std/io/buffered/bufwriter.rs
1use crate::io::{
2 self, DEFAULT_BUF_SIZE, ErrorKind, IntoInnerError, IoSlice, Seek, SeekFrom, Write,
3};
4use crate::mem::{self, ManuallyDrop};
5use crate::{error, fmt, ptr};
6
7/// Wraps a writer and buffers its output.
8///
9/// It can be excessively inefficient to work directly with something that
10/// implements [`Write`]. For example, every call to
11/// [`write`][`TcpStream::write`] on [`TcpStream`] results in a system call. A
12/// `BufWriter<W>` keeps an in-memory buffer of data and writes it to an underlying
13/// writer in large, infrequent batches.
14///
15/// `BufWriter<W>` can improve the speed of programs that make *small* and
16/// *repeated* write calls to the same file or network socket. It does not
17/// help when writing very large amounts at once, or writing just one or a few
18/// times. It also provides no advantage when writing to a destination that is
19/// in memory, like a <code>[Vec]\<u8></code>.
20///
21/// It is critical to call [`flush`] before `BufWriter<W>` is dropped. Though
22/// dropping will attempt to flush the contents of the buffer, any errors
23/// that happen in the process of dropping will be ignored. Calling [`flush`]
24/// ensures that the buffer is empty and thus dropping will not even attempt
25/// file operations.
26///
27/// # Examples
28///
29/// Let's write the numbers one through ten to a [`TcpStream`]:
30///
31/// ```no_run
32/// use std::io::prelude::*;
33/// use std::net::TcpStream;
34///
35/// let mut stream = TcpStream::connect("127.0.0.1:34254").unwrap();
36///
37/// for i in 0..10 {
38/// stream.write(&[i+1]).unwrap();
39/// }
40/// ```
41///
42/// Because we're not buffering, we write each one in turn, incurring the
43/// overhead of a system call per byte written. We can fix this with a
44/// `BufWriter<W>`:
45///
46/// ```no_run
47/// use std::io::prelude::*;
48/// use std::io::BufWriter;
49/// use std::net::TcpStream;
50///
51/// let mut stream = BufWriter::new(TcpStream::connect("127.0.0.1:34254").unwrap());
52///
53/// for i in 0..10 {
54/// stream.write(&[i+1]).unwrap();
55/// }
56/// stream.flush().unwrap();
57/// ```
58///
59/// By wrapping the stream with a `BufWriter<W>`, these ten writes are all grouped
60/// together by the buffer and will all be written out in one system call when
61/// the `stream` is flushed.
62///
63/// [`TcpStream::write`]: crate::net::TcpStream::write
64/// [`TcpStream`]: crate::net::TcpStream
65/// [`flush`]: BufWriter::flush
66#[stable(feature = "rust1", since = "1.0.0")]
67pub struct BufWriter<W: ?Sized + Write> {
68 // The buffer. Avoid using this like a normal `Vec` in common code paths.
69 // That is, don't use `buf.push`, `buf.extend_from_slice`, or any other
70 // methods that require bounds checking or the like. This makes an enormous
71 // difference to performance (we may want to stop using a `Vec` entirely).
72 buf: Vec<u8>,
73 // #30888: If the inner writer panics in a call to write, we don't want to
74 // write the buffered data a second time in BufWriter's destructor. This
75 // flag tells the Drop impl if it should skip the flush.
76 panicked: bool,
77 inner: W,
78}
79
80impl<W: Write> BufWriter<W> {
81 /// Creates a new `BufWriter<W>` with a default buffer capacity. The default is currently 8 KiB,
82 /// but may change in the future.
83 ///
84 /// # Examples
85 ///
86 /// ```no_run
87 /// use std::io::BufWriter;
88 /// use std::net::TcpStream;
89 ///
90 /// let mut buffer = BufWriter::new(TcpStream::connect("127.0.0.1:34254").unwrap());
91 /// ```
92 #[stable(feature = "rust1", since = "1.0.0")]
93 pub fn new(inner: W) -> BufWriter<W> {
94 BufWriter::with_capacity(DEFAULT_BUF_SIZE, inner)
95 }
96
97 pub(crate) fn try_new_buffer() -> io::Result<Vec<u8>> {
98 Vec::try_with_capacity(DEFAULT_BUF_SIZE).map_err(|_| {
99 io::const_error!(ErrorKind::OutOfMemory, "failed to allocate write buffer")
100 })
101 }
102
103 pub(crate) fn with_buffer(inner: W, buf: Vec<u8>) -> Self {
104 Self { inner, buf, panicked: false }
105 }
106
107 /// Creates a new `BufWriter<W>` with at least the specified buffer capacity.
108 ///
109 /// # Examples
110 ///
111 /// Creating a buffer with a buffer of at least a hundred bytes.
112 ///
113 /// ```no_run
114 /// use std::io::BufWriter;
115 /// use std::net::TcpStream;
116 ///
117 /// let stream = TcpStream::connect("127.0.0.1:34254").unwrap();
118 /// let mut buffer = BufWriter::with_capacity(100, stream);
119 /// ```
120 #[stable(feature = "rust1", since = "1.0.0")]
121 pub fn with_capacity(capacity: usize, inner: W) -> BufWriter<W> {
122 BufWriter { inner, buf: Vec::with_capacity(capacity), panicked: false }
123 }
124
125 /// Unwraps this `BufWriter<W>`, returning the underlying writer.
126 ///
127 /// The buffer is written out before returning the writer.
128 ///
129 /// # Errors
130 ///
131 /// An [`Err`] will be returned if an error occurs while flushing the buffer.
132 ///
133 /// # Examples
134 ///
135 /// ```no_run
136 /// use std::io::BufWriter;
137 /// use std::net::TcpStream;
138 ///
139 /// let mut buffer = BufWriter::new(TcpStream::connect("127.0.0.1:34254").unwrap());
140 ///
141 /// // unwrap the TcpStream and flush the buffer
142 /// let stream = buffer.into_inner().unwrap();
143 /// ```
144 #[stable(feature = "rust1", since = "1.0.0")]
145 pub fn into_inner(mut self) -> Result<W, IntoInnerError<BufWriter<W>>> {
146 match self.flush_buf() {
147 Err(e) => Err(IntoInnerError::new(self, e)),
148 Ok(()) => Ok(self.into_parts().0),
149 }
150 }
151
152 /// Disassembles this `BufWriter<W>`, returning the underlying writer, and any buffered but
153 /// unwritten data.
154 ///
155 /// If the underlying writer panicked, it is not known what portion of the data was written.
156 /// In this case, we return `WriterPanicked` for the buffered data (from which the buffer
157 /// contents can still be recovered).
158 ///
159 /// `into_parts` makes no attempt to flush data and cannot fail.
160 ///
161 /// # Examples
162 ///
163 /// ```
164 /// use std::io::{BufWriter, Write};
165 ///
166 /// let mut buffer = [0u8; 10];
167 /// let mut stream = BufWriter::new(buffer.as_mut());
168 /// write!(stream, "too much data").unwrap();
169 /// stream.flush().expect_err("it doesn't fit");
170 /// let (recovered_writer, buffered_data) = stream.into_parts();
171 /// assert_eq!(recovered_writer.len(), 0);
172 /// assert_eq!(&buffered_data.unwrap(), b"ata");
173 /// ```
174 #[stable(feature = "bufwriter_into_parts", since = "1.56.0")]
175 pub fn into_parts(self) -> (W, Result<Vec<u8>, WriterPanicked>) {
176 let mut this = ManuallyDrop::new(self);
177 let buf = mem::take(&mut this.buf);
178 let buf = if !this.panicked { Ok(buf) } else { Err(WriterPanicked { buf }) };
179
180 // SAFETY: double-drops are prevented by putting `this` in a ManuallyDrop that is never dropped
181 let inner = unsafe { ptr::read(&this.inner) };
182
183 (inner, buf)
184 }
185}
186
187impl<W: ?Sized + Write> BufWriter<W> {
188 /// Send data in our local buffer into the inner writer, looping as
189 /// necessary until either it's all been sent or an error occurs.
190 ///
191 /// Because all the data in the buffer has been reported to our owner as
192 /// "successfully written" (by returning nonzero success values from
193 /// `write`), any 0-length writes from `inner` must be reported as i/o
194 /// errors from this method.
195 pub(in crate::io) fn flush_buf(&mut self) -> io::Result<()> {
196 /// Helper struct to ensure the buffer is updated after all the writes
197 /// are complete. It tracks the number of written bytes and drains them
198 /// all from the front of the buffer when dropped.
199 struct BufGuard<'a> {
200 buffer: &'a mut Vec<u8>,
201 written: usize,
202 }
203
204 impl<'a> BufGuard<'a> {
205 fn new(buffer: &'a mut Vec<u8>) -> Self {
206 Self { buffer, written: 0 }
207 }
208
209 /// The unwritten part of the buffer
210 fn remaining(&self) -> &[u8] {
211 &self.buffer[self.written..]
212 }
213
214 /// Flag some bytes as removed from the front of the buffer
215 fn consume(&mut self, amt: usize) {
216 self.written += amt;
217 }
218
219 /// true if all of the bytes have been written
220 fn done(&self) -> bool {
221 self.written >= self.buffer.len()
222 }
223 }
224
225 impl Drop for BufGuard<'_> {
226 fn drop(&mut self) {
227 if self.written > 0 {
228 self.buffer.drain(..self.written);
229 }
230 }
231 }
232
233 let mut guard = BufGuard::new(&mut self.buf);
234 while !guard.done() {
235 self.panicked = true;
236 let r = self.inner.write(guard.remaining());
237 self.panicked = false;
238
239 match r {
240 Ok(0) => {
241 return Err(io::const_error!(
242 ErrorKind::WriteZero,
243 "failed to write the buffered data",
244 ));
245 }
246 Ok(n) => guard.consume(n),
247 Err(ref e) if e.is_interrupted() => {}
248 Err(e) => return Err(e),
249 }
250 }
251 Ok(())
252 }
253
254 /// Buffer some data without flushing it, regardless of the size of the
255 /// data. Writes as much as possible without exceeding capacity. Returns
256 /// the number of bytes written.
257 pub(super) fn write_to_buf(&mut self, buf: &[u8]) -> usize {
258 let available = self.spare_capacity();
259 let amt_to_buffer = available.min(buf.len());
260
261 // SAFETY: `amt_to_buffer` is <= buffer's spare capacity by construction.
262 unsafe {
263 self.write_to_buffer_unchecked(&buf[..amt_to_buffer]);
264 }
265
266 amt_to_buffer
267 }
268
269 /// Gets a reference to the underlying writer.
270 ///
271 /// # Examples
272 ///
273 /// ```no_run
274 /// use std::io::BufWriter;
275 /// use std::net::TcpStream;
276 ///
277 /// let mut buffer = BufWriter::new(TcpStream::connect("127.0.0.1:34254").unwrap());
278 ///
279 /// // we can use reference just like buffer
280 /// let reference = buffer.get_ref();
281 /// ```
282 #[stable(feature = "rust1", since = "1.0.0")]
283 pub fn get_ref(&self) -> &W {
284 &self.inner
285 }
286
287 /// Gets a mutable reference to the underlying writer.
288 ///
289 /// It is inadvisable to directly write to the underlying writer.
290 ///
291 /// # Examples
292 ///
293 /// ```no_run
294 /// use std::io::BufWriter;
295 /// use std::net::TcpStream;
296 ///
297 /// let mut buffer = BufWriter::new(TcpStream::connect("127.0.0.1:34254").unwrap());
298 ///
299 /// // we can use reference just like buffer
300 /// let reference = buffer.get_mut();
301 /// ```
302 #[stable(feature = "rust1", since = "1.0.0")]
303 pub fn get_mut(&mut self) -> &mut W {
304 &mut self.inner
305 }
306
307 /// Returns a reference to the internally buffered data.
308 ///
309 /// # Examples
310 ///
311 /// ```no_run
312 /// use std::io::BufWriter;
313 /// use std::net::TcpStream;
314 ///
315 /// let buf_writer = BufWriter::new(TcpStream::connect("127.0.0.1:34254").unwrap());
316 ///
317 /// // See how many bytes are currently buffered
318 /// let bytes_buffered = buf_writer.buffer().len();
319 /// ```
320 #[stable(feature = "bufreader_buffer", since = "1.37.0")]
321 pub fn buffer(&self) -> &[u8] {
322 &self.buf
323 }
324
325 /// Returns a mutable reference to the internal buffer.
326 ///
327 /// This can be used to write data directly into the buffer without triggering writers
328 /// to the underlying writer.
329 ///
330 /// That the buffer is a `Vec` is an implementation detail.
331 /// Callers should not modify the capacity as there currently is no public API to do so
332 /// and thus any capacity changes would be unexpected by the user.
333 pub(in crate::io) fn buffer_mut(&mut self) -> &mut Vec<u8> {
334 &mut self.buf
335 }
336
337 /// Returns the number of bytes the internal buffer can hold without flushing.
338 ///
339 /// # Examples
340 ///
341 /// ```no_run
342 /// use std::io::BufWriter;
343 /// use std::net::TcpStream;
344 ///
345 /// let buf_writer = BufWriter::new(TcpStream::connect("127.0.0.1:34254").unwrap());
346 ///
347 /// // Check the capacity of the inner buffer
348 /// let capacity = buf_writer.capacity();
349 /// // Calculate how many bytes can be written without flushing
350 /// let without_flush = capacity - buf_writer.buffer().len();
351 /// ```
352 #[stable(feature = "buffered_io_capacity", since = "1.46.0")]
353 pub fn capacity(&self) -> usize {
354 self.buf.capacity()
355 }
356
357 // Ensure this function does not get inlined into `write`, so that it
358 // remains inlineable and its common path remains as short as possible.
359 // If this function ends up being called frequently relative to `write`,
360 // it's likely a sign that the client is using an improperly sized buffer
361 // or their write patterns are somewhat pathological.
362 #[cold]
363 #[inline(never)]
364 fn write_cold(&mut self, buf: &[u8]) -> io::Result<usize> {
365 if buf.len() > self.spare_capacity() {
366 self.flush_buf()?;
367 }
368
369 // Why not len > capacity? To avoid a needless trip through the buffer when the input
370 // exactly fills it. We'd just need to flush it to the underlying writer anyway.
371 if buf.len() >= self.buf.capacity() {
372 self.panicked = true;
373 let r = self.get_mut().write(buf);
374 self.panicked = false;
375 r
376 } else {
377 // Write to the buffer. In this case, we write to the buffer even if it fills it
378 // exactly. Doing otherwise would mean flushing the buffer, then writing this
379 // input to the inner writer, which in many cases would be a worse strategy.
380
381 // SAFETY: There was either enough spare capacity already, or there wasn't and we
382 // flushed the buffer to ensure that there is. In the latter case, we know that there
383 // is because flushing ensured that our entire buffer is spare capacity, and we entered
384 // this block because the input buffer length is less than that capacity. In either
385 // case, it's safe to write the input buffer to our buffer.
386 unsafe {
387 self.write_to_buffer_unchecked(buf);
388 }
389
390 Ok(buf.len())
391 }
392 }
393
394 // Ensure this function does not get inlined into `write_all`, so that it
395 // remains inlineable and its common path remains as short as possible.
396 // If this function ends up being called frequently relative to `write_all`,
397 // it's likely a sign that the client is using an improperly sized buffer
398 // or their write patterns are somewhat pathological.
399 #[cold]
400 #[inline(never)]
401 fn write_all_cold(&mut self, buf: &[u8]) -> io::Result<()> {
402 // Normally, `write_all` just calls `write` in a loop. We can do better
403 // by calling `self.get_mut().write_all()` directly, which avoids
404 // round trips through the buffer in the event of a series of partial
405 // writes in some circumstances.
406
407 if buf.len() > self.spare_capacity() {
408 self.flush_buf()?;
409 }
410
411 // Why not len > capacity? To avoid a needless trip through the buffer when the input
412 // exactly fills it. We'd just need to flush it to the underlying writer anyway.
413 if buf.len() >= self.buf.capacity() {
414 self.panicked = true;
415 let r = self.get_mut().write_all(buf);
416 self.panicked = false;
417 r
418 } else {
419 // Write to the buffer. In this case, we write to the buffer even if it fills it
420 // exactly. Doing otherwise would mean flushing the buffer, then writing this
421 // input to the inner writer, which in many cases would be a worse strategy.
422
423 // SAFETY: There was either enough spare capacity already, or there wasn't and we
424 // flushed the buffer to ensure that there is. In the latter case, we know that there
425 // is because flushing ensured that our entire buffer is spare capacity, and we entered
426 // this block because the input buffer length is less than that capacity. In either
427 // case, it's safe to write the input buffer to our buffer.
428 unsafe {
429 self.write_to_buffer_unchecked(buf);
430 }
431
432 Ok(())
433 }
434 }
435
436 // SAFETY: Requires `buf.len() <= self.buf.capacity() - self.buf.len()`,
437 // i.e., that input buffer length is less than or equal to spare capacity.
438 #[inline]
439 unsafe fn write_to_buffer_unchecked(&mut self, buf: &[u8]) {
440 debug_assert!(buf.len() <= self.spare_capacity());
441 let old_len = self.buf.len();
442 let buf_len = buf.len();
443 let src = buf.as_ptr();
444 unsafe {
445 let dst = self.buf.as_mut_ptr().add(old_len);
446 ptr::copy_nonoverlapping(src, dst, buf_len);
447 self.buf.set_len(old_len + buf_len);
448 }
449 }
450
451 #[inline]
452 fn spare_capacity(&self) -> usize {
453 self.buf.capacity() - self.buf.len()
454 }
455}
456
457#[stable(feature = "bufwriter_into_parts", since = "1.56.0")]
458/// Error returned for the buffered data from `BufWriter::into_parts`, when the underlying
459/// writer has previously panicked. Contains the (possibly partly written) buffered data.
460///
461/// # Example
462///
463/// ```
464/// use std::io::{self, BufWriter, Write};
465/// use std::panic::{catch_unwind, AssertUnwindSafe};
466///
467/// struct PanickingWriter;
468/// impl Write for PanickingWriter {
469/// fn write(&mut self, buf: &[u8]) -> io::Result<usize> { panic!() }
470/// fn flush(&mut self) -> io::Result<()> { panic!() }
471/// }
472///
473/// let mut stream = BufWriter::new(PanickingWriter);
474/// write!(stream, "some data").unwrap();
475/// let result = catch_unwind(AssertUnwindSafe(|| {
476/// stream.flush().unwrap()
477/// }));
478/// assert!(result.is_err());
479/// let (recovered_writer, buffered_data) = stream.into_parts();
480/// assert!(matches!(recovered_writer, PanickingWriter));
481/// assert_eq!(buffered_data.unwrap_err().into_inner(), b"some data");
482/// ```
483pub struct WriterPanicked {
484 buf: Vec<u8>,
485}
486
487impl WriterPanicked {
488 /// Returns the perhaps-unwritten data. Some of this data may have been written by the
489 /// panicking call(s) to the underlying writer, so simply writing it again is not a good idea.
490 #[must_use = "`self` will be dropped if the result is not used"]
491 #[stable(feature = "bufwriter_into_parts", since = "1.56.0")]
492 pub fn into_inner(self) -> Vec<u8> {
493 self.buf
494 }
495
496 const DESCRIPTION: &'static str =
497 "BufWriter inner writer panicked, what data remains unwritten is not known";
498}
499
500#[stable(feature = "bufwriter_into_parts", since = "1.56.0")]
501impl error::Error for WriterPanicked {
502 #[allow(deprecated, deprecated_in_future)]
503 fn description(&self) -> &str {
504 Self::DESCRIPTION
505 }
506}
507
508#[stable(feature = "bufwriter_into_parts", since = "1.56.0")]
509impl fmt::Display for WriterPanicked {
510 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
511 write!(f, "{}", Self::DESCRIPTION)
512 }
513}
514
515#[stable(feature = "bufwriter_into_parts", since = "1.56.0")]
516impl fmt::Debug for WriterPanicked {
517 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
518 f.debug_struct("WriterPanicked")
519 .field("buffer", &format_args!("{}/{}", self.buf.len(), self.buf.capacity()))
520 .finish()
521 }
522}
523
524#[stable(feature = "rust1", since = "1.0.0")]
525impl<W: ?Sized + Write> Write for BufWriter<W> {
526 #[inline]
527 fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
528 // Use < instead of <= to avoid a needless trip through the buffer in some cases.
529 // See `write_cold` for details.
530 if buf.len() < self.spare_capacity() {
531 // SAFETY: safe by above conditional.
532 unsafe {
533 self.write_to_buffer_unchecked(buf);
534 }
535
536 Ok(buf.len())
537 } else {
538 self.write_cold(buf)
539 }
540 }
541
542 #[inline]
543 fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
544 // Use < instead of <= to avoid a needless trip through the buffer in some cases.
545 // See `write_all_cold` for details.
546 if buf.len() < self.spare_capacity() {
547 // SAFETY: safe by above conditional.
548 unsafe {
549 self.write_to_buffer_unchecked(buf);
550 }
551
552 Ok(())
553 } else {
554 self.write_all_cold(buf)
555 }
556 }
557
558 fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize> {
559 // FIXME: Consider applying `#[inline]` / `#[inline(never)]` optimizations already applied
560 // to `write` and `write_all`. The performance benefits can be significant. See #79930.
561 if self.get_ref().is_write_vectored() {
562 // We have to handle the possibility that the total length of the buffers overflows
563 // `usize` (even though this can only happen if multiple `IoSlice`s reference the
564 // same underlying buffer, as otherwise the buffers wouldn't fit in memory). If the
565 // computation overflows, then surely the input cannot fit in our buffer, so we forward
566 // to the inner writer's `write_vectored` method to let it handle it appropriately.
567 let mut saturated_total_len: usize = 0;
568
569 for buf in bufs {
570 saturated_total_len = saturated_total_len.saturating_add(buf.len());
571
572 if saturated_total_len > self.spare_capacity() && !self.buf.is_empty() {
573 // Flush if the total length of the input exceeds our buffer's spare capacity.
574 // If we would have overflowed, this condition also holds, and we need to flush.
575 self.flush_buf()?;
576 }
577
578 if saturated_total_len >= self.buf.capacity() {
579 // Forward to our inner writer if the total length of the input is greater than or
580 // equal to our buffer capacity. If we would have overflowed, this condition also
581 // holds, and we punt to the inner writer.
582 self.panicked = true;
583 let r = self.get_mut().write_vectored(bufs);
584 self.panicked = false;
585 return r;
586 }
587 }
588
589 // `saturated_total_len < self.buf.capacity()` implies that we did not saturate.
590
591 // SAFETY: We checked whether or not the spare capacity was large enough above. If
592 // it was, then we're safe already. If it wasn't, we flushed, making sufficient
593 // room for any input <= the buffer size, which includes this input.
594 unsafe {
595 bufs.iter().for_each(|b| self.write_to_buffer_unchecked(b));
596 };
597
598 Ok(saturated_total_len)
599 } else {
600 let mut iter = bufs.iter();
601 let mut total_written = if let Some(buf) = iter.by_ref().find(|&buf| !buf.is_empty()) {
602 // This is the first non-empty slice to write, so if it does
603 // not fit in the buffer, we still get to flush and proceed.
604 if buf.len() > self.spare_capacity() {
605 self.flush_buf()?;
606 }
607 if buf.len() >= self.buf.capacity() {
608 // The slice is at least as large as the buffering capacity,
609 // so it's better to write it directly, bypassing the buffer.
610 self.panicked = true;
611 let r = self.get_mut().write(buf);
612 self.panicked = false;
613 return r;
614 } else {
615 // SAFETY: We checked whether or not the spare capacity was large enough above.
616 // If it was, then we're safe already. If it wasn't, we flushed, making
617 // sufficient room for any input <= the buffer size, which includes this input.
618 unsafe {
619 self.write_to_buffer_unchecked(buf);
620 }
621
622 buf.len()
623 }
624 } else {
625 return Ok(0);
626 };
627 debug_assert!(total_written != 0);
628 for buf in iter {
629 if buf.len() <= self.spare_capacity() {
630 // SAFETY: safe by above conditional.
631 unsafe {
632 self.write_to_buffer_unchecked(buf);
633 }
634
635 // This cannot overflow `usize`. If we are here, we've written all of the bytes
636 // so far to our buffer, and we've ensured that we never exceed the buffer's
637 // capacity. Therefore, `total_written` <= `self.buf.capacity()` <= `usize::MAX`.
638 total_written += buf.len();
639 } else {
640 break;
641 }
642 }
643 Ok(total_written)
644 }
645 }
646
647 fn is_write_vectored(&self) -> bool {
648 true
649 }
650
651 fn flush(&mut self) -> io::Result<()> {
652 self.flush_buf().and_then(|()| self.get_mut().flush())
653 }
654}
655
656#[stable(feature = "rust1", since = "1.0.0")]
657impl<W: ?Sized + Write> fmt::Debug for BufWriter<W>
658where
659 W: fmt::Debug,
660{
661 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
662 fmt.debug_struct("BufWriter")
663 .field("writer", &&self.inner)
664 .field("buffer", &format_args!("{}/{}", self.buf.len(), self.buf.capacity()))
665 .finish()
666 }
667}
668
669#[stable(feature = "rust1", since = "1.0.0")]
670impl<W: ?Sized + Write + Seek> Seek for BufWriter<W> {
671 /// Seek to the offset, in bytes, in the underlying writer.
672 ///
673 /// Seeking always writes out the internal buffer before seeking.
674 fn seek(&mut self, pos: SeekFrom) -> io::Result<u64> {
675 self.flush_buf()?;
676 self.get_mut().seek(pos)
677 }
678}
679
680#[stable(feature = "rust1", since = "1.0.0")]
681impl<W: ?Sized + Write> Drop for BufWriter<W> {
682 fn drop(&mut self) {
683 if !self.panicked {
684 // dtors should not panic, so we ignore a failed flush
685 let _r = self.flush_buf();
686 }
687 }
688}