core/
cell.rs

1//! Shareable mutable containers.
2//!
3//! Rust memory safety is based on this rule: Given an object `T`, it is only possible to
4//! have one of the following:
5//!
6//! - Several immutable references (`&T`) to the object (also known as **aliasing**).
7//! - One mutable reference (`&mut T`) to the object (also known as **mutability**).
8//!
9//! This is enforced by the Rust compiler. However, there are situations where this rule is not
10//! flexible enough. Sometimes it is required to have multiple references to an object and yet
11//! mutate it.
12//!
13//! Shareable mutable containers exist to permit mutability in a controlled manner, even in the
14//! presence of aliasing. [`Cell<T>`], [`RefCell<T>`], and [`OnceCell<T>`] allow doing this in
15//! a single-threaded way—they do not implement [`Sync`]. (If you need to do aliasing and
16//! mutation among multiple threads, [`Mutex<T>`], [`RwLock<T>`], [`OnceLock<T>`] or [`atomic`]
17//! types are the correct data structures to do so).
18//!
19//! Values of the `Cell<T>`, `RefCell<T>`, and `OnceCell<T>` types may be mutated through shared
20//! references (i.e. the common `&T` type), whereas most Rust types can only be mutated through
21//! unique (`&mut T`) references. We say these cell types provide 'interior mutability'
22//! (mutable via `&T`), in contrast with typical Rust types that exhibit 'inherited mutability'
23//! (mutable only via `&mut T`).
24//!
25//! Cell types come in four flavors: `Cell<T>`, `RefCell<T>`, `OnceCell<T>`, and `LazyCell<T>`.
26//! Each provides a different way of providing safe interior mutability.
27//!
28//! ## `Cell<T>`
29//!
30//! [`Cell<T>`] implements interior mutability by moving values in and out of the cell. That is, an
31//! `&mut T` to the inner value can never be obtained, and the value itself cannot be directly
32//! obtained without replacing it with something else. Both of these rules ensure that there is
33//! never more than one reference pointing to the inner value. This type provides the following
34//! methods:
35//!
36//!  - For types that implement [`Copy`], the [`get`](Cell::get) method retrieves the current
37//!    interior value by duplicating it.
38//!  - For types that implement [`Default`], the [`take`](Cell::take) method replaces the current
39//!    interior value with [`Default::default()`] and returns the replaced value.
40//!  - All types have:
41//!    - [`replace`](Cell::replace): replaces the current interior value and returns the replaced
42//!      value.
43//!    - [`into_inner`](Cell::into_inner): this method consumes the `Cell<T>` and returns the
44//!      interior value.
45//!    - [`set`](Cell::set): this method replaces the interior value, dropping the replaced value.
46//!
47//! `Cell<T>` is typically used for more simple types where copying or moving values isn't too
48//! resource intensive (e.g. numbers), and should usually be preferred over other cell types when
49//! possible. For larger and non-copy types, `RefCell` provides some advantages.
50//!
51//! ## `RefCell<T>`
52//!
53//! [`RefCell<T>`] uses Rust's lifetimes to implement "dynamic borrowing", a process whereby one can
54//! claim temporary, exclusive, mutable access to the inner value. Borrows for `RefCell<T>`s are
55//! tracked at _runtime_, unlike Rust's native reference types which are entirely tracked
56//! statically, at compile time.
57//!
58//! An immutable reference to a `RefCell`'s inner value (`&T`) can be obtained with
59//! [`borrow`](`RefCell::borrow`), and a mutable borrow (`&mut T`) can be obtained with
60//! [`borrow_mut`](`RefCell::borrow_mut`). When these functions are called, they first verify that
61//! Rust's borrow rules will be satisfied: any number of immutable borrows are allowed or a
62//! single mutable borrow is allowed, but never both. If a borrow is attempted that would violate
63//! these rules, the thread will panic.
64//!
65//! The corresponding [`Sync`] version of `RefCell<T>` is [`RwLock<T>`].
66//!
67//! ## `OnceCell<T>`
68//!
69//! [`OnceCell<T>`] is somewhat of a hybrid of `Cell` and `RefCell` that works for values that
70//! typically only need to be set once. This means that a reference `&T` can be obtained without
71//! moving or copying the inner value (unlike `Cell`) but also without runtime checks (unlike
72//! `RefCell`). However, its value can also not be updated once set unless you have a mutable
73//! reference to the `OnceCell`.
74//!
75//! `OnceCell` provides the following methods:
76//!
77//! - [`get`](OnceCell::get): obtain a reference to the inner value
78//! - [`set`](OnceCell::set): set the inner value if it is unset (returns a `Result`)
79//! - [`get_or_init`](OnceCell::get_or_init): return the inner value, initializing it if needed
80//! - [`get_mut`](OnceCell::get_mut): provide a mutable reference to the inner value, only available
81//!   if you have a mutable reference to the cell itself.
82//!
83//! The corresponding [`Sync`] version of `OnceCell<T>` is [`OnceLock<T>`].
84//!
85//! ## `LazyCell<T, F>`
86//!
87//! A common pattern with OnceCell is, for a given OnceCell, to use the same function on every
88//! call to [`OnceCell::get_or_init`] with that cell. This is what is offered by [`LazyCell`],
89//! which pairs cells of `T` with functions of `F`, and always calls `F` before it yields `&T`.
90//! This happens implicitly by simply attempting to dereference the LazyCell to get its contents,
91//! so its use is much more transparent with a place which has been initialized by a constant.
92//!
93//! More complicated patterns that don't fit this description can be built on `OnceCell<T>` instead.
94//!
95//! `LazyCell` works by providing an implementation of `impl Deref` that calls the function,
96//! so you can just use it by dereference (e.g. `*lazy_cell` or `lazy_cell.deref()`).
97//!
98//! The corresponding [`Sync`] version of `LazyCell<T, F>` is [`LazyLock<T, F>`].
99//!
100//! # When to choose interior mutability
101//!
102//! The more common inherited mutability, where one must have unique access to mutate a value, is
103//! one of the key language elements that enables Rust to reason strongly about pointer aliasing,
104//! statically preventing crash bugs. Because of that, inherited mutability is preferred, and
105//! interior mutability is something of a last resort. Since cell types enable mutation where it
106//! would otherwise be disallowed though, there are occasions when interior mutability might be
107//! appropriate, or even *must* be used, e.g.
108//!
109//! * Introducing mutability 'inside' of something immutable
110//! * Implementation details of logically-immutable methods.
111//! * Mutating implementations of [`Clone`].
112//!
113//! ## Introducing mutability 'inside' of something immutable
114//!
115//! Many shared smart pointer types, including [`Rc<T>`] and [`Arc<T>`], provide containers that can
116//! be cloned and shared between multiple parties. Because the contained values may be
117//! multiply-aliased, they can only be borrowed with `&`, not `&mut`. Without cells it would be
118//! impossible to mutate data inside of these smart pointers at all.
119//!
120//! It's very common then to put a `RefCell<T>` inside shared pointer types to reintroduce
121//! mutability:
122//!
123//! ```
124//! use std::cell::{RefCell, RefMut};
125//! use std::collections::HashMap;
126//! use std::rc::Rc;
127//!
128//! fn main() {
129//!     let shared_map: Rc<RefCell<_>> = Rc::new(RefCell::new(HashMap::new()));
130//!     // Create a new block to limit the scope of the dynamic borrow
131//!     {
132//!         let mut map: RefMut<'_, _> = shared_map.borrow_mut();
133//!         map.insert("africa", 92388);
134//!         map.insert("kyoto", 11837);
135//!         map.insert("piccadilly", 11826);
136//!         map.insert("marbles", 38);
137//!     }
138//!
139//!     // Note that if we had not let the previous borrow of the cache fall out
140//!     // of scope then the subsequent borrow would cause a dynamic thread panic.
141//!     // This is the major hazard of using `RefCell`.
142//!     let total: i32 = shared_map.borrow().values().sum();
143//!     println!("{total}");
144//! }
145//! ```
146//!
147//! Note that this example uses `Rc<T>` and not `Arc<T>`. `RefCell<T>`s are for single-threaded
148//! scenarios. Consider using [`RwLock<T>`] or [`Mutex<T>`] if you need shared mutability in a
149//! multi-threaded situation.
150//!
151//! ## Implementation details of logically-immutable methods
152//!
153//! Occasionally it may be desirable not to expose in an API that there is mutation happening
154//! "under the hood". This may be because logically the operation is immutable, but e.g., caching
155//! forces the implementation to perform mutation; or because you must employ mutation to implement
156//! a trait method that was originally defined to take `&self`.
157//!
158//! ```
159//! # #![allow(dead_code)]
160//! use std::cell::OnceCell;
161//!
162//! struct Graph {
163//!     edges: Vec<(i32, i32)>,
164//!     span_tree_cache: OnceCell<Vec<(i32, i32)>>
165//! }
166//!
167//! impl Graph {
168//!     fn minimum_spanning_tree(&self) -> Vec<(i32, i32)> {
169//!         self.span_tree_cache
170//!             .get_or_init(|| self.calc_span_tree())
171//!             .clone()
172//!     }
173//!
174//!     fn calc_span_tree(&self) -> Vec<(i32, i32)> {
175//!         // Expensive computation goes here
176//!         vec![]
177//!     }
178//! }
179//! ```
180//!
181//! ## Mutating implementations of `Clone`
182//!
183//! This is simply a special - but common - case of the previous: hiding mutability for operations
184//! that appear to be immutable. The [`clone`](Clone::clone) method is expected to not change the
185//! source value, and is declared to take `&self`, not `&mut self`. Therefore, any mutation that
186//! happens in the `clone` method must use cell types. For example, [`Rc<T>`] maintains its
187//! reference counts within a `Cell<T>`.
188//!
189//! ```
190//! use std::cell::Cell;
191//! use std::ptr::NonNull;
192//! use std::process::abort;
193//! use std::marker::PhantomData;
194//!
195//! struct Rc<T: ?Sized> {
196//!     ptr: NonNull<RcInner<T>>,
197//!     phantom: PhantomData<RcInner<T>>,
198//! }
199//!
200//! struct RcInner<T: ?Sized> {
201//!     strong: Cell<usize>,
202//!     refcount: Cell<usize>,
203//!     value: T,
204//! }
205//!
206//! impl<T: ?Sized> Clone for Rc<T> {
207//!     fn clone(&self) -> Rc<T> {
208//!         self.inc_strong();
209//!         Rc {
210//!             ptr: self.ptr,
211//!             phantom: PhantomData,
212//!         }
213//!     }
214//! }
215//!
216//! trait RcInnerPtr<T: ?Sized> {
217//!
218//!     fn inner(&self) -> &RcInner<T>;
219//!
220//!     fn strong(&self) -> usize {
221//!         self.inner().strong.get()
222//!     }
223//!
224//!     fn inc_strong(&self) {
225//!         self.inner()
226//!             .strong
227//!             .set(self.strong()
228//!                      .checked_add(1)
229//!                      .unwrap_or_else(|| abort() ));
230//!     }
231//! }
232//!
233//! impl<T: ?Sized> RcInnerPtr<T> for Rc<T> {
234//!    fn inner(&self) -> &RcInner<T> {
235//!        unsafe {
236//!            self.ptr.as_ref()
237//!        }
238//!    }
239//! }
240//! ```
241//!
242//! [`Arc<T>`]: ../../std/sync/struct.Arc.html
243//! [`Rc<T>`]: ../../std/rc/struct.Rc.html
244//! [`RwLock<T>`]: ../../std/sync/struct.RwLock.html
245//! [`Mutex<T>`]: ../../std/sync/struct.Mutex.html
246//! [`OnceLock<T>`]: ../../std/sync/struct.OnceLock.html
247//! [`LazyLock<T, F>`]: ../../std/sync/struct.LazyLock.html
248//! [`Sync`]: ../../std/marker/trait.Sync.html
249//! [`atomic`]: crate::sync::atomic
250
251#![stable(feature = "rust1", since = "1.0.0")]
252
253use crate::cmp::Ordering;
254use crate::fmt::{self, Debug, Display};
255use crate::marker::{PhantomData, PointerLike, Unsize};
256use crate::mem;
257use crate::ops::{CoerceUnsized, Deref, DerefMut, DerefPure, DispatchFromDyn};
258use crate::pin::PinCoerceUnsized;
259use crate::ptr::{self, NonNull};
260
261mod lazy;
262mod once;
263
264#[stable(feature = "lazy_cell", since = "1.80.0")]
265pub use lazy::LazyCell;
266#[stable(feature = "once_cell", since = "1.70.0")]
267pub use once::OnceCell;
268
269/// A mutable memory location.
270///
271/// # Memory layout
272///
273/// `Cell<T>` has the same [memory layout and caveats as
274/// `UnsafeCell<T>`](UnsafeCell#memory-layout). In particular, this means that
275/// `Cell<T>` has the same in-memory representation as its inner type `T`.
276///
277/// # Examples
278///
279/// In this example, you can see that `Cell<T>` enables mutation inside an
280/// immutable struct. In other words, it enables "interior mutability".
281///
282/// ```
283/// use std::cell::Cell;
284///
285/// struct SomeStruct {
286///     regular_field: u8,
287///     special_field: Cell<u8>,
288/// }
289///
290/// let my_struct = SomeStruct {
291///     regular_field: 0,
292///     special_field: Cell::new(1),
293/// };
294///
295/// let new_value = 100;
296///
297/// // ERROR: `my_struct` is immutable
298/// // my_struct.regular_field = new_value;
299///
300/// // WORKS: although `my_struct` is immutable, `special_field` is a `Cell`,
301/// // which can always be mutated
302/// my_struct.special_field.set(new_value);
303/// assert_eq!(my_struct.special_field.get(), new_value);
304/// ```
305///
306/// See the [module-level documentation](self) for more.
307#[cfg_attr(not(test), rustc_diagnostic_item = "Cell")]
308#[stable(feature = "rust1", since = "1.0.0")]
309#[repr(transparent)]
310#[rustc_pub_transparent]
311pub struct Cell<T: ?Sized> {
312    value: UnsafeCell<T>,
313}
314
315#[stable(feature = "rust1", since = "1.0.0")]
316unsafe impl<T: ?Sized> Send for Cell<T> where T: Send {}
317
318// Note that this negative impl isn't strictly necessary for correctness,
319// as `Cell` wraps `UnsafeCell`, which is itself `!Sync`.
320// However, given how important `Cell`'s `!Sync`-ness is,
321// having an explicit negative impl is nice for documentation purposes
322// and results in nicer error messages.
323#[stable(feature = "rust1", since = "1.0.0")]
324impl<T: ?Sized> !Sync for Cell<T> {}
325
326#[stable(feature = "rust1", since = "1.0.0")]
327impl<T: Copy> Clone for Cell<T> {
328    #[inline]
329    fn clone(&self) -> Cell<T> {
330        Cell::new(self.get())
331    }
332}
333
334#[stable(feature = "rust1", since = "1.0.0")]
335impl<T: Default> Default for Cell<T> {
336    /// Creates a `Cell<T>`, with the `Default` value for T.
337    #[inline]
338    fn default() -> Cell<T> {
339        Cell::new(Default::default())
340    }
341}
342
343#[stable(feature = "rust1", since = "1.0.0")]
344impl<T: PartialEq + Copy> PartialEq for Cell<T> {
345    #[inline]
346    fn eq(&self, other: &Cell<T>) -> bool {
347        self.get() == other.get()
348    }
349}
350
351#[stable(feature = "cell_eq", since = "1.2.0")]
352impl<T: Eq + Copy> Eq for Cell<T> {}
353
354#[stable(feature = "cell_ord", since = "1.10.0")]
355impl<T: PartialOrd + Copy> PartialOrd for Cell<T> {
356    #[inline]
357    fn partial_cmp(&self, other: &Cell<T>) -> Option<Ordering> {
358        self.get().partial_cmp(&other.get())
359    }
360
361    #[inline]
362    fn lt(&self, other: &Cell<T>) -> bool {
363        self.get() < other.get()
364    }
365
366    #[inline]
367    fn le(&self, other: &Cell<T>) -> bool {
368        self.get() <= other.get()
369    }
370
371    #[inline]
372    fn gt(&self, other: &Cell<T>) -> bool {
373        self.get() > other.get()
374    }
375
376    #[inline]
377    fn ge(&self, other: &Cell<T>) -> bool {
378        self.get() >= other.get()
379    }
380}
381
382#[stable(feature = "cell_ord", since = "1.10.0")]
383impl<T: Ord + Copy> Ord for Cell<T> {
384    #[inline]
385    fn cmp(&self, other: &Cell<T>) -> Ordering {
386        self.get().cmp(&other.get())
387    }
388}
389
390#[stable(feature = "cell_from", since = "1.12.0")]
391impl<T> From<T> for Cell<T> {
392    /// Creates a new `Cell<T>` containing the given value.
393    fn from(t: T) -> Cell<T> {
394        Cell::new(t)
395    }
396}
397
398impl<T> Cell<T> {
399    /// Creates a new `Cell` containing the given value.
400    ///
401    /// # Examples
402    ///
403    /// ```
404    /// use std::cell::Cell;
405    ///
406    /// let c = Cell::new(5);
407    /// ```
408    #[stable(feature = "rust1", since = "1.0.0")]
409    #[rustc_const_stable(feature = "const_cell_new", since = "1.24.0")]
410    #[inline]
411    pub const fn new(value: T) -> Cell<T> {
412        Cell { value: UnsafeCell::new(value) }
413    }
414
415    /// Sets the contained value.
416    ///
417    /// # Examples
418    ///
419    /// ```
420    /// use std::cell::Cell;
421    ///
422    /// let c = Cell::new(5);
423    ///
424    /// c.set(10);
425    /// ```
426    #[inline]
427    #[stable(feature = "rust1", since = "1.0.0")]
428    pub fn set(&self, val: T) {
429        self.replace(val);
430    }
431
432    /// Swaps the values of two `Cell`s.
433    ///
434    /// The difference with `std::mem::swap` is that this function doesn't
435    /// require a `&mut` reference.
436    ///
437    /// # Panics
438    ///
439    /// This function will panic if `self` and `other` are different `Cell`s that partially overlap.
440    /// (Using just standard library methods, it is impossible to create such partially overlapping `Cell`s.
441    /// However, unsafe code is allowed to e.g. create two `&Cell<[i32; 2]>` that partially overlap.)
442    ///
443    /// # Examples
444    ///
445    /// ```
446    /// use std::cell::Cell;
447    ///
448    /// let c1 = Cell::new(5i32);
449    /// let c2 = Cell::new(10i32);
450    /// c1.swap(&c2);
451    /// assert_eq!(10, c1.get());
452    /// assert_eq!(5, c2.get());
453    /// ```
454    #[inline]
455    #[stable(feature = "move_cell", since = "1.17.0")]
456    pub fn swap(&self, other: &Self) {
457        // This function documents that it *will* panic, and intrinsics::is_nonoverlapping doesn't
458        // do the check in const, so trying to use it here would be inviting unnecessary fragility.
459        fn is_nonoverlapping<T>(src: *const T, dst: *const T) -> bool {
460            let src_usize = src.addr();
461            let dst_usize = dst.addr();
462            let diff = src_usize.abs_diff(dst_usize);
463            diff >= size_of::<T>()
464        }
465
466        if ptr::eq(self, other) {
467            // Swapping wouldn't change anything.
468            return;
469        }
470        if !is_nonoverlapping(self, other) {
471            // See <https://github.com/rust-lang/rust/issues/80778> for why we need to stop here.
472            panic!("`Cell::swap` on overlapping non-identical `Cell`s");
473        }
474        // SAFETY: This can be risky if called from separate threads, but `Cell`
475        // is `!Sync` so this won't happen. This also won't invalidate any
476        // pointers since `Cell` makes sure nothing else will be pointing into
477        // either of these `Cell`s. We also excluded shenanigans like partially overlapping `Cell`s,
478        // so `swap` will just properly copy two full values of type `T` back and forth.
479        unsafe {
480            mem::swap(&mut *self.value.get(), &mut *other.value.get());
481        }
482    }
483
484    /// Replaces the contained value with `val`, and returns the old contained value.
485    ///
486    /// # Examples
487    ///
488    /// ```
489    /// use std::cell::Cell;
490    ///
491    /// let cell = Cell::new(5);
492    /// assert_eq!(cell.get(), 5);
493    /// assert_eq!(cell.replace(10), 5);
494    /// assert_eq!(cell.get(), 10);
495    /// ```
496    #[inline]
497    #[stable(feature = "move_cell", since = "1.17.0")]
498    #[rustc_const_unstable(feature = "const_cell", issue = "131283")]
499    #[rustc_confusables("swap")]
500    pub const fn replace(&self, val: T) -> T {
501        // SAFETY: This can cause data races if called from a separate thread,
502        // but `Cell` is `!Sync` so this won't happen.
503        mem::replace(unsafe { &mut *self.value.get() }, val)
504    }
505
506    /// Unwraps the value, consuming the cell.
507    ///
508    /// # Examples
509    ///
510    /// ```
511    /// use std::cell::Cell;
512    ///
513    /// let c = Cell::new(5);
514    /// let five = c.into_inner();
515    ///
516    /// assert_eq!(five, 5);
517    /// ```
518    #[stable(feature = "move_cell", since = "1.17.0")]
519    #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
520    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
521    pub const fn into_inner(self) -> T {
522        self.value.into_inner()
523    }
524}
525
526impl<T: Copy> Cell<T> {
527    /// Returns a copy of the contained value.
528    ///
529    /// # Examples
530    ///
531    /// ```
532    /// use std::cell::Cell;
533    ///
534    /// let c = Cell::new(5);
535    ///
536    /// let five = c.get();
537    /// ```
538    #[inline]
539    #[stable(feature = "rust1", since = "1.0.0")]
540    #[rustc_const_unstable(feature = "const_cell", issue = "131283")]
541    pub const fn get(&self) -> T {
542        // SAFETY: This can cause data races if called from a separate thread,
543        // but `Cell` is `!Sync` so this won't happen.
544        unsafe { *self.value.get() }
545    }
546
547    /// Updates the contained value using a function and returns the new value.
548    ///
549    /// # Examples
550    ///
551    /// ```
552    /// #![feature(cell_update)]
553    ///
554    /// use std::cell::Cell;
555    ///
556    /// let c = Cell::new(5);
557    /// let new = c.update(|x| x + 1);
558    ///
559    /// assert_eq!(new, 6);
560    /// assert_eq!(c.get(), 6);
561    /// ```
562    #[inline]
563    #[unstable(feature = "cell_update", issue = "50186")]
564    pub fn update<F>(&self, f: F) -> T
565    where
566        F: FnOnce(T) -> T,
567    {
568        let old = self.get();
569        let new = f(old);
570        self.set(new);
571        new
572    }
573}
574
575impl<T: ?Sized> Cell<T> {
576    /// Returns a raw pointer to the underlying data in this cell.
577    ///
578    /// # Examples
579    ///
580    /// ```
581    /// use std::cell::Cell;
582    ///
583    /// let c = Cell::new(5);
584    ///
585    /// let ptr = c.as_ptr();
586    /// ```
587    #[inline]
588    #[stable(feature = "cell_as_ptr", since = "1.12.0")]
589    #[rustc_const_stable(feature = "const_cell_as_ptr", since = "1.32.0")]
590    #[rustc_as_ptr]
591    #[rustc_never_returns_null_ptr]
592    pub const fn as_ptr(&self) -> *mut T {
593        self.value.get()
594    }
595
596    /// Returns a mutable reference to the underlying data.
597    ///
598    /// This call borrows `Cell` mutably (at compile-time) which guarantees
599    /// that we possess the only reference.
600    ///
601    /// However be cautious: this method expects `self` to be mutable, which is
602    /// generally not the case when using a `Cell`. If you require interior
603    /// mutability by reference, consider using `RefCell` which provides
604    /// run-time checked mutable borrows through its [`borrow_mut`] method.
605    ///
606    /// [`borrow_mut`]: RefCell::borrow_mut()
607    ///
608    /// # Examples
609    ///
610    /// ```
611    /// use std::cell::Cell;
612    ///
613    /// let mut c = Cell::new(5);
614    /// *c.get_mut() += 1;
615    ///
616    /// assert_eq!(c.get(), 6);
617    /// ```
618    #[inline]
619    #[stable(feature = "cell_get_mut", since = "1.11.0")]
620    #[rustc_const_unstable(feature = "const_cell", issue = "131283")]
621    pub const fn get_mut(&mut self) -> &mut T {
622        self.value.get_mut()
623    }
624
625    /// Returns a `&Cell<T>` from a `&mut T`
626    ///
627    /// # Examples
628    ///
629    /// ```
630    /// use std::cell::Cell;
631    ///
632    /// let slice: &mut [i32] = &mut [1, 2, 3];
633    /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
634    /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
635    ///
636    /// assert_eq!(slice_cell.len(), 3);
637    /// ```
638    #[inline]
639    #[stable(feature = "as_cell", since = "1.37.0")]
640    #[rustc_const_unstable(feature = "const_cell", issue = "131283")]
641    pub const fn from_mut(t: &mut T) -> &Cell<T> {
642        // SAFETY: `&mut` ensures unique access.
643        unsafe { &*(t as *mut T as *const Cell<T>) }
644    }
645}
646
647impl<T: Default> Cell<T> {
648    /// Takes the value of the cell, leaving `Default::default()` in its place.
649    ///
650    /// # Examples
651    ///
652    /// ```
653    /// use std::cell::Cell;
654    ///
655    /// let c = Cell::new(5);
656    /// let five = c.take();
657    ///
658    /// assert_eq!(five, 5);
659    /// assert_eq!(c.into_inner(), 0);
660    /// ```
661    #[stable(feature = "move_cell", since = "1.17.0")]
662    pub fn take(&self) -> T {
663        self.replace(Default::default())
664    }
665}
666
667#[unstable(feature = "coerce_unsized", issue = "18598")]
668impl<T: CoerceUnsized<U>, U> CoerceUnsized<Cell<U>> for Cell<T> {}
669
670// Allow types that wrap `Cell` to also implement `DispatchFromDyn`
671// and become dyn-compatible method receivers.
672// Note that currently `Cell` itself cannot be a method receiver
673// because it does not implement Deref.
674// In other words:
675// `self: Cell<&Self>` won't work
676// `self: CellWrapper<Self>` becomes possible
677#[unstable(feature = "dispatch_from_dyn", issue = "none")]
678impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<Cell<U>> for Cell<T> {}
679
680#[unstable(feature = "pointer_like_trait", issue = "none")]
681impl<T: PointerLike> PointerLike for Cell<T> {}
682
683impl<T> Cell<[T]> {
684    /// Returns a `&[Cell<T>]` from a `&Cell<[T]>`
685    ///
686    /// # Examples
687    ///
688    /// ```
689    /// use std::cell::Cell;
690    ///
691    /// let slice: &mut [i32] = &mut [1, 2, 3];
692    /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
693    /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
694    ///
695    /// assert_eq!(slice_cell.len(), 3);
696    /// ```
697    #[stable(feature = "as_cell", since = "1.37.0")]
698    #[rustc_const_unstable(feature = "const_cell", issue = "131283")]
699    pub const fn as_slice_of_cells(&self) -> &[Cell<T>] {
700        // SAFETY: `Cell<T>` has the same memory layout as `T`.
701        unsafe { &*(self as *const Cell<[T]> as *const [Cell<T>]) }
702    }
703}
704
705impl<T, const N: usize> Cell<[T; N]> {
706    /// Returns a `&[Cell<T>; N]` from a `&Cell<[T; N]>`
707    ///
708    /// # Examples
709    ///
710    /// ```
711    /// #![feature(as_array_of_cells)]
712    /// use std::cell::Cell;
713    ///
714    /// let mut array: [i32; 3] = [1, 2, 3];
715    /// let cell_array: &Cell<[i32; 3]> = Cell::from_mut(&mut array);
716    /// let array_cell: &[Cell<i32>; 3] = cell_array.as_array_of_cells();
717    /// ```
718    #[unstable(feature = "as_array_of_cells", issue = "88248")]
719    pub const fn as_array_of_cells(&self) -> &[Cell<T>; N] {
720        // SAFETY: `Cell<T>` has the same memory layout as `T`.
721        unsafe { &*(self as *const Cell<[T; N]> as *const [Cell<T>; N]) }
722    }
723}
724
725/// A mutable memory location with dynamically checked borrow rules
726///
727/// See the [module-level documentation](self) for more.
728#[cfg_attr(not(test), rustc_diagnostic_item = "RefCell")]
729#[stable(feature = "rust1", since = "1.0.0")]
730pub struct RefCell<T: ?Sized> {
731    borrow: Cell<BorrowFlag>,
732    // Stores the location of the earliest currently active borrow.
733    // This gets updated whenever we go from having zero borrows
734    // to having a single borrow. When a borrow occurs, this gets included
735    // in the generated `BorrowError`/`BorrowMutError`
736    #[cfg(feature = "debug_refcell")]
737    borrowed_at: Cell<Option<&'static crate::panic::Location<'static>>>,
738    value: UnsafeCell<T>,
739}
740
741/// An error returned by [`RefCell::try_borrow`].
742#[stable(feature = "try_borrow", since = "1.13.0")]
743#[non_exhaustive]
744pub struct BorrowError {
745    #[cfg(feature = "debug_refcell")]
746    location: &'static crate::panic::Location<'static>,
747}
748
749#[stable(feature = "try_borrow", since = "1.13.0")]
750impl Debug for BorrowError {
751    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
752        let mut builder = f.debug_struct("BorrowError");
753
754        #[cfg(feature = "debug_refcell")]
755        builder.field("location", self.location);
756
757        builder.finish()
758    }
759}
760
761#[stable(feature = "try_borrow", since = "1.13.0")]
762impl Display for BorrowError {
763    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
764        Display::fmt("already mutably borrowed", f)
765    }
766}
767
768/// An error returned by [`RefCell::try_borrow_mut`].
769#[stable(feature = "try_borrow", since = "1.13.0")]
770#[non_exhaustive]
771pub struct BorrowMutError {
772    #[cfg(feature = "debug_refcell")]
773    location: &'static crate::panic::Location<'static>,
774}
775
776#[stable(feature = "try_borrow", since = "1.13.0")]
777impl Debug for BorrowMutError {
778    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
779        let mut builder = f.debug_struct("BorrowMutError");
780
781        #[cfg(feature = "debug_refcell")]
782        builder.field("location", self.location);
783
784        builder.finish()
785    }
786}
787
788#[stable(feature = "try_borrow", since = "1.13.0")]
789impl Display for BorrowMutError {
790    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
791        Display::fmt("already borrowed", f)
792    }
793}
794
795// This ensures the panicking code is outlined from `borrow_mut` for `RefCell`.
796#[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
797#[track_caller]
798#[cold]
799fn panic_already_borrowed(err: BorrowMutError) -> ! {
800    panic!("already borrowed: {:?}", err)
801}
802
803// This ensures the panicking code is outlined from `borrow` for `RefCell`.
804#[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
805#[track_caller]
806#[cold]
807fn panic_already_mutably_borrowed(err: BorrowError) -> ! {
808    panic!("already mutably borrowed: {:?}", err)
809}
810
811// Positive values represent the number of `Ref` active. Negative values
812// represent the number of `RefMut` active. Multiple `RefMut`s can only be
813// active at a time if they refer to distinct, nonoverlapping components of a
814// `RefCell` (e.g., different ranges of a slice).
815//
816// `Ref` and `RefMut` are both two words in size, and so there will likely never
817// be enough `Ref`s or `RefMut`s in existence to overflow half of the `usize`
818// range. Thus, a `BorrowFlag` will probably never overflow or underflow.
819// However, this is not a guarantee, as a pathological program could repeatedly
820// create and then mem::forget `Ref`s or `RefMut`s. Thus, all code must
821// explicitly check for overflow and underflow in order to avoid unsafety, or at
822// least behave correctly in the event that overflow or underflow happens (e.g.,
823// see BorrowRef::new).
824type BorrowFlag = isize;
825const UNUSED: BorrowFlag = 0;
826
827#[inline(always)]
828fn is_writing(x: BorrowFlag) -> bool {
829    x < UNUSED
830}
831
832#[inline(always)]
833fn is_reading(x: BorrowFlag) -> bool {
834    x > UNUSED
835}
836
837impl<T> RefCell<T> {
838    /// Creates a new `RefCell` containing `value`.
839    ///
840    /// # Examples
841    ///
842    /// ```
843    /// use std::cell::RefCell;
844    ///
845    /// let c = RefCell::new(5);
846    /// ```
847    #[stable(feature = "rust1", since = "1.0.0")]
848    #[rustc_const_stable(feature = "const_refcell_new", since = "1.24.0")]
849    #[inline]
850    pub const fn new(value: T) -> RefCell<T> {
851        RefCell {
852            value: UnsafeCell::new(value),
853            borrow: Cell::new(UNUSED),
854            #[cfg(feature = "debug_refcell")]
855            borrowed_at: Cell::new(None),
856        }
857    }
858
859    /// Consumes the `RefCell`, returning the wrapped value.
860    ///
861    /// # Examples
862    ///
863    /// ```
864    /// use std::cell::RefCell;
865    ///
866    /// let c = RefCell::new(5);
867    ///
868    /// let five = c.into_inner();
869    /// ```
870    #[stable(feature = "rust1", since = "1.0.0")]
871    #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
872    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
873    #[inline]
874    pub const fn into_inner(self) -> T {
875        // Since this function takes `self` (the `RefCell`) by value, the
876        // compiler statically verifies that it is not currently borrowed.
877        self.value.into_inner()
878    }
879
880    /// Replaces the wrapped value with a new one, returning the old value,
881    /// without deinitializing either one.
882    ///
883    /// This function corresponds to [`std::mem::replace`](../mem/fn.replace.html).
884    ///
885    /// # Panics
886    ///
887    /// Panics if the value is currently borrowed.
888    ///
889    /// # Examples
890    ///
891    /// ```
892    /// use std::cell::RefCell;
893    /// let cell = RefCell::new(5);
894    /// let old_value = cell.replace(6);
895    /// assert_eq!(old_value, 5);
896    /// assert_eq!(cell, RefCell::new(6));
897    /// ```
898    #[inline]
899    #[stable(feature = "refcell_replace", since = "1.24.0")]
900    #[track_caller]
901    #[rustc_confusables("swap")]
902    pub fn replace(&self, t: T) -> T {
903        mem::replace(&mut *self.borrow_mut(), t)
904    }
905
906    /// Replaces the wrapped value with a new one computed from `f`, returning
907    /// the old value, without deinitializing either one.
908    ///
909    /// # Panics
910    ///
911    /// Panics if the value is currently borrowed.
912    ///
913    /// # Examples
914    ///
915    /// ```
916    /// use std::cell::RefCell;
917    /// let cell = RefCell::new(5);
918    /// let old_value = cell.replace_with(|&mut old| old + 1);
919    /// assert_eq!(old_value, 5);
920    /// assert_eq!(cell, RefCell::new(6));
921    /// ```
922    #[inline]
923    #[stable(feature = "refcell_replace_swap", since = "1.35.0")]
924    #[track_caller]
925    pub fn replace_with<F: FnOnce(&mut T) -> T>(&self, f: F) -> T {
926        let mut_borrow = &mut *self.borrow_mut();
927        let replacement = f(mut_borrow);
928        mem::replace(mut_borrow, replacement)
929    }
930
931    /// Swaps the wrapped value of `self` with the wrapped value of `other`,
932    /// without deinitializing either one.
933    ///
934    /// This function corresponds to [`std::mem::swap`](../mem/fn.swap.html).
935    ///
936    /// # Panics
937    ///
938    /// Panics if the value in either `RefCell` is currently borrowed, or
939    /// if `self` and `other` point to the same `RefCell`.
940    ///
941    /// # Examples
942    ///
943    /// ```
944    /// use std::cell::RefCell;
945    /// let c = RefCell::new(5);
946    /// let d = RefCell::new(6);
947    /// c.swap(&d);
948    /// assert_eq!(c, RefCell::new(6));
949    /// assert_eq!(d, RefCell::new(5));
950    /// ```
951    #[inline]
952    #[stable(feature = "refcell_swap", since = "1.24.0")]
953    pub fn swap(&self, other: &Self) {
954        mem::swap(&mut *self.borrow_mut(), &mut *other.borrow_mut())
955    }
956}
957
958impl<T: ?Sized> RefCell<T> {
959    /// Immutably borrows the wrapped value.
960    ///
961    /// The borrow lasts until the returned `Ref` exits scope. Multiple
962    /// immutable borrows can be taken out at the same time.
963    ///
964    /// # Panics
965    ///
966    /// Panics if the value is currently mutably borrowed. For a non-panicking variant, use
967    /// [`try_borrow`](#method.try_borrow).
968    ///
969    /// # Examples
970    ///
971    /// ```
972    /// use std::cell::RefCell;
973    ///
974    /// let c = RefCell::new(5);
975    ///
976    /// let borrowed_five = c.borrow();
977    /// let borrowed_five2 = c.borrow();
978    /// ```
979    ///
980    /// An example of panic:
981    ///
982    /// ```should_panic
983    /// use std::cell::RefCell;
984    ///
985    /// let c = RefCell::new(5);
986    ///
987    /// let m = c.borrow_mut();
988    /// let b = c.borrow(); // this causes a panic
989    /// ```
990    #[stable(feature = "rust1", since = "1.0.0")]
991    #[inline]
992    #[track_caller]
993    pub fn borrow(&self) -> Ref<'_, T> {
994        match self.try_borrow() {
995            Ok(b) => b,
996            Err(err) => panic_already_mutably_borrowed(err),
997        }
998    }
999
1000    /// Immutably borrows the wrapped value, returning an error if the value is currently mutably
1001    /// borrowed.
1002    ///
1003    /// The borrow lasts until the returned `Ref` exits scope. Multiple immutable borrows can be
1004    /// taken out at the same time.
1005    ///
1006    /// This is the non-panicking variant of [`borrow`](#method.borrow).
1007    ///
1008    /// # Examples
1009    ///
1010    /// ```
1011    /// use std::cell::RefCell;
1012    ///
1013    /// let c = RefCell::new(5);
1014    ///
1015    /// {
1016    ///     let m = c.borrow_mut();
1017    ///     assert!(c.try_borrow().is_err());
1018    /// }
1019    ///
1020    /// {
1021    ///     let m = c.borrow();
1022    ///     assert!(c.try_borrow().is_ok());
1023    /// }
1024    /// ```
1025    #[stable(feature = "try_borrow", since = "1.13.0")]
1026    #[inline]
1027    #[cfg_attr(feature = "debug_refcell", track_caller)]
1028    pub fn try_borrow(&self) -> Result<Ref<'_, T>, BorrowError> {
1029        match BorrowRef::new(&self.borrow) {
1030            Some(b) => {
1031                #[cfg(feature = "debug_refcell")]
1032                {
1033                    // `borrowed_at` is always the *first* active borrow
1034                    if b.borrow.get() == 1 {
1035                        self.borrowed_at.set(Some(crate::panic::Location::caller()));
1036                    }
1037                }
1038
1039                // SAFETY: `BorrowRef` ensures that there is only immutable access
1040                // to the value while borrowed.
1041                let value = unsafe { NonNull::new_unchecked(self.value.get()) };
1042                Ok(Ref { value, borrow: b })
1043            }
1044            None => Err(BorrowError {
1045                // If a borrow occurred, then we must already have an outstanding borrow,
1046                // so `borrowed_at` will be `Some`
1047                #[cfg(feature = "debug_refcell")]
1048                location: self.borrowed_at.get().unwrap(),
1049            }),
1050        }
1051    }
1052
1053    /// Mutably borrows the wrapped value.
1054    ///
1055    /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
1056    /// from it exit scope. The value cannot be borrowed while this borrow is
1057    /// active.
1058    ///
1059    /// # Panics
1060    ///
1061    /// Panics if the value is currently borrowed. For a non-panicking variant, use
1062    /// [`try_borrow_mut`](#method.try_borrow_mut).
1063    ///
1064    /// # Examples
1065    ///
1066    /// ```
1067    /// use std::cell::RefCell;
1068    ///
1069    /// let c = RefCell::new("hello".to_owned());
1070    ///
1071    /// *c.borrow_mut() = "bonjour".to_owned();
1072    ///
1073    /// assert_eq!(&*c.borrow(), "bonjour");
1074    /// ```
1075    ///
1076    /// An example of panic:
1077    ///
1078    /// ```should_panic
1079    /// use std::cell::RefCell;
1080    ///
1081    /// let c = RefCell::new(5);
1082    /// let m = c.borrow();
1083    ///
1084    /// let b = c.borrow_mut(); // this causes a panic
1085    /// ```
1086    #[stable(feature = "rust1", since = "1.0.0")]
1087    #[inline]
1088    #[track_caller]
1089    pub fn borrow_mut(&self) -> RefMut<'_, T> {
1090        match self.try_borrow_mut() {
1091            Ok(b) => b,
1092            Err(err) => panic_already_borrowed(err),
1093        }
1094    }
1095
1096    /// Mutably borrows the wrapped value, returning an error if the value is currently borrowed.
1097    ///
1098    /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
1099    /// from it exit scope. The value cannot be borrowed while this borrow is
1100    /// active.
1101    ///
1102    /// This is the non-panicking variant of [`borrow_mut`](#method.borrow_mut).
1103    ///
1104    /// # Examples
1105    ///
1106    /// ```
1107    /// use std::cell::RefCell;
1108    ///
1109    /// let c = RefCell::new(5);
1110    ///
1111    /// {
1112    ///     let m = c.borrow();
1113    ///     assert!(c.try_borrow_mut().is_err());
1114    /// }
1115    ///
1116    /// assert!(c.try_borrow_mut().is_ok());
1117    /// ```
1118    #[stable(feature = "try_borrow", since = "1.13.0")]
1119    #[inline]
1120    #[cfg_attr(feature = "debug_refcell", track_caller)]
1121    pub fn try_borrow_mut(&self) -> Result<RefMut<'_, T>, BorrowMutError> {
1122        match BorrowRefMut::new(&self.borrow) {
1123            Some(b) => {
1124                #[cfg(feature = "debug_refcell")]
1125                {
1126                    self.borrowed_at.set(Some(crate::panic::Location::caller()));
1127                }
1128
1129                // SAFETY: `BorrowRefMut` guarantees unique access.
1130                let value = unsafe { NonNull::new_unchecked(self.value.get()) };
1131                Ok(RefMut { value, borrow: b, marker: PhantomData })
1132            }
1133            None => Err(BorrowMutError {
1134                // If a borrow occurred, then we must already have an outstanding borrow,
1135                // so `borrowed_at` will be `Some`
1136                #[cfg(feature = "debug_refcell")]
1137                location: self.borrowed_at.get().unwrap(),
1138            }),
1139        }
1140    }
1141
1142    /// Returns a raw pointer to the underlying data in this cell.
1143    ///
1144    /// # Examples
1145    ///
1146    /// ```
1147    /// use std::cell::RefCell;
1148    ///
1149    /// let c = RefCell::new(5);
1150    ///
1151    /// let ptr = c.as_ptr();
1152    /// ```
1153    #[inline]
1154    #[stable(feature = "cell_as_ptr", since = "1.12.0")]
1155    #[rustc_as_ptr]
1156    #[rustc_never_returns_null_ptr]
1157    pub fn as_ptr(&self) -> *mut T {
1158        self.value.get()
1159    }
1160
1161    /// Returns a mutable reference to the underlying data.
1162    ///
1163    /// Since this method borrows `RefCell` mutably, it is statically guaranteed
1164    /// that no borrows to the underlying data exist. The dynamic checks inherent
1165    /// in [`borrow_mut`] and most other methods of `RefCell` are therefore
1166    /// unnecessary.
1167    ///
1168    /// This method can only be called if `RefCell` can be mutably borrowed,
1169    /// which in general is only the case directly after the `RefCell` has
1170    /// been created. In these situations, skipping the aforementioned dynamic
1171    /// borrowing checks may yield better ergonomics and runtime-performance.
1172    ///
1173    /// In most situations where `RefCell` is used, it can't be borrowed mutably.
1174    /// Use [`borrow_mut`] to get mutable access to the underlying data then.
1175    ///
1176    /// [`borrow_mut`]: RefCell::borrow_mut()
1177    ///
1178    /// # Examples
1179    ///
1180    /// ```
1181    /// use std::cell::RefCell;
1182    ///
1183    /// let mut c = RefCell::new(5);
1184    /// *c.get_mut() += 1;
1185    ///
1186    /// assert_eq!(c, RefCell::new(6));
1187    /// ```
1188    #[inline]
1189    #[stable(feature = "cell_get_mut", since = "1.11.0")]
1190    pub fn get_mut(&mut self) -> &mut T {
1191        self.value.get_mut()
1192    }
1193
1194    /// Undo the effect of leaked guards on the borrow state of the `RefCell`.
1195    ///
1196    /// This call is similar to [`get_mut`] but more specialized. It borrows `RefCell` mutably to
1197    /// ensure no borrows exist and then resets the state tracking shared borrows. This is relevant
1198    /// if some `Ref` or `RefMut` borrows have been leaked.
1199    ///
1200    /// [`get_mut`]: RefCell::get_mut()
1201    ///
1202    /// # Examples
1203    ///
1204    /// ```
1205    /// #![feature(cell_leak)]
1206    /// use std::cell::RefCell;
1207    ///
1208    /// let mut c = RefCell::new(0);
1209    /// std::mem::forget(c.borrow_mut());
1210    ///
1211    /// assert!(c.try_borrow().is_err());
1212    /// c.undo_leak();
1213    /// assert!(c.try_borrow().is_ok());
1214    /// ```
1215    #[unstable(feature = "cell_leak", issue = "69099")]
1216    pub fn undo_leak(&mut self) -> &mut T {
1217        *self.borrow.get_mut() = UNUSED;
1218        self.get_mut()
1219    }
1220
1221    /// Immutably borrows the wrapped value, returning an error if the value is
1222    /// currently mutably borrowed.
1223    ///
1224    /// # Safety
1225    ///
1226    /// Unlike `RefCell::borrow`, this method is unsafe because it does not
1227    /// return a `Ref`, thus leaving the borrow flag untouched. Mutably
1228    /// borrowing the `RefCell` while the reference returned by this method
1229    /// is alive is undefined behavior.
1230    ///
1231    /// # Examples
1232    ///
1233    /// ```
1234    /// use std::cell::RefCell;
1235    ///
1236    /// let c = RefCell::new(5);
1237    ///
1238    /// {
1239    ///     let m = c.borrow_mut();
1240    ///     assert!(unsafe { c.try_borrow_unguarded() }.is_err());
1241    /// }
1242    ///
1243    /// {
1244    ///     let m = c.borrow();
1245    ///     assert!(unsafe { c.try_borrow_unguarded() }.is_ok());
1246    /// }
1247    /// ```
1248    #[stable(feature = "borrow_state", since = "1.37.0")]
1249    #[inline]
1250    pub unsafe fn try_borrow_unguarded(&self) -> Result<&T, BorrowError> {
1251        if !is_writing(self.borrow.get()) {
1252            // SAFETY: We check that nobody is actively writing now, but it is
1253            // the caller's responsibility to ensure that nobody writes until
1254            // the returned reference is no longer in use.
1255            // Also, `self.value.get()` refers to the value owned by `self`
1256            // and is thus guaranteed to be valid for the lifetime of `self`.
1257            Ok(unsafe { &*self.value.get() })
1258        } else {
1259            Err(BorrowError {
1260                // If a borrow occurred, then we must already have an outstanding borrow,
1261                // so `borrowed_at` will be `Some`
1262                #[cfg(feature = "debug_refcell")]
1263                location: self.borrowed_at.get().unwrap(),
1264            })
1265        }
1266    }
1267}
1268
1269impl<T: Default> RefCell<T> {
1270    /// Takes the wrapped value, leaving `Default::default()` in its place.
1271    ///
1272    /// # Panics
1273    ///
1274    /// Panics if the value is currently borrowed.
1275    ///
1276    /// # Examples
1277    ///
1278    /// ```
1279    /// use std::cell::RefCell;
1280    ///
1281    /// let c = RefCell::new(5);
1282    /// let five = c.take();
1283    ///
1284    /// assert_eq!(five, 5);
1285    /// assert_eq!(c.into_inner(), 0);
1286    /// ```
1287    #[stable(feature = "refcell_take", since = "1.50.0")]
1288    pub fn take(&self) -> T {
1289        self.replace(Default::default())
1290    }
1291}
1292
1293#[stable(feature = "rust1", since = "1.0.0")]
1294unsafe impl<T: ?Sized> Send for RefCell<T> where T: Send {}
1295
1296#[stable(feature = "rust1", since = "1.0.0")]
1297impl<T: ?Sized> !Sync for RefCell<T> {}
1298
1299#[stable(feature = "rust1", since = "1.0.0")]
1300impl<T: Clone> Clone for RefCell<T> {
1301    /// # Panics
1302    ///
1303    /// Panics if the value is currently mutably borrowed.
1304    #[inline]
1305    #[track_caller]
1306    fn clone(&self) -> RefCell<T> {
1307        RefCell::new(self.borrow().clone())
1308    }
1309
1310    /// # Panics
1311    ///
1312    /// Panics if `source` is currently mutably borrowed.
1313    #[inline]
1314    #[track_caller]
1315    fn clone_from(&mut self, source: &Self) {
1316        self.get_mut().clone_from(&source.borrow())
1317    }
1318}
1319
1320#[stable(feature = "rust1", since = "1.0.0")]
1321impl<T: Default> Default for RefCell<T> {
1322    /// Creates a `RefCell<T>`, with the `Default` value for T.
1323    #[inline]
1324    fn default() -> RefCell<T> {
1325        RefCell::new(Default::default())
1326    }
1327}
1328
1329#[stable(feature = "rust1", since = "1.0.0")]
1330impl<T: ?Sized + PartialEq> PartialEq for RefCell<T> {
1331    /// # Panics
1332    ///
1333    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1334    #[inline]
1335    fn eq(&self, other: &RefCell<T>) -> bool {
1336        *self.borrow() == *other.borrow()
1337    }
1338}
1339
1340#[stable(feature = "cell_eq", since = "1.2.0")]
1341impl<T: ?Sized + Eq> Eq for RefCell<T> {}
1342
1343#[stable(feature = "cell_ord", since = "1.10.0")]
1344impl<T: ?Sized + PartialOrd> PartialOrd for RefCell<T> {
1345    /// # Panics
1346    ///
1347    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1348    #[inline]
1349    fn partial_cmp(&self, other: &RefCell<T>) -> Option<Ordering> {
1350        self.borrow().partial_cmp(&*other.borrow())
1351    }
1352
1353    /// # Panics
1354    ///
1355    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1356    #[inline]
1357    fn lt(&self, other: &RefCell<T>) -> bool {
1358        *self.borrow() < *other.borrow()
1359    }
1360
1361    /// # Panics
1362    ///
1363    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1364    #[inline]
1365    fn le(&self, other: &RefCell<T>) -> bool {
1366        *self.borrow() <= *other.borrow()
1367    }
1368
1369    /// # Panics
1370    ///
1371    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1372    #[inline]
1373    fn gt(&self, other: &RefCell<T>) -> bool {
1374        *self.borrow() > *other.borrow()
1375    }
1376
1377    /// # Panics
1378    ///
1379    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1380    #[inline]
1381    fn ge(&self, other: &RefCell<T>) -> bool {
1382        *self.borrow() >= *other.borrow()
1383    }
1384}
1385
1386#[stable(feature = "cell_ord", since = "1.10.0")]
1387impl<T: ?Sized + Ord> Ord for RefCell<T> {
1388    /// # Panics
1389    ///
1390    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1391    #[inline]
1392    fn cmp(&self, other: &RefCell<T>) -> Ordering {
1393        self.borrow().cmp(&*other.borrow())
1394    }
1395}
1396
1397#[stable(feature = "cell_from", since = "1.12.0")]
1398impl<T> From<T> for RefCell<T> {
1399    /// Creates a new `RefCell<T>` containing the given value.
1400    fn from(t: T) -> RefCell<T> {
1401        RefCell::new(t)
1402    }
1403}
1404
1405#[unstable(feature = "coerce_unsized", issue = "18598")]
1406impl<T: CoerceUnsized<U>, U> CoerceUnsized<RefCell<U>> for RefCell<T> {}
1407
1408struct BorrowRef<'b> {
1409    borrow: &'b Cell<BorrowFlag>,
1410}
1411
1412impl<'b> BorrowRef<'b> {
1413    #[inline]
1414    fn new(borrow: &'b Cell<BorrowFlag>) -> Option<BorrowRef<'b>> {
1415        let b = borrow.get().wrapping_add(1);
1416        if !is_reading(b) {
1417            // Incrementing borrow can result in a non-reading value (<= 0) in these cases:
1418            // 1. It was < 0, i.e. there are writing borrows, so we can't allow a read borrow
1419            //    due to Rust's reference aliasing rules
1420            // 2. It was isize::MAX (the max amount of reading borrows) and it overflowed
1421            //    into isize::MIN (the max amount of writing borrows) so we can't allow
1422            //    an additional read borrow because isize can't represent so many read borrows
1423            //    (this can only happen if you mem::forget more than a small constant amount of
1424            //    `Ref`s, which is not good practice)
1425            None
1426        } else {
1427            // Incrementing borrow can result in a reading value (> 0) in these cases:
1428            // 1. It was = 0, i.e. it wasn't borrowed, and we are taking the first read borrow
1429            // 2. It was > 0 and < isize::MAX, i.e. there were read borrows, and isize
1430            //    is large enough to represent having one more read borrow
1431            borrow.set(b);
1432            Some(BorrowRef { borrow })
1433        }
1434    }
1435}
1436
1437impl Drop for BorrowRef<'_> {
1438    #[inline]
1439    fn drop(&mut self) {
1440        let borrow = self.borrow.get();
1441        debug_assert!(is_reading(borrow));
1442        self.borrow.set(borrow - 1);
1443    }
1444}
1445
1446impl Clone for BorrowRef<'_> {
1447    #[inline]
1448    fn clone(&self) -> Self {
1449        // Since this Ref exists, we know the borrow flag
1450        // is a reading borrow.
1451        let borrow = self.borrow.get();
1452        debug_assert!(is_reading(borrow));
1453        // Prevent the borrow counter from overflowing into
1454        // a writing borrow.
1455        assert!(borrow != BorrowFlag::MAX);
1456        self.borrow.set(borrow + 1);
1457        BorrowRef { borrow: self.borrow }
1458    }
1459}
1460
1461/// Wraps a borrowed reference to a value in a `RefCell` box.
1462/// A wrapper type for an immutably borrowed value from a `RefCell<T>`.
1463///
1464/// See the [module-level documentation](self) for more.
1465#[stable(feature = "rust1", since = "1.0.0")]
1466#[must_not_suspend = "holding a Ref across suspend points can cause BorrowErrors"]
1467#[rustc_diagnostic_item = "RefCellRef"]
1468pub struct Ref<'b, T: ?Sized + 'b> {
1469    // NB: we use a pointer instead of `&'b T` to avoid `noalias` violations, because a
1470    // `Ref` argument doesn't hold immutability for its whole scope, only until it drops.
1471    // `NonNull` is also covariant over `T`, just like we would have with `&T`.
1472    value: NonNull<T>,
1473    borrow: BorrowRef<'b>,
1474}
1475
1476#[stable(feature = "rust1", since = "1.0.0")]
1477impl<T: ?Sized> Deref for Ref<'_, T> {
1478    type Target = T;
1479
1480    #[inline]
1481    fn deref(&self) -> &T {
1482        // SAFETY: the value is accessible as long as we hold our borrow.
1483        unsafe { self.value.as_ref() }
1484    }
1485}
1486
1487#[unstable(feature = "deref_pure_trait", issue = "87121")]
1488unsafe impl<T: ?Sized> DerefPure for Ref<'_, T> {}
1489
1490impl<'b, T: ?Sized> Ref<'b, T> {
1491    /// Copies a `Ref`.
1492    ///
1493    /// The `RefCell` is already immutably borrowed, so this cannot fail.
1494    ///
1495    /// This is an associated function that needs to be used as
1496    /// `Ref::clone(...)`. A `Clone` implementation or a method would interfere
1497    /// with the widespread use of `r.borrow().clone()` to clone the contents of
1498    /// a `RefCell`.
1499    #[stable(feature = "cell_extras", since = "1.15.0")]
1500    #[must_use]
1501    #[inline]
1502    pub fn clone(orig: &Ref<'b, T>) -> Ref<'b, T> {
1503        Ref { value: orig.value, borrow: orig.borrow.clone() }
1504    }
1505
1506    /// Makes a new `Ref` for a component of the borrowed data.
1507    ///
1508    /// The `RefCell` is already immutably borrowed, so this cannot fail.
1509    ///
1510    /// This is an associated function that needs to be used as `Ref::map(...)`.
1511    /// A method would interfere with methods of the same name on the contents
1512    /// of a `RefCell` used through `Deref`.
1513    ///
1514    /// # Examples
1515    ///
1516    /// ```
1517    /// use std::cell::{RefCell, Ref};
1518    ///
1519    /// let c = RefCell::new((5, 'b'));
1520    /// let b1: Ref<'_, (u32, char)> = c.borrow();
1521    /// let b2: Ref<'_, u32> = Ref::map(b1, |t| &t.0);
1522    /// assert_eq!(*b2, 5)
1523    /// ```
1524    #[stable(feature = "cell_map", since = "1.8.0")]
1525    #[inline]
1526    pub fn map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Ref<'b, U>
1527    where
1528        F: FnOnce(&T) -> &U,
1529    {
1530        Ref { value: NonNull::from(f(&*orig)), borrow: orig.borrow }
1531    }
1532
1533    /// Makes a new `Ref` for an optional component of the borrowed data. The
1534    /// original guard is returned as an `Err(..)` if the closure returns
1535    /// `None`.
1536    ///
1537    /// The `RefCell` is already immutably borrowed, so this cannot fail.
1538    ///
1539    /// This is an associated function that needs to be used as
1540    /// `Ref::filter_map(...)`. A method would interfere with methods of the same
1541    /// name on the contents of a `RefCell` used through `Deref`.
1542    ///
1543    /// # Examples
1544    ///
1545    /// ```
1546    /// use std::cell::{RefCell, Ref};
1547    ///
1548    /// let c = RefCell::new(vec![1, 2, 3]);
1549    /// let b1: Ref<'_, Vec<u32>> = c.borrow();
1550    /// let b2: Result<Ref<'_, u32>, _> = Ref::filter_map(b1, |v| v.get(1));
1551    /// assert_eq!(*b2.unwrap(), 2);
1552    /// ```
1553    #[stable(feature = "cell_filter_map", since = "1.63.0")]
1554    #[inline]
1555    pub fn filter_map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Result<Ref<'b, U>, Self>
1556    where
1557        F: FnOnce(&T) -> Option<&U>,
1558    {
1559        match f(&*orig) {
1560            Some(value) => Ok(Ref { value: NonNull::from(value), borrow: orig.borrow }),
1561            None => Err(orig),
1562        }
1563    }
1564
1565    /// Splits a `Ref` into multiple `Ref`s for different components of the
1566    /// borrowed data.
1567    ///
1568    /// The `RefCell` is already immutably borrowed, so this cannot fail.
1569    ///
1570    /// This is an associated function that needs to be used as
1571    /// `Ref::map_split(...)`. A method would interfere with methods of the same
1572    /// name on the contents of a `RefCell` used through `Deref`.
1573    ///
1574    /// # Examples
1575    ///
1576    /// ```
1577    /// use std::cell::{Ref, RefCell};
1578    ///
1579    /// let cell = RefCell::new([1, 2, 3, 4]);
1580    /// let borrow = cell.borrow();
1581    /// let (begin, end) = Ref::map_split(borrow, |slice| slice.split_at(2));
1582    /// assert_eq!(*begin, [1, 2]);
1583    /// assert_eq!(*end, [3, 4]);
1584    /// ```
1585    #[stable(feature = "refcell_map_split", since = "1.35.0")]
1586    #[inline]
1587    pub fn map_split<U: ?Sized, V: ?Sized, F>(orig: Ref<'b, T>, f: F) -> (Ref<'b, U>, Ref<'b, V>)
1588    where
1589        F: FnOnce(&T) -> (&U, &V),
1590    {
1591        let (a, b) = f(&*orig);
1592        let borrow = orig.borrow.clone();
1593        (
1594            Ref { value: NonNull::from(a), borrow },
1595            Ref { value: NonNull::from(b), borrow: orig.borrow },
1596        )
1597    }
1598
1599    /// Converts into a reference to the underlying data.
1600    ///
1601    /// The underlying `RefCell` can never be mutably borrowed from again and will always appear
1602    /// already immutably borrowed. It is not a good idea to leak more than a constant number of
1603    /// references. The `RefCell` can be immutably borrowed again if only a smaller number of leaks
1604    /// have occurred in total.
1605    ///
1606    /// This is an associated function that needs to be used as
1607    /// `Ref::leak(...)`. A method would interfere with methods of the
1608    /// same name on the contents of a `RefCell` used through `Deref`.
1609    ///
1610    /// # Examples
1611    ///
1612    /// ```
1613    /// #![feature(cell_leak)]
1614    /// use std::cell::{RefCell, Ref};
1615    /// let cell = RefCell::new(0);
1616    ///
1617    /// let value = Ref::leak(cell.borrow());
1618    /// assert_eq!(*value, 0);
1619    ///
1620    /// assert!(cell.try_borrow().is_ok());
1621    /// assert!(cell.try_borrow_mut().is_err());
1622    /// ```
1623    #[unstable(feature = "cell_leak", issue = "69099")]
1624    pub fn leak(orig: Ref<'b, T>) -> &'b T {
1625        // By forgetting this Ref we ensure that the borrow counter in the RefCell can't go back to
1626        // UNUSED within the lifetime `'b`. Resetting the reference tracking state would require a
1627        // unique reference to the borrowed RefCell. No further mutable references can be created
1628        // from the original cell.
1629        mem::forget(orig.borrow);
1630        // SAFETY: after forgetting, we can form a reference for the rest of lifetime `'b`.
1631        unsafe { orig.value.as_ref() }
1632    }
1633}
1634
1635#[unstable(feature = "coerce_unsized", issue = "18598")]
1636impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Ref<'b, U>> for Ref<'b, T> {}
1637
1638#[stable(feature = "std_guard_impls", since = "1.20.0")]
1639impl<T: ?Sized + fmt::Display> fmt::Display for Ref<'_, T> {
1640    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1641        (**self).fmt(f)
1642    }
1643}
1644
1645impl<'b, T: ?Sized> RefMut<'b, T> {
1646    /// Makes a new `RefMut` for a component of the borrowed data, e.g., an enum
1647    /// variant.
1648    ///
1649    /// The `RefCell` is already mutably borrowed, so this cannot fail.
1650    ///
1651    /// This is an associated function that needs to be used as
1652    /// `RefMut::map(...)`. A method would interfere with methods of the same
1653    /// name on the contents of a `RefCell` used through `Deref`.
1654    ///
1655    /// # Examples
1656    ///
1657    /// ```
1658    /// use std::cell::{RefCell, RefMut};
1659    ///
1660    /// let c = RefCell::new((5, 'b'));
1661    /// {
1662    ///     let b1: RefMut<'_, (u32, char)> = c.borrow_mut();
1663    ///     let mut b2: RefMut<'_, u32> = RefMut::map(b1, |t| &mut t.0);
1664    ///     assert_eq!(*b2, 5);
1665    ///     *b2 = 42;
1666    /// }
1667    /// assert_eq!(*c.borrow(), (42, 'b'));
1668    /// ```
1669    #[stable(feature = "cell_map", since = "1.8.0")]
1670    #[inline]
1671    pub fn map<U: ?Sized, F>(mut orig: RefMut<'b, T>, f: F) -> RefMut<'b, U>
1672    where
1673        F: FnOnce(&mut T) -> &mut U,
1674    {
1675        let value = NonNull::from(f(&mut *orig));
1676        RefMut { value, borrow: orig.borrow, marker: PhantomData }
1677    }
1678
1679    /// Makes a new `RefMut` for an optional component of the borrowed data. The
1680    /// original guard is returned as an `Err(..)` if the closure returns
1681    /// `None`.
1682    ///
1683    /// The `RefCell` is already mutably borrowed, so this cannot fail.
1684    ///
1685    /// This is an associated function that needs to be used as
1686    /// `RefMut::filter_map(...)`. A method would interfere with methods of the
1687    /// same name on the contents of a `RefCell` used through `Deref`.
1688    ///
1689    /// # Examples
1690    ///
1691    /// ```
1692    /// use std::cell::{RefCell, RefMut};
1693    ///
1694    /// let c = RefCell::new(vec![1, 2, 3]);
1695    ///
1696    /// {
1697    ///     let b1: RefMut<'_, Vec<u32>> = c.borrow_mut();
1698    ///     let mut b2: Result<RefMut<'_, u32>, _> = RefMut::filter_map(b1, |v| v.get_mut(1));
1699    ///
1700    ///     if let Ok(mut b2) = b2 {
1701    ///         *b2 += 2;
1702    ///     }
1703    /// }
1704    ///
1705    /// assert_eq!(*c.borrow(), vec![1, 4, 3]);
1706    /// ```
1707    #[stable(feature = "cell_filter_map", since = "1.63.0")]
1708    #[inline]
1709    pub fn filter_map<U: ?Sized, F>(mut orig: RefMut<'b, T>, f: F) -> Result<RefMut<'b, U>, Self>
1710    where
1711        F: FnOnce(&mut T) -> Option<&mut U>,
1712    {
1713        // SAFETY: function holds onto an exclusive reference for the duration
1714        // of its call through `orig`, and the pointer is only de-referenced
1715        // inside of the function call never allowing the exclusive reference to
1716        // escape.
1717        match f(&mut *orig) {
1718            Some(value) => {
1719                Ok(RefMut { value: NonNull::from(value), borrow: orig.borrow, marker: PhantomData })
1720            }
1721            None => Err(orig),
1722        }
1723    }
1724
1725    /// Splits a `RefMut` into multiple `RefMut`s for different components of the
1726    /// borrowed data.
1727    ///
1728    /// The underlying `RefCell` will remain mutably borrowed until both
1729    /// returned `RefMut`s go out of scope.
1730    ///
1731    /// The `RefCell` is already mutably borrowed, so this cannot fail.
1732    ///
1733    /// This is an associated function that needs to be used as
1734    /// `RefMut::map_split(...)`. A method would interfere with methods of the
1735    /// same name on the contents of a `RefCell` used through `Deref`.
1736    ///
1737    /// # Examples
1738    ///
1739    /// ```
1740    /// use std::cell::{RefCell, RefMut};
1741    ///
1742    /// let cell = RefCell::new([1, 2, 3, 4]);
1743    /// let borrow = cell.borrow_mut();
1744    /// let (mut begin, mut end) = RefMut::map_split(borrow, |slice| slice.split_at_mut(2));
1745    /// assert_eq!(*begin, [1, 2]);
1746    /// assert_eq!(*end, [3, 4]);
1747    /// begin.copy_from_slice(&[4, 3]);
1748    /// end.copy_from_slice(&[2, 1]);
1749    /// ```
1750    #[stable(feature = "refcell_map_split", since = "1.35.0")]
1751    #[inline]
1752    pub fn map_split<U: ?Sized, V: ?Sized, F>(
1753        mut orig: RefMut<'b, T>,
1754        f: F,
1755    ) -> (RefMut<'b, U>, RefMut<'b, V>)
1756    where
1757        F: FnOnce(&mut T) -> (&mut U, &mut V),
1758    {
1759        let borrow = orig.borrow.clone();
1760        let (a, b) = f(&mut *orig);
1761        (
1762            RefMut { value: NonNull::from(a), borrow, marker: PhantomData },
1763            RefMut { value: NonNull::from(b), borrow: orig.borrow, marker: PhantomData },
1764        )
1765    }
1766
1767    /// Converts into a mutable reference to the underlying data.
1768    ///
1769    /// The underlying `RefCell` can not be borrowed from again and will always appear already
1770    /// mutably borrowed, making the returned reference the only to the interior.
1771    ///
1772    /// This is an associated function that needs to be used as
1773    /// `RefMut::leak(...)`. A method would interfere with methods of the
1774    /// same name on the contents of a `RefCell` used through `Deref`.
1775    ///
1776    /// # Examples
1777    ///
1778    /// ```
1779    /// #![feature(cell_leak)]
1780    /// use std::cell::{RefCell, RefMut};
1781    /// let cell = RefCell::new(0);
1782    ///
1783    /// let value = RefMut::leak(cell.borrow_mut());
1784    /// assert_eq!(*value, 0);
1785    /// *value = 1;
1786    ///
1787    /// assert!(cell.try_borrow_mut().is_err());
1788    /// ```
1789    #[unstable(feature = "cell_leak", issue = "69099")]
1790    pub fn leak(mut orig: RefMut<'b, T>) -> &'b mut T {
1791        // By forgetting this BorrowRefMut we ensure that the borrow counter in the RefCell can't
1792        // go back to UNUSED within the lifetime `'b`. Resetting the reference tracking state would
1793        // require a unique reference to the borrowed RefCell. No further references can be created
1794        // from the original cell within that lifetime, making the current borrow the only
1795        // reference for the remaining lifetime.
1796        mem::forget(orig.borrow);
1797        // SAFETY: after forgetting, we can form a reference for the rest of lifetime `'b`.
1798        unsafe { orig.value.as_mut() }
1799    }
1800}
1801
1802struct BorrowRefMut<'b> {
1803    borrow: &'b Cell<BorrowFlag>,
1804}
1805
1806impl Drop for BorrowRefMut<'_> {
1807    #[inline]
1808    fn drop(&mut self) {
1809        let borrow = self.borrow.get();
1810        debug_assert!(is_writing(borrow));
1811        self.borrow.set(borrow + 1);
1812    }
1813}
1814
1815impl<'b> BorrowRefMut<'b> {
1816    #[inline]
1817    fn new(borrow: &'b Cell<BorrowFlag>) -> Option<BorrowRefMut<'b>> {
1818        // NOTE: Unlike BorrowRefMut::clone, new is called to create the initial
1819        // mutable reference, and so there must currently be no existing
1820        // references. Thus, while clone increments the mutable refcount, here
1821        // we explicitly only allow going from UNUSED to UNUSED - 1.
1822        match borrow.get() {
1823            UNUSED => {
1824                borrow.set(UNUSED - 1);
1825                Some(BorrowRefMut { borrow })
1826            }
1827            _ => None,
1828        }
1829    }
1830
1831    // Clones a `BorrowRefMut`.
1832    //
1833    // This is only valid if each `BorrowRefMut` is used to track a mutable
1834    // reference to a distinct, nonoverlapping range of the original object.
1835    // This isn't in a Clone impl so that code doesn't call this implicitly.
1836    #[inline]
1837    fn clone(&self) -> BorrowRefMut<'b> {
1838        let borrow = self.borrow.get();
1839        debug_assert!(is_writing(borrow));
1840        // Prevent the borrow counter from underflowing.
1841        assert!(borrow != BorrowFlag::MIN);
1842        self.borrow.set(borrow - 1);
1843        BorrowRefMut { borrow: self.borrow }
1844    }
1845}
1846
1847/// A wrapper type for a mutably borrowed value from a `RefCell<T>`.
1848///
1849/// See the [module-level documentation](self) for more.
1850#[stable(feature = "rust1", since = "1.0.0")]
1851#[must_not_suspend = "holding a RefMut across suspend points can cause BorrowErrors"]
1852#[rustc_diagnostic_item = "RefCellRefMut"]
1853pub struct RefMut<'b, T: ?Sized + 'b> {
1854    // NB: we use a pointer instead of `&'b mut T` to avoid `noalias` violations, because a
1855    // `RefMut` argument doesn't hold exclusivity for its whole scope, only until it drops.
1856    value: NonNull<T>,
1857    borrow: BorrowRefMut<'b>,
1858    // `NonNull` is covariant over `T`, so we need to reintroduce invariance.
1859    marker: PhantomData<&'b mut T>,
1860}
1861
1862#[stable(feature = "rust1", since = "1.0.0")]
1863impl<T: ?Sized> Deref for RefMut<'_, T> {
1864    type Target = T;
1865
1866    #[inline]
1867    fn deref(&self) -> &T {
1868        // SAFETY: the value is accessible as long as we hold our borrow.
1869        unsafe { self.value.as_ref() }
1870    }
1871}
1872
1873#[stable(feature = "rust1", since = "1.0.0")]
1874impl<T: ?Sized> DerefMut for RefMut<'_, T> {
1875    #[inline]
1876    fn deref_mut(&mut self) -> &mut T {
1877        // SAFETY: the value is accessible as long as we hold our borrow.
1878        unsafe { self.value.as_mut() }
1879    }
1880}
1881
1882#[unstable(feature = "deref_pure_trait", issue = "87121")]
1883unsafe impl<T: ?Sized> DerefPure for RefMut<'_, T> {}
1884
1885#[unstable(feature = "coerce_unsized", issue = "18598")]
1886impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<RefMut<'b, U>> for RefMut<'b, T> {}
1887
1888#[stable(feature = "std_guard_impls", since = "1.20.0")]
1889impl<T: ?Sized + fmt::Display> fmt::Display for RefMut<'_, T> {
1890    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1891        (**self).fmt(f)
1892    }
1893}
1894
1895/// The core primitive for interior mutability in Rust.
1896///
1897/// If you have a reference `&T`, then normally in Rust the compiler performs optimizations based on
1898/// the knowledge that `&T` points to immutable data. Mutating that data, for example through an
1899/// alias or by transmuting a `&T` into a `&mut T`, is considered undefined behavior.
1900/// `UnsafeCell<T>` opts-out of the immutability guarantee for `&T`: a shared reference
1901/// `&UnsafeCell<T>` may point to data that is being mutated. This is called "interior mutability".
1902///
1903/// All other types that allow internal mutability, such as [`Cell<T>`] and [`RefCell<T>`], internally
1904/// use `UnsafeCell` to wrap their data.
1905///
1906/// Note that only the immutability guarantee for shared references is affected by `UnsafeCell`. The
1907/// uniqueness guarantee for mutable references is unaffected. There is *no* legal way to obtain
1908/// aliasing `&mut`, not even with `UnsafeCell<T>`.
1909///
1910/// `UnsafeCell` does nothing to avoid data races; they are still undefined behavior. If multiple
1911/// threads have access to the same `UnsafeCell`, they must follow the usual rules of the
1912/// [concurrent memory model]: conflicting non-synchronized accesses must be done via the APIs in
1913/// [`core::sync::atomic`].
1914///
1915/// The `UnsafeCell` API itself is technically very simple: [`.get()`] gives you a raw pointer
1916/// `*mut T` to its contents. It is up to _you_ as the abstraction designer to use that raw pointer
1917/// correctly.
1918///
1919/// [`.get()`]: `UnsafeCell::get`
1920/// [concurrent memory model]: ../sync/atomic/index.html#memory-model-for-atomic-accesses
1921///
1922/// The precise Rust aliasing rules are somewhat in flux, but the main points are not contentious:
1923///
1924/// - If you create a safe reference with lifetime `'a` (either a `&T` or `&mut T` reference), then
1925/// you must not access the data in any way that contradicts that reference for the remainder of
1926/// `'a`. For example, this means that if you take the `*mut T` from an `UnsafeCell<T>` and cast it
1927/// to an `&T`, then the data in `T` must remain immutable (modulo any `UnsafeCell` data found
1928/// within `T`, of course) until that reference's lifetime expires. Similarly, if you create a `&mut
1929/// T` reference that is released to safe code, then you must not access the data within the
1930/// `UnsafeCell` until that reference expires.
1931///
1932/// - For both `&T` without `UnsafeCell<_>` and `&mut T`, you must also not deallocate the data
1933/// until the reference expires. As a special exception, given an `&T`, any part of it that is
1934/// inside an `UnsafeCell<_>` may be deallocated during the lifetime of the reference, after the
1935/// last time the reference is used (dereferenced or reborrowed). Since you cannot deallocate a part
1936/// of what a reference points to, this means the memory an `&T` points to can be deallocated only if
1937/// *every part of it* (including padding) is inside an `UnsafeCell`.
1938///
1939///     However, whenever a `&UnsafeCell<T>` is constructed or dereferenced, it must still point to
1940/// live memory and the compiler is allowed to insert spurious reads if it can prove that this
1941/// memory has not yet been deallocated.
1942///
1943/// To assist with proper design, the following scenarios are explicitly declared legal
1944/// for single-threaded code:
1945///
1946/// 1. A `&T` reference can be released to safe code and there it can co-exist with other `&T`
1947/// references, but not with a `&mut T`
1948///
1949/// 2. A `&mut T` reference may be released to safe code provided neither other `&mut T` nor `&T`
1950/// co-exist with it. A `&mut T` must always be unique.
1951///
1952/// Note that whilst mutating the contents of an `&UnsafeCell<T>` (even while other
1953/// `&UnsafeCell<T>` references alias the cell) is
1954/// ok (provided you enforce the above invariants some other way), it is still undefined behavior
1955/// to have multiple `&mut UnsafeCell<T>` aliases. That is, `UnsafeCell` is a wrapper
1956/// designed to have a special interaction with _shared_ accesses (_i.e._, through an
1957/// `&UnsafeCell<_>` reference); there is no magic whatsoever when dealing with _exclusive_
1958/// accesses (_e.g._, through a `&mut UnsafeCell<_>`): neither the cell nor the wrapped value
1959/// may be aliased for the duration of that `&mut` borrow.
1960/// This is showcased by the [`.get_mut()`] accessor, which is a _safe_ getter that yields
1961/// a `&mut T`.
1962///
1963/// [`.get_mut()`]: `UnsafeCell::get_mut`
1964///
1965/// # Memory layout
1966///
1967/// `UnsafeCell<T>` has the same in-memory representation as its inner type `T`. A consequence
1968/// of this guarantee is that it is possible to convert between `T` and `UnsafeCell<T>`.
1969/// Special care has to be taken when converting a nested `T` inside of an `Outer<T>` type
1970/// to an `Outer<UnsafeCell<T>>` type: this is not sound when the `Outer<T>` type enables [niche]
1971/// optimizations. For example, the type `Option<NonNull<u8>>` is typically 8 bytes large on
1972/// 64-bit platforms, but the type `Option<UnsafeCell<NonNull<u8>>>` takes up 16 bytes of space.
1973/// Therefore this is not a valid conversion, despite `NonNull<u8>` and `UnsafeCell<NonNull<u8>>>`
1974/// having the same memory layout. This is because `UnsafeCell` disables niche optimizations in
1975/// order to avoid its interior mutability property from spreading from `T` into the `Outer` type,
1976/// thus this can cause distortions in the type size in these cases.
1977///
1978/// Note that the only valid way to obtain a `*mut T` pointer to the contents of a
1979/// _shared_ `UnsafeCell<T>` is through [`.get()`]  or [`.raw_get()`]. A `&mut T` reference
1980/// can be obtained by either dereferencing this pointer or by calling [`.get_mut()`]
1981/// on an _exclusive_ `UnsafeCell<T>`. Even though `T` and `UnsafeCell<T>` have the
1982/// same memory layout, the following is not allowed and undefined behavior:
1983///
1984/// ```rust,compile_fail
1985/// # use std::cell::UnsafeCell;
1986/// unsafe fn not_allowed<T>(ptr: &UnsafeCell<T>) -> &mut T {
1987///   let t = ptr as *const UnsafeCell<T> as *mut T;
1988///   // This is undefined behavior, because the `*mut T` pointer
1989///   // was not obtained through `.get()` nor `.raw_get()`:
1990///   unsafe { &mut *t }
1991/// }
1992/// ```
1993///
1994/// Instead, do this:
1995///
1996/// ```rust
1997/// # use std::cell::UnsafeCell;
1998/// // Safety: the caller must ensure that there are no references that
1999/// // point to the *contents* of the `UnsafeCell`.
2000/// unsafe fn get_mut<T>(ptr: &UnsafeCell<T>) -> &mut T {
2001///   unsafe { &mut *ptr.get() }
2002/// }
2003/// ```
2004///
2005/// Converting in the other direction from a `&mut T`
2006/// to an `&UnsafeCell<T>` is allowed:
2007///
2008/// ```rust
2009/// # use std::cell::UnsafeCell;
2010/// fn get_shared<T>(ptr: &mut T) -> &UnsafeCell<T> {
2011///   let t = ptr as *mut T as *const UnsafeCell<T>;
2012///   // SAFETY: `T` and `UnsafeCell<T>` have the same memory layout
2013///   unsafe { &*t }
2014/// }
2015/// ```
2016///
2017/// [niche]: https://rust-lang.github.io/unsafe-code-guidelines/glossary.html#niche
2018/// [`.raw_get()`]: `UnsafeCell::raw_get`
2019///
2020/// # Examples
2021///
2022/// Here is an example showcasing how to soundly mutate the contents of an `UnsafeCell<_>` despite
2023/// there being multiple references aliasing the cell:
2024///
2025/// ```
2026/// use std::cell::UnsafeCell;
2027///
2028/// let x: UnsafeCell<i32> = 42.into();
2029/// // Get multiple / concurrent / shared references to the same `x`.
2030/// let (p1, p2): (&UnsafeCell<i32>, &UnsafeCell<i32>) = (&x, &x);
2031///
2032/// unsafe {
2033///     // SAFETY: within this scope there are no other references to `x`'s contents,
2034///     // so ours is effectively unique.
2035///     let p1_exclusive: &mut i32 = &mut *p1.get(); // -- borrow --+
2036///     *p1_exclusive += 27; //                                     |
2037/// } // <---------- cannot go beyond this point -------------------+
2038///
2039/// unsafe {
2040///     // SAFETY: within this scope nobody expects to have exclusive access to `x`'s contents,
2041///     // so we can have multiple shared accesses concurrently.
2042///     let p2_shared: &i32 = &*p2.get();
2043///     assert_eq!(*p2_shared, 42 + 27);
2044///     let p1_shared: &i32 = &*p1.get();
2045///     assert_eq!(*p1_shared, *p2_shared);
2046/// }
2047/// ```
2048///
2049/// The following example showcases the fact that exclusive access to an `UnsafeCell<T>`
2050/// implies exclusive access to its `T`:
2051///
2052/// ```rust
2053/// #![forbid(unsafe_code)] // with exclusive accesses,
2054///                         // `UnsafeCell` is a transparent no-op wrapper,
2055///                         // so no need for `unsafe` here.
2056/// use std::cell::UnsafeCell;
2057///
2058/// let mut x: UnsafeCell<i32> = 42.into();
2059///
2060/// // Get a compile-time-checked unique reference to `x`.
2061/// let p_unique: &mut UnsafeCell<i32> = &mut x;
2062/// // With an exclusive reference, we can mutate the contents for free.
2063/// *p_unique.get_mut() = 0;
2064/// // Or, equivalently:
2065/// x = UnsafeCell::new(0);
2066///
2067/// // When we own the value, we can extract the contents for free.
2068/// let contents: i32 = x.into_inner();
2069/// assert_eq!(contents, 0);
2070/// ```
2071#[lang = "unsafe_cell"]
2072#[stable(feature = "rust1", since = "1.0.0")]
2073#[repr(transparent)]
2074#[rustc_pub_transparent]
2075pub struct UnsafeCell<T: ?Sized> {
2076    value: T,
2077}
2078
2079#[stable(feature = "rust1", since = "1.0.0")]
2080impl<T: ?Sized> !Sync for UnsafeCell<T> {}
2081
2082impl<T> UnsafeCell<T> {
2083    /// Constructs a new instance of `UnsafeCell` which will wrap the specified
2084    /// value.
2085    ///
2086    /// All access to the inner value through `&UnsafeCell<T>` requires `unsafe` code.
2087    ///
2088    /// # Examples
2089    ///
2090    /// ```
2091    /// use std::cell::UnsafeCell;
2092    ///
2093    /// let uc = UnsafeCell::new(5);
2094    /// ```
2095    #[stable(feature = "rust1", since = "1.0.0")]
2096    #[rustc_const_stable(feature = "const_unsafe_cell_new", since = "1.32.0")]
2097    #[inline(always)]
2098    pub const fn new(value: T) -> UnsafeCell<T> {
2099        UnsafeCell { value }
2100    }
2101
2102    /// Unwraps the value, consuming the cell.
2103    ///
2104    /// # Examples
2105    ///
2106    /// ```
2107    /// use std::cell::UnsafeCell;
2108    ///
2109    /// let uc = UnsafeCell::new(5);
2110    ///
2111    /// let five = uc.into_inner();
2112    /// ```
2113    #[inline(always)]
2114    #[stable(feature = "rust1", since = "1.0.0")]
2115    #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
2116    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2117    pub const fn into_inner(self) -> T {
2118        self.value
2119    }
2120
2121    /// Replace the value in this `UnsafeCell` and return the old value.
2122    ///
2123    /// # Safety
2124    ///
2125    /// The caller must take care to avoid aliasing and data races.
2126    ///
2127    /// - It is Undefined Behavior to allow calls to race with
2128    ///   any other access to the wrapped value.
2129    /// - It is Undefined Behavior to call this while any other
2130    ///   reference(s) to the wrapped value are alive.
2131    ///
2132    /// # Examples
2133    ///
2134    /// ```
2135    /// #![feature(unsafe_cell_access)]
2136    /// use std::cell::UnsafeCell;
2137    ///
2138    /// let uc = UnsafeCell::new(5);
2139    ///
2140    /// let old = unsafe { uc.replace(10) };
2141    /// assert_eq!(old, 5);
2142    /// ```
2143    #[inline]
2144    #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2145    pub const unsafe fn replace(&self, value: T) -> T {
2146        // SAFETY: pointer comes from `&self` so naturally satisfies invariants.
2147        unsafe { ptr::replace(self.get(), value) }
2148    }
2149}
2150
2151impl<T: ?Sized> UnsafeCell<T> {
2152    /// Converts from `&mut T` to `&mut UnsafeCell<T>`.
2153    ///
2154    /// # Examples
2155    ///
2156    /// ```
2157    /// use std::cell::UnsafeCell;
2158    ///
2159    /// let mut val = 42;
2160    /// let uc = UnsafeCell::from_mut(&mut val);
2161    ///
2162    /// *uc.get_mut() -= 1;
2163    /// assert_eq!(*uc.get_mut(), 41);
2164    /// ```
2165    #[inline(always)]
2166    #[stable(feature = "unsafe_cell_from_mut", since = "1.84.0")]
2167    #[rustc_const_stable(feature = "unsafe_cell_from_mut", since = "1.84.0")]
2168    pub const fn from_mut(value: &mut T) -> &mut UnsafeCell<T> {
2169        // SAFETY: `UnsafeCell<T>` has the same memory layout as `T` due to #[repr(transparent)].
2170        unsafe { &mut *(value as *mut T as *mut UnsafeCell<T>) }
2171    }
2172
2173    /// Gets a mutable pointer to the wrapped value.
2174    ///
2175    /// This can be cast to a pointer of any kind.
2176    /// Ensure that the access is unique (no active references, mutable or not)
2177    /// when casting to `&mut T`, and ensure that there are no mutations
2178    /// or mutable aliases going on when casting to `&T`
2179    ///
2180    /// # Examples
2181    ///
2182    /// ```
2183    /// use std::cell::UnsafeCell;
2184    ///
2185    /// let uc = UnsafeCell::new(5);
2186    ///
2187    /// let five = uc.get();
2188    /// ```
2189    #[inline(always)]
2190    #[stable(feature = "rust1", since = "1.0.0")]
2191    #[rustc_const_stable(feature = "const_unsafecell_get", since = "1.32.0")]
2192    #[rustc_as_ptr]
2193    #[rustc_never_returns_null_ptr]
2194    pub const fn get(&self) -> *mut T {
2195        // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
2196        // #[repr(transparent)]. This exploits std's special status, there is
2197        // no guarantee for user code that this will work in future versions of the compiler!
2198        self as *const UnsafeCell<T> as *const T as *mut T
2199    }
2200
2201    /// Returns a mutable reference to the underlying data.
2202    ///
2203    /// This call borrows the `UnsafeCell` mutably (at compile-time) which
2204    /// guarantees that we possess the only reference.
2205    ///
2206    /// # Examples
2207    ///
2208    /// ```
2209    /// use std::cell::UnsafeCell;
2210    ///
2211    /// let mut c = UnsafeCell::new(5);
2212    /// *c.get_mut() += 1;
2213    ///
2214    /// assert_eq!(*c.get_mut(), 6);
2215    /// ```
2216    #[inline(always)]
2217    #[stable(feature = "unsafe_cell_get_mut", since = "1.50.0")]
2218    #[rustc_const_stable(feature = "const_unsafecell_get_mut", since = "1.83.0")]
2219    pub const fn get_mut(&mut self) -> &mut T {
2220        &mut self.value
2221    }
2222
2223    /// Gets a mutable pointer to the wrapped value.
2224    /// The difference from [`get`] is that this function accepts a raw pointer,
2225    /// which is useful to avoid the creation of temporary references.
2226    ///
2227    /// The result can be cast to a pointer of any kind.
2228    /// Ensure that the access is unique (no active references, mutable or not)
2229    /// when casting to `&mut T`, and ensure that there are no mutations
2230    /// or mutable aliases going on when casting to `&T`.
2231    ///
2232    /// [`get`]: UnsafeCell::get()
2233    ///
2234    /// # Examples
2235    ///
2236    /// Gradual initialization of an `UnsafeCell` requires `raw_get`, as
2237    /// calling `get` would require creating a reference to uninitialized data:
2238    ///
2239    /// ```
2240    /// use std::cell::UnsafeCell;
2241    /// use std::mem::MaybeUninit;
2242    ///
2243    /// let m = MaybeUninit::<UnsafeCell<i32>>::uninit();
2244    /// unsafe { UnsafeCell::raw_get(m.as_ptr()).write(5); }
2245    /// // avoid below which references to uninitialized data
2246    /// // unsafe { UnsafeCell::get(&*m.as_ptr()).write(5); }
2247    /// let uc = unsafe { m.assume_init() };
2248    ///
2249    /// assert_eq!(uc.into_inner(), 5);
2250    /// ```
2251    #[inline(always)]
2252    #[stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
2253    #[rustc_const_stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
2254    #[rustc_diagnostic_item = "unsafe_cell_raw_get"]
2255    pub const fn raw_get(this: *const Self) -> *mut T {
2256        // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
2257        // #[repr(transparent)]. This exploits std's special status, there is
2258        // no guarantee for user code that this will work in future versions of the compiler!
2259        this as *const T as *mut T
2260    }
2261
2262    /// Get a shared reference to the value within the `UnsafeCell`.
2263    ///
2264    /// # Safety
2265    ///
2266    /// - It is Undefined Behavior to call this while any mutable
2267    ///   reference to the wrapped value is alive.
2268    /// - Mutating the wrapped value while the returned
2269    ///   reference is alive is Undefined Behavior.
2270    ///
2271    /// # Examples
2272    ///
2273    /// ```
2274    /// #![feature(unsafe_cell_access)]
2275    /// use std::cell::UnsafeCell;
2276    ///
2277    /// let uc = UnsafeCell::new(5);
2278    ///
2279    /// let val = unsafe { uc.as_ref_unchecked() };
2280    /// assert_eq!(val, &5);
2281    /// ```
2282    #[inline]
2283    #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2284    pub const unsafe fn as_ref_unchecked(&self) -> &T {
2285        // SAFETY: pointer comes from `&self` so naturally satisfies ptr-to-ref invariants.
2286        unsafe { self.get().as_ref_unchecked() }
2287    }
2288
2289    /// Get an exclusive reference to the value within the `UnsafeCell`.
2290    ///
2291    /// # Safety
2292    ///
2293    /// - It is Undefined Behavior to call this while any other
2294    ///   reference(s) to the wrapped value are alive.
2295    /// - Mutating the wrapped value through other means while the
2296    ///   returned reference is alive is Undefined Behavior.
2297    ///
2298    /// # Examples
2299    ///
2300    /// ```
2301    /// #![feature(unsafe_cell_access)]
2302    /// use std::cell::UnsafeCell;
2303    ///
2304    /// let uc = UnsafeCell::new(5);
2305    ///
2306    /// unsafe { *uc.as_mut_unchecked() += 1; }
2307    /// assert_eq!(uc.into_inner(), 6);
2308    /// ```
2309    #[inline]
2310    #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2311    #[allow(clippy::mut_from_ref)]
2312    pub const unsafe fn as_mut_unchecked(&self) -> &mut T {
2313        // SAFETY: pointer comes from `&self` so naturally satisfies ptr-to-ref invariants.
2314        unsafe { self.get().as_mut_unchecked() }
2315    }
2316}
2317
2318#[stable(feature = "unsafe_cell_default", since = "1.10.0")]
2319impl<T: Default> Default for UnsafeCell<T> {
2320    /// Creates an `UnsafeCell`, with the `Default` value for T.
2321    fn default() -> UnsafeCell<T> {
2322        UnsafeCell::new(Default::default())
2323    }
2324}
2325
2326#[stable(feature = "cell_from", since = "1.12.0")]
2327impl<T> From<T> for UnsafeCell<T> {
2328    /// Creates a new `UnsafeCell<T>` containing the given value.
2329    fn from(t: T) -> UnsafeCell<T> {
2330        UnsafeCell::new(t)
2331    }
2332}
2333
2334#[unstable(feature = "coerce_unsized", issue = "18598")]
2335impl<T: CoerceUnsized<U>, U> CoerceUnsized<UnsafeCell<U>> for UnsafeCell<T> {}
2336
2337// Allow types that wrap `UnsafeCell` to also implement `DispatchFromDyn`
2338// and become dyn-compatible method receivers.
2339// Note that currently `UnsafeCell` itself cannot be a method receiver
2340// because it does not implement Deref.
2341// In other words:
2342// `self: UnsafeCell<&Self>` won't work
2343// `self: UnsafeCellWrapper<Self>` becomes possible
2344#[unstable(feature = "dispatch_from_dyn", issue = "none")]
2345impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<UnsafeCell<U>> for UnsafeCell<T> {}
2346
2347#[unstable(feature = "pointer_like_trait", issue = "none")]
2348impl<T: PointerLike> PointerLike for UnsafeCell<T> {}
2349
2350/// [`UnsafeCell`], but [`Sync`].
2351///
2352/// This is just an `UnsafeCell`, except it implements `Sync`
2353/// if `T` implements `Sync`.
2354///
2355/// `UnsafeCell` doesn't implement `Sync`, to prevent accidental mis-use.
2356/// You can use `SyncUnsafeCell` instead of `UnsafeCell` to allow it to be
2357/// shared between threads, if that's intentional.
2358/// Providing proper synchronization is still the task of the user,
2359/// making this type just as unsafe to use.
2360///
2361/// See [`UnsafeCell`] for details.
2362#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2363#[repr(transparent)]
2364#[rustc_diagnostic_item = "SyncUnsafeCell"]
2365#[rustc_pub_transparent]
2366pub struct SyncUnsafeCell<T: ?Sized> {
2367    value: UnsafeCell<T>,
2368}
2369
2370#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2371unsafe impl<T: ?Sized + Sync> Sync for SyncUnsafeCell<T> {}
2372
2373#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2374impl<T> SyncUnsafeCell<T> {
2375    /// Constructs a new instance of `SyncUnsafeCell` which will wrap the specified value.
2376    #[inline]
2377    pub const fn new(value: T) -> Self {
2378        Self { value: UnsafeCell { value } }
2379    }
2380
2381    /// Unwraps the value, consuming the cell.
2382    #[inline]
2383    #[rustc_const_unstable(feature = "sync_unsafe_cell", issue = "95439")]
2384    pub const fn into_inner(self) -> T {
2385        self.value.into_inner()
2386    }
2387}
2388
2389#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2390impl<T: ?Sized> SyncUnsafeCell<T> {
2391    /// Gets a mutable pointer to the wrapped value.
2392    ///
2393    /// This can be cast to a pointer of any kind.
2394    /// Ensure that the access is unique (no active references, mutable or not)
2395    /// when casting to `&mut T`, and ensure that there are no mutations
2396    /// or mutable aliases going on when casting to `&T`
2397    #[inline]
2398    #[rustc_as_ptr]
2399    #[rustc_never_returns_null_ptr]
2400    pub const fn get(&self) -> *mut T {
2401        self.value.get()
2402    }
2403
2404    /// Returns a mutable reference to the underlying data.
2405    ///
2406    /// This call borrows the `SyncUnsafeCell` mutably (at compile-time) which
2407    /// guarantees that we possess the only reference.
2408    #[inline]
2409    pub const fn get_mut(&mut self) -> &mut T {
2410        self.value.get_mut()
2411    }
2412
2413    /// Gets a mutable pointer to the wrapped value.
2414    ///
2415    /// See [`UnsafeCell::get`] for details.
2416    #[inline]
2417    pub const fn raw_get(this: *const Self) -> *mut T {
2418        // We can just cast the pointer from `SyncUnsafeCell<T>` to `T` because
2419        // of #[repr(transparent)] on both SyncUnsafeCell and UnsafeCell.
2420        // See UnsafeCell::raw_get.
2421        this as *const T as *mut T
2422    }
2423}
2424
2425#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2426impl<T: Default> Default for SyncUnsafeCell<T> {
2427    /// Creates an `SyncUnsafeCell`, with the `Default` value for T.
2428    fn default() -> SyncUnsafeCell<T> {
2429        SyncUnsafeCell::new(Default::default())
2430    }
2431}
2432
2433#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2434impl<T> From<T> for SyncUnsafeCell<T> {
2435    /// Creates a new `SyncUnsafeCell<T>` containing the given value.
2436    fn from(t: T) -> SyncUnsafeCell<T> {
2437        SyncUnsafeCell::new(t)
2438    }
2439}
2440
2441#[unstable(feature = "coerce_unsized", issue = "18598")]
2442//#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2443impl<T: CoerceUnsized<U>, U> CoerceUnsized<SyncUnsafeCell<U>> for SyncUnsafeCell<T> {}
2444
2445// Allow types that wrap `SyncUnsafeCell` to also implement `DispatchFromDyn`
2446// and become dyn-compatible method receivers.
2447// Note that currently `SyncUnsafeCell` itself cannot be a method receiver
2448// because it does not implement Deref.
2449// In other words:
2450// `self: SyncUnsafeCell<&Self>` won't work
2451// `self: SyncUnsafeCellWrapper<Self>` becomes possible
2452#[unstable(feature = "dispatch_from_dyn", issue = "none")]
2453//#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2454impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<SyncUnsafeCell<U>> for SyncUnsafeCell<T> {}
2455
2456#[unstable(feature = "pointer_like_trait", issue = "none")]
2457impl<T: PointerLike> PointerLike for SyncUnsafeCell<T> {}
2458
2459#[allow(unused)]
2460fn assert_coerce_unsized(
2461    a: UnsafeCell<&i32>,
2462    b: SyncUnsafeCell<&i32>,
2463    c: Cell<&i32>,
2464    d: RefCell<&i32>,
2465) {
2466    let _: UnsafeCell<&dyn Send> = a;
2467    let _: SyncUnsafeCell<&dyn Send> = b;
2468    let _: Cell<&dyn Send> = c;
2469    let _: RefCell<&dyn Send> = d;
2470}
2471
2472#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2473unsafe impl<T: ?Sized> PinCoerceUnsized for UnsafeCell<T> {}
2474
2475#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2476unsafe impl<T: ?Sized> PinCoerceUnsized for SyncUnsafeCell<T> {}
2477
2478#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2479unsafe impl<T: ?Sized> PinCoerceUnsized for Cell<T> {}
2480
2481#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2482unsafe impl<T: ?Sized> PinCoerceUnsized for RefCell<T> {}
2483
2484#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2485unsafe impl<'b, T: ?Sized> PinCoerceUnsized for Ref<'b, T> {}
2486
2487#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2488unsafe impl<'b, T: ?Sized> PinCoerceUnsized for RefMut<'b, T> {}