557 /// let new = c.update(|x| x + 1);
558 ///
559 /// assert_eq!(new, 6);
560 /// assert_eq!(c.get(), 6);
561 /// ```
562 #[inline]
563 #[unstable(feature = "cell_update", issue = "50186")]
564 pub fn update<F>(&self, f: F) -> T
565 where
566 F: FnOnce(T) -> T,
567 {
568 let old = self.get();
569 let new = f(old);
570 self.set(new);
571 new
572 }
573}
574
575impl<T: ?Sized> Cell<T> {
576 /// Returns a raw pointer to the underlying data in this cell.
577 ///
578 /// # Examples
579 ///
580 /// ```
581 /// use std::cell::Cell;
582 ///
583 /// let c = Cell::new(5);
584 ///
585 /// let ptr = c.as_ptr();
586 /// ```
587 #[inline]
588 #[stable(feature = "cell_as_ptr", since = "1.12.0")]
589 #[rustc_const_stable(feature = "const_cell_as_ptr", since = "1.32.0")]
590 #[rustc_as_ptr]
591 #[rustc_never_returns_null_ptr]
592 pub const fn as_ptr(&self) -> *mut T {
593 self.value.get()
594 }
595
596 /// Returns a mutable reference to the underlying data.
597 ///
598 /// This call borrows `Cell` mutably (at compile-time) which guarantees
599 /// that we possess the only reference.
600 ///
601 /// However be cautious: this method expects `self` to be mutable, which is
602 /// generally not the case when using a `Cell`. If you require interior
603 /// mutability by reference, consider using `RefCell` which provides
604 /// run-time checked mutable borrows through its [`borrow_mut`] method.
605 ///
606 /// [`borrow_mut`]: RefCell::borrow_mut()
607 ///
608 /// # Examples
609 ///
610 /// ```
611 /// use std::cell::Cell;
612 ///
613 /// let mut c = Cell::new(5);
614 /// *c.get_mut() += 1;
615 ///
616 /// assert_eq!(c.get(), 6);
617 /// ```
618 #[inline]
619 #[stable(feature = "cell_get_mut", since = "1.11.0")]
620 #[rustc_const_unstable(feature = "const_cell", issue = "131283")]
621 pub const fn get_mut(&mut self) -> &mut T {
622 self.value.get_mut()
623 }
624
625 /// Returns a `&Cell<T>` from a `&mut T`
626 ///
627 /// # Examples
628 ///
629 /// ```
630 /// use std::cell::Cell;
631 ///
632 /// let slice: &mut [i32] = &mut [1, 2, 3];
633 /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
634 /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
635 ///
636 /// assert_eq!(slice_cell.len(), 3);
637 /// ```
638 #[inline]
639 #[stable(feature = "as_cell", since = "1.37.0")]
640 #[rustc_const_unstable(feature = "const_cell", issue = "131283")]
641 pub const fn from_mut(t: &mut T) -> &Cell<T> {
642 // SAFETY: `&mut` ensures unique access.
643 unsafe { &*(t as *mut T as *const Cell<T>) }
644 }
645}
646
647impl<T: Default> Cell<T> {
648 /// Takes the value of the cell, leaving `Default::default()` in its place.
649 ///
650 /// # Examples
651 ///
652 /// ```
653 /// use std::cell::Cell;
654 ///
655 /// let c = Cell::new(5);
656 /// let five = c.take();
657 ///
658 /// assert_eq!(five, 5);
659 /// assert_eq!(c.into_inner(), 0);
660 /// ```
661 #[stable(feature = "move_cell", since = "1.17.0")]
662 pub fn take(&self) -> T {
663 self.replace(Default::default())
664 }
665}
666
667#[unstable(feature = "coerce_unsized", issue = "18598")]
668impl<T: CoerceUnsized<U>, U> CoerceUnsized<Cell<U>> for Cell<T> {}
669
670// Allow types that wrap `Cell` to also implement `DispatchFromDyn`
671// and become dyn-compatible method receivers.
672// Note that currently `Cell` itself cannot be a method receiver
673// because it does not implement Deref.
674// In other words:
675// `self: Cell<&Self>` won't work
676// `self: CellWrapper<Self>` becomes possible
677#[unstable(feature = "dispatch_from_dyn", issue = "none")]
678impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<Cell<U>> for Cell<T> {}
679
680#[unstable(feature = "pointer_like_trait", issue = "none")]
681impl<T: PointerLike> PointerLike for Cell<T> {}
682
683impl<T> Cell<[T]> {
684 /// Returns a `&[Cell<T>]` from a `&Cell<[T]>`
685 ///
686 /// # Examples
687 ///
688 /// ```
689 /// use std::cell::Cell;
690 ///
691 /// let slice: &mut [i32] = &mut [1, 2, 3];
692 /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
693 /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
694 ///
695 /// assert_eq!(slice_cell.len(), 3);
696 /// ```
697 #[stable(feature = "as_cell", since = "1.37.0")]
698 #[rustc_const_unstable(feature = "const_cell", issue = "131283")]
699 pub const fn as_slice_of_cells(&self) -> &[Cell<T>] {
700 // SAFETY: `Cell<T>` has the same memory layout as `T`.
701 unsafe { &*(self as *const Cell<[T]> as *const [Cell<T>]) }
702 }
703}
704
705impl<T, const N: usize> Cell<[T; N]> {
706 /// Returns a `&[Cell<T>; N]` from a `&Cell<[T; N]>`
707 ///
708 /// # Examples
709 ///
710 /// ```
711 /// #![feature(as_array_of_cells)]
712 /// use std::cell::Cell;
713 ///
714 /// let mut array: [i32; 3] = [1, 2, 3];
715 /// let cell_array: &Cell<[i32; 3]> = Cell::from_mut(&mut array);
716 /// let array_cell: &[Cell<i32>; 3] = cell_array.as_array_of_cells();
717 /// ```
718 #[unstable(feature = "as_array_of_cells", issue = "88248")]
719 pub const fn as_array_of_cells(&self) -> &[Cell<T>; N] {
720 // SAFETY: `Cell<T>` has the same memory layout as `T`.
721 unsafe { &*(self as *const Cell<[T; N]> as *const [Cell<T>; N]) }
722 }
723}
724
725/// A mutable memory location with dynamically checked borrow rules
726///
727/// See the [module-level documentation](self) for more.
728#[cfg_attr(not(test), rustc_diagnostic_item = "RefCell")]
729#[stable(feature = "rust1", since = "1.0.0")]
730pub struct RefCell<T: ?Sized> {
731 borrow: Cell<BorrowFlag>,
732 // Stores the location of the earliest currently active borrow.
733 // This gets updated whenever we go from having zero borrows
734 // to having a single borrow. When a borrow occurs, this gets included
735 // in the generated `BorrowError`/`BorrowMutError`
736 #[cfg(feature = "debug_refcell")]
737 borrowed_at: Cell<Option<&'static crate::panic::Location<'static>>>,
738 value: UnsafeCell<T>,
739}
740
741/// An error returned by [`RefCell::try_borrow`].
742#[stable(feature = "try_borrow", since = "1.13.0")]
743#[non_exhaustive]
744pub struct BorrowError {
745 #[cfg(feature = "debug_refcell")]
746 location: &'static crate::panic::Location<'static>,
747}
748
749#[stable(feature = "try_borrow", since = "1.13.0")]
750impl Debug for BorrowError {
751 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
752 let mut builder = f.debug_struct("BorrowError");
753
754 #[cfg(feature = "debug_refcell")]
755 builder.field("location", self.location);
756
757 builder.finish()
758 }
759}
760
761#[stable(feature = "try_borrow", since = "1.13.0")]
762impl Display for BorrowError {
763 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
764 Display::fmt("already mutably borrowed", f)
765 }
766}
767
768/// An error returned by [`RefCell::try_borrow_mut`].
769#[stable(feature = "try_borrow", since = "1.13.0")]
770#[non_exhaustive]
771pub struct BorrowMutError {
772 #[cfg(feature = "debug_refcell")]
773 location: &'static crate::panic::Location<'static>,
774}
775
776#[stable(feature = "try_borrow", since = "1.13.0")]
777impl Debug for BorrowMutError {
778 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
779 let mut builder = f.debug_struct("BorrowMutError");
780
781 #[cfg(feature = "debug_refcell")]
782 builder.field("location", self.location);
783
784 builder.finish()
785 }
786}
787
788#[stable(feature = "try_borrow", since = "1.13.0")]
789impl Display for BorrowMutError {
790 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
791 Display::fmt("already borrowed", f)
792 }
793}
794
795// This ensures the panicking code is outlined from `borrow_mut` for `RefCell`.
796#[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
797#[track_caller]
798#[cold]
799fn panic_already_borrowed(err: BorrowMutError) -> ! {
800 panic!("already borrowed: {:?}", err)
801}
802
803// This ensures the panicking code is outlined from `borrow` for `RefCell`.
804#[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
805#[track_caller]
806#[cold]
807fn panic_already_mutably_borrowed(err: BorrowError) -> ! {
808 panic!("already mutably borrowed: {:?}", err)
809}
810
811// Positive values represent the number of `Ref` active. Negative values
812// represent the number of `RefMut` active. Multiple `RefMut`s can only be
813// active at a time if they refer to distinct, nonoverlapping components of a
814// `RefCell` (e.g., different ranges of a slice).
815//
816// `Ref` and `RefMut` are both two words in size, and so there will likely never
817// be enough `Ref`s or `RefMut`s in existence to overflow half of the `usize`
818// range. Thus, a `BorrowFlag` will probably never overflow or underflow.
819// However, this is not a guarantee, as a pathological program could repeatedly
820// create and then mem::forget `Ref`s or `RefMut`s. Thus, all code must
821// explicitly check for overflow and underflow in order to avoid unsafety, or at
822// least behave correctly in the event that overflow or underflow happens (e.g.,
823// see BorrowRef::new).
824type BorrowFlag = isize;
825const UNUSED: BorrowFlag = 0;
826
827#[inline(always)]
828fn is_writing(x: BorrowFlag) -> bool {
829 x < UNUSED
830}
831
832#[inline(always)]
833fn is_reading(x: BorrowFlag) -> bool {
834 x > UNUSED
835}
836
837impl<T> RefCell<T> {
838 /// Creates a new `RefCell` containing `value`.
839 ///
840 /// # Examples
841 ///
842 /// ```
843 /// use std::cell::RefCell;
844 ///
845 /// let c = RefCell::new(5);
846 /// ```
847 #[stable(feature = "rust1", since = "1.0.0")]
848 #[rustc_const_stable(feature = "const_refcell_new", since = "1.24.0")]
849 #[inline]
850 pub const fn new(value: T) -> RefCell<T> {
851 RefCell {
852 value: UnsafeCell::new(value),
853 borrow: Cell::new(UNUSED),
854 #[cfg(feature = "debug_refcell")]
855 borrowed_at: Cell::new(None),
856 }
857 }
858
859 /// Consumes the `RefCell`, returning the wrapped value.
860 ///
861 /// # Examples
862 ///
863 /// ```
864 /// use std::cell::RefCell;
865 ///
866 /// let c = RefCell::new(5);
867 ///
868 /// let five = c.into_inner();
869 /// ```
870 #[stable(feature = "rust1", since = "1.0.0")]
871 #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
872 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
873 #[inline]
874 pub const fn into_inner(self) -> T {
875 // Since this function takes `self` (the `RefCell`) by value, the
876 // compiler statically verifies that it is not currently borrowed.
877 self.value.into_inner()
878 }
879
880 /// Replaces the wrapped value with a new one, returning the old value,
881 /// without deinitializing either one.
882 ///
883 /// This function corresponds to [`std::mem::replace`](../mem/fn.replace.html).
884 ///
885 /// # Panics
886 ///
887 /// Panics if the value is currently borrowed.
888 ///
889 /// # Examples
890 ///
891 /// ```
892 /// use std::cell::RefCell;
893 /// let cell = RefCell::new(5);
894 /// let old_value = cell.replace(6);
895 /// assert_eq!(old_value, 5);
896 /// assert_eq!(cell, RefCell::new(6));
897 /// ```
898 #[inline]
899 #[stable(feature = "refcell_replace", since = "1.24.0")]
900 #[track_caller]
901 #[rustc_confusables("swap")]
902 pub fn replace(&self, t: T) -> T {
903 mem::replace(&mut *self.borrow_mut(), t)
904 }
905
906 /// Replaces the wrapped value with a new one computed from `f`, returning
907 /// the old value, without deinitializing either one.
908 ///
909 /// # Panics
910 ///
911 /// Panics if the value is currently borrowed.
912 ///
913 /// # Examples
914 ///
915 /// ```
916 /// use std::cell::RefCell;
917 /// let cell = RefCell::new(5);
918 /// let old_value = cell.replace_with(|&mut old| old + 1);
919 /// assert_eq!(old_value, 5);
920 /// assert_eq!(cell, RefCell::new(6));
921 /// ```
922 #[inline]
923 #[stable(feature = "refcell_replace_swap", since = "1.35.0")]
924 #[track_caller]
925 pub fn replace_with<F: FnOnce(&mut T) -> T>(&self, f: F) -> T {
926 let mut_borrow = &mut *self.borrow_mut();
927 let replacement = f(mut_borrow);
928 mem::replace(mut_borrow, replacement)
929 }
930
931 /// Swaps the wrapped value of `self` with the wrapped value of `other`,
932 /// without deinitializing either one.
933 ///
934 /// This function corresponds to [`std::mem::swap`](../mem/fn.swap.html).
935 ///
936 /// # Panics
937 ///
938 /// Panics if the value in either `RefCell` is currently borrowed, or
939 /// if `self` and `other` point to the same `RefCell`.
940 ///
941 /// # Examples
942 ///
943 /// ```
944 /// use std::cell::RefCell;
945 /// let c = RefCell::new(5);
946 /// let d = RefCell::new(6);
947 /// c.swap(&d);
948 /// assert_eq!(c, RefCell::new(6));
949 /// assert_eq!(d, RefCell::new(5));
950 /// ```
951 #[inline]
952 #[stable(feature = "refcell_swap", since = "1.24.0")]
953 pub fn swap(&self, other: &Self) {
954 mem::swap(&mut *self.borrow_mut(), &mut *other.borrow_mut())
955 }
956}
957
958impl<T: ?Sized> RefCell<T> {
959 /// Immutably borrows the wrapped value.
960 ///
961 /// The borrow lasts until the returned `Ref` exits scope. Multiple
962 /// immutable borrows can be taken out at the same time.
963 ///
964 /// # Panics
965 ///
966 /// Panics if the value is currently mutably borrowed. For a non-panicking variant, use
967 /// [`try_borrow`](#method.try_borrow).
968 ///
969 /// # Examples
970 ///
971 /// ```
972 /// use std::cell::RefCell;
973 ///
974 /// let c = RefCell::new(5);
975 ///
976 /// let borrowed_five = c.borrow();
977 /// let borrowed_five2 = c.borrow();
978 /// ```
979 ///
980 /// An example of panic:
981 ///
982 /// ```should_panic
983 /// use std::cell::RefCell;
984 ///
985 /// let c = RefCell::new(5);
986 ///
987 /// let m = c.borrow_mut();
988 /// let b = c.borrow(); // this causes a panic
989 /// ```
990 #[stable(feature = "rust1", since = "1.0.0")]
991 #[inline]
992 #[track_caller]
993 pub fn borrow(&self) -> Ref<'_, T> {
994 match self.try_borrow() {
995 Ok(b) => b,
996 Err(err) => panic_already_mutably_borrowed(err),
997 }
998 }
999
1000 /// Immutably borrows the wrapped value, returning an error if the value is currently mutably
1001 /// borrowed.
1002 ///
1003 /// The borrow lasts until the returned `Ref` exits scope. Multiple immutable borrows can be
1004 /// taken out at the same time.
1005 ///
1006 /// This is the non-panicking variant of [`borrow`](#method.borrow).
1007 ///
1008 /// # Examples
1009 ///
1010 /// ```
1011 /// use std::cell::RefCell;
1012 ///
1013 /// let c = RefCell::new(5);
1014 ///
1015 /// {
1016 /// let m = c.borrow_mut();
1017 /// assert!(c.try_borrow().is_err());
1018 /// }
1019 ///
1020 /// {
1021 /// let m = c.borrow();
1022 /// assert!(c.try_borrow().is_ok());
1023 /// }
1024 /// ```
1025 #[stable(feature = "try_borrow", since = "1.13.0")]
1026 #[inline]
1027 #[cfg_attr(feature = "debug_refcell", track_caller)]
1028 pub fn try_borrow(&self) -> Result<Ref<'_, T>, BorrowError> {
1029 match BorrowRef::new(&self.borrow) {
1030 Some(b) => {
1031 #[cfg(feature = "debug_refcell")]
1032 {
1033 // `borrowed_at` is always the *first* active borrow
1034 if b.borrow.get() == 1 {
1035 self.borrowed_at.set(Some(crate::panic::Location::caller()));
1036 }
1037 }
1038
1039 // SAFETY: `BorrowRef` ensures that there is only immutable access
1040 // to the value while borrowed.
1041 let value = unsafe { NonNull::new_unchecked(self.value.get()) };
1042 Ok(Ref { value, borrow: b })
1043 }
1044 None => Err(BorrowError {
1045 // If a borrow occurred, then we must already have an outstanding borrow,
1046 // so `borrowed_at` will be `Some`
1047 #[cfg(feature = "debug_refcell")]
1048 location: self.borrowed_at.get().unwrap(),
1049 }),
1050 }
1051 }
1052
1053 /// Mutably borrows the wrapped value.
1054 ///
1055 /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
1056 /// from it exit scope. The value cannot be borrowed while this borrow is
1057 /// active.
1058 ///
1059 /// # Panics
1060 ///
1061 /// Panics if the value is currently borrowed. For a non-panicking variant, use
1062 /// [`try_borrow_mut`](#method.try_borrow_mut).
1063 ///
1064 /// # Examples
1065 ///
1066 /// ```
1067 /// use std::cell::RefCell;
1068 ///
1069 /// let c = RefCell::new("hello".to_owned());
1070 ///
1071 /// *c.borrow_mut() = "bonjour".to_owned();
1072 ///
1073 /// assert_eq!(&*c.borrow(), "bonjour");
1074 /// ```
1075 ///
1076 /// An example of panic:
1077 ///
1078 /// ```should_panic
1079 /// use std::cell::RefCell;
1080 ///
1081 /// let c = RefCell::new(5);
1082 /// let m = c.borrow();
1083 ///
1084 /// let b = c.borrow_mut(); // this causes a panic
1085 /// ```
1086 #[stable(feature = "rust1", since = "1.0.0")]
1087 #[inline]
1088 #[track_caller]
1089 pub fn borrow_mut(&self) -> RefMut<'_, T> {
1090 match self.try_borrow_mut() {
1091 Ok(b) => b,
1092 Err(err) => panic_already_borrowed(err),
1093 }
1094 }
1095
1096 /// Mutably borrows the wrapped value, returning an error if the value is currently borrowed.
1097 ///
1098 /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
1099 /// from it exit scope. The value cannot be borrowed while this borrow is
1100 /// active.
1101 ///
1102 /// This is the non-panicking variant of [`borrow_mut`](#method.borrow_mut).
1103 ///
1104 /// # Examples
1105 ///
1106 /// ```
1107 /// use std::cell::RefCell;
1108 ///
1109 /// let c = RefCell::new(5);
1110 ///
1111 /// {
1112 /// let m = c.borrow();
1113 /// assert!(c.try_borrow_mut().is_err());
1114 /// }
1115 ///
1116 /// assert!(c.try_borrow_mut().is_ok());
1117 /// ```
1118 #[stable(feature = "try_borrow", since = "1.13.0")]
1119 #[inline]
1120 #[cfg_attr(feature = "debug_refcell", track_caller)]
1121 pub fn try_borrow_mut(&self) -> Result<RefMut<'_, T>, BorrowMutError> {
1122 match BorrowRefMut::new(&self.borrow) {
1123 Some(b) => {
1124 #[cfg(feature = "debug_refcell")]
1125 {
1126 self.borrowed_at.set(Some(crate::panic::Location::caller()));
1127 }
1128
1129 // SAFETY: `BorrowRefMut` guarantees unique access.
1130 let value = unsafe { NonNull::new_unchecked(self.value.get()) };
1131 Ok(RefMut { value, borrow: b, marker: PhantomData })
1132 }
1133 None => Err(BorrowMutError {
1134 // If a borrow occurred, then we must already have an outstanding borrow,
1135 // so `borrowed_at` will be `Some`
1136 #[cfg(feature = "debug_refcell")]
1137 location: self.borrowed_at.get().unwrap(),
1138 }),
1139 }
1140 }
1141
1142 /// Returns a raw pointer to the underlying data in this cell.
1143 ///
1144 /// # Examples
1145 ///
1146 /// ```
1147 /// use std::cell::RefCell;
1148 ///
1149 /// let c = RefCell::new(5);
1150 ///
1151 /// let ptr = c.as_ptr();
1152 /// ```
1153 #[inline]
1154 #[stable(feature = "cell_as_ptr", since = "1.12.0")]
1155 #[rustc_as_ptr]
1156 #[rustc_never_returns_null_ptr]
1157 pub fn as_ptr(&self) -> *mut T {
1158 self.value.get()
1159 }
1160
1161 /// Returns a mutable reference to the underlying data.
1162 ///
1163 /// Since this method borrows `RefCell` mutably, it is statically guaranteed
1164 /// that no borrows to the underlying data exist. The dynamic checks inherent
1165 /// in [`borrow_mut`] and most other methods of `RefCell` are therefore
1166 /// unnecessary.
1167 ///
1168 /// This method can only be called if `RefCell` can be mutably borrowed,
1169 /// which in general is only the case directly after the `RefCell` has
1170 /// been created. In these situations, skipping the aforementioned dynamic
1171 /// borrowing checks may yield better ergonomics and runtime-performance.
1172 ///
1173 /// In most situations where `RefCell` is used, it can't be borrowed mutably.
1174 /// Use [`borrow_mut`] to get mutable access to the underlying data then.
1175 ///
1176 /// [`borrow_mut`]: RefCell::borrow_mut()
1177 ///
1178 /// # Examples
1179 ///
1180 /// ```
1181 /// use std::cell::RefCell;
1182 ///
1183 /// let mut c = RefCell::new(5);
1184 /// *c.get_mut() += 1;
1185 ///
1186 /// assert_eq!(c, RefCell::new(6));
1187 /// ```
1188 #[inline]
1189 #[stable(feature = "cell_get_mut", since = "1.11.0")]
1190 pub fn get_mut(&mut self) -> &mut T {
1191 self.value.get_mut()
1192 }
1193
1194 /// Undo the effect of leaked guards on the borrow state of the `RefCell`.
1195 ///
1196 /// This call is similar to [`get_mut`] but more specialized. It borrows `RefCell` mutably to
1197 /// ensure no borrows exist and then resets the state tracking shared borrows. This is relevant
1198 /// if some `Ref` or `RefMut` borrows have been leaked.
1199 ///
1200 /// [`get_mut`]: RefCell::get_mut()
1201 ///
1202 /// # Examples
1203 ///
1204 /// ```
1205 /// #![feature(cell_leak)]
1206 /// use std::cell::RefCell;
1207 ///
1208 /// let mut c = RefCell::new(0);
1209 /// std::mem::forget(c.borrow_mut());
1210 ///
1211 /// assert!(c.try_borrow().is_err());
1212 /// c.undo_leak();
1213 /// assert!(c.try_borrow().is_ok());
1214 /// ```
1215 #[unstable(feature = "cell_leak", issue = "69099")]
1216 pub fn undo_leak(&mut self) -> &mut T {
1217 *self.borrow.get_mut() = UNUSED;
1218 self.get_mut()
1219 }
1220
1221 /// Immutably borrows the wrapped value, returning an error if the value is
1222 /// currently mutably borrowed.
1223 ///
1224 /// # Safety
1225 ///
1226 /// Unlike `RefCell::borrow`, this method is unsafe because it does not
1227 /// return a `Ref`, thus leaving the borrow flag untouched. Mutably
1228 /// borrowing the `RefCell` while the reference returned by this method
1229 /// is alive is undefined behavior.
1230 ///
1231 /// # Examples
1232 ///
1233 /// ```
1234 /// use std::cell::RefCell;
1235 ///
1236 /// let c = RefCell::new(5);
1237 ///
1238 /// {
1239 /// let m = c.borrow_mut();
1240 /// assert!(unsafe { c.try_borrow_unguarded() }.is_err());
1241 /// }
1242 ///
1243 /// {
1244 /// let m = c.borrow();
1245 /// assert!(unsafe { c.try_borrow_unguarded() }.is_ok());
1246 /// }
1247 /// ```
1248 #[stable(feature = "borrow_state", since = "1.37.0")]
1249 #[inline]
1250 pub unsafe fn try_borrow_unguarded(&self) -> Result<&T, BorrowError> {
1251 if !is_writing(self.borrow.get()) {
1252 // SAFETY: We check that nobody is actively writing now, but it is
1253 // the caller's responsibility to ensure that nobody writes until
1254 // the returned reference is no longer in use.
1255 // Also, `self.value.get()` refers to the value owned by `self`
1256 // and is thus guaranteed to be valid for the lifetime of `self`.
1257 Ok(unsafe { &*self.value.get() })
1258 } else {
1259 Err(BorrowError {
1260 // If a borrow occurred, then we must already have an outstanding borrow,
1261 // so `borrowed_at` will be `Some`
1262 #[cfg(feature = "debug_refcell")]
1263 location: self.borrowed_at.get().unwrap(),
1264 })
1265 }
1266 }
1267}
1268
1269impl<T: Default> RefCell<T> {
1270 /// Takes the wrapped value, leaving `Default::default()` in its place.
1271 ///
1272 /// # Panics
1273 ///
1274 /// Panics if the value is currently borrowed.
1275 ///
1276 /// # Examples
1277 ///
1278 /// ```
1279 /// use std::cell::RefCell;
1280 ///
1281 /// let c = RefCell::new(5);
1282 /// let five = c.take();
1283 ///
1284 /// assert_eq!(five, 5);
1285 /// assert_eq!(c.into_inner(), 0);
1286 /// ```
1287 #[stable(feature = "refcell_take", since = "1.50.0")]
1288 pub fn take(&self) -> T {
1289 self.replace(Default::default())
1290 }
1291}
1292
1293#[stable(feature = "rust1", since = "1.0.0")]
1294unsafe impl<T: ?Sized> Send for RefCell<T> where T: Send {}
1295
1296#[stable(feature = "rust1", since = "1.0.0")]
1297impl<T: ?Sized> !Sync for RefCell<T> {}
1298
1299#[stable(feature = "rust1", since = "1.0.0")]
1300impl<T: Clone> Clone for RefCell<T> {
1301 /// # Panics
1302 ///
1303 /// Panics if the value is currently mutably borrowed.
1304 #[inline]
1305 #[track_caller]
1306 fn clone(&self) -> RefCell<T> {
1307 RefCell::new(self.borrow().clone())
1308 }
1309
1310 /// # Panics
1311 ///
1312 /// Panics if `source` is currently mutably borrowed.
1313 #[inline]
1314 #[track_caller]
1315 fn clone_from(&mut self, source: &Self) {
1316 self.get_mut().clone_from(&source.borrow())
1317 }
1318}
1319
1320#[stable(feature = "rust1", since = "1.0.0")]
1321impl<T: Default> Default for RefCell<T> {
1322 /// Creates a `RefCell<T>`, with the `Default` value for T.
1323 #[inline]
1324 fn default() -> RefCell<T> {
1325 RefCell::new(Default::default())
1326 }
1327}
1328
1329#[stable(feature = "rust1", since = "1.0.0")]
1330impl<T: ?Sized + PartialEq> PartialEq for RefCell<T> {
1331 /// # Panics
1332 ///
1333 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1334 #[inline]
1335 fn eq(&self, other: &RefCell<T>) -> bool {
1336 *self.borrow() == *other.borrow()
1337 }
1338}
1339
1340#[stable(feature = "cell_eq", since = "1.2.0")]
1341impl<T: ?Sized + Eq> Eq for RefCell<T> {}
1342
1343#[stable(feature = "cell_ord", since = "1.10.0")]
1344impl<T: ?Sized + PartialOrd> PartialOrd for RefCell<T> {
1345 /// # Panics
1346 ///
1347 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1348 #[inline]
1349 fn partial_cmp(&self, other: &RefCell<T>) -> Option<Ordering> {
1350 self.borrow().partial_cmp(&*other.borrow())
1351 }
1352
1353 /// # Panics
1354 ///
1355 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1356 #[inline]
1357 fn lt(&self, other: &RefCell<T>) -> bool {
1358 *self.borrow() < *other.borrow()
1359 }
1360
1361 /// # Panics
1362 ///
1363 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1364 #[inline]
1365 fn le(&self, other: &RefCell<T>) -> bool {
1366 *self.borrow() <= *other.borrow()
1367 }
1368
1369 /// # Panics
1370 ///
1371 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1372 #[inline]
1373 fn gt(&self, other: &RefCell<T>) -> bool {
1374 *self.borrow() > *other.borrow()
1375 }
1376
1377 /// # Panics
1378 ///
1379 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1380 #[inline]
1381 fn ge(&self, other: &RefCell<T>) -> bool {
1382 *self.borrow() >= *other.borrow()
1383 }
1384}
1385
1386#[stable(feature = "cell_ord", since = "1.10.0")]
1387impl<T: ?Sized + Ord> Ord for RefCell<T> {
1388 /// # Panics
1389 ///
1390 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1391 #[inline]
1392 fn cmp(&self, other: &RefCell<T>) -> Ordering {
1393 self.borrow().cmp(&*other.borrow())
1394 }
1395}
1396
1397#[stable(feature = "cell_from", since = "1.12.0")]
1398impl<T> From<T> for RefCell<T> {
1399 /// Creates a new `RefCell<T>` containing the given value.
1400 fn from(t: T) -> RefCell<T> {
1401 RefCell::new(t)
1402 }
1403}
1404
1405#[unstable(feature = "coerce_unsized", issue = "18598")]
1406impl<T: CoerceUnsized<U>, U> CoerceUnsized<RefCell<U>> for RefCell<T> {}
1407
1408struct BorrowRef<'b> {
1409 borrow: &'b Cell<BorrowFlag>,
1410}
1411
1412impl<'b> BorrowRef<'b> {
1413 #[inline]
1414 fn new(borrow: &'b Cell<BorrowFlag>) -> Option<BorrowRef<'b>> {
1415 let b = borrow.get().wrapping_add(1);
1416 if !is_reading(b) {
1417 // Incrementing borrow can result in a non-reading value (<= 0) in these cases:
1418 // 1. It was < 0, i.e. there are writing borrows, so we can't allow a read borrow
1419 // due to Rust's reference aliasing rules
1420 // 2. It was isize::MAX (the max amount of reading borrows) and it overflowed
1421 // into isize::MIN (the max amount of writing borrows) so we can't allow
1422 // an additional read borrow because isize can't represent so many read borrows
1423 // (this can only happen if you mem::forget more than a small constant amount of
1424 // `Ref`s, which is not good practice)
1425 None
1426 } else {
1427 // Incrementing borrow can result in a reading value (> 0) in these cases:
1428 // 1. It was = 0, i.e. it wasn't borrowed, and we are taking the first read borrow
1429 // 2. It was > 0 and < isize::MAX, i.e. there were read borrows, and isize
1430 // is large enough to represent having one more read borrow
1431 borrow.set(b);
1432 Some(BorrowRef { borrow })
1433 }
1434 }
1435}
1436
1437impl Drop for BorrowRef<'_> {
1438 #[inline]
1439 fn drop(&mut self) {
1440 let borrow = self.borrow.get();
1441 debug_assert!(is_reading(borrow));
1442 self.borrow.set(borrow - 1);
1443 }
1444}
1445
1446impl Clone for BorrowRef<'_> {
1447 #[inline]
1448 fn clone(&self) -> Self {
1449 // Since this Ref exists, we know the borrow flag
1450 // is a reading borrow.
1451 let borrow = self.borrow.get();
1452 debug_assert!(is_reading(borrow));
1453 // Prevent the borrow counter from overflowing into
1454 // a writing borrow.
1455 assert!(borrow != BorrowFlag::MAX);
1456 self.borrow.set(borrow + 1);
1457 BorrowRef { borrow: self.borrow }
1458 }
1459}
1460
1461/// Wraps a borrowed reference to a value in a `RefCell` box.
1462/// A wrapper type for an immutably borrowed value from a `RefCell<T>`.
1463///
1464/// See the [module-level documentation](self) for more.
1465#[stable(feature = "rust1", since = "1.0.0")]
1466#[must_not_suspend = "holding a Ref across suspend points can cause BorrowErrors"]
1467#[rustc_diagnostic_item = "RefCellRef"]
1468pub struct Ref<'b, T: ?Sized + 'b> {
1469 // NB: we use a pointer instead of `&'b T` to avoid `noalias` violations, because a
1470 // `Ref` argument doesn't hold immutability for its whole scope, only until it drops.
1471 // `NonNull` is also covariant over `T`, just like we would have with `&T`.
1472 value: NonNull<T>,
1473 borrow: BorrowRef<'b>,
1474}
1475
1476#[stable(feature = "rust1", since = "1.0.0")]
1477impl<T: ?Sized> Deref for Ref<'_, T> {
1478 type Target = T;
1479
1480 #[inline]
1481 fn deref(&self) -> &T {
1482 // SAFETY: the value is accessible as long as we hold our borrow.
1483 unsafe { self.value.as_ref() }
1484 }
1485}
1486
1487#[unstable(feature = "deref_pure_trait", issue = "87121")]
1488unsafe impl<T: ?Sized> DerefPure for Ref<'_, T> {}
1489
1490impl<'b, T: ?Sized> Ref<'b, T> {
1491 /// Copies a `Ref`.
1492 ///
1493 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1494 ///
1495 /// This is an associated function that needs to be used as
1496 /// `Ref::clone(...)`. A `Clone` implementation or a method would interfere
1497 /// with the widespread use of `r.borrow().clone()` to clone the contents of
1498 /// a `RefCell`.
1499 #[stable(feature = "cell_extras", since = "1.15.0")]
1500 #[must_use]
1501 #[inline]
1502 pub fn clone(orig: &Ref<'b, T>) -> Ref<'b, T> {
1503 Ref { value: orig.value, borrow: orig.borrow.clone() }
1504 }
1505
1506 /// Makes a new `Ref` for a component of the borrowed data.
1507 ///
1508 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1509 ///
1510 /// This is an associated function that needs to be used as `Ref::map(...)`.
1511 /// A method would interfere with methods of the same name on the contents
1512 /// of a `RefCell` used through `Deref`.
1513 ///
1514 /// # Examples
1515 ///
1516 /// ```
1517 /// use std::cell::{RefCell, Ref};
1518 ///
1519 /// let c = RefCell::new((5, 'b'));
1520 /// let b1: Ref<'_, (u32, char)> = c.borrow();
1521 /// let b2: Ref<'_, u32> = Ref::map(b1, |t| &t.0);
1522 /// assert_eq!(*b2, 5)
1523 /// ```
1524 #[stable(feature = "cell_map", since = "1.8.0")]
1525 #[inline]
1526 pub fn map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Ref<'b, U>
1527 where
1528 F: FnOnce(&T) -> &U,
1529 {
1530 Ref { value: NonNull::from(f(&*orig)), borrow: orig.borrow }
1531 }
1532
1533 /// Makes a new `Ref` for an optional component of the borrowed data. The
1534 /// original guard is returned as an `Err(..)` if the closure returns
1535 /// `None`.
1536 ///
1537 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1538 ///
1539 /// This is an associated function that needs to be used as
1540 /// `Ref::filter_map(...)`. A method would interfere with methods of the same
1541 /// name on the contents of a `RefCell` used through `Deref`.
1542 ///
1543 /// # Examples
1544 ///
1545 /// ```
1546 /// use std::cell::{RefCell, Ref};
1547 ///
1548 /// let c = RefCell::new(vec![1, 2, 3]);
1549 /// let b1: Ref<'_, Vec<u32>> = c.borrow();
1550 /// let b2: Result<Ref<'_, u32>, _> = Ref::filter_map(b1, |v| v.get(1));
1551 /// assert_eq!(*b2.unwrap(), 2);
1552 /// ```
1553 #[stable(feature = "cell_filter_map", since = "1.63.0")]
1554 #[inline]
1555 pub fn filter_map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Result<Ref<'b, U>, Self>
1556 where
1557 F: FnOnce(&T) -> Option<&U>,
1558 {
1559 match f(&*orig) {
1560 Some(value) => Ok(Ref { value: NonNull::from(value), borrow: orig.borrow }),
1561 None => Err(orig),
1562 }
1563 }
1564
1565 /// Splits a `Ref` into multiple `Ref`s for different components of the
1566 /// borrowed data.
1567 ///
1568 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1569 ///
1570 /// This is an associated function that needs to be used as
1571 /// `Ref::map_split(...)`. A method would interfere with methods of the same
1572 /// name on the contents of a `RefCell` used through `Deref`.
1573 ///
1574 /// # Examples
1575 ///
1576 /// ```
1577 /// use std::cell::{Ref, RefCell};
1578 ///
1579 /// let cell = RefCell::new([1, 2, 3, 4]);
1580 /// let borrow = cell.borrow();
1581 /// let (begin, end) = Ref::map_split(borrow, |slice| slice.split_at(2));
1582 /// assert_eq!(*begin, [1, 2]);
1583 /// assert_eq!(*end, [3, 4]);
1584 /// ```
1585 #[stable(feature = "refcell_map_split", since = "1.35.0")]
1586 #[inline]
1587 pub fn map_split<U: ?Sized, V: ?Sized, F>(orig: Ref<'b, T>, f: F) -> (Ref<'b, U>, Ref<'b, V>)
1588 where
1589 F: FnOnce(&T) -> (&U, &V),
1590 {
1591 let (a, b) = f(&*orig);
1592 let borrow = orig.borrow.clone();
1593 (
1594 Ref { value: NonNull::from(a), borrow },
1595 Ref { value: NonNull::from(b), borrow: orig.borrow },
1596 )
1597 }
1598
1599 /// Converts into a reference to the underlying data.
1600 ///
1601 /// The underlying `RefCell` can never be mutably borrowed from again and will always appear
1602 /// already immutably borrowed. It is not a good idea to leak more than a constant number of
1603 /// references. The `RefCell` can be immutably borrowed again if only a smaller number of leaks
1604 /// have occurred in total.
1605 ///
1606 /// This is an associated function that needs to be used as
1607 /// `Ref::leak(...)`. A method would interfere with methods of the
1608 /// same name on the contents of a `RefCell` used through `Deref`.
1609 ///
1610 /// # Examples
1611 ///
1612 /// ```
1613 /// #![feature(cell_leak)]
1614 /// use std::cell::{RefCell, Ref};
1615 /// let cell = RefCell::new(0);
1616 ///
1617 /// let value = Ref::leak(cell.borrow());
1618 /// assert_eq!(*value, 0);
1619 ///
1620 /// assert!(cell.try_borrow().is_ok());
1621 /// assert!(cell.try_borrow_mut().is_err());
1622 /// ```
1623 #[unstable(feature = "cell_leak", issue = "69099")]
1624 pub fn leak(orig: Ref<'b, T>) -> &'b T {
1625 // By forgetting this Ref we ensure that the borrow counter in the RefCell can't go back to
1626 // UNUSED within the lifetime `'b`. Resetting the reference tracking state would require a
1627 // unique reference to the borrowed RefCell. No further mutable references can be created
1628 // from the original cell.
1629 mem::forget(orig.borrow);
1630 // SAFETY: after forgetting, we can form a reference for the rest of lifetime `'b`.
1631 unsafe { orig.value.as_ref() }
1632 }
1633}
1634
1635#[unstable(feature = "coerce_unsized", issue = "18598")]
1636impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Ref<'b, U>> for Ref<'b, T> {}
1637
1638#[stable(feature = "std_guard_impls", since = "1.20.0")]
1639impl<T: ?Sized + fmt::Display> fmt::Display for Ref<'_, T> {
1640 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1641 (**self).fmt(f)
1642 }
1643}
1644
1645impl<'b, T: ?Sized> RefMut<'b, T> {
1646 /// Makes a new `RefMut` for a component of the borrowed data, e.g., an enum
1647 /// variant.
1648 ///
1649 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1650 ///
1651 /// This is an associated function that needs to be used as
1652 /// `RefMut::map(...)`. A method would interfere with methods of the same
1653 /// name on the contents of a `RefCell` used through `Deref`.
1654 ///
1655 /// # Examples
1656 ///
1657 /// ```
1658 /// use std::cell::{RefCell, RefMut};
1659 ///
1660 /// let c = RefCell::new((5, 'b'));
1661 /// {
1662 /// let b1: RefMut<'_, (u32, char)> = c.borrow_mut();
1663 /// let mut b2: RefMut<'_, u32> = RefMut::map(b1, |t| &mut t.0);
1664 /// assert_eq!(*b2, 5);
1665 /// *b2 = 42;
1666 /// }
1667 /// assert_eq!(*c.borrow(), (42, 'b'));
1668 /// ```
1669 #[stable(feature = "cell_map", since = "1.8.0")]
1670 #[inline]
1671 pub fn map<U: ?Sized, F>(mut orig: RefMut<'b, T>, f: F) -> RefMut<'b, U>
1672 where
1673 F: FnOnce(&mut T) -> &mut U,
1674 {
1675 let value = NonNull::from(f(&mut *orig));
1676 RefMut { value, borrow: orig.borrow, marker: PhantomData }
1677 }
1678
1679 /// Makes a new `RefMut` for an optional component of the borrowed data. The
1680 /// original guard is returned as an `Err(..)` if the closure returns
1681 /// `None`.
1682 ///
1683 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1684 ///
1685 /// This is an associated function that needs to be used as
1686 /// `RefMut::filter_map(...)`. A method would interfere with methods of the
1687 /// same name on the contents of a `RefCell` used through `Deref`.
1688 ///
1689 /// # Examples
1690 ///
1691 /// ```
1692 /// use std::cell::{RefCell, RefMut};
1693 ///
1694 /// let c = RefCell::new(vec![1, 2, 3]);
1695 ///
1696 /// {
1697 /// let b1: RefMut<'_, Vec<u32>> = c.borrow_mut();
1698 /// let mut b2: Result<RefMut<'_, u32>, _> = RefMut::filter_map(b1, |v| v.get_mut(1));
1699 ///
1700 /// if let Ok(mut b2) = b2 {
1701 /// *b2 += 2;
1702 /// }
1703 /// }
1704 ///
1705 /// assert_eq!(*c.borrow(), vec![1, 4, 3]);
1706 /// ```
1707 #[stable(feature = "cell_filter_map", since = "1.63.0")]
1708 #[inline]
1709 pub fn filter_map<U: ?Sized, F>(mut orig: RefMut<'b, T>, f: F) -> Result<RefMut<'b, U>, Self>
1710 where
1711 F: FnOnce(&mut T) -> Option<&mut U>,
1712 {
1713 // SAFETY: function holds onto an exclusive reference for the duration
1714 // of its call through `orig`, and the pointer is only de-referenced
1715 // inside of the function call never allowing the exclusive reference to
1716 // escape.
1717 match f(&mut *orig) {
1718 Some(value) => {
1719 Ok(RefMut { value: NonNull::from(value), borrow: orig.borrow, marker: PhantomData })
1720 }
1721 None => Err(orig),
1722 }
1723 }
1724
1725 /// Splits a `RefMut` into multiple `RefMut`s for different components of the
1726 /// borrowed data.
1727 ///
1728 /// The underlying `RefCell` will remain mutably borrowed until both
1729 /// returned `RefMut`s go out of scope.
1730 ///
1731 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1732 ///
1733 /// This is an associated function that needs to be used as
1734 /// `RefMut::map_split(...)`. A method would interfere with methods of the
1735 /// same name on the contents of a `RefCell` used through `Deref`.
1736 ///
1737 /// # Examples
1738 ///
1739 /// ```
1740 /// use std::cell::{RefCell, RefMut};
1741 ///
1742 /// let cell = RefCell::new([1, 2, 3, 4]);
1743 /// let borrow = cell.borrow_mut();
1744 /// let (mut begin, mut end) = RefMut::map_split(borrow, |slice| slice.split_at_mut(2));
1745 /// assert_eq!(*begin, [1, 2]);
1746 /// assert_eq!(*end, [3, 4]);
1747 /// begin.copy_from_slice(&[4, 3]);
1748 /// end.copy_from_slice(&[2, 1]);
1749 /// ```
1750 #[stable(feature = "refcell_map_split", since = "1.35.0")]
1751 #[inline]
1752 pub fn map_split<U: ?Sized, V: ?Sized, F>(
1753 mut orig: RefMut<'b, T>,
1754 f: F,
1755 ) -> (RefMut<'b, U>, RefMut<'b, V>)
1756 where
1757 F: FnOnce(&mut T) -> (&mut U, &mut V),
1758 {
1759 let borrow = orig.borrow.clone();
1760 let (a, b) = f(&mut *orig);
1761 (
1762 RefMut { value: NonNull::from(a), borrow, marker: PhantomData },
1763 RefMut { value: NonNull::from(b), borrow: orig.borrow, marker: PhantomData },
1764 )
1765 }
1766
1767 /// Converts into a mutable reference to the underlying data.
1768 ///
1769 /// The underlying `RefCell` can not be borrowed from again and will always appear already
1770 /// mutably borrowed, making the returned reference the only to the interior.
1771 ///
1772 /// This is an associated function that needs to be used as
1773 /// `RefMut::leak(...)`. A method would interfere with methods of the
1774 /// same name on the contents of a `RefCell` used through `Deref`.
1775 ///
1776 /// # Examples
1777 ///
1778 /// ```
1779 /// #![feature(cell_leak)]
1780 /// use std::cell::{RefCell, RefMut};
1781 /// let cell = RefCell::new(0);
1782 ///
1783 /// let value = RefMut::leak(cell.borrow_mut());
1784 /// assert_eq!(*value, 0);
1785 /// *value = 1;
1786 ///
1787 /// assert!(cell.try_borrow_mut().is_err());
1788 /// ```
1789 #[unstable(feature = "cell_leak", issue = "69099")]
1790 pub fn leak(mut orig: RefMut<'b, T>) -> &'b mut T {
1791 // By forgetting this BorrowRefMut we ensure that the borrow counter in the RefCell can't
1792 // go back to UNUSED within the lifetime `'b`. Resetting the reference tracking state would
1793 // require a unique reference to the borrowed RefCell. No further references can be created
1794 // from the original cell within that lifetime, making the current borrow the only
1795 // reference for the remaining lifetime.
1796 mem::forget(orig.borrow);
1797 // SAFETY: after forgetting, we can form a reference for the rest of lifetime `'b`.
1798 unsafe { orig.value.as_mut() }
1799 }
1800}
1801
1802struct BorrowRefMut<'b> {
1803 borrow: &'b Cell<BorrowFlag>,
1804}
1805
1806impl Drop for BorrowRefMut<'_> {
1807 #[inline]
1808 fn drop(&mut self) {
1809 let borrow = self.borrow.get();
1810 debug_assert!(is_writing(borrow));
1811 self.borrow.set(borrow + 1);
1812 }
1813}
1814
1815impl<'b> BorrowRefMut<'b> {
1816 #[inline]
1817 fn new(borrow: &'b Cell<BorrowFlag>) -> Option<BorrowRefMut<'b>> {
1818 // NOTE: Unlike BorrowRefMut::clone, new is called to create the initial
1819 // mutable reference, and so there must currently be no existing
1820 // references. Thus, while clone increments the mutable refcount, here
1821 // we explicitly only allow going from UNUSED to UNUSED - 1.
1822 match borrow.get() {
1823 UNUSED => {
1824 borrow.set(UNUSED - 1);
1825 Some(BorrowRefMut { borrow })
1826 }
1827 _ => None,
1828 }
1829 }
1830
1831 // Clones a `BorrowRefMut`.
1832 //
1833 // This is only valid if each `BorrowRefMut` is used to track a mutable
1834 // reference to a distinct, nonoverlapping range of the original object.
1835 // This isn't in a Clone impl so that code doesn't call this implicitly.
1836 #[inline]
1837 fn clone(&self) -> BorrowRefMut<'b> {
1838 let borrow = self.borrow.get();
1839 debug_assert!(is_writing(borrow));
1840 // Prevent the borrow counter from underflowing.
1841 assert!(borrow != BorrowFlag::MIN);
1842 self.borrow.set(borrow - 1);
1843 BorrowRefMut { borrow: self.borrow }
1844 }
1845}
1846
1847/// A wrapper type for a mutably borrowed value from a `RefCell<T>`.
1848///
1849/// See the [module-level documentation](self) for more.
1850#[stable(feature = "rust1", since = "1.0.0")]
1851#[must_not_suspend = "holding a RefMut across suspend points can cause BorrowErrors"]
1852#[rustc_diagnostic_item = "RefCellRefMut"]
1853pub struct RefMut<'b, T: ?Sized + 'b> {
1854 // NB: we use a pointer instead of `&'b mut T` to avoid `noalias` violations, because a
1855 // `RefMut` argument doesn't hold exclusivity for its whole scope, only until it drops.
1856 value: NonNull<T>,
1857 borrow: BorrowRefMut<'b>,
1858 // `NonNull` is covariant over `T`, so we need to reintroduce invariance.
1859 marker: PhantomData<&'b mut T>,
1860}
1861
1862#[stable(feature = "rust1", since = "1.0.0")]
1863impl<T: ?Sized> Deref for RefMut<'_, T> {
1864 type Target = T;
1865
1866 #[inline]
1867 fn deref(&self) -> &T {
1868 // SAFETY: the value is accessible as long as we hold our borrow.
1869 unsafe { self.value.as_ref() }
1870 }
1871}
1872
1873#[stable(feature = "rust1", since = "1.0.0")]
1874impl<T: ?Sized> DerefMut for RefMut<'_, T> {
1875 #[inline]
1876 fn deref_mut(&mut self) -> &mut T {
1877 // SAFETY: the value is accessible as long as we hold our borrow.
1878 unsafe { self.value.as_mut() }
1879 }
1880}
1881
1882#[unstable(feature = "deref_pure_trait", issue = "87121")]
1883unsafe impl<T: ?Sized> DerefPure for RefMut<'_, T> {}
1884
1885#[unstable(feature = "coerce_unsized", issue = "18598")]
1886impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<RefMut<'b, U>> for RefMut<'b, T> {}
1887
1888#[stable(feature = "std_guard_impls", since = "1.20.0")]
1889impl<T: ?Sized + fmt::Display> fmt::Display for RefMut<'_, T> {
1890 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1891 (**self).fmt(f)
1892 }
1893}
1894
1895/// The core primitive for interior mutability in Rust.
1896///
1897/// If you have a reference `&T`, then normally in Rust the compiler performs optimizations based on
1898/// the knowledge that `&T` points to immutable data. Mutating that data, for example through an
1899/// alias or by transmuting a `&T` into a `&mut T`, is considered undefined behavior.
1900/// `UnsafeCell<T>` opts-out of the immutability guarantee for `&T`: a shared reference
1901/// `&UnsafeCell<T>` may point to data that is being mutated. This is called "interior mutability".
1902///
1903/// All other types that allow internal mutability, such as [`Cell<T>`] and [`RefCell<T>`], internally
1904/// use `UnsafeCell` to wrap their data.
1905///
1906/// Note that only the immutability guarantee for shared references is affected by `UnsafeCell`. The
1907/// uniqueness guarantee for mutable references is unaffected. There is *no* legal way to obtain
1908/// aliasing `&mut`, not even with `UnsafeCell<T>`.
1909///
1910/// `UnsafeCell` does nothing to avoid data races; they are still undefined behavior. If multiple
1911/// threads have access to the same `UnsafeCell`, they must follow the usual rules of the
1912/// [concurrent memory model]: conflicting non-synchronized accesses must be done via the APIs in
1913/// [`core::sync::atomic`].
1914///
1915/// The `UnsafeCell` API itself is technically very simple: [`.get()`] gives you a raw pointer
1916/// `*mut T` to its contents. It is up to _you_ as the abstraction designer to use that raw pointer
1917/// correctly.
1918///
1919/// [`.get()`]: `UnsafeCell::get`
1920/// [concurrent memory model]: ../sync/atomic/index.html#memory-model-for-atomic-accesses
1921///
1922/// The precise Rust aliasing rules are somewhat in flux, but the main points are not contentious:
1923///
1924/// - If you create a safe reference with lifetime `'a` (either a `&T` or `&mut T` reference), then
1925/// you must not access the data in any way that contradicts that reference for the remainder of
1926/// `'a`. For example, this means that if you take the `*mut T` from an `UnsafeCell<T>` and cast it
1927/// to an `&T`, then the data in `T` must remain immutable (modulo any `UnsafeCell` data found
1928/// within `T`, of course) until that reference's lifetime expires. Similarly, if you create a `&mut
1929/// T` reference that is released to safe code, then you must not access the data within the
1930/// `UnsafeCell` until that reference expires.
1931///
1932/// - For both `&T` without `UnsafeCell<_>` and `&mut T`, you must also not deallocate the data
1933/// until the reference expires. As a special exception, given an `&T`, any part of it that is
1934/// inside an `UnsafeCell<_>` may be deallocated during the lifetime of the reference, after the
1935/// last time the reference is used (dereferenced or reborrowed). Since you cannot deallocate a part
1936/// of what a reference points to, this means the memory an `&T` points to can be deallocated only if
1937/// *every part of it* (including padding) is inside an `UnsafeCell`.
1938///
1939/// However, whenever a `&UnsafeCell<T>` is constructed or dereferenced, it must still point to
1940/// live memory and the compiler is allowed to insert spurious reads if it can prove that this
1941/// memory has not yet been deallocated.
1942///
1943/// To assist with proper design, the following scenarios are explicitly declared legal
1944/// for single-threaded code:
1945///
1946/// 1. A `&T` reference can be released to safe code and there it can co-exist with other `&T`
1947/// references, but not with a `&mut T`
1948///
1949/// 2. A `&mut T` reference may be released to safe code provided neither other `&mut T` nor `&T`
1950/// co-exist with it. A `&mut T` must always be unique.
1951///
1952/// Note that whilst mutating the contents of an `&UnsafeCell<T>` (even while other
1953/// `&UnsafeCell<T>` references alias the cell) is
1954/// ok (provided you enforce the above invariants some other way), it is still undefined behavior
1955/// to have multiple `&mut UnsafeCell<T>` aliases. That is, `UnsafeCell` is a wrapper
1956/// designed to have a special interaction with _shared_ accesses (_i.e._, through an
1957/// `&UnsafeCell<_>` reference); there is no magic whatsoever when dealing with _exclusive_
1958/// accesses (_e.g._, through a `&mut UnsafeCell<_>`): neither the cell nor the wrapped value
1959/// may be aliased for the duration of that `&mut` borrow.
1960/// This is showcased by the [`.get_mut()`] accessor, which is a _safe_ getter that yields
1961/// a `&mut T`.
1962///
1963/// [`.get_mut()`]: `UnsafeCell::get_mut`
1964///
1965/// # Memory layout
1966///
1967/// `UnsafeCell<T>` has the same in-memory representation as its inner type `T`. A consequence
1968/// of this guarantee is that it is possible to convert between `T` and `UnsafeCell<T>`.
1969/// Special care has to be taken when converting a nested `T` inside of an `Outer<T>` type
1970/// to an `Outer<UnsafeCell<T>>` type: this is not sound when the `Outer<T>` type enables [niche]
1971/// optimizations. For example, the type `Option<NonNull<u8>>` is typically 8 bytes large on
1972/// 64-bit platforms, but the type `Option<UnsafeCell<NonNull<u8>>>` takes up 16 bytes of space.
1973/// Therefore this is not a valid conversion, despite `NonNull<u8>` and `UnsafeCell<NonNull<u8>>>`
1974/// having the same memory layout. This is because `UnsafeCell` disables niche optimizations in
1975/// order to avoid its interior mutability property from spreading from `T` into the `Outer` type,
1976/// thus this can cause distortions in the type size in these cases.
1977///
1978/// Note that the only valid way to obtain a `*mut T` pointer to the contents of a
1979/// _shared_ `UnsafeCell<T>` is through [`.get()`] or [`.raw_get()`]. A `&mut T` reference
1980/// can be obtained by either dereferencing this pointer or by calling [`.get_mut()`]
1981/// on an _exclusive_ `UnsafeCell<T>`. Even though `T` and `UnsafeCell<T>` have the
1982/// same memory layout, the following is not allowed and undefined behavior:
1983///
1984/// ```rust,compile_fail
1985/// # use std::cell::UnsafeCell;
1986/// unsafe fn not_allowed<T>(ptr: &UnsafeCell<T>) -> &mut T {
1987/// let t = ptr as *const UnsafeCell<T> as *mut T;
1988/// // This is undefined behavior, because the `*mut T` pointer
1989/// // was not obtained through `.get()` nor `.raw_get()`:
1990/// unsafe { &mut *t }
1991/// }
1992/// ```
1993///
1994/// Instead, do this:
1995///
1996/// ```rust
1997/// # use std::cell::UnsafeCell;
1998/// // Safety: the caller must ensure that there are no references that
1999/// // point to the *contents* of the `UnsafeCell`.
2000/// unsafe fn get_mut<T>(ptr: &UnsafeCell<T>) -> &mut T {
2001/// unsafe { &mut *ptr.get() }
2002/// }
2003/// ```
2004///
2005/// Converting in the other direction from a `&mut T`
2006/// to an `&UnsafeCell<T>` is allowed:
2007///
2008/// ```rust
2009/// # use std::cell::UnsafeCell;
2010/// fn get_shared<T>(ptr: &mut T) -> &UnsafeCell<T> {
2011/// let t = ptr as *mut T as *const UnsafeCell<T>;
2012/// // SAFETY: `T` and `UnsafeCell<T>` have the same memory layout
2013/// unsafe { &*t }
2014/// }
2015/// ```
2016///
2017/// [niche]: https://rust-lang.github.io/unsafe-code-guidelines/glossary.html#niche
2018/// [`.raw_get()`]: `UnsafeCell::raw_get`
2019///
2020/// # Examples
2021///
2022/// Here is an example showcasing how to soundly mutate the contents of an `UnsafeCell<_>` despite
2023/// there being multiple references aliasing the cell:
2024///
2025/// ```
2026/// use std::cell::UnsafeCell;
2027///
2028/// let x: UnsafeCell<i32> = 42.into();
2029/// // Get multiple / concurrent / shared references to the same `x`.
2030/// let (p1, p2): (&UnsafeCell<i32>, &UnsafeCell<i32>) = (&x, &x);
2031///
2032/// unsafe {
2033/// // SAFETY: within this scope there are no other references to `x`'s contents,
2034/// // so ours is effectively unique.
2035/// let p1_exclusive: &mut i32 = &mut *p1.get(); // -- borrow --+
2036/// *p1_exclusive += 27; // |
2037/// } // <---------- cannot go beyond this point -------------------+
2038///
2039/// unsafe {
2040/// // SAFETY: within this scope nobody expects to have exclusive access to `x`'s contents,
2041/// // so we can have multiple shared accesses concurrently.
2042/// let p2_shared: &i32 = &*p2.get();
2043/// assert_eq!(*p2_shared, 42 + 27);
2044/// let p1_shared: &i32 = &*p1.get();
2045/// assert_eq!(*p1_shared, *p2_shared);
2046/// }
2047/// ```
2048///
2049/// The following example showcases the fact that exclusive access to an `UnsafeCell<T>`
2050/// implies exclusive access to its `T`:
2051///
2052/// ```rust
2053/// #![forbid(unsafe_code)] // with exclusive accesses,
2054/// // `UnsafeCell` is a transparent no-op wrapper,
2055/// // so no need for `unsafe` here.
2056/// use std::cell::UnsafeCell;
2057///
2058/// let mut x: UnsafeCell<i32> = 42.into();
2059///
2060/// // Get a compile-time-checked unique reference to `x`.
2061/// let p_unique: &mut UnsafeCell<i32> = &mut x;
2062/// // With an exclusive reference, we can mutate the contents for free.
2063/// *p_unique.get_mut() = 0;
2064/// // Or, equivalently:
2065/// x = UnsafeCell::new(0);
2066///
2067/// // When we own the value, we can extract the contents for free.
2068/// let contents: i32 = x.into_inner();
2069/// assert_eq!(contents, 0);
2070/// ```
2071#[lang = "unsafe_cell"]
2072#[stable(feature = "rust1", since = "1.0.0")]
2073#[repr(transparent)]
2074#[rustc_pub_transparent]
2075pub struct UnsafeCell<T: ?Sized> {
2076 value: T,
2077}
2078
2079#[stable(feature = "rust1", since = "1.0.0")]
2080impl<T: ?Sized> !Sync for UnsafeCell<T> {}
2081
2082impl<T> UnsafeCell<T> {
2083 /// Constructs a new instance of `UnsafeCell` which will wrap the specified
2084 /// value.
2085 ///
2086 /// All access to the inner value through `&UnsafeCell<T>` requires `unsafe` code.
2087 ///
2088 /// # Examples
2089 ///
2090 /// ```
2091 /// use std::cell::UnsafeCell;
2092 ///
2093 /// let uc = UnsafeCell::new(5);
2094 /// ```
2095 #[stable(feature = "rust1", since = "1.0.0")]
2096 #[rustc_const_stable(feature = "const_unsafe_cell_new", since = "1.32.0")]
2097 #[inline(always)]
2098 pub const fn new(value: T) -> UnsafeCell<T> {
2099 UnsafeCell { value }
2100 }
2101
2102 /// Unwraps the value, consuming the cell.
2103 ///
2104 /// # Examples
2105 ///
2106 /// ```
2107 /// use std::cell::UnsafeCell;
2108 ///
2109 /// let uc = UnsafeCell::new(5);
2110 ///
2111 /// let five = uc.into_inner();
2112 /// ```
2113 #[inline(always)]
2114 #[stable(feature = "rust1", since = "1.0.0")]
2115 #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
2116 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2117 pub const fn into_inner(self) -> T {
2118 self.value
2119 }
2120
2121 /// Replace the value in this `UnsafeCell` and return the old value.
2122 ///
2123 /// # Safety
2124 ///
2125 /// The caller must take care to avoid aliasing and data races.
2126 ///
2127 /// - It is Undefined Behavior to allow calls to race with
2128 /// any other access to the wrapped value.
2129 /// - It is Undefined Behavior to call this while any other
2130 /// reference(s) to the wrapped value are alive.
2131 ///
2132 /// # Examples
2133 ///
2134 /// ```
2135 /// #![feature(unsafe_cell_access)]
2136 /// use std::cell::UnsafeCell;
2137 ///
2138 /// let uc = UnsafeCell::new(5);
2139 ///
2140 /// let old = unsafe { uc.replace(10) };
2141 /// assert_eq!(old, 5);
2142 /// ```
2143 #[inline]
2144 #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2145 pub const unsafe fn replace(&self, value: T) -> T {
2146 // SAFETY: pointer comes from `&self` so naturally satisfies invariants.
2147 unsafe { ptr::replace(self.get(), value) }
2148 }
2149}
2150
2151impl<T: ?Sized> UnsafeCell<T> {
2152 /// Converts from `&mut T` to `&mut UnsafeCell<T>`.
2153 ///
2154 /// # Examples
2155 ///
2156 /// ```
2157 /// use std::cell::UnsafeCell;
2158 ///
2159 /// let mut val = 42;
2160 /// let uc = UnsafeCell::from_mut(&mut val);
2161 ///
2162 /// *uc.get_mut() -= 1;
2163 /// assert_eq!(*uc.get_mut(), 41);
2164 /// ```
2165 #[inline(always)]
2166 #[stable(feature = "unsafe_cell_from_mut", since = "1.84.0")]
2167 #[rustc_const_stable(feature = "unsafe_cell_from_mut", since = "1.84.0")]
2168 pub const fn from_mut(value: &mut T) -> &mut UnsafeCell<T> {
2169 // SAFETY: `UnsafeCell<T>` has the same memory layout as `T` due to #[repr(transparent)].
2170 unsafe { &mut *(value as *mut T as *mut UnsafeCell<T>) }
2171 }
2172
2173 /// Gets a mutable pointer to the wrapped value.
2174 ///
2175 /// This can be cast to a pointer of any kind.
2176 /// Ensure that the access is unique (no active references, mutable or not)
2177 /// when casting to `&mut T`, and ensure that there are no mutations
2178 /// or mutable aliases going on when casting to `&T`
2179 ///
2180 /// # Examples
2181 ///
2182 /// ```
2183 /// use std::cell::UnsafeCell;
2184 ///
2185 /// let uc = UnsafeCell::new(5);
2186 ///
2187 /// let five = uc.get();
2188 /// ```
2189 #[inline(always)]
2190 #[stable(feature = "rust1", since = "1.0.0")]
2191 #[rustc_const_stable(feature = "const_unsafecell_get", since = "1.32.0")]
2192 #[rustc_as_ptr]
2193 #[rustc_never_returns_null_ptr]
2194 pub const fn get(&self) -> *mut T {
2195 // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
2196 // #[repr(transparent)]. This exploits std's special status, there is
2197 // no guarantee for user code that this will work in future versions of the compiler!
2198 self as *const UnsafeCell<T> as *const T as *mut T
2199 }
2200
2201 /// Returns a mutable reference to the underlying data.
2202 ///
2203 /// This call borrows the `UnsafeCell` mutably (at compile-time) which
2204 /// guarantees that we possess the only reference.
2205 ///
2206 /// # Examples
2207 ///
2208 /// ```
2209 /// use std::cell::UnsafeCell;
2210 ///
2211 /// let mut c = UnsafeCell::new(5);
2212 /// *c.get_mut() += 1;
2213 ///
2214 /// assert_eq!(*c.get_mut(), 6);
2215 /// ```
2216 #[inline(always)]
2217 #[stable(feature = "unsafe_cell_get_mut", since = "1.50.0")]
2218 #[rustc_const_stable(feature = "const_unsafecell_get_mut", since = "1.83.0")]
2219 pub const fn get_mut(&mut self) -> &mut T {
2220 &mut self.value
2221 }
2222
2223 /// Gets a mutable pointer to the wrapped value.
2224 /// The difference from [`get`] is that this function accepts a raw pointer,
2225 /// which is useful to avoid the creation of temporary references.
2226 ///
2227 /// The result can be cast to a pointer of any kind.
2228 /// Ensure that the access is unique (no active references, mutable or not)
2229 /// when casting to `&mut T`, and ensure that there are no mutations
2230 /// or mutable aliases going on when casting to `&T`.
2231 ///
2232 /// [`get`]: UnsafeCell::get()
2233 ///
2234 /// # Examples
2235 ///
2236 /// Gradual initialization of an `UnsafeCell` requires `raw_get`, as
2237 /// calling `get` would require creating a reference to uninitialized data:
2238 ///
2239 /// ```
2240 /// use std::cell::UnsafeCell;
2241 /// use std::mem::MaybeUninit;
2242 ///
2243 /// let m = MaybeUninit::<UnsafeCell<i32>>::uninit();
2244 /// unsafe { UnsafeCell::raw_get(m.as_ptr()).write(5); }
2245 /// // avoid below which references to uninitialized data
2246 /// // unsafe { UnsafeCell::get(&*m.as_ptr()).write(5); }
2247 /// let uc = unsafe { m.assume_init() };
2248 ///
2249 /// assert_eq!(uc.into_inner(), 5);
2250 /// ```
2251 #[inline(always)]
2252 #[stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
2253 #[rustc_const_stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
2254 #[rustc_diagnostic_item = "unsafe_cell_raw_get"]
2255 pub const fn raw_get(this: *const Self) -> *mut T {
2256 // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
2257 // #[repr(transparent)]. This exploits std's special status, there is
2258 // no guarantee for user code that this will work in future versions of the compiler!
2259 this as *const T as *mut T
2260 }
2261
2262 /// Get a shared reference to the value within the `UnsafeCell`.
2263 ///
2264 /// # Safety
2265 ///
2266 /// - It is Undefined Behavior to call this while any mutable
2267 /// reference to the wrapped value is alive.
2268 /// - Mutating the wrapped value while the returned
2269 /// reference is alive is Undefined Behavior.
2270 ///
2271 /// # Examples
2272 ///
2273 /// ```
2274 /// #![feature(unsafe_cell_access)]
2275 /// use std::cell::UnsafeCell;
2276 ///
2277 /// let uc = UnsafeCell::new(5);
2278 ///
2279 /// let val = unsafe { uc.as_ref_unchecked() };
2280 /// assert_eq!(val, &5);
2281 /// ```
2282 #[inline]
2283 #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2284 pub const unsafe fn as_ref_unchecked(&self) -> &T {
2285 // SAFETY: pointer comes from `&self` so naturally satisfies ptr-to-ref invariants.
2286 unsafe { self.get().as_ref_unchecked() }
2287 }
2288
2289 /// Get an exclusive reference to the value within the `UnsafeCell`.
2290 ///
2291 /// # Safety
2292 ///
2293 /// - It is Undefined Behavior to call this while any other
2294 /// reference(s) to the wrapped value are alive.
2295 /// - Mutating the wrapped value through other means while the
2296 /// returned reference is alive is Undefined Behavior.
2297 ///
2298 /// # Examples
2299 ///
2300 /// ```
2301 /// #![feature(unsafe_cell_access)]
2302 /// use std::cell::UnsafeCell;
2303 ///
2304 /// let uc = UnsafeCell::new(5);
2305 ///
2306 /// unsafe { *uc.as_mut_unchecked() += 1; }
2307 /// assert_eq!(uc.into_inner(), 6);
2308 /// ```
2309 #[inline]
2310 #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2311 #[allow(clippy::mut_from_ref)]
2312 pub const unsafe fn as_mut_unchecked(&self) -> &mut T {
2313 // SAFETY: pointer comes from `&self` so naturally satisfies ptr-to-ref invariants.
2314 unsafe { self.get().as_mut_unchecked() }
2315 }
2316}
2317
2318#[stable(feature = "unsafe_cell_default", since = "1.10.0")]
2319impl<T: Default> Default for UnsafeCell<T> {
2320 /// Creates an `UnsafeCell`, with the `Default` value for T.
2321 fn default() -> UnsafeCell<T> {
2322 UnsafeCell::new(Default::default())
2323 }
2324}
2325
2326#[stable(feature = "cell_from", since = "1.12.0")]
2327impl<T> From<T> for UnsafeCell<T> {
2328 /// Creates a new `UnsafeCell<T>` containing the given value.
2329 fn from(t: T) -> UnsafeCell<T> {
2330 UnsafeCell::new(t)
2331 }
2332}
2333
2334#[unstable(feature = "coerce_unsized", issue = "18598")]
2335impl<T: CoerceUnsized<U>, U> CoerceUnsized<UnsafeCell<U>> for UnsafeCell<T> {}
2336
2337// Allow types that wrap `UnsafeCell` to also implement `DispatchFromDyn`
2338// and become dyn-compatible method receivers.
2339// Note that currently `UnsafeCell` itself cannot be a method receiver
2340// because it does not implement Deref.
2341// In other words:
2342// `self: UnsafeCell<&Self>` won't work
2343// `self: UnsafeCellWrapper<Self>` becomes possible
2344#[unstable(feature = "dispatch_from_dyn", issue = "none")]
2345impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<UnsafeCell<U>> for UnsafeCell<T> {}
2346
2347#[unstable(feature = "pointer_like_trait", issue = "none")]
2348impl<T: PointerLike> PointerLike for UnsafeCell<T> {}
2349
2350/// [`UnsafeCell`], but [`Sync`].
2351///
2352/// This is just an `UnsafeCell`, except it implements `Sync`
2353/// if `T` implements `Sync`.
2354///
2355/// `UnsafeCell` doesn't implement `Sync`, to prevent accidental mis-use.
2356/// You can use `SyncUnsafeCell` instead of `UnsafeCell` to allow it to be
2357/// shared between threads, if that's intentional.
2358/// Providing proper synchronization is still the task of the user,
2359/// making this type just as unsafe to use.
2360///
2361/// See [`UnsafeCell`] for details.
2362#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2363#[repr(transparent)]
2364#[rustc_diagnostic_item = "SyncUnsafeCell"]
2365#[rustc_pub_transparent]
2366pub struct SyncUnsafeCell<T: ?Sized> {
2367 value: UnsafeCell<T>,
2368}
2369
2370#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2371unsafe impl<T: ?Sized + Sync> Sync for SyncUnsafeCell<T> {}
2372
2373#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2374impl<T> SyncUnsafeCell<T> {
2375 /// Constructs a new instance of `SyncUnsafeCell` which will wrap the specified value.
2376 #[inline]
2377 pub const fn new(value: T) -> Self {
2378 Self { value: UnsafeCell { value } }
2379 }
2380
2381 /// Unwraps the value, consuming the cell.
2382 #[inline]
2383 #[rustc_const_unstable(feature = "sync_unsafe_cell", issue = "95439")]
2384 pub const fn into_inner(self) -> T {
2385 self.value.into_inner()
2386 }
2387}
2388
2389#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2390impl<T: ?Sized> SyncUnsafeCell<T> {
2391 /// Gets a mutable pointer to the wrapped value.
2392 ///
2393 /// This can be cast to a pointer of any kind.
2394 /// Ensure that the access is unique (no active references, mutable or not)
2395 /// when casting to `&mut T`, and ensure that there are no mutations
2396 /// or mutable aliases going on when casting to `&T`
2397 #[inline]
2398 #[rustc_as_ptr]
2399 #[rustc_never_returns_null_ptr]
2400 pub const fn get(&self) -> *mut T {
2401 self.value.get()
2402 }
2403
2404 /// Returns a mutable reference to the underlying data.
2405 ///
2406 /// This call borrows the `SyncUnsafeCell` mutably (at compile-time) which
2407 /// guarantees that we possess the only reference.
2408 #[inline]
2409 pub const fn get_mut(&mut self) -> &mut T {
2410 self.value.get_mut()
2411 }
2412
2413 /// Gets a mutable pointer to the wrapped value.
2414 ///
2415 /// See [`UnsafeCell::get`] for details.
2416 #[inline]
2417 pub const fn raw_get(this: *const Self) -> *mut T {
2418 // We can just cast the pointer from `SyncUnsafeCell<T>` to `T` because
2419 // of #[repr(transparent)] on both SyncUnsafeCell and UnsafeCell.
2420 // See UnsafeCell::raw_get.
2421 this as *const T as *mut T
2422 }
2423}
2424
2425#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2426impl<T: Default> Default for SyncUnsafeCell<T> {
2427 /// Creates an `SyncUnsafeCell`, with the `Default` value for T.
2428 fn default() -> SyncUnsafeCell<T> {
2429 SyncUnsafeCell::new(Default::default())
2430 }
2431}
2432
2433#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2434impl<T> From<T> for SyncUnsafeCell<T> {
2435 /// Creates a new `SyncUnsafeCell<T>` containing the given value.
2436 fn from(t: T) -> SyncUnsafeCell<T> {
2437 SyncUnsafeCell::new(t)
2438 }
2439}
2440
2441#[unstable(feature = "coerce_unsized", issue = "18598")]
2442//#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2443impl<T: CoerceUnsized<U>, U> CoerceUnsized<SyncUnsafeCell<U>> for SyncUnsafeCell<T> {}
2444
2445// Allow types that wrap `SyncUnsafeCell` to also implement `DispatchFromDyn`
2446// and become dyn-compatible method receivers.
2447// Note that currently `SyncUnsafeCell` itself cannot be a method receiver
2448// because it does not implement Deref.
2449// In other words:
2450// `self: SyncUnsafeCell<&Self>` won't work
2451// `self: SyncUnsafeCellWrapper<Self>` becomes possible
2452#[unstable(feature = "dispatch_from_dyn", issue = "none")]
2453//#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2454impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<SyncUnsafeCell<U>> for SyncUnsafeCell<T> {}
2455
2456#[unstable(feature = "pointer_like_trait", issue = "none")]
2457impl<T: PointerLike> PointerLike for SyncUnsafeCell<T> {}
2458
2459#[allow(unused)]
2460fn assert_coerce_unsized(
2461 a: UnsafeCell<&i32>,
2462 b: SyncUnsafeCell<&i32>,
2463 c: Cell<&i32>,
2464 d: RefCell<&i32>,
2465) {
2466 let _: UnsafeCell<&dyn Send> = a;
2467 let _: SyncUnsafeCell<&dyn Send> = b;
2468 let _: Cell<&dyn Send> = c;
2469 let _: RefCell<&dyn Send> = d;
2470}
2471
2472#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2473unsafe impl<T: ?Sized> PinCoerceUnsized for UnsafeCell<T> {}
2474
2475#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2476unsafe impl<T: ?Sized> PinCoerceUnsized for SyncUnsafeCell<T> {}
2477
2478#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2479unsafe impl<T: ?Sized> PinCoerceUnsized for Cell<T> {}
2480
2481#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2482unsafe impl<T: ?Sized> PinCoerceUnsized for RefCell<T> {}
2483
2484#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2485unsafe impl<'b, T: ?Sized> PinCoerceUnsized for Ref<'b, T> {}
2486
2487#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2488unsafe impl<'b, T: ?Sized> PinCoerceUnsized for RefMut<'b, T> {}