core/
cell.rs

1//! Shareable mutable containers.
2//!
3//! Rust memory safety is based on this rule: Given an object `T`, it is only possible to
4//! have one of the following:
5//!
6//! - Several immutable references (`&T`) to the object (also known as **aliasing**).
7//! - One mutable reference (`&mut T`) to the object (also known as **mutability**).
8//!
9//! This is enforced by the Rust compiler. However, there are situations where this rule is not
10//! flexible enough. Sometimes it is required to have multiple references to an object and yet
11//! mutate it.
12//!
13//! Shareable mutable containers exist to permit mutability in a controlled manner, even in the
14//! presence of aliasing. [`Cell<T>`], [`RefCell<T>`], and [`OnceCell<T>`] allow doing this in
15//! a single-threaded way—they do not implement [`Sync`]. (If you need to do aliasing and
16//! mutation among multiple threads, [`Mutex<T>`], [`RwLock<T>`], [`OnceLock<T>`] or [`atomic`]
17//! types are the correct data structures to do so).
18//!
19//! Values of the `Cell<T>`, `RefCell<T>`, and `OnceCell<T>` types may be mutated through shared
20//! references (i.e. the common `&T` type), whereas most Rust types can only be mutated through
21//! unique (`&mut T`) references. We say these cell types provide 'interior mutability'
22//! (mutable via `&T`), in contrast with typical Rust types that exhibit 'inherited mutability'
23//! (mutable only via `&mut T`).
24//!
25//! Cell types come in four flavors: `Cell<T>`, `RefCell<T>`, `OnceCell<T>`, and `LazyCell<T>`.
26//! Each provides a different way of providing safe interior mutability.
27//!
28//! ## `Cell<T>`
29//!
30//! [`Cell<T>`] implements interior mutability by moving values in and out of the cell. That is, an
31//! `&mut T` to the inner value can never be obtained, and the value itself cannot be directly
32//! obtained without replacing it with something else. Both of these rules ensure that there is
33//! never more than one reference pointing to the inner value. This type provides the following
34//! methods:
35//!
36//!  - For types that implement [`Copy`], the [`get`](Cell::get) method retrieves the current
37//!    interior value by duplicating it.
38//!  - For types that implement [`Default`], the [`take`](Cell::take) method replaces the current
39//!    interior value with [`Default::default()`] and returns the replaced value.
40//!  - All types have:
41//!    - [`replace`](Cell::replace): replaces the current interior value and returns the replaced
42//!      value.
43//!    - [`into_inner`](Cell::into_inner): this method consumes the `Cell<T>` and returns the
44//!      interior value.
45//!    - [`set`](Cell::set): this method replaces the interior value, dropping the replaced value.
46//!
47//! `Cell<T>` is typically used for more simple types where copying or moving values isn't too
48//! resource intensive (e.g. numbers), and should usually be preferred over other cell types when
49//! possible. For larger and non-copy types, `RefCell` provides some advantages.
50//!
51//! ## `RefCell<T>`
52//!
53//! [`RefCell<T>`] uses Rust's lifetimes to implement "dynamic borrowing", a process whereby one can
54//! claim temporary, exclusive, mutable access to the inner value. Borrows for `RefCell<T>`s are
55//! tracked at _runtime_, unlike Rust's native reference types which are entirely tracked
56//! statically, at compile time.
57//!
58//! An immutable reference to a `RefCell`'s inner value (`&T`) can be obtained with
59//! [`borrow`](`RefCell::borrow`), and a mutable borrow (`&mut T`) can be obtained with
60//! [`borrow_mut`](`RefCell::borrow_mut`). When these functions are called, they first verify that
61//! Rust's borrow rules will be satisfied: any number of immutable borrows are allowed or a
62//! single mutable borrow is allowed, but never both. If a borrow is attempted that would violate
63//! these rules, the thread will panic.
64//!
65//! The corresponding [`Sync`] version of `RefCell<T>` is [`RwLock<T>`].
66//!
67//! ## `OnceCell<T>`
68//!
69//! [`OnceCell<T>`] is somewhat of a hybrid of `Cell` and `RefCell` that works for values that
70//! typically only need to be set once. This means that a reference `&T` can be obtained without
71//! moving or copying the inner value (unlike `Cell`) but also without runtime checks (unlike
72//! `RefCell`). However, its value can also not be updated once set unless you have a mutable
73//! reference to the `OnceCell`.
74//!
75//! `OnceCell` provides the following methods:
76//!
77//! - [`get`](OnceCell::get): obtain a reference to the inner value
78//! - [`set`](OnceCell::set): set the inner value if it is unset (returns a `Result`)
79//! - [`get_or_init`](OnceCell::get_or_init): return the inner value, initializing it if needed
80//! - [`get_mut`](OnceCell::get_mut): provide a mutable reference to the inner value, only available
81//!   if you have a mutable reference to the cell itself.
82//!
83//! The corresponding [`Sync`] version of `OnceCell<T>` is [`OnceLock<T>`].
84//!
85//! ## `LazyCell<T, F>`
86//!
87//! A common pattern with OnceCell is, for a given OnceCell, to use the same function on every
88//! call to [`OnceCell::get_or_init`] with that cell. This is what is offered by [`LazyCell`],
89//! which pairs cells of `T` with functions of `F`, and always calls `F` before it yields `&T`.
90//! This happens implicitly by simply attempting to dereference the LazyCell to get its contents,
91//! so its use is much more transparent with a place which has been initialized by a constant.
92//!
93//! More complicated patterns that don't fit this description can be built on `OnceCell<T>` instead.
94//!
95//! `LazyCell` works by providing an implementation of `impl Deref` that calls the function,
96//! so you can just use it by dereference (e.g. `*lazy_cell` or `lazy_cell.deref()`).
97//!
98//! The corresponding [`Sync`] version of `LazyCell<T, F>` is [`LazyLock<T, F>`].
99//!
100//! # When to choose interior mutability
101//!
102//! The more common inherited mutability, where one must have unique access to mutate a value, is
103//! one of the key language elements that enables Rust to reason strongly about pointer aliasing,
104//! statically preventing crash bugs. Because of that, inherited mutability is preferred, and
105//! interior mutability is something of a last resort. Since cell types enable mutation where it
106//! would otherwise be disallowed though, there are occasions when interior mutability might be
107//! appropriate, or even *must* be used, e.g.
108//!
109//! * Introducing mutability 'inside' of something immutable
110//! * Implementation details of logically-immutable methods.
111//! * Mutating implementations of [`Clone`].
112//!
113//! ## Introducing mutability 'inside' of something immutable
114//!
115//! Many shared smart pointer types, including [`Rc<T>`] and [`Arc<T>`], provide containers that can
116//! be cloned and shared between multiple parties. Because the contained values may be
117//! multiply-aliased, they can only be borrowed with `&`, not `&mut`. Without cells it would be
118//! impossible to mutate data inside of these smart pointers at all.
119//!
120//! It's very common then to put a `RefCell<T>` inside shared pointer types to reintroduce
121//! mutability:
122//!
123//! ```
124//! use std::cell::{RefCell, RefMut};
125//! use std::collections::HashMap;
126//! use std::rc::Rc;
127//!
128//! fn main() {
129//!     let shared_map: Rc<RefCell<_>> = Rc::new(RefCell::new(HashMap::new()));
130//!     // Create a new block to limit the scope of the dynamic borrow
131//!     {
132//!         let mut map: RefMut<'_, _> = shared_map.borrow_mut();
133//!         map.insert("africa", 92388);
134//!         map.insert("kyoto", 11837);
135//!         map.insert("piccadilly", 11826);
136//!         map.insert("marbles", 38);
137//!     }
138//!
139//!     // Note that if we had not let the previous borrow of the cache fall out
140//!     // of scope then the subsequent borrow would cause a dynamic thread panic.
141//!     // This is the major hazard of using `RefCell`.
142//!     let total: i32 = shared_map.borrow().values().sum();
143//!     println!("{total}");
144//! }
145//! ```
146//!
147//! Note that this example uses `Rc<T>` and not `Arc<T>`. `RefCell<T>`s are for single-threaded
148//! scenarios. Consider using [`RwLock<T>`] or [`Mutex<T>`] if you need shared mutability in a
149//! multi-threaded situation.
150//!
151//! ## Implementation details of logically-immutable methods
152//!
153//! Occasionally it may be desirable not to expose in an API that there is mutation happening
154//! "under the hood". This may be because logically the operation is immutable, but e.g., caching
155//! forces the implementation to perform mutation; or because you must employ mutation to implement
156//! a trait method that was originally defined to take `&self`.
157//!
158//! ```
159//! # #![allow(dead_code)]
160//! use std::cell::OnceCell;
161//!
162//! struct Graph {
163//!     edges: Vec<(i32, i32)>,
164//!     span_tree_cache: OnceCell<Vec<(i32, i32)>>
165//! }
166//!
167//! impl Graph {
168//!     fn minimum_spanning_tree(&self) -> Vec<(i32, i32)> {
169//!         self.span_tree_cache
170//!             .get_or_init(|| self.calc_span_tree())
171//!             .clone()
172//!     }
173//!
174//!     fn calc_span_tree(&self) -> Vec<(i32, i32)> {
175//!         // Expensive computation goes here
176//!         vec![]
177//!     }
178//! }
179//! ```
180//!
181//! ## Mutating implementations of `Clone`
182//!
183//! This is simply a special - but common - case of the previous: hiding mutability for operations
184//! that appear to be immutable. The [`clone`](Clone::clone) method is expected to not change the
185//! source value, and is declared to take `&self`, not `&mut self`. Therefore, any mutation that
186//! happens in the `clone` method must use cell types. For example, [`Rc<T>`] maintains its
187//! reference counts within a `Cell<T>`.
188//!
189//! ```
190//! use std::cell::Cell;
191//! use std::ptr::NonNull;
192//! use std::process::abort;
193//! use std::marker::PhantomData;
194//!
195//! struct Rc<T: ?Sized> {
196//!     ptr: NonNull<RcInner<T>>,
197//!     phantom: PhantomData<RcInner<T>>,
198//! }
199//!
200//! struct RcInner<T: ?Sized> {
201//!     strong: Cell<usize>,
202//!     refcount: Cell<usize>,
203//!     value: T,
204//! }
205//!
206//! impl<T: ?Sized> Clone for Rc<T> {
207//!     fn clone(&self) -> Rc<T> {
208//!         self.inc_strong();
209//!         Rc {
210//!             ptr: self.ptr,
211//!             phantom: PhantomData,
212//!         }
213//!     }
214//! }
215//!
216//! trait RcInnerPtr<T: ?Sized> {
217//!
218//!     fn inner(&self) -> &RcInner<T>;
219//!
220//!     fn strong(&self) -> usize {
221//!         self.inner().strong.get()
222//!     }
223//!
224//!     fn inc_strong(&self) {
225//!         self.inner()
226//!             .strong
227//!             .set(self.strong()
228//!                      .checked_add(1)
229//!                      .unwrap_or_else(|| abort() ));
230//!     }
231//! }
232//!
233//! impl<T: ?Sized> RcInnerPtr<T> for Rc<T> {
234//!    fn inner(&self) -> &RcInner<T> {
235//!        unsafe {
236//!            self.ptr.as_ref()
237//!        }
238//!    }
239//! }
240//! ```
241//!
242//! [`Arc<T>`]: ../../std/sync/struct.Arc.html
243//! [`Rc<T>`]: ../../std/rc/struct.Rc.html
244//! [`RwLock<T>`]: ../../std/sync/struct.RwLock.html
245//! [`Mutex<T>`]: ../../std/sync/struct.Mutex.html
246//! [`OnceLock<T>`]: ../../std/sync/struct.OnceLock.html
247//! [`LazyLock<T, F>`]: ../../std/sync/struct.LazyLock.html
248//! [`Sync`]: ../../std/marker/trait.Sync.html
249//! [`atomic`]: crate::sync::atomic
250
251#![stable(feature = "rust1", since = "1.0.0")]
252
253use crate::cmp::Ordering;
254use crate::fmt::{self, Debug, Display};
255use crate::marker::{Destruct, PhantomData, Unsize};
256use crate::mem::{self, ManuallyDrop};
257use crate::ops::{self, CoerceUnsized, Deref, DerefMut, DerefPure, DispatchFromDyn};
258use crate::panic::const_panic;
259use crate::pin::PinCoerceUnsized;
260use crate::ptr::{self, NonNull};
261use crate::range;
262
263mod lazy;
264mod once;
265
266#[stable(feature = "lazy_cell", since = "1.80.0")]
267pub use lazy::LazyCell;
268#[stable(feature = "once_cell", since = "1.70.0")]
269pub use once::OnceCell;
270
271/// A mutable memory location.
272///
273/// # Memory layout
274///
275/// `Cell<T>` has the same [memory layout and caveats as
276/// `UnsafeCell<T>`](UnsafeCell#memory-layout). In particular, this means that
277/// `Cell<T>` has the same in-memory representation as its inner type `T`.
278///
279/// # Examples
280///
281/// In this example, you can see that `Cell<T>` enables mutation inside an
282/// immutable struct. In other words, it enables "interior mutability".
283///
284/// ```
285/// use std::cell::Cell;
286///
287/// struct SomeStruct {
288///     regular_field: u8,
289///     special_field: Cell<u8>,
290/// }
291///
292/// let my_struct = SomeStruct {
293///     regular_field: 0,
294///     special_field: Cell::new(1),
295/// };
296///
297/// let new_value = 100;
298///
299/// // ERROR: `my_struct` is immutable
300/// // my_struct.regular_field = new_value;
301///
302/// // WORKS: although `my_struct` is immutable, `special_field` is a `Cell`,
303/// // which can always be mutated
304/// my_struct.special_field.set(new_value);
305/// assert_eq!(my_struct.special_field.get(), new_value);
306/// ```
307///
308/// See the [module-level documentation](self) for more.
309#[rustc_diagnostic_item = "Cell"]
310#[stable(feature = "rust1", since = "1.0.0")]
311#[repr(transparent)]
312#[rustc_pub_transparent]
313pub struct Cell<T: ?Sized> {
314    value: UnsafeCell<T>,
315}
316
317#[stable(feature = "rust1", since = "1.0.0")]
318unsafe impl<T: ?Sized> Send for Cell<T> where T: Send {}
319
320// Note that this negative impl isn't strictly necessary for correctness,
321// as `Cell` wraps `UnsafeCell`, which is itself `!Sync`.
322// However, given how important `Cell`'s `!Sync`-ness is,
323// having an explicit negative impl is nice for documentation purposes
324// and results in nicer error messages.
325#[stable(feature = "rust1", since = "1.0.0")]
326impl<T: ?Sized> !Sync for Cell<T> {}
327
328#[stable(feature = "rust1", since = "1.0.0")]
329impl<T: Copy> Clone for Cell<T> {
330    #[inline]
331    fn clone(&self) -> Cell<T> {
332        Cell::new(self.get())
333    }
334}
335
336#[stable(feature = "rust1", since = "1.0.0")]
337#[rustc_const_unstable(feature = "const_default", issue = "143894")]
338impl<T: [const] Default> const Default for Cell<T> {
339    /// Creates a `Cell<T>`, with the `Default` value for T.
340    #[inline]
341    fn default() -> Cell<T> {
342        Cell::new(Default::default())
343    }
344}
345
346#[stable(feature = "rust1", since = "1.0.0")]
347impl<T: PartialEq + Copy> PartialEq for Cell<T> {
348    #[inline]
349    fn eq(&self, other: &Cell<T>) -> bool {
350        self.get() == other.get()
351    }
352}
353
354#[stable(feature = "cell_eq", since = "1.2.0")]
355impl<T: Eq + Copy> Eq for Cell<T> {}
356
357#[stable(feature = "cell_ord", since = "1.10.0")]
358impl<T: PartialOrd + Copy> PartialOrd for Cell<T> {
359    #[inline]
360    fn partial_cmp(&self, other: &Cell<T>) -> Option<Ordering> {
361        self.get().partial_cmp(&other.get())
362    }
363
364    #[inline]
365    fn lt(&self, other: &Cell<T>) -> bool {
366        self.get() < other.get()
367    }
368
369    #[inline]
370    fn le(&self, other: &Cell<T>) -> bool {
371        self.get() <= other.get()
372    }
373
374    #[inline]
375    fn gt(&self, other: &Cell<T>) -> bool {
376        self.get() > other.get()
377    }
378
379    #[inline]
380    fn ge(&self, other: &Cell<T>) -> bool {
381        self.get() >= other.get()
382    }
383}
384
385#[stable(feature = "cell_ord", since = "1.10.0")]
386impl<T: Ord + Copy> Ord for Cell<T> {
387    #[inline]
388    fn cmp(&self, other: &Cell<T>) -> Ordering {
389        self.get().cmp(&other.get())
390    }
391}
392
393#[stable(feature = "cell_from", since = "1.12.0")]
394#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
395impl<T> const From<T> for Cell<T> {
396    /// Creates a new `Cell<T>` containing the given value.
397    fn from(t: T) -> Cell<T> {
398        Cell::new(t)
399    }
400}
401
402impl<T> Cell<T> {
403    /// Creates a new `Cell` containing the given value.
404    ///
405    /// # Examples
406    ///
407    /// ```
408    /// use std::cell::Cell;
409    ///
410    /// let c = Cell::new(5);
411    /// ```
412    #[stable(feature = "rust1", since = "1.0.0")]
413    #[rustc_const_stable(feature = "const_cell_new", since = "1.24.0")]
414    #[inline]
415    pub const fn new(value: T) -> Cell<T> {
416        Cell { value: UnsafeCell::new(value) }
417    }
418
419    /// Sets the contained value.
420    ///
421    /// # Examples
422    ///
423    /// ```
424    /// use std::cell::Cell;
425    ///
426    /// let c = Cell::new(5);
427    ///
428    /// c.set(10);
429    /// ```
430    #[inline]
431    #[stable(feature = "rust1", since = "1.0.0")]
432    #[rustc_const_unstable(feature = "const_cell_traits", issue = "147787")]
433    pub const fn set(&self, val: T)
434    where
435        T: [const] Destruct,
436    {
437        self.replace(val);
438    }
439
440    /// Swaps the values of two `Cell`s.
441    ///
442    /// The difference with `std::mem::swap` is that this function doesn't
443    /// require a `&mut` reference.
444    ///
445    /// # Panics
446    ///
447    /// This function will panic if `self` and `other` are different `Cell`s that partially overlap.
448    /// (Using just standard library methods, it is impossible to create such partially overlapping `Cell`s.
449    /// However, unsafe code is allowed to e.g. create two `&Cell<[i32; 2]>` that partially overlap.)
450    ///
451    /// # Examples
452    ///
453    /// ```
454    /// use std::cell::Cell;
455    ///
456    /// let c1 = Cell::new(5i32);
457    /// let c2 = Cell::new(10i32);
458    /// c1.swap(&c2);
459    /// assert_eq!(10, c1.get());
460    /// assert_eq!(5, c2.get());
461    /// ```
462    #[inline]
463    #[stable(feature = "move_cell", since = "1.17.0")]
464    pub fn swap(&self, other: &Self) {
465        // This function documents that it *will* panic, and intrinsics::is_nonoverlapping doesn't
466        // do the check in const, so trying to use it here would be inviting unnecessary fragility.
467        fn is_nonoverlapping<T>(src: *const T, dst: *const T) -> bool {
468            let src_usize = src.addr();
469            let dst_usize = dst.addr();
470            let diff = src_usize.abs_diff(dst_usize);
471            diff >= size_of::<T>()
472        }
473
474        if ptr::eq(self, other) {
475            // Swapping wouldn't change anything.
476            return;
477        }
478        if !is_nonoverlapping(self, other) {
479            // See <https://github.com/rust-lang/rust/issues/80778> for why we need to stop here.
480            panic!("`Cell::swap` on overlapping non-identical `Cell`s");
481        }
482        // SAFETY: This can be risky if called from separate threads, but `Cell`
483        // is `!Sync` so this won't happen. This also won't invalidate any
484        // pointers since `Cell` makes sure nothing else will be pointing into
485        // either of these `Cell`s. We also excluded shenanigans like partially overlapping `Cell`s,
486        // so `swap` will just properly copy two full values of type `T` back and forth.
487        unsafe {
488            mem::swap(&mut *self.value.get(), &mut *other.value.get());
489        }
490    }
491
492    /// Replaces the contained value with `val`, and returns the old contained value.
493    ///
494    /// # Examples
495    ///
496    /// ```
497    /// use std::cell::Cell;
498    ///
499    /// let cell = Cell::new(5);
500    /// assert_eq!(cell.get(), 5);
501    /// assert_eq!(cell.replace(10), 5);
502    /// assert_eq!(cell.get(), 10);
503    /// ```
504    #[inline]
505    #[stable(feature = "move_cell", since = "1.17.0")]
506    #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
507    #[rustc_confusables("swap")]
508    pub const fn replace(&self, val: T) -> T {
509        // SAFETY: This can cause data races if called from a separate thread,
510        // but `Cell` is `!Sync` so this won't happen.
511        mem::replace(unsafe { &mut *self.value.get() }, val)
512    }
513
514    /// Unwraps the value, consuming the cell.
515    ///
516    /// # Examples
517    ///
518    /// ```
519    /// use std::cell::Cell;
520    ///
521    /// let c = Cell::new(5);
522    /// let five = c.into_inner();
523    ///
524    /// assert_eq!(five, 5);
525    /// ```
526    #[stable(feature = "move_cell", since = "1.17.0")]
527    #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
528    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
529    pub const fn into_inner(self) -> T {
530        self.value.into_inner()
531    }
532}
533
534impl<T: Copy> Cell<T> {
535    /// Returns a copy of the contained value.
536    ///
537    /// # Examples
538    ///
539    /// ```
540    /// use std::cell::Cell;
541    ///
542    /// let c = Cell::new(5);
543    ///
544    /// let five = c.get();
545    /// ```
546    #[inline]
547    #[stable(feature = "rust1", since = "1.0.0")]
548    #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
549    pub const fn get(&self) -> T {
550        // SAFETY: This can cause data races if called from a separate thread,
551        // but `Cell` is `!Sync` so this won't happen.
552        unsafe { *self.value.get() }
553    }
554
555    /// Updates the contained value using a function.
556    ///
557    /// # Examples
558    ///
559    /// ```
560    /// use std::cell::Cell;
561    ///
562    /// let c = Cell::new(5);
563    /// c.update(|x| x + 1);
564    /// assert_eq!(c.get(), 6);
565    /// ```
566    #[inline]
567    #[stable(feature = "cell_update", since = "1.88.0")]
568    #[rustc_const_unstable(feature = "const_cell_traits", issue = "147787")]
569    pub const fn update(&self, f: impl [const] FnOnce(T) -> T)
570    where
571        // FIXME(const-hack): `Copy` should imply `const Destruct`
572        T: [const] Destruct,
573    {
574        let old = self.get();
575        self.set(f(old));
576    }
577}
578
579impl<T: ?Sized> Cell<T> {
580    /// Returns a raw pointer to the underlying data in this cell.
581    ///
582    /// # Examples
583    ///
584    /// ```
585    /// use std::cell::Cell;
586    ///
587    /// let c = Cell::new(5);
588    ///
589    /// let ptr = c.as_ptr();
590    /// ```
591    #[inline]
592    #[stable(feature = "cell_as_ptr", since = "1.12.0")]
593    #[rustc_const_stable(feature = "const_cell_as_ptr", since = "1.32.0")]
594    #[rustc_as_ptr]
595    #[rustc_never_returns_null_ptr]
596    pub const fn as_ptr(&self) -> *mut T {
597        self.value.get()
598    }
599
600    /// Returns a mutable reference to the underlying data.
601    ///
602    /// This call borrows `Cell` mutably (at compile-time) which guarantees
603    /// that we possess the only reference.
604    ///
605    /// However be cautious: this method expects `self` to be mutable, which is
606    /// generally not the case when using a `Cell`. If you require interior
607    /// mutability by reference, consider using `RefCell` which provides
608    /// run-time checked mutable borrows through its [`borrow_mut`] method.
609    ///
610    /// [`borrow_mut`]: RefCell::borrow_mut()
611    ///
612    /// # Examples
613    ///
614    /// ```
615    /// use std::cell::Cell;
616    ///
617    /// let mut c = Cell::new(5);
618    /// *c.get_mut() += 1;
619    ///
620    /// assert_eq!(c.get(), 6);
621    /// ```
622    #[inline]
623    #[stable(feature = "cell_get_mut", since = "1.11.0")]
624    #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
625    pub const fn get_mut(&mut self) -> &mut T {
626        self.value.get_mut()
627    }
628
629    /// Returns a `&Cell<T>` from a `&mut T`
630    ///
631    /// # Examples
632    ///
633    /// ```
634    /// use std::cell::Cell;
635    ///
636    /// let slice: &mut [i32] = &mut [1, 2, 3];
637    /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
638    /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
639    ///
640    /// assert_eq!(slice_cell.len(), 3);
641    /// ```
642    #[inline]
643    #[stable(feature = "as_cell", since = "1.37.0")]
644    #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
645    pub const fn from_mut(t: &mut T) -> &Cell<T> {
646        // SAFETY: `&mut` ensures unique access.
647        unsafe { &*(t as *mut T as *const Cell<T>) }
648    }
649}
650
651impl<T: Default> Cell<T> {
652    /// Takes the value of the cell, leaving `Default::default()` in its place.
653    ///
654    /// # Examples
655    ///
656    /// ```
657    /// use std::cell::Cell;
658    ///
659    /// let c = Cell::new(5);
660    /// let five = c.take();
661    ///
662    /// assert_eq!(five, 5);
663    /// assert_eq!(c.into_inner(), 0);
664    /// ```
665    #[stable(feature = "move_cell", since = "1.17.0")]
666    #[rustc_const_unstable(feature = "const_cell_traits", issue = "147787")]
667    pub const fn take(&self) -> T
668    where
669        T: [const] Default,
670    {
671        self.replace(Default::default())
672    }
673}
674
675#[unstable(feature = "coerce_unsized", issue = "18598")]
676impl<T: CoerceUnsized<U>, U> CoerceUnsized<Cell<U>> for Cell<T> {}
677
678// Allow types that wrap `Cell` to also implement `DispatchFromDyn`
679// and become dyn-compatible method receivers.
680// Note that currently `Cell` itself cannot be a method receiver
681// because it does not implement Deref.
682// In other words:
683// `self: Cell<&Self>` won't work
684// `self: CellWrapper<Self>` becomes possible
685#[unstable(feature = "dispatch_from_dyn", issue = "none")]
686impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<Cell<U>> for Cell<T> {}
687
688impl<T> Cell<[T]> {
689    /// Returns a `&[Cell<T>]` from a `&Cell<[T]>`
690    ///
691    /// # Examples
692    ///
693    /// ```
694    /// use std::cell::Cell;
695    ///
696    /// let slice: &mut [i32] = &mut [1, 2, 3];
697    /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
698    /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
699    ///
700    /// assert_eq!(slice_cell.len(), 3);
701    /// ```
702    #[stable(feature = "as_cell", since = "1.37.0")]
703    #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
704    pub const fn as_slice_of_cells(&self) -> &[Cell<T>] {
705        // SAFETY: `Cell<T>` has the same memory layout as `T`.
706        unsafe { &*(self as *const Cell<[T]> as *const [Cell<T>]) }
707    }
708}
709
710impl<T, const N: usize> Cell<[T; N]> {
711    /// Returns a `&[Cell<T>; N]` from a `&Cell<[T; N]>`
712    ///
713    /// # Examples
714    ///
715    /// ```
716    /// use std::cell::Cell;
717    ///
718    /// let mut array: [i32; 3] = [1, 2, 3];
719    /// let cell_array: &Cell<[i32; 3]> = Cell::from_mut(&mut array);
720    /// let array_cell: &[Cell<i32>; 3] = cell_array.as_array_of_cells();
721    /// ```
722    #[stable(feature = "as_array_of_cells", since = "1.91.0")]
723    #[rustc_const_stable(feature = "as_array_of_cells", since = "1.91.0")]
724    pub const fn as_array_of_cells(&self) -> &[Cell<T>; N] {
725        // SAFETY: `Cell<T>` has the same memory layout as `T`.
726        unsafe { &*(self as *const Cell<[T; N]> as *const [Cell<T>; N]) }
727    }
728}
729
730/// Types for which cloning `Cell<Self>` is sound.
731///
732/// # Safety
733///
734/// Implementing this trait for a type is sound if and only if the following code is sound for T =
735/// that type.
736///
737/// ```
738/// #![feature(cell_get_cloned)]
739/// # use std::cell::{CloneFromCell, Cell};
740/// fn clone_from_cell<T: CloneFromCell>(cell: &Cell<T>) -> T {
741///     unsafe { T::clone(&*cell.as_ptr()) }
742/// }
743/// ```
744///
745/// Importantly, you can't just implement `CloneFromCell` for any arbitrary `Copy` type, e.g. the
746/// following is unsound:
747///
748/// ```rust
749/// #![feature(cell_get_cloned)]
750/// # use std::cell::Cell;
751///
752/// #[derive(Copy, Debug)]
753/// pub struct Bad<'a>(Option<&'a Cell<Bad<'a>>>, u8);
754///
755/// impl Clone for Bad<'_> {
756///     fn clone(&self) -> Self {
757///         let a: &u8 = &self.1;
758///         // when self.0 points to self, we write to self.1 while we have a live `&u8` pointing to
759///         // it -- this is UB
760///         self.0.unwrap().set(Self(None, 1));
761///         dbg!((a, self));
762///         Self(None, 0)
763///     }
764/// }
765///
766/// // this is not sound
767/// // unsafe impl CloneFromCell for Bad<'_> {}
768/// ```
769#[unstable(feature = "cell_get_cloned", issue = "145329")]
770// Allow potential overlapping implementations in user code
771#[marker]
772pub unsafe trait CloneFromCell: Clone {}
773
774// `CloneFromCell` can be implemented for types that don't have indirection and which don't access
775// `Cell`s in their `Clone` implementation. A commonly-used subset is covered here.
776#[unstable(feature = "cell_get_cloned", issue = "145329")]
777unsafe impl<T: CloneFromCell, const N: usize> CloneFromCell for [T; N] {}
778#[unstable(feature = "cell_get_cloned", issue = "145329")]
779unsafe impl<T: CloneFromCell> CloneFromCell for Option<T> {}
780#[unstable(feature = "cell_get_cloned", issue = "145329")]
781unsafe impl<T: CloneFromCell, E: CloneFromCell> CloneFromCell for Result<T, E> {}
782#[unstable(feature = "cell_get_cloned", issue = "145329")]
783unsafe impl<T: ?Sized> CloneFromCell for PhantomData<T> {}
784#[unstable(feature = "cell_get_cloned", issue = "145329")]
785unsafe impl<T: CloneFromCell> CloneFromCell for ManuallyDrop<T> {}
786#[unstable(feature = "cell_get_cloned", issue = "145329")]
787unsafe impl<T: CloneFromCell> CloneFromCell for ops::Range<T> {}
788#[unstable(feature = "cell_get_cloned", issue = "145329")]
789unsafe impl<T: CloneFromCell> CloneFromCell for range::Range<T> {}
790
791#[unstable(feature = "cell_get_cloned", issue = "145329")]
792impl<T: CloneFromCell> Cell<T> {
793    /// Get a clone of the `Cell` that contains a copy of the original value.
794    ///
795    /// This allows a cheaply `Clone`-able type like an `Rc` to be stored in a `Cell`, exposing the
796    /// cheaper `clone()` method.
797    ///
798    /// # Examples
799    ///
800    /// ```
801    /// #![feature(cell_get_cloned)]
802    ///
803    /// use core::cell::Cell;
804    /// use std::rc::Rc;
805    ///
806    /// let rc = Rc::new(1usize);
807    /// let c1 = Cell::new(rc);
808    /// let c2 = c1.get_cloned();
809    /// assert_eq!(*c2.into_inner(), 1);
810    /// ```
811    pub fn get_cloned(&self) -> Self {
812        // SAFETY: T is CloneFromCell, which guarantees that this is sound.
813        Cell::new(T::clone(unsafe { &*self.as_ptr() }))
814    }
815}
816
817/// A mutable memory location with dynamically checked borrow rules
818///
819/// See the [module-level documentation](self) for more.
820#[rustc_diagnostic_item = "RefCell"]
821#[stable(feature = "rust1", since = "1.0.0")]
822pub struct RefCell<T: ?Sized> {
823    borrow: Cell<BorrowCounter>,
824    // Stores the location of the earliest currently active borrow.
825    // This gets updated whenever we go from having zero borrows
826    // to having a single borrow. When a borrow occurs, this gets included
827    // in the generated `BorrowError`/`BorrowMutError`
828    #[cfg(feature = "debug_refcell")]
829    borrowed_at: Cell<Option<&'static crate::panic::Location<'static>>>,
830    value: UnsafeCell<T>,
831}
832
833/// An error returned by [`RefCell::try_borrow`].
834#[stable(feature = "try_borrow", since = "1.13.0")]
835#[non_exhaustive]
836#[derive(Debug)]
837pub struct BorrowError {
838    #[cfg(feature = "debug_refcell")]
839    location: &'static crate::panic::Location<'static>,
840}
841
842#[stable(feature = "try_borrow", since = "1.13.0")]
843impl Display for BorrowError {
844    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
845        #[cfg(feature = "debug_refcell")]
846        let res = write!(
847            f,
848            "RefCell already mutably borrowed; a previous borrow was at {}",
849            self.location
850        );
851
852        #[cfg(not(feature = "debug_refcell"))]
853        let res = Display::fmt("RefCell already mutably borrowed", f);
854
855        res
856    }
857}
858
859/// An error returned by [`RefCell::try_borrow_mut`].
860#[stable(feature = "try_borrow", since = "1.13.0")]
861#[non_exhaustive]
862#[derive(Debug)]
863pub struct BorrowMutError {
864    #[cfg(feature = "debug_refcell")]
865    location: &'static crate::panic::Location<'static>,
866}
867
868#[stable(feature = "try_borrow", since = "1.13.0")]
869impl Display for BorrowMutError {
870    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
871        #[cfg(feature = "debug_refcell")]
872        let res = write!(f, "RefCell already borrowed; a previous borrow was at {}", self.location);
873
874        #[cfg(not(feature = "debug_refcell"))]
875        let res = Display::fmt("RefCell already borrowed", f);
876
877        res
878    }
879}
880
881// This ensures the panicking code is outlined from `borrow_mut` for `RefCell`.
882#[cfg_attr(not(panic = "immediate-abort"), inline(never))]
883#[track_caller]
884#[cold]
885const fn panic_already_borrowed(err: BorrowMutError) -> ! {
886    const_panic!(
887        "RefCell already borrowed",
888        "{err}",
889        err: BorrowMutError = err,
890    )
891}
892
893// This ensures the panicking code is outlined from `borrow` for `RefCell`.
894#[cfg_attr(not(panic = "immediate-abort"), inline(never))]
895#[track_caller]
896#[cold]
897const fn panic_already_mutably_borrowed(err: BorrowError) -> ! {
898    const_panic!(
899        "RefCell already mutably borrowed",
900        "{err}",
901        err: BorrowError = err,
902    )
903}
904
905// Positive values represent the number of `Ref` active. Negative values
906// represent the number of `RefMut` active. Multiple `RefMut`s can only be
907// active at a time if they refer to distinct, nonoverlapping components of a
908// `RefCell` (e.g., different ranges of a slice).
909//
910// `Ref` and `RefMut` are both two words in size, and so there will likely never
911// be enough `Ref`s or `RefMut`s in existence to overflow half of the `usize`
912// range. Thus, a `BorrowCounter` will probably never overflow or underflow.
913// However, this is not a guarantee, as a pathological program could repeatedly
914// create and then mem::forget `Ref`s or `RefMut`s. Thus, all code must
915// explicitly check for overflow and underflow in order to avoid unsafety, or at
916// least behave correctly in the event that overflow or underflow happens (e.g.,
917// see BorrowRef::new).
918type BorrowCounter = isize;
919const UNUSED: BorrowCounter = 0;
920
921#[inline(always)]
922const fn is_writing(x: BorrowCounter) -> bool {
923    x < UNUSED
924}
925
926#[inline(always)]
927const fn is_reading(x: BorrowCounter) -> bool {
928    x > UNUSED
929}
930
931impl<T> RefCell<T> {
932    /// Creates a new `RefCell` containing `value`.
933    ///
934    /// # Examples
935    ///
936    /// ```
937    /// use std::cell::RefCell;
938    ///
939    /// let c = RefCell::new(5);
940    /// ```
941    #[stable(feature = "rust1", since = "1.0.0")]
942    #[rustc_const_stable(feature = "const_refcell_new", since = "1.24.0")]
943    #[inline]
944    pub const fn new(value: T) -> RefCell<T> {
945        RefCell {
946            value: UnsafeCell::new(value),
947            borrow: Cell::new(UNUSED),
948            #[cfg(feature = "debug_refcell")]
949            borrowed_at: Cell::new(None),
950        }
951    }
952
953    /// Consumes the `RefCell`, returning the wrapped value.
954    ///
955    /// # Examples
956    ///
957    /// ```
958    /// use std::cell::RefCell;
959    ///
960    /// let c = RefCell::new(5);
961    ///
962    /// let five = c.into_inner();
963    /// ```
964    #[stable(feature = "rust1", since = "1.0.0")]
965    #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
966    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
967    #[inline]
968    pub const fn into_inner(self) -> T {
969        // Since this function takes `self` (the `RefCell`) by value, the
970        // compiler statically verifies that it is not currently borrowed.
971        self.value.into_inner()
972    }
973
974    /// Replaces the wrapped value with a new one, returning the old value,
975    /// without deinitializing either one.
976    ///
977    /// This function corresponds to [`std::mem::replace`](../mem/fn.replace.html).
978    ///
979    /// # Panics
980    ///
981    /// Panics if the value is currently borrowed.
982    ///
983    /// # Examples
984    ///
985    /// ```
986    /// use std::cell::RefCell;
987    /// let cell = RefCell::new(5);
988    /// let old_value = cell.replace(6);
989    /// assert_eq!(old_value, 5);
990    /// assert_eq!(cell, RefCell::new(6));
991    /// ```
992    #[inline]
993    #[stable(feature = "refcell_replace", since = "1.24.0")]
994    #[track_caller]
995    #[rustc_confusables("swap")]
996    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
997    pub const fn replace(&self, t: T) -> T {
998        mem::replace(&mut self.borrow_mut(), t)
999    }
1000
1001    /// Replaces the wrapped value with a new one computed from `f`, returning
1002    /// the old value, without deinitializing either one.
1003    ///
1004    /// # Panics
1005    ///
1006    /// Panics if the value is currently borrowed.
1007    ///
1008    /// # Examples
1009    ///
1010    /// ```
1011    /// use std::cell::RefCell;
1012    /// let cell = RefCell::new(5);
1013    /// let old_value = cell.replace_with(|&mut old| old + 1);
1014    /// assert_eq!(old_value, 5);
1015    /// assert_eq!(cell, RefCell::new(6));
1016    /// ```
1017    #[inline]
1018    #[stable(feature = "refcell_replace_swap", since = "1.35.0")]
1019    #[track_caller]
1020    pub fn replace_with<F: FnOnce(&mut T) -> T>(&self, f: F) -> T {
1021        let mut_borrow = &mut *self.borrow_mut();
1022        let replacement = f(mut_borrow);
1023        mem::replace(mut_borrow, replacement)
1024    }
1025
1026    /// Swaps the wrapped value of `self` with the wrapped value of `other`,
1027    /// without deinitializing either one.
1028    ///
1029    /// This function corresponds to [`std::mem::swap`](../mem/fn.swap.html).
1030    ///
1031    /// # Panics
1032    ///
1033    /// Panics if the value in either `RefCell` is currently borrowed, or
1034    /// if `self` and `other` point to the same `RefCell`.
1035    ///
1036    /// # Examples
1037    ///
1038    /// ```
1039    /// use std::cell::RefCell;
1040    /// let c = RefCell::new(5);
1041    /// let d = RefCell::new(6);
1042    /// c.swap(&d);
1043    /// assert_eq!(c, RefCell::new(6));
1044    /// assert_eq!(d, RefCell::new(5));
1045    /// ```
1046    #[inline]
1047    #[stable(feature = "refcell_swap", since = "1.24.0")]
1048    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1049    pub const fn swap(&self, other: &Self) {
1050        mem::swap(&mut *self.borrow_mut(), &mut *other.borrow_mut())
1051    }
1052}
1053
1054impl<T: ?Sized> RefCell<T> {
1055    /// Immutably borrows the wrapped value.
1056    ///
1057    /// The borrow lasts until the returned `Ref` exits scope. Multiple
1058    /// immutable borrows can be taken out at the same time.
1059    ///
1060    /// # Panics
1061    ///
1062    /// Panics if the value is currently mutably borrowed. For a non-panicking variant, use
1063    /// [`try_borrow`](#method.try_borrow).
1064    ///
1065    /// # Examples
1066    ///
1067    /// ```
1068    /// use std::cell::RefCell;
1069    ///
1070    /// let c = RefCell::new(5);
1071    ///
1072    /// let borrowed_five = c.borrow();
1073    /// let borrowed_five2 = c.borrow();
1074    /// ```
1075    ///
1076    /// An example of panic:
1077    ///
1078    /// ```should_panic
1079    /// use std::cell::RefCell;
1080    ///
1081    /// let c = RefCell::new(5);
1082    ///
1083    /// let m = c.borrow_mut();
1084    /// let b = c.borrow(); // this causes a panic
1085    /// ```
1086    #[stable(feature = "rust1", since = "1.0.0")]
1087    #[inline]
1088    #[track_caller]
1089    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1090    pub const fn borrow(&self) -> Ref<'_, T> {
1091        match self.try_borrow() {
1092            Ok(b) => b,
1093            Err(err) => panic_already_mutably_borrowed(err),
1094        }
1095    }
1096
1097    /// Immutably borrows the wrapped value, returning an error if the value is currently mutably
1098    /// borrowed.
1099    ///
1100    /// The borrow lasts until the returned `Ref` exits scope. Multiple immutable borrows can be
1101    /// taken out at the same time.
1102    ///
1103    /// This is the non-panicking variant of [`borrow`](#method.borrow).
1104    ///
1105    /// # Examples
1106    ///
1107    /// ```
1108    /// use std::cell::RefCell;
1109    ///
1110    /// let c = RefCell::new(5);
1111    ///
1112    /// {
1113    ///     let m = c.borrow_mut();
1114    ///     assert!(c.try_borrow().is_err());
1115    /// }
1116    ///
1117    /// {
1118    ///     let m = c.borrow();
1119    ///     assert!(c.try_borrow().is_ok());
1120    /// }
1121    /// ```
1122    #[stable(feature = "try_borrow", since = "1.13.0")]
1123    #[inline]
1124    #[cfg_attr(feature = "debug_refcell", track_caller)]
1125    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1126    pub const fn try_borrow(&self) -> Result<Ref<'_, T>, BorrowError> {
1127        match BorrowRef::new(&self.borrow) {
1128            Some(b) => {
1129                #[cfg(feature = "debug_refcell")]
1130                {
1131                    // `borrowed_at` is always the *first* active borrow
1132                    if b.borrow.get() == 1 {
1133                        self.borrowed_at.replace(Some(crate::panic::Location::caller()));
1134                    }
1135                }
1136
1137                // SAFETY: `BorrowRef` ensures that there is only immutable access
1138                // to the value while borrowed.
1139                let value = unsafe { NonNull::new_unchecked(self.value.get()) };
1140                Ok(Ref { value, borrow: b })
1141            }
1142            None => Err(BorrowError {
1143                // If a borrow occurred, then we must already have an outstanding borrow,
1144                // so `borrowed_at` will be `Some`
1145                #[cfg(feature = "debug_refcell")]
1146                location: self.borrowed_at.get().unwrap(),
1147            }),
1148        }
1149    }
1150
1151    /// Mutably borrows the wrapped value.
1152    ///
1153    /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
1154    /// from it exit scope. The value cannot be borrowed while this borrow is
1155    /// active.
1156    ///
1157    /// # Panics
1158    ///
1159    /// Panics if the value is currently borrowed. For a non-panicking variant, use
1160    /// [`try_borrow_mut`](#method.try_borrow_mut).
1161    ///
1162    /// # Examples
1163    ///
1164    /// ```
1165    /// use std::cell::RefCell;
1166    ///
1167    /// let c = RefCell::new("hello".to_owned());
1168    ///
1169    /// *c.borrow_mut() = "bonjour".to_owned();
1170    ///
1171    /// assert_eq!(&*c.borrow(), "bonjour");
1172    /// ```
1173    ///
1174    /// An example of panic:
1175    ///
1176    /// ```should_panic
1177    /// use std::cell::RefCell;
1178    ///
1179    /// let c = RefCell::new(5);
1180    /// let m = c.borrow();
1181    ///
1182    /// let b = c.borrow_mut(); // this causes a panic
1183    /// ```
1184    #[stable(feature = "rust1", since = "1.0.0")]
1185    #[inline]
1186    #[track_caller]
1187    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1188    pub const fn borrow_mut(&self) -> RefMut<'_, T> {
1189        match self.try_borrow_mut() {
1190            Ok(b) => b,
1191            Err(err) => panic_already_borrowed(err),
1192        }
1193    }
1194
1195    /// Mutably borrows the wrapped value, returning an error if the value is currently borrowed.
1196    ///
1197    /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
1198    /// from it exit scope. The value cannot be borrowed while this borrow is
1199    /// active.
1200    ///
1201    /// This is the non-panicking variant of [`borrow_mut`](#method.borrow_mut).
1202    ///
1203    /// # Examples
1204    ///
1205    /// ```
1206    /// use std::cell::RefCell;
1207    ///
1208    /// let c = RefCell::new(5);
1209    ///
1210    /// {
1211    ///     let m = c.borrow();
1212    ///     assert!(c.try_borrow_mut().is_err());
1213    /// }
1214    ///
1215    /// assert!(c.try_borrow_mut().is_ok());
1216    /// ```
1217    #[stable(feature = "try_borrow", since = "1.13.0")]
1218    #[inline]
1219    #[cfg_attr(feature = "debug_refcell", track_caller)]
1220    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1221    pub const fn try_borrow_mut(&self) -> Result<RefMut<'_, T>, BorrowMutError> {
1222        match BorrowRefMut::new(&self.borrow) {
1223            Some(b) => {
1224                #[cfg(feature = "debug_refcell")]
1225                {
1226                    self.borrowed_at.replace(Some(crate::panic::Location::caller()));
1227                }
1228
1229                // SAFETY: `BorrowRefMut` guarantees unique access.
1230                let value = unsafe { NonNull::new_unchecked(self.value.get()) };
1231                Ok(RefMut { value, borrow: b, marker: PhantomData })
1232            }
1233            None => Err(BorrowMutError {
1234                // If a borrow occurred, then we must already have an outstanding borrow,
1235                // so `borrowed_at` will be `Some`
1236                #[cfg(feature = "debug_refcell")]
1237                location: self.borrowed_at.get().unwrap(),
1238            }),
1239        }
1240    }
1241
1242    /// Returns a raw pointer to the underlying data in this cell.
1243    ///
1244    /// # Examples
1245    ///
1246    /// ```
1247    /// use std::cell::RefCell;
1248    ///
1249    /// let c = RefCell::new(5);
1250    ///
1251    /// let ptr = c.as_ptr();
1252    /// ```
1253    #[inline]
1254    #[stable(feature = "cell_as_ptr", since = "1.12.0")]
1255    #[rustc_as_ptr]
1256    #[rustc_never_returns_null_ptr]
1257    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1258    pub const fn as_ptr(&self) -> *mut T {
1259        self.value.get()
1260    }
1261
1262    /// Returns a mutable reference to the underlying data.
1263    ///
1264    /// Since this method borrows `RefCell` mutably, it is statically guaranteed
1265    /// that no borrows to the underlying data exist. The dynamic checks inherent
1266    /// in [`borrow_mut`] and most other methods of `RefCell` are therefore
1267    /// unnecessary. Note that this method does not reset the borrowing state if borrows were previously leaked
1268    /// (e.g., via [`forget()`] on a [`Ref`] or [`RefMut`]). For that purpose,
1269    /// consider using the unstable [`undo_leak`] method.
1270    ///
1271    /// This method can only be called if `RefCell` can be mutably borrowed,
1272    /// which in general is only the case directly after the `RefCell` has
1273    /// been created. In these situations, skipping the aforementioned dynamic
1274    /// borrowing checks may yield better ergonomics and runtime-performance.
1275    ///
1276    /// In most situations where `RefCell` is used, it can't be borrowed mutably.
1277    /// Use [`borrow_mut`] to get mutable access to the underlying data then.
1278    ///
1279    /// [`borrow_mut`]: RefCell::borrow_mut()
1280    /// [`forget()`]: mem::forget
1281    /// [`undo_leak`]: RefCell::undo_leak()
1282    ///
1283    /// # Examples
1284    ///
1285    /// ```
1286    /// use std::cell::RefCell;
1287    ///
1288    /// let mut c = RefCell::new(5);
1289    /// *c.get_mut() += 1;
1290    ///
1291    /// assert_eq!(c, RefCell::new(6));
1292    /// ```
1293    #[inline]
1294    #[stable(feature = "cell_get_mut", since = "1.11.0")]
1295    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1296    pub const fn get_mut(&mut self) -> &mut T {
1297        self.value.get_mut()
1298    }
1299
1300    /// Undo the effect of leaked guards on the borrow state of the `RefCell`.
1301    ///
1302    /// This call is similar to [`get_mut`] but more specialized. It borrows `RefCell` mutably to
1303    /// ensure no borrows exist and then resets the state tracking shared borrows. This is relevant
1304    /// if some `Ref` or `RefMut` borrows have been leaked.
1305    ///
1306    /// [`get_mut`]: RefCell::get_mut()
1307    ///
1308    /// # Examples
1309    ///
1310    /// ```
1311    /// #![feature(cell_leak)]
1312    /// use std::cell::RefCell;
1313    ///
1314    /// let mut c = RefCell::new(0);
1315    /// std::mem::forget(c.borrow_mut());
1316    ///
1317    /// assert!(c.try_borrow().is_err());
1318    /// c.undo_leak();
1319    /// assert!(c.try_borrow().is_ok());
1320    /// ```
1321    #[unstable(feature = "cell_leak", issue = "69099")]
1322    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1323    pub const fn undo_leak(&mut self) -> &mut T {
1324        *self.borrow.get_mut() = UNUSED;
1325        self.get_mut()
1326    }
1327
1328    /// Immutably borrows the wrapped value, returning an error if the value is
1329    /// currently mutably borrowed.
1330    ///
1331    /// # Safety
1332    ///
1333    /// Unlike `RefCell::borrow`, this method is unsafe because it does not
1334    /// return a `Ref`, thus leaving the borrow flag untouched. Mutably
1335    /// borrowing the `RefCell` while the reference returned by this method
1336    /// is alive is undefined behavior.
1337    ///
1338    /// # Examples
1339    ///
1340    /// ```
1341    /// use std::cell::RefCell;
1342    ///
1343    /// let c = RefCell::new(5);
1344    ///
1345    /// {
1346    ///     let m = c.borrow_mut();
1347    ///     assert!(unsafe { c.try_borrow_unguarded() }.is_err());
1348    /// }
1349    ///
1350    /// {
1351    ///     let m = c.borrow();
1352    ///     assert!(unsafe { c.try_borrow_unguarded() }.is_ok());
1353    /// }
1354    /// ```
1355    #[stable(feature = "borrow_state", since = "1.37.0")]
1356    #[inline]
1357    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1358    pub const unsafe fn try_borrow_unguarded(&self) -> Result<&T, BorrowError> {
1359        if !is_writing(self.borrow.get()) {
1360            // SAFETY: We check that nobody is actively writing now, but it is
1361            // the caller's responsibility to ensure that nobody writes until
1362            // the returned reference is no longer in use.
1363            // Also, `self.value.get()` refers to the value owned by `self`
1364            // and is thus guaranteed to be valid for the lifetime of `self`.
1365            Ok(unsafe { &*self.value.get() })
1366        } else {
1367            Err(BorrowError {
1368                // If a borrow occurred, then we must already have an outstanding borrow,
1369                // so `borrowed_at` will be `Some`
1370                #[cfg(feature = "debug_refcell")]
1371                location: self.borrowed_at.get().unwrap(),
1372            })
1373        }
1374    }
1375}
1376
1377impl<T: Default> RefCell<T> {
1378    /// Takes the wrapped value, leaving `Default::default()` in its place.
1379    ///
1380    /// # Panics
1381    ///
1382    /// Panics if the value is currently borrowed.
1383    ///
1384    /// # Examples
1385    ///
1386    /// ```
1387    /// use std::cell::RefCell;
1388    ///
1389    /// let c = RefCell::new(5);
1390    /// let five = c.take();
1391    ///
1392    /// assert_eq!(five, 5);
1393    /// assert_eq!(c.into_inner(), 0);
1394    /// ```
1395    #[stable(feature = "refcell_take", since = "1.50.0")]
1396    pub fn take(&self) -> T {
1397        self.replace(Default::default())
1398    }
1399}
1400
1401#[stable(feature = "rust1", since = "1.0.0")]
1402unsafe impl<T: ?Sized> Send for RefCell<T> where T: Send {}
1403
1404#[stable(feature = "rust1", since = "1.0.0")]
1405impl<T: ?Sized> !Sync for RefCell<T> {}
1406
1407#[stable(feature = "rust1", since = "1.0.0")]
1408impl<T: Clone> Clone for RefCell<T> {
1409    /// # Panics
1410    ///
1411    /// Panics if the value is currently mutably borrowed.
1412    #[inline]
1413    #[track_caller]
1414    fn clone(&self) -> RefCell<T> {
1415        RefCell::new(self.borrow().clone())
1416    }
1417
1418    /// # Panics
1419    ///
1420    /// Panics if `source` is currently mutably borrowed.
1421    #[inline]
1422    #[track_caller]
1423    fn clone_from(&mut self, source: &Self) {
1424        self.get_mut().clone_from(&source.borrow())
1425    }
1426}
1427
1428#[stable(feature = "rust1", since = "1.0.0")]
1429#[rustc_const_unstable(feature = "const_default", issue = "143894")]
1430impl<T: [const] Default> const Default for RefCell<T> {
1431    /// Creates a `RefCell<T>`, with the `Default` value for T.
1432    #[inline]
1433    fn default() -> RefCell<T> {
1434        RefCell::new(Default::default())
1435    }
1436}
1437
1438#[stable(feature = "rust1", since = "1.0.0")]
1439impl<T: ?Sized + PartialEq> PartialEq for RefCell<T> {
1440    /// # Panics
1441    ///
1442    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1443    #[inline]
1444    fn eq(&self, other: &RefCell<T>) -> bool {
1445        *self.borrow() == *other.borrow()
1446    }
1447}
1448
1449#[stable(feature = "cell_eq", since = "1.2.0")]
1450impl<T: ?Sized + Eq> Eq for RefCell<T> {}
1451
1452#[stable(feature = "cell_ord", since = "1.10.0")]
1453impl<T: ?Sized + PartialOrd> PartialOrd for RefCell<T> {
1454    /// # Panics
1455    ///
1456    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1457    #[inline]
1458    fn partial_cmp(&self, other: &RefCell<T>) -> Option<Ordering> {
1459        self.borrow().partial_cmp(&*other.borrow())
1460    }
1461
1462    /// # Panics
1463    ///
1464    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1465    #[inline]
1466    fn lt(&self, other: &RefCell<T>) -> bool {
1467        *self.borrow() < *other.borrow()
1468    }
1469
1470    /// # Panics
1471    ///
1472    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1473    #[inline]
1474    fn le(&self, other: &RefCell<T>) -> bool {
1475        *self.borrow() <= *other.borrow()
1476    }
1477
1478    /// # Panics
1479    ///
1480    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1481    #[inline]
1482    fn gt(&self, other: &RefCell<T>) -> bool {
1483        *self.borrow() > *other.borrow()
1484    }
1485
1486    /// # Panics
1487    ///
1488    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1489    #[inline]
1490    fn ge(&self, other: &RefCell<T>) -> bool {
1491        *self.borrow() >= *other.borrow()
1492    }
1493}
1494
1495#[stable(feature = "cell_ord", since = "1.10.0")]
1496impl<T: ?Sized + Ord> Ord for RefCell<T> {
1497    /// # Panics
1498    ///
1499    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1500    #[inline]
1501    fn cmp(&self, other: &RefCell<T>) -> Ordering {
1502        self.borrow().cmp(&*other.borrow())
1503    }
1504}
1505
1506#[stable(feature = "cell_from", since = "1.12.0")]
1507#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1508impl<T> const From<T> for RefCell<T> {
1509    /// Creates a new `RefCell<T>` containing the given value.
1510    fn from(t: T) -> RefCell<T> {
1511        RefCell::new(t)
1512    }
1513}
1514
1515#[unstable(feature = "coerce_unsized", issue = "18598")]
1516impl<T: CoerceUnsized<U>, U> CoerceUnsized<RefCell<U>> for RefCell<T> {}
1517
1518struct BorrowRef<'b> {
1519    borrow: &'b Cell<BorrowCounter>,
1520}
1521
1522impl<'b> BorrowRef<'b> {
1523    #[inline]
1524    const fn new(borrow: &'b Cell<BorrowCounter>) -> Option<BorrowRef<'b>> {
1525        let b = borrow.get().wrapping_add(1);
1526        if !is_reading(b) {
1527            // Incrementing borrow can result in a non-reading value (<= 0) in these cases:
1528            // 1. It was < 0, i.e. there are writing borrows, so we can't allow a read borrow
1529            //    due to Rust's reference aliasing rules
1530            // 2. It was isize::MAX (the max amount of reading borrows) and it overflowed
1531            //    into isize::MIN (the max amount of writing borrows) so we can't allow
1532            //    an additional read borrow because isize can't represent so many read borrows
1533            //    (this can only happen if you mem::forget more than a small constant amount of
1534            //    `Ref`s, which is not good practice)
1535            None
1536        } else {
1537            // Incrementing borrow can result in a reading value (> 0) in these cases:
1538            // 1. It was = 0, i.e. it wasn't borrowed, and we are taking the first read borrow
1539            // 2. It was > 0 and < isize::MAX, i.e. there were read borrows, and isize
1540            //    is large enough to represent having one more read borrow
1541            borrow.replace(b);
1542            Some(BorrowRef { borrow })
1543        }
1544    }
1545}
1546
1547#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1548impl const Drop for BorrowRef<'_> {
1549    #[inline]
1550    fn drop(&mut self) {
1551        let borrow = self.borrow.get();
1552        debug_assert!(is_reading(borrow));
1553        self.borrow.replace(borrow - 1);
1554    }
1555}
1556
1557#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1558impl const Clone for BorrowRef<'_> {
1559    #[inline]
1560    fn clone(&self) -> Self {
1561        // Since this Ref exists, we know the borrow flag
1562        // is a reading borrow.
1563        let borrow = self.borrow.get();
1564        debug_assert!(is_reading(borrow));
1565        // Prevent the borrow counter from overflowing into
1566        // a writing borrow.
1567        assert!(borrow != BorrowCounter::MAX);
1568        self.borrow.replace(borrow + 1);
1569        BorrowRef { borrow: self.borrow }
1570    }
1571}
1572
1573/// Wraps a borrowed reference to a value in a `RefCell` box.
1574/// A wrapper type for an immutably borrowed value from a `RefCell<T>`.
1575///
1576/// See the [module-level documentation](self) for more.
1577#[stable(feature = "rust1", since = "1.0.0")]
1578#[must_not_suspend = "holding a Ref across suspend points can cause BorrowErrors"]
1579#[rustc_diagnostic_item = "RefCellRef"]
1580pub struct Ref<'b, T: ?Sized + 'b> {
1581    // NB: we use a pointer instead of `&'b T` to avoid `noalias` violations, because a
1582    // `Ref` argument doesn't hold immutability for its whole scope, only until it drops.
1583    // `NonNull` is also covariant over `T`, just like we would have with `&T`.
1584    value: NonNull<T>,
1585    borrow: BorrowRef<'b>,
1586}
1587
1588#[stable(feature = "rust1", since = "1.0.0")]
1589#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1590impl<T: ?Sized> const Deref for Ref<'_, T> {
1591    type Target = T;
1592
1593    #[inline]
1594    fn deref(&self) -> &T {
1595        // SAFETY: the value is accessible as long as we hold our borrow.
1596        unsafe { self.value.as_ref() }
1597    }
1598}
1599
1600#[unstable(feature = "deref_pure_trait", issue = "87121")]
1601unsafe impl<T: ?Sized> DerefPure for Ref<'_, T> {}
1602
1603impl<'b, T: ?Sized> Ref<'b, T> {
1604    /// Copies a `Ref`.
1605    ///
1606    /// The `RefCell` is already immutably borrowed, so this cannot fail.
1607    ///
1608    /// This is an associated function that needs to be used as
1609    /// `Ref::clone(...)`. A `Clone` implementation or a method would interfere
1610    /// with the widespread use of `r.borrow().clone()` to clone the contents of
1611    /// a `RefCell`.
1612    #[stable(feature = "cell_extras", since = "1.15.0")]
1613    #[must_use]
1614    #[inline]
1615    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1616    pub const fn clone(orig: &Ref<'b, T>) -> Ref<'b, T> {
1617        Ref { value: orig.value, borrow: orig.borrow.clone() }
1618    }
1619
1620    /// Makes a new `Ref` for a component of the borrowed data.
1621    ///
1622    /// The `RefCell` is already immutably borrowed, so this cannot fail.
1623    ///
1624    /// This is an associated function that needs to be used as `Ref::map(...)`.
1625    /// A method would interfere with methods of the same name on the contents
1626    /// of a `RefCell` used through `Deref`.
1627    ///
1628    /// # Examples
1629    ///
1630    /// ```
1631    /// use std::cell::{RefCell, Ref};
1632    ///
1633    /// let c = RefCell::new((5, 'b'));
1634    /// let b1: Ref<'_, (u32, char)> = c.borrow();
1635    /// let b2: Ref<'_, u32> = Ref::map(b1, |t| &t.0);
1636    /// assert_eq!(*b2, 5)
1637    /// ```
1638    #[stable(feature = "cell_map", since = "1.8.0")]
1639    #[inline]
1640    pub fn map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Ref<'b, U>
1641    where
1642        F: FnOnce(&T) -> &U,
1643    {
1644        Ref { value: NonNull::from(f(&*orig)), borrow: orig.borrow }
1645    }
1646
1647    /// Makes a new `Ref` for an optional component of the borrowed data. The
1648    /// original guard is returned as an `Err(..)` if the closure returns
1649    /// `None`.
1650    ///
1651    /// The `RefCell` is already immutably borrowed, so this cannot fail.
1652    ///
1653    /// This is an associated function that needs to be used as
1654    /// `Ref::filter_map(...)`. A method would interfere with methods of the same
1655    /// name on the contents of a `RefCell` used through `Deref`.
1656    ///
1657    /// # Examples
1658    ///
1659    /// ```
1660    /// use std::cell::{RefCell, Ref};
1661    ///
1662    /// let c = RefCell::new(vec![1, 2, 3]);
1663    /// let b1: Ref<'_, Vec<u32>> = c.borrow();
1664    /// let b2: Result<Ref<'_, u32>, _> = Ref::filter_map(b1, |v| v.get(1));
1665    /// assert_eq!(*b2.unwrap(), 2);
1666    /// ```
1667    #[stable(feature = "cell_filter_map", since = "1.63.0")]
1668    #[inline]
1669    pub fn filter_map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Result<Ref<'b, U>, Self>
1670    where
1671        F: FnOnce(&T) -> Option<&U>,
1672    {
1673        match f(&*orig) {
1674            Some(value) => Ok(Ref { value: NonNull::from(value), borrow: orig.borrow }),
1675            None => Err(orig),
1676        }
1677    }
1678
1679    /// Tries to makes a new `Ref` for a component of the borrowed data.
1680    /// On failure, the original guard is returned alongside with the error
1681    /// returned by the closure.
1682    ///
1683    /// The `RefCell` is already immutably borrowed, so this cannot fail.
1684    ///
1685    /// This is an associated function that needs to be used as
1686    /// `Ref::try_map(...)`. A method would interfere with methods of the same
1687    /// name on the contents of a `RefCell` used through `Deref`.
1688    ///
1689    /// # Examples
1690    ///
1691    /// ```
1692    /// #![feature(refcell_try_map)]
1693    /// use std::cell::{RefCell, Ref};
1694    /// use std::str::{from_utf8, Utf8Error};
1695    ///
1696    /// let c = RefCell::new(vec![0xF0, 0x9F, 0xA6 ,0x80]);
1697    /// let b1: Ref<'_, Vec<u8>> = c.borrow();
1698    /// let b2: Result<Ref<'_, str>, _> = Ref::try_map(b1, |v| from_utf8(v));
1699    /// assert_eq!(&*b2.unwrap(), "🦀");
1700    ///
1701    /// let c = RefCell::new(vec![0xF0, 0x9F, 0xA6]);
1702    /// let b1: Ref<'_, Vec<u8>> = c.borrow();
1703    /// let b2: Result<_, (Ref<'_, Vec<u8>>, Utf8Error)> = Ref::try_map(b1, |v| from_utf8(v));
1704    /// let (b3, e) = b2.unwrap_err();
1705    /// assert_eq!(*b3, vec![0xF0, 0x9F, 0xA6]);
1706    /// assert_eq!(e.valid_up_to(), 0);
1707    /// ```
1708    #[unstable(feature = "refcell_try_map", issue = "143801")]
1709    #[inline]
1710    pub fn try_map<U: ?Sized, E>(
1711        orig: Ref<'b, T>,
1712        f: impl FnOnce(&T) -> Result<&U, E>,
1713    ) -> Result<Ref<'b, U>, (Self, E)> {
1714        match f(&*orig) {
1715            Ok(value) => Ok(Ref { value: NonNull::from(value), borrow: orig.borrow }),
1716            Err(e) => Err((orig, e)),
1717        }
1718    }
1719
1720    /// Splits a `Ref` into multiple `Ref`s for different components of the
1721    /// borrowed data.
1722    ///
1723    /// The `RefCell` is already immutably borrowed, so this cannot fail.
1724    ///
1725    /// This is an associated function that needs to be used as
1726    /// `Ref::map_split(...)`. A method would interfere with methods of the same
1727    /// name on the contents of a `RefCell` used through `Deref`.
1728    ///
1729    /// # Examples
1730    ///
1731    /// ```
1732    /// use std::cell::{Ref, RefCell};
1733    ///
1734    /// let cell = RefCell::new([1, 2, 3, 4]);
1735    /// let borrow = cell.borrow();
1736    /// let (begin, end) = Ref::map_split(borrow, |slice| slice.split_at(2));
1737    /// assert_eq!(*begin, [1, 2]);
1738    /// assert_eq!(*end, [3, 4]);
1739    /// ```
1740    #[stable(feature = "refcell_map_split", since = "1.35.0")]
1741    #[inline]
1742    pub fn map_split<U: ?Sized, V: ?Sized, F>(orig: Ref<'b, T>, f: F) -> (Ref<'b, U>, Ref<'b, V>)
1743    where
1744        F: FnOnce(&T) -> (&U, &V),
1745    {
1746        let (a, b) = f(&*orig);
1747        let borrow = orig.borrow.clone();
1748        (
1749            Ref { value: NonNull::from(a), borrow },
1750            Ref { value: NonNull::from(b), borrow: orig.borrow },
1751        )
1752    }
1753
1754    /// Converts into a reference to the underlying data.
1755    ///
1756    /// The underlying `RefCell` can never be mutably borrowed from again and will always appear
1757    /// already immutably borrowed. It is not a good idea to leak more than a constant number of
1758    /// references. The `RefCell` can be immutably borrowed again if only a smaller number of leaks
1759    /// have occurred in total.
1760    ///
1761    /// This is an associated function that needs to be used as
1762    /// `Ref::leak(...)`. A method would interfere with methods of the
1763    /// same name on the contents of a `RefCell` used through `Deref`.
1764    ///
1765    /// # Examples
1766    ///
1767    /// ```
1768    /// #![feature(cell_leak)]
1769    /// use std::cell::{RefCell, Ref};
1770    /// let cell = RefCell::new(0);
1771    ///
1772    /// let value = Ref::leak(cell.borrow());
1773    /// assert_eq!(*value, 0);
1774    ///
1775    /// assert!(cell.try_borrow().is_ok());
1776    /// assert!(cell.try_borrow_mut().is_err());
1777    /// ```
1778    #[unstable(feature = "cell_leak", issue = "69099")]
1779    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1780    pub const fn leak(orig: Ref<'b, T>) -> &'b T {
1781        // By forgetting this Ref we ensure that the borrow counter in the RefCell can't go back to
1782        // UNUSED within the lifetime `'b`. Resetting the reference tracking state would require a
1783        // unique reference to the borrowed RefCell. No further mutable references can be created
1784        // from the original cell.
1785        mem::forget(orig.borrow);
1786        // SAFETY: after forgetting, we can form a reference for the rest of lifetime `'b`.
1787        unsafe { orig.value.as_ref() }
1788    }
1789}
1790
1791#[unstable(feature = "coerce_unsized", issue = "18598")]
1792impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Ref<'b, U>> for Ref<'b, T> {}
1793
1794#[stable(feature = "std_guard_impls", since = "1.20.0")]
1795impl<T: ?Sized + fmt::Display> fmt::Display for Ref<'_, T> {
1796    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1797        (**self).fmt(f)
1798    }
1799}
1800
1801impl<'b, T: ?Sized> RefMut<'b, T> {
1802    /// Makes a new `RefMut` for a component of the borrowed data, e.g., an enum
1803    /// variant.
1804    ///
1805    /// The `RefCell` is already mutably borrowed, so this cannot fail.
1806    ///
1807    /// This is an associated function that needs to be used as
1808    /// `RefMut::map(...)`. A method would interfere with methods of the same
1809    /// name on the contents of a `RefCell` used through `Deref`.
1810    ///
1811    /// # Examples
1812    ///
1813    /// ```
1814    /// use std::cell::{RefCell, RefMut};
1815    ///
1816    /// let c = RefCell::new((5, 'b'));
1817    /// {
1818    ///     let b1: RefMut<'_, (u32, char)> = c.borrow_mut();
1819    ///     let mut b2: RefMut<'_, u32> = RefMut::map(b1, |t| &mut t.0);
1820    ///     assert_eq!(*b2, 5);
1821    ///     *b2 = 42;
1822    /// }
1823    /// assert_eq!(*c.borrow(), (42, 'b'));
1824    /// ```
1825    #[stable(feature = "cell_map", since = "1.8.0")]
1826    #[inline]
1827    pub fn map<U: ?Sized, F>(mut orig: RefMut<'b, T>, f: F) -> RefMut<'b, U>
1828    where
1829        F: FnOnce(&mut T) -> &mut U,
1830    {
1831        let value = NonNull::from(f(&mut *orig));
1832        RefMut { value, borrow: orig.borrow, marker: PhantomData }
1833    }
1834
1835    /// Makes a new `RefMut` for an optional component of the borrowed data. The
1836    /// original guard is returned as an `Err(..)` if the closure returns
1837    /// `None`.
1838    ///
1839    /// The `RefCell` is already mutably borrowed, so this cannot fail.
1840    ///
1841    /// This is an associated function that needs to be used as
1842    /// `RefMut::filter_map(...)`. A method would interfere with methods of the
1843    /// same name on the contents of a `RefCell` used through `Deref`.
1844    ///
1845    /// # Examples
1846    ///
1847    /// ```
1848    /// use std::cell::{RefCell, RefMut};
1849    ///
1850    /// let c = RefCell::new(vec![1, 2, 3]);
1851    ///
1852    /// {
1853    ///     let b1: RefMut<'_, Vec<u32>> = c.borrow_mut();
1854    ///     let mut b2: Result<RefMut<'_, u32>, _> = RefMut::filter_map(b1, |v| v.get_mut(1));
1855    ///
1856    ///     if let Ok(mut b2) = b2 {
1857    ///         *b2 += 2;
1858    ///     }
1859    /// }
1860    ///
1861    /// assert_eq!(*c.borrow(), vec![1, 4, 3]);
1862    /// ```
1863    #[stable(feature = "cell_filter_map", since = "1.63.0")]
1864    #[inline]
1865    pub fn filter_map<U: ?Sized, F>(mut orig: RefMut<'b, T>, f: F) -> Result<RefMut<'b, U>, Self>
1866    where
1867        F: FnOnce(&mut T) -> Option<&mut U>,
1868    {
1869        // SAFETY: function holds onto an exclusive reference for the duration
1870        // of its call through `orig`, and the pointer is only de-referenced
1871        // inside of the function call never allowing the exclusive reference to
1872        // escape.
1873        match f(&mut *orig) {
1874            Some(value) => {
1875                Ok(RefMut { value: NonNull::from(value), borrow: orig.borrow, marker: PhantomData })
1876            }
1877            None => Err(orig),
1878        }
1879    }
1880
1881    /// Tries to makes a new `RefMut` for a component of the borrowed data.
1882    /// On failure, the original guard is returned alongside with the error
1883    /// returned by the closure.
1884    ///
1885    /// The `RefCell` is already mutably borrowed, so this cannot fail.
1886    ///
1887    /// This is an associated function that needs to be used as
1888    /// `RefMut::try_map(...)`. A method would interfere with methods of the same
1889    /// name on the contents of a `RefCell` used through `Deref`.
1890    ///
1891    /// # Examples
1892    ///
1893    /// ```
1894    /// #![feature(refcell_try_map)]
1895    /// use std::cell::{RefCell, RefMut};
1896    /// use std::str::{from_utf8_mut, Utf8Error};
1897    ///
1898    /// let c = RefCell::new(vec![0x68, 0x65, 0x6C, 0x6C, 0x6F]);
1899    /// {
1900    ///     let b1: RefMut<'_, Vec<u8>> = c.borrow_mut();
1901    ///     let b2: Result<RefMut<'_, str>, _> = RefMut::try_map(b1, |v| from_utf8_mut(v));
1902    ///     let mut b2 = b2.unwrap();
1903    ///     assert_eq!(&*b2, "hello");
1904    ///     b2.make_ascii_uppercase();
1905    /// }
1906    /// assert_eq!(*c.borrow(), "HELLO".as_bytes());
1907    ///
1908    /// let c = RefCell::new(vec![0xFF]);
1909    /// let b1: RefMut<'_, Vec<u8>> = c.borrow_mut();
1910    /// let b2: Result<_, (RefMut<'_, Vec<u8>>, Utf8Error)> = RefMut::try_map(b1, |v| from_utf8_mut(v));
1911    /// let (b3, e) = b2.unwrap_err();
1912    /// assert_eq!(*b3, vec![0xFF]);
1913    /// assert_eq!(e.valid_up_to(), 0);
1914    /// ```
1915    #[unstable(feature = "refcell_try_map", issue = "143801")]
1916    #[inline]
1917    pub fn try_map<U: ?Sized, E>(
1918        mut orig: RefMut<'b, T>,
1919        f: impl FnOnce(&mut T) -> Result<&mut U, E>,
1920    ) -> Result<RefMut<'b, U>, (Self, E)> {
1921        // SAFETY: function holds onto an exclusive reference for the duration
1922        // of its call through `orig`, and the pointer is only de-referenced
1923        // inside of the function call never allowing the exclusive reference to
1924        // escape.
1925        match f(&mut *orig) {
1926            Ok(value) => {
1927                Ok(RefMut { value: NonNull::from(value), borrow: orig.borrow, marker: PhantomData })
1928            }
1929            Err(e) => Err((orig, e)),
1930        }
1931    }
1932
1933    /// Splits a `RefMut` into multiple `RefMut`s for different components of the
1934    /// borrowed data.
1935    ///
1936    /// The underlying `RefCell` will remain mutably borrowed until both
1937    /// returned `RefMut`s go out of scope.
1938    ///
1939    /// The `RefCell` is already mutably borrowed, so this cannot fail.
1940    ///
1941    /// This is an associated function that needs to be used as
1942    /// `RefMut::map_split(...)`. A method would interfere with methods of the
1943    /// same name on the contents of a `RefCell` used through `Deref`.
1944    ///
1945    /// # Examples
1946    ///
1947    /// ```
1948    /// use std::cell::{RefCell, RefMut};
1949    ///
1950    /// let cell = RefCell::new([1, 2, 3, 4]);
1951    /// let borrow = cell.borrow_mut();
1952    /// let (mut begin, mut end) = RefMut::map_split(borrow, |slice| slice.split_at_mut(2));
1953    /// assert_eq!(*begin, [1, 2]);
1954    /// assert_eq!(*end, [3, 4]);
1955    /// begin.copy_from_slice(&[4, 3]);
1956    /// end.copy_from_slice(&[2, 1]);
1957    /// ```
1958    #[stable(feature = "refcell_map_split", since = "1.35.0")]
1959    #[inline]
1960    pub fn map_split<U: ?Sized, V: ?Sized, F>(
1961        mut orig: RefMut<'b, T>,
1962        f: F,
1963    ) -> (RefMut<'b, U>, RefMut<'b, V>)
1964    where
1965        F: FnOnce(&mut T) -> (&mut U, &mut V),
1966    {
1967        let borrow = orig.borrow.clone();
1968        let (a, b) = f(&mut *orig);
1969        (
1970            RefMut { value: NonNull::from(a), borrow, marker: PhantomData },
1971            RefMut { value: NonNull::from(b), borrow: orig.borrow, marker: PhantomData },
1972        )
1973    }
1974
1975    /// Converts into a mutable reference to the underlying data.
1976    ///
1977    /// The underlying `RefCell` can not be borrowed from again and will always appear already
1978    /// mutably borrowed, making the returned reference the only to the interior.
1979    ///
1980    /// This is an associated function that needs to be used as
1981    /// `RefMut::leak(...)`. A method would interfere with methods of the
1982    /// same name on the contents of a `RefCell` used through `Deref`.
1983    ///
1984    /// # Examples
1985    ///
1986    /// ```
1987    /// #![feature(cell_leak)]
1988    /// use std::cell::{RefCell, RefMut};
1989    /// let cell = RefCell::new(0);
1990    ///
1991    /// let value = RefMut::leak(cell.borrow_mut());
1992    /// assert_eq!(*value, 0);
1993    /// *value = 1;
1994    ///
1995    /// assert!(cell.try_borrow_mut().is_err());
1996    /// ```
1997    #[unstable(feature = "cell_leak", issue = "69099")]
1998    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1999    pub const fn leak(mut orig: RefMut<'b, T>) -> &'b mut T {
2000        // By forgetting this BorrowRefMut we ensure that the borrow counter in the RefCell can't
2001        // go back to UNUSED within the lifetime `'b`. Resetting the reference tracking state would
2002        // require a unique reference to the borrowed RefCell. No further references can be created
2003        // from the original cell within that lifetime, making the current borrow the only
2004        // reference for the remaining lifetime.
2005        mem::forget(orig.borrow);
2006        // SAFETY: after forgetting, we can form a reference for the rest of lifetime `'b`.
2007        unsafe { orig.value.as_mut() }
2008    }
2009}
2010
2011struct BorrowRefMut<'b> {
2012    borrow: &'b Cell<BorrowCounter>,
2013}
2014
2015#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
2016impl const Drop for BorrowRefMut<'_> {
2017    #[inline]
2018    fn drop(&mut self) {
2019        let borrow = self.borrow.get();
2020        debug_assert!(is_writing(borrow));
2021        self.borrow.replace(borrow + 1);
2022    }
2023}
2024
2025impl<'b> BorrowRefMut<'b> {
2026    #[inline]
2027    const fn new(borrow: &'b Cell<BorrowCounter>) -> Option<BorrowRefMut<'b>> {
2028        // NOTE: Unlike BorrowRefMut::clone, new is called to create the initial
2029        // mutable reference, and so there must currently be no existing
2030        // references. Thus, while clone increments the mutable refcount, here
2031        // we explicitly only allow going from UNUSED to UNUSED - 1.
2032        match borrow.get() {
2033            UNUSED => {
2034                borrow.replace(UNUSED - 1);
2035                Some(BorrowRefMut { borrow })
2036            }
2037            _ => None,
2038        }
2039    }
2040
2041    // Clones a `BorrowRefMut`.
2042    //
2043    // This is only valid if each `BorrowRefMut` is used to track a mutable
2044    // reference to a distinct, nonoverlapping range of the original object.
2045    // This isn't in a Clone impl so that code doesn't call this implicitly.
2046    #[inline]
2047    fn clone(&self) -> BorrowRefMut<'b> {
2048        let borrow = self.borrow.get();
2049        debug_assert!(is_writing(borrow));
2050        // Prevent the borrow counter from underflowing.
2051        assert!(borrow != BorrowCounter::MIN);
2052        self.borrow.set(borrow - 1);
2053        BorrowRefMut { borrow: self.borrow }
2054    }
2055}
2056
2057/// A wrapper type for a mutably borrowed value from a `RefCell<T>`.
2058///
2059/// See the [module-level documentation](self) for more.
2060#[stable(feature = "rust1", since = "1.0.0")]
2061#[must_not_suspend = "holding a RefMut across suspend points can cause BorrowErrors"]
2062#[rustc_diagnostic_item = "RefCellRefMut"]
2063pub struct RefMut<'b, T: ?Sized + 'b> {
2064    // NB: we use a pointer instead of `&'b mut T` to avoid `noalias` violations, because a
2065    // `RefMut` argument doesn't hold exclusivity for its whole scope, only until it drops.
2066    value: NonNull<T>,
2067    borrow: BorrowRefMut<'b>,
2068    // `NonNull` is covariant over `T`, so we need to reintroduce invariance.
2069    marker: PhantomData<&'b mut T>,
2070}
2071
2072#[stable(feature = "rust1", since = "1.0.0")]
2073#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2074impl<T: ?Sized> const Deref for RefMut<'_, T> {
2075    type Target = T;
2076
2077    #[inline]
2078    fn deref(&self) -> &T {
2079        // SAFETY: the value is accessible as long as we hold our borrow.
2080        unsafe { self.value.as_ref() }
2081    }
2082}
2083
2084#[stable(feature = "rust1", since = "1.0.0")]
2085#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2086impl<T: ?Sized> const DerefMut for RefMut<'_, T> {
2087    #[inline]
2088    fn deref_mut(&mut self) -> &mut T {
2089        // SAFETY: the value is accessible as long as we hold our borrow.
2090        unsafe { self.value.as_mut() }
2091    }
2092}
2093
2094#[unstable(feature = "deref_pure_trait", issue = "87121")]
2095unsafe impl<T: ?Sized> DerefPure for RefMut<'_, T> {}
2096
2097#[unstable(feature = "coerce_unsized", issue = "18598")]
2098impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<RefMut<'b, U>> for RefMut<'b, T> {}
2099
2100#[stable(feature = "std_guard_impls", since = "1.20.0")]
2101impl<T: ?Sized + fmt::Display> fmt::Display for RefMut<'_, T> {
2102    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2103        (**self).fmt(f)
2104    }
2105}
2106
2107/// The core primitive for interior mutability in Rust.
2108///
2109/// If you have a reference `&T`, then normally in Rust the compiler performs optimizations based on
2110/// the knowledge that `&T` points to immutable data. Mutating that data, for example through an
2111/// alias or by transmuting a `&T` into a `&mut T`, is considered undefined behavior.
2112/// `UnsafeCell<T>` opts-out of the immutability guarantee for `&T`: a shared reference
2113/// `&UnsafeCell<T>` may point to data that is being mutated. This is called "interior mutability".
2114///
2115/// All other types that allow internal mutability, such as [`Cell<T>`] and [`RefCell<T>`], internally
2116/// use `UnsafeCell` to wrap their data.
2117///
2118/// Note that only the immutability guarantee for shared references is affected by `UnsafeCell`. The
2119/// uniqueness guarantee for mutable references is unaffected. There is *no* legal way to obtain
2120/// aliasing `&mut`, not even with `UnsafeCell<T>`.
2121///
2122/// `UnsafeCell` does nothing to avoid data races; they are still undefined behavior. If multiple
2123/// threads have access to the same `UnsafeCell`, they must follow the usual rules of the
2124/// [concurrent memory model]: conflicting non-synchronized accesses must be done via the APIs in
2125/// [`core::sync::atomic`].
2126///
2127/// The `UnsafeCell` API itself is technically very simple: [`.get()`] gives you a raw pointer
2128/// `*mut T` to its contents. It is up to _you_ as the abstraction designer to use that raw pointer
2129/// correctly.
2130///
2131/// [`.get()`]: `UnsafeCell::get`
2132/// [concurrent memory model]: ../sync/atomic/index.html#memory-model-for-atomic-accesses
2133///
2134/// # Aliasing rules
2135///
2136/// The precise Rust aliasing rules are somewhat in flux, but the main points are not contentious:
2137///
2138/// - If you create a safe reference with lifetime `'a` (either a `&T` or `&mut T` reference), then
2139///   you must not access the data in any way that contradicts that reference for the remainder of
2140///   `'a`. For example, this means that if you take the `*mut T` from an `UnsafeCell<T>` and cast it
2141///   to an `&T`, then the data in `T` must remain immutable (modulo any `UnsafeCell` data found
2142///   within `T`, of course) until that reference's lifetime expires. Similarly, if you create a
2143///   `&mut T` reference that is released to safe code, then you must not access the data within the
2144///   `UnsafeCell` until that reference expires.
2145///
2146/// - For both `&T` without `UnsafeCell<_>` and `&mut T`, you must also not deallocate the data
2147///   until the reference expires. As a special exception, given an `&T`, any part of it that is
2148///   inside an `UnsafeCell<_>` may be deallocated during the lifetime of the reference, after the
2149///   last time the reference is used (dereferenced or reborrowed). Since you cannot deallocate a part
2150///   of what a reference points to, this means the memory an `&T` points to can be deallocated only if
2151///   *every part of it* (including padding) is inside an `UnsafeCell`.
2152///
2153/// However, whenever a `&UnsafeCell<T>` is constructed or dereferenced, it must still point to
2154/// live memory and the compiler is allowed to insert spurious reads if it can prove that this
2155/// memory has not yet been deallocated.
2156///
2157/// To assist with proper design, the following scenarios are explicitly declared legal
2158/// for single-threaded code:
2159///
2160/// 1. A `&T` reference can be released to safe code and there it can co-exist with other `&T`
2161///    references, but not with a `&mut T`
2162///
2163/// 2. A `&mut T` reference may be released to safe code provided neither other `&mut T` nor `&T`
2164///    co-exist with it. A `&mut T` must always be unique.
2165///
2166/// Note that whilst mutating the contents of an `&UnsafeCell<T>` (even while other
2167/// `&UnsafeCell<T>` references alias the cell) is
2168/// ok (provided you enforce the above invariants some other way), it is still undefined behavior
2169/// to have multiple `&mut UnsafeCell<T>` aliases. That is, `UnsafeCell` is a wrapper
2170/// designed to have a special interaction with _shared_ accesses (_i.e._, through an
2171/// `&UnsafeCell<_>` reference); there is no magic whatsoever when dealing with _exclusive_
2172/// accesses (_e.g._, through a `&mut UnsafeCell<_>`): neither the cell nor the wrapped value
2173/// may be aliased for the duration of that `&mut` borrow.
2174/// This is showcased by the [`.get_mut()`] accessor, which is a _safe_ getter that yields
2175/// a `&mut T`.
2176///
2177/// [`.get_mut()`]: `UnsafeCell::get_mut`
2178///
2179/// # Memory layout
2180///
2181/// `UnsafeCell<T>` has the same in-memory representation as its inner type `T`. A consequence
2182/// of this guarantee is that it is possible to convert between `T` and `UnsafeCell<T>`.
2183/// Special care has to be taken when converting a nested `T` inside of an `Outer<T>` type
2184/// to an `Outer<UnsafeCell<T>>` type: this is not sound when the `Outer<T>` type enables [niche]
2185/// optimizations. For example, the type `Option<NonNull<u8>>` is typically 8 bytes large on
2186/// 64-bit platforms, but the type `Option<UnsafeCell<NonNull<u8>>>` takes up 16 bytes of space.
2187/// Therefore this is not a valid conversion, despite `NonNull<u8>` and `UnsafeCell<NonNull<u8>>>`
2188/// having the same memory layout. This is because `UnsafeCell` disables niche optimizations in
2189/// order to avoid its interior mutability property from spreading from `T` into the `Outer` type,
2190/// thus this can cause distortions in the type size in these cases.
2191///
2192/// Note that the only valid way to obtain a `*mut T` pointer to the contents of a
2193/// _shared_ `UnsafeCell<T>` is through [`.get()`]  or [`.raw_get()`]. A `&mut T` reference
2194/// can be obtained by either dereferencing this pointer or by calling [`.get_mut()`]
2195/// on an _exclusive_ `UnsafeCell<T>`. Even though `T` and `UnsafeCell<T>` have the
2196/// same memory layout, the following is not allowed and undefined behavior:
2197///
2198/// ```rust,compile_fail
2199/// # use std::cell::UnsafeCell;
2200/// unsafe fn not_allowed<T>(ptr: &UnsafeCell<T>) -> &mut T {
2201///   let t = ptr as *const UnsafeCell<T> as *mut T;
2202///   // This is undefined behavior, because the `*mut T` pointer
2203///   // was not obtained through `.get()` nor `.raw_get()`:
2204///   unsafe { &mut *t }
2205/// }
2206/// ```
2207///
2208/// Instead, do this:
2209///
2210/// ```rust
2211/// # use std::cell::UnsafeCell;
2212/// // Safety: the caller must ensure that there are no references that
2213/// // point to the *contents* of the `UnsafeCell`.
2214/// unsafe fn get_mut<T>(ptr: &UnsafeCell<T>) -> &mut T {
2215///   unsafe { &mut *ptr.get() }
2216/// }
2217/// ```
2218///
2219/// Converting in the other direction from a `&mut T`
2220/// to an `&UnsafeCell<T>` is allowed:
2221///
2222/// ```rust
2223/// # use std::cell::UnsafeCell;
2224/// fn get_shared<T>(ptr: &mut T) -> &UnsafeCell<T> {
2225///   let t = ptr as *mut T as *const UnsafeCell<T>;
2226///   // SAFETY: `T` and `UnsafeCell<T>` have the same memory layout
2227///   unsafe { &*t }
2228/// }
2229/// ```
2230///
2231/// [niche]: https://rust-lang.github.io/unsafe-code-guidelines/glossary.html#niche
2232/// [`.raw_get()`]: `UnsafeCell::raw_get`
2233///
2234/// # Examples
2235///
2236/// Here is an example showcasing how to soundly mutate the contents of an `UnsafeCell<_>` despite
2237/// there being multiple references aliasing the cell:
2238///
2239/// ```
2240/// use std::cell::UnsafeCell;
2241///
2242/// let x: UnsafeCell<i32> = 42.into();
2243/// // Get multiple / concurrent / shared references to the same `x`.
2244/// let (p1, p2): (&UnsafeCell<i32>, &UnsafeCell<i32>) = (&x, &x);
2245///
2246/// unsafe {
2247///     // SAFETY: within this scope there are no other references to `x`'s contents,
2248///     // so ours is effectively unique.
2249///     let p1_exclusive: &mut i32 = &mut *p1.get(); // -- borrow --+
2250///     *p1_exclusive += 27; //                                     |
2251/// } // <---------- cannot go beyond this point -------------------+
2252///
2253/// unsafe {
2254///     // SAFETY: within this scope nobody expects to have exclusive access to `x`'s contents,
2255///     // so we can have multiple shared accesses concurrently.
2256///     let p2_shared: &i32 = &*p2.get();
2257///     assert_eq!(*p2_shared, 42 + 27);
2258///     let p1_shared: &i32 = &*p1.get();
2259///     assert_eq!(*p1_shared, *p2_shared);
2260/// }
2261/// ```
2262///
2263/// The following example showcases the fact that exclusive access to an `UnsafeCell<T>`
2264/// implies exclusive access to its `T`:
2265///
2266/// ```rust
2267/// #![forbid(unsafe_code)]
2268/// // with exclusive accesses, `UnsafeCell` is a transparent no-op wrapper, so no need for
2269/// // `unsafe` here.
2270/// use std::cell::UnsafeCell;
2271///
2272/// let mut x: UnsafeCell<i32> = 42.into();
2273///
2274/// // Get a compile-time-checked unique reference to `x`.
2275/// let p_unique: &mut UnsafeCell<i32> = &mut x;
2276/// // With an exclusive reference, we can mutate the contents for free.
2277/// *p_unique.get_mut() = 0;
2278/// // Or, equivalently:
2279/// x = UnsafeCell::new(0);
2280///
2281/// // When we own the value, we can extract the contents for free.
2282/// let contents: i32 = x.into_inner();
2283/// assert_eq!(contents, 0);
2284/// ```
2285#[lang = "unsafe_cell"]
2286#[stable(feature = "rust1", since = "1.0.0")]
2287#[repr(transparent)]
2288#[rustc_pub_transparent]
2289pub struct UnsafeCell<T: ?Sized> {
2290    value: T,
2291}
2292
2293#[stable(feature = "rust1", since = "1.0.0")]
2294impl<T: ?Sized> !Sync for UnsafeCell<T> {}
2295
2296impl<T> UnsafeCell<T> {
2297    /// Constructs a new instance of `UnsafeCell` which will wrap the specified
2298    /// value.
2299    ///
2300    /// All access to the inner value through `&UnsafeCell<T>` requires `unsafe` code.
2301    ///
2302    /// # Examples
2303    ///
2304    /// ```
2305    /// use std::cell::UnsafeCell;
2306    ///
2307    /// let uc = UnsafeCell::new(5);
2308    /// ```
2309    #[stable(feature = "rust1", since = "1.0.0")]
2310    #[rustc_const_stable(feature = "const_unsafe_cell_new", since = "1.32.0")]
2311    #[inline(always)]
2312    pub const fn new(value: T) -> UnsafeCell<T> {
2313        UnsafeCell { value }
2314    }
2315
2316    /// Unwraps the value, consuming the cell.
2317    ///
2318    /// # Examples
2319    ///
2320    /// ```
2321    /// use std::cell::UnsafeCell;
2322    ///
2323    /// let uc = UnsafeCell::new(5);
2324    ///
2325    /// let five = uc.into_inner();
2326    /// ```
2327    #[inline(always)]
2328    #[stable(feature = "rust1", since = "1.0.0")]
2329    #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
2330    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2331    pub const fn into_inner(self) -> T {
2332        self.value
2333    }
2334
2335    /// Replace the value in this `UnsafeCell` and return the old value.
2336    ///
2337    /// # Safety
2338    ///
2339    /// The caller must take care to avoid aliasing and data races.
2340    ///
2341    /// - It is Undefined Behavior to allow calls to race with
2342    ///   any other access to the wrapped value.
2343    /// - It is Undefined Behavior to call this while any other
2344    ///   reference(s) to the wrapped value are alive.
2345    ///
2346    /// # Examples
2347    ///
2348    /// ```
2349    /// #![feature(unsafe_cell_access)]
2350    /// use std::cell::UnsafeCell;
2351    ///
2352    /// let uc = UnsafeCell::new(5);
2353    ///
2354    /// let old = unsafe { uc.replace(10) };
2355    /// assert_eq!(old, 5);
2356    /// ```
2357    #[inline]
2358    #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2359    pub const unsafe fn replace(&self, value: T) -> T {
2360        // SAFETY: pointer comes from `&self` so naturally satisfies invariants.
2361        unsafe { ptr::replace(self.get(), value) }
2362    }
2363}
2364
2365impl<T: ?Sized> UnsafeCell<T> {
2366    /// Converts from `&mut T` to `&mut UnsafeCell<T>`.
2367    ///
2368    /// # Examples
2369    ///
2370    /// ```
2371    /// use std::cell::UnsafeCell;
2372    ///
2373    /// let mut val = 42;
2374    /// let uc = UnsafeCell::from_mut(&mut val);
2375    ///
2376    /// *uc.get_mut() -= 1;
2377    /// assert_eq!(*uc.get_mut(), 41);
2378    /// ```
2379    #[inline(always)]
2380    #[stable(feature = "unsafe_cell_from_mut", since = "1.84.0")]
2381    #[rustc_const_stable(feature = "unsafe_cell_from_mut", since = "1.84.0")]
2382    pub const fn from_mut(value: &mut T) -> &mut UnsafeCell<T> {
2383        // SAFETY: `UnsafeCell<T>` has the same memory layout as `T` due to #[repr(transparent)].
2384        unsafe { &mut *(value as *mut T as *mut UnsafeCell<T>) }
2385    }
2386
2387    /// Gets a mutable pointer to the wrapped value.
2388    ///
2389    /// This can be cast to a pointer of any kind. When creating references, you must uphold the
2390    /// aliasing rules; see [the type-level docs][UnsafeCell#aliasing-rules] for more discussion and
2391    /// caveats.
2392    ///
2393    /// # Examples
2394    ///
2395    /// ```
2396    /// use std::cell::UnsafeCell;
2397    ///
2398    /// let uc = UnsafeCell::new(5);
2399    ///
2400    /// let five = uc.get();
2401    /// ```
2402    #[inline(always)]
2403    #[stable(feature = "rust1", since = "1.0.0")]
2404    #[rustc_const_stable(feature = "const_unsafecell_get", since = "1.32.0")]
2405    #[rustc_as_ptr]
2406    #[rustc_never_returns_null_ptr]
2407    pub const fn get(&self) -> *mut T {
2408        // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
2409        // #[repr(transparent)]. This exploits std's special status, there is
2410        // no guarantee for user code that this will work in future versions of the compiler!
2411        self as *const UnsafeCell<T> as *const T as *mut T
2412    }
2413
2414    /// Returns a mutable reference to the underlying data.
2415    ///
2416    /// This call borrows the `UnsafeCell` mutably (at compile-time) which
2417    /// guarantees that we possess the only reference.
2418    ///
2419    /// # Examples
2420    ///
2421    /// ```
2422    /// use std::cell::UnsafeCell;
2423    ///
2424    /// let mut c = UnsafeCell::new(5);
2425    /// *c.get_mut() += 1;
2426    ///
2427    /// assert_eq!(*c.get_mut(), 6);
2428    /// ```
2429    #[inline(always)]
2430    #[stable(feature = "unsafe_cell_get_mut", since = "1.50.0")]
2431    #[rustc_const_stable(feature = "const_unsafecell_get_mut", since = "1.83.0")]
2432    pub const fn get_mut(&mut self) -> &mut T {
2433        &mut self.value
2434    }
2435
2436    /// Gets a mutable pointer to the wrapped value.
2437    /// The difference from [`get`] is that this function accepts a raw pointer,
2438    /// which is useful to avoid the creation of temporary references.
2439    ///
2440    /// This can be cast to a pointer of any kind. When creating references, you must uphold the
2441    /// aliasing rules; see [the type-level docs][UnsafeCell#aliasing-rules] for more discussion and
2442    /// caveats.
2443    ///
2444    /// [`get`]: UnsafeCell::get()
2445    ///
2446    /// # Examples
2447    ///
2448    /// Gradual initialization of an `UnsafeCell` requires `raw_get`, as
2449    /// calling `get` would require creating a reference to uninitialized data:
2450    ///
2451    /// ```
2452    /// use std::cell::UnsafeCell;
2453    /// use std::mem::MaybeUninit;
2454    ///
2455    /// let m = MaybeUninit::<UnsafeCell<i32>>::uninit();
2456    /// unsafe { UnsafeCell::raw_get(m.as_ptr()).write(5); }
2457    /// // avoid below which references to uninitialized data
2458    /// // unsafe { UnsafeCell::get(&*m.as_ptr()).write(5); }
2459    /// let uc = unsafe { m.assume_init() };
2460    ///
2461    /// assert_eq!(uc.into_inner(), 5);
2462    /// ```
2463    #[inline(always)]
2464    #[stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
2465    #[rustc_const_stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
2466    #[rustc_diagnostic_item = "unsafe_cell_raw_get"]
2467    pub const fn raw_get(this: *const Self) -> *mut T {
2468        // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
2469        // #[repr(transparent)]. This exploits std's special status, there is
2470        // no guarantee for user code that this will work in future versions of the compiler!
2471        this as *const T as *mut T
2472    }
2473
2474    /// Get a shared reference to the value within the `UnsafeCell`.
2475    ///
2476    /// # Safety
2477    ///
2478    /// - It is Undefined Behavior to call this while any mutable
2479    ///   reference to the wrapped value is alive.
2480    /// - Mutating the wrapped value while the returned
2481    ///   reference is alive is Undefined Behavior.
2482    ///
2483    /// # Examples
2484    ///
2485    /// ```
2486    /// #![feature(unsafe_cell_access)]
2487    /// use std::cell::UnsafeCell;
2488    ///
2489    /// let uc = UnsafeCell::new(5);
2490    ///
2491    /// let val = unsafe { uc.as_ref_unchecked() };
2492    /// assert_eq!(val, &5);
2493    /// ```
2494    #[inline]
2495    #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2496    pub const unsafe fn as_ref_unchecked(&self) -> &T {
2497        // SAFETY: pointer comes from `&self` so naturally satisfies ptr-to-ref invariants.
2498        unsafe { self.get().as_ref_unchecked() }
2499    }
2500
2501    /// Get an exclusive reference to the value within the `UnsafeCell`.
2502    ///
2503    /// # Safety
2504    ///
2505    /// - It is Undefined Behavior to call this while any other
2506    ///   reference(s) to the wrapped value are alive.
2507    /// - Mutating the wrapped value through other means while the
2508    ///   returned reference is alive is Undefined Behavior.
2509    ///
2510    /// # Examples
2511    ///
2512    /// ```
2513    /// #![feature(unsafe_cell_access)]
2514    /// use std::cell::UnsafeCell;
2515    ///
2516    /// let uc = UnsafeCell::new(5);
2517    ///
2518    /// unsafe { *uc.as_mut_unchecked() += 1; }
2519    /// assert_eq!(uc.into_inner(), 6);
2520    /// ```
2521    #[inline]
2522    #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2523    #[allow(clippy::mut_from_ref)]
2524    pub const unsafe fn as_mut_unchecked(&self) -> &mut T {
2525        // SAFETY: pointer comes from `&self` so naturally satisfies ptr-to-ref invariants.
2526        unsafe { self.get().as_mut_unchecked() }
2527    }
2528}
2529
2530#[stable(feature = "unsafe_cell_default", since = "1.10.0")]
2531#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2532impl<T: [const] Default> const Default for UnsafeCell<T> {
2533    /// Creates an `UnsafeCell`, with the `Default` value for T.
2534    fn default() -> UnsafeCell<T> {
2535        UnsafeCell::new(Default::default())
2536    }
2537}
2538
2539#[stable(feature = "cell_from", since = "1.12.0")]
2540#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2541impl<T> const From<T> for UnsafeCell<T> {
2542    /// Creates a new `UnsafeCell<T>` containing the given value.
2543    fn from(t: T) -> UnsafeCell<T> {
2544        UnsafeCell::new(t)
2545    }
2546}
2547
2548#[unstable(feature = "coerce_unsized", issue = "18598")]
2549impl<T: CoerceUnsized<U>, U> CoerceUnsized<UnsafeCell<U>> for UnsafeCell<T> {}
2550
2551// Allow types that wrap `UnsafeCell` to also implement `DispatchFromDyn`
2552// and become dyn-compatible method receivers.
2553// Note that currently `UnsafeCell` itself cannot be a method receiver
2554// because it does not implement Deref.
2555// In other words:
2556// `self: UnsafeCell<&Self>` won't work
2557// `self: UnsafeCellWrapper<Self>` becomes possible
2558#[unstable(feature = "dispatch_from_dyn", issue = "none")]
2559impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<UnsafeCell<U>> for UnsafeCell<T> {}
2560
2561/// [`UnsafeCell`], but [`Sync`].
2562///
2563/// This is just an `UnsafeCell`, except it implements `Sync`
2564/// if `T` implements `Sync`.
2565///
2566/// `UnsafeCell` doesn't implement `Sync`, to prevent accidental mis-use.
2567/// You can use `SyncUnsafeCell` instead of `UnsafeCell` to allow it to be
2568/// shared between threads, if that's intentional.
2569/// Providing proper synchronization is still the task of the user,
2570/// making this type just as unsafe to use.
2571///
2572/// See [`UnsafeCell`] for details.
2573#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2574#[repr(transparent)]
2575#[rustc_diagnostic_item = "SyncUnsafeCell"]
2576#[rustc_pub_transparent]
2577pub struct SyncUnsafeCell<T: ?Sized> {
2578    value: UnsafeCell<T>,
2579}
2580
2581#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2582unsafe impl<T: ?Sized + Sync> Sync for SyncUnsafeCell<T> {}
2583
2584#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2585impl<T> SyncUnsafeCell<T> {
2586    /// Constructs a new instance of `SyncUnsafeCell` which will wrap the specified value.
2587    #[inline]
2588    pub const fn new(value: T) -> Self {
2589        Self { value: UnsafeCell { value } }
2590    }
2591
2592    /// Unwraps the value, consuming the cell.
2593    #[inline]
2594    #[rustc_const_unstable(feature = "sync_unsafe_cell", issue = "95439")]
2595    pub const fn into_inner(self) -> T {
2596        self.value.into_inner()
2597    }
2598}
2599
2600#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2601impl<T: ?Sized> SyncUnsafeCell<T> {
2602    /// Gets a mutable pointer to the wrapped value.
2603    ///
2604    /// This can be cast to a pointer of any kind.
2605    /// Ensure that the access is unique (no active references, mutable or not)
2606    /// when casting to `&mut T`, and ensure that there are no mutations
2607    /// or mutable aliases going on when casting to `&T`
2608    #[inline]
2609    #[rustc_as_ptr]
2610    #[rustc_never_returns_null_ptr]
2611    pub const fn get(&self) -> *mut T {
2612        self.value.get()
2613    }
2614
2615    /// Returns a mutable reference to the underlying data.
2616    ///
2617    /// This call borrows the `SyncUnsafeCell` mutably (at compile-time) which
2618    /// guarantees that we possess the only reference.
2619    #[inline]
2620    pub const fn get_mut(&mut self) -> &mut T {
2621        self.value.get_mut()
2622    }
2623
2624    /// Gets a mutable pointer to the wrapped value.
2625    ///
2626    /// See [`UnsafeCell::get`] for details.
2627    #[inline]
2628    pub const fn raw_get(this: *const Self) -> *mut T {
2629        // We can just cast the pointer from `SyncUnsafeCell<T>` to `T` because
2630        // of #[repr(transparent)] on both SyncUnsafeCell and UnsafeCell.
2631        // See UnsafeCell::raw_get.
2632        this as *const T as *mut T
2633    }
2634}
2635
2636#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2637#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2638impl<T: [const] Default> const Default for SyncUnsafeCell<T> {
2639    /// Creates an `SyncUnsafeCell`, with the `Default` value for T.
2640    fn default() -> SyncUnsafeCell<T> {
2641        SyncUnsafeCell::new(Default::default())
2642    }
2643}
2644
2645#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2646#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2647impl<T> const From<T> for SyncUnsafeCell<T> {
2648    /// Creates a new `SyncUnsafeCell<T>` containing the given value.
2649    fn from(t: T) -> SyncUnsafeCell<T> {
2650        SyncUnsafeCell::new(t)
2651    }
2652}
2653
2654#[unstable(feature = "coerce_unsized", issue = "18598")]
2655//#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2656impl<T: CoerceUnsized<U>, U> CoerceUnsized<SyncUnsafeCell<U>> for SyncUnsafeCell<T> {}
2657
2658// Allow types that wrap `SyncUnsafeCell` to also implement `DispatchFromDyn`
2659// and become dyn-compatible method receivers.
2660// Note that currently `SyncUnsafeCell` itself cannot be a method receiver
2661// because it does not implement Deref.
2662// In other words:
2663// `self: SyncUnsafeCell<&Self>` won't work
2664// `self: SyncUnsafeCellWrapper<Self>` becomes possible
2665#[unstable(feature = "dispatch_from_dyn", issue = "none")]
2666//#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2667impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<SyncUnsafeCell<U>> for SyncUnsafeCell<T> {}
2668
2669#[allow(unused)]
2670fn assert_coerce_unsized(
2671    a: UnsafeCell<&i32>,
2672    b: SyncUnsafeCell<&i32>,
2673    c: Cell<&i32>,
2674    d: RefCell<&i32>,
2675) {
2676    let _: UnsafeCell<&dyn Send> = a;
2677    let _: SyncUnsafeCell<&dyn Send> = b;
2678    let _: Cell<&dyn Send> = c;
2679    let _: RefCell<&dyn Send> = d;
2680}
2681
2682#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2683unsafe impl<T: ?Sized> PinCoerceUnsized for UnsafeCell<T> {}
2684
2685#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2686unsafe impl<T: ?Sized> PinCoerceUnsized for SyncUnsafeCell<T> {}
2687
2688#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2689unsafe impl<T: ?Sized> PinCoerceUnsized for Cell<T> {}
2690
2691#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2692unsafe impl<T: ?Sized> PinCoerceUnsized for RefCell<T> {}
2693
2694#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2695unsafe impl<'b, T: ?Sized> PinCoerceUnsized for Ref<'b, T> {}
2696
2697#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2698unsafe impl<'b, T: ?Sized> PinCoerceUnsized for RefMut<'b, T> {}