std/sync/mpmc/list.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
//! Unbounded channel implemented as a linked list.
use super::context::Context;
use super::error::*;
use super::select::{Operation, Selected, Token};
use super::utils::{Backoff, CachePadded};
use super::waker::SyncWaker;
use crate::cell::UnsafeCell;
use crate::marker::PhantomData;
use crate::mem::MaybeUninit;
use crate::ptr;
use crate::sync::atomic::{self, AtomicPtr, AtomicUsize, Ordering};
use crate::time::Instant;
// Bits indicating the state of a slot:
// * If a message has been written into the slot, `WRITE` is set.
// * If a message has been read from the slot, `READ` is set.
// * If the block is being destroyed, `DESTROY` is set.
const WRITE: usize = 1;
const READ: usize = 2;
const DESTROY: usize = 4;
// Each block covers one "lap" of indices.
const LAP: usize = 32;
// The maximum number of messages a block can hold.
const BLOCK_CAP: usize = LAP - 1;
// How many lower bits are reserved for metadata.
const SHIFT: usize = 1;
// Has two different purposes:
// * If set in head, indicates that the block is not the last one.
// * If set in tail, indicates that the channel is disconnected.
const MARK_BIT: usize = 1;
/// A slot in a block.
struct Slot<T> {
/// The message.
msg: UnsafeCell<MaybeUninit<T>>,
/// The state of the slot.
state: AtomicUsize,
}
impl<T> Slot<T> {
/// Waits until a message is written into the slot.
fn wait_write(&self) {
let backoff = Backoff::new();
while self.state.load(Ordering::Acquire) & WRITE == 0 {
backoff.spin_heavy();
}
}
}
/// A block in a linked list.
///
/// Each block in the list can hold up to `BLOCK_CAP` messages.
struct Block<T> {
/// The next block in the linked list.
next: AtomicPtr<Block<T>>,
/// Slots for messages.
slots: [Slot<T>; BLOCK_CAP],
}
impl<T> Block<T> {
/// Creates an empty block.
fn new() -> Box<Block<T>> {
// SAFETY: This is safe because:
// [1] `Block::next` (AtomicPtr) may be safely zero initialized.
// [2] `Block::slots` (Array) may be safely zero initialized because of [3, 4].
// [3] `Slot::msg` (UnsafeCell) may be safely zero initialized because it
// holds a MaybeUninit.
// [4] `Slot::state` (AtomicUsize) may be safely zero initialized.
unsafe { Box::new_zeroed().assume_init() }
}
/// Waits until the next pointer is set.
fn wait_next(&self) -> *mut Block<T> {
let backoff = Backoff::new();
loop {
let next = self.next.load(Ordering::Acquire);
if !next.is_null() {
return next;
}
backoff.spin_heavy();
}
}
/// Sets the `DESTROY` bit in slots starting from `start` and destroys the block.
unsafe fn destroy(this: *mut Block<T>, start: usize) {
// It is not necessary to set the `DESTROY` bit in the last slot because that slot has
// begun destruction of the block.
for i in start..BLOCK_CAP - 1 {
let slot = unsafe { (*this).slots.get_unchecked(i) };
// Mark the `DESTROY` bit if a thread is still using the slot.
if slot.state.load(Ordering::Acquire) & READ == 0
&& slot.state.fetch_or(DESTROY, Ordering::AcqRel) & READ == 0
{
// If a thread is still using the slot, it will continue destruction of the block.
return;
}
}
// No thread is using the block, now it is safe to destroy it.
drop(unsafe { Box::from_raw(this) });
}
}
/// A position in a channel.
#[derive(Debug)]
struct Position<T> {
/// The index in the channel.
index: AtomicUsize,
/// The block in the linked list.
block: AtomicPtr<Block<T>>,
}
/// The token type for the list flavor.
#[derive(Debug)]
pub(crate) struct ListToken {
/// The block of slots.
block: *const u8,
/// The offset into the block.
offset: usize,
}
impl Default for ListToken {
#[inline]
fn default() -> Self {
ListToken { block: ptr::null(), offset: 0 }
}
}
/// Unbounded channel implemented as a linked list.
///
/// Each message sent into the channel is assigned a sequence number, i.e. an index. Indices are
/// represented as numbers of type `usize` and wrap on overflow.
///
/// Consecutive messages are grouped into blocks in order to put less pressure on the allocator and
/// improve cache efficiency.
pub(crate) struct Channel<T> {
/// The head of the channel.
head: CachePadded<Position<T>>,
/// The tail of the channel.
tail: CachePadded<Position<T>>,
/// Receivers waiting while the channel is empty and not disconnected.
receivers: SyncWaker,
/// Indicates that dropping a `Channel<T>` may drop messages of type `T`.
_marker: PhantomData<T>,
}
impl<T> Channel<T> {
/// Creates a new unbounded channel.
pub(crate) fn new() -> Self {
Channel {
head: CachePadded::new(Position {
block: AtomicPtr::new(ptr::null_mut()),
index: AtomicUsize::new(0),
}),
tail: CachePadded::new(Position {
block: AtomicPtr::new(ptr::null_mut()),
index: AtomicUsize::new(0),
}),
receivers: SyncWaker::new(),
_marker: PhantomData,
}
}
/// Attempts to reserve a slot for sending a message.
fn start_send(&self, token: &mut Token) -> bool {
let backoff = Backoff::new();
let mut tail = self.tail.index.load(Ordering::Acquire);
let mut block = self.tail.block.load(Ordering::Acquire);
let mut next_block = None;
loop {
// Check if the channel is disconnected.
if tail & MARK_BIT != 0 {
token.list.block = ptr::null();
return true;
}
// Calculate the offset of the index into the block.
let offset = (tail >> SHIFT) % LAP;
// If we reached the end of the block, wait until the next one is installed.
if offset == BLOCK_CAP {
backoff.spin_heavy();
tail = self.tail.index.load(Ordering::Acquire);
block = self.tail.block.load(Ordering::Acquire);
continue;
}
// If we're going to have to install the next block, allocate it in advance in order to
// make the wait for other threads as short as possible.
if offset + 1 == BLOCK_CAP && next_block.is_none() {
next_block = Some(Block::<T>::new());
}
// If this is the first message to be sent into the channel, we need to allocate the
// first block and install it.
if block.is_null() {
let new = Box::into_raw(Block::<T>::new());
if self
.tail
.block
.compare_exchange(block, new, Ordering::Release, Ordering::Relaxed)
.is_ok()
{
self.head.block.store(new, Ordering::Release);
block = new;
} else {
next_block = unsafe { Some(Box::from_raw(new)) };
tail = self.tail.index.load(Ordering::Acquire);
block = self.tail.block.load(Ordering::Acquire);
continue;
}
}
let new_tail = tail + (1 << SHIFT);
// Try advancing the tail forward.
match self.tail.index.compare_exchange_weak(
tail,
new_tail,
Ordering::SeqCst,
Ordering::Acquire,
) {
Ok(_) => unsafe {
// If we've reached the end of the block, install the next one.
if offset + 1 == BLOCK_CAP {
let next_block = Box::into_raw(next_block.unwrap());
self.tail.block.store(next_block, Ordering::Release);
self.tail.index.fetch_add(1 << SHIFT, Ordering::Release);
(*block).next.store(next_block, Ordering::Release);
}
token.list.block = block as *const u8;
token.list.offset = offset;
return true;
},
Err(_) => {
backoff.spin_light();
tail = self.tail.index.load(Ordering::Acquire);
block = self.tail.block.load(Ordering::Acquire);
}
}
}
}
/// Writes a message into the channel.
pub(crate) unsafe fn write(&self, token: &mut Token, msg: T) -> Result<(), T> {
// If there is no slot, the channel is disconnected.
if token.list.block.is_null() {
return Err(msg);
}
// Write the message into the slot.
let block = token.list.block as *mut Block<T>;
let offset = token.list.offset;
unsafe {
let slot = (*block).slots.get_unchecked(offset);
slot.msg.get().write(MaybeUninit::new(msg));
slot.state.fetch_or(WRITE, Ordering::Release);
}
// Wake a sleeping receiver.
self.receivers.notify();
Ok(())
}
/// Attempts to reserve a slot for receiving a message.
fn start_recv(&self, token: &mut Token) -> bool {
let backoff = Backoff::new();
let mut head = self.head.index.load(Ordering::Acquire);
let mut block = self.head.block.load(Ordering::Acquire);
loop {
// Calculate the offset of the index into the block.
let offset = (head >> SHIFT) % LAP;
// If we reached the end of the block, wait until the next one is installed.
if offset == BLOCK_CAP {
backoff.spin_heavy();
head = self.head.index.load(Ordering::Acquire);
block = self.head.block.load(Ordering::Acquire);
continue;
}
let mut new_head = head + (1 << SHIFT);
if new_head & MARK_BIT == 0 {
atomic::fence(Ordering::SeqCst);
let tail = self.tail.index.load(Ordering::Relaxed);
// If the tail equals the head, that means the channel is empty.
if head >> SHIFT == tail >> SHIFT {
// If the channel is disconnected...
if tail & MARK_BIT != 0 {
// ...then receive an error.
token.list.block = ptr::null();
return true;
} else {
// Otherwise, the receive operation is not ready.
return false;
}
}
// If head and tail are not in the same block, set `MARK_BIT` in head.
if (head >> SHIFT) / LAP != (tail >> SHIFT) / LAP {
new_head |= MARK_BIT;
}
}
// The block can be null here only if the first message is being sent into the channel.
// In that case, just wait until it gets initialized.
if block.is_null() {
backoff.spin_heavy();
head = self.head.index.load(Ordering::Acquire);
block = self.head.block.load(Ordering::Acquire);
continue;
}
// Try moving the head index forward.
match self.head.index.compare_exchange_weak(
head,
new_head,
Ordering::SeqCst,
Ordering::Acquire,
) {
Ok(_) => unsafe {
// If we've reached the end of the block, move to the next one.
if offset + 1 == BLOCK_CAP {
let next = (*block).wait_next();
let mut next_index = (new_head & !MARK_BIT).wrapping_add(1 << SHIFT);
if !(*next).next.load(Ordering::Relaxed).is_null() {
next_index |= MARK_BIT;
}
self.head.block.store(next, Ordering::Release);
self.head.index.store(next_index, Ordering::Release);
}
token.list.block = block as *const u8;
token.list.offset = offset;
return true;
},
Err(_) => {
backoff.spin_light();
head = self.head.index.load(Ordering::Acquire);
block = self.head.block.load(Ordering::Acquire);
}
}
}
}
/// Reads a message from the channel.
pub(crate) unsafe fn read(&self, token: &mut Token) -> Result<T, ()> {
if token.list.block.is_null() {
// The channel is disconnected.
return Err(());
}
// Read the message.
let block = token.list.block as *mut Block<T>;
let offset = token.list.offset;
unsafe {
let slot = (*block).slots.get_unchecked(offset);
slot.wait_write();
let msg = slot.msg.get().read().assume_init();
// Destroy the block if we've reached the end, or if another thread wanted to destroy but
// couldn't because we were busy reading from the slot.
if offset + 1 == BLOCK_CAP {
Block::destroy(block, 0);
} else if slot.state.fetch_or(READ, Ordering::AcqRel) & DESTROY != 0 {
Block::destroy(block, offset + 1);
}
Ok(msg)
}
}
/// Attempts to send a message into the channel.
pub(crate) fn try_send(&self, msg: T) -> Result<(), TrySendError<T>> {
self.send(msg, None).map_err(|err| match err {
SendTimeoutError::Disconnected(msg) => TrySendError::Disconnected(msg),
SendTimeoutError::Timeout(_) => unreachable!(),
})
}
/// Sends a message into the channel.
pub(crate) fn send(
&self,
msg: T,
_deadline: Option<Instant>,
) -> Result<(), SendTimeoutError<T>> {
let token = &mut Token::default();
assert!(self.start_send(token));
unsafe { self.write(token, msg).map_err(SendTimeoutError::Disconnected) }
}
/// Attempts to receive a message without blocking.
pub(crate) fn try_recv(&self) -> Result<T, TryRecvError> {
let token = &mut Token::default();
if self.start_recv(token) {
unsafe { self.read(token).map_err(|_| TryRecvError::Disconnected) }
} else {
Err(TryRecvError::Empty)
}
}
/// Receives a message from the channel.
pub(crate) fn recv(&self, deadline: Option<Instant>) -> Result<T, RecvTimeoutError> {
let token = &mut Token::default();
loop {
if self.start_recv(token) {
unsafe {
return self.read(token).map_err(|_| RecvTimeoutError::Disconnected);
}
}
if let Some(d) = deadline {
if Instant::now() >= d {
return Err(RecvTimeoutError::Timeout);
}
}
// Prepare for blocking until a sender wakes us up.
Context::with(|cx| {
let oper = Operation::hook(token);
self.receivers.register(oper, cx);
// Has the channel become ready just now?
if !self.is_empty() || self.is_disconnected() {
let _ = cx.try_select(Selected::Aborted);
}
// Block the current thread.
let sel = cx.wait_until(deadline);
match sel {
Selected::Waiting => unreachable!(),
Selected::Aborted | Selected::Disconnected => {
self.receivers.unregister(oper).unwrap();
// If the channel was disconnected, we still have to check for remaining
// messages.
}
Selected::Operation(_) => {}
}
});
}
}
/// Returns the current number of messages inside the channel.
pub(crate) fn len(&self) -> usize {
loop {
// Load the tail index, then load the head index.
let mut tail = self.tail.index.load(Ordering::SeqCst);
let mut head = self.head.index.load(Ordering::SeqCst);
// If the tail index didn't change, we've got consistent indices to work with.
if self.tail.index.load(Ordering::SeqCst) == tail {
// Erase the lower bits.
tail &= !((1 << SHIFT) - 1);
head &= !((1 << SHIFT) - 1);
// Fix up indices if they fall onto block ends.
if (tail >> SHIFT) & (LAP - 1) == LAP - 1 {
tail = tail.wrapping_add(1 << SHIFT);
}
if (head >> SHIFT) & (LAP - 1) == LAP - 1 {
head = head.wrapping_add(1 << SHIFT);
}
// Rotate indices so that head falls into the first block.
let lap = (head >> SHIFT) / LAP;
tail = tail.wrapping_sub((lap * LAP) << SHIFT);
head = head.wrapping_sub((lap * LAP) << SHIFT);
// Remove the lower bits.
tail >>= SHIFT;
head >>= SHIFT;
// Return the difference minus the number of blocks between tail and head.
return tail - head - tail / LAP;
}
}
}
/// Returns the capacity of the channel.
pub(crate) fn capacity(&self) -> Option<usize> {
None
}
/// Disconnects senders and wakes up all blocked receivers.
///
/// Returns `true` if this call disconnected the channel.
pub(crate) fn disconnect_senders(&self) -> bool {
let tail = self.tail.index.fetch_or(MARK_BIT, Ordering::SeqCst);
if tail & MARK_BIT == 0 {
self.receivers.disconnect();
true
} else {
false
}
}
/// Disconnects receivers.
///
/// Returns `true` if this call disconnected the channel.
pub(crate) fn disconnect_receivers(&self) -> bool {
let tail = self.tail.index.fetch_or(MARK_BIT, Ordering::SeqCst);
if tail & MARK_BIT == 0 {
// If receivers are dropped first, discard all messages to free
// memory eagerly.
self.discard_all_messages();
true
} else {
false
}
}
/// Discards all messages.
///
/// This method should only be called when all receivers are dropped.
fn discard_all_messages(&self) {
let backoff = Backoff::new();
let mut tail = self.tail.index.load(Ordering::Acquire);
loop {
let offset = (tail >> SHIFT) % LAP;
if offset != BLOCK_CAP {
break;
}
// New updates to tail will be rejected by MARK_BIT and aborted unless it's
// at boundary. We need to wait for the updates take affect otherwise there
// can be memory leaks.
backoff.spin_heavy();
tail = self.tail.index.load(Ordering::Acquire);
}
let mut head = self.head.index.load(Ordering::Acquire);
// The channel may be uninitialized, so we have to swap to avoid overwriting any sender's attempts
// to initialize the first block before noticing that the receivers disconnected. Late allocations
// will be deallocated by the sender in Drop.
let mut block = self.head.block.swap(ptr::null_mut(), Ordering::AcqRel);
// If we're going to be dropping messages we need to synchronize with initialization
if head >> SHIFT != tail >> SHIFT {
// The block can be null here only if a sender is in the process of initializing the
// channel while another sender managed to send a message by inserting it into the
// semi-initialized channel and advanced the tail.
// In that case, just wait until it gets initialized.
while block.is_null() {
backoff.spin_heavy();
block = self.head.block.load(Ordering::Acquire);
}
}
unsafe {
// Drop all messages between head and tail and deallocate the heap-allocated blocks.
while head >> SHIFT != tail >> SHIFT {
let offset = (head >> SHIFT) % LAP;
if offset < BLOCK_CAP {
// Drop the message in the slot.
let slot = (*block).slots.get_unchecked(offset);
slot.wait_write();
let p = &mut *slot.msg.get();
p.as_mut_ptr().drop_in_place();
} else {
(*block).wait_next();
// Deallocate the block and move to the next one.
let next = (*block).next.load(Ordering::Acquire);
drop(Box::from_raw(block));
block = next;
}
head = head.wrapping_add(1 << SHIFT);
}
// Deallocate the last remaining block.
if !block.is_null() {
drop(Box::from_raw(block));
}
}
head &= !MARK_BIT;
self.head.index.store(head, Ordering::Release);
}
/// Returns `true` if the channel is disconnected.
pub(crate) fn is_disconnected(&self) -> bool {
self.tail.index.load(Ordering::SeqCst) & MARK_BIT != 0
}
/// Returns `true` if the channel is empty.
pub(crate) fn is_empty(&self) -> bool {
let head = self.head.index.load(Ordering::SeqCst);
let tail = self.tail.index.load(Ordering::SeqCst);
head >> SHIFT == tail >> SHIFT
}
/// Returns `true` if the channel is full.
pub(crate) fn is_full(&self) -> bool {
false
}
}
impl<T> Drop for Channel<T> {
fn drop(&mut self) {
let mut head = self.head.index.load(Ordering::Relaxed);
let mut tail = self.tail.index.load(Ordering::Relaxed);
let mut block = self.head.block.load(Ordering::Relaxed);
// Erase the lower bits.
head &= !((1 << SHIFT) - 1);
tail &= !((1 << SHIFT) - 1);
unsafe {
// Drop all messages between head and tail and deallocate the heap-allocated blocks.
while head != tail {
let offset = (head >> SHIFT) % LAP;
if offset < BLOCK_CAP {
// Drop the message in the slot.
let slot = (*block).slots.get_unchecked(offset);
let p = &mut *slot.msg.get();
p.as_mut_ptr().drop_in_place();
} else {
// Deallocate the block and move to the next one.
let next = (*block).next.load(Ordering::Relaxed);
drop(Box::from_raw(block));
block = next;
}
head = head.wrapping_add(1 << SHIFT);
}
// Deallocate the last remaining block.
if !block.is_null() {
drop(Box::from_raw(block));
}
}
}
}